
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QUANTUM ALGORITHM FOR ONLINE LEARNING OF
MDPS WITH CONTINUOUS STATE SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel quantum online algorithm for learning Markov Decision Pro-
cesses (MDPs) with continuous state space in the average reward model. Our
algorithm is based on the line of work on classical online UCCRL algorithms
by Ortner and Ryabko (NeurIPS’12). To the best of our knowledge, our work
is the first to consider MDPs with continuous state space in the fault-tolerant
quantum setting. In the case where the state space is one-dimensional and the
MDP’s rewards and transition probabilities are assumed to be Lipschitz, we
show that, via quantum-accessible environments, our quantum algorithm obtains a
Õ(T 1/2) regret, improving upon the Õ(T 2/3) bound of Lakshmanan, Ortner, and
Ryabko (PMLR’15), where T is the number of iterations of the algorithm. With-
out the Lipschitz assumption, a regret bound of Õ

(
T 1/(1+α)

)
is obtained when

0 < α < 1 and when α ≥ 1, the regret is Õ(
√
T). For a general d-dimensional

state space, the regret is bounded by Õ(T 1/(1+dα)) when dα < 1 and Õ(
√
T)

when dα ≥ 1. Our quantum algorithm uses quantum extended value iteration as
a subroutine, which is our second main contribution, and may be of independent
interest. We show that quantum extended value iteration achieves a subquadratic
speedup in the size of the discretized state space S and a quadratic speedup in
the size of the action space A, as compared to its classical counterpart. As our
third contribution, we study the limiting behaviour of the sequence of value func-
tions generated by quantum extended value iteration. We show that the sequence
converges to the optimal average reward ρ∗ up to ϵ additive error, for some small
ϵ > 0.

1 INTRODUCTION

Markov decision processes. Markov Decision Processes (MDPs) [1] serve as a foundational
framework for modeling decision-making in a wide array of dynamic and uncertain environments.
Developed within the realm of stochastic control and mathematical optimization, MDPs provide a
systematic and rigorous approach to understanding and solving sequential decision problems. An
MDP models the interaction between an agent and the reinforcement learning environment. In-
formally, it consists of a set X of states, a set A of actions, a transition model P describing the
probability of moving from one state to another after taking an action and a reward function r.
At any time step, the agent in a particular state x(t) ∈ X chooses an action a(t) ∈ A, obtains
a reward r(x(t), a(t)), and moves to a new state x(t+1) according to some probability distribution
p(x(t+1)|x(t), a(t)). The goal in an MDP is to find a policy π — a mapping from states to actions —
that maximizes the cumulative reward ρ over time.

Reinforcement learning. Reinforcement learning (RL) [2] is a type of machine learning that uses
MDPs as the underlying framework. In RL, an agent learns an optimal policy by interacting with an
environment, receiving feedback through rewards, and using this experience to improve its decision-
making. Popular RL algorithms such as Q-learning, policy gradient, value iteration, and policy
iteration methods [3, 4, 5, 6, 7, 8, 9] have been widely studied. By effectively balancing between
exploration and exploitation, these algorithms enhance their performance in dynamic and uncertain
settings, thereby learning the optimal policy.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Online algorithms. Online algorithms model the interaction between an agent/learner with the
environment/nature. Such algorithms are usually associated with learning or decision making [10,
11, 12, 13, 14, 15, 16, 17]. Unlike offline algorithms where the agent has full access to the training
data as a whole, the setting of online algorithms is such that the agent receives part of the training
data in a (possibly adversarial) sequential manner. Based on incomplete knowledge of the entire
training data, the agent is required to make a decision, after which feedback from the environment is
provided in the form of a gain according to a pre-defined reward function. This process is repeated
for T number of time steps. The maximum gain incurred when making the best fixed decision in
hindsight is known as the offline gain. Moreover, the difference between the offline gain and the
gain incurred when making some other sequence of decisions is called the regret. In the context of
learning (communicating1) MDPs under the average reward model, the regret is given by Tρ∗(M)−∑T

t=1 r(x
(t), a(t)), where ρ∗(M) := ρ∗(M,x) := maxπ∈Π ρπ(M,x) is the optimal average reward

ρπ(x) = 1
T lim supT→∞ E[

∑T
t=0 r(x

(t), a(t))] of MDP M with initial state x under policy π and
the maximum is taken over the set Π of all policies [18, 19, 20]. Regret is the canonical cornerstone
to benchmark the performance of an online algorithm. Typically, online algorithms with a per-step
regret that scales inversely with the number of time steps T are desired. This implies that given
sufficiently long time, an online algorithm can perform as well as an offline algorithm.

Our contribution. We study the potential of quantum computing in improving the regret of online
algorithm. Motivated the work of [21] which achieves an exponential improvement in learning
tabular and value-target MDPs, we are interested in studying if similar improvements can be achieve
in learning general MDps. We base our work on the classical framework of [18, 22]. In particular,
we give a quantum version of the classical algorithm in [18, 22] and perform its regret analysis.
Our contribution is threefold.

• In the average reward model, we give a quantum online algorithm that learns MDPs with
continuous state space. Under the assumption that the MDPs’ reward and transition proba-
bilities are Lipschitz, our algorithm achieves a Õ(T 1/2) regret in the one-dimensional state
space setting, improving upon the Õ(T 2/3) bound by [18]. Without the Lipschitz assump-
tion, a regret bound of Õ

(
T 1/(1+α)

)
is obtained when 0 < α < 1 and when α ≥ 1,

the regret is Õ(
√
T). For a general d-dimensional state space, the regret is bounded by

Õ(T 1/(1+dα)) when dα < 1 and Õ(
√
T) when dα ≥ 1.

• We propose a quantum extended value iteration subroutine. With high probability, the
subroutine outputs a sequence of approximate value functions up to additive error ϵ in time
O
(

S1.5
√
A

ϵ log 1
δ

)
as compared to the classical running time of O(S2A) [19, 23, 22, 18].

• We prove convergence guarantees for an approximate analogue of value iteration to the
optimal average reward ρ∗ up to some ϵ additive error.

Related work. Loosely speaking, our work is related to quantum machine learning. We discuss
more details on related work in Appendix A due to space restriction. Among the most related work,
Ref. [19] gave an algorithm to learn MDPs with discrete state and action spaces. Their algorithm
achieves a O(T 1/2) regret, where T is the number of time steps. Their work was extended to the
continuous state space setting by [22], which gave a Õ(T 3/4) regret bound for one-dimensional
state spaces and Õ

(
T

2d+1
2d+2

)
regret bound for d-dimensional state spaces. The followup work [18]

improves upon these results, giving a regret of Õ(T 2/3) and Õ
(
T

2+d
3+d
)

in one- and d-dimensional
state spaces respectively.

2 PRELIMINARIES

Notations. For any n ∈ Z+, we use [n] to represent the set {1, . . . , n} and denote the i-th entry of
a vector v ∈ Rn by v(i) for all i ∈ [n]. If a vector v has time dependency, we denote it as v(t), where
t is the corresponding time step. The ℓ1 and ℓ∞-norm of a vector v ∈ Rn are ∥v∥1 :=

∑n
i=1 |v(i)|

and ∥v∥∞ := maxi∈[n] |v(i)|, respectively. We denote V as the space of all real-valued functions.

1The the optimal average reward ρ∗ does not depend on the initial state x.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We use 0̄ to denote the all-zeros vector and |0̄⟩ to denote the state |0⟩ ⊗ · · · ⊗ |0⟩ where the number
of qubits is clear from the context. We use e to denote the all-ones vector, 1C to denote the indicator
function where the condition C is satisfied, and ∆Z to denote the probability simplex on a space Z .
We use Õ(·) to hide polylogarithmic factors, i.e., Õ(f(n)) = O(f(n) · poly log(f(n))).

Quantum computing In classical computing, the basic unit of information is a bit, which can
take values 0 or 1. In quantum computing, the basic unit is known as a quantum bit, or qubit. It is
a two-level quantum system with states |0⟩ and |1⟩. Unlike a classical bit that has only two states,
a qubit is a superpositions of |0⟩ and |1⟩, i.e. |v⟩ =

∑1
i=0 vi |i⟩, where vi ∈ C is the amplitude

of |i⟩ and satisfies
∑d−1

i=0 |vi|2 = 1. The states |0⟩ , |1⟩ forms the (orthogonal) computational basis
of the two-dimensional Hilbert space. This extends to any d-dimensional system, where d > 2.
Quantum states from different Hilbert spaces can be combined using tensor product. For simplicity
of notation, we use |u⟩ |v⟩ to denote the tensor product |u⟩⊗ |v⟩. Operations in quantum computing
are unitary, i.e. a linear transformation U that satisfies UU† = U†U = I , where U† is the conjugate
transpose of U .

The information in a quantum state cannot be “read” directly. In order to observe a quantum state
|v⟩, we perform a quantum measurement on it. The measurement results in a classical state i with
probability |vi|2, and the measured quantum state collapses to |i⟩. Quantum access to input data
is encoded in a unitary operator known as the quantum oracle. Quantum oracles allow data to be
accessed in superposition, thereby allowing operations to be performed “simultaneously” on states,
which is the core of quantum speedups.

Computational model. We refer to the running time of a quantum computation as the number of
basic gates performed, excluding the gates that are used inside the oracles. We assume a quantum
arithmetic model, which allows us to ignore issues arising from the fixed-point representation of
real numbers. In this model, all basic arithmetic operations take constant time. We also assume a
quantum circuit model, where an application of an elementary gate is equivalent to performing an
elementary operation. The query complexity of a quantum algorithm with some input length is the
maximum number of queries the algorithm makes on any input.

Our quantum algorithm shall commonly build KP-trees [24, 25] of vectors. In short, a KP-tree is
a classical binary-tree-like data structure, with leaves storing the value of every entry of a vector
and each internal node stores the sum of absolute values (or sum of absolute values squared) of its
children. The root of the tree stores the ℓ1- (or ℓ2-) norm of the whole vector. For a vector u ∈ RS ,
the KP-tree for u is denoted as KPu. The KP-trees are accessible in superposition by a quantum
computer via quantum random access memory (QRAM). A single query to any entry of u can be
done in constant time. More specifically, this allows the quantum computer to query the oracles Ou

that performs the mapping Ou : |s⟩|0̄⟩ 7→ |s⟩|u(s)⟩ ∀s ∈ S in time O(poly log(S)). Moreover, (all
or part of) the entries of u can be classically updated by writing new values into the KP-tree in at
most Õ(S)time.

Quantum subroutines. To achieve quantum speedup and a better regret bound, we exploit a
few quantum subroutines. Among them, the popular minimum finding algorithm by Dürr and
Høyer [26], which can be turned straightforwardly into a maximum finding algorithm. We also
use the generalized minimum finding [27] for the case when one has quantum access to the en-
tries of u up to some additive error. Besides that, we use the celebrated Grover’s search [28] and
two other standard subroutines: quantum multi-dimensional amplitude estimation [29] and quantum
multi-dimensional mean estimation [21, 30]. We restate these subroutines in Appendix B.

We tweak the standard quantum norm estimation algorithm [31, 32, 33, 34, 35] to estimate the norm
of a subvector. The proof which replies on amplitude estimation and amplification [31, 36, 37, 38]
is deferred to Appendix B.

Lemma 1 (Quantum norm estimation of a subvector with additive error). Let δ ∈ (0, 1/4) and
ϵ > 0. Given a probability vector p ∈ [0, 1]S stored in KPp, assume access to the operation
|s⟩ |0⟩ → |s⟩ |p(s)⟩. Let W ⊆ S be the set of entries that satisfy some given condition. Define
the subvector pW of p whose entries consist of those in W . There exists a quantum algorithm that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

outputs an estimate Γ̃W of ∥pW ∥1 :=
∑

s∈W |pW (s)| such that |Γ̃W − ∥pW ∥1| ≤ ϵ with success

probability at least 1− δ in time Õ(
√
S
ϵ log 1

δ) and the same amount of quantum gates.

Finally, the quantum mean estimation algorithm from [39] can be adapted to estimate the mean of a
vector with real entries. The proof can be found in Appendix B.
Lemma 2 (Quantum mean estimation). Let ϵ > 0 and δ ∈ (0, 1). Let u ∈ RS be a nonzero
vector and p ∈ [0, 1]S be a probability vector. Suppose we have access to KPu,KPp and can make
quantum queries in the form |s⟩ |0⟩ → |s⟩ |p(s)⟩ and |s⟩ |0⟩ → |s⟩ |u(s)⟩. There exists a quantum
algorithm that computes an estimate µ̃ of µ =

∑
s∈S p(s)u(s) such that |µ̃− µ| ≤ ϵ with success

probability at least 1− δ in time Õ
(∥u∥∞

ϵ log 1
δ

)
.

3 MARKOV DECISION PROCESSES

A discrete-time MDP [40] can be described by a four-tuple (X ,A, P, r), where the Borel spaces X
andA denote the state and action spaces, respectively. The stochastic kernel P : X×A×X → [0, 1]
is a transition probability matrix with entries P (x′|x, a) denoting the probability to the next state
x′ ∈ X given that the previous state-action pair is (x, a) ∈ X × A, while the reward function r :
X×A → R is a measurable function. Define the history spacesH(0) = X andH(t) = (X×A)t×X
for t ∈ N. A policy π is stochastic kernels on A given X .2 The set of all policies is denoted by Π.

In this work, we consider the average reward model, in which the average reward when executing
policy π with initial state x = x(0) is given by ρπ(x) = lim supT→∞

1
T E

π
x

[∑T−1
t=0 r(x(t), a(t))

]
,

where the expectation over allH(∞) = (X ×A)∞ is taken with respect to the randomness induced
by the transition probabilities and policy π. The optimal average reward ρ∗(x) on initial state x ∈ X
is defined as ρ∗(x) = supπ∈Π ρπ(x). Moreover, we say that a policy π∗ is average optimal if
ρπ∗(x) = ρ∗(x) for all x ∈ X . We assume the existence of an optimal policy π∗ with optimal
average reward ρ∗ that is independent of the initial state. In other words, for some ρ∗ ∈ R, ρ∗(x) =
ρ∗ for all x ∈ X . Furthermore, we assume that for every measurable policy π, the Poisson equation
ρπ + h(π, x) = r(x, π(x)) +

∫
p(x′|x, π(x))h(π, x′) holds, where h(π, x) is the bias3 of policy π

in state x. Similar assumptions were made by [22, 18].

Finite state approximation of MDPs. The practical utility of MDPs lies in their ability to model
decision-making in complex environments [41, 42, 43, 44, 45, 46, 47, 48, 49]. However, the com-
putational burden associated with handling an exhaustive state and action spaces can be prohibitive.
Finite state approximation addresses this challenge by allowing the system to be condensed to a
more manageable and computationally tractable form, facilitating the use of various well-studied
solution algorithms, such as dynamic programming and value iteration and policy iteration, which
are fundamental for decision-making under uncertainty [50, 51, 52, 8, 53, 9, 54, 55].

We follow Refs. [56, 22, 57] to derive approximate MDPs with finite state and action spaces. We
describe the discretization of continuous state space using ϵ-nets, for some 0 < ϵ < 1. We make the
following assumptions as in [22, 18, 57, 58]:
Assumption 1. (a) X is compact.

(b) The action space A is finite.

(c) The reward r(x, a) ∈ [0, 1] for all x ∈ X , a ∈ A.

3.1 DISCRETIZATION OF STATE SPACE

Consider a continuous state space X with metric dX . By Assumption 1(a), X is compact and hence
totally bounded. Hence, we can partition the continuous state space X into the finite state space
S = {si}Si=1 such that

min
s∈S

dX (x, s) <
1

S
for all x ∈ X .

2More generally, a policy is a sequence of stochastic kernels on A given H(t).
3The bias is the difference in accumulated rewards when starting in a different state [22].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We call S a 1/n-net in X . Define the function

QX : X → S as QX (x) = argmin
s∈S

dX (x, s), (1)

where ties are broken so that QX is measurable. The map QX is often called a nearest neighbour
quantizer with respect to distortion measure dX [59]. The function QX induces a partition of X into
{Xi}Si=1, where

Xi = {x ∈ X : QX (x) = si} ∀i ∈ [S].

For example, consider the one-dimensional setting where X = [0, 1]. A 1
S -net partitions X into S

intervals X1, . . . ,XS , where

X1 =

[
0,

1

S

]
, Xi =

(
i− 1

S
,
i

S

]
, for i = 2, . . . , S. (2)

Each interval Xi is represented by a state si ∈ S. We assume access to a discretization oracle OX
for the state space.
Definition 1 (Discretization oracle). Let X be a state space that is continuous on [0, 1] and let S ⊂
X be discrete. We say that we have access to a discretization oracle OX if the oracle implements in
constant time the mapping

OX : |x⟩|0̄⟩ 7→ |x⟩|argmins∈SdX (x, s)⟩ ∀x ∈ X .

We introduce natural assumptions for rewards and transition probabilities in nearby states. Similar
assumptions have been considered in [56, 22, 57].
Assumption 2. For any x, x′,∈ X and any a, a′ ∈ A, there exists a constant L > 0 such that

|r(x, a)− r(x′, a)| ≤ L |x− x′|α , (3)

∥p(·|x, a)− p(·|x′, a)∥1 ≤ L |x− x
′|α (4)

Under Assumption 2, the bias of the optimal policy is bounded [22, 18]. We assume that L from
Eqs. (3) and (4) are the same. Similar assumptions were also made by [22, 18, 19].

Here, we clarify some notations that will be used in the remaining parts of the paper. We use the
subscript π to denote MDP parameters induced by the policy π. For a discrete state space S and
action space A with cardinalities S and A respectively, define the reward vector rπ ∈ [0, 1]S and
transition probability matrix Pπ ∈ [0, 1]S×S as

rπ(s) = Ea∼π(·|s)[r(s, a)], pπ(s
′|s) = Ea∼π(·|s)[p(s

′|s, a)].

4 VALUE ITERATION

Value iteration [1, 7] is a dynamic programming algorithm used to find the optimal policy for a
reinforcement learning algorithm. The goal is to determine the best action to be taken in each state
in order to maximize its cumulative expected rewards. Value iteration has been widely used and
exists in different variants [53, 60, 61, 62, 63, 64, 65]. The algorithm updates the value function
u ∈ RS of all states s ∈ S according to the update rule4

u(0) = 0, u(i+1) = max
π∈Π

{
rπ +Pπu

(i)
}
, (5)

and has a per-iteration running time of O(S2A) [66].

4We use maxπ∈Π{·} and maxa∈A{·} interchangeably in this paper since we will be considering the greedy
policy approach throughout this work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 APPROXIMATE VALUE ITERATION

Approximate value iteration has been well-studied and is used in various settings [67, 68, 69, 70, 71,
72]. From here on, we shall refer to value iteration with update rule (5) as standard value iteration.
In this section, we consider an approximate analogue of the value iteration algorithm which differs
from the standard value iteration algorithm in the following ways:

1. Denote the value function output by approximate value iteration as ũ. In standard value
iteration, Pπu in Eq. (5) is computed exactly, while in approximate value iteration, it is
estimated up to an additive error. In particular, let µ̃π denote the estimate of Pπũ such that

∥µ̃π −Pπũ∥∞ ≤
ϵ

2
. (6)

2. The maximization in Eq. (5) is computed exactly in standard value iteration. However,
in approximate value iteration, given Eq. (6), the maximization is estimated up to additive
error ϵ. In order words, define the operatorL′ : RS → RS on ũ, thenL′ũ ≥ maxπ∈Π{rπ+
P̃πũ} − ϵe.

For any integer i ≥ 0, a single run of the approximate value iteration recursion can be expressed as

ũ(i+1) = L′ũ(i). (7)

In this section, we show the convergence of approximate value iteration. First, we need the following
claim whose proof is deferred to Appendix C.1. Let us for now consider non-communicating MDPs,
whose optimal average reward ρ∗(s) is dependent on the initial state s.

Claim 1. Let ϵ ∈ (0, 1) and fix i ∈ Z≥0. Let u(i+1) ∈ RS be the value function obtained after i
steps of standard value iteration and let ũ(i+1) ∈ RS be its corresponding approximation obtained
after i steps of approximate value iteration. Then

u(i+1) − (i+ 1)ϵe ≤ ũ(i+1) ≤ u(i+1).

The theorem below, whose proof is moved to Appendix C.1, illustrates the limiting behaviour of the
sequence of value functions output by approximate value iteration.

Theorem 1. Let ϵ ∈ (0, 1). For all u(0) ∈ V and all s ∈ S,

ρ∗ − ϵe ≤ lim inf
i→∞

ũ(i)

i
≤ lim sup

i→∞

ũ(i)

i
≤ ρ∗.

Theorem 1 implies the following corollary (proof in Appendix C.1).
Corollary 1. Let ϵ ∈ (0, 1) and let π be a policy such that π∞ = (π, π, · · ·) is average optimal.
Theorem 1 implies that

∥ρ∗ −Pπρ
∗∥∞ ≤ ϵ.

We say that a policy π̄ is u-improving if π̄ ∈ argmaxπ∈Π{rπ + Pπu}. The next theorem bounds
the optimal reward (see Appendix C). The proof can be found in Appendix C.1.
Theorem 2. Let π be any u-improving policy and ρ∗ ∈ R be the optimal average reward. Let L′ be
a single run of approximate value iteration. Then, the following holds for all s ∈ S:

min
s∈S
{L′u(s)− u(s)} ≤ ρπ

∞
≤ ρ∗ ≤ max

s∈S
{L′u(s)− u(s)}+ ϵ. (8)

4.2 EXTENDED VALUE ITERATION

Consider the setM of all MDPs with common state space S, common action space A, transition
probabilities p̃(·|s, a) and mean rewards r̃(s, a) such that

∥p̃(·|s, a)− p̂(·|s, a)∥1 ≤ d(s, a) (9)

|r̃(s, a)− r̂(s, a)| ≤ d′(s, a) (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for some given probability distributions p̂(·|s, a), given rewards r̂(s, a) ∈ [0, 1], d(s, a) > 0, and
d′(s, a) ≥ 0. Furthermore, assume thatM contains at least one communicating5 MDP. Extended
value iteration updates the value function of all s ∈ S ofM [22, 18, 19, 1] using the rule

u(0)(s) = 0; u(i+1)(s) = max
a∈A

{
r̃(s, a) + max

p(·)∈P(s,a)

{∑
s′∈S

p(s′) · u(i)(s′)

}}
, (11)

where r̃(s, a) = r̂(s, a) + d′(s, a) are the maximal possible rewards according to Eq. (10)
and P(s, a) is the set of transition probabilities p̃(·|s, a) satisfying Eq. (9). The classical algo-
rithm by [23, Proposition 2] finds the solution µmax(s, a) to the inner maximization problem
maxp(·)∈P(s,a)

{∑
s′∈S p(s

′) · v(i)(s′)
}

of Eq. (11) in O(S) time. In addition, solving the other
maximization takes O(A) time. This leads to a per-iteration run time of O(S2A) to update the
values u(i+1)(s) for all s ∈ S.

We propose a quantum algorithm that improves upon the per-iteration run time of extended value
iteration by a subquadratic factor in S and a quadratic factor in A. Specifically, we give a quantum
subroutine that outputs an estimate µ̃max(s, a) of µmax(s, a) up to additive accuracy ϵ with success
probability at least 1− δ in time Õ

(√
S
ϵ log 1

δ

)
.

Lemma 3. Let ϵ, δ ∈ (0, 1) and umin, umax ∈ R. Consider the setP(s, a) of transition probabilities
that satisfy Eq. (9). Let p̂ ∈ [0, 1]S be a transition probability vector such that p̂ ∈ P(s, a) and let
u ∈ [umin, umax]

S be a nonzero vector. Given quantum access to the entries of p̂,u that are stored
in KP-trees KPp̂ and KPu respectively, there exists a quantum algorithm that outputs an estimate µ̃
of µ∗ = maxp(·)∈P(s,a)

∑
s′∈S p(s

′) · u(s′) such that |µ̃− µ∗| ≤ ϵ with success probability at least

1− δ. The time complexity is Õ
(√

S
ϵ log 1

δ

)
.

Using Lemma 3, we present the following result.
Lemma 4 (Guarantees of one iteration of quantum extended value iteration). Let ϵ, δ ∈ (0, 1). Fix
i ∈ Z≥0. Given access to estimated rewards r̂(s, a), estimated maximum mean value µ̃max(s, a) and
distance d(s, a) for a state-action pair, there exists a quantum algorithm that outputs an estimate
ũ(i+1)(s) of the solution u(i+1)(s) to Eq. (11) such that ũ(i+1)(s) ≥ u(i+1)(s) − ϵ with success

probability at least 1− δ for all s ∈ S. This requires Õ
(

S1.5
√
A

ϵ log 1
δ

)
time.

The pseudocodes and proofs of Lemmas 3 and 4 can be found in Appendix C.2. Next, we prove the
convergence of quantum extended value iteration (proof in Appendix C.2).
Theorem 3 (Convergence of quantum extended value iteration). Let ϵ, δ ∈ (0, 1). Let M be the
set of all MDPs with state space S , action space A, transition probabilities p̃(·|s, a), and mean
rewards r̃(s, a) that satisfy Eqs. (9) and (10) for given probability distributions p̂(·|s, a), values
r̂(s, a) ∈ [0, 1], d(s, a) > 0, and d′(s, a) ≥ 0. If M contains at least one communicating MDP,
quantum extended value iteration (Algorithm 3, see Appendix) satisfies

ρ∗ − ϵe ≤ lim
i→∞

ũ(i)

i
≤ ρ∗.

Furthermore, terminating quantum extended value iteration (Algorithm 3) when

max
s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}
−min

s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}
≤ ϵ,

the greedy policy with respect to ũ(i) is ϵ-optimal.

5 QUANTUM ALGORITHM FOR ONLINE LEARNING MDPS

5.1 QUANTUM-ACCESSIBLE ENVIRONMENTS

Classically, we are able to directly observe complete trajectories (s(0), a(0), s(1), a(1), . . .) in every
episode and collect samples to estimate r̂(s, a) and p̂(·|s, a) for any (s, a) ∈ S ×A [18, 22, 19]. In

5We say that an MDP is communicating if for every pair of states s, s′ in S, there exists a deterministic
stationary policy π∞ under which s′ is accessible from s.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the quantum setting, we can only collect quantum states via quantum-accessible environments. This
has been studied by [73, 74, 75, 21]. The following oracles are required.
Definition 2 (Quantum sampling oracle for transition probabilities [76]). Let X be a continuous
state space and S be the resulting state space after discretization. For any s ∈ S and a ∈ A, a
quantum sampling oracle for transition probabilities Op performs the following mapping:

Op : |s⟩ |a⟩ |0̄⟩ →
∫
x∈X

√
p(x|s, a)dx |s⟩ |a⟩ |x⟩ ⊗ |garbage(x)⟩ , (12)

where the second quantum register denotes possible garbage quantum states that arise in the imple-
mentation of the oracle. We letOp(t) denote the quantum sampling oracle for transition probabilities
at step t ∈ Z+ on inputs s(t), a(t).
Definition 3 (Quantum reward oracle). Let S andA be discrete state and action spaces respectively.
For any s ∈ S and a ∈ A, a quantum reward oracle Or performs the mapping: Or : |s⟩ |a⟩ |0̄⟩ →
|s⟩ |a⟩ |r(s, a)⟩.
Definition 4 (Quantum policy oracle). Let S andA be discrete state and action spaces respectively.
For any s ∈ S and a ∈ A, we say that we have access to a quantum policy oracle Oπ that does the
mapping Oπ : |s⟩ |0̄⟩ →

∑
a∈A

√
π(a|s) |s⟩ |π(s)⟩.

In this work, we use the Classical Sampling via Quantum Access (CSQA) [21] procedure (see
Algorithm 4 in Appendix D) to simulate the classical sampling of a state s(t) ∼ d

(t)
π when given a

policy π and time step t, where d(t)π is the probability distribution over S according to policy π and
at time step t. We show the following lemma whose proof is in Appendix D.

Lemma 5. Given a policy π and an integer t ∈ Z+. Let d(t)π be the probability distribution over
states s ∈ S at step t according to π. Suppose we have access to oracle Op (see Definition 2 in
Appendix D), then there exists a quantum algorithm that outputs a sample of s ∼ d(t)π in time O(t).

We present our quantum algorithm for online learning MDPs in Algorithm 1. Our quantum algo-
rithm implements “optimism in the face of uncertainty”. It maintains a set of plausible MDPsM
and optimistically chooses an MDP M̃ ∈ M and a policy π̃ such that the average reward ρπ̃(M̃)
is maximized up to ϵ√

T
error, for T number of iterations of the algorithm. Similar to Ref. [22], we

assume an MDP to be plausible if its aggregated rewards and transition probabilities are within a
certain range (see Eqs. (13) and (14)).

The corresponding estimated rewards and transition probabilities are computed from sampled values
of action a in the state close to x. Specifically, the state space is partitioned into X1, · · · ,XS as a
result of discretization. The corresponding aggregated transition probabilities are defined as

pagg(Xj |x, a) :=
∫
Xj

p(dx′|x, a).

In this work, we write pagg(·) to denote the aggregated probability distribution with respect
to {X1, . . . ,XS} for a probability distribution p(·) over X . Given the aggregated state space
{X1, . . . ,XS}, estimates r̂(x, a) and p̂agg(·|x, a) are obtained from all samples of action a in states
x ∈ X represented by s ∈ S after discretization. As a consequence, the estimates are the same for
states x ∈ X represented by the same s ∈ S.

As in the UCCRL algorithms in Refs. [18, 22, 19], our algorithm proceeds in episodes, in which the
chosen policy remains fixed. The algorithm moves to a new episode when the number of visitations
to a state-action pair has been doubled, after which the estimates of rewards and transition probabili-
ties are updated. Furthermore, since all states x represented by the same s have the same confidence
interval, finding the optimal pair M̃k, π̃k in Eq. (15) is equivalent to finding the optimistic discretized
MDP M̃agg

k and an optimal policy π̃agg
k on M̃agg

k . Hence, π̃k can be viewed as the extension of π̃agg
k

to X . In other words, π̃k(x) := π̃agg
k (s), where s ∈ S is the state representing the interval Xj that x

belongs to, for some j ∈ [n] [22].

Algorithm 1 Quantum algorithm for online learning MDPs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Input: State space X , action space A, confidence parameter δ, upper bound H on the bias span,
Lipschitz parameters L.

1: Define Xj as in Eq. (2), where each interval Xj is represented by a state sj for all j ∈ [S].
2: Set t = 1.
3: Initialize p̂1(·|s, a) = (1/S, · · · , 1/S) ∈ RS and r̂1(s, a) = 0.5 for all s ∈ S, a ∈ A.
4: for episodes k = 1, 2, · · · do
5: Let Nk(s, a) = be the number of times action a has been chosen in a state in the interval

represented by s, prior to episode k and let nk(s, a) be the respective counts in episode k.
6: Set the start time of episode k, tk := t.
7: for (s, a) ∈ S ×A do
8: Initialize vk(s, a) = 0.
9: end for

10: LetMk be the set of plausible MDPs M̃ with H(M̃) ≤ H and rewards r̃(x, a) and transi-
tion probabilities p̃(·|x, a) such that

|r̃(x, a)− r̂k(x, a)| ≤ LS−α +

√
SA

max{1, Nk(s, a)}
(13)

and

∥p̃agg(·|x, a)− p̂agg
k (·|x, a)∥

1
≤ LS−α +

S

max{1, Nk(s, a)}
(14)

11: Choose policy π̃′
k and M̃ ′ ∈Mk such that

ρπ̃k

(
M̃k

)
≥ argmax{ρ∗(M)|M ∈Mk} −

ϵ√
T

(15)

using Algorithm 3.
12: while nk

(
s(t), a(t)

)
< max

{
1, Nk

(
s(t), a(t)

)}
do

13: Call x(t) := CSQA(π̃′
k, t) using Algorithm 4, query OX on x(t) to obtain s(t) and let

a(t) := π̃′
k

(
x(t)
)
.

14: Update nk
(
s(t), a(t)

)
= nk

(
s(t), a(t)

)
+ 1.

15: Set t = t+ 1.
16: end while
17: for s ∈ S and a ∈ A do
18: Compute estimate r̂k(x, a) up to additive error

√
SA

max{1,Nk(s,a)} with probability at least
1− δ

24T 5/4 using Fact 4 and by invoking oracles OX ,Op,Or.
19: Compute estimate p̂agg

k (·|x, a) up to additive error S
max{1,Nk(s,a)} in the ℓ1-norm with

probability at least 1− δ
24T 5/4 using Fact 4 invoking oracles OX ,Op,Or.

20: end for
21: end for

The theorem below states that a Õ(1/
√
T) regret bound is attainable by Algorithm 1. The proof is

deferred to Appendix E.

Theorem 4. LetM be an MDP with continuous state space [0, 1],A actions, rewards and transition
probabilities satisfying Eqs. (3) and (4), and bias span at most H . Then, the regret of Algorithm 1
after T steps is upper bounded by

2(H + 1)LTS−α + (14 + 15H)SA log
SAT

δ
+ (2H + 3)

√
T log

SAT

δ

with probability at least 1− δ. Furthermore, setting S = T
1

1+α gives a regret bound of

(2H + 1)LT
1

1+α + (14 + 15H)AT
1

1+α log
AT 2

δ
+ (2H + 3)

√
T log

AT 2

δ
.

TakingH = log T , we obtain a regret bound of Õ(
√
T) when α ≥ 1 and Õ(T

1
1+α) when 0 < α < 1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 DISCUSSION AND CONCLUSION

We study the problem of online learning MDPs with continuous state space. In this setting, only
the state and action spaces are known to the algorithm. Other parameters of the MDPs such as the
reward function and transition probabilities are unknown.

We give a quantum algorithm, that in each episode, chooses an optimistic MDP and its correspond-
ing (nearly) optimal policy. This is done using a quantum subroutine, called quantum extended value
iteration. The chosen policy is then executed until some action in some state-actions pair has been
visited as often in the episode as before the episode. The observed rewards are accumulated and
the regret is analyzed. Our results show that the quantum algorithm achieves a Õ(

√
T) regret when

the state space is one-dimensional and assuming that the MDPs’ rewardds and transition probabil-
ities are Lipschitz. This improves upon the regret bound obtained by [18]. Without the Lipschitz
assumption, the regret is Õ(T 1/(1+α)) when 0 < α < 1 and Õ(

√
T) when α ≥ 1. This bound

also implies that MDPs with continuous state space can be learned with the same (order in T) regret
as those with discrete state space when α ≥ 1. For the case where the state space is d-dimensional
(d ≥ 1), the regret is bounded by Õ(T 1/(1+dα)) when dα < 1 and Õ(

√
T) when dα ≥ 1.

We point out that a similar work to ours has been done by Ref. [21]. Unlike our quantum algorithm
that learns general MDPs, the quantum algorithm proposed in [21] learns specific MDPs, i.e. tabular
and value target MDPs. Furthermore, episodes in the algorithm of [21] have fixed length. This allows
their algorithm to achieve a logarithmic regret in T , the number of episodes. This is in contrast to
our algorithm, whose length of episodes grows indefinitely with T .

The quantum extended value iteration subroutine is a combination of techniques such as quantum
mean estimation, quantum norm estimation and quantum minimum finding with approximate uni-
tary. It has a per-iteration runtime of O

(
S1.5

√
A

ϵ log 1
δ

)
, achieving a speedup that is subquadratic in

the size of the discretized state space S and quadratic in the size of the action space A, as compared
to its classical counterpart. By studying the limiting behaviour of the sequence of value functions
{ũ(i)} generated by an approximate analogue of standard value iteration, we show that quantum
extended value iteration converges up to additive error ϵ and the greedy policy with respect to the
value function is ϵ-optimal. Furthermore, the sequence {ũ(i)} when compared to that generated by
standard value iteration {u(i)}, satisfies u(i)− iϵe ≤ ũ(i) ≤ u(i) for some ϵ > 0 and any i ≥ 1. We
hope that our quantum extended value iteration algorithm and its analysis would be of independent
interest to readers.

We highlight some future directions following our work. In this work, we follow the approach
of [22, 18, 57] to discretize the state space using ϵ-nets. It would be interesting to learn if other
discretization methods could lead to better regret bounds of the algorithm. Besides, the lower bound
on the regret still remains an open problem since the work of [18, 22]. Other future directions
include extending the problem setting to continuous action space.

REFERENCES

[1] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[2] Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

[3] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

[4] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Wook Kim. Q-learning
algorithms: A comprehensive classification and applications. IEEE access, 7:133653–133667,
2019.

[5] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Ried-
miller. Deterministic policy gradient algorithms. In International conference on machine
learning, pages 387–395. Pmlr, 2014.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

[6] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Advances in neural infor-
mation processing systems, 12, 1999.

[7] Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

[8] Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

[9] Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods. Journal
of Control Theory and Applications, 9:310–335, 2011.

[10] Scott Aaronson, Xinyi Chen, Elad Hazan, Satyen Kale, and Ashwin Nayak. Online learning
of quantum states. Advances in neural information processing systems, 31, 2018.

[11] Debbie Lim and Patrick Rebentrost. A quantum online portfolio optimization algorithm. arXiv
preprint arXiv:2208.14749, 2022.

[12] Bin Li and Steven CH Hoi. Online portfolio selection: A survey. ACM Computing Surveys
(CSUR), 46(3):1–36, 2014.

[13] Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov de-
cision processes: A thompson sampling approach. Advances in neural information processing
systems, 30, 2017.

[14] Nan-Ying Liang, Guang-Bin Huang, Paramasivan Saratchandran, and Narasimhan Sundarara-
jan. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE
Transactions on neural networks, 17(6):1411–1423, 2006.

[15] Koby Crammer, Jaz Kandola, and Yoram Singer. Online classification on a budget. Advances
in neural information processing systems, 16, 2003.

[16] Yiming Ying and D-X Zhou. Online regularized classification algorithms. IEEE Transactions
on Information Theory, 52(11):4775–4788, 2006.

[17] Cem Tekin and Mingyan Liu. Online algorithms for the multi-armed bandit problem with
markovian rewards. In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1675–1682. IEEE, 2010.

[18] Kailasam Lakshmanan, Ronald Ortner, and Daniil Ryabko. Improved regret bounds for undis-
counted continuous reinforcement learning. In International Conference on Machine Learning,
pages 524–532. PMLR, 2015.

[19] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

[20] Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approxi-
mation and bandit feedback. Advances in Neural Information Processing Systems, 34:10407–
10417, 2021.

[21] Han Zhong, Jiachen Hu, Yecheng Xue, Tongyang Li, and Liwei Wang. Provably efficient ex-
ploration in quantum reinforcement learning with logarithmic worst-case regret. arXiv preprint
arXiv:2302.10796, 2023.

[22] Ronald Ortner and Daniil Ryabko. Online regret bounds for undiscounted continuous rein-
forcement learning. Advances in Neural Information Processing Systems, 25, 2012.

[23] Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation
for markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331,
2008.

[24] Anupam Prakash. Quantum algorithms for linear algebra and machine learning. University
of California, Berkeley, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[25] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In 8th Inno-
vations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 49:1–49:21, Dagstuhl, Germany, 2017.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[26] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014, 1996.

[27] Yanlin Chen and Ronald de Wolf. Quantum algorithms and lower bounds for linear regression
with norm constraints. arXiv preprint arXiv:2110.13086, 2021.

[28] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[29] Joran van Apeldoorn. Quantum probability oracles & multidimensional amplitude estimation.
In 16th Conference on the Theory of Quantum Computation, Communication and Cryptogra-
phy (TQC 2021). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2021.

[30] Arjan Cornelissen, Yassine Hamoudi, and Sofiene Jerbi. Near-optimal quantum algorithms for
multivariate mean estimation. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 33–43, 2022.

[31] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. Contemporary Mathematics, 305:53–74, 2002.

[32] Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu. Sublinear quantum algorithms for train-
ing linear and kernel-based classifiers. 36th International Conference on Machine Learning,
ICML 2019, pages 6784–6804, 2019.

[33] Joran van Apeldoorn and András Gilyén. Quantum algorithms for zero-sum games. arXiv
preprint arXiv:1904.03180, 2019.

[34] Yassine Hamoudi, Patrick Rebentrost, Ansis Rosmanis, and Miklos Santha. Quantum and
classical algorithms for approximate submodular function minimization. Quantum Information
and Computation, 19(15-16):1325–1349, 2019.

[35] Patrick Rebentrost, Yassine Hamoudi, Maharshi Ray, Xin Wang, Siyi Yang, and Miklos San-
tha. Quantum algorithms for hedging and the learning of Ising models. Physical Review A,
103(1):012418, 2020.

[36] Aram W Harrow and Annie Y Wei. Adaptive quantum simulated annealing for bayesian infer-
ence and estimating partition functions. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 193–212. SIAM, 2020.

[37] Patrick Rall and Bryce Fuller. Amplitude estimation from quantum signal processing. Quan-
tum, 7:937, 2023.

[38] Arjan Cornelissen and Yassine Hamoudi. A sublinear-time quantum algorithm for approximat-
ing partition functions. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1245–1264. SIAM, 2023.

[39] Ashley Montanaro. Quantum speedup of monte carlo methods. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 471(2181):20150301, 2015.

[40] Onésimo Hernández-Lerma and Jean B Lasserre. Discrete-time Markov control processes:
basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

[41] Liuhua Chen, Haiying Shen, and Karan Sapra. Distributed autonomous virtual resource man-
agement in datacenters using finite-markov decision process. In Proceedings of the ACM Sym-
posium on Cloud Computing, pages 1–13, 2014.

[42] Mausam Natarajan and Andrey Kolobov. Planning with Markov decision processes: An AI
perspective. Springer Nature, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[43] Karl J Astrom et al. Optimal control of markov processes with incomplete state information.
Journal of mathematical analysis and applications, 10(1):174–205, 1965.

[44] Qiying Hu and Wuyi Yue. Markov decision processes with their applications, volume 14.
Springer Science & Business Media, 2007.

[45] Nicole Bäuerle and Ulrich Rieder. Markov decision processes with applications to finance.
Springer Science & Business Media, 2011.

[46] Eugene A Feinberg and Adam Shwartz. Handbook of Markov decision processes: methods
and applications, volume 40. Springer Science & Business Media, 2012.

[47] Casey C Bennett and Kris Hauser. Artificial intelligence framework for simulating clinical
decision-making: A markov decision process approach. Artificial intelligence in medicine,
57(1):9–19, 2013.

[48] Lauren N Steimle and Brian T Denton. Markov decision processes for screening and treatment
of chronic diseases. Markov Decision Processes in Practice, pages 189–222, 2017.

[49] Renato Cesar Sato and Désirée Moraes Zouain. Markov models in health care. Einstein (São
Paulo), 8:376–379, 2010.

[50] Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J Kappen. Dynamic policy pro-
gramming. The Journal of Machine Learning Research, 13(1):3207–3245, 2012.

[51] Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least
squares policy iteration with provable performance guarantees. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research, pages 511–520. PMLR, 18–24 Jul
2021.

[52] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–
1897. PMLR, 2015.

[53] Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning and indi-
rect algorithms. Advances in neural information processing systems, 11, 1998.

[54] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial intelligence, 121(1-2):49–107, 2000.

[55] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
markov decision processes. arXiv preprint arXiv:1705.07798, 2017.

[56] Naci Saldi, Serdar Yüksel, and Tamás Linder. On the asymptotic optimality of finite approxi-
mations to markov decision processes with borel spaces. Mathematics of Operations Research,
42(4):945–978, 2017.

[57] Ali Devran Kara and Serdar Yuksel. Q-learning for continuous state and action mdps under
average cost criteria. arXiv preprint arXiv:2308.07591, 2023.

[58] Stefan Woerner, Marco Laumanns, Rico Zenklusen, and Apostolos Fertis. Approximate dy-
namic programming for stochastic linear control problems on compact state spaces. European
Journal of Operational Research, 241(1):85–98, 2015.

[59] Robert M. Gray and David L. Neuhoff. Quantization. IEEE transactions on information theory,
44(6):2325–2383, 1998.

[60] Michael Lutter, Shie Mannor, Jan Peters, Dieter Fox, and Animesh Garg. Value iteration in
continuous actions, states and time. arXiv preprint arXiv:2105.04682, 2021.

[61] Arnd Hartmanns and Benjamin Lucien Kaminski. Optimistic value iteration. In International
Conference on Computer Aided Verification, pages 488–511. Springer, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[62] Dimitri P Bertsekas. A new value iteration method for the average cost dynamic programming
problem. SIAM journal on control and optimization, 36(2):742–759, 1998.

[63] Tim Quatmann and Joost-Pieter Katoen. Sound value iteration. In International Conference
on Computer Aided Verification, pages 643–661. Springer, 2018.

[64] Guy Shani, Ronen I Brafman, and Solomon Eyal Shimony. Forward search value iteration for
pomdps. In IJCAI, pages 2619–2624. Citeseer, 2007.

[65] Paul Weng and Bruno Zanuttini. Interactive value iteration for markov decision processes
with unknown rewards. In IJCAI’13-Twenty-Third international joint conference on Artificial
Intelligence, pages 2415–2421. AAAI Press, 2013.

[66] Michael L Littman, Thomas L Dean, and Leslie Pack Kaelbling. On the complexity of solving
markov decision problems. arXiv preprint arXiv:1302.4971, 2013.

[67] Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for ap-
proximate policy and value iteration. Advances in Neural Information Processing Systems, 23,
2010.

[68] Timothy A Mann, Shie Mannor, and Doina Precup. Approximate value iteration with tempo-
rally extended actions. Journal of Artificial Intelligence Research, 53:375–438, 2015.

[69] Damien Ernst, Mevludin Glavic, Pierre Geurts, and Louis Wehenkel. Approximate value it-
eration in the reinforcement learning context. application to electrical power system control.
International Journal of Emerging Electric Power Systems, 3(1), 2005.

[70] Rémi Munos. Performance bounds in lp-norm for approximate value iteration. SIAM journal
on control and optimization, 46(2):541–561, 2007.

[71] Daniela Pucci De Farias and Benjamin Van Roy. On the existence of fixed points for approx-
imate value iteration and temporal-difference learning. Journal of Optimization theory and
Applications, 105:589–608, 2000.

[72] Benjamin Van Roy. Performance loss bounds for approximate value iteration with state aggre-
gation. Mathematics of Operations Research, 31(2):234–244, 2006.

[73] Simon Wiedemann, Daniel Hein, Steffen Udluft, and Christian Mendl. Quantum policy itera-
tion via amplitude estimation and grover search–towards quantum advantage for reinforcement
learning. arXiv preprint arXiv:2206.04741, 2022.

[74] Daochen Wang, Aarthi Sundaram, Robin Kothari, Ashish Kapoor, and Martin Roetteler. Quan-
tum algorithms for reinforcement learning with a generative model. In International Confer-
ence on Machine Learning, pages 10916–10926. PMLR, 2021.

[75] Sofiene Jerbi, Arjan Cornelissen, Māris Ozols, and Vedran Dunjko. Quantum policy gradient
algorithms. arXiv preprint arXiv:2212.09328, 2022.

[76] Aaron Sidford and Chenyi Zhang. Quantum speedups for stochastic optimization. arXiv
preprint arXiv:2308.01582, 2023.

[77] Joan Bas-Serrano, Sebastian Curi, Andreas Krause, and Gergely Neu. Logistic q-learning. In
International Conference on Artificial Intelligence and Statistics, pages 3610–3618. PMLR,
2021.

[78] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, AAAI’10, pages 1607–1612, 2010.

[79] Sean P Meyn. The policy iteration algorithm for average reward markov decision processes
with general state space. IEEE Transactions on Automatic Control, 42(12):1663–1680, 1997.

[80] El Amine Cherrat, Iordanis Kerenidis, and Anupam Prakash. Quantum reinforcement learning
via policy iteration. Quantum Machine Intelligence, 5(2):30, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[81] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization. Quantum,
3:163, 2019.

[82] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-encoded ma-
trix powers: improved regression techniques via faster hamiltonian simulation. arXiv preprint
arXiv:1804.01973, 2018.

[83] Bhargav Ganguly, Yulian Wu, Di Wang, and Vaneet Aggarwal. Quantum computing pro-
vides exponential regret improvement in episodic reinforcement learning. arXiv preprint
arXiv:2302.08617, 2023.

[84] Shaojun Wu, Shan Jin, Dingding Wen, Donghong Han, and Xiaoting Wang. Quantum rein-
forcement learning in continuous action space. arXiv preprint arXiv:2012.10711, 2020.

[85] Owen Lockwood and Mei Si. Reinforcement learning with quantum variational circuit. In Pro-
ceedings of the AAAI conference on artificial intelligence and interactive digital entertainment,
AIIDE’20, pages 245–251, 2020.

[86] Won Joon Yun, Yunseok Kwak, Jae Pyoung Kim, Hyunhee Cho, Soyi Jung, Jihong Park,
and Joongheon Kim. Quantum multi-agent reinforcement learning via variational quantum
circuit design. In 2022 IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS), pages 1332–1335. IEEE, 2022.

[87] Wei Hu, James Hu, et al. Q learning with quantum neural networks. Natural Science,
11(01):31, 2019.

[88] Xiao-Yang Liu and Yiming Fang. Quantum tensor networks for variational reinforcement
learning. networks, 12:16, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A RELATED WORK

In the discounted reward model, Bas-Serrano et al. [77] proposed a logistic Q-learning algorithm,
which is closely related to the relative entropy policy search algorithm [78]. Using a convex loss
function for policy evaluation, the algorithm outputs a sequence of policies whose average quality
approaches that of the optimal policy. Subsequently, Neu and Olkhovskaya [20] incorporated the
algorithm of [77] into their online algorithm to learn MDPs with linear function approximation in
the setting where the reward function is allowed to change adversarily between episodes, obtaining
a Õ(
√
T) regret, where T denotes the number of episodes.

In the average reward model, Meyn [79] studied policy iteration in general (continuous) state spaces.
Their algorithm was shown to output a sequence of policies that satisfy a strong stability condition
and finds an optimal average cost policy under further conditions. Besides that, Ref. [58], under
MDPs with continuous state and action spaces, presented an approximate relative value iteration
algorithm that outputs a sequence of piecewise-linear convex relative value functions, which has
a monotonically non-decreasing lower bound on the average reward. Another work that considers
MDPs with continuous state and action spaces is Ref. [57], which gave a discretization-based ap-
proximation method for MDPs with continuous spaces, accompanied by a detailed error analysis.
They also developed synchronous and asynchronous Q-learning algorithms for continuous spaces
via discretization. In the online learning framework, Auer, Jaksch, and Ortner [19] gave an algo-
rithm to learn MDPs with discrete state and action spaces. Their algorithm achieves aO(

√
T) regret,

where T is the number of time steps. Their work was extended to the continuous setting by Ortner
and Ryabko [22], who gave a Õ(T 3/4) regret bound for 1-dimensional state space and Õ

(
T

2d+1
2d+2

)
when the state space is d-dimensional. The follow-up work of Lakshmanan, Ortner, and Ryabko [18]
improved upon these results, giving a regret of Õ(T 2/3) and Õ

(
T

2+d
3+d
)

in 1 and d-dimensional state
space, respectively.

In the quantum setting, Wiedemann et al. [73] gave a full implementation and simulation of a policy
iteration algorithm that is based on amplitude amplification. Besides numerically showing that the
policy output by their algorithm is close to optimal, they conjectured that a quadratic speedup in the
size of the set of all possible policies as compared to classical Monte Carlo estimation methods is
achievable. Wang et al. [74] gave two quantum algorithms that approximate an optimal policy, the
optimal value function, and the optimal Q-function using quantum mean estimation and quantum
maximum finding. They showed a quadratic improvement over the best possible classical sample
complexities with respect to the approximation error, the effective time horizon, and the size of the
action space. On the other hand, two quantum policy gradient algorithms were developed by Jerbi et
al. [75] to estimate the optimal policy using quantum numerical and analytical gradient estimation
respectively, gaining a quadratic reduction in sample complexity over their classical analogues when
the trained policies satisfy certain conditions. Based on the classical least-squares policy iteration
algorithm [8], Cherrat et al. [80] gave a general framework for quantum reinforcement learning via
policy iteration using block-encoding techniques [81, 82]. They showed that the value functions out-
put by the algorithms in their framework are close to optimal. Finally, the first line of study on explo-
ration in online quantum reinforcement learning was done by Zhong et al. [21] who showed a worst-
case regret guarantee that scales logarithmically in the number of episodes, beating the Ω(

√
T) re-

gret lower bound in classical reinforcement learning. Subsequently, Ganguly et al. [83] gave an
upper-confidence-bound-based quantum algorithm that achieves an exponential improvement in re-
gret and quadratic improvement in the sample complexity as compared to the classical counterparts.
The aforementioned works consider the discounted reward model and MDPs with discrete state and
action spaces. Other related work in the near-term regime includes [84, 85, 86, 87, 88].

B QUANTUM SUBROUTINES

In this section, we restate the quantum subroutines that we use in our paper, starting with quantum
minimum finding by Dürr and Høyer [26].

Fact 1 (Quantum minimum finding [26]). Given quantum access to a vector u ∈ Rn, we can find
umin := mini∈[n] u(i) with success probability 1− δ using O(

√
n log 1

δ) queries and Õ(
√
n log 1

δ)
quantum gates.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The above minimum finding algorithm can be turned straightforwardly into a maximum finding
algorithm. The quantum minimum finding algorithm was later generalized by Chen and de Wolf [27]
for the case when one has quantum access to the entries of u up to some additive error.

Fact 2 (Quantum min-finding with an approximate unitary [27]). Let δ1, δ2 ∈ (0, 1) such that
δ2 = O

(
δ21/(S log(1/δ1))

)
, ϵ > 0, and u ∈ RS . Suppose access to a unitary that maps |s⟩ |0̄⟩ 7→

|s⟩ |Λ(s)⟩ such that, for every s ∈ [S], after measuring the state |Λ(s)⟩, with probability at least
1 − δ2 the first register |ũ(s)⟩ of the measurement outcome satisfies |ũ(s)− u(s)| ≤ ϵ. Then there
is a quantum algorithm that finds an index s such that u(s) ≤ mins′∈S u(s

′) + 2ϵ with probability
at least 1− δ1 and in time Õ(

√
S log(1/δ1)).

The next result is the celebrated Grover’s quantum search algorithm.

Fact 3 (Grover’s search [28]). Let m,n ∈ Z+ such that m < n/2. Given quantum access to an
unsorted database of n elements with m marked elements, there exists a quantum algorithm that
finds a marked element in O(

√
n
m) time.

The next two results are essential to obtain a better regret bound.

Fact 4 (Quantum multidimensional amplitude estimation [21, 29]). Let ϵ, δ ∈ (0, 1). Assume ac-
cess to a probability oracle Up : |0⟩ →

∑n
i=1

√
p(i) |i⟩ |ψi⟩ for any n-dimensional probability

distribution p and ancillary quantum sates {|ψi⟩}ni=1. There exists a quantum algorithm that re-
turns an approximation p̃ of p such that ∥p̃− p∥1 ≤ ϵ with success probability at least 1− δ using
O(nϵ log

n
δ) quantum queries to Up and its inverse.

Fact 5 (Quantum multidimensional mean estimation [21, 30]). Let ϵ, δ ∈ (0, 1). Let X : Ω → Rn

be an n-dimensional bounded variable on a probability space (Ω,p) such that ∥X∥2 ≤ C for
some constant C. Assume access to the probability oracle Up : |0⟩ →

∑
ω∈Ω

√
p(ω) |ω⟩ |ϕω⟩ for

ancillary quantum states {|ϕω⟩}ω∈Ω and a binary oracle UX : |ω⟩ |0⟩ → |ω⟩ |X(ω)⟩ for all ω ∈ Ω.
Then there is a quantum algorithm that outputs an estimate µ̃ of µ = E[X] such that ∥µ̃∥2 ≤ C
and ∥µ̃− µ∥∞ ≤ ϵ with success probability at least 1 − δ using O

(
C
ϵ log n

δ

)
quantum queries to

Up, UX and their inverses.

We tweak the standard quantum norm estimation algorithm [31, 32, 33, 34, 35] to estimate the norm
of a subvector.

Lemma 1 (Quantum norm estimation of a subvector with additive error). Let δ ∈ (0, 1/4) and
ϵ1 ∈ (0, S]. Given a probability vector p ∈ [0, 1]S stored in KPp, assume access to the operation
|s⟩ |0⟩ → |s⟩ |p(s)⟩. Let W ⊆ [S] and define the subvector pW of p whose entries consist of those
in W . There exists a quantum algorithm that outputs an estimate Γ̃W of ∥pW ∥1 :=

∑
s∈W |pW (s)|

such that |Γ̃W −∥pW ∥1| ≤ ϵ with success probability at least 1− δ in time Õ(
√
S
ϵ log 1

δ) and using

the same amount of Õ(
√
S
ϵ log 1

δ) quantum gates.

Proof. Using query access to the probability vector p, create a circuit to prepare the state
1√
S

∑
s∈S |s⟩ |p(s)⟩ |0⟩. Define a good-states-controlled rotation as

Ugood |p(s)⟩ |0⟩ =
{
|p(s)⟩ (

√
p(s) |1⟩+

√
1− p(s) |0⟩) if s ∈W,

|p(s)⟩ |0⟩ if s /∈W. (16)

Perform the controlled-rotation in Eq. (16) to get the state

1√
S

∑
s∈W

|s⟩ |p(s)⟩
(√

p(s) |1⟩+
√
1− p(s) |0⟩

)
+

1√
S

∑
s/∈W

|s⟩ |p(s)⟩ |0⟩

=
1√
S

∑
s∈W

√
p(s) |s⟩ |p(s)⟩ |1⟩+

(
1√
S

∑
s∈W

√
1− p(s) |s⟩ |p(s)⟩+ 1√

S

∑
s/∈W

|s⟩ |p(s)⟩

)
|0⟩

=
√
a |ϕ1⟩ |1⟩+

√
1− a |ϕ0⟩ |0⟩ (17)

for some normalized states |ϕ0⟩, |ϕ1⟩, where a =
∑

s∈W
p(s)
S = ∥pW ∥1

S .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Let Uu be the unitary that prepares the state in Eq. (17) and define the new unitaries U = Uu(I −
2 |0̄⟩ ⟨0̄|)U†

u and V = I − I ⊗ |1⟩ ⟨1|. Nondestructive unbiased amplitude estimation [36, 37, 38]
allows us to obtain an estimate ã of a = ∥pW ∥1

S such that |E[ã]− a| ≤ ϵ20
32 and Var(ã) ≤ 91a

K2 +
ϵ20
32 ,

restoring the initial state with success probability at least 1− ϵ20
32 , using O (K log logK log(K/ϵ0))

expected number of applications of U and V . Setting K > 8
ϵ0

√
91a via exponential search without

knowledge of a, we have

P
[
|ã− E[ã]| ≥ ϵ0

2

]
≤ 4

ϵ20

(
91a

K2
+
ϵ20
32

)
≤ 4

ϵ20

(
ϵ20
64

+
ϵ20
32

)
≤ 1

16
+

1

8
≤ 1

4
.

by Chebyshev’s inequality. The success probability 3/4 is boosted with O(log 1
δ) repetitions to

1− δ/2 via the median of means technique. Hence,

|ã− a| ≤ |ã− E[ã]|+ |E[ã]− a| ≤ ϵ0/2 + ϵ0/2 = ϵ0

with success probability at least 1− 4δ. The quantity Γ̃W := Sã is thus an estimate

|Γ̃W − ∥pW ∥1| = S|ã− a| ≤ Sϵ0 = ϵ.

We set ϵ0 = ϵ/S, which means that setting K > 8S
ϵ

√
91a = 8

ϵ1

√
91∥pW ∥1S is sufficient. This

brings the total runtime toO
(√

S
ϵ log log

√
S
ϵ log S3/2

ϵ2 log 1
δ

)
in expectation. While Ref. [38] proved

a result in expected time, we use the probabilistic result obtained from Markov’s inequality and
repetition at a cost of another factor of O(log 1

δ).

Lastly, we adapt the quantum mean estimation algorithm from [39] to estimate the mean of a vector
with real entries.
Lemma 2 (Quantum mean estimation). Let ϵ > 0 and δ ∈ (0, 1/8). Let u ∈ RS be a nonzero
vector and p ∈ [0, 1]S be a probability vector. Suppose we have access to KPp,KPu and can
make quantum queries in the form |s⟩ |a⟩ |s′⟩ |0⟩ → |s⟩ |a⟩ |s′⟩ |p(s′|s, a)⟩ and |s⟩ |0⟩ → |s⟩ |u(s)⟩.
There exists a quantum algorithm that computes an estimate µ̃ of µ =

∑
s′∈S p(s

′) · u(s′) such that
|µ̃− µ| ≤ ϵ with success probability at least 1− 9δ in time Õ

(∥u∥∞
ϵ log 1

δ

)
.

Proof. Prepare the state
∑

s′∈S
√
p(s′|s, a) |s′⟩ |0̄⟩ using O (log n) queries toOKPp ,O

†
KPp

and ele-
mentary gates. Query OKPu to obtain∑

s′∈S

√
p(s′|s, a) |s′⟩ |u(s′)⟩ |0⟩ . (18)

Throughout this proof, we will use p(s′) to denote p(s′|s, a) for brevity. Define the positive-
controlled rotation such that

UCR+ : |a⟩ |0⟩ →
{
|a⟩ (
√
a |1⟩+

√
1− a |a⟩) if a ∈ [0, 1],

|a⟩ |0⟩ otherwise.

Apply UCR+ on the last two registers in Eq. (18). Using quantum maximum finding to find ∥u∥∞
with sucess probability 1− δ, we obtain

|ψ⟩ =
∑

s′∈S:u(s′)>0

√
p(s′) |s′⟩ |u(s′)⟩

(√
u(s′)

∥u∥∞
|1⟩+

√
1− u(s′)

∥u∥∞
|0⟩

)
+

∑
s′∈S:u(s′)≤0

p(s′) |s′⟩ |u(s′)⟩ |0⟩

=
∑

s′∈S:u(s′)>0

√
p(s′) · u(s′)
∥u∥∞

|s′⟩ |u(s′)⟩ |1⟩

+

 ∑
s′∈S:u(s′)>0

√
p(s′)− p(s′) · u(s′)

∥u∥∞
|s′⟩ |u(s′)⟩+

∑
s′∈S:u(s′)≤0

√
p(s′) |s′⟩ |u(s′)⟩

=
√
µ+ |ϕ1⟩ |1⟩+

√
1− µ+ |ϕ0⟩ |0⟩ ,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where µ+ =
∑

s′∈S:u(s′)>0
p(s′)·u(s′)

∥u∥∞
.

Let Uu be the unitary that creates the state |ψ⟩ and define the new unitaries U = Uu(I−2 |0̄⟩ ⟨0̄|)U†
u

and V = I − I ⊗ |1⟩ ⟨1|. Nondestructive unbiased amplitude estimation [36, 37, 38] allows
us to obtain an estimate ã of a =

∑
s′∈S:u(s′)>0

p(s′)·u(s′)
∥u∥∞

such that |E[ã] − a| ≤ ϵ20
128 and

Var(ã) ≤ 91a
K2 +

ϵ20
128 , restoring the initial state with success probability at least 1 − ϵ20

128 , using
O (K log logK log(K/ϵ0)) expected number of applications of U and V . SettingK > 16

ϵ0

√
91a via

exponential search without knowledge of a, we have

P
[
|ã− E[ã]| ≥ ϵ0

4

]
≤ 16

ϵ20

(
91a

K2
+

ϵ20
128

)
≤ 16

ϵ20

(
ϵ20
256

+
ϵ20
128

)
≤ 1

16
+

1

8
≤ 1

4

by Chebyshev’s inequality. The success probability 3/4 is boosted with O(log 1
δ) repetitions to

1− δ/2 via the median of means technique. Hence,

|ã− a| ≤ |ã− E[ã]|+ |E[ã]− a| ≤ ϵ0/4 + ϵ0/4 = ϵ0/2

with success probability at least 1− 4δ. Hence the quantity µ̃+ := ∥u∥∞ã is an estimate∣∣∣∣∣∣µ̃+ −
∑

s′∈S:u(s′)>0

p(s′) · u(s′)

∣∣∣∣∣∣ ≤ ∥u∥∞|ã− a| ≤ ∥u∥∞ϵ0/2 = ϵ/2.

We set ϵ0 = ϵ/∥u∥∞, which means that settingK > 16∥u∥∞
ϵ

√
91a is sufficient. This brings the total

run time to O
(

∥u∥∞
ϵ log log ∥u∥∞

ϵ log ∥u∥∞
ϵ2 log 1

δ

)
in expectation. While Ref. [38] proved a result

in expected time, we use the probabilistic result obtained from Markov’s inequality and repetition at
a cost of another factor of O(log 1

δ).

We similarly compute the estimate µ̃− of

µ− =
∑

s′∈S:u(s′)≤0

p(s′) · u(s′)
∥u∥∞

up to additive error ϵ
2 with success probability at least 1− 4δ. Now, notice that

µ =
∑
s′∈S

p(s′) · u(s′) =
∑

s′∈S:u(s′)>0

p(s′) · u(s′)
∥u∥∞

−
∑

s′∈S:u(s′)≤0

p(s′) · u(s′)
∥u∥∞

= µ+ − µ−.

Let µ̃ = µ̃+ − µ̃−. Hence, we obtain

|µ̃− µ| = | (µ̃+ − µ+)− (µ̃− − µ−)| ≤ |µ̃+ − µ+|+ |µ̃− − µ−| ≤ ϵ
with success probability at least 1− 9δ.

C VALUE ITERATION

Below, we review some useful facts on the convergence of value iteration which we will use to
prove the convergence of approximate value iteration in the next subsection. In particular, these
results revolve around the limiting behaviour of the sequence

{
e(i)
}

, where

e(i) ≡ u(i) − iρ∗ − h∗.

We use the operator L : RS → RS to denote a single run of value iteration, i.e. u(i+1) = Lu(i)

for any i ∈ Z+. We start with a result on the bounds on the optimal reward and on the optimality
of the policy derived from standard value iteration. We say that a policy π̄ is u-improving if π̄ ∈
argmaxπ∈Π{rπ +Pπu}.
Fact 6 ([1], Theorem 8.5.5). Let L be defined as above, ρ∗ be the optimal average reward and ρπ

∞

be average reward obtained by a deterministic stationary policy π∞ . Then, for all s ∈ S , any
u(0) ∈ V and any u-improving policy π,

min
s∈S
{Lu(s)− u(s)} ≤ ρπ

∞
≤ ρ∗ ≤ max

s∈S
[Lu(s)− u(s)] .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The following result bounds the value of e(i) and shows that u(i)

i converges to the optimal reward
ρ∗ as i→∞.
Fact 7 ([1, Theorem 9.4.1(b)]). For all u(0) ∈ V ,

min
i→∞

u(i)

i
= ρ∗.

C.1 RESULTS ON APPROXIMATE VALUE ITERATION

In this subsection, we restate our results on the limiting behaviour and performance of approximate
value iteration, together with their proofs.

Claim 1. Let ϵ ∈ (0, 1) and fix i ∈ Z≥0. Let u(i+1) be the value function obtained after i steps of
standard value iteration and let ũ(i+1) be its corresponding approximation obtained after i steps of
approximate value iteration. Then

u(i+1) − (i+ 1)ϵe ≤ ũ(i+1) ≤ u(i+1).

Proof. We prove the left-hand side of the inequality by induction. As the base case when i = 1, we
have

ũ(1) ≥ max
a∈A
{rπ + µ̃π} −

ϵ

2
e

≥ max
a∈A

{
rπ +Pπũ

(0) − ϵ

2
e
}
− ϵ

2
e

= max
a∈A

{
rπ +Pπu

(0)
}
− e

= u(1) − e.

Suppose that the induction hypothesis is true for all i = k. Then when i = k + 1,

ũ(k+1) ≥ max
a∈A

{
rπ + µ(k)

π

}
− ϵ

2
e

≥ max
a∈A

{
rπ +Pũ(k) − ϵ

2
e
}
− ϵ

2
e

≥ max
a∈A

{
rπ +Pu(k) − kϵe− ϵ

2
e
}
− ϵ

2
e

= u(k+1) − (k + 1)ϵe.

The right-hand side of the inequality is due to the fact that the actions chosen in approximate value
iteration are at most as good as the ones chosen in standard value iteration, resulting in a ũ(i) value
that is at most u(i). This completes the proof.

Theorem 1. Let ϵ ∈ (0, 1). For all u(0) ∈ V and all s ∈ S,

ρ∗ − ϵe ≤ lim inf
i→∞

ũ(i)

i
≤ lim sup

i→∞

ũ(i)

i
≤ ρ∗.

Proof. By Claim 1, we have

u(i) − iϵe ≤ ũ(i) ≤ u(i).

Dividing throughout by i and taking the limit as i→∞ gives

lim
i→∞

u(i)

i
− ϵe ≤ lim inf

i→∞

ũ(i)

i
≤ lim sup

i→∞

ũ(i)

i
≤ lim

i→∞

u(i)

i
.

By Fact 7, we get

ρ∗ − ϵe ≤ lim inf
i→∞

ũ(i)

i
≤ lim sup

i→∞

ũ(i)

i
≤ ρ∗.

This completes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Theorem 1 implies the following corollary

Corollary 1. Let ϵ ∈ (0, 1) and let π be a policy such that π∞ is average optimal. Theorem 1
implies that

∥ρ∗ −Pπρ
∗∥∞ ≤ ϵ.

Proof. By Claim 1 and by definition of u(i+1),

rπ +Pπu
(i) − (i+ 1)ϵe ≤ ũ(i+1) ≤ u(i+1).

Dividing throughout by i+ 1 and taking the limit as i→∞, we obtain

lim
i→∞

rπ
i+ 1

+Pπ

(
lim
i→∞

u(i)

i+ 1

)
− lim

i→∞

(i+ 1)ϵ

i+ 1
e ≤ lim

i→∞

ũ(i+1)

i+ 1
≤ lim

i→∞

u(i+1)

i+ 1
.

Using Theorem 1 and Fact 7, we have

Pπρ
∗ − ϵe ≤ lim inf

i→∞

ũ(i+1)

i+ 1
≤ lim sup

i→∞

ũ(i+1)

i+ 1
≤ ρ∗,

which is equivalent to
∥Pπρ

∗ − ρ∗∥∞ ≤ ϵ.

We say that a policy π̄ is u-improving if π̄ ∈ argmaxπ∈Π{rπ + Pπu}. The next theorem bounds
the optimal reward for every state s ∈ S.

Theorem 2. Let π be any u-improving policy and ρ∗ ∈ R be the optimal average reward. Let L′ be
a single run of approximate value iteration. Then, the following holds for all s ∈ S:

min
s∈S
{L′u(s)− u(s)} ≤ ρπ

∞
≤ ρ∗ ≤ max

s∈S
{L′u(s)− u(s)}+ ϵ. (19)

Proof. Let L be a single run of standard value iteration. By construction of L and L′, for all s ∈ S,

Lu(s)− u(s)− ϵ ≤ L′u(s)− u(s) ≤ Lu(s)− u(s),

which implies that

min
s∈S
{L′u(s)− u(s)} ≤ min

s∈S
{Lu(s)− u(s)}

and

max
s∈S
{Lu(s)− u(s)} ≤ max

s∈S
{L′u(s)− u(s) + ϵ} .

Given Fact 6, we conclude that for all s ∈ S and any u-improving policy π,

min
s∈S
{L′u(s)− u(s)} ≤ ρπ

∞
≤ ρ∗ ≤ max

s∈S
{L′u(s)− u(s)}+ ϵ.

C.2 EXTENDED VALUE ITERATION

The classical algorithm by [23, Proposition 2] finds the solution µmax(s, a) to the inner maximiza-
tion problem maxp(·)∈P(s,a)

{∑
s′∈S p(s

′) · v(i)(s′)
}

of Eq. (11) in O(S) time. The approach is
to place as much transition probability as possible on the state with the largest value u(s) at the
expense of transition probabilities on states with small u(s). In particular, they first sort the states
according to their values u(s). This takes O(S) time. Then, for the state smax that has the highest
value u(smax), set p(smax) = p̂(smax|s, a)+ d(s,a)

2 . For the remaining states, set p(s′) = p̂(s′|s, a).
Note that p is no longer a probability distribution since

∑
s′∈S p(s

′) = 1 + d(s,a)
2 . The vector p is

then truncated on entries that correspond to states with the smallest values u(s). In particular, an
iterative procedure of setting the entry of p that corresponds to the states with the smallest value
u(s) to p(s) = max

{
0, 1−

∑
s′ ̸=s p(s

′)
}

is carried out. This takes O(S) time.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.3 QUANTUM EXTENDED VALUE ITERATION

We give a quantum algorithm for extended value iteration. Specifically, we first give a quantum
subroutine that outputs an estimate µ̃max(s, a) of µmax(s, a) up to additive accuracy ϵ with success
probability at least 1 − δ in time Õ

(√
S
ϵ log 1

δ

)
. The approach is similar to that of [19, 23]. In

particular, we find the state smax and set p(smax) = p̂(smax) +
d(s,a)

2 . For the remaining states
s′ ∈ S\{smax}, we set p(s′) = p̂(s′|s, a). For the truncation step, we search over the values u(s′)
for a cut-off point c. We call all states s′ ∈ S with value u(s′) ≤ c good states with respect to c. We
require that the transition probabilities of good states with respect to c satisfy∑

s′∈S:u(s′)≤c

p̂(s′|s, a)− d(s, a)

2
≤ ϵgap,

for some small ϵgap ∈ (0, 1). In order to find the cut-off point, we perform a binary search over the
values u(s′) of all s′ ∈ S. At every iteration of the search, we perform ℓ1-norm estimation on the
vector

p̂good(s
′) =

{
p̂(s′|s, a) if s′ is a good state with respect to c,
0 otherwise,

up to additive error ϵnorm. After Õ(logS) iterations, binary search converges to an estimated cut-off
point c̃. We set p(s′) = 0 for all the good states with respect to c̃.

We describe the steps to compute µ̃max(s, a) in Algorithm 2, while the lemma below discusses the
guarantee of Algorithm 2.

Lemma 3. Let ϵ, δ ∈ (0, 1) and umin, umax ∈ R. Consider the setP(s, a) of transition probabilities
that satisfy Eq. (9). Let p̂ ∈ [0, 1]S be a transition probability vector such that p̂ ∈ P and let
u ∈ [umin, umax]

S be a nonzero vector. Given quantum access to the entries of p̂,u that are stored
in KP-trees KPp̂ and KPu respectively, there exists a quantum algorithm that outputs an estimate µ̃
of µ∗ = maxp(·)∈P(s,a)

∑
s′∈S p(s

′) · u(s′) such that |µ̃− µ∗| ≤ ϵ with success probability at least

1− δ. The time complexity is Õ
(√

S
ϵ log 1

δ

)
.

Proof. First, we show that binary search eventually terminates. In particular, we prove that the
search range decreases in every step. Let the search range for iteration t be [low(t), high(t)]. There
are three cases:

• If
∣∣∣Γ̃(t)

≤c −
d(s,a)

2

∣∣∣ ≤ ϵgap, the algorithm returns c(t) and we are done.

• If Γ̃≤c(t) ≥
d(s,a)

2 + ϵgap, then the new search range will be updated to [low(t), c(t)]. We
see that

high(t+1) − low(t+1) = c(t) − low(t) =
high(t) − low(t)

2
− low(t) =

high(t) − low(t)

2
≤ high(t) − low(t)

• If Γ̃≤c ≤ d(s,a)
2 − ϵgap, then the new search range will be updated to [c(t), high(t)]. We see

that

high(t+1) − low(t+1) = high(t) − c(t) = high(t) − high(t) − low(t)

2
=

high(t) − low(t)

2
≤ high(t) − low(t)

Eventually, the condition high(t) − low(t) ≤ ϵdist is met. Next, we show that the following are
equivalent:

(a)
∣∣c(t+1) − c(t)

∣∣ ≤ ϵdist
2 ;

(b)
∣∣∣high(t) − low(t)

∣∣∣ ≤ ϵdist

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 2 Quantum algorithm to compute the inner maximization problem of Eq. (11)
Input: Quantum access to estimates p̂(·|s, a) stored in KPp̂ and KPu, and distance d(s, a) for a

state-action pair (s, a), failure probability δ ∈ (0, 1), errors ϵmean, ϵ
′
mean, ϵnorm, ϵgap, ϵdist ∈ (0, 1).

1: Find umax = max
s′∈S

u(s′), smax = argmax
s′∈S

u(s′) and umin = min
s′∈S

u(s′) with success probability

1− δ
4 using Fact 1.

2: Set p(smax) = p̂(smax|s, a) + d(s,a)
2 and set p(s′) = p̂(s′|s, a) for all s′ ∈ S\{smax}.

3: Set t = 1.
4: Set high(1) = umax, low(1) = umin.
5: while

∣∣∣Γ̃≤c − d(s,a)
2

∣∣∣ > ϵstop and
∣∣c(t+1) − c(t)

∣∣ > ϵdist
2 and

∣∣∣high(t) − low(t)
∣∣∣ > ϵdist do

6: Set c(t) = low(t) +
(

high(t)−low(t)

2

)
.

7: Compute the estimate Γ̃≤c(t) of
∑

s′:p(s′)≤c(t) p̂(s
′|s, a) using Lemma 1 with additive error

ϵnorm and success probability 1− δ
4 log S .

8: if Γ̃≤c(t) ≥
d(s,a)

2 + ϵgap then
9: Set high(t+1) = c(t), low(t+1) = low(t).

10: t = t+ 1.
11: else if Γ̃≤c ≤ d(s,a)

2 − ϵgap then
12: Set low(t+1) = c(t), high(t+1) = high(t).
13: t = t+ 1.
14: else
15: Return c(t).
16: end if
17: end while
18: Find the state s̄ = argmins′∈S

{
u(s′) ≥ c(t)

}
using Fact 3. If there exist i, j ∈ [S] where i ̸= j

such that u(si) = u(sj), then either one of them will be returned.
19: Compute the estimates µ̃, µ̃≤c(t) such that∣∣∣∣∣µ̃−∑

s′∈S
p̂(s′|s, a) · u(s′)

∣∣∣∣∣ ≤ ϵmean∣∣∣∣∣∣µ̃≤c(t) −
∑

s′:(s′)≤c(t)

p̂(s′|s, a) · ui(s′)

∣∣∣∣∣∣ ≤ ϵ′mean,

each with success probability 1− δ
4 using Lemma 2.

20: Set p(s̄) = Γ̃≤c − d(s,a)
2 .

Output: µ̃max = µ̃− µ̃≤c(t) +
d(s,a)

2 · umax + p(s̄) · u(s̄).

(Case 1): Γ̃≤c(t) ≥
d(s,a)

2 + ϵstop

∣∣∣c(t+1) − c(t)
∣∣∣ ≤ ϵdist

2

⇔

∣∣∣∣∣low(t+1) +
high(t+1) − low(t+1)

2
− c(t)

∣∣∣∣∣ ≤ ϵdist

2

⇔

∣∣∣∣∣low(t) − c(t) − low(t)

2
− c(t)

∣∣∣∣∣ ≤ ϵdist

2

⇔

∣∣∣∣∣ low(t)

2
− c(t)

2

∣∣∣∣∣ ≤ ϵdist

2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

⇔

∣∣∣∣∣ low(t)

2
− high(t)

2

∣∣∣∣∣ ≤ ϵdist

2

⇔
∣∣∣high(t) − low(t)

∣∣∣ ≤ ϵdist.

(Case 2): Γ̃≤c(t) ≤
d(s,a)

2 − ϵstop ∣∣∣c(t+1) − c(t)
∣∣∣ ≤ ϵdist

2

⇔

∣∣∣∣∣low(t+1) +
high(t+1) − low(t+1)

2
− c(t)

∣∣∣∣∣ ≤ ϵdist

2

⇔

∣∣∣∣∣c(t) + high(t) − c(t)

2
− c(t)

∣∣∣∣∣ ≤ ϵstop

2

⇔

∣∣∣∣∣high(t) − c(t)

2

∣∣∣∣∣ ≤ ϵdist

2

⇔

∣∣∣∣∣high(t) − low(t)

2

∣∣∣∣∣ ≤ ϵdist

2

⇔
∣∣∣high(t) − low(t)

∣∣∣ ≤ ϵdist.

Now, we prove the correctness of Algorithm 2. After exiting the while loop, a cut-off point c(t) is
obtained. We denote the cut-off point as c for brevity. Then, we can bound

|µ̃max(s, a)− µmax(s, a)|

=

∣∣∣∣µ̃− µ̃≤c +
d(s, a)

2
· umax + p(s̄) · u(s̄)− µmax(s, a)

∣∣∣∣
≤

∣∣∣∣∣∣µ̃− µ̃≤c +
d(s, a)

2
· umax −

∑
s′∈S

p̂(s′|s, a) · u(s′)−
∑

s′∈S:u(s′)≤c

p̂(s′|s, a) · u(s′) + d(s, a)

2
· umax + p(s̄) · u(s̄)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣µ̃−
∑
s′∈S

p̂(s′|s, a) · u(s′)− µ̃≤c +
∑

s′∈S:u(s′)≤c

p̂(s′|s, a) · u(s′)

∣∣∣∣∣∣
≤

∣∣∣∣∣µ̃−∑
s′∈S

p̂(s′|s, a) · u(s′)

∣∣∣∣∣+
∣∣∣∣∣∣µ̃≤c −

∑
s′∈S:u(s′)≤c

p̂(s′|s, a) · u(s′)

∣∣∣∣∣∣
≤ ϵmean + ϵ′mean.

Setting ϵmean = ϵ′mean = ϵ
2 yields the desired bound. A union bound of all steps in the algorithm

succeeding leads to the state total success probability.

For the time complexity, finding umax, umin, smax takes O(
√
S log 1

δ) time by quantum minimum
finding. At every iteration of the binary search, we use quantum norm estimation to approximately
compute norm of the transition probability vector on entries that correspond to the good states,
which takes O

(√
S

ϵnorm
log 1

δ

)
time. Furthermore, it is known that binary search finds a target solution

after O(logS) iterations. Considering that an additive error of ϵnorm is incurred at the end of every
iteration of binary search, the run time of binary search suffers an extra O

(
log 1

ϵnorm

)
overhead. The

desired c̃ is obtained after Õ(logS) iterations of binary search, after which we perform quantum
mean estimation on the good states with respect to c̃. This takes time Õ

(
1

ϵmean
log 1

δ

)
. In total, the

run time of Algorithm 2 is

Õ

(√
S

(
1

ϵnorm
+

1

ϵmean

)
log

1

δ

)
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 3 Quantum extended value iteration
Input: Quantum access to estimates p̂(·|s, a) stored in KPp̂ and KPu, distance d(s, a) for a state-

action pair (s, a), failure probability δ ∈ (0, 1), u ∈ RS , error ϵ ∈ (0, 1).
1: Set i = 0.
2: Initialize u(0)(s) = 0 for all s ∈ S.
3: for all s ∈ S do
4: Let q(i+1)(s, a) = r̂(s, a)+ d(s, a)+ µ̃max(s, a), where µ̃max(s, a) is evaluated by running

Algorithm 2 with additive error ϵ
2 and success probability 1− δπ2

48S(i+1)2 using Lemma 3.

5: ũ(i+1)(s) ← Obtain max
a∈A

{
q(i+1)(s, a)

}
with additive error ϵ and success probability 1 −

δπ2

48S(i+1)2 using Fact 2.
6: end for
7: Update KPu.
8: Find u(i+1)

max and u(i+1)
min using Fact 1 with success probability 1− δπ2

24 .

9: while max
s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}
−min

s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}
> ϵ do

10: Set i = i+ 1.
11: Repeat Lines 3-8.
12: end while
13: for doall s ∈ S
14: Find π̃(i)(s) =

{
a ∈ A : q(s, a) ≥ max

a∈A
q(s, a)− ϵ

}
.

15: end for
Output: ũ(i+1), π̃.

Setting ϵmean = ϵnorm = ϵ
2 yields a total run time of Õ

(√
S
ϵ log 1

δ

)
.

Now, we propose the quantum extended value iteration algorithm. At every iteration, this algorithm
uses Algorithm 2 as a subroutine to compute the inner maximization of Eq. (11). It then uses a
generalization of minimum finding to obtain the value function for every state s ∈ S . The steps of
the quantum extended value iteration algorithm are detailed in Algorithm 3.

The lemma below states the guarantees of one iteration of quantum extended value iteration.
Lemma 4 (Guarantees of one iteration of quantum extended value iteration). Let ϵ, δ ∈ (0, 1). Fix
i ∈ Z≥0. Given access to estimated rewards r̂(s, a), estimated maximum mean value µ̃max(s, a) and
distance d(s, a) for a state-action pair, there exists a quantum algorithm that outputs an estimate
ũ(i+1)(s) of the solution u(i+1)(s) to Eq. (11) such that ũ(i+1)(s) ≥ u(i+1)(s) − ϵ with success

probability at least 1− δ for all s ∈ S. This requires Õ
(

S1.5
√
A

ϵ log 1
δ

)
time.

Proof. We first analyze the correctness of Algorithm 3 for every s ∈ S . By Lemma 3, Algorithm 2
returns µ̃max(s, a) such that

|µ̃max(s, a)− µmax(s, a)| ≤
ϵ

2
.

Then by Fact 2, we get an estimate ũ(s) such that

ũ(s) ≥ u(s)− ϵ,
where u(s) is defined as in Eq. (5). A union bound of all steps in the algorithm succeeding leads to
a total success probability of 1− δ.

Now, we analyze the time complexity of the algorithm. For every s ∈ S , we find the maximum
of q(s, a) over all a ∈ A in Algorithm 3. This takes Õ

(√
A
ϵ log 1

δ

)
time. For every run of the

maximum finding in Line 5, we run Algorithm 2 to find µ̃max(s, a) in Õ
(√

S
ϵ log 1

δ

)
time. The

run time till Line 6 is therefore O
(
S1.5
√
A log 1

δ

)
. Finding umax and umin takes O(

√
S log 1

δ)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

time. Therefore, the total amount of time for a single run of quantum extended value iteration is
Õ
(

S1.5
√
A

ϵ log 1
δ

)
.

Before proceeding to proving convergence for quantum extended value iteration, we show that the
policy chosen by the algorithm is always a policy with aperiodic transition matrix. Ref. [19] argued
that extended value iteration always chooses a policy with aperiodic transition matrix. In particular,
define set E and F as follows

E = {π ∈ Π : Pπρ
∗ = ρ∗} , F = {π ∈ Π : Pπ is aperiodic} . (20)

Then, there exists an i0 such that for all i ≥ i0,

max
π∈Π

{
rπ +Pπu

(i)
}
= max

π∈E∩F

{
rπ +Pπu

(i)
}
.

Since quantum extended value iteration is erroneous, we replace the set E by

E′ = {π ∈ Π : ∥Pπρ
∗ − ρ∗∥∞ ≤ ϵ} (21)

and use the same argument as [19] to show that the same policy choice holds.

Lemma 6. Let Π be the set of all policies and let µ̃π be defined as in Eq. (6). Let {ũ(i)} be a
sequence generated by Algorithm 3 and let E′, F be defined as in Eqs. (20) and (21). Then, there
exists an i0 ∈ Z+ such that for all i ≥ i0,

max
π∈Π
{rπ + µ̃(i)

π } = max
π∈E′∩F

{rπ + µ̃(i)
π }.

Proof. Since there are only finitely many deterministic policies with aperiodic transition probabili-
ties [1], there exists an i0 and a set Π′ such that for i ≥ i0, argmax

π∈Π

{
rπ + µ̃(i)

π − ϵe
}
∈ Π′. Choose

a π′ ∈ Π′. Then, there exists a subsequence
{
ũ(ik)

}
such that

ũ(ik+1) = rπ′ + µ̃
(i)
π′ − ϵ ≥ u(ik+1) − (ik + 1)ϵe

by Claim 1. Dividing both sides of the equality by ik + 1 and letting k →∞, we get

ρ∗ ≥ lim sup
k→∞

ũ(ik+1)

ik + 1
≥ lim

k→∞

ũ(ik+1)

ik + 1
≥ lim

k→∞

u(ik+1) − (ik + 1)ϵe

ik + 1
= ρ∗ − ϵe = Pπ′ρ∗ − ϵe

where the first inequality is due to Theorem 1, the second last equality follows from Fact 7 and the
last inequality follows from the implication of Fact 7. On the other hand,

ũ(ik+1) = rπ+µ̃(i)
π − ϵ ≤ u(ik+1)

by Claim 1. Dividing both sides of the equality by ik + 1 and letting k →∞, we get

ρ∗ − ϵe ≤ lim inf
k→∞

ũ(ik+1)

ik + 1
≤ lim

k→∞

ũ(ik+1)

ik + 1
≤ lim sup

k→∞

ũ(ik+1)

ik + 1
≤ lim

k→∞

rπ′ +Pπ′u(ik)

ik + 1
= Pπ′ρ∗.

Therefore, π′ ∈ E′ ∩ F .

Next, we define a J-stage span contraction as follows.
Definition 5 (J-stage span contraction). Let 0 ≤ µ < 1 and u,v ∈ V . Denote the span of a vector
v as

sp(v) = max
s∈S
{v(s)} −min

s∈S
{v(s)} .

For some positive integer J , we say that an operator L : V → V is a J-stage span contraction if L
satisfies

sp
(
LJu− LJv

)
≤ νsp (u− v) .

In the following lemma, we show that Algorithm 3 will eventually terminate.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Lemma 7. Let ϵ, ϵ′ ∈ (0, 1). There exists some positive integer k such that L′ satisfies

max
s∈S

{
ũ(k+1)(s)− ũ(k)(s)

}
−min

s∈S

{
ũ(k+1)(s)− ũ(k)(s)

}
≤ σ,

where σ = ϵ′ + 2iJϵ.

Proof. First, notice that by Claim 1,

L′v(s)− L′u(s) ≤ Lv(s)− Lu(s) + ϵ

for all s ∈ S. Taking the maximum on both sides gives

max
s∈S
{L′v(s)− L′u(s)} ≤ max

s∈S
{Lv(s)− Lu(s)}+ ϵ. (22)

Again by Claim 1, we have

L′v(s)− L′u(s) ≥ Lv(s)− ϵ− Lu(s)

for all s ∈ S. Taking the minimum on both sides gives

min
s∈S
{L′v(s)− L′u(s)} ≥ min

s∈S
{Lv(s)− Lu(s)} − ϵ. (23)

Combining Eqs. (22) and (23), we have for some positive integer J ,

sp
(
L′u(J) − L′v(J)

)
= max

s∈S

{
L′u(J)(s)− L′v(J)(s)

}
−min

s∈S

{
L′u(J)(s)− L′v(J)(s)

}
≤ max

s∈S

{
Lv(J)(s)− Lu(J)(s)

}
−min

s∈S

{
Lv(J)(s)− Lu(J)(s)

}
+ 2Jϵ

= sp
(
Lv(J) − Lu(J)

)
+ 2Jϵ

= sp
(
LJu− LJv

)
+ 2Jϵ

≤ νsp (u− v) + 2Jϵ,

where 0 ≤ ν < 1 and the last inequality is due to the fact that L is a J-stage span contraction [1].
By setting v = u(0) and u = Lu(0), we get

sp
(
ũ(iJ+1) − ũ(iJ)

)
≤ νisp

(
u(1) − u(0)

)
+ 2iJϵ ≤ ϵ′ + 2iJϵ,

where the last inequality is due to [1, Theorem 8.5.2(b)]. Setting σ = ϵ′ + 2iJϵ completes the
proof.

Now, we are ready to prove the convergence of Algorithm 3.

Theorem 3 (Convergence of quantum extended value iteration). Let ϵ, δ ∈ (0, 1). LetM be the set
of all MDPs with state space S, action spaceA, transition probabilities p̃(·|s, a), and mean rewards
r̃(s, a) that satisfy Eq.(9) and (10) for given probability distributions p̂(·|s, a), values r̂(s, a) ∈
[0, 1], d(s, a) > 0, and d′(s, a) ≥ 0. IfM contains at least one communicating MDP, Algorithm 3
satisfies

ρ∗ − ϵe ≤ lim
i→∞

ũ(i)

i
≤ ρ∗.

Furthermore, terminating Algorithm 3 when

max
s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}
−min

s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}
≤ ϵ,

the greedy policy with respect to ũ(i) is ϵ-optimal.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. By Lemma 6, the optimal policy π∗ has aperiodic transition matrix. ReplacingE withE′∩F ,
u(i) with ũ(i) and using Lemma 6 instead of Lemma 9.4.3, the proof of [1, Theorem 9.4.4] follows
by the aperiodicity of Pπ from Lemma 6. By Theorem 1, we showed that the value of ũ(i)

i is
bounded between ρ∗ − ϵe and ho as i→∞.

Now, we prove the error bound. Define

ρ′ =
1

2

[
max
s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}
+min

s∈S

{
ũ(i+1)(s)− ũ(i)(s)

}]
By the same approach as [1], observe that if a ≤ b ≤ c for a, b, c ∈ R and c− a < ϵ, then

ϵ

2
<
a− c
2
≤ b− a+ c

2
≤ c− a

2
<
ϵ

2
.

By Theorem 2, setting ũ = ũ(i), we get

|ρ′ − ρ∗| ≤ ϵ

2
,
∣∣∣ρ′ − ρπ∞

∣∣∣ ≤ ϵ

2
.

By triangle inequality,∣∣∣ρπ∞
− ρ∗

∣∣∣ = ∣∣∣ρπ∞
− ρ′ + ρ′ − ρ∗

∣∣∣ ≤ |ρ′ − ρ∗|+ ∣∣∣ρ′ − ρπ∞
∣∣∣ ≤ ϵ.

D QUANTUM-ACCESSIBLE ENVIRONMENTS

In order to access the MDPs, we assume access to a quantum sampling oracle for the transition prob-
abilities, a quantum oracle for the rewards and a quantum policy evaluation oracle (see Definitions 2
to 4). Using these oracles, we describe a Classical Sampling via Quantum Access (CSQA) [21]
procedure in Algorithm 4.

Algorithm 4 Classical sampling via quantum access
Input: Policy π, time step t

1: Prepare ϕ̃(1) := |x(1)⟩.
2: for t′ = 1, 2, · · · , t− 1 do
3: Query OX on |ϕ̃(t′)⟩ |0̄⟩ to compute |ϕ(t′)⟩ := OX |ϕ̃(t

′)⟩ |0̄⟩.
4: Query Oπ on |ϕ(t′)⟩ |0̄⟩ to compute |ϕ′(t′)⟩ := Oπ |ϕ(t

′)⟩ |0̄⟩.
5: Query Op on |ϕ′(t′)⟩ |0̄⟩ and collect the fourth register as |ϕ̃(t′+1)⟩.
6: end for
7: Query OX on |ϕ̃(t)⟩ |0̄⟩ to compute |ϕ(t)⟩ := OX |ϕ̃(t)⟩ |0̄⟩.
8: Measure the resulting state in the standard basis of S.

Lemma 5. Given a policy π and an integer t ∈ Z+. Let d(t)π be the probability distribution over
states s ∈ S at step t according to π. Suppose we have access to oracle Op , then there exists a
quantum algorithm that outputs a sample of s ∼ d(t)π in time O(t).

Proof. We slightly modify the CSQA algorithm by [21]. Starting with |ϕ̃(1)⟩ = |x(1)⟩, CSQA per-
forms a discretization to produce |ϕ(t′)⟩, followed by a quantum evaluation of π on |ϕ(t′)⟩ to produce
|ϕ′(t′)⟩. Then, the algorithm queries Op on |ϕ′(t′)⟩ and obtains the fourth register as |ϕ̃(t′+1)⟩. If

|ϕ̃(t
′)⟩ =

∫
x

√
d
(t′)
π (x) |x⟩ ,

then by Eq. (12), the fourth register of Op |ϕ′(t
′)⟩ |0⟩ is

|ϕ̃(t
′+1)⟩ =

∫
x

√
d
(t′+1)
π (x) |x⟩ .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

This can be seen from the fact that

|ϕ′(t
′)⟩ |0⟩ =

∫
x

√
d
(t′)
π (x) |x⟩ |s⟩ |a⟩ |0⟩

O
p(t)−−−→

∫
x,x′

√
d
(t′)
π (x)p (x′|s, a) |x⟩ |s⟩ |a⟩ |x′⟩ .

Therefore, the fourth register is∫
x′

√∫
x

d
(t′)
π (x)p (x′|s, a) |x′⟩ =

∫
x′

√
d
(t′+1)
π (x′) |x′⟩ = |ϕ̃(t

′+1)⟩ .

Querying OX on |ϕ̃(t′+1)⟩ and measuring |ϕ̃(t)⟩ gives a classical sample s(t) ∼ d
(t)
π by induction.

E PROOF OF THEOREM 4

In this section, we prove the regret bound in Theorem 4.

E.1 SPLITTING IN EPISODES

Let nk(s, a) denote the number of times action a is chosen in episode k when being in state repre-
sented by s. Let the regret in episode k be

∆k :=
∑
s∈S

∑
a∈A

nk(s, a) (ρ
∗ − r(s, a)) . (24)

As in Section 5.2.2 of [18] (cf. Section 5.1 of [22] and Section 4.1 of [19]), with probability at least
1− δ

12T 5/4 , the regret of Algorithm 1 is upper bounded by√
5

8
T log

(
8T

δ

)
+
∑
k

∆k. (25)

E.2 FAILING CONFIDENCE INTERVAL

In this subsection, we consider the regret when the true MDP is not contained in the set of plausible
MDPs. As mentioned in the previous section, the estimates r̂(x, a) and p̂aggk (x, a) are computed
using their respective samples on the discretized state-action pair (s, a).

Rewards Using the algorithm in Fact 4, one can obtain an estimate r̂(x, a) of E [r̂(x, a)] such that

|r̂(x, a)− E [r̂(x, a)]| ≤
√
SA

max{1, Nk(s, a)}
with success probability at least 1 − δ

24T 5/4 using Õ(max{1, Nk(s, a)}) calls to Or. Combining
with Eq. (3), we have for all s ∈ S, a ∈ A

|r(x, a)− r̂(x, a)| ≤ LS−α +

√
SA

max{1, Nk(s, a)}
(26)

with success probability at least 1− δ
24T 5/4 .

Transition probabilities Using the algorithm in Fact 4, one obtains an estimate p′ agg(·|x, a) of
p̂agg(·|x, a) such that

∥p̂agg(·|x, a)− E [p̂agg(·|x, a)]∥1 ≤
S

Nk(s, a)

with success probability at least 1− δ
24T 5/4 [21] using Õ (Nk(s, a)) calls to Op(t) . Combining with

Eq. (4), we have for all a ∈ A and Ij for j ∈ [n],

∥pagg(·|x, a)− p̂agg(·|x, a)∥1 ≤ LS
−α +

S

Nk(s, a)
(27)

with success probability at least 1− δ
24T 5/4 .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Regret when confidence interval fail Ref. [19] gave a regret bond for the case when the true
MDP is not contained in the set of plausible MDPs. They showed that∑

k

∆k1Mk /∈Mk
≤
√
T (28)

with probability at least 1 − δ
12T 5/4 . This bound was also used by [18, 22]. In our case, the this

regret bound holds with the same probability.

E.3 REGRET IN EPISODES WITH M ∈Mk

We now analyze the regret when the true MDP M lies in set of plausible MDPs. Note that by the
ϵ√
T

-optimal choice of π̃k, it holds that ρ̃∗k := ρ∗
(
M̃k

)
≥ ρ∗ − ϵ√

T
. Therefore,

ρ∗ − r(x, a) ≤ (ρ̃∗k − r̃k(x, a)) + (r̃k(x, a)− r(x, a)) +
ϵ√
T
,

By Eqs. (13), (24) and (26), we have

∆k ≤
∑
x

nk(x, π̃k(x))(ρ̃
∗
k − r̃k(x, π̃k(x))) + 2LS−1τk + 2

√
SA

∑
s∈S

∑
a∈A

nk(s, a)

Nk(s, a)
+

ϵ√
T

∑
x

nk(x, π̃(x)),

(29)

where we abuse the notation nk(x, π̃(x)) := nk(s, a) for s that represents x and τk := tk+1 − tk
denotes the length of episode k.

Dealing with the transition functions The term
∑
x

nk(x, π̃(x))(ρ̃
∗
k − r̃k(x, π̃(x)) can be ana-

lyzed similar to Section 5.2.4 of [18] and Section 5.1 of [22]. Namely, let λ̃k := λ(π̃k, ·) be the bias
function of policy π̃k in the optimistic MDP M̃k. By the Poisson equation,

ρ̃∗k − r̃k(x, π̃k(x))

=

∫
X
p̃k(dx

′|x, π̃k(x)) · λ̃k(x′)− λ̃k(x)

=

∫
X
p(dx′|x, π̃k(x)) · λ̃k(x′)− λ̃k(x) +

∫
X
(p̃k(dx

′|x, π̃k(x))− p(dx′|x, π̃k(x))) · λ̃k(x′).

(30)

The last term in Eq. (30) can be bounded by

p̃k(·|x, a)− p(·|x, a) = (p̃k(·|x, a)− p̂k(·|x, a)) + (p̂k(·|x, a)− pk(·|x, a))

≤ 2LS−α + 2
S

Nk(s, a)

using Eqs. (14) and (27). This gives∑
x

nk(x, π̃k(x))

∫ (̃̃
pk(dx

′|x, π̃k(x))− p(dx′|x, π̃k(x))
)
λ̃k(x

′)

≤ 2HS
∑
s∈S

∑
a∈A

nk(s, a)

Nk(s, a)
+ 2HLS−1τk. (31)

For the first term in Eq. (30), the same result from Equation (29) of [18] and Equation(18) of [22]
holds with probability at least 1− δ

12T 5/4 , i.e.∑
k

∑
x

nk(x, π̃k(x))

(∫
p(dx′|x, π̃k(x)) · λ̃k(x′)− λ̃(x)

)

≤ H
√

5

2
T log

8T

δ
+HSA log

8T

nA
. (32)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E.4 TOTAL REGRET

As in Ref. [22, 18, 19], main regret term in the MDP comes from a sum over all confidence intervals
in the visited state-action pairs. In order to bound this term, we rove the following lemma.
Lemma 8. For any sequence of positive numbers z1, · · · , zn with 0 ≤ zk ≤ Zk−1 :=

max{1,
k−1∑
i=1

zi},

n∑
k=1

zk
Zk−1

≤ 2

log 2
logZn

Proof. By Lemma 2 of [18], we have
n∑

k=1

zk

Z1−α
k−1

≤ Zα
n

2α − 1

for any α ∈ (0, 1]. Also, notice that for α ∈ (0, 1],
n∑

k=1

zk
Zk−1

≤
n∑

k=1

zk

Z1−α
k−1

≤ Zα
n

2α − 1
.

It suffices to find the value of α that minimizes Zα
n

2α−1 . Taking the derivative of Zα
n

2α−1 with respect to
α and letting it be 0, we get

−Zα
n (−2α logZn + logZn + 2α log 2) = 0

2α logZn − 2α log 2 = logZn

2α (logZn − log 2) = logZn

2α =
logZn

logZn − log 2

α = log2

(
logZn

logZn − log 2

)
.

Then,

n∑
k=1

zk
Zk−1

≤ Z
log2(

log Zn
log Zn−log 2)

n

logZn

logZn−log 2 − 1
=

(logZn − log 2)Z
log2(

log Zn
log Zn−log 2)

n

log 2
=

log(Zn/2)

log 2
Z

log2(
log Zn

log(Zn/2))
n

=
log(Zn/2)

log 2

(
2log2 Zn

)log2(
log Zn

log Zn−log 2) =
log(Zn/2)

log 2

(
logZn

log(Zn/2)

)log2 Zn

=
log(Zn/2)

log 2

(
log(Zn/2) + log 2

log(Zn/2)

)log2 Zn

=
log(Zn/2)

log 2

(
1 +

log 2

log(Zn/2)

)log2 Zn

≤ log(Zn/2)

log 2

(
10

log 2
log(Zn/2)

)log2 Zn

=
log(Zn/2)

log 2

(
10log 2

) log zn
log(Zn/2) ≤ 2

log 2
logZn.

where the first inequality uses the fact that log(1 + x) ≤ x and the last inequality is due for the
first inequality and the fact that log x is monotonically increasing for x ∈ R+. for the second
inequality.

We note that a generalized version of Lemma 8 is given in Lemma 2 of [18]. However, the authors
claimed that their lemma holds for all α ∈ [0, 1], which is not the case.

We now bound the total regret. Summing up ∆k over all episodes with M ∈ Mk, we obtain, by
Eqs. (29) to (32),∑

k

∆k1M∈Mk

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

≤ 2LS−1τk + 2
√
nA
∑
k

∑
s∈S

∑
a∈A

nk(s, a)

Nk(s, a)
+H

√
5

2
T log

8T

δ
+HSA log

8T

SA

+ 2HS
∑
k

∑
s∈S

∑
a∈A

nk(s, a)

Nk(s, a)
+ 2HLS−ατk +

ϵ√
T

∑
k

∑
s∈S

∑
a∈A

nk(s, a) (33)

Notice that by definition, τk ≤ T and by Lemma 8, we have∑
k

∑
s∈S

∑
a∈A

nk(s, a)

Nk(s, a)
≤ 2

log 2

∑
s∈S

∑
a∈A

log(N(s, a)) ≤ 2

log 2
log(SAT)

due to Jensen’s inequality, the definition N(s, a) :=
∑
k

nk(s, a) such that
∑
s∈S

∑
a∈A

N(s, a) =

T [19]. Then, from Eq. (33), we have∑
k

∆k1M∈Mk
≤ 2LTS−α +

4

log 2

√
SA log(SAT) +H

√
5

2
T log

8T

δ
+HSA log

8T

SA

+
4

log 2
HS log(SAT) + 2HTLS−α + ϵ

√
T . (34)

E.5 TOTAL REGRET

By Eqs. (25), (28) and (34), we have∑
k

∆k =
∑
k

∆k1Mk /∈Mk
+
∑
k

∆k1Mk∈Mk
+

√
5

8
T log

8T

δ

≤
√
T + 2LTS−α +

4
√
SA

log 2
log(SAT) +H

√
5

2
T log

8T

δ
+HSA log

8T

SA

+
4

log 2
HS log(SAT) + 2HTLS−α + ϵ

√
T ++

√
5

8
T log

8T

δ

≤ 2(H + 1)LTS−α + (14 + 15H)SA log
SAT

δ
+ (2H + 3)

√
T log

SAT

δ
(35)

with probability at least 1− δ
4T 5/4 . Since

∞∑
T=2

δ

4T 5/4
< δ, a union bound over all possible values of

T gives∑
k

∆k ≤ 2(H + 1)LTS−α + (14 + 15H)SA log
SAT

δ
+ (2H + 3)

√
T log

SAT

δ

with probability at least 1− δ.
Remark 1. The general d-dimensional case is almost similar the 1-dimensional case, with the
only difference being that the discretization now has nd states. Replacing S with Sd and setting
S = T

1
1+2dα bounds the regret by Õ

(
T

1
1+dα

)
when dα < 1 and Õ(

√
T) when dα ≥ 1.

32

	Introduction
	Preliminaries
	Markov decision processes
	Discretization of state space

	Value iteration
	Approximate value iteration
	Extended value iteration

	Quantum algorithm for online learning MDPs
	Quantum-accessible environments

	Discussion and conclusion
	Related work
	Quantum subroutines
	Value iteration
	Results on approximate value iteration
	Extended value iteration
	Quantum extended value iteration

	Quantum-accessible environments
	Proof of Theorem 4
	Splitting in episodes
	Failing confidence interval
	Regret in episodes with
	Total regret
	Total regret

