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Abstract
Tokenization, a crucial initial step in natural lan-
guage processing, is governed by several key pa-
rameters, such as the tokenization algorithm, vo-
cabulary size, pre-tokenization strategy, inference
strategy, and training data corpus. This paper
investigates the impact of an often-overlooked hy-
perparameter, tokenizer training data size. We
train BPE, UnigramLM, and WordPiece tokeniz-
ers across various vocabulary sizes using English
training data ranging from 1GB to 900GB. Our
findings reveal diminishing returns as training
data size increases beyond roughly 150GB, sug-
gesting a practical limit to the improvements in
tokenization quality achievable through additional
data. We analyze this phenomenon and attribute
the saturation effect to constraints introduced by
the pre-tokenization stage. We then demonstrate
the extent to which these findings can generalize
by experimenting on data in Russian, a language
typologically distant from English. For Russian
text, we observe diminishing returns after training
a tokenizer from 200GB of data, which is approx-
imately 33% more than when training on English.
These results provide valuable insights for opti-
mizing the tokenization process by reducing the
compute required for training on large corpora
and suggest promising directions for future re-
search in tokenization algorithms.

1. Introduction
Tokenizers are a foundational component of any NLP
pipeline, as they are responsible for converting raw text into
useful sequences of indexed tokens. Practitioners often de-
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fault to standard tokenization algorithms such as Byte-Pair
Encoding (BPE; Sennrich et al., 2016), UnigramLM (Kudo,
2018) or WordPiece (Schuster & Nakajima, 2012; Devlin
et al., 2019), sourced directly from libraries such as Hugging
Face.1 The training process of a tokenizer involves using a
corpus of training data and a specific tokenization algorithm
to generate a fixed-size vocabulary, usually containing be-
tween 32,000 and 128,000 tokens in the monolingual case.

While extensive research explores the influence of a model’s
training data on LLM performance (Pearce et al., 2024;
Zhang et al., 2024; Hoffmann et al., 2022; Kaplan et al.,
2020), the impact of a tokenizer’s training data remains rel-
atively unexplored. Recent work has begun to address the
importance of tokenizers’ vocabulary sizes and the train-
ing data domains (Dagan et al., 2024), tying into existing
exploration of other aspects of tokenization, including the in-
fluence of different tokenization algorithms (Schmidt et al.,
2024; Ali et al., 2024; Mielke et al., 2021; Rai & Borah,
2021), vocabulary size optimization (Gowda & May, 2020),
and the interplay between data type and tokenization strat-
egy, especially in multi-lingual applications (Limisiewicz
et al., 2023; Rust et al., 2021). Yet, to the best of our knowl-
edge, we are the first to investigate how much training data
is needed for a tokenizer, and how this affects performance.

We address this by examining the impact of scaling tok-
enizer training data with sizes ranging from 1GB to 900GB.
We train English BPE, UnigramLM, and WordPiece tok-
enizers with vocabulary sizes of 40,960, 64,000, 128,000,
and 256,000. For each variant, we examine the propor-
tion of vocabulary tokens that are shared with the 900GB
reference case, and use intrinsic metrics to measure the
quality of tokenization on a held-out evaluation corpus of
150GB. Our findings indicate that increasing the amount of
tokenizer training data leads to diminishing returns in the
compute-versus-gain tradeoff, suggesting a saturation point
at roughly 150GB of training data beyond which further
data provides minimal to no improvements in tokenization
quality. We then examine the proportion of pre-tokenization
chunks that exactly match a single token in the tokenizer
vocabulary, and suggest that this very high proportion is a
possible explanation for these diminishing returns.
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Following up on the English experiments, we turn to Russian
as a second test case to see whether the main findings hold
up on a language that is distinct from English both by using
a different alphabet and by various typological properties
such as freedom in word-order and morphological richness.
We focus on BPE vocabularies of size 40,960 ranging from
30GB to 600GB, identifying a later saturation point than
in English at around 200GB, suggesting that complexity in
word formation may impact the data hunger of tokenizers,
requiring them to take up more samples from a larger and
more idiosyncratic word-level vocabulary.

2. Effect of Training Corpus Size on
Tokenization

Our training corpus for the main experiments in English
combines the de-duplicated PILE (Gao et al., 2020) and
RedPajama (Weber et al., 2024) datasets, totaling 900GB
of text.2 In addition, we held out a de-duplicated set of size
150GB from the PILE and RedPajama corpus for evaluation.

We build token vocabularies using three algorithms: BPE,3

UnigramLM,4 and WordPiece.5 For each algorithm, we
train vocabularies of sizes 40K, 64K, 128K, and 256K, on
progressively larger subsets of the randomly shuffled 900GB
corpus. In order to evaluate the effects of training data
size on both smaller and larger scales, we start with finer
increments of 1GB, 5GB, and 15GB subsets, followed by
all 30GB increments between 30GB and the full 900GB
corpus. The size increase is augmentative, meaning that
each corpus subset properly includes all those with smaller
size. Overall, we trained 33 distinct vocabularies for each
of the four vocabulary sizes for each of the three tokenizer
algorithms, leading to a total of 396 trained vocabularies for
English.

Pre-processing To facilitate training token vocabularies
on datasets ranging to hundreds of gigabytes, we imple-
mented a parallel pre-tokenization step, which used a regu-
lar expression to break the documents into chunks. We then
aggregated the counts of each pre-tokenized chunk over all
documents. This pre-tokenized corpus of chunks and counts
served as the input for all subsequent vocabulary building,
significantly reducing its computational overhead by avoid-

2As our work is the first of its kind in the tokenization space,
there was no predefined baseline for corpus size to reference. How-
ever, a recent study (Schmidt et al., 2024) used 200 billion tokens
(approximately 850GB of the PILE dataset) for tokenizer compar-
isons, which we adopted as our upper limit. This choice serves as a
practical reference point rather than an assumed optimal baseline.

3We use a custom BPE tokenizer based on https://github.com/

karpathy/minbpe as a starting point.
4
https://github.com/huggingface/tokenizers/blob/main/bindings/

python/py src/tokenizers/implementations/sentencepiece unigram.py
5
https://github.com/huggingface/tokenizers/blob/main/bindings/

python/py src/tokenizers/implementations/bert wordpiece.py

ing tokenization of common chunks more than once. All
tokenizer code was modified to support this method of ag-
gregate chunking and incremental counting. Listing 1 shows
the regular expression used by GPT-4 for pre-tokenization,
which we also used for our parallel pre-tokenizer. A break-
down of this regex, with an explanation of each branch, is
presented in Appendix A.

r"(?i:[sdmt]|ll|ve|re)|[ˆ\r\n\p{L}\p{N}]?+\
p{L}+|\p{N}{1 ,3}|␣?[ˆ\s\p{L}\p{N}]++[\r
\n]|\s[\r\n]|\s+(?!\S)|\s+"

Listing 1: GPT-4 pre-tokenizer regular expression.

2.1. Vocabulary analysis

Figure 1 illustrates the fraction of vocabulary shared be-
tween tokenizers trained on varying amounts of data and a
reference of the same algorithm trained on the full 900GB
corpus, for vocabulary sizes ranging from 40,960 to 256,000.
This fraction increases consistently with the amount of train-
ing data. For a vocabulary size of 40,960, the shared vo-
cabulary rises from approximately 58% to 97% for BPE,
from 40% to 97% for UnigramLM, and from 4% to 92%
for WordPiece. This trend of increased shared vocabulary
with larger training datasets is observed across all tested
vocabulary sizes. A more detailed comparison is provided
in Appendix B.

As vocabulary size increases from 40,960 to 256,000, the
proportion of common vocabulary stabilizes at a higher
value for larger datasets. BPE and UnigramLM tokenizers
exhibit similar convergence patterns, with BPE consistently
maintaining a slightly higher proportion of common vocab-
ulary across all vocabulary sizes. WordPiece demonstrates a
more gradual increase in shared vocabulary, particularly at
larger vocabulary sizes, indicating a greater sensitivity to in-
creasing data volume. Although initial fluctuations are more
pronounced at a vocabulary size of 256,000, all tokenizers
eventually converge as data scales. These results collec-
tively suggest that while larger training datasets consistently
yield more similar vocabularies across algorithms, BPE and
UnigramLM exhibit more rapid convergence than Word-
Piece, perhaps due to the sensitivity afforded in its merge
selection criterion to token pairs which are relatively rare
individually but co-occur frequently. Such pairs are likely to
shift erratically as data is added, with more co-occurrences
of such pairs surfacing, increasing their pairwise fit score at
a rate disproportional to that of the overall data.

Finally, we raise the practical implication from our find-
ings, that a substantial portion of the vocabulary learned
from the full 900GB dataset can be effectively obtained
from tokenizers trained on significantly smaller fractions
of the data. At this point, we cannot ascertain whether the
remaining differences in vocabulary are artifacts of small-
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(a) Vocabulary size 40,960 (b) Vocabulary size 64,000

(c) Vocabulary size 128,000 (d) Vocabulary size 256,000

Figure 1: Proportion of common vocabulary for BPE, Unigram, and WordPiece tokenizers, trained with cumulatively
increasing data, relative to the vocabulary of the corresponding tokenizer trained with 900GB of data.

vocabulary underfitting or large-vocabulary overfitting. It
stands to reason that, if the vocabulary is meant to be used
in variable or unknown domains, smaller might be better,
whereas a trusted large corpus might benefit downstream
applications which are more well-defined. We thus turn
to comparative evaluation of token vocabulary behavior in
different settings and across different corpora. In §4, we
further expand this inquiry of generalization by repeating
key parts of the analysis on data in Russian.

2.2. Intrinsic analysis

While we have seen that there are significant differences
in the vocabularies of tokenizers trained on, for example,
30GB versus 900GB of data, it is important to examine these
differences to determine whether they translate into mean-
ingful improvements in tokenization quality. To evaluate
the trained tokenizers without the additional computational
overhead of training dozens of full LLMs, we use the in-
trinsic tokenizer metrics collected by Uzan et al. (2024).
Following prior work (Schmidt et al., 2024; Zouhar et al.,
2023), we interpret these independent intrinsic measures
summarized below as a proxy for the hypothetical perfor-
mance of a tokenizer on downstream tasks.

Morphological alignment: Measures how well a tok-
enizer’s word segmentations match gold-standard morpho-

logical segmentations. Higher scores indicate a greater
ability to capture word structure.

Cognitive score: Assesses the correlation between a tok-
enizer’s output and human performance in lexical decision
tasks, evaluating how well the tokenizer’s behavior aligns
with human lexical processing (Beinborn & Pinter, 2023).
Specifically, this evaluation dataset examines the correlation
between the degree to which tokenizers segment character
sequences and the ability of humans to recognize them as
words.

Rényi efficiency: Encourages optimal encoding by eval-
uating the ratio of the Shannon entropy to the maximum
possible entropy of the token distribution. Higher entropy in-
dicates a more diverse and unpredictable distribution, penal-
izing vocabularies which are skewed towards very frequent
and/or very rare tokens. We use α = 2.5 for our analysis
following Zouhar et al. (2023).

Figure 2 presents the intrinsic metric results for BPE across
the four vocabulary sizes included in our study, evaluated on
a 150 GB held-out dataset sampled from our corpus. Con-
trary to our expectations, these intrinsic measures do not
reveal substantial performance gains with increasing data
size. In fact, for BPE, performance on all metrics plateaus
in the 120GB to 150GB range. Despite the observed vocab-

3



How Much is Enough?

Figure 2: Intrinsic measures on our held-out set for BPE
tokenizers trained for each of the four vocabulary sizes with
varied training corpus size.

ulary shifts, the core properties reflected by these metrics
remain relatively stable across the range of training data
volumes. Thus, simply increasing the training data size
may not inherently lead to substantial improvements in a
tokenizer’s effectiveness.

Figure 3 displays benchmark results for the UnigramLM
tokenizers trained with varying data sizes and vocabulary
sizes. Similar to the observations with BPE, the UnigramLM
tokenizers do not show a substantial and consistent improve-
ment in intrinsic scores with increasing data size. While
the cognitive score score exhibits a slight upward trend ini-
tially, it plateaus beyond approximately 180GB, suggesting
that further increases in training data do not significantly
enhance the tokenizer’s alignment with morphological seg-
mentations. The average F1 score calculated over the mor-
phological benchmarks, while showing some fluctuations,
does not demonstrate a clear and sustained improvement
with larger datasets. The entropy score, similar to the other
metrics, plateaus relatively early, indicating that the balance
of token frequencies stabilizes with increasing data size.

For WordPiece (Figure 4), a similar pattern emerges. While

Figure 3: Intrinsic measures of UnigramLM tokenizers
trained for each of the four vocabulary sizes with scaled
training data.

slightly higher variations exist, particularly in cognitive
score, the intrinsic scores do not substantially improve with
increasing data size.

2.3. Cross-domain analysis

To reconcile the apparent discrepancy between observed
vocabulary shifts and stable intrinsic scores, we analyzed
the impact of our trained tokenizers on a diverse, multi-
domain evaluation dataset. This data spans several domains:
biology, code, finance, history, legal, mathematics, general
text. This diverse composition mitigates potential tokenizer
biases that arise from the influence of domain-specific vo-
cabulary prevalence. Each domain-specific corpus contains
1.5 million characters. While the sources of the evaluation
sets are presented in Appendix C, Figure 5 depicts the com-
position of terms across specific domains. Each data point
represents a proportion of general English terms, numerical
values, and domain-specific terms.

We assessed the impact of scaling training data for vocab-
ulary construction on the evaluation set by computing the
Jaccard Index between the actual tokens used in the eval-
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Figure 4: Intrinsic measures of WordPiece tokenizers
trained for each of the four vocabulary sizes with scaled
training data

uation text using each trained tokenizer and the same text
tokenized with the 900GB-trained reference tokenizer:

J(U, V ) =
|U ∩ V |
|U ∪ V |

, (1)

where U and V are the vocabularies of the reference tok-
enizer and the current tokenizer.

We also computed a weighted version of the Jaccard Index
using the normalized token counts over the evaluation data,
to account for the differences in the training set sizes:

Jw(U, V ) =

∑
t∈U∩V min(wU (t), wV (t))∑
t∈U∪V max(wU (t), wV (t))

, (2)

where wU (t) and wV (t) are the normalized token frequen-
cies for token t in vocabularies U and V .

Figure 6 presents the standard (open markers) and weighted
(filled markers) Jaccard Index for token vocabularies of
size 40,960. The weighted scores consistently exceed the
unweighted scores, highlighting the significant influence of
token frequency on vocabulary overlap. This suggests that

Figure 5: Proportion of general English terms, domain-
specific terms, and numerical values within each evaluation
set.

Figure 6: Jaccard Index (open markers) and Weighted Jac-
card Index (WTD; filled markers) for BPE, UnigramLM,
and WordPiece tokenizers (vocabulary size 40,960) across
varying data sizes, averaged over all evaluation domains.

high-frequency tokens exhibit greater consistency across
varying data sizes, and they account for a significant fraction
of the training token counts. Again the unique behavior of
WordPiece surfaces, demonstrating its preference for tokens
which co-occur strongly but at an overall low frequency,
leading to large observable differences in vocabulary sets
that barely translate to effects at the corpus level.

Our analysis revealed that over 80% of our evaluation text is
represented by approximately 20% of the tokenizer vocabu-
lary (see Appendix C for detailed results across individual
domains of our evaluation dataset and vocabulary sizes) This
finding suggests that the majority of tokens that are added
with increasing training data are low-frequency and thus less
consequential. While the specific composition of the vocab-
ulary evolves with an increase in training data, the core set
of tokens responsible for representing the majority of the
text remains relatively stable. This observation is consistent
with Zipf’s law (Zipf, 1949), which postulates an inverse
relationship between word frequency and rank in natural
language corpora. Thus, adding to a tokenizer’s training
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data beyond a certain point primarily adds low-frequency
tokens to the vocabulary, which has a limited impact on the
overall tokenization characteristics captured by the intrinsic
metrics. This is one explanation as to why the intrinsic
metrics are largely unaffected by increases in training data.

3. The Limiting Role of Pre-Tokenization
Pre-tokenization is the initial step in the tokenization pro-
cess, where regular expressions are used to split a document
into chunks, sometimes called pre-tokens, which are then
tokenized separately. Velayuthan & Sarveswaran (2025) re-
cently noted that pre-tokenization can have a greater effect
on the resulting tokenization than the choice of tokenization
algorithm.

Our cross-domain results in the previous section show that
tokenizers produce a common set of tokens across the range
of tokenizer training data. We hypothesize that this is due
to pre-tokenization: the pre-tokens with highest frequency
are prevalent enough that all tokenization algorithms have a
strong inclination to find a single token that exactly matches
the pre-token. To investigate this, we go back to the ag-
gregated pre-tokens extracted from the corpus with their
associated counts. We calculate the proportion of pre-tokens
represented as a single token within each tokenizer’s vocabu-
lary. Figure 7 displays this proportion for BPE, UnigramLM,
and WordPiece tokenizers, for varying vocabulary sizes.

The prevalence of these common pre-tokens within the to-
kenizers’ vocabularies is remarkably high across all algo-
rithms, increasing with vocabulary size. This proportion
remains relatively stable with more training data at smaller
vocabulary sizes and is essentially overlapping at vocabulary
sizes of 128,000 and 256,000. The curves are flat because
they represent frequent pre-tokens, which are easily found
even with very little training data. Larger vocabularies nat-
urally have more capacity to include a greater number of
pre-tokens as single tokens, accounting for the overlapping
curves.

These observations support our hypothesis that the plateau-
ing intrinsic metrics (Figure 2) and high weighted Jaccard
index (Figure 6) observed with varying training data can
at least be partially attributed to the constraints imposed
by pre-tokenization. The pre-tokenization step prioritizes
the inclusion of commonly occurring pre-tokens as single
tokens in the training process. The tokenizers are limited to
optimizing the smaller remaining fraction of the tokenized
corpus. This limits the tokenizers’ ability to fully leverage
larger training datasets, as the core vocabulary is largely
predetermined by the pre-tokenization process. The addi-
tional tokens produced from larger datasets are primarily
low-frequency items (i.e., rare words), which have a smaller
overall impact on the vocabulary composition and tokeniza-

Figure 7: Proportion of pre-tokens represented as single
tokens in BPE, UnigramLM and WordPiece vocabularies of
varying sizes (40,960, 64,000, 128,000, and 256,000) with
increasing training data.

tion quality as measured by our intrinsic metrics. Standard
pre-tokenization techniques cannot go beyond word-level
segmentation, thereby greatly constraining the vocabulary.

Recent work has begun to explore the influence of pre-
tokenization on vocabulary dynamics, offering new perspec-
tives on how pre-token design affects downstream perfor-
mance and tokenization efficacy (Salehi et al., 2015; Liu
et al., 2025; Kumar & Thawani, 2022; Schmidt et al., 2025).
These studies highlight the critical role of pre-tokenization
in shaping the learned vocabulary and suggest that rethink-
ing or relaxing pre-tokenization constraints could unlock
further improvements in tokenizer effectiveness.

4. Generalizing To Russian
To better understand whether the impact of tokenizer train-
ing data on tokenizer characteristics discussed in this work
is robust, we augment our analysis of English data with a
focused case study on Russian. Compared to English, Rus-
sian is a more morphologically rich language, characterized
by extensive inflectional and derivational morphology. This
makes it a compelling test case for evaluating how tokeniz-
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Figure 8: Proportion of common vocabulary for BPE tok-
enizer (vocabulary size 40,960) trained with cumulatively
increasing data, relative to the vocabulary of the correspond-
ing tokenizer trained with 600GB of data.

ers handle linguistic complexity under conditions markedly
different than those in English.

Our primary goal is to investigate how much training data is
required for tokenizers to effectively model such a language.
Given that our experiments on English demonstrated rela-
tively stable performance across different tokenizer types
and vocabulary sizes, we simplify our exploration by fixing
the tokenizer algorithm to BPE and using a vocabulary size
of 40,960. We use Russian-language data sourced from the
OSCAR dataset (Nguyen et al., 2024), a large multilingual
corpus extracted from Common Crawl.6 Following the cu-
mulative data formation strategy used in earlier experiments,
we train tokenizers on increasingly larger subsets of the
data. Specifically, we use cumulative data sizes of 30GB,
60GB, 90GB, 120GB, 150GB, 180GB, 210GB, 240GB,
300GB, 450GB, and 600GB. This selection is motivated by
observations from our English-language experiments, where
both intrinsic metrics (e.g., compression ratio, tokenization
efficiency) and Jaccard index on our domain-specific down-
stream corpus showed saturation beyond typically 150GB
and at most 300GB of training data. By extending the upper
bound to 600GB for Russian, we aim to determine whether
a morphologically richer language exhibits a similar sat-
uration point or requires significantly more data to reach
optimal performance. Due to lack of suitable cognitive
and morphological evaluation resources, we use entropy
efficiency as the primary performance metric in this section.

4.1. Vocabulary analysis

As depicted in Figure 8, the proportion of shared vocabulary
between tokenizers and a reference tokenizer trained with

6Version 23.01: https://oscar-project.github.io/
documentation/versions/oscar-2301/

Figure 9: Entropy efficiency on our held-out set for BPE
tokenizers (vocabulary size 40,960) with varied training
corpus size.

450GB of data consistently increases with larger Russian
training datasets. When juxtaposed with English, we can
infer a consistent trend across languages. However, a no-
table difference is in the rate of increase between the two
languages. The rate at which the fraction of common vo-
cabulary increases is comparatively lower for Russian. This
could be attributed to the comparatively more complex na-
ture of the language’s morphology, where individual types
of (mostly) nouns, verbs, and adjectives appear much less
frequently than their English equivalents where one form
subsumes several, or even dozens, inflected Russian forms.

4.2. Entropy analysis

Figure 9 illustrates the entropy efficiency of our tokenizer
set, trained on Russian and evaluated on a held-out Russian
evaluation set. The figure shows that gains in entropy ef-
ficiency become progressively smaller as the training data
increases. For English, we observe minimal improvement
beyond 150GB of training data. In contrast, for Russian,
entropy efficiency continues to improve up to approximately
200GB, after which it stabilizes.

We believe these trends can be attributed to differences in lin-
guistic structure and morphological complexity between the
two languages. English, being relatively analytic, has a more
limited set of word forms and less inflectional variation,
which allows tokenizers to reach near-optimal efficiency
with a smaller amount of training data. Once common sub-
word patterns and vocabulary units are sufficiently captured,
additional data provides diminishing returns. Russian, on
the other hand, is a morphologically rich language with a
larger number of inflected forms and derivational variants.
This complexity means that a tokenizer needs more data to
adequately capture the diverse patterns of morpheme com-
binations and subword units. As a result, increasing the
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training data size continues to yield entropy improvements
over a larger range. Beyond this point, the tokenizer has
likely encountered the majority of relevant morphological
patterns, and additional data no longer provides significant
new information, leading to a plateau in entropy efficiency.

Overall, these findings highlight the importance of language-
specific considerations when designing or scaling tokenizer
training datasets.

5. Conclusion
In this work, we systematically investigated the impact of
tokenizer training data size on the characteristics of trained
tokenizers. Our findings reveal diminishing returns as the
tokenizer training data increases beyond 150GB in English,
and indications of a limit closer to 200GB in Russian, sug-
gesting some dependence on the morphological properties
of the language being tokenized. Our analysis indicates that
tokenization algorithms incorporating pre-tokenization may
be fundamentally limited in their ability to fully leverage
extremely large datasets. Therefore, rather than focusing
solely on more data, we advocate for a shift towards develop-
ing and employing better vocabulary training methods that
are less susceptible to the limitations of pre-tokenization.
Methods that tokenize beyond pre-token boundaries (Liu
et al., 2025; Schmidt et al., 2025), and ones that incorporate
contextual signals (Yehezkel & Pinter, 2023), offer promis-
ing directions for future research. Their main drawback
has been identified to be nonlinear dependence on data size,
which we now believe to be less of a problem than assumed
until now.

Limitations
In this study, we use intrinsic tokenizer metrics as a primary
means of evaluation, while enabling efficient analysis, may
not fully capture the complex interplay between tokenizer
characteristics and downstream LLM performance. While
these metrics provide valuable insights into tokenizer qual-
ity, they serve as a proxy for true downstream effectiveness.
Future research should investigate the correlation between
intrinsic metrics and downstream task performance across
a wider range of language models and tasks to establish a
more comprehensive evaluation framework.

Ethics Statement
We train our tokenizers on the commonly used public
datasets The Pile (Gao et al., 2020), RedPajama (Weber
et al., 2024) and OSCAR (Nguyen et al., 2024), which have
not undergone a formal ethics review. While our evalua-
tion set was manually anonymized and checked for abusive
language, it may still contain personal opinions that reflect

cultural, political, or demographical biases.
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Lübbering, M., Leveling, J., Klug, K., Ebert, J., Doll,
N., Buschhoff, J., Jain, C., Weber, A., Jurkschat, L., Ab-
delwahab, H., John, C., Ortiz Suarez, P., Ostendorff, M.,
Weinbach, S., Sifa, R., Kesselheim, S., and Flores-Herr,
N. Tokenizer choice for LLM training: Negligible or
crucial? In Duh, K., Gomez, H., and Bethard, S. (eds.),
Findings of the Association for Computational Linguis-
tics: NAACL 2024, pp. 3907–3924, Mexico City, Mexico,
June 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-naacl.247. URL https:
//aclanthology.org/2024.findings-naacl.247/.

Beinborn, L. and Pinter, Y. Analyzing cognitive plausibil-
ity of subword tokenization. In Bouamor, H., Pino, J.,
and Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pp. 4478–4486, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.272. URL https://aclanthology.org/
2023.emnlp-main.272/.

Dagan, G., Synnaeve, G., and Rozière, B. Getting the
most out of your tokenizer for pre-training and domain
adaptation, 2024. URL https://arxiv.org/abs/2402.
01035.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423/.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The pile: An 800gb dataset of
diverse text for language modeling, 2020. URL https:
//arxiv.org/abs/2101.00027.

Gowda, T. and May, J. Finding the optimal vocabu-
lary size for neural machine translation. In Cohn, T.,

8

https://aclanthology.org/2024.findings-naacl.247/
https://aclanthology.org/2024.findings-naacl.247/
https://aclanthology.org/2023.emnlp-main.272/
https://aclanthology.org/2023.emnlp-main.272/
https://arxiv.org/abs/2402.01035
https://arxiv.org/abs/2402.01035
https://aclanthology.org/N19-1423/
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027


How Much is Enough?

He, Y., and Liu, Y. (eds.), Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020, pp.
3955–3964, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.352. URL https://aclanthology.
org/2020.findings-emnlp.352/.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy, A.,
Osindero, S., Simonyan, K., Elsen, E., Rae, J. W., Vinyals,
O., and Sifre, L. Training compute-optimal large lan-
guage models, 2022. URL https://arxiv.org/abs/
2203.15556.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Kudo, T. Subword regularization: Improving neural network
translation models with multiple subword candidates. In
Gurevych, I. and Miyao, Y. (eds.), Proceedings of the
56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 66–75,
Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P18-1007. URL
https://aclanthology.org/P18-1007/.

Kumar, D. and Thawani, A. BPE beyond word bound-
ary: How NOT to use multi word expressions in neu-
ral machine translation. In Tafreshi, S., Sedoc, J.,
Rogers, A., Drozd, A., Rumshisky, A., and Akula, A.
(eds.), Proceedings of the Third Workshop on Insights
from Negative Results in NLP, pp. 172–179, Dublin,
Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.insights-1.24. URL
https://aclanthology.org/2022.insights-1.24/.

Limisiewicz, T., Balhar, J., and Mareček, D. Tokeniza-
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A. Pre-tokenization regular expression
We repeat the pre-tokenization regular expression used in
our implementation, and explain each of its branches:

r"(?i:[sdmt]|ll|ve|re)|[ˆ\r\n\p{L}\p{N}]?+\
p{L}+|\p{N}{1 ,3}|␣?[ˆ\s\p{L}\p{N}]++[\r
\n]|\s[\r\n]|\s+(?!\S)|\s+"

Listing 2: GPT-4 pre-tokenizer regular expression
(repeated).

• (?i:[sdmt]|ll|ve|re)

Matches English language contractions or possessives

• [ˆ\r\n\p{L}\p{N}]?+\p{L}+

Matches one or more Unicode letters, optionally pre-
ceded by a punctuation or symbol character

• \p{N}{1,3}

Matches one to three Unicode digits (some languages
such as Thai and Tamil use different Unicode symbols
for digits)

• ?[ˆ\s\p{L}\p{N}]++[\r\n]*

Matches one or more punctuation or symbol characters,
optionally preceded by a space, and succeeded by zero
or more carriage returns or linefeeds

• \s*[\r\n]

Matches a single carriage return or linefeed, optionally
preceded by zero or more characters of whitespace

• \s+(?!\S)

Matches one or more characters of whitespace not im-
mediately followed by non-whitespace, thus matching
trailing whitespace of a line, up to the line break

• \s+

Finally, this matches one or more characters of whites-
pace

This regular expression requires the more flexible regex
package in Python rather than the default re package, in or-
der to support Unicode character groups and the possessive
quantifiers ?+ and ++.

Note that this expression has the necessary property to
match all characters in any valid UTF-8. This is because
[ˆ\s\p{L}\p{N}] in the fourth branch will match any char-
acter that is not a letter, number, or whitespace, which are all
handled by other parts of the regex. Dagan et al. (2024) had
a similar explanation of this same regex, plus other possible
regular expression choices.7

7See https://tokencontributions.substack.com/p/
pre-tokenization-on-punctuation-in for other discussions
on peculiarities of this particular regular expression.

B. Analysis of Common Vocabulary
Figures 10, 11, and 12 present heatmaps visualizing the pro-
portion of shared vocabulary among all trained tokenizers
for BPE, Unigram, and WordPiece, respectively. Within
each figure, subplots correspond to different vocabulary
sizes: 40,960, 64,000, 128,000, and 256,000.

A key observation for both BPE (Figure 10) and Uni-
gramLM (Figure 11) is the decreasing proportion of shared
vocabulary between consecutively trained tokenizers as the
vocabulary size increases. For instance, with BPE and a
40,960 vocabulary, the vocabulary overlap between tokeniz-
ers trained on 30GB and 900GB of data is 0.57. This overlap
decreases to 0.49, 0.41, and 0.23 for vocabulary sizes of
64,000, 128,000, and 256,000, respectively. UnigramLM
tokenizers exhibit a similar trend, with overlap decreasing
from 0.58 to 0.51, 0.34, and 0.2 across the same vocabulary
sizes.

This trend suggests that as vocabulary size increases for
a fixed training data size (e.g., 30GB), the added tokens
become progressively less frequent and more specialized.
These less frequent or more niche tokens are also more sus-
ceptible to variation between tokenizers trained on slightly
different subsets of data drawn from the same overall distri-
bution. Essentially, with limited training data, larger vocab-
ularies are populated with progressively less consequential
tokens, leading to lower agreement between trained tokeniz-
ers. However, WordPiece (Figure 12) does not exhibit any
trend with a change in vocabulary size.

C. Analysis on Evaluation Data
C.1. Data Source

Our tokenizer training data spans from 2021 to early 2023.
To prevent data leakage into our evaluation set, we sourced
documents from various domains specifically dated 2024.
We manually de-anonymized and removed any offensive
language from this dataset. The following describes the
composition of our evaluation data for each domain:

• Biology: We utilized research papers and clinical trial
data from the National Library of Medicine.8

• Code: Code was generated using GPT-4 for ran-
domly selected programming problems drawn from
IIT9 homework assignments and LeetCode.10 The code
corpus contains a mixture of popular programming lan-
guages including Python, Java, JavaScript, Ruby, and
Go, further enhancing diversity.

8
https://www.ncbi.nlm.nih.gov/

9
https://www.cse.iitk.ac.in/users/nitin/courses/

CS681-2019-20-II/problemsets.html
10
https://leetcode.com/

11

https://tokencontributions.substack.com/p/pre-tokenization-on-punctuation-in
https://tokencontributions.substack.com/p/pre-tokenization-on-punctuation-in
https://www.ncbi.nlm.nih.gov/
https://www.cse.iitk.ac.in/users/nitin/courses/CS681-2019-20-II/problemsets.html
https://www.cse.iitk.ac.in/users/nitin/courses/CS681-2019-20-II/problemsets.html
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Figure 10: Heatmaps showing the proportion of common vocabulary across all BPE tokenizers as a function of cumulatively
increasing training data. Each heatmap, in the grid from the top left, represents a different vocabulary size (40,960, 64,000,
128,000, 256,000).

• Finance: This dataset comprises SEC filings11 from
various companies filed in 2024, downloaded and ex-
tracted from PDF to text format.

• History: We used papers from Oxford Academic His-
torical Research. 12

• Legal: This dataset consists of 2024 - Opinions of the
Court released by the Supreme Court of the United

11
https://www.sec.gov/

12
https://academic.oup.com/histres/

States.13

• Math: Mathematics papers from arXiv,14 all released
in 2024, were used.

• General Conversation: We employed general conver-
sation data from the same population as our tokenizer
training data, ensuring no overlap between training and
evaluation sets.

13
https://www.supremecourt.gov/opinions/slipopinion/24

14
https://arxiv.org/archive/math

12

https://www.sec.gov/
https://academic.oup.com/histres/
https://www.supremecourt.gov/opinions/slipopinion/24
https://arxiv.org/archive/math
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(a) 256,000

Figure 11: Heatmaps showing the proportion of common vocabulary across all UnigramLM tokenizers as a function of
cumulatively increasing training data. Each heatmap, in the grid from the top left, represents a different vocabulary size
(40,960, 64,000, 128,000, 256,000).

C.2. Analysis

As mentioned in Section 2.3, we assess the impact of scal-
ing training data for tokenizer training on the evaluation
set by computing the Jaccard Index and weighted version
to the Jaccard Index between the actual tokens used in the
evaluation text using each trained tokenizer and the same
text tokenized with the 900GB-trained reference tokenizer.
Within the evaluated vocabulary size of 40,960 (see Fig-

ure 13), slightly different trends emerge across different
tasks. However, both BPE and Unigram LM tokenizers
exhibit a near-immediate plateau in performance, around
120GB to 180GB. This suggests that, at this vocabulary
size, frequent tokens contribute substantially to the overall
token overlap and that these tokenizers quickly converge to
a stable segmentation of these frequent terms. This early
plateau indicates that further increases in training data pro-
vide diminishing returns for these tokenization algorithms.

13
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Figure 12: Heatmaps showing the proportion of common vocabulary across all WordPiece tokenizers as a function of
cumulatively increasing training data. Each heatmap, in the grid from the top left, represents a different vocabulary size
(40,960, 64,000, 128,000, 256,000).

Although WordPiece demonstrates a similar trend of a much
lower Jaccard Index compared to its weighted counterpart,
it exhibits the widest gap between the two Jaccard Index
values. A large difference between the Jaccard Index and the
Weighted Jaccard Index indicates that the overlap between
vocabulary usage is primarily due to less frequent tokens,
while the more frequent tokens are not consistently shared.
This could mean that the change in vocabulary might have
higher implications for the tokenization of text, relative to
BPE and Unigram LM. These patterns remain consistent

across WordPiece for the remaining vocabulary sizes, as
seen in Figures 13 to 16.

C.3. Computing Domain-Specific and General English
Terms

To identify and quantify domain-specific and general En-
glish terms within a corpus, we use a comparative frequency-
based approach grounded in corpus linguistics. The core
idea is to contrast the term distributions between a domain-
specific corpus (D) and a general English corpus (G) to

14
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determine which terms are characteristic of the domain.

We curate two text corpora: a domain corpus (D), which
is a compilation of all our downstream domain-specific
evaluation data, and a general corpus (G),15 representing
standard English usage. Both corpora are matched in size to
ensure a fair comparison.

For each corpus, we compute the relative term frequency of
each word w:

TFD(w) =
count(w ∈ D)∑
w′ count(w′ ∈ D)

,

TFG(w) =
count(w ∈ G)∑
w′ count(w′ ∈ G)

To measure domain relevance, we compute a score for each
term based on its relative frequency in both corpora:

Score(w) =
P (w|D)

P (w|G) + ϵ

where P (w|D) and P (w|G) are the relative frequencies of
w in the domain and general corpora, respectively, and ϵ is
a small smoothing constant to avoid division by zero.

A higher score indicates stronger domain specificity. Terms
with extremely low counts (e.g., fewer than five occurrences
across both corpora) are filtered out to reduce noise. Based
on this score, we classify terms as follows:

• Domain-Specific Terms: Score(w) ≥ θ

• General English Terms: Score(w) ≤ 1
θ

• Neutral Terms: 1
θ < Score(w) < θ

For the threshold, we use θ = 10. This methodology enables
us to quantify the number of domain-specific and general
English terms present in a given vocabulary.

We group general English and neutral terms together. Af-
ter classification, we manually inspect and alter, whenever
necessary, the resulting word lists to ensure that there is no
contamination between domain-specific and general terms.

15https://huggingface.co/datasets/wikimedia/
wikipedia

15

https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/wikimedia/wikipedia
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Figure 13: Jaccard Index (open markers) and Weighted Jaccard Index (WTD; filled markers) for BPE, UnigramLM, and
WordPiece tokenizers (vocab size 40,960) across varying data sizes, for different domains.
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Figure 14: Jaccard Index (open markers) and Weighted Jaccard Index (WTD; filled markers) for BPE, UnigramLM, and
WordPiece tokenizers (vocab size 64,000) across varying data sizes, for different domains.

17



How Much is Enough?

Figure 15: Jaccard Index (open markers) and Weighted Jaccard Index (WTD; filled markers) for BPE, UnigramLM, and
WordPiece tokenizers (vocab size 128,000) across varying data sizes, for different domains.
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Figure 16: Jaccard Index (open markers) and Weighted Jaccard Index (WTD; filled markers) for BPE, UnigramLM, and
WordPiece tokenizers (vocab size 256,000) across varying data sizes, for different domains.
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