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ABSTRACT

Model performance of federated learning (FL) typically suffers from data hetero-
geneity, i.e., data distribution varies with clients. Advanced works have already
shown great potential for sharing client information to mitigate data heterogeneity.
Yet, some literature shows a dilemma in preserving strong privacy and promoting
model performance simultaneously. Revisiting the purpose of sharing information
motivates us to raise the fundamental questions: Which part of the data is more
critical for model generalization? Which part of the data is more privacy-sensitive?
Can we solve this dilemma by sharing useful (for generalization) features and
maintaining more sensitive data locally? Our work sheds light on data-dominated
sharing and training, in a way that we decouple original training data into sensitive
features and generalizable features. To be specific, we propose a Federated Privacy
Distillation framework named FedPD to alleviate the privacy-performance dilemma.
Namely, FedPD keeps the distilled sensitive features locally and constructs a global
dataset using shared generalizable features in a differentially private manner. Ac-
cordingly, clients can perform local training on both the local and securely shared
data for acquiring high model performance and avoiding the leakage of not distilled
privacy. Theoretically, we demonstrate the superiority of the sharing-only useful
feature strategy over sharing raw data. Empirically, we show the efficacy of FedPD
in promoting performance with comprehensive experiments.

1 INTRODUCTION

Federated learning (FL), as an emerging protection paradigm, receives increasing attention re-
cently (Kairouz et al., 2021; Li et al., 2021b; Yang et al., 2019), which preserves data privacy
without transmitting pure data. In general, distributed clients collaboratively train a global model
by aggregating gradients (or model parameters). However, distributed data can cause heterogeneity
issues (McMahan et al., 2017; Li et al., 2022; 2020; Zhao et al., 2018), due to diverse computing
capability and non-IID data distribution across federated clients. It results in unstable convergence
and degraded performance.

To address the challenge of heterogeneity, the seminal work, federated averaging (FedAvg) (McMahan
et al., 2017), proposes weighted averaging to overcome Non-IID data distribution when sharing
selected local parameters in each communication round. Despite addressing the diversity of computing
and communication, FedAvg still struggles with the client drift issue (Karimireddy et al., 2020).
Therefore, recent works try to resolve this issue by devising new learning objectives (Li et al.,
2020), designing new aggregation strategies (Yurochkin et al., 2019) and constructing information for
sharing (Zhao et al., 2018; Yoon et al., 2021). Among these explorations, sharing relevant information
across clients provides a straightforward and promising approach to mitigate data heterogeneity.

However, recent works point out a dilemma in preserving strong privacy and promoting model
performance. Specifically, (Zhao et al., 2018) show that a limited amount of sharing data could
significantly improve training performance. Unfortunately, sharing raw data, synthesized data, logits
and statistical information (Luo et al., 2021; Goetz & Tewari, 2020; Hao et al., 2021; Karimireddy
et al., 2020) can incur high privacy risks. To protect clients’ privacy, differential privacy (DP) provides
a de facto standard way for provable security quantitatively. The primary concern in applying DP
is about performance degradation (Tramer & Boneh, 2020). Thus, solving the above dilemma can
contribute to promoting model performance while preserving strong privacy.
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1.1 SYSTEMATIC OVERVIEW OF FEDPD

To solve the dilemma, we revisit the purpose of sharing information: sharing raw data benefits model
generalization while violating privacy leakage. This motivates us to raise the fundamental questions:

(1) Is it necessary to share complete raw data features to mitigate data heterogeneity?
We find that some data features are more important than others to train a global model. Therefore,
an intuitive approach is to divide the data features into two parts: one part for model generalization,
named generalizable features, and the other part with clients’ privacy, named sensitive features.
Then, the dilemma can be solved by sharing generalizable features and keeping sensitive features
locally throughout the training procedure. The insight is that the sensitive features in the data are
kept locally, and the generalizable features intrinsically related to generalization are shared across
clients. Accordingly, numerous decentralized clients can share generalizable features without privacy
concerns and construct a global dataset to perform local training.

(2) How to divide data features into generalizable features and sensitive features?
It is challenging to identify which part of the data is more important for model generalization and
which part is more privacy-sensitive. To resolve this challenge, we propose a novel framework named
Federated Privacy Distillation (FedPD). FedPD introduces a competitive mechanism by decomposing
x ∈ Rd with dimension d into generalizable features xg ∈ Rd and sensitive features xs ∈ Rd, i.e.,
x = xg + xs. In FedPD, sensitive features xs aim to cover almost all information in the data x,
while the generalizable features xg compete with xs for extracting sufficient information to train
models such that models trained on xg can generalize well. Consequently, the sensitive features are
almost the same as the data while models trained on generalizable features generalize well.

(3) What is the difference between sharing raw data features and partial features?
To ensure that sharing the generalizable features xg cannot expose FL to the danger of privacy
leakage, we follow the conventional style in applying differential privacy to protect generalizable
features xg shared across clients. Our trick is that most information in data has been distilled as
sensitive features xs, which is very secure and kept locally. In other words, we only need a relatively
small noise to protect xg, without the need to fully protect the raw data x, yet achieving a much
stronger privacy than the straightforward protection (i.e., directly sharing x with differential privacy).
Intuitively, sharing partial information in the data is more accessible to preserve privacy than sharing
complete information, which is fortunately consistent with our theoretical analysis.

1.2 OUR RESULTS AND CONTRIBUTION

To tackle data heterogeneity, we propose a novel framework with privacy, which constructs a global
dataset using securely shared data and performs local training on both the local and shared data,
shedding new light on data-dominated sharing schemes. To show the efficacy, we deploy FedDP on
four popular FL algorithms, including FedAvg, FedProx, SCAFFOLD, and FedNova, and conduct
experiments on various scenarios with respect to different amounts of devices and varying degrees of
heterogeneity. Our extensive results show that FedPD achieves considerable performance gains on
different FL algorithms. Our solution not only improves model performance in FL but also provides
strong security, which is theoretically guaranteed from the lens of differential privacy.

Our contributions are summarized as follows:

• We raise a foundation question: whether it is necessary to share complete raw data features
when sharing privacy data for mitigating data heterogeneity in FL.

• We answer the question by proposing a plug-and-play framework named FedPD, where
raw data features are divided into generalizable features and sensitive features. In FedPD,
the sensitive features are distilled in a competitive manner and kept locally, while the
generalizable features are shared in a differentially private manner to construct a global
dataset.

• We give a new perspective on employing differential privacy that adds noise to partial data
features instead of the complete raw data features, which is theoretically superior to the raw
data sharing strategy.

• Extensive experiments demonstrate that FedPD can considerably improve the performance
of FL models.
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Figure 1: FL Framework with the plug-in FedPD. Clients generate generalizable features and add
noise protection to get protected generalizable features xp during privacy distillation process. The
protected generalizable features xp are collected from numerous distributed clients to construct a
globally shared dataset while sensitive features xs are kept locally. During local training procedure,
local raw data and a subset of globally shared data jointly train the local model for global aggregation.
LA denotes the Eq. 1 and LF is the Eq. 3 in our paper.

2 RELATED WORK

Federated Learning with heterogeneous data. The classic FL algorithm FedAvg (McMahan et al.,
2017) suffers from serious performance degradation when meeting severe Non-IID data. To address
the data heterogeneity problem, a series of works propose a new learning objective to calibrate
the updated direction of local training from being too far away from the global model, including
FedProx(Li et al., 2020), FedIR (Hsu et al., 2020), SCAFFOLD (Karimireddy et al., 2020) and
MOON (Li et al., 2021a). And some works propose designing new model aggregation schemes like
FedAvgM (Hsu et al., 2019),FedNova (Wang et al., 2020b),FedMA (Wang et al., 2020a),FedBN (Li
et al., 2021c).

Another promising direction is sharing some data, which mainly focuses on synthesizing and sharing
data of different clients to mitigate client drift (Zhao et al., 2018; Jeong et al., 2018; Long et al., 2021).
To avoid privacy leakage caused by sharing data, some methods share the statistics of data (Yoon
et al., 2021; Shin et al., 2020), which still contains some raw data content. Some methods distribute
intermediate features (Hao et al., 2021), logits (Chang et al., 2019; Luo et al., 2021), or the learned
new embedding (Tan et al., 2022). Although these tactics enhance privacy at some degree, advanced
attacks can still successfully reconstruct raw data given shared data (Zhao et al., 2020). Unlike prior
research, we exploit DP to ensure privacy of shared data and then analyze privacy-performance
trade-off.

Differential privacy in federated learning. Recent works on model memorization and gradient
leakage confirm that model parameters are seemingly secure (Carlini et al., 2019). Training with
differential privacy (Zhu et al., 2019; Nasr et al., 2019) is a feasible solution to avoid some attacks,
albeit at some loss in utility. Differential privacy quantifies what extent individual privacy in a
statistical dataset is preserved while releasing the established model over specific datasets.

In FL, training with differential privacy, i.e., adding noise to the model/data, originally aims to protect
local information of each client (Yuan et al., 2019; Thakkar et al., 2019). Some works analyze the
relation between convergence and utility in FL (Huang et al., 2020; Wei et al., 2020). A series of
works in DP add noise to gradients or model parameters in FL to protect model privacy (Kim et al.,
2021; van der Hoeven, 2019; Triastcyn & Faltings, 2019; Sun et al., 2021). Unlike model-based
protection, our work aims to protect data privacy and mitigate the client drift issue. We provide a
detailed discussion of exciting works in Appendix A.5.
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3 METHODOLOGY AND DETAILED CONSTRUCTION

This section elaborates Federated Privacy Distillation (FedPD), which is illustrated in Figure 1.
Our insight is to keep sensitive features on the client’s side locally and share generalizable features
globally in a differentially private manner. FedPD endows each client to use its local raw data features
and generalizable features from others during local training, thus defying data heterogeneity.

3.1 DIVISION OF TWO TYPES OF FEATURES FOR PRIVATE DATA

Differential privacy (DP) is promising in FL protections, but sharing all raw data in a DP manner
typically causes performance degradation. Recall that the goal of sharing information is to benefit the
model generalization rather than to collect private information. Therefore, we suggest to share useful
features (generalizable features) in data while keeping most features locally (sensitive features), such
that shared features benefits global generalization and locally kept features avoids privacy leakage.

Ideally, if we could identify the sensitive features xs and the generalizable features xg, we could
be able to solve the privacy-performance dilemma. Intuitively, sensitive features xs contain most
information of data, while generalizable features xg contains the nonsensitive part that can help global
generalization in FL. To resolve the dilemma in protecting privacy and promoting performance, we can
keep the sensitive features locally while sharing generalizable feature protected under differentially
private guarantee. The major challenge here is that the intersection of two types of features as
aforementioned may not be the empty set, making it challenging to distill privacy.

3.2 PRIVACY DISTILLATION

To address this issue, we propose a competitive mechanism to perform privacy distillation. Therein,
the generalizable features aim to train models for generalizing well on the raw data, while the sensitive
features compete with the generalizable features to construct the raw data. Consequently, the sensitive
features is almost the same as the data while models trained on generalizable features generalizing
well on the raw data. We propose two approaches to instantiate the competitive mechanism for
privacy distillation, i.e., making generalizable features useful for model generalization while keeping
sensitive features almost the same as the raw data, i.e., covering almost all information of raw data.

3.2.1 OPTIMIZATION VIEW

A straightforward approach is to distill private information in a meta manner (Finn et al., 2017).
Specifically, we employ a generative model, e.g., a variational auto-encoder (VAE), G(·; θ) parame-
terized with θ to achieve the goal of covering all information of raw data, i.e., xs = G(·; θ) aims to
reconstruct x. Meanwhile, to ensure the generalizable features, xg = x−xs = x−G(·; θ) = xg(θ),
useful for model generalization, we train an auxiliary classifier A(·;w) parameterized with w using
xg such that A(·;w) trained on xg performs well on the raw data x. Then, we can formalize the task
of privacy distillation into the following optimization problem as:

min
θ

E
(x, y) L(A(x; ŵ(θ)), y) +H(xg(θ)),

s.t. ŵ(θ) = argmin
w

E
(xg(θ), y)

L(A((xg(θ);w), y),xg(θ) = x−G(x; θ).
(1)

Here, y is the label of the sample x and the generalizable features xg(θ), ŵ(θ) is a function of θ
denoting the parameters of classifier A(x; ·), H(xg(θ)) is the information entropy of xg(θ), and
L(·, ·) represents the cross-entropy loss. We can see that every possible parameter θ is paired with a
model trained on the corresponding generated data xg(θ). Thus, solving the optimization problem is
equivalent to searching for parameters θ to generate the generalizable features xg(θ) with minimum
information entropy. Moreover, the model A((xg(θ);w), y) trained using (xg(θ), y) can perform
well on the raw data.

However, the proposed non-convex optimization problem is non-trival. We employ a simple yet
effective trick widely used in reinforcement learning (Mnih et al., 2015). Specifically, we alternatively
update G(x; θ) over x via stochastic gradient descent and update A(xg(θ);w) over xg(θ). Moreover,
we minimize an upper bound ofH(xg(θ)) with the variance of xg(θ) following (Ahuja et al., 2021).
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3.2.2 GENERALIZATION VIEW

Besides the optimization approach, we also provide a generalization view to distill privacy. In a
high level, we aim to train a model A(·;w) using xg such that A(·;w) can generalize well on x, i.e.,
samples drawn from a different distribution. Therefore, we should model how the performance on the
generated data transfers to the raw data. To derive a detailed connect between these two distributions,
the metric to measure the generalization performance should be defined clearly. According to the
margin theory (Koltchinskii & Panchenko, 2002) that maximizing the margin between data points
and the decision boundary achieves strong generalization performance, we relate such a margin to the
generalization performance:
Definition 3.1 (Margin). We define the margin for a classifier A(·;w) on a distribution P with a
distance metric d: Mm(A,P) = E

(x, y) ∼ P inf
A(x′) ̸= y d(x

′,x).

Built upon the defined margin that quantifies the degree of generalization performance, we can
quantify the generalization performance of A(·;w) on a given distribution. To be specific, large
margin means strong generalization performance.

A recent work (Tang et al., 2022) shows that the margin is intrinsically related to the distribution
discrepancy in the representation space, i.e., the distance between distributions sampling x and that
sampling xg . Thus, we propose minimizing the distribution discrepancy of the generated distribution
and the raw distribution in the representation space:

min
θ

E
(x, y) L(A(x;w), y) + L(A(xg(θ);w), y) +H(xg(θ)) + d(r(xg(θ)), r(x)). (2)

where d is the distance metric used in the definition of margin and r(xg(θ)) stands for the representa-
tion of xg(θ) generated by the classifier A.

3.3 DIFFERENTIALLY PRIVATE GENERALIZABLE FEATURES

The proposed privacy distillation methods make it possible to keep most (private) information locally
while sending the generalizable features to the server. However, for ease of calculation of information
entropy, we employ the variance of generalizable features as a surrogate, which may cause privacy
leakage. This breaks the original intention of federated learning in protecting privacy. Thus, the
shared generalizable features should be protected. Accordingly, the server can construct a global
dataset using these generalizable features and send the dataset back to clients for local training.

To avoid privacy leakage, additional noise (e.g., Gaussian or Laplacian) is added to generalizable
features xg, i.e., xp ≜ xg +N (0, σ2). Then, clients send xp to the server to construct a globally
shared dataset. Using the global dataset, clients can train classifier F (·;ϕ) parameterized by ϕ with
the local and shared data, :

min
ϕ
LF (ϕ) = E

(x, y)L(F (x;ϕ), y) + E
(xp, y)

L(F (xp;ϕ), y). (3)

Algorithm 1 summarizes the training procedure of FedAvg with FedPD. To make sure the framework
can be used without privacy concern, we further provide the corresponding analysis. Before that, we
introduce the definition of differential privacy, which we used for adding i.i.d noise to generalizable
features.
Definition 3.2. (Differential Privacy). A randomized mechanism M provides (ϵ, δ)-differential
privacy (DP) if for any two neighboring datasets D and D′ that differ in a single entry, ∀S ⊆
Range(M),

Pr(M(D) ∈ S) ≤ eϵ · Pr(M(D′) ∈ S) + δ.

where ϵ is the privacy budget and δ is the failure probability.

Our added noise to xg is proportional to the sensitivity, as defined in Definition 3.3. The concept of
sensitivity is originally used for sharing a dataset for achieving (ϵ, δ)-differential privacy. Later, we
follow Theorem 3.4 to analyze the privacy on globally shared data.
Definition 3.3. (Sensitivity). The sensitivity of a query function F : D→ R for any two neighboring
datasets D,D′ is,

∆ = max
D,D′

∥F(D)−F(D′)∥.

where ∥ · ∥ denotes L1 or L2 norm.
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Algorithm 1 FedAvg with FedPD
server input: initial ϕ0, communication round R
client k’s input: local epochs E, local datasets Dk, learning rate ηk

Initialization: server distributes the initial model ϕ0 to all clients,
Globally shared dataset Ds generating. ← Detail in Algorithm 2

Server Executes:
for each round r = 1, 2, · · · , R do

server samples a subset of clients Sr ⊆ {1, ...,K}, n←
∑

i∈Sr
|Di|

client k samples a subet of globally shared dataset Dk
r ⊆ Ds (|Dk

r | = |Dk|)

server communicates ϕr to selected clients k ∈ Sr and sampled sharing data Dk
r

for each client k ∈ Sr in parallel do
ϕr+1
k,E−1 ← ClientTraining(k, ϕr, Dk

r )
end for
ϕr+1 ←

∑|Sr|
k∈Sr

|Di|
n ϕr

k,E−1

end for

ClientTraining(k, ϕ, Dk
r ):

for each local epoch j with j = 0, · · · , E − 1 do
ϕk,j+1 ← ϕk,j − ηk∇ϕLF (ϕ), i.e., Eq. 3

end for
Return ϕ to server

Theorem 3.4. For any ϵ > 0, δ ∈ [0, 1], and δ̂ ∈ [0, 1], the class of (ϵ, δ)-differentially private mech-
anisms satisfies (ϵ̂δ̂, 1− (1− δ̂)Πi(1−δi))-differential privacy under k-fold adaptive composition for

ϵ̂δ̂ = min{kϵ, (eϵ−1)ϵk/(eϵ+1)+ϵ

√
2k log(e+

√
kϵ2/δ̂), (eϵ−1)ϵk/(eϵ+1)+ϵ

√
2k log(1/δ̂)}.

Since xs is kept by the corresponding client, an adversary views nothing, which can be regarded as
adding a sufficiently large noise on x to make it random enough. Considering all clients’ data as
a whole, we use a relatively small σ (i.e., σc < σd + σc) for achieving much smaller privacy loss,
summarized in Theorem 3.5.

Theorem 3.5. Given identical privacy requirement, σc of FedDP is much less than σ that is suppos-
edly added to raw data in conventional FL.

Given (ϵ, δ)-DP at each client side, we utilize composition theorem to analyze overall privacy in
FedPD. In summary, FedPD protects two types of data features using two different protective manners,
i.e., small noise for generalizable features and extremely large noise for sensitive features, and thus
attains higher model performance and stronger security in the same time.

4 EXPERIMENTS AND EVALUATION

4.1 EXPERIMENT SETUP

Federated Non-IID Datasets. We conduct experiments over various popular image classification
datasets, including CIFAR-10, CIFAR100 (Krizhevsky et al., 2009), Fashion-MNIST(FMNIST)
(Xiao et al., 2017), and SVHN (Netzer et al., 2011). We use latent dirichlet sampling (LDA) (Hsu
et al., 2019) to simulate Non-IID distribution with 10 and 100 clients. The primary thought is to draw
a q ∼ Dir(αp) from Dirichlet distribution, where α controls the heterogeneity degree. Here, the
less α is, the more severe Non-IID distribution generate. In our experiments, we partition our datasets
with two different degrees by LDA including α = 0.1 and α = 0.05. Besides, in order to prove that
our framework works well under with Non-IID partitions. We also test other two kinds of partition
strategy: (1) #C = k (McMahan et al., 2017; Li et al., 2022): each client only has k different labels
from dataset, and k controls the unbalanced degree. (2) Subset method (Zhao et al., 2018): each client
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Table 1: Results with/without FedPD on CIFAR-10
centralized training ACC = 95.48% w/(w/o) FedPD

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =79%) α = 0.05, E = 1,K = 10 (Target ACC =69%)

FedAvg 92.34(79.35) 12.99↑ 39(284) ×7.3(×1.0) 90.02(69.36) 20.66↑ 44(405) ×9.2(×1.0)
FedProx 92.12(83.06) 9.06↑ 62(192) ×4.6(×1.5) 90.73(78.98) 11.75↑ 48(203) ×8.4(×2.0)

SCAFFOLD 89.66(83.67) 5.99↑ 34(288) ×8.4(×1.0) 81.04(37.87) 43.17↑ 37(None) ×10.9(None)
FedNova 92.23(80.95) 11.28↑ 33(349) ×8.6(×0.8) 91.21(65.08) 26.13↑ 32(None) ×12.7(None)

α = 0.1, E = 5,K = 10 (Target ACC =85%) α = 0.1, E = 1,K = 100 (Target ACC =49%)

FedAvg 93.24(83.79) 9.45 ↑ 17(261) ×15.4(×1.0) 84.06(49.72) 34.34↑ 163(967) ×5.9(×1.0)
FedProx 91.39(82.32) 8.97 ↑ 76(None) ×3.4(None) 87.01(50.01) 37.00↑ 127(831) ×7.6(×1.2)

SCAFFOLD 92.34(85.31) 7.03 ↑ 15(66) ×17.0(×4.0) 79.60(52.76) 26.84↑ 171(627) ×5.7(×1.5)
FedNova 92.85(86.21) 6.64 ↑ 31(120) ×8.4(×2.2) 86.64(45.97) 40.67↑ 199(None) ×4.9(None)

“Round” means the communication rounds that arrive at the target accuracy. ↓ and ↑ indicates smaller
(larger) values are better. “None” implies not attaining the target accuracy during the entire training
process. All the “Speedup” is calculated by comparing with vanilla FedAvg “Round” in different
Non-IID partition scenarios.

has all classes from the data, but one dominant class far away outnumbers other classes. These three
partition methods mainly include label skew and quantity skew. The visualization of data distribution
is shown in Figure 4 in Appendix A.1.

Models, Metrics and Baselines. We use ResNet-18 (He et al., 2016) both in content extractor during
sharing data generation process and classifier in FL. And we exploit β-VAE (Higgins et al., 2016)
for privacy distiller for privacy-preserving. We evaluate the model performance on two popular
metrics in FL, i.e. the communication rounds to reach the target accuracy and the best accuracy in
whole training process. Note that the target accuracy is set as the best accuracy of vanilla FedAvg in
different scenarios. We conduct FedAvg (McMahan et al., 2017) and some other popular methods
including FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), FedNova (Wang et al.,
2020b), with or without FedPD, to explore the potency of our method. We conduct all algorithms
with local epochs E = 1 and E = 5. The detailed hyper-parameters of each FL algorithm and privacy
distillation in different datasets are listed in A.3.1.

4.2 EXPERIMENTAL RESULTS

Main Results. The results on CIFAR-10, CIFAR-100, FMNIST, and SVHN are shown respectively
in Tables 1, 2, 5, and 6, which demonstrates that FedPD has a significant performance gain. We also
show the convergence speed of different algorithms on CIFAR-10 with a = 0.1, E = 1, M = 10 in
Figure 2a,1 which shows that FedPD can also greatly improve the convergence rate.

Table 2: Results with/without FedPD on CIFAR-100
centralized training ACC = 75.56% w/(w/o) FedPD

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =67%) α = 0.05, E = 1,K = 10 (Target ACC =61%)

FedAvg 69.64(67.84) 1.8↑ 283(495) ×1.7 (×1.0) 68.49(62.01) 6.48↑ 137(503) ×3.7(×1.0)
FedProx 70.02(65.34) 4.68 ↑ 233(None) ×2.1(None) 69.03(61.29) 7.74↑ 141(485) ×3.6(1.0)

SCAFFOLD 70.14(67.23) 2.91↑ 198(769) ×2.5(× 0.6) 69.32(58.78) 10.54↑ 81(None) ×6.2(None)
FedNova 70.48(67.98) 2.5↑ 147(432) ×3.4(×1.1) 68.92(60.53) 8.39↑ 87(None) ×5.8(None)

α = 0.1, E = 5,K = 10 (Target ACC =69%) α = 0.1, E = 1,K = 100 (Target ACC =48%)

FedAvg 70.96(69.34) 1.62↑ 79(276) ×3.5(×1.0) 60.58(48.21) 12.37↑ 448(967) ×2.2(×1.0)
FedProx 69.66(62.32) 7.34↑ 285(None) ×1.0(None) 67.69(48.78) 18.91↑ 200(932) ×4.8(×1.0)

SCAFFOLD 70.76(70.23) 0.53↑ 108(174) ×2.6(×1.6) 66.67(51.03) 15.64↑ 181(832) ×5.3(×1.2)
FedNova 69.98(69.78) 0.2↑ 89(290) ×3.1(×1.0) 67.62(48.03) 19.59↑ 198(976) ×4.9(×1.0)

1More figures of convergence speed of other experiments are shown in appendix A.4.
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Table 3: Experiment results of different Non-IID
partition methods on CIFAR-10 with 10 clients.

Test Accuracy w/(w/o) FedPD
Partition
Method FedAvg FedProx SCAFFOLD FedNova

α = 0.1 92.34(79.35) 92.12(83.06) 89.66(83.67) 92.23(80.95)
#C = 2 89.23/42.54 88.17/58.45 84.43/46.82 89.54/45.42
Subset 90.29/39.53 89.11/32.87 89.92/35.26 90.00/38.52

Table 4: Experiment results with different noise
adding in CIFAR-10.

Test Accuracy on Different Noise
Noise Type FedAvg FedProx SCAFFOLD FedNova

Gaussian Noise 92.34 92.12 89.66 92.23
Laplacian Noise 92.30 91.36 91.24 91.73
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Figure 2: Experiments of the relationship between privacy and performance.

(a) Globally Shared Data xp (b) Model Inversion Attack xg (c) Model Inversion Attack xp

Figure 3: Model Inversion Attack Results. White-Box attack globally shared data xp and generaliz-
able features xg, respectively. The result of being attacked is in (b) and (c) to compare with shared
data xp in (a)

Privacy and performance. To explore the relationship between privacy level ϵ and performance,
we conduct experiments with different σ2. As shown in Figure 2b, the performance decreases with
the increasing protection strength. Another Laplacian noise report comparable results with Gaussian
noise listed in Table 4. In conclusion, we suggest sacrificing part of the privacy when encountering
limited communication resources. Another question is, can the globally shared data be inferred by
some attack methods? To answer this question, we resort model inversion attack (He et al., 2019),
widely used in the literature to reconstruction our shared data. The results on Figure 3b indicates that
only privacy distillation still have risk of privacy leakage. Figure 3c also be a strong testimony for the
differential privacy of noise adding on generalizable features. Furthermore, FedPD can give a strong
private information protection. The original image can be found in Appendix A.2

Different number of clients. Table 1, Table 2, Table 5, and Table 6 show that FedPD strengthen
the performance and speed up the convergence both in 10 and 100 clients. Especially 100 clients in
CIFAR-10 and CIFAR100 have a noteworthy enhancement. The reason may be that FL on CIFAR-10
and CIFAR100 with 100-clients has more diverge data distribution than FMNIST. With FedPD, the
missed data knowledge can be well replenished.

Different data heterogeneity. Table 1, Table 2, Table 5, and Table 6 show that high Non-IID degree
(α=0.05) achieve a better improvement than lower unbalanced degree (α=0.1), which also indicates
that FedPD can well defend against data heterogeneity. Moreover, Table 3 shows that other two
kinds of heterogeneity partition cause more performance decline compared with LDA (α = 0.1), and
FedPD attains comparable improvement with LDA α = 0.1, indicating FedPD is insensitive to other
Non-IID data distribution.
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Table 5: Results with/without FedPD on FMNIST
centralized training ACC = 95.64% w/(w/o) FedPD

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =86%) α = 0.05, E = 1,K = 10 (Target ACC =78%)

FedAvg 92.34(86.73) 5.61↑ 14(121) ×8.6(×1.0) 90.69(78.34) 12.35↑ 16(420) ×26.3(×1.0)
FedProx 92.09(87.73) 4.36 ↑ 32(129) ×2.1(×0.9) 89.68(82.03) 7.65↑ 16(44) ×26.3(9.5)

SCAFFOLD 91.62(86.31) 3.89↑ 29(147) ×4.2(× 0.8) 80.48(76.63) 3.85↑ 139(None) ×6.2(None)
FedNova 92.39(87.03) 5.36↑ 18(88) ×6.7(×1.4) 89.72(79.98) 9.74↑ 16(531) ×26.3(× 0.8)

α = 0.1, E = 5,K = 10 (Target ACC =87%) α = 0.1, E = 1,K = 100 (Target ACC =90%)

FedAvg 92.26(87.43) 4.83↑ 19(276) ×14.5(×1.0) 92.71(90.21) 2.5↑ 243(687) ×2.8(×1.0)
FedProx 91.79(86.63) 5.16↑ 34(None) ×8.1(None) 92.82(90.17) 2.65↑ 284(501) ×2.4(×1.4)

SCAFFOLD 92.92(87.21) 5.71↑ 8(112) ×34.5(×2.5) 90.28(84.87) 5.41↑ 952(None) ×0.7 (None)
FedNova 92.30(87.67) 4.63↑ 8(187) ×34.5(×1.5) 91.04(85.32) 5.72↑ 589(None) ×1.2(None)

Table 6: Results with/without FedPD on SVHN
centralized training ACC = 96.56% w/(w/o) FedPD

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =88%) α = 0.05, E = 1,K = 10 (Target ACC =82%)

FedAvg 93.21(88.34) 4.87↑ 105(264) ×2.5(×1.0) 93.49(82.76) 10.73↑ 194(365) ×1.9(×1.0)
FedProx 91.80(86.23) 5.574↑ 233(None) ×1.1(None) 93.21(79.43) 13.78↑ 37(None) ×9.9(None)

SCAFFOLD 88.41(80.12) 8.29↑ 357(None) ×0.(None) 90.27(75.87) 14.4↑ 64(None) ×5.7(None)
FedNova 92.98(89.23) 3.75↑ 113(276) ×2.3(×1.0) 93.05(82.32) 10.73↑ 37(731) ×9.9(×0.5)

α = 0.1, E = 5,K = 10 (Target ACC =87%) α = 0.1, E = 1,K = 100 (Target ACC =89%)

FedAvg 93.77(87.24) 6.53↑ 105(128) ×1.2(×1.0) 91.04(89.32) 1.72↑ 763(623) ×0.8(×1.0)
FedProx 91.15(77.21) 13.94↑ 142(None) ×0.9(None) 91.41(88.76) 2.65↑ 733(645) ×0.8(×1.0)

SCAFFOLD 93.78(80.98) 12.8↑ 20(None) ×6.4(None) 92.73(88.32) 4.41↑ 507(687) ×1.2(×0.9)
FedNova 93.66(89.03) 4.63↑ 52(177) ×2.5(×0.7) 84.05(81.87) 2.18↑ None(None) None(None)

Different local epochs. To test the effect of local epoch E, we choose E = 1 and E = 5 with the
same Non-IID degree (α = 0.1) and client number (K = 10). We run 1000 rounds with 1 epoch
local training and 400 rounds for 5 epochs local update. The results show that FedPD is robust to the
local epochs.

Other Facts of FedPD. For a intuitive understanding of why we utilize xg as a substitute of raw data
x without drastic performance degradation. We train two different networks separately on x and xg

on CIFAR-10 and test them on x, xs, and xg, respectively. The results presented in Figure 2c. As
we can see, the most useful features for downstream tasks are contained in xg. More experimental
details are presented in Appendix A.4

5 CONCLUDING REMARKS

In this paper, we observe that model gains a substantial performance assisted by generalizable features.
Later we conduct DP to protect generalizable features and contruct a globally shared dataset for
defying heterogeneity in FL. Our contribution lies in not only improving model performance in Non-
IID scenarios, but also inspiring a new viewpoint on data-dominated secure sharing, e.g., distillation
data before knowledge learning. We expect that our work could simulated further data-dominated
sharing in FL or other popular learning algorithms.

Our framework shows suprior results against model inversion attack, yet we have not finished
exploring data poisoning attack, given the shared data. We conduct preliminary experiments on data
poisoning attacks, in which some clients send Gaussian noise to the server, causing performance
degradation and slow convergence. Limited storage or communication resources may limited the
power of FedPD, since FedPD introduces extra storage overhead. We leave it as our future work to
explore the storage-friendly FedPD.
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ETHIC STATEMENT

This paper does not raise any ethical concerns. This study does not involve any human subjects,
practices to data set releases, potentially harmful insights, methodologies and applications, potential
conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security
issues, legal compliance, and research integrity issues.

REPRODUCIBILITY STATEMENT

To make all experiments reproducible, we have listed all detailed hyper-parameters of each FL
algorithm and privacy distillation on different datasets in A.3.1. Due to the privacy concerns, we will
upload the anonymous link of source codes and instructions during the discussion phase to make it
only visible to reviewers. All definitions can be found in Section 3. And the complete proof can be
found in Appendix A.6.
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Jacques, and Rémi Gribonval. Compressive learning with privacy guarantees. Information and
Inference: A Journal of the IMA, 11(1):251–305, 2022.

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies. arXiv preprint arXiv:2010.01243, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Jack Goetz and Ambuj Tewari. Federated learning via synthetic data. arXiv preprint
arXiv:2008.04489, 2020.

Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J Liang, Changyou Chen,
and Lawrence Carin Duke. Towards fair federated learning with zero-shot data augmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3310–3319, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference.
In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162,
2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.

10



Under review as a conference paper at ICLR 2023

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
data distribution. In European Conference on Computer Vision, pp. 76–92. Springer, 2020.

Zonghao Huang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin, and Yanmin Gong. DP-ADMM: admm-
based distributed learning with differential privacy. In IEEE TIFS, 2020.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation
under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
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A APPENDIX

A.1 VISUAL

We show the visualization of data distribution in Figure 4. The LDA partition and the #C = 2
partition have the label skew and the quantity skew simultaneously. And the Subset partition only has
the label skew.

cli
en

t

(a) LDA (α = 0.1)

cli
en

t
(b) #C = 2

cli
en

t

(c) Subset

Figure 4: Data distribution in various FL heterogeneity scenario. Different colors denote different
labels and the length of each line denote data number.

A.2 GLOBALLY SHARED DATA

We display the globally shared data xp from four different datasets and the raw data x to compare our
privacy protection. Firstly, the raw data in Figure 3 shown in Figure 5.

Figure 5: Raw Data in Model Inversion Attack.

Figure 6: Globally Shared Data xp on CIFAR-10.

A.3 MORE DETAILS OF FEDPD

Algorithm 1 give us an intuitive explanation of how we deploy FedPD on FL algorithm e.g., FedAvg
and Algorithm 2 illustrates the procedure to generate globally shared data.
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Algorithm 2 Globally Shared Data Generation
Server input: generation process communication round T , noise mean µ, noise level σ2

Client k’s input: local epochs Q, local datasets Dk

Initialization: server distributes the initial model w0, θ0 to all clients,
Server Executes:
for each round t = 1, 2, · · · , T do

server samples a subset of clients Sg ⊆ {1, ...,K}, n←
∑

i∈Sg
|Di|

server communicates wt, θt to all clients
for each client k ∈ Sg in parallel do

wt+1
k,q−1θ

t+1
k,q−1 ← ClientGenerationTraining(k,wt, θt, µ, σ2)

end for
wt+1, θt+1 ←

∑|Sg|
k∈Sg

|Di|
n wt

k,Q−1,
∑|Sg|

k∈Sg

|Di|
n θtk,Q−1

end for
for all clients k with k = 0, · · · ,K do
Ds

k ← SharedDataGeneration(wk, θk, µ, σ
2)

send Ds
k to server to construct globally shared dataset Ds

end for

ClientGenerationTraining(k,w, θ, µ, σ2):
for each local epoch q with q = 0, · · · , Q− 1 do
wk,q+1, θk,q+1 ← PrivacyDistillation(wk, θk, µ, σ

2) using Eq.1
end for
Return wk,Q−1, θk,Q−1 to server

A.3.1 HYPER-PARAMETERS

We fine-tuned learning rates in 0.0001, 0.001, 0.01, 0.1 and report the best results and corresponding
learning rate. In most case, we use 0.01 as the learning rate except SCAFFOLD and FedNova in
SVHN under the α = 0.1, E = 1,K = 100 setting, the learning rate is 0.0001 and 0.001, respectively.
Batch size is set as 64 in when K = 10 and 32 for K = 100. The number of clients selected for
aggregation on server side is 5 per round for K = 10, and 10 for K = 100. The noise level in our
experients is N (0, 0.15)

A.3.2 TRICK FOR FEDPD

0 100 200 300 400
Round

20

40

60

80

Te
st

 A
cc

ur
ac

y

only train G( ; )
only train A( ; )

Figure 7: The pink line indicates 6.25% dataset to train VAE and Auxiliary 200 rounds jointly and
the whole dataset for only VAE G(·; θ) training 200 rounds in the following. Furthermore, the yellow
one uses the same data in the former 200 rounds as the pink line but the complete dataset to train
Auxiliary Classifier A(·;ω).

In addition, we provide an insight experiment on the need for mixupdata (Zhang et al., 2017)
augmentation in our approach shown in Figure 7. As we can see, the absence of data leads to poor
generalization of the auxiliary classifier A on x and adequate data for VAE G still has a bad effects.
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(a) Test Accuracy on CIFAR-10
with different noise level σ2

0.1 0.2 0.3
Noise Level 2

90

92

94

96

Te
st

 A
cc

ur
ac

y

Acc

4

6

8

Pr
iv

ac
y 

(b) Test Accuracy on SVHN with
different noise level σ2
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(c) Test Accuracy on CIFAR-100
with different noise level σ2

Figure 8: Privacy-Performance results on different datasets
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(a) α = 0.1, E = 1,K = 10
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(b) α = 0.1, E = 5,K = 10
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(c) α = 0.1, E = 1,K = 100

Figure 9: Convergence comparison on CIFAR-10.
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(a) α = 0.1, E = 1,K = 10
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(b) α = 0.1, E = 5,K = 10
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(c) α = 0.1, E = 1,K = 100

Figure 10: Convergence comparison on CIFAR-100.
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(b) α = 0.1, E = 5,K = 10
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Figure 11: Convergence comparison on SVHN.

A.4 MORE EXPERIMENT RESULTS

A.5 MORE RELATED WORK

Federated Learning with heterogeneous data. In FL, all distributed clients jointly train a model
across various distributed datasets for user privacy protection, while local data is not accessible to
other clients. FedAvg (McMahan et al., 2017) is the first work proposed to reduce communication
overhead and preserve privacy by more local training epochs and fewer communication rounds.
However, some studies (Zhao et al., 2018; Li et al., 2022) have pointed out that the divergence
between FedAvg and centralized training is slight in the IID case. But, in heterogeneous distribution,
there is a considerable divergence between the different clients and centralized training, and the gap
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Figure 12: Convergence comparison on FMNIST.

accumulates during the FedAvg weighted aggregation, leading to the performance degradation of FL
models.

Recently, a series work propose new learning objective to calibrate the update direction of local
training from being too far away from the global model. FedProx (Li et al., 2020) adds a L2 distance
as the regularization term in the objective function and provides a theoretical guarantee of convergence.
Similarly, a novel objective function is also introduced in FedIR (Hsu et al., 2020) over a mini-batch
by self-normalized weights to address the non-identical class distribution. SCAFFOLD (Karimireddy
et al., 2020) restricts the model using previous information. Besides, MOON (Li et al., 2021a)
introduces constrastive learning at the model level to correct the divergence between clients and
server.

Meanwhile, recent works propose designing new model aggregation schemes. FedAvgM (Hsu et al.,
2019) performs momentum on the server side. FedNova (Wang et al., 2020b) adopts normalized
averaging method to eliminate objective inconsistency. A study (Cho et al., 2020) also indicates that
biasing client selection with higher local loss can speed up the convergence rate. The coordinate-wise
averaging of weights also induce noxious performance. FedMA (Wang et al., 2020a) conducts
Bayesian non-parametric strategy for heterogeneous data. FedBN (Li et al., 2021c) focus on feature
shift Non-IID and perform local batch normalization before averaging models.

Another existing direction for tackling data heterogeneity is sharing data. This line of works mainly
to assemble the data of different clients to construct a global IID dataset, mitigating client drift
by replenishing the lack of information of clients (Zhao et al., 2018). Existing methods include
synthesizing data based on the raw data by GAN (Jeong et al., 2018; Long et al., 2021). However, the
synthetic data is generally relatively similar to the raw data, leading to privacy leakage at some degree.
Adding a noise to the shared data is another promising strategy (Chatalic et al., 2022; Cai et al., 2021).
Some methods employ the statistics of data (Yoon et al., 2021; Shin et al., 2020) to synthesize for
sharing, which still contains some raw data content. Other methods distribute intermediate features
(Hao et al., 2021), logits (Chang et al., 2019; Luo et al., 2021), or learn the new embedding (Tan
et al., 2022). These tactics will increase the difficulty of privacy protection because some existing
methods can reconstruct images based on feature inversion methods (Zhao et al., 2020). Most of the
above methods share information without a privacy guarantee or with strong privacy-preserving but
poor performance, posing the privacy-performance dilemma.

Concretely, in FD (Jeong et al., 2018) all clients leverages a generative model collaboratively for data
generation in a homogeneous distribution. For a better privacy protection, G-PATE (Long et al., 2021)
performs discriminators with local aggregation in GAN. Fed-ZDAC(Fed-ZDAS) (Hao et al., 2021),
depending on which side to play augmentation, introduce zero-shot data augmentation by gathering
intermediate activations and batch normalization(BN) statistics to generate fake data. Inspired by
mixup data, MAFL (Yoon et al., 2021) propose FedMIx to share information by averaging local
data which also brings about the privacy problem. Cronus (Chang et al., 2019) transmit the logits
information while CCVR (Luo et al., 2021) collect statistical inforamtion of logits to sample fake
data. FedFTG (Zhang et al., 2022) use a generator to explore input space of local model and transfer
local knowledge to global model. FedDF (Lin et al., 2020) utilizes knowledge distillation based on
unlabeled data or a generator and then conduct AVGLOGITS. The main difference between FedDF
and FedPD is that our method distill the privacy kept locally rather than distilling knowledge. We
provide multi steps to protect privacy with drastic performance gain.

17



Under review as a conference paper at ICLR 2023

Differential privacy with federated learning. Recent works on model memorization and gradient
leakage confirms that model parameters are seemingly secure. Carlini et.al (Carlini et al., 2019)
found that unintended-and-persistent memorization of sensitive data occurs early during training with
no relation to data rarity and model size. Training with differential privacy (Zhu et al., 2019)(Nasr
et al., 2019) is a feasible solution to avoid serious consequences, albeit at some loss in utility.

Differential privacy is a framework to quantify to what extent individual privacy in a statistical dataset
is preserved while releasing the established model over specific datasets. It has spawned a large set of
research topics in data-releasing mechanism and noise-adding mechanism. Particularly, noise-adding
mechanism has been widely utilized in various differentially private learning algorithms for protecting
whether an individual is in the dataset or not.

In federated settings, training with differential privacy, i.e., adding noise to the model/data, originally
aims to protect local information of each clients. Say, an adversary should not be able to discern
whether a client’s data was used for early training. Here, we summarize some works with high citation
or from top venue. Yuan et al (Yuan et al., 2019) apply differential privacy to protect medical images
by adopting famous AlexNet and Gaussian mechanism. Huang et al (Huang et al., 2020) integrate an
approximate augmented Lagrangian function and Gaussian noise mechanism for balancing utility and
privacy in FL. Wei etal (Wei et al., 2020) perturb early-trained parameters locally by adding noises
before uploading them to a server for aggregation. Both Huang et al and Wei et al are first (to their
knowledge) to analyze the relation between convergence and utility in FL. Andrew et al (Thakkar
et al., 2019) explore to set an adaptive clipping norm in federated setting rather than using a fixed one.
They show that adaptive clipping to gradients can perform as well as any fixed clip chosen by hand.

Kim et al (Kim et al., 2021) provide a noise variance bound that guarantees local DP after multiple
rounds of parameter aggregations. They introduce a trilemma in privacy, utility, and transmission
rate of a federated stochastic gradient decent. Hoeven et al (van der Hoeven, 2019) introduce data-
dependent bounds and apply symmetric noise in online learning, which allows data provider to
pick noise distribution. Triastcyn et al (Triastcyn & Faltings, 2019) adapt the notion of Bayesian
differential privacy to federated learning and make necessary analyses on privacy guarantee. Sun et
al (Sun et al., 2021) explicitly vary ranges of weights at different layers in a DNN, and shuffle
high-dimensional parameters at an aggregation for easing explodes of privacy budgets. All works
above start to apply DP and its variants to federated setting for different goals/scenarios, which thus
provide underlying security as DP guarantees.

A.6 DIFFERENTIAL PRIVACY

Proof of Theorem 3.4 is here.

Proof.

Definition A.1. (Privacy Loss). LetM : D→ R be a randomized mechanism with input domain D
and range R. Let D,D′ be a pair of adjacent dataset and aux be an auxiliary input. For an outcome
o ∈ R, the privacy loss at o is defined by:

L(o)
Pri ≜ log

Pr[M(aux, D) = o]

Pr[M(aux, D′) = o]
(4)

We need to compute the privacy loss on an outcome o as a random variable when the random
mechanism operates on two adjacent database D and D′. Privacy loss is a random variable that
accumulates the random noise added to the algorithm/model.

We aim at an exact analysis on privacy via compositing multiple random mechanisms. For simplifica-
tion, we start with a particular random mechanismM† and then generalize it. The mechanismM†

does not depend on database or the query but relies on hypothesis hp. For hp = 0, the outcome Oi of
M†

i is independent and identically distributed from a discrete random distribution Ohp=0 ∼ P†,0.
P†,0(o) is defined to be: δ for o = 0; (1 − δ)eϵ/(1 + eϵ) for o = 1; (1 − δ)/(1 + eϵ) for o =

2; 0 for o = 3. For hp = 1, the outcome Oi of M†
i is Ohp=1 ∼ P†,1. P†,1(o) is defined to be:

0 for o = 0; (1− δ)/(1 + eϵ) for o = 1; (1− δ)eϵ/(1 + eϵ) for o = 2; δ for o = 3.

Let R(ϵ, δ) be privacy region of a single access toM†. Privacy region consists of two rejection
regions with errors, i.e., rejecting true null-hypothesis (type-I error) and retaining false null-hypothesis
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(type-II error). Let ϵ†k, δ
†
k beM†

i ’s parameters for defining privacy. R(M, D,D′) of any mechanism
M can be regarded as an intersection of {(ϵ†k, δ

†
k)} privacy regions. For an arbitrary mechanismM,

we need to compute its privacy region using the (ϵ†k, δ
†
k) pairs. Let D,D′ be neighboring databases

and O be the outputting domain. Define (symmetric) P,P ′ to be probability density function of the
outputsM(D),M(D′), respectively. Assume a permutation π over O such that P ′(o) = P(π(o)).
Let S denote the complement of a rejection region. SinceR(M, D,D′) is convex, we have

1− P(S) ≥ −eϵ
†
kP ′(S) + 1− δ†k ⇒ P(S)− eϵ

†
kP ′(S) ≤ δ†k

Define Dtϵ†(P,P ′) = maxS⊆O{P(S)− eϵ
†P ′(S)}. Thus,M’s privacy region is the set: {(ϵ†k, δ

†
k) :

ϵ†k ∈ [0,∞)] s.t. P(o) = eϵ
†
kP ′(o), δ†k = Dtϵ†k

(P,P ′)}. Next, we consider composition on random

mechanismsM1, . . . ,Mi. By accessingM†
i , P(O1,hp = o1, . . . , O

i,hp = oi) = Πi
j=1P†,hp(oj).

By algebra on two discrete distributions,

Dt(i−2j)ϵ(Pi, (P ′)i) = 1− (1− δ)i + (1− δ)i
j−1∑
l=0

(
i
l (e

ϵ(i−l) − eϵ(i−2j+l))
)
/(1 + eϵ)k

Hence, privacy region is an interaction of i regions, parameterized by 1− (1− δ̂)Πi(1− δi).
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