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Abstract

Graph Neural Networks (GNNs) have demonstrated impressive performance across various
tasks, leading to their increased adoption in high-stakes decision-making systems. However,
concerns have arisen about GNNs potentially generating unfair decisions for underprivileged
groups or individuals when lacking fairness constraints. This work addresses this issue by
introducing GRAPHGINI, a novel approach that incorporates the Gini coefficient to enhance
both individual and group fairness within the GNN framework. We rigorously establish
that the Gini coeflicient offers greater robustness and promotes equal opportunity among
GNN outcomes, advantages not afforded by the prevailing Lipschitz constant methodology.
Additionally, we employ the Nash social welfare program to ensure our solution yields a
Pareto optimal distribution of group fairness. GRAPHGINI automatically balances the three
optimization objectives of utility, individual fairness, and group fairness without requiring
manual tuning of weight parameters. Extensive experimentation on real-world datasets
demonstrates GRAPHGINI's efficacy in significantly improving individual fairness compared
to state-of-the-art methods while maintaining utility and group fairness.

1 Introduction and Related Works

Graph Neural Networks (GNNs) are increasingly being adopted for various high-stakes applications, including
credit scoring for loan issuance (Shumovskaia et al, [2020]), medical diagnosis (Ahmedt-Aristizabal et al.,
2021)), and recommendation engines (Fan et al 2019 |Gong et al., [2020). However, recent studies have shown
that GNNs may explicitly or implicitly inherit existing societal biases in the training data and, in turn,
generate decisions that are socially unfair (Dong et al.l |2023; |Dai et al., |2022). It is, therefore, important to
guard GNNs from being influenced by sensitive features such as gender, race, religion, etc.

There are two primary approaches to address the issue of algorithmic bias: individual fairness and group
fairness (Mehrabi et al.l 2021} [Liu et al., [2022). Individual fairness involves masking the sensitive features
and ensuring that individuals who are alike with respect to non-sensitive features receive similar treatment or
outcomes from a system. The group fairness approach, on the other hand, looks within groups defined by
sensitive features, e.g., female job applicants or male job applicants, and works to ensure that each such group
has similar individual fairness characteristics to all other groups. For example, the variability in treatment
between two highly qualified female candidates should be no more than the variability in treatment between
two highly qualified male candidates. In general, a fair system should ensure both individual fairness and
group fairness since they ensure parity in two complementary dimensions.

1.1 Existing Works

Individual fairness: For individual fairness, the key optimization parameter sought to be minimized is
the Lipschitz constant, i.e. the worst-case ratio of the distance between the GNN-generated embeddings of
pairs of points and their distance based on some domain-specific criteria (e.g., number of common friends,
similarity on initial attributes, etc.). The advantage of this metric, as observed in several works (c.f., e.g.,
(Kang et al., 2020} [Lahoti et al., 2020} [Dwork et al.l 2012} |Song et al., [2022))), is that it is differentiable.
Intuitively, a small Lipschitz constant implies that the distance in the embedding space is similar to the
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distance in the input space. Since the GNN prediction is a function of the embeddings, this implies that
similar individuals are likely to get similar predictions (Kang et al., [2020).

Group fairness: Group fairness in GNNs has the objective of achieving accurate prediction while also
being independent of protected attributes that define groups. |[Rahman et al. (2019) propose the idea of
“equality of representation”, which expands upon the concept of statistical parity for the node2vec model.
Bose & Hamilton| (2019)), and [Dai & Wang| (2021]) propose adversarial approaches to eliminate the influence
of sensitive attributes. [He et al.| (2023) enables group fairness with respect to multiple non-binary sensitive
attributes. Among other works, the strategies include balance-aware sampling (Lin et al., 2023), attention to
mitigate group bias (Kose & Shen, [2023)) and bias-dampening normalization (Kose & Shen| 2022} |Lin et al.l
2024; [Yang et al.| [2024).

Both group and individual fairness: GUIDE |Song et al.| (2022)) is the first and only state-of-the-art work
to integrate group and individual fairness principles within a GNN framework. Using Lipschitz constant
minimization to enforce individual fairness, GUIDE sought to achieve group fairness by trying to equalize
the individual fairness achieved across groups. More recent works, such as [Wang et al.| (2024) and [Yan
et al.| (2024)), further explore this intersection by proposing alternative fairness formulations and optimization
strategies to simultaneously improve both fairness notions.

1.2 Contributions

The Lipschitz constant, because it is differentiable, has been the predominant metric for optimizing both
individual and group fairness. However, this mathematical convenience comes at a cost. Specifically,
the Lipschitz constant, being a max operator, fails to capture the distribution of outcomes, making it
overly restrictive and sensitive to outliers. To address its restricted expressivity, we introduce GRAPHGINI,
incorporating four key innovations:

e Incorporating Gini and establishing its superior encapsulation of fairness: To capture
fairness on the entire spectrum of outcomes, we propose the Gini coefficient, a well-established social
welfare metric. We show that the Gini coefficient offers a more robust and holistic fairness measure,
naturally leading to equal opportunity Hardt et al.| (2016]).

o Differential approximation of the Gini coefficient: Fair ML models, including GNNs, typically
enforce fairness constraints as regularizers in the loss function. Unlike the Lipschitz constant, the
Gini coefficient is non-differentiable, preventing direct optimization. We address this by proving an
upper bound that is differentiable, allowing its seamless incorporation as a loss regularizer.

e Auto-tuning of multi-objective loss function: Introducing fairness constraints transforms the
loss function into a multi-objective optimization problem, where different components may have vastly
different scales. To eliminate the need for manual tuning, we leverage gradient normalization (Chen
et al.l 2018), which dynamically adjusts weights based on gradient magnitudes, ensuring balanced
optimization across fairness and utility.

e Pareto Optimality: We establish a Pareto optimal distribution of group fairness through the
use of the Nash Social Welfare Program (NSWP) (Charkhgard et al.| 2022)), which is an optimization
technique that provides provably Pareto optimal solutions for multi-objective optimization problems.

With the incorporation of the proposed innovations, GRAPHGINI, outperforms 11 state-of-the-art fair GNN
algorithms in both individual and group fairness, with minimal impact on utility. We demonstrate this using
an empirical framework that evaluates 3 GNN backbones across three real-world datasets.

2 Background and Problem Formulation

We use bold uppercase letters (e.g., A) to denote matrices and Ali,:], A[:,j] and A[i, j] represent the i-th
row, j-th column, and (¢, j)-th entry of a matrix A respectively. For notational brevity, we use z; to represent
the row vector of a matrix, i.e., z; = Z[i,:]). As convention, we use lowercase (e.g., n) and bold lowercase
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(e.g., z) variable names to denote scalars and vectors, respectively. We use Tr(A) to denote the trace of

matrix A. The ¢; and fy-norm of a vector z € R are defined as ||z||; = Z?:l |zi| and ||z|]2 = Z?Zl 22
respectively. All notations are summarized in Table [J]]in the Appendix.

Definition 1 (Graph). A graph G = (V,&,X) has (i) n nodes (|V| =n) (it) a set of edges £ €V x V and
(iii) a feature matriz X € R™*? characterizing each node.

Definition 2 (Graph Neural Network (GNN) and Node Embeddings). A graph neural network consumes a
graph G = (V,£,X) as input, and embeds every node into a c-dimensional feature space. We denote Z € R™*¢
to be the set of embeddings, where z; denotes the embedding of node v; € V.

Definition 3 (Sensitive attributes). Sensitive attributes are those attributes that should not be used by the
GNN to influence the prediction (e.g. gender). As a function of these attributes, V may be partitioned into
disjoint groups.

For instance, gender may be classified as a sensitive attribution, which partitions the node set into V4. and
ermale such that V = Vmale U ermale-
Definition 4 (User similarity matrix S and Laplacian L). Based on domain knowledge/application, the

similarity matriz S denotes the similarity across any pair of nodes. The Laplacian L of S is defined as
L =D — S where, D is a diagonal matriz, with DI[i,i] = Z?:Ljyéi S[i, j]-

Without loss of generality, we assume the similarity value for a pair of nodes lies in the range [0, 1]. The distance

between nodes is defined to be the inverse of similarity, i.e., for two nodes u;,u; € V, d; ; = ﬁ, where ¢
is a small positive constant to avoid division by zero. Furthermore, we assume that the distance/similarity is

symmetric and is computed after masking the sensitive attributes.

2.1 Individual fairness

Individual fairness demands that any two similar individuals should receive similar algorithmic outcomes (Kang
et all [2020)). In our setting, this implies that if two nodes (v; and v,) are similar (i.e., S[v;, v;] is high), their
embeddings (z; and z;) should be similar as well.

As discussed in §[I] the Lipschitz constant has been the predominant choice for enforcing individual fairness.
In this section, we concretely establish its limitations and show how the Gini coefficient offers a more expressive
and robust mechanism for modeling individual fairness.

2.1.1 Limitations of the Lipschitz Constant

Definition 5. The Lipschitz constant of a GNN with node embeddings Z € R™*¢ is defined as the smallest
constant L such that for all pairs of nodes v;,v; € V:

gz <L-di; — L> max %%l )
Jh<L-di; = L> ”
’ Yv;,v; EV di)j

Since the Lipschitz constant is defined using a max operator, it only captures the worst-case discrepancy
between input distances and GNN embeddings, ignoring the full distribution of variations across all node
pairs. This results in an incomplete and potentially misleading quantification of inequality. We illustrate this
with a concrete example over a population of 5 nodes, whose distance matrix is as follows.

A B C D E
1 2 2
1 2

1

=N NN

HTQm >
R CECEY

We only show the upper triangle due to symmetry of the similarity function. The distance between a pair

of nodes i, j is defined as its inverse, i.e., d;; = <. Thus, in our case, all pairs of distinct nodes have a

Sli,g]
distance of 2.
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Corresponding to this similarity/distance matrix, let us consider two GNNs that produce the embeddings in
Table As can be seen, while GNN-1 preserves an identical distance of 2 in the output space among all

Table 1: Embeddings of two GNNs.
Node | Embeddings from GNN-1 | Embeddings from GNN-2

10,10, 10, 10] (10,10, 10, 10]
[1,0,0,0] [1,0,0,0]

[0,2,0,0]
[07 07270]
[0,0,0,2]

)

HOQwm»>
=353

oo

O:—‘O
)

) )

nodes except those involving A, the inequality is higher in GNN-2. Despite this, the Lipschitz constants for
both GNN-1 and GNN-2 are dominated by the (A, B) pair leading to an identical value of 19.5.

We address this limitation with the Gini coefficient.

2.1.2 Gini Coefficient

In economics theory, the Lorenz curve plots the cumulative share of total income held by the cumulative
percentage of individuals ranked by their income, from the poorest to the richest (Gastwirth) 1972} Sitthiyot
& Holasut} [2021; Daguml [1980). The line at 45 degrees thus represents perfect equality of incomes. The Gini
coefficient is the ratio of the area that lies between the line of equality and the Lorenz curve over the total
area under the line of equality (Gastwirth) [1972; Sitthiyot & Holasut], [2021) (See Fig.|C|in Appendix for an
example). Mathematically,

Y 2 T —

Gini(X) = ST , (2)

where X is the set of individuals, z; is the income of person i and n = |X|. A lower Gini indicates fairer
distribution, with 0 indicating perfect equality.

In our context, rather than measuring income inequality, we assess fairness in algorithmic outcomes by
ensuring that similar individuals receive similar predictions (Kang et all [2020). The analogy to income
distribution holds because, just as the Gini coefficient captures disparities across the entire population, our
formulation captures disparities in algorithmic outcomes across all pairs of individuals. However, instead of
treating all differences equally, we introduce a similarity-weighted extension.

Definition 6 (Gini Coefficient for Individual fairness). The individual fairness of the node set V with
embeddings Z and similarity matriz S is its weighted Gini coefficient, which is defined as follows,

doic1 2= Slis )z — 2z
2n Y00 il

Gini(V) = (3)

In this formulation, large disparities between dissimilar nodes have minimal impact on the Gini coefficient,
while considerable disparities among similar nodes have a stronger effect. The denominator normalizes
disparities by the total weighted sum of outcomes. This prevents the metric from being arbitrarily sensitive
to scale and ensures a consistent interpretation across different datasets and applications.

Further, the Gini coefficient is superior to the Lipschitz constant because it is not limited to reflecting only
the worst-case scenario. In the example presented in § [2.1.1] for instance, Gini yields values of 0.377 and
0.74 for GNN-1 and GNN-2, respectively (c.f. Table , accurately reflecting the higher inequality present in
GNN-2’s outcomes.

2.2 Group Fairness

Optimizing individual fairness alone may cause group disparity (Kang et al., [2020). Specifically, one group
may have a considerably higher level of individual fairness than other groups. We follow the same definition
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of group fairness proposed in GUIDE [Song et al.| (2022), with the only difference of replacing the Lipschitz
constant with the Gini coefficient.

Definition 7 (Group Fairness). Group Fairness is satisfied if the levels of individual fairness across all
groups are equal. Mathematically, let {V1, -+ ,Vin} be the partition of node set V induced by the sensitive
attribute. Group fairness demands Vi, j, Gini(V;) = Gini(V;).

To convert group fairness satisfaction into an optimization problem, we introduce the notion of group disparity
of individual fairness.

Definition 8 (Group Disparity). Given a pair of groups Vg, Vi, the disparity among these groups is quantified
as:

(4)

GDIF(V, Vy) — max { Gini(Vy) Gini(Vy) }

Gini(Vy)’ Gini(Vy)

GDIF(Vy, V) >= 1, with a value of 1 indicating perfect satisfaction. Now, to generalize across m groups,
average group disparity measures the average disparity across all pairs.

AGDIF(Vy, - V)= —— Y GDIF(V,V) (5)

m(m —1) Vi, j€[lm], i#j

We now argue that minimizing the Gini Coefficient promotes equal opportunity.

Definition 9 (Equal Opportunity Hardt et al.| (2016))). The GNN prediction for a node v, f’(v), satisfies
*equal opportunity™ if:

PY()=1|Y@w)=1l,veW}-P{Y(v)=1|Y(w)=1lveW}| <e
for some small €, i.e., we require that the rate of positive outcomes is similar among those who deserve
positive outcomes.

Observation 1. Minimizing the Gini promotes equal opportunity.
The numerator of Gini (Eq. [3) is >2i"; 27—, S[i, j]llzi — 2,/[1. Since the denominator is independent of the
pair-wise distances between node embeddings, it implies:

8Gini(V)

Y xS, j 6

Therefore, minimizing Gini()) will minimize ||z; — z;||; when S[i, j] is large, which implies that similar nodes
will have similar embeddings (small ||z; — z;||1). Since GNN outcomes are functions of the embeddings,
denoted by f(z;), if two nodes v; and v; are such that ||z; — z;||; is small, then by the Cauchy-Schwarz
inequality,
1f(zi) = ()| = [V f(2) - (20 = 25) | <[V f(2)] - [l — 251,

i.e., the GNN will yield similar outcomes for reasonably smooth f.

From our definition of group fairness (Def. [7)) and the corresponding Group Disparity (GDIF) (Def. ,
minimization implies that the internal consistency of embeddings within each group becomes similar. Since

similar embeddings yield similar outcomes, the predicted label will be similar for individuals with a true label
of 1 within a group. Let v; € V1 and vy € V5 be two similar nodes such that Y (v1) = Y (v2) = 1. Then,

Iz — zo][1 < €= [P(Y(01) =1) = P(Y(vg) = 1)| < €
for some small €. For all such similar pairs in V; and Vs, we have
P{Y()=1|Y@w)=1,0eWV}-P{Y(u)=1|Y(w)=1LveW}| <e

which is the definition of Equal Opportunity.
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Figure 1: The figure illustrates the pipeline of GRAPHGINI. The sequence of actions depicted in this figure
is formally encapsulated in Alg. [1| (in Appendix) and discussed in §

2.3 Problem Formulation

We finally state our problem objective.

Problem 1 (Fair GNN). Given a graph G = (V,€,X), a symmetric similarity matriz S for nodes in V, and
k disjoint groups differing in their sensitive attributes (i.e, U¥_,V;), our goal is to learn node embeddings Z
such that:

1. Owverall individual fairness level is mazimized (Eq. @;
2. Cumulative group disparity is minimized (Eq. @

3. The prediction quality on the node embeddings is maximized.

3 GraphGini: Proposed Methodology

The key challenge in learning fair node embeddings Z is to design a loss function that encapsulates all three
objectives of Prob. [1] Designing this loss function requires us to navigate through three key challenges. (1)
Gini is non-differentiable and hence cannot be integrated directly into the loss function. (2) Second, since
group disparity is a formulation over a max operator, it remains non-differentiable as well. (3) Finally, we
need a mechanism to automatically balance the three optimization objectives of the GNN without resorting
to manual adjustments of weight parameters.

3.1 Optimizing Individual Fairness

The weighted Gini coefficient Gini(V) is not differentiable in general. In case ||z; — z;||; is 0, the derivatives
from different directions may converge to different limits. To work around this problem, we present a
differentiable (and convex) upper bound to this metric.



Under review as submission to TMLR

Proposition 1. Given node embeddings Z € R™*¢ of graph G = (V,E,X) with node similarity matriz S and
corresponding Laplacian L (Recall Def. ,

Gini(V) < Tr(2"LZ) .

Proof. The f5-norm, when multiplied by the square root of the dimension of the space, is an upper bound on
the ¢1-norm. Using this fact, we get:

€]

> Sz -zl < Zs[iaﬂHZi—Z]‘Hl < Ve) Y Sl dlllz — 2l (7)

i=1j=1 i=1 j=1

where c is the dimension of the GNN embeddings. Now, substituting this inequality into the expression for
Gini(V) (Eq. [3), we have:

1 n n o o 1 n n o
NG SN Sz -zl < Gini(V) < 3 > > Sl flllz — zl3 = Tr(Z"LZ) (8)
i=1j=1 i=1 j=1
as the denominator in Eq. 3] only scales the numerator and does not affect the inequality. O

Hereon, we use the notation @(V) =1Tr (ZTLZ) to denote the upper bound on Gini with respect to node
set V characterized by similarity matrix S and embeddings Z.

Proposition 2. The same value of Z minimizes both Gini(V) and its differentiable upper bound C%(V)
Moreover, since Gini(V) = Tr(ZTLZ) is convex in Z, we can efficiently find its global minimum. Consequently,
solving for the minimizer of Gini(V) guarantees minimization of the true Gini coefficient as well.

Proof. The detailed proof is provided in App. [E] O

3.2 Optimizing Group Fairness through Nash Social Welfare Program

Group fairness optimization, defined in Eq. [5} is a function of the Gini coefficient. Hence, Eq. [f] is non-
differentiable as well. The natural relaxation to obtain a differentiable proxy function is therefore to replace
Gini(V,) with C%(Vg) =Tr(ZILgZ,) in Eq. Here V, C V is a group of nodes, Z, = {z;, € Z | v; € V,}
are the node embeddings of V,, and L, is the Laplacian of the similarity matrix S, : Vg x V, — R.
Unfortunately, even with this modification, optimization of group fairness remains non-differentiable since
a function of the form max{a,b} is differentiable everywhere except at a = bE| To circumvent this non-
differentiability, we employ Nash Social Welfare Program (NSWP) optimization (Charkhgard et al.,|2022)).

The NSWP is a technique in mathematical programming that combines multiple objectives into a single
objective, leading to a Pareto-optimal solution. The core idea involves creating a product of the differences
g@_‘(m and cﬂj(w)
Gini(Vp,) Gini(Vy)
are the competing terms to be minimized. We choose 1 as the common reference. Then, using the NSWP
formulation, the resulting optimization leads to the following expression:

Gini(Vy) Gini(Vy)

between two minimization terms, both referenced to a common point. In our context,

Intuitively, group fairness is maximized when for any pair of groups Gini(V,) = Gini(V4). On the other
hand, if Gini(Vy) > Gini(Vy) then Eq. |§| approaches oo. We now establish that the solution obtained by
minimizing Eq. [0]is Pareto optimal.

Proposition 3. Minimizing Eq.[9 produces Pareto optimal solutions for group fairness over all groups.

IWhile ReLU is also a max operator, it represents a special case handled via pre-coded values. They do not transfer to
generic loss functions. See App. @ for details.
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Proof. Let the Gini upper bounds minimizing Eq. |§|be C%(Vg) = ¢4 and C%(Vh) = €p,. The solution is
Pareto optimal if we cannot reduce ¢;, without increasing ¢, and vice-versa. We establish Pareto optimality
through proof by contradiction. Suppose that there exists an assignment of node embeddings for which
we get @(Vg) = €, C%(Vh) = en, and €, > €,. Since Eq. |§| is minimized at €, and €y, this means that

- (e—g - 1) (E—h - 1) < - (% - 1) (:—’9 - ), which is a contradiction. O

€h €g

3.3 Learning Framework

GRAPHGINI strives to achieve balance among three distinct goals:

1. Utility Loss: We assume £; denotes the loss term for the GNN prediction task.

2. Loss for individual fairness: To maximize the overall individual fairness level, Gini(V), we
minimize:

Ly =-Tr(Z"LZ), (10)

3. Loss for group fairness: To maximize group fairness across a set of disjoint node partitions
{V1,-+,Vim}, we minimize:

Lz = _ﬁ Z (CTZE(VZ) - 1) (@Ojj) — 1)

Incorporating all of the above loss terms, we obtain:
L= 01L1+ PBoLo+ B3L3. (11)

Here, ;s are tunable hyper-parameters.

The overall framework of GRAPHGINI is presented in Fig. [I] Alg. [I]in the Appendix presents the pseudocode.
First, embeddings Z for nodes are learned on the input GNN using only the utility loss. These initial
embeddings are now enhanced by injecting fairness through a Graph Attention Network (GAT) (Velickovic
et al.l |2017)), where the attention is reinforced in proportion to the similarity strength.

exp(LeakyReLU(a” [Wh{|Wh])S[i, 51)
> jen; exp(LeakyReLU(a® [Wh;|[Wh{])S[i, j])’

(12)

@ j =

Here, W € R4*" is the weight matrix, h’ € R” is the embedding for node i in layer ¢, a € R?¢ is the attention
vector. The symbol [.||.] denotes concatenation of vectors and A; represents the neighbourhood of node i.
Using pairwise attention, the embeddings are aggregated as hf“ =0(Xjen, aithhg»).

3.4 Balanced Optimization with GradNorm

The optimisation process requires a delicate calibration of weighing factors, i.e., coefficients 3;’s in our loss
function (Eq. . Manual tuning, the predominant approach among existing techniques, is challenging as
these weights not only determine the relative importance of fairness objectives compared to utility but also
play a dual role in normalizing individual terms within the loss function. We perform gradient normalization
to automatically learn the weights (Chen et al., |2018]).

Let 0; be the parameters of the GAT at epoch ¢ and £;(t), ¢ € {1,2,3} denotes the value of the loss term £;
in the ¢-th epoch. We initiate the learning process with initialized weights 5;(0). In later rounds (¢ > 0),
we treat each (;(t) as adjustable parameters aimed at minimizing a modified loss function, which we will
develop next.

First, corresponding to each £;(t), we compute the ¢ norm of the gradient.

Gi(t) = [|8g, Bi(t) Li()]]2 (13)
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Table 2: Summary statistics of used datasets.

Name # nodes # node # of edges # edges Sensitive
attributes in A in S Attribute
Credit 30,000 13 304,754 1, 687,444  age
Income 14,821 14 100,483 1,997, 641  race
Pokec-n 66,569 266 1,100,663 32, 837, 463 age

The loss ratio in the t-th epoch is measured as R;(t) = f?((é)), which reveals the inverse training rate, i.e., the

lower the ratio, the higher is the training. Finally, instead of optimizing the original loss in £ ( Eq. , we
minimize the loss below that operates on the gradient space of the individual loss terms. Specifically,

3 .
Laraanorm(®) = 3 [[8:06:0) — 610) » 1;((;) (14)
B 11713 B 13
where, G(t) = 3 ZGi(t), R(t) = 3 ZRi(t)

Intuitively, Eq. [14] strives to achieve similar training rates across all individual loss terms. Hence, it penalizes
weighing factor §;(t) if the training rate is higher in £,(¢) than the average across all terms.

3.5 Convergence and Time Complexity

Proposition 4. GRAPHGINI is guaranteed to converge.
Proof. The proof is given the Appendix [F] O

Time complexity. The base Graph Neural Network (GNN) has a time complexity of O(|€]), where |£]
represents the number of edges in the graph. Both GRAPHGINI and the primary baseline, GUIDE, require an
additional step of computing the Laplacian matrix. This computation is linear with respect to the number of
non-zero entries in the similarity matrix, which in the worst-case scenario is O(|V|?), where |V is the number
of vertices in the graph. The overall time complexity of these fair GNN approaches can thus be expressed as
O(|€| + |V|?), accounting for both the base GNN operations and the Laplacian computation. The runtime
comparison is also empirically demonstrated in Appendix [F}

4 Experiments

The objective in this section is to answer the following questions:

« RQ1: How well GRAPHGINI balances utility, individual fairness, and group fairness objectives
compared to baselines?

e RQ2: How robust is GRAPHGINI across GNN architectures?
« RQ3: Is GRAPHGINI robust across similarity matrix variations?

« RQ4: Ablation study— What are the individual impacts of the various components on GRAPHGINI?

Our codebase is available at https://anonymous.4open.science/r/GraphGini-368F.
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Table 3: Performance comparison of benchmarked algorithms across datasets using the GCN backbone
architecture. "Vanilla" indicates no debiasing. Arrows: 1T = higher is better, | = lower is better. Best

performance per column is in bold. Individual fairness (IF) is reported in thousands.

Model | AUC (1) IF (}) GD (|) IF-Gini (|) GD-Gini (})
Credit
Vanilla 0.68+0.10 40.01+2.16 1.34+0.05 0.3040.01 1.72+0.02
FairGNN 0.68+0.05  23.354+13.39 1.3440.10 0.2640.02 1.69+0.01
NIFTY 0.69+0.01 30.85+1.45 1.2540.05 0.2640.02 1.67+0.01
PFR 0.64+0.16 36.57+7.90 1.46+0.02 0.3040.00 1.7240.01
InFoRM 0.68+0.02 2.42+0.02 1.4540.02 0.1840.01 1.7340.01
PostProcess | 0.70+0.00 40.23+0.00 1.40+0.00 0.3040.02 1.74+0.01
iFairNMTF | 0.6940.01 40.62+1.34 1.384+0.02 0.2940.02 1.71+0.01
GNN GEI 0.6940.00 40.21£1.32 1.354+0.05 0.2840.01 1.70+0.02
TF-GNN 0.6940.00 12.8040.00 1.4540.00 0.1940.01 1.7140.02
BeMAP 0.68+0.00 3.114+1.23 1.2040.00 0.154+0.02 1.73+0.02
FairSIN 0.68+0.00 8.234+3.20 1.1540.00 0.2040.02 1.6940.01
GUIDE 0.68+0.02 1.944+0.10 1.00+0.00 0.1440.01 1.41+0.01
GRAPHGINI | 0.68+0.00 0.224+0.06 1.00+0.00  0.12+£0.01 1.10+0.01
Income
Vanilla 0.77£0.01  370.81+£0.02 1.30+0.01 0.3240.01 1.56+0.02
FairGNN 0.764+0.00 250.22+85.32  1.16+0.03 0.3040.02 1.55+0.01
NIFTY 0.7340.00 44.3245.67 1.3940.03 0.2540.01 1.60+0.01
PFR 0.754+0.01  245.95+0.50 1.33+0.01 0.3040.02 1.56+0.02
InFoRM 0.78+0.01  199.20+0.04 1.354+0.04 0.2640.02 1.5440.00
PostProcess | 0.77+£0.00  367.62+0.00 1.2840.00 0.3140.01 1.554+0.01
iFairNMTF | 0.7740.00 358.20+0.32 1.284+0.01 0.3040.02 1.57+0.01
GNN GEI 0.7740.00  357.23+5.04 1.474+0.01 0.3040.02 1.56+0.01
TF-GNN 0.76+0.00 25.65+0.00 1.8540.00 0.2440.01 1.60+0.01
BeMAP 0.73£0.00 211.66+25.34  1.33%+0.00 0.2640.01 1.5740.01
FairSIN 0.734+0.00 287.22+38.75  1.424+0.00 0.2740.01 1.61+0.01
GUIDE 0.73£0.01  33.20+12.14  1.00+£0.00 0.2040.01 1.10+0.01
GRAPHGINI | 0.73+£0.09 21.12+£5.22 1.00+0.00 0.17=+0.01 1.02+0.01
Pokec-n
Vanilla 0.77+0.01 950.28439.11  6.93+0.10 0.4140.02 1.80+0.01
FairGNN 0.6940.03 363.73£78.58  6.29+1.28 0.3540.01 1.76+0.02
NIFTY 0.744+0.00  85.254+10.55 5.06+0.29 0.3140.01 1.724+0.02
PFR 0.5340.00 98.25+9.44 15.8440.03 0.3240.02 1.70+0.01
InFoRM 0.77+0.00  230.45+6.13 6.62+0.10 0.3440.01 1.6940.01
PostProcess | 0.77+0.00 872.12+82.23  5.934+0.27 0.3940.01 1.7240.02
iFairNMTF | 0.76£0.00 781.29+98.45 7.23+0.11 0.3940.01 1.73+0.01
GNN GEI 0.77+0.00 875.11£9.31 6.43+8.31 0.3740.01 1.7440.02
TF-GNN 0.744+0.00 245.48+11.43  9.2840.10 0.334+0.02 1.814+0.01
BeMAP 0.734£0.00 372.00+£48.75  2.2940.00 0.3140.01 1.4140.02
FairSIN 0.734+0.00 482.00£39.20 2.884+0.03 0.3140.02 1.4140.03
GUIDE 0.734+0.02  55.05+30.87 1.114+0.03 0.2440.02 1.1940.01
GRAPHGINI | 0.74+0.00 31.10£5.22 1.00+0.00 0.21+0.01 1.14+0.01
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Table 4: Performance comparison of benchmarked algorithms across datasets using the GIN backbone
architecture. "Vanilla" indicates no debiasing. Arrows: 1 = higher is better, | = lower is better. Best
performance per column is in bold. Individual fairness (IF) is reported in thousands.

Model ‘ AUC (1) IF (1) GD ({) IF-Gini () GD-Gini ({)
Credit
Vanilla 0.71+0.00 118.02+16.22 1.80+0.16 0.29 £ 0.02 1.64 £+ 0.01
FairGNN 0.68+0.05 76.10+45.22 2.20+0.15 0.25 + 0.01 1.64 £+ 0.01
NIFTY 0.70+0.04 58.33439.85 1.6840.22 0.25 + 0.01 1.64 £+ 0.01
PFR 0.71+0.03 160.554100.20 2.44+1.20 0.30 + 0.01 1.66 £ 0.01
InFoRM 0.69+0.03 2.96+0.12 1.7540.15 0.16 + 0.01 1.66 & 0.01
PostProcess | 0.71+0.00 177.44+0.66 1.42+0.08 0.30 £+ 0.01 1.66 & 0.01
iFairNMTF | 0.71+0.01 107.7249.04 1.5440.23 0.28 + 0.02 1.66 £+ 0.02
GNN GEI 0.70+0.06 176.21+1.21 1.45 £0.23  0.27 4+ 0.02 1.65 £ 0.01
TF-GNN 0.71+0.01 18.42+0.42 1.2940.11 0.21 + 0.01 1.70 £ 0.01
BeMAP 0.68+0.00 12.25+3.25 1.3940.01 0.17 £ 0.00 1.70 + 0.00
FairSIN 0.68+0.0 18.12+ 6.68 1.6040.00 0.19 + 0.01 1.70 + 0.01
GUIDE 0.68+0.02 2.454+0.03 1.004+0.00 0.12 + 0.01 1.30 £+ 0.01
GRAPHGINI | 0.6840.00 1.924+0.09 1.00+£0.00 0.10 + 0.01 1.13 + 0.01
Income
Vanilla 0.80+0.02 2812.62+1061.04 1.87+0.46 0.46 £+ 0.01 2.00 £ 0.00
FairGNN 0.7940.00 1359.93+880.22 3.32+1.20 0.35 + 0.01 2.06 + 0.01
NIFTY 0.79+0.01 617.11£320.13 1.1640.30 0.29 4+ 0.02 1.65 £ 0.01
PFR 0.79+0.00 2210.35+461.11 2.35+1.14 0.45 4+ 0.02 2.03 + 0.02
InFoRM 0.80+0.01 309.35+14.24 1.6140.28 0.27 + 0.01 2.05 + 0.01
PostProcess | 0.80=£0.00 420.784128 2.5+0.01 0.28 + 0.01 2.10 4+ 0.02
iFairNMTF 0.80+0.00 2574.384+134.62 2.43+0.38 0.45 4+ 0.02 2.10 £ 0.03
GNN GEI 0.7940.00 2531.59+78.12 3.07+0.23 0.44 4+ 0.03 2.13 + 0.01
TF-GNN 0.80+0.01 310.2041.20 1.284+0.01 0.28 + 0.01 1.71 £+ 0.02
BeMAP 0.75+0.00 872.89£75.11 1.3440.00 0.30 + 0.01 1.71 £+ 0.02
FairSIN 0.75+0.0 929.00+ 65.80 1.454+0.00 0.30 £+ 0.00 1.75 + 0.01
GUIDE 0.7440.01 83.85+20.20 1.00+0.00 0.20 £+ 0.01 1.14 £+ 0.01
GRAPHGINI | 0.7440.00 55.73+ 9.12 1.00+£0.00 0.16 + 0.01 1.09 + 0.01
Pokec-n
Vanilla 0.76+0.00 4490.504+1550.80  8.3841.30 0.45 4+ 0.02 1.81 + 0.02
FairGNN 0.69+0.01 416.284+402.83 4.84+2.94 0.36 + 0.01 1.52 £+ 0.02
NIFTY 0.76+0.01 2777.364+346.29 9.28+0.28 0.39 £+ 0.02 1.80 £+ 0.01
PFR 0.60+0.01 628.274+85.89 6.20+0.79 0.36 £+ 0.02 1.56 + 0.01
InFoRM 0.75+0.01 271.65+30.63 6.83+1.34 0.33 £ 0.01 1.55 + 0.02
PostProcess | 0.75£0.00 4261.32+113.88 9.76+£0.25 0.44 + 0.01 1.80 + 0.01
iFairNMTF 0.7540.00 3972.55+69.34 8.45+0.21 0.41 £+ 0.01 1.804 0.02
GNN GEI 0.7540.01 4383.26+319.56 7.2940.87 0.44 4+ 0.02 1.75 £ 0.02
TF-GNN 0.75+0.00 268.32+21.82 9.31+£1.22 0.33 + 0.01 1.79 £+ 0.02
BeMAP 0.75+0.00 521.00£72.85 3.32+0.23 0.30 &+ 0.02 1.24 £+ 0.01
FairSIN 0.75+0.0 556.62+ 102.38 3.42+0.68 0.29 + 0.01 1.25 £ 0.01
GUIDE 0.74+0.01 120.65+17.33 1.1240.03 0.25 + 0.01 1.21 £ 0.01
GRAPHGINI | 0.7440.00 85.10+6.29 1.00+ 0.00 0.22 + 0.02 1.15 + 0.01

4.1 Datasets

Table [2| presents a summary of the real-world datasets used for benchmarking GRAPHGINI. Credit
Dataset (Yeh & Lien) [2009): The graph contains 30,000 individuals, who are connected based on
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Table 5: Comparison of GRAPHGINI with and without Gradient Normalization (GRAPHGINI WGN).

Model ‘ AUC(?1) IF(]) GD({) ‘ AUC(T) IF() GD({) ‘ AUC(T) IF(l) GD({)
‘ GCN ‘ GIN ‘ JK

Credit

GraphGini WGN | 0.68+0.00 1.82£0.13 1.00+£0.00 | 0.68+0.00 2.154+0.03 1.00+£0.00 | 0.68+0.00 2.01+0.01 1.00+0.00

GraphGini 0.68+0.00 0.22+0.06 1.00+0.00 | 0.68+0.00 1.924+0.09 1.00+0.00 | 0.68+0.00 1.88+0.02 1.00+0.00
Income

GraphGini WGN | 0.73+0.09 21.12+5.22 1.00+£0.00 | 0.74+0.00 55.73+ 9.12 1.00+£0.00 | 0.75+0.00 31.23+ 3.22 1.00+0.00

GraphGini 0.73+0.09 20.50+3.10 1.00+0.00 | 0.74+0.00 49.03+ 6.33 1.00+0.00 | 0.75+0.00 29.47+ 4.01 1.00+0.00
Pokec-n

GraphGini WGN | 0.744+0.00  31.10+5.22  1.00+ 0.00 | 0.744+0.00  85.10%6.29 1.00+ 0.00 | 0.784+0.10  44.5140.72 1.00=+ 0.00
GraphGini 0.74+0.00 27.60+6.32 1.00+ 0.00 | 0.74+0.00 81.37+9.87 1.00+ 0.00 | 0.784+0.10 43.87+2.36 1.00+ 0.00

their payment activity. The class label whether an individual defaulted on a loan.

Income Dataset (Song et al., [2022): This is a similarity graph over 14,821 individuals sampled from the
Adult Data Set (Dua & Grafl, 2017). The class label indicates whether an individual’s annual income exceeds
$50,000.

Pokec-n (Takac & Zabovsky, 2012): Pokec-n is a social network where the class label indicates the
occupational domain of a user.

4.2 Empirical Framework

Metrics: We use AUCROC and Fl-score to assess performance in node classification. To evaluate individual
and group fairness, we use Gini as well as the metrics used by GUIDE (Song et al., 2022): individual fairness
(IF) = Tr(Z"LZ) and Group disparity (GD). For two groups g and h, GD = max{e,/en, €n/€,}) where
€ = Tr(Z"L,Z) and €, = Tr(Z"L,Z). We also used Gini-based fairness metrics: IF-Gini = Gini (Def. @
and GD-Gini = max{Gy/Gp,Gr/G4}) for individual and group disparity, respectively, where G denotes
the Gini for group f. We report the average GD across all pairs of groups. For group disparity, GD =1 is
the ideal case, with higher values indicating poorer performance. We also evaluate Equal Opportunity (EO),
a classical measure of group fairness.

Backbones GNNs: We evaluate on three distinct GNN backbones: GCN (Kipf & Welling;, 2016, GIN, (Xu
et al.l [2018a)), and Jumping Knowledge (JK) (Xu et al., 2018Db).

Baseline methods: We benchmark against eleven baselines, namely (1) GUIDE (Song et al., [2022)), (2)
FairGNN, (Dai & Wang}, [2021)), (3) NIFTY (Agarwal et all |2021), (4) PFR (Lahoti et al., 2020), (5) InFoRM
(Kang et al., 2020), (6) PostProcess(Lohia et al.;|2019)), (7) GEI (Speicher et al.|2018), (8) iFairNMTF (Ghodsi
et al.} 2024), (9) TF-GNN (Song et al., 2023), (10) BeMap (Lin et al.l |2024), and (11) FairSIN (Yang et al.,
2024). GUIDE is the state of the art in this space. A more detailed summary of each of the baseline algorithms
is provided in App.[D] The reproducibility details for baselines, hyperparameter settings, and implementation
specifications are given in the Appendix [G]

Similarity matrix: We evaluate on two different settings: (1) topological similarity, and (2) attribute
stmilarity. To instantiate S for topological similarity, the (¢, 7)-th entry in S represents the cosine similarity
between the i-th row and the j-th row of the adjacency matrix A. This is aligned with the similarity metric
for evaluating fairness in existing works (Kang et al [2020). For the setting of attribute similarity, the (i, j)-th
entry in S represents the cosine between the attributes of v; and v; after masking out the sensitive attributes.

4.3 RQ1 and RQ2: Efficacy of GraphGini and Robustness to Architectures

Table[3]and [4] present a comprehensive evaluation of GRAPHGINI against state-of-the-art baselines encompass-
ing all three datasets, established metrics in the literature and three distinct GNN architectures (results for
JK are presented Table [M]in the Appendix). In this experiment, the similarity matrix is based on topological
similarity. A clear trend emerges. While GRAPHGINI suffers a minor decrease in AUCROC when compared
to the vanilla backbone GNN; it comprehensively surpasses all baselines in individual and group fairness.
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Table 6: Impact of fairness regularizer, removing individual fairness constraint, i.e S = 0.

Model ‘ GCN ‘ GIN ‘ JK
| AUC() IF() GD() | AUC(H) IF(}) GD() | AUC() IF(}) GD())
Credit
Guide 0.68 16.52 1.00 0.68 17.46 1.00 0.68 9.38 1.00
GraphGini 0.68 13.77 1.00 0.68 13.35 1.00 0.68 9.28 1.00
Income
Guide 0.73 26.07 1.00 0.74 348.69 1.00 0.74 73.04 1.00
GraphGini 0.73 25.78 1.00 0.74 184.81 1.00 0.74 66.12 1.00
Pokec-n
Guide 0.74 39.57 1.00 0.74 86.23 1.00 0.75 62.80 1.00

GraphGini 0.74 33.42 1.00 0.74 38.00 1.00 0.76 41.67 1.00

Table 7: Impact of fairness regularizer, removing group fairness constraint, i.e 83 = 0.

Model ‘ GCN ‘ GIN JK

| AUC() IF() GD() | AUC(H) IF(}) GD() | AUC(H) IF(}) GD()
Credit

Guide 0.68 2.16 1.52 0.68 2.40 1.46 0.68 2.67 1.82

GraphGini 0.68 2.11 1.52 0.68 2.37 1.45 0.68 2.56 1.52
Income

Guide 0.72 25.38 1.02 0.74 152.35 1.23 0.74 439.27 1.14

GraphGini 0.72 21.35 1.09 0.75 150.26 1.15 0.74 402.27 1.02
Pokec-n

Guide 0.74 36.34 1.21 0.74 91.47 1.56 0.75 51.46 1.32

GraphGini 0.74 22,14 1.11 0.74 87.27 1.41 0.76 46.9 1.22

Compared to GUIDE, which is the most recent and the only work to consider both individual and group
fairness, GRAPHGINI outperforms it across all metrics and datasets. Specifically, GRAPHGINI is never worse
in AUCROC, while always ensuring a higher level of individual and group fairness. In terms of numbers,
for the Credit dataset, GRAPHGINI improves individual fairness by 88%, 11%, and 14% as compared to
GUIDE when embeddings are initialised by GCN, GIN and JK backbone architectures, respectively. Similarly,
we observe significant improvement in individual fairness for the Income dataset by 36%, 33%, & 26% and
43%, 29 %, & 46 % for the Pokec-n dataset without hurting on utility and maintaining group fairness. In
terms of Gini-based individual (IF-Gini) and group fairness (GD-Gini) metrics, GRAPHGINI outperforms
across all GNN architectures and datasets. While this is not surprising since we explicitly optimize for Gini,
we note that this also leads to superior performance in the IF and GD measures when computed with the
loss function used by GUIDE. This highlights that when the metric optimizes over the entire spectrum of
outcomes, rather than just the worst-case scenario, GRAPHGINI produces fairer predictions. Beyond GUIDE,
we note that several of the baselines only optimize group fairness. Yet, GRAPHGINI outperforms all of them
in this metric while also optimizing individual fairness.

4.4 Impact on Equal Opportunity (EO)

The results in Table [§] support Observation (I} showing that GRAPHGINI improves on the classical group
fairness measure, Equal Opportunity (EO). We see that GRAPHGINI beats all baseline methods across the
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Table 8: Equal Opportunity (EO) comparisons for GRAPHGINI and baselines on three datasets. | indicates
the smaller the value is, the better. Best performances are in bold.

Model ‘ Credit Income Pokec-n

Vanilla GCN | 13.92 £6.00 14.21 + 0.15 3.17+1.10
PRF 13.96 +0.79 12.15 +£ 0.03 1.82 £ 0.18
FairGNN 13.77 £0.91 12.01 = 0.03 1.85 £ 0.11
InFoRM 14.82 +£4.18 11.44 +0.52 3.58 £ 1.15
NIFTY 13.07 £ 0.63  14.22 + 0.58 7.32 + 0.94
GUIDE 13.54 + 0.06 12.35 &= 0.15 0.80 &+ 0.18

PostProcess 13.82 £0.01 13.21 £0.11 1.20 £ 0.10
iFairNMTF 15.13 £0.03 14.11 £ 0.10 2.15 £ 0.20

GNN GEI 15.20 £0.12  14.20 £ 0.25 4.60 + 0.42
TF-GNN 14.62 £ 0.32  13.30 £ 0.18 3.85 £ 0.25
BeMAP 15.40 £0.32  14.45 £ 0.15 4.65 £ 0.10
FairSIN 14.82 £0.64 12.22 £0.50 3.50 £+ 0.52

GraphGini 12.20 + 0.03 9.75 + 0.25 0.80 +0.08

datasets on this measure. Overall, this experiment shows that our method is able to connect the study of
fairness in GNNs to the Economics literature by optimizing a metric that is considered important in that
discipline.

4.5 RQ3: Robustness to Similarity Matrix

In the next experiment, we use similarity matrix based on attribute similarity. In this case, the groups
are created through k-means. The number of clusters are selected based on elbow plot (See Fig. |§| in the
Appendix for details). The primary objectives in this experiment are threefold. Does GRAPHGINI continue to
outperform GUIDE, the primary baseline, when similarity is on attributes? How well do these algorithms
perform on the metric of Gini coefficient? How is the Gini coefficient distributed across groups (clusters)?

The findings are summarized in Table L (in Appendix) on all three datasets for three GNN architectures
mirroring the trends observed in Table GRAPHGINI consistently exhibits the best balance across all
three metrics and outperforms GUIDE across all datasets and architectures on average. Additionally, we
delve into the Gini coefficient analysis for each group (designated as ClX). As evident from Table [L] (in
Appendix), GRAPHGINI achieves lower Gini coefficients across most clusters, underscoring the effectiveness of
the regularizers.
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Figure 2: Impact of attention on individual fairness.
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4.6 RQA4: Ablation Study

Impact of Gradient Normalization: Table 5| presents the performance of GRAPHGINI with manual tuning
(denoted as GRAPHGINI WGN) against automatic tuning through gradient normalization where all weights
are initialized to 1. Gradient normalization imparts significant improvement in individual performance while
achieving the same quality in group fairness and accuracy. Individual fairness (IF) benefits the most since
the regularizer term corresponding to IF in our loss function is of the smallest magnitude. Hence, when set
to equal weights, IF gets dominated by the other two terms in the loss. With gradient normalization, this
issue is circumvented. Finally, it is noteworthy that even without gradient normalization, GRAPHGINI-WGN
outperforms GUIDE (refer to Table [3) across all datasets. This underscores that while gradient normalization
contributes to improvement, it is not the sole reason for the superiority of GRAPHGINI over GUIDE. More
detailed insights into the evolution of the automatically-tuned weight parameters via gradient normalization
are provided in App. [l

Impact of attention: We conduct an ablation study comparing results with and without attention. Our
findings show that attention primarily improves individual fairness. Fig.[2|illustrates these results on individual
fairness. This observation is expected since attention is weighted based on similarity to neighbors, promoting
nodes to prioritize similar neighbors in their embeddings. Consequently, individual fairness, which advocates
for similar individuals receiving similar outcomes, is reinforced.

Impact of regularizers: Next, we study the impact of the regularizers corresponding to individual and
group fairness on the performance of GRAPHGINI as well as GUIDE. To turn off a particular regularizer,
we fix its weight to 0. Table [f] and Table [7] presents the results. Three key observations emerge. Firstly,
as anticipated, both individual fairness and group fairness suffer when their respective regularizers are
deactivated (compare the metrics of GRAPHGINI and GUIDE in Table |z| with Table . Second, while group
fairness remains unaffected from turning off individual fairness, the reverse is not true. This phenomenon
occurs since group fairness (Eq. [4)) is a function over individual fairness. Thus, even when individual fairness
is not directly optimized, it gets indirect assistance from optimizing group fairness. Finally, GRAPHGINI
maintains its superiority over GUIDE, even with specific regularizers turned off. A more granular trade-off
between utility, individual fairness, and group fairness for GRAPHGINI is provided in Appendix [J| The results
clearly show that significant improvements in fairness metrics can be achieved with minimal impact on
accuracy. For example, by compromising 2% in accuracy, we can achieve a 90% increase in individual fairness
and a 30% increase in group fairness.

Table 9: Running time comparison for GCN on all three datasets. Time is reported in seconds for one
iteration.

Datasets — | Credit | Income | Pokec-n
Model |
Vanila 0.014 0.046 0.082
GUIDE 0.041 0.051 0.094
GraphGini 0.042 0.050 0.096

4.7 Running Time

Table [0 compares the running times of GRAPHGINI with GUIDE, both of which are similar. The vanilla
model is faster since it does not account for the similarity matrix, which GRAPHGINI and GUIDE need to
incorporate to ensure individual and group fairness. Nonetheless, the running times remain small enough for
practical workloads.

5 Conclusion

In this work we have shown how to combine the two key requirements of group fairness and individual
fairness in a single GNN architecture GRAPHGINI. The GRAPHGINI achieves individual fairness by employing
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learnable attention scores that facilitate the aggregation of more information from similar nodes. Our major
contribution is that we have used the well accepted Gini coefficient to define fairness, overcoming the difficulty
posed by its non-dfferentiability. This particular way of using Gini is likely to have a major impact on
future research since it provides a bridge between economics and machine learning. Our approach to group
fairness incorporates the concept of Nash Social Welfare. Unlike existing state-of-the-art methods, the
GRrRAPHGINI automatically balances all three optimization objectives—utility, individual fairness, and group
fairness—eliminating the need for manual tuning of weight parameters. Empirical findings show GRAPHGINI
significantly reduces individual unfairness while maintaining group disparity and utility performance after
beating all state-of-the-art existing methods.
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A Notations

To ensure clarity and consistency in the mathematical formulations used throughout this work, Table [J]
summarizes the key notations employed.

Table J: Notations.

Notation Description

G input graph

1% set of nodes in graph

& set of edges in graph

n number of nodes in a graph

d features dimension

Vi ht" group in graph

A €{0,1}"*™ adjacency matrix of graph G

X ¢ R4 node feature matrix of graph G

Z c R"*¢ output learning matrix of graph G with ¢ number of features
S € R pairwise similarity matrix of graph G
L € R™*" Laplacian similarity matrix

Gini(V) Gini of node set V

B Lorenz curve

It is the plot of the proportion of the total income of the population (on the y-axis) cumulatively earned by
the bottom x (on the x-axis) of the population. The line at 45 degrees thus represents perfect equality of
incomes. The further away the Lorenz curve is from the line of perfect equality, the greater the inequality.
The Gini coefficient is the area ratio between the line of equality and the Lorenz curve over the total area
under the line of quality.
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Figure C: Lorenz curve
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C Training Procedure of GraphGini

Algorithm [I] outlines the training process of the proposed GRAPHGINI model. Given an input graph comprising
nodes, edges, and node features, along with a pairwise similarity matrix, the model aims to learn node
embeddings that are both accurate and fair. The optimization involves three loss components—utility,
individual fairness, and group fairness—combined using adaptive weights. The training proceeds iteratively
through attention-based message passing over K layers, with GradNorm used to dynamically adjust the
influence of each loss term. The model parameters, attention coefficients, and loss weights are updated until
convergence.

Algorithm 1 GraphGini

Input: G = (V,¢&,X), S
Output: Fair Embeddings Z

1: Z <+ Initialize GNN embeddings of V using utility loss £,
2: Initialize 51 <~ 1, Bo 1, B3 1,t <+ 0

3: Compute L1, Lo, and L < B1L1 + 2L + B3L3

4: while not converged in epoch ¢t do

5 for layer £ =1 to K do
6 for each node v; € V do
7 hf'*‘l =0 (Zjej\&- ai’jth) // message passing
8 end for
9: end for
10: L+ 1Ly + BoLo + P3L3
11:  Backpropagate using GradNorm loss corresponding to £ (Eq.
12:  Update W, a; ;, B1, B2, B3, and Z
13: t+t+1
14: end while
15: Return Z
D Baselines

o Guide Song et al.| (2022): This method is the state-of-the-art, which minimizes the average Lipschitz

constant for individual fairness and proposes a new group disparity measure based on the ratios of
individual fairness among the groups.

o FairGNN Dai & Wang| (2021): This model leverages adversarial learning to ensure that GNNs

achieve fair node classifications, adhering to group fairness criteria.

o NIFTY |Agarwal et al.| (2021)): Addressing counterfactual fairness along with stability problem,

NIFTY perturbs attributes and employs Lipschitz constants to normalize layer weights. Training
incorporates contrastive learning techniques, and we adopt this model directly for various GNN
backbone architectures.

o PFR [Lahoti et al. (2020): PFR learns fair node embeddings as a pre-processing step, ensuring

individual fairness in downstream tasks. The acquired embeddings serve as inputs for GNN backbones.

o InFoRM Kang et al.| (2020): This model formulates an individual fairness loss within a graph

framework based on the Lipschitz condition. We integrate the proposed individual fairness loss into
the training process of GNN backbones.

o PostProcessLohia et al. (2019): |Lohia et al.[(2019)) proposes a post-processing based method

to enhance individual and group fairness. The method employs a bias detector to assess disparity
in outcomes, and when such biases are detected, it changes the model output to a different outcome.
This algorithm is topology-agnostic.
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o GEI Speicher et al.| (2018]): GEI considers diversity of outcomes within a group, determined
by sensitive attributes, as a measure of inequality. This implies the assumption that outcomes
are independent of non-sensitive attributes within the group. In contrast, Gini allows weighting
outcomes proportional to an input similarity measure (Eq. , leading to a more nuanced calculation
of inequality based on similarity in non-sensitive attributes. To quantify this effect, we use GEI
as the regularizer instead of Gini.

o iFairNMTF |Ghodsi et al.| (2024]): iFairNMTF is a fair clustering model that uses individual
Fairness Nonnegative Matrix Tri-Factorization technique with contrastive fairness regularization
to get balanced and cohesive clusters. We adapt iFairNMTF in our setting by plugging their fairness
regularizer term with our GNN loss.

o« TF-GNN [Song et al. (2023)): TF-GNN presents an individual fair Graph Neural Networks
(GNNs) tailored for the analysis of temporal financial transaction network data. In our specific
context, we integrate TF-GNN into our framework by incorporating their fairness regularizer term
into our GNN loss function.

o BeMap |Lin et al.| (2024): BeMap is a group fair Graph Neural Networks (GNNs) method based
on fair message passing algorithm on the basis of 1-hop neighbours from different sensitive groups.
We used this method in our setting of different groups.

o FairSIN [Yang et al.| (2024)): FairSIN is also a group fairness enforcing framework for GNNs which
proposes a neutralization-centered procedure, and using supplementary Fairness-facilitating Features
(F3). These features are integrated into node representations prior to message passing. We also
adopt this method to compare our method

E Tightness of upper bound in Eq. [8

Proof of Proposition[3 Consider any Z such that each entry of Z is identical. In this case both

£ o £ g
55 Sl iz — 21y and 327 S[i gl — 2 ave 0 =
Let z = (21,...,2.) € R® be a c-dimensional vector. We consider the relationship between its ¢; and ¢
norms. When z has a single non-zero entry (e.g., (1,0,...,0)), the bound is loose: ||z||y = ||z||2 = 1, while

V||z]|2 = v/e. When all entries of z are equal (e.g., (1,1,...,1)), the bound is tight: ||z||1 = ¢, ||2z]]2 = V¢,
and /c||z|]]2 = c.

Since minimizing @(V) minimizes the ¢3-norm, we have: min, C%(V)) = miny ||z||o While this does
not directly minimize ||z||1, we can establish: min, ||z||s = ming+/c||z||2 > min, ||z||; This inequality
shows that minimizing ||z||2 provides an upper bound on the minimum of ||z||;. As ||z||]2 — 0 during
optimization, both ||z||; and 1/c||z||2 approach 0.

Lemma 1. The upper bound of the Gini coefficient, defined as
Gini(V) = Tr(Z"LZ),
is a convex function in Z.

Proof. To prove convexity, we show that the Hessian of C%(V) is positive semidefinite. The function is
given by:

n n

f(Z) =Te(Z"LZ) =) > Sli. jlllzi — 2.

i=1 j=1
This is a quadratic form defined by the Laplacian L = D — S, where D is the diagonal matrix.
Gradient Computation: Taking the gradient with respect to Z:

Vf(Z) =2LZ.
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Hessian Analysis: The Hessian of f(Z) is:
H=2L®I,,

where ® denotes the Kronecker product, and I; is the d x d identity matrix.

Positive Semidefiniteness of Hessian: The Laplacian L is known to be positive semidefinite, meaning
for any vector v € R”,

vILv > 0.

Since the Kronecker product of a positive semidefinite matrix with I; preserves positive semidefiniteness, we
conclude that:

H=2L®I;>0.

This proves that f(Z) is a convex function in Z. O

E.1 The need for differentiability

For deep learning methods, if the loss function is differentiable, then its gradient can be obtained using inbuilt
packages such as PyTorch to update the model’s weights. In practice, these packages can handle the non-
differentiability of activation functions such as ReLU by using hand-coded values at non-differentiable points.
However, such values for generic loss functions are not available a priori; therefore, differentiability of the loss
function is essential. To elaborate, consider the Gini index. Ifx = (z1,...,2,) and f(x) = >i", Y77 [zi—w4],
for a fixed j € [n], let us define

m;(x) = [{i € [n] 1 i # j, i <aj}.

In the case where z; # x; for all ¢ # j, clearly

0f(x)
5‘xj

=n—1-2m;(x).

Let k be the index such that z; < x; and there is no other coordinate value between them. Suppose
we decrease x; until it reaches xj, then we reach a point of discontinuity, which we will call y. We note
that the left partial derivative with respect to x; is n — 3 — 2m;(x), which is 2 less than its right partial
derivative. Unlike the case of ReLU, there is no straightforward way to decide which of these two values
should be assumed at the point of non-differentiability. Furthermore, unlike ReLLU, these two values cannot
be determined a priori since they depend on x.

F Convergence Proof and Time Complexity

Proof of Proposition[f As our framework considers only standard GNNs, the convergence analysis of gradient
descent on GNNs has been conducted in [1] under the assumption of the smoothness of a bounded loss
function. Our overall loss is smooth, as the fairness regularizers for individual and group fairness are designed
to ensure differentiability. Additionally, each term is bounded (loss £1: CE loss, £ < tr(XT LX), and L3 < g
[finite value of group disparity]); hence, the overall loss is smooth and bounded. Therefore, the analysis in
Awasthi et al.| (2021) directly applies to our framework. O

Runtime. Table [J presents the runtime for GRAPHGINI and the baselines. Empirical analysis shows that
the inference time (i.e., the time taken for a forward pass) is comparable between GRAPHGINI, GradNorm,
and GUIDE across all three datasets tested. Nonetheless, it’s important to note that the absolute inference
times for all methods are very small, suggesting that the computational overhead should not be a significant
concern for the practical deployment of these fair GNN approaches.
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Table K: Baseline hyper-parameters. — indicates the parameter not used to train the model.

Datasets — Credit Income| Pokec-n
Model | Ba Bs Ba  Bs | P Ba
FairGNN 4 1000 4 10 4 100
NIFTY - - - - - -
PFR - - - - - -
PostProcess - - - - - -
iFairNMTF | le-7 - le-7 - le-7 -
GNN GEI 1 - 1 - 1 -
TF-GNN le-6 - le-7 - le-7 -
InFoRM Se-6 - le-7 - le-7 -
GUIDE 5e-6 1 le-7  0.25 | 2.5e-7 0.05

G Implementation details for Reproducibility

Each experiment is conducted five times, and the reported results consist of averages accompanied by standard
deviations. Our experiments are performed on a machine with Intel(R) Core(TM) CPU @ 2.30GHz with
16GB RAM, RTX A4000 GPU having 16GB memory on Microsoft Windows 11 HSL.

For all three datasets, we employ a random node shuffling approach and designate 25% of the labeled nodes
for validation and an additional 25% for testing purposes. The training set sizes are set at 6,000 labeled
nodes (25%) for the Credit dataset, 3,000 labeled nodes (20%) for the Income dataset, and 4,398 labeled
nodes (6%) for Pokec-n. For the Pokec-n dataset, friendship linkages serve as edges, while for the remaining
datasets, edges are not predefined, necessitating their construction based on feature similarity. More precisely,
we establish a connection for any given pair of nodes if the Euclidean distances between their features surpass
a predetermined threshold. The fine-tuned hyper-parameters used to train baselines are given in Table [K]
(1 is 1 for all baselines. For GRAPHGINI, the backbone GNN architecture parameters are the same for all
datasets, i.e. one hidden layer with hidden dimensions 16.

H Number of clusters in datasets

To evaluate the Gini, we divide the test dataset into a number of clusters based on the elbow graph (Figure. [D]).
Specifically, we employ K-means clustering to group samples based on their features, aiming to capture
structural or distributional disparities that may exist in the data. The number of clusters for each dataset is
determined using the elbow method, which evaluates the within-cluster sum of squares (WCSS) as a function
of cluster count. As shown in Figure [D] the elbow point—where the marginal gain in reducing WCSS begins
to diminish—indicates the optimal number of clusters for the Credit, Income, and Pokec-n datasets.

Credit Dataset Income Dataset Pokec-n Dataset
3led led le5
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Figure D: The Elbow plots show the optimal number of clusters in each dataset on K-means clustering.
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Table [[] presents a detailed comparison of the proposed GRAPHGINI model against baseline methods across
three benchmark datasets. The results include performance metrics such as AUC and F1-score, alongside
fairness indicators—individual fairness (IF), group disparity (GD), and Gini coefficients computed for
multiple subpopulations (clusters). The term Vanilla refers to a baseline model trained without any fairness
enhancement. Across all architectures (GCN, GIN, JK), GRAPHGINI consistently achieves comparable or
superior predictive performance while significantly reducing fairness violations, as reflected in both the IF
and Gini values.

Table L: Gini coefficient for different clusters on Credit, Income, and Pokec-n datasets. The model indicates
the algorithm, and Vanilla represents that no fairness mechanism has been used. Best performances are in
bold. Individual (un)fairness numbers are reported in thousands.

Model — ‘ Vanilla Guide GraphGini ‘ Vanilla Guide GraphGini ‘ Vanilla Guide GraphGini
‘ GCN ‘ GIN ‘ JK

Credit
AUC(1) 0.68 0.67 0.69 0.71 0.69 0.69 0.69 0.68 0.68
Fl-score(?) 0.71 0.72 0.73 0.72 0.73 0.74 0.70 0.71 0.73
IF({) 17.38 1.09 1.01 27.47 1.97 1.78 15.55 1.48 1.42
GD() 1.35 1.00 1.00 1.87 1.00 1.00 1.24 1.00 1.00
Gini C1 1 ({) 0.08 0.04 0.04 0.11 0.08 0.05 0.11 0.04 0.03
Gini C1 2 ({) 0.10 0.08 0.08 0.13 0.04 0.04 0.14 0.04 0.05
Gini C1 3 ({) 0.27 0.26 0.26 0.29 0.06 0.06 0.25 0.07 0.08
Gini Cl1 4 (]) 0.20 0.19 0.19 0.17 0.13 0.10 0.19 0.08 0.08
Gini C1 5 ({) 0.09 0.07 0.07 0.11 0.04 0.05 0.13 0.04 0.04
Gini C1 6 ({) 0.08 0.05 0.05 0.11 0.05 0.06 0.13 0.03 0.03

Income
AUC(1) 0.77 0.74 0.78 0.81 0.80 0.80 0.80 0.74 0.75
Fl-score(?) 0.78 0.79 0.78 0.80 0.81 0.81 0.79 0.80 0.80
IF({) 111.03 9.75 6.85 421.81 23.46 22.31 439.38 27.14 24.39
GD() 1.23 1.00 1.00 1.16 1.00 1.00 1.29 1.00 1.00
Gini C1 1 ({) 0.34 0.19 0.17 0.43 0.16 0.17 0.40 0.11 0.11
Gini C1 2 ({) 0.28 0.18 0.18 0.38 0.02 0.17 0.34 0.10 0.15
Gini C1 3 ({) 0.32 0.15 0.12 0.56 0.15 0.15 0.47 0.12 0.16
Gini Cl1 4 (]) 0.21 0.08 0.07 0.21 0.15 0.15 0.24 0.12 0.11
Gini C1 5 ({) 0.37 0.13 0.13 0.60 0.25 0.24 0.49 0.39 0.32
Gini C1 6 ({) 0.22 0.12 0.13 0.24 0.16 0.16 0.25 0.16 0.13

Pokec-n
AUC(1) 0.77 0.74 0.74 0.76 0.74 0.74 0.79 0.78 0.78
F1l-score(?) 0.75 0.77 0.79 0.76 0.77 0.79 0.76 0.78 0.78
IF({) 859.67 46.60 26.16 1589.50 96.90 33.70 1450.98 59.42 44.51
GD() 2.55 1.00 1.00 3.50 1.00 1.00 3.07 1.00 1.00
Gini Cl 1 0.27 0.10 0.10 0.22 0.11 0.10 0.38 0.08 0.07
Gini CI 2 0.17 0.09 0.08 0.13 0.13 0.14 0.34 0.09 0.08
Gini CI 3 0.06 0.03 0.02 0.09 0.06 0.06 0.07 0.05 0.04
Gini Cl 4 0.27 0.11 0.13 0.15 0.10 0.09 0.35 0.07 0.06
Gini ClI 5 0.16 0.07 0.06 0.11 0.11 0.11 0.09 0.07 0.07
Gini Cl 6 0.27 0.10 0.11 0.21 0.10 0.09 0.08 0.05 0.05
Gini C1 7 0.28 0.12 0.10 0.24 0.10 0.10 0.33 0.10 0.11
Gini CI 8 0.27 0.16 0.12 0.29 0.12 0.09 0.33 0.10 0.08

| Impact of Gradient Normalization
In Fig. we plot the trajectory of the weights against training epochs. In the credit dataset, initially,

utility loss is given higher weightage than group fairness loss, but after certain iterations, group fairness loss
weightage overcomes utility loss weightage. Meanwhile, the utility loss is always given the higher weightage
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Table M: Performance comparison of benchmarked algorithms across datasets using the JK backbone
architecture. "Vanilla" indicates no debiasing. Arrows: 1 = higher is better, | = lower is better. Best
performance per column is in bold. Individual fairness (IF) is reported in thousands.

Model | AUC (1) IF () GD ({) IF-Gini () GD-Gini ({)
Credit
Vanilla 0.64+0.10 31.50+13.25 1.35+0.05 0.28 £ 0.03 1.71 &£ 0.01
FairGNN 0.66+0.05 2.65+1.85 1.54+0.28 0.19 £ 0.02 1.82 4+ 0.02
NIFTY 0.69+0.02 30.12+2.25 1.26+0.02 0.27 £ 0.01 1.73 + 0.00
PFR 0.67+0.02 36.24+19.10 1.40+0.02 0.27 £ 0.01 1.65 + 0.01
InFoRM 0.67+0.04 5.70+5.2 1.46+0.14 0.16 £+ 0.02 1.44 4+ 0.00
PostProcess | 0.70+0.00 43.57£7.80 1.44+0.01 0.28 £ 0.01 1.69 £+ 0.01
iFairNMTF | 0.71+0.01 107.724+9.04 1.544+0.23 0.28 £ 0.02 1.66 4+ 0.02
GNN GEI 0.68+0.00 43.16 + 4.15 1.4140.01 0.26 £+ 0.00 1.53 4+ 0.02
TF-GNN 0.70+0.00 13.20+0.03 1.4340.01 0.20 £+ 0.01 1.49 4+ 0.02
BeMAP 0.68+0.00 11.36+2.07 1.4540.0 0.22 £+ 0.03 1.63 + 0.01
FairSIN 0.68+0.00 18.39+8.80 1.56+0.0 0.21 £ 0.02 1.56 4+ 0.02
GUIDE 0.6840.00 2.35+0.10 1.00+0.00 0.12 £ 0.02 1.30 &+ 0.01
GRAPHGINI | 0.6840.00 1.88+0.02 1.00+0.00 0.10 + 0.01 1.08 + 0.01
Income
Vanilla 0.80+£0.01 490.704165.33 1.18+0.15 0.38 £ 0.02 1.80 £ 0.00
FairGNN 0.77+0.01 230.12440.88 1.32+0.14 0.35 £ 0.01 1.81 + 0.01
NIFTY 0.73£0.01 47.40+12.20 1.40+0.05 0.20 £ 0.02 1.83 + 0.01
PFR 0.73£0.12  330.404+150.25 1.1340.21 0.36 £+ 0.02 1.72 + 0.01
InFoRM 0.7940.00 195.61+11.78 1.36+0.14 0.33 £ 0.01 1.81 4+ 0.02
PostProcess | 0.7940.00 520.23+20 1.2740.01 0.40 £+ 0.02 1.54 + 0.01
iFairNMTF 0.78+0.01 604.89+4-24.32 1.43+0.26 0.444 0.01 1.76 4+ 0.03
GNN GEI 0.794+0.00  497.29+19.34 1.37+0.12 0.37 £ 0.02 1.84 4+ 0.02
TF-GNN 0.78+0.01 205.084+03.25 1.4840.01 0.34 £ 0.01 1.90 4+ 0.01
BeMAP 0.7540.00 297.254+41.65 1.3940.0 0.35 £ 0.01 1.83 4+ 0.02
FairSIN 0.75+0.00 282.454+49.55 1.46+0.0 0.33 £ 0.01 1.91 + 0.01
GUIDE 0.74£0.01 42.50+22.10 1.00+£0.00 0.22 £ 0.02 1.13 £+ 0.00
GRAPHGINI | 0.7540.00 29.47+ 4.01 1.00+0.00 0.18 + 0.01 1.01 + 0.01
Pokec-n
Vanilla 0.79+0.01 1639.30+95.74  8.48+0.51 0.42 + 0.01 1.77 + 0.01
FairGNN 0.704+0.00 807.794+281.26 11.68+2.89 0.35 £ 0.01 1.79 4+ 0.02
NIFTY 0.73+0.01  477.31+165.68  8.20£1.33 0.31 £ 0.01 1.76 + 0.01
PFR 0.68+0.00 729.77+74.62 15.664+5.47 0.35 £+ 0.02 1.80 4+ 0.03
InFoRM 0.78+0.01 315.27425.21 6.8040.54 0.30 £ 0.01 1.74 + 0.01
PostProcess | 0.7840.00 1721.424+83.91  10.22+0.43 0.42 £+ 0.03 1.80 4+ 0.01
iFairNMTF 0.77£0.00  1602.52£92.73  9.37£0.10 0.41 £ 0.01 1.79 £+ 0.03
GNN GEI 0.784+0.00 1788.65+£56.39  9.21+£0.55 0.43 £+ 0.01 1.80 4+ 0.01
TF-GNN 0.76+0.00  418.31454.26 10.20+1.45 0.30 £ 0.02 1.81 4+ 0.02
BeMAP 0.76+0.00  456.95+125.25  5.56+0.45 0.30 £ 0.01 1.53 + 0.01
FairSIN 0.76+0.00 282.454+49.55 1.46+0.0 0.26 £+ 0.01 1.27 + 0.01
GUIDE 0.75+0.02 83.09+18.70 1.13+0.02 0.25 + 0.01 1.25 £+ 0.01
GRAPHGINI | 0.784+0.10 43.87+2.36 1.00+ 0.00 0.23 + 0.01 1.18 + 0.01
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in the other two datasets. These behaviors indicate the sensitivity of ;. With the increase in the number of
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iterations/epochs, initially, 8;8’ are changing at different rates, but after a certain iteration, the values of 3;s’
get stabilized, indicating similar training rates across all three losses.

Credit Income Pokec-n
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Figure E: Adaptive loss weights learned via GradNorm during training for the GRAPHGINI model with a
GCN backbone across three datasets.

J Hyperparameter Sensitivity Analysis

In the GRAPHGINI framework, the two key parameters, S and f3, must be fine-tuned to achieve optimal
performance while balancing both fairness objectives. We evaluate their impact on the performance of
GRAPHGINI by varying these parameters simultaneously and independently. Figure [F]illustrates the effect of
GRAPHGINI regularizers on accuracy (AUC), individual fairness (IF), and group fairness (GD) on the Credit
dataset using the GCN backbone. In Figures (a-c), the x-axis represents [z, the y-axis represents 33, and the
z-axis shows AUC, IF, and GD in Figures (a), (b), and (c), respectively. The trends indicate that increasing
both B2 and B3 results in a decrease in AUC, while individual and group fairness improves. In all cases, 1
is fixed at 1, and lower IF and GD values correspond to better individual and group fairness, respectively.
Figures (d-i) present when one fairness regularizer is varied while the other is fixed at 0. In Figures (d-f), 53
is set to 0, showing that increasing B decreases accuracy but improves individual fairness. However, group
fairness may fluctuate since optimization focuses solely on individual fairness. In Figures (g-i), f2 is set to 0,
demonstrating that increasing (3 reduces accuracy but enhances group fairness, with potential variations in
individual fairness due to the focus on group fairness optimization.
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Figure F: Performance results of GRAPHGINI for Credit dataset on GCN-GNN with varying hyperparameters
B2 for the overall individual unfairness (IF) objective and 35 for the group disparity (GD) objective. IF values
are in thousands. Figures (a-c) are 3-D representations where the z-axis corresponds to AUC, individual
fairness (IF), and group fairness (GD) in figures (a), (b), and (c), respectively. Figures (d-i) show 2-D
representations by varying one fairness regularizer and fixing the other fairness regularizer to 0. Here, 31 is
set to 1 in all figures, and lower IF and GD correspond to better individual and group fairness, respectively.
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