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ABSTRACT

We propose a novel quantum online algorithm for learning Markov Decision Pro-
cesses (MDPs) with continuous state space in the average reward model. Our
algorithm is based on the line of work on classical online UCCRL algorithms
by Ortner and Ryabko (NeurIPS’12). To the best of our knowledge, our work
is the first to consider MDPs with continuous state space in the fault-tolerant
quantum setting. In the case where the state space is one-dimensional and the
MDP’s rewards and transition probabilities are assumed to be Lipschitz, we
show that, via quantum-accessible environments, our quantum algorithm obtains a
O(T"/?) regret, improving upon the O(7?/) bound of Lakshmanan, Ortner, and
Ryabko (PMLR’15), where T is the number of iterations of the algorithm. With-
out the Lipschitz assumption, a regret bound of O (Tl/ (1“")) is obtained when
0 < a < 1 and when a > 1, the regret is O(ﬁ ). For a general d-dimensional
state space, the regret is bounded by O(T"/(1+4%)) when dow < 1 and O(\/T)
when da > 1. Our quantum algorithm uses quantum extended value iteration as
a subroutine, which is our second main contribution, and may be of independent
interest. We show that quantum extended value iteration achieves a subquadratic
speedup in the size of the discretized state space S and a quadratic speedup in
the size of the action space A, as compared to its classical counterpart. As our
third contribution, we study the limiting behaviour of the sequence of value func-
tions generated by quantum extended value iteration. We show that the sequence
converges to the optimal average reward p* up to € additive error, for some small
€ > 0.

1 INTRODUCTION

Markov decision processes. Markov Decision Processes (MDPs) [1]] serve as a foundational
framework for modeling decision-making in a wide array of dynamic and uncertain environments.
Developed within the realm of stochastic control and mathematical optimization, MDPs provide a
systematic and rigorous approach to understanding and solving sequential decision problems. An
MDP models the interaction between an agent and the reinforcement learning environment. In-
formally, it consists of a set X’ of states, a set .4 of actions, a transition model P describing the
probability of moving from one state to another after taking an action and a reward function 7.
At any time step, the agent in a particular state () € X chooses an action a(*) € A, obtains
a reward 7(z(*),a®), and moves to a new state z(**1) according to some probability distribution
p(z*+D]2® a®). The goal in an MDP is to find a policy  — a mapping from states to actions —
that maximizes the cumulative reward p over time.

Reinforcement learning. Reinforcement learning (RL) [2] is a type of machine learning that uses
MDPs as the underlying framework. In RL, an agent learns an optimal policy by interacting with an
environment, receiving feedback through rewards, and using this experience to improve its decision-
making. Popular RL algorithms such as Q-learning, policy gradient, value iteration, and policy
iteration methods [3} 4, 5, 16} [7 18, [9] have been widely studied. By effectively balancing between
exploration and exploitation, these algorithms enhance their performance in dynamic and uncertain
settings, thereby learning the optimal policy.
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Online algorithms. Online algorithms model the interaction between an agent/learner with the
environment/nature. Such algorithms are usually associated with learning or decision making [10,
L1024 11341144 11501164 [17]. Unlike offline algorithms where the agent has full access to the training
data as a whole, the setting of online algorithms is such that the agent receives part of the training
data in a (possibly adversarial) sequential manner. Based on incomplete knowledge of the entire
training data, the agent is required to make a decision, after which feedback from the environment is
provided in the form of a gain according to a pre-defined reward function. This process is repeated
for T" number of time steps. The maximum gain incurred when making the best fixed decision in
hindsight is known as the offline gain. Moreover, the difference between the offline gain and the
gain incurred when making some other sequence of decisions is called the regret. In the context of
learning (communicatinﬂ) MDPs under the average reward model, the regret is given by Tp* (M) —
S (e, a®), where p* (M) = p*(M, x) = maxzem pr (M, z) is the optimal average reward
pr(2) = & limsupy_, o E[ZtTZO r(z®,a®)] of MDP M with initial state = under policy 7 and
the maximum is taken over the set II of all policies [[18, |19, 20]]. Regret is the canonical cornerstone
to benchmark the performance of an online algorithm. Typically, online algorithms with a per-step
regret that scales inversely with the number of time steps 7' are desired. This implies that given
sufficiently long time, an online algorithm can perform as well as an offline algorithm.

Our contribution. We study the potential of quantum computing in improving the regret of online
algorithm. Motivated the work of [21] which achieves an exponential improvement in learning
tabular and value-target MDPs, we are interested in studying if similar improvements can be achieve
in learning general MDps. We base our work on the classical framework of [18} 122]. In particular,
we give a quantum version of the classical algorithm in [18} 22]] and perform its regret analysis.
Our contribution is threefold.

* In the average reward model, we give a quantum online algorithm that learns MDPs with
continuous state space. Under the assumption that the MDPs’ reward and transition proba-
bilities are Lipschitz, our algorithm achieves a O(T 1/2) regret in the one-dimensional state
space setting, improving upon the O(T2/ 3) bound by [[18]]. Without the Lipschitz assump-
tion, a regret bound of O (T'/(+)) is obtained when 0 < o < 1 and when o > 1,
the regret is O(\/T) For a general d-dimensional state space, the regret is bounded by
O(T"/(+dey) when da < 1 and O(v/T) when da > 1.

* We propose a quantum extended value iteration subroutine. With high probability, the
subroutine outputs a sequence of approximate value functions up to additive error € in time

0] (% log %) as compared to the classical running time of O(SQA) 19123122, [18]].

* We prove convergence guarantees for an approximate analogue of value iteration to the
optimal average reward p* up to some ¢ additive error.

Related work. Loosely speaking, our work is related to quantum machine learning. We discuss
more details on related work in Appendix [A]due to space restriction. Among the most related work,
Ref. [19]] gave an algorithm to learn MDPs with discrete state and action spaces. Their algorithm
achieves a O(T"/?) regret, where T is the number of time steps. Their work was extended to the

continuous state space setting by [22], which gave a O(TS/ 4) regret bound for one-dimensional
state spaces and O(T%) regret bound for d-dimensional state spaces. The followup work [18]]

improves upon these results, giving a regret of O~(T2/ 3) and O(T%) in one- and d-dimensional
state spaces respectively.

2 PRELIMINARIES

Notations. For any n € Z ., we use [n] to represent the set {1, ...,n} and denote the i-th entry of
avector v € R” by v(i) forall i € [n]. If a vector v has time dependency, we denote it as v(*), where
t is the corresponding time step. The ¢; and {oo-norm of a vector v € R™ are ||v||, :== Y, |v(i)]
and ||v|| ., = max;e[, [v(7)], respectively. We denote V as the space of all real-valued functions.

'The the optimal average reward p* does not depend on the initial state .
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We use 0 to denote the all-zeros vector and |0) to denote the state |0) ® - - - ® |0) where the number
of qubits is clear from the context. We use e to denote the all-ones vector, 1 to denote the indicator
function where the condition C' is satisfied, and Az to denote the probability simplex on a space Z.

We use O(+) to hide polylogarithmic factors, i.e., O(f(n)) = O(f(n) - polylog(f(n))).

Quantum computing In classical computing, the basic unit of information is a bit, which can
take values O or 1. In quantum computing, the basic unit is known as a quantum bit, or qubit. It is
a two-level quantum system with states |0) and |1). Unlike a classical bit that has only two states,
a qubit is a superpositions of |0) and |1), i.e. |v) = ijo v; |4), where v; € C is the amplitude
of |¢) and satisfies Zf;ol |v;|* = 1. The states |0), |1) forms the (orthogonal) computational basis
of the two-dimensional Hilbert space. This extends to any d-dimensional system, where d > 2.
Quantum states from different Hilbert spaces can be combined using tensor product. For simplicity
of notation, we use |u) |v) to denote the tensor product |u) ® |v). Operations in quantum computing
are unitary, i.e. a linear transformation U that satisfies UUT = UTU = I, where U is the conjugate
transpose of U.

The information in a quantum state cannot be “read” directly. In order to observe a quantum state
|v), we perform a quantum measurement on it. The measurement results in a classical state ¢ with
probability |v;|?, and the measured quantum state collapses to |i). Quantum access to input data
is encoded in a unitary operator known as the quantum oracle. Quantum oracles allow data to be
accessed in superposition, thereby allowing operations to be performed “simultaneously” on states,
which is the core of quantum speedups.

Computational model. We refer to the running time of a quantum computation as the number of
basic gates performed, excluding the gates that are used inside the oracles. We assume a quantum
arithmetic model, which allows us to ignore issues arising from the fixed-point representation of
real numbers. In this model, all basic arithmetic operations take constant time. We also assume a
quantum circuit model, where an application of an elementary gate is equivalent to performing an
elementary operation. The query complexity of a quantum algorithm with some input length is the
maximum number of queries the algorithm makes on any input.

Our quantum algorithm shall commonly build KP-trees [24, 25]] of vectors. In short, a KP-tree is
a classical binary-tree-like data structure, with leaves storing the value of every entry of a vector
and each internal node stores the sum of absolute values (or sum of absolute values squared) of its
children. The root of the tree stores the ¢;- (or £2-) norm of the whole vector. For a vector u € R¥,
the KP-tree for u is denoted as KP,,. The KP-trees are accessible in superposition by a quantum
computer via quantum random access memory (QRAM). A single query to any entry of u can be
done in constant time. More specifically, this allows the quantum computer to query the oracles Oy,
that performs the mapping Oy, : |s)|0) — |s)|u(s)) Vs € S in time O(poly log(.S)). Moreover, (all
or part of) the entries of u can be classically updated by writing new values into the KP-tree in at
most O(S)time.

Quantum subroutines. To achieve quantum speedup and a better regret bound, we exploit a
few quantum subroutines. Among them, the popular minimum finding algorithm by Diirr and
Hgyer [26], which can be turned straightforwardly into a maximum finding algorithm. We also
use the generalized minimum finding [27] for the case when one has quantum access to the en-
tries of u up to some additive error. Besides that, we use the celebrated Grover’s search [28] and
two other standard subroutines: quantum multi-dimensional amplitude estimation [29] and quantum
multi-dimensional mean estimation [21},130]. We restate these subroutines in Appendix

We tweak the standard quantum norm estimation algorithm [31}132} 133} 134, [35] to estimate the norm
of a subvector. The proof which replies on amplitude estimation and amplification [31} 36} [37} [38]]
is deferred to Appendix

Lemma 1 (Quantum norm estimation of a subvector with additive error). Let 6 € (0,1/4) and
¢ > 0. Given a probability vector p € [0,1]° stored in KPp, assume access to the operation
[s) [0) — |s)|p(s)). Let W C S be the set of entries that satisfy some given condition. Define
the subvector pyw of p whose entries consist of those in W. There exists a quantum algorithm that
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outputs an estimate Ty of |pw ||, = > sew |pw (8)| such that ITw — |lpwll1| < € with success

probability at least 1 — § in time O(@ log %) and the same amount of quantum gates.

Finally, the quantum mean estimation algorithm from [39] can be adapted to estimate the mean of a
vector with real entries. The proof can be found in Appendix

Lemma 2 (Quantum mean estimation). Let ¢ > 0 and § € (0,1). Let u € R® be a nonzero
vector and p € [0,1]° be a probability vector. Suppose we have access to KPy, KPp, and can make
quantum queries in the form |s) |0) — |s) |p(s)) and |s)|0) — |s) |u(s)). There exists a quantum
algorithm that computes an estimate [i of pn = Y . p(s)u(s) such that |fi — p| < € with success

probability at least 1 — § in time O(% log %)

3  MARKOV DECISION PROCESSES

A discrete-time MDP [40] can be described by a four-tuple (X, A, P, r), where the Borel spaces X
and A denote the state and action spaces, respectively. The stochastic kernel P : X x Ax X — [0, 1]
is a transition probability matrix with entries P(xz’|x, a) denoting the probability to the next state
x’ € X given that the previous state-action pair is (z,a) € X x A, while the reward function r :
X x A — R is a measurable function. Define the history spaces H(?) = X and H(Y) = (X x A)! x X
for t € N. A policy 7 is stochastic kernels on A given X'|*| The set of all policies is denoted by II.

In this work, we consider the average reward model, in which the average reward when executing
policy 7 with initial state 2 = 2(%) is given by pr(2) = limsup;_,, #E7| Z:ol r(z®,a®)],
where the expectation over all () = (X’ x A)* is taken with respect to the randomness induced
by the transition probabilities and policy 7. The optimal average reward p*(x) on initial state z € X
is defined as p*(z) = sup,cp p=(z). Moreover, we say that a policy 7* is average optimal if
pae(x) = p*(x) for all z € X. We assume the existence of an optimal policy 7* with optimal
average reward p* that is independent of the initial state. In other words, for some p* € R, p*(z) =
p* for all z € X. Furthermore, we assume that for every measurable policy , the Poisson equation
pr + h(m,z) = r(z,n(x)) + [ p(a’|z,n(x))h(r,2") holds, where h(m,x) is the bia of policy 7
in state . Similar assumptions were made by [22}[18].

Finite state approximation of MDPs. The practical utility of MDPs lies in their ability to model
decision-making in complex environments [41} 42 43| 144] 45 46| 47| 48 49]]. However, the com-
putational burden associated with handling an exhaustive state and action spaces can be prohibitive.
Finite state approximation addresses this challenge by allowing the system to be condensed to a
more manageable and computationally tractable form, facilitating the use of various well-studied
solution algorithms, such as dynamic programming and value iteration and policy iteration, which
are fundamental for decision-making under uncertainty [S0, [S1} 152, 18,153} 19,154} 155]].

We follow Refs. [56) 22] 157]] to derive approximate MDPs with finite state and action spaces. We
describe the discretization of continuous state space using e-nets, for some 0 < € < 1. We make the
following assumptions as in [22} 1857} 58]

Assumption 1. (a) X is compact.
(b) The action space A is finite.
(c) The reward r(x,a) € [0,1] forallz € X,a € A

3.1 DISCRETIZATION OF STATE SPACE
Consider a continuous state space X with metric dx. By Assumption[I|fa), X" is compact and hence
totally bounded. Hence, we can partition the continuous state space X into the finite state space

S = {s;}_, such that

1
ré%i‘rsldx(x,s) < 5 forallz € X.

“More generally, a policy is a sequence of stochastic kernels on A given HO,
3The bias is the difference in accumulated rewards when starting in a different state [22].
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We call S a 1/n-net in X. Define the function

Qx : X =S8 as Qx(xr)=argmindy(z,s), (D
seS

where ties are broken so that () y is measurable. The map @y is often called a nearest neighbour
quantizer with respect to distortion measure dy [59]. The function ) x induces a partition of X into
{X;}7_,, where

Xi={zeX:Qx(x)=s;} VielS].

For example, consider the one-dimensional setting where X = [0, 1]. A %—net partitions X into S
intervals X7, ..., X, where

S S Ss
Each interval X is represented by a state s; € S. We assume access to a discretization oracle Oy
for the state space.

1 1 i
;\ﬁ:{o,], Xi:(Z Z],fori:Q,...,S. )

Definition 1 (Discretization oracle). Let X be a state space that is continuous on [0,1] and let S C
X be discrete. We say that we have access to a discretization oracle Oy if the oracle implements in
constant time the mapping

Oy : |2)]|0) — |z)|arg min, sdx (z,s)) Vo e X.

We introduce natural assumptions for rewards and transition probabilities in nearby states. Similar
assumptions have been considered in [56| 22} 57].

Assumption 2. For any x,x’,€ X and any a,a’ € A, there exists a constant L > 0 such that
Ir(z,a) —r(z',a)| < L)z — 2|, 3)
Ip(|z,a) = p(|z",a)|, < Lz —a'[" )

Under Assumption [2] the bias of the optimal policy is bounded [22, [18]]. We assume that L from
Egs. @ and (Ef]} are the same. Similar assumptions were also made by [22} |18} [19].

Here, we clarify some notations that will be used in the remaining parts of the paper. We use the
subscript 7 to denote MDP parameters induced by the policy 7. For a discrete state space S and
action space A with cardinalities S and A respectively, define the reward vector r, € [0,1]° and
transition probability matrix P, € [0,1]°*%7 as

T7(5) = Bamr(1s)[r(s,a)], pr(s'|s) = Equr(s)[p(s']5,a)].

4 VALUE ITERATION

Value iteration [1} [7] is a dynamic programming algorithm used to find the optimal policy for a
reinforcement learning algorithm. The goal is to determine the best action to be taken in each state
in order to maximize its cumulative expected rewards. Value iteration has been widely used and
exists in different variants [S3| 160} 61} 162} 63, |64} 165]. The algorithm updates the value function
u € RS of all states s € S according to the update rul

u® = o, ulth — max {I‘7T + qull(i)} ; ®)
TE

and has a per-iteration running time of O(S2A) [66].

*We use max,cr{-} and max,e 4{-} interchangeably in this paper since we will be considering the greedy
policy approach throughout this work.
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4.1 APPROXIMATE VALUE ITERATION

Approximate value iteration has been well-studied and is used in various settings [67,168,169., 70,71,
72]. From here on, we shall refer to value iteration with update rule (E]) as standard value iteration.
In this section, we consider an approximate analogue of the value iteration algorithm which differs
from the standard value iteration algorithm in the following ways:

1. Denote the value function output by approximate value iteration as ui. In standard value
iteration, Pru in Eq. () is computed exactly, while in approximate value iteration, it is
estimated up to an additive error. In particular, let .. denote the estimate of P, such that

~ ~ €
I7ix — Pl < 5. ©)

2. The maximization in Eq. (3) is computed exactly in standard value iteration. However,
in approximate value iteration, given Eq. (6)), the maximization is estimated up to additive
error €. In order words, define the operator £’ : RS — R on 1, then £/t > max, em{r,+

P, i} — ee.
For any integer 7 > 0, a single run of the approximate value iteration recursion can be expressed as
"t = £'a®. )

In this section, we show the convergence of approximate value iteration. First, we need the following
claim whose proof is deferred to Appendix[C.I} Let us for now consider non-communicating MDPs,
whose optimal average reward p*(s) is dependent on the initial state s.

Claim 1. Let € € (0,1) and fix i € Z>. Let ultl) € RS be the value function obtained after i

steps of standard value iteration and let alt) e RS peits corresponding approximation obtained
after i steps of approximate value iteration. Then

ulth) — (i+1)ee < it < ul+h),

The theorem below, whose proof is moved to Appendix [C.] illustrates the limiting behaviour of the
sequence of value functions output by approximate value iteration.

Theorem 1. Ler e € (0,1). Forallu® € V andall s € S,
a® a® .

p* —ee < liminf < limsup — < p*.
i—=oo 1 i—00 ?

Theorem [I]implies the following corollary (proof in Appendix [C.1).

Corollary 1. Let € € (0,1) and let w be a policy such that 7°° = (mw,7,---) is average optimal.
Theorem|[I|implies that

lp" =Pxp*ll < e

We say that a policy 7 is u-improving if 7 € arg max, c{r + Pru}. The next theorem bounds
the optimal reward (see Appendix [C). The proof can be found in Appendix[C.1]

Theorem 2. Let 7 be any u-improving policy and p* € R be the optimal average reward. Let L' be
a single run of approximate value iteration. Then, the following holds for all s € S:

Islgél {L'u(s) —u(s)} < p™ < p* < max {L'u(s) —u(s)} +e. (8)

4.2 EXTENDED VALUE ITERATION

Consider the set M of all MDPs with common state space S, common action space A, transition
probabilities p(+|s, a) and mean rewards 7(s, a) such that

IB(-[s,a) = D(|s,a)l|, < d(s,a) ©)
|7(s,a) — 7(s,a)| < d'(s,a) (10)
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for some given probability distributions p(-|s, a), given rewards #(s,a) € ,a) > 0, and
d'(s,a) > 0. Furthermore, assume that M contains at least one commumcatm MDP Extended
value iteration updates the value function of all s € S of M [22, (18,19} [1]] using the rule

) (s) = 0- (i+1) (o) — = N () (o

u(s)=0; wu (s) max {r(&a) + p(.)Ig%)(%g,a) {S/Zesp(s ) - ut(s )}} , 3an
where 7(s,a) = 7(s,a) + d'(s,a) are the maximal possible rewards according to Eq. (
and P(s,a) is the set of transition probabilities P(-|s,a) satisfying Eq. (©). The classical algo-
rithm by [23] Proposition 2] finds the solution pimax(s,a) to the inner maximization problem
MaXp(.)ep(s,a) { 2osres P(s') - v (s")} of Eq. in O(S) time. In addition, solving the other
maximization takes O(A) time. This leads to a per-iteration run time of O(S2A) to update the
values u(*t1)(s) forall s € S.

We propose a quantum algorithm that improves upon the per-iteration run time of extended value
iteration by a subquadratic factor in S and a quadratic factor in A. Specifically, we give a quantum
subroutine that outputs an estimate fiyax (s, a) of pmax (8, @) up to additive accuracy € with success

probability at least 1 — § in time O(@ log %)

Lemma3. Lete, 6 € (0,1) and tmin, Umax € R. Consider the set P(s, a) of transition probabilities
that satisfy Eq. ([% Let p € [0,1]° be a transition probability vector such that p € P (s, a) and let
U € [Umin, Umax|” be a nonzero vector. Given quantum access to the entries of P, u that are stored
in KP-trees KPy and KP, respectively, there exists a quantum algorithm that outputs an estimate i
of 1" = maxXp(yep(s,a) 2oyes P(8) - u(s") such that |ji — pu*| < e with success probability at least

1 — 8. The time complexity is O (@ log %)

Using Lemma|[3] we present the following result.

Lemma 4 (Guarantees of one iteration of quantum extended value iteration). Let €,6 € (0,1). Fix
i € Z>o. Given access to estimated rewards 7 (s, a), estimated maximum mean value i, a4 (s, a) and
distance d(s,a) for a state-action pair, there exists a quantum algorithm that outputs an estimate

a1 (s) of the solution v+ (s) to Eq. such that @0+ (s) > w1 (s) — € with success
probability at least 1 — 6 for all s € S. This requires O (% log %) time.

The pseudocodes and proofs of Lemmas [3|and ] can be found in Appendix Next, we prove the
convergence of quantum extended value iteration (proof in Appendix [C.2).

Theorem 3 (Convergence of quantum extended value iteration). Lef €, € (O 1). Let M be the
set of all MDPs with state space S, action space A, transition pmbabllmes p(:|s,a), and mean
rewards (s, a) that satisfy Egs. ) and (10) for given probability distributions p(-|s,a), values
7(s,a) € [0,1],d(s,a) > 0, and d'(s,a) > 0. If M contains at least one communicating MDP,
quantum extended value iteration (Algorithm 3] see Appendix ) satisfies

a®
p"—ee < lim
i—oo 1
Furthermore, terminating quantum extended value iteration (Algorithm3) when

max {ﬂ(”l)(s) - ﬂ(i)(s)} — mig {ﬁ(”l)(s) — ﬂ(i)(s)} <e,
s€

sES

<p"

the greedy policy with respect to a9 is e-optimal.

5 QUANTUM ALGORITHM FOR ONLINE LEARNING MDPs

5.1 QUANTUM-ACCESSIBLE ENVIRONMENTS

Classically, we are able to directly observe complete trajectories (5(?), a(®), s() a1 . ) in every
episode and collect samples to estimate 7(s, a) and P(-|s, a) for any (s,a) € S x A [18,22,[19]. In

>We say that an MDP is communicating if for every pair of states s, s’ in S, there exists a deterministic
stationary policy 7> under which s’ is accessible from s.
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the quantum setting, we can only collect quantum states via quantum-accessible environments. This
has been studied by [[73, 174} 75, 21]]. The following oracles are required.

Definition 2 (Quantum sampling oracle for transition probabilities [76]]). Let X be a continuous
state space and S be the resulting state space after discretization. For any s € S and a € A, a
quantum sampling oracle for transition probabilities O,, performs the following mapping:

a) 0) / o(@]s,a)dz |s) |a) |z) © |garbage(x)) (12)

where the second quantum register denotes possible garbage quantum states that arise in the imple-

mentation of the oracle. We let O ) denote the quantum sampling oracle for transition probabilities

at stept € 7, on inputs s, a(®).

Definition 3 (Quantum reward oracle). Let S and A be discrete state and action spaces respectively.
Forany s € S and a € A, a quantum reward oracle O, performs the mapping: O, : |s) |a) |0) —
[5) |a) |r(s, a)).

Definition 4 (Quantum policy oracle). Let S and A be discrete state and action spaces respectively.
Foranys e S and a E A, we say that we have access to a quantum policy oracle O, that does the

mapping O : Z\/ (als) |s) |7 (s)

acA

In this work, we use the Classical Sampling via Quantum Access (CSQA) [21] procedure (see
Algorithm |4 I in Appendix |§l) to simulate the classical sampling of a state s(*) ~ de ) when given a

policy 7 and time step ¢, where dﬁ) is the probability distribution over S according to policy 7 and
at time step ¢t. We show the following lemma whose proof is in Appendix

Lemma S. Given a policy w and an integer t € Z.. Let d(t) be the probability distribution over

states s € S at step t according to w. Suppose we have access to oracle O, (see Definition [2| I in

Appendlx@) then there exists a quantum algorithm that outputs a sample of s ~ dgr) in time O(t).

We present our quantum algorithm for online learning MDPs in Algorithm [T} Our quantum algo-
rithm implements “optimism in the face of uncertainty”. It maintains a set of plausible MDPs M
and optimistically chooses an MDP M € M and a policy 7 such that the average reward pz (M)
is maximized up to LT error, for 7" number of iterations of the algorithm. Similar to Ref. [22], we

assume an MDP to be plausible if its aggregated rewards and transition probabilities are within a
certain range (see Eqs. (I3)) and (14)).

The corresponding estimated rewards and transition probabilities are computed from sampled values
of action a in the state close to x. Specifically, the state space is partitioned into Xy, -+ , Xg as a
result of discretization. The corresponding aggregated transition probabilities are defined as

P88 (Xj|z, a) = / p(dx’ |z, a).
X;
In this work, we write p®®8(-) to denote the aggregated probability distribution with respect
to {X4,...,Xs} for a probability distribution p(-) over X. Given the aggregated state space
{X1,...,Xs}, estimates 7(z, a) and p*88(-|x, a) are obtained from all samples of action « in states
x € X represented by s € S after discretization. As a consequence, the estimates are the same for
states © € X represented by the same s € S.

As in the UCCRL algorithms in Refs. [18}22,[19], our algorithm proceeds in episodes, in which the
chosen policy remains fixed. The algorithm moves to a new episode when the number of visitations
to a state-action pair has been doubled, after which the estimates of rewards and transition probabili-
ties are updated. Furthermore, since all states = represented by the same s have the same confidence
interval, finding the optimal pair My, 7, in Eq. is equivalent to finding the optimistic discretized
MDP M #% and an optimal policy 7+ on M, mgg . Hence, 7y, can be viewed as the extension of 7%®
to X. In other words, 7 () == T8 (s), Where s € S is the state representing the interval X that =
belongs to, for some j € [n] [22].

Algorithm 1 Quantum algorithm for online learning MDPs
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Input: State space X, action space A, confidence parameter J, upper bound H on the bias span,

A

—

11:

12:
13:

14:
15:
16:
17:
18:

19:

20:
21:

YRR

Lipschitz parameters L.
Define & as in Eq. , where each interval X; is represented by a state s; for all j € [S].
Sett =1.
Initialize p;(-|s,a) = (1/S,---,1/S) € RS and #,(s,a) = 0.5 forall s € S,a € A.
for episodes k = 1,2,--- do
Let Ni(s,a) = be the number of times action a has been chosen in a state in the interval
represented by s, prior to episode k and let n (s, a) be the respective counts in episode k.

Set the start time of episode k, ty = t.
for (s,a) € S x Ado
Initialize vy (s, a) = 0.
end for ~ ~
Let M, be the set of plausible MDPs M with H(M) < H and rewards 7(x, a) and transi-
tion probabilities p(-|z, a) such that
VSA
r -7 < LS™® 13
[7(z, a) = 7, )] < * max{1l, Ng(s,a)} (13)
and
B @) — Bl )], < L™+ —— (14)
’ k T = max{1, Ni(s,a)}
Choose policy 77}, and M’ € M, such that
~ " €
P (Mk> > argmax{p*(M)|M € My} — Wis (15)

using Algorithm
while ny, (s®,a®) < max {1, N, (s®),aV)} do
Call z®) == CSQA(7,,t) using AlgorithmEL query Ox on z(® to obtain s®*) and let
o) = 7, (2).
Update ny, (s, a®) = ny, (s®,a®) + 1.
Sett =1+ 1.
end while

for s € Sanda € Ado
Compute estimate 7 (x, a) up to additive error LN T % with probability at least
1-— 2472%/4 using Factand by invoking oracles Oy, Op, O,.

Compute estimate p;**(-|z, a) up to additive error m in the ¢;-norm with

probability at least 1 — MTL‘W using Fact@invoking oracles Ox, O, O,.
end for
end for

The theorem below states that a O(1/v/T) regret bound is attainable by Algorithm |1} The proof is
deferred to Appendix [E]

Theorem 4. Let M be an MDP with continuous state space [0, 1], A actions, rewards and transition
probabilities satisfying Eqs. (3) and (@), and bias span at most H. Then, the regret of Algorithm[I]
after T steps is upper bounded by

SAT

AT
2(H +1)LTS™™ + (14 + 15H)SAlog SAT | (2H + 3)VT log

with probability at least 1 — 0. Furthermore, setting S = T= gives a regret bound of

AT? AT?
5 + (2H + 3)VTlog 5

(2H + 1)LT ™= + (14 + 156H)AT ™= log

Taking H = log T', we obtain a regret bound of O(\/T) when o > 1 and ON(TH%) when 0 < o < 1.
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6 DISCUSSION AND CONCLUSION

We study the problem of online learning MDPs with continuous state space. In this setting, only
the state and action spaces are known to the algorithm. Other parameters of the MDPs such as the
reward function and transition probabilities are unknown.

We give a quantum algorithm, that in each episode, chooses an optimistic MDP and its correspond-
ing (nearly) optimal policy. This is done using a quantum subroutine, called quantum extended value
iteration. The chosen policy is then executed until some action in some state-actions pair has been
visited as often in the episode as before the episode. The observed rewards are accumulated and
the regret is analyzed. Our results show that the quantum algorithm achieves a O(v/T)) regret when
the state space is one-dimensional and assuming that the MDPs’ rewardds and transition probabil-
ities are Lipschitz. This improves upon the regret bound obtained by [18]]. Without the Lipschitz
assumption, the regret is O(T"/(*®)) when 0 < a < 1 and O(v/T) when a > 1. This bound
also implies that MDPs with continuous state space can be learned with the same (order in T') regret
as those with discrete state space when a > 1. For the case where the state space is d-dimensional
(d > 1), the regret is bounded by O(T""/(1+4%)) when dov < 1 and O(+/T') when dav > 1.

We point out that a similar work to ours has been done by Ref. [21]. Unlike our quantum algorithm
that learns general MDPs, the quantum algorithm proposed in [21] learns specific MDPs, i.e. tabular
and value target MDPs. Furthermore, episodes in the algorithm of [21] have fixed length. This allows
their algorithm to achieve a logarithmic regret in 7', the number of episodes. This is in contrast to
our algorithm, whose length of episodes grows indefinitely with 7T'.

The quantum extended value iteration subroutine is a combination of techniques such as quantum
mean estimation, quantum norm estimation and quantum minimum finding with approximate uni-

. . . 1.5 . . . . .
tary. It has a per-iteration runtime of O (M log %) , achieving a speedup that is subquadratic in

€

the size of the discretized state space S and quadratic in the size of the action space A, as compared
to its classical counterpart. By studying the limiting behaviour of the sequence of value functions
{ﬁ(i)} generated by an approximate analogue of standard value iteration, we show that quantum
extended value iteration converges up to additive error € and the greedy policy with respect to the
value function is e-optimal. Furthermore, the sequence {@i()} when compared to that generated by
standard value iteration {u(¥}, satisfies u® —ice < @Y < u® for some € > 0 and any i > 1. We
hope that our quantum extended value iteration algorithm and its analysis would be of independent
interest to readers.

We highlight some future directions following our work. In this work, we follow the approach
of [22| [18] 157] to discretize the state space using e-nets. It would be interesting to learn if other
discretization methods could lead to better regret bounds of the algorithm. Besides, the lower bound
on the regret still remains an open problem since the work of [18| [22]]. Other future directions
include extending the problem setting to continuous action space.
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A RELATED WORK

In the discounted reward model, Bas-Serrano et al. [77] proposed a logistic Q-learning algorithm,
which is closely related to the relative entropy policy search algorithm [78]. Using a convex loss
function for policy evaluation, the algorithm outputs a sequence of policies whose average quality
approaches that of the optimal policy. Subsequently, Neu and Olkhovskaya [20] incorporated the
algorithm of [77] into their online algorithm to learn MDPs with linear function approximation in
the setting where the reward function is allowed to change adversarily between episodes, obtaining

a O(\/T ) regret, where T" denotes the number of episodes.

In the average reward model, Meyn [79] studied policy iteration in general (continuous) state spaces.
Their algorithm was shown to output a sequence of policies that satisfy a strong stability condition
and finds an optimal average cost policy under further conditions. Besides that, Ref. [58]], under
MDPs with continuous state and action spaces, presented an approximate relative value iteration
algorithm that outputs a sequence of piecewise-linear convex relative value functions, which has
a monotonically non-decreasing lower bound on the average reward. Another work that considers
MDPs with continuous state and action spaces is Ref. [57]], which gave a discretization-based ap-
proximation method for MDPs with continuous spaces, accompanied by a detailed error analysis.
They also developed synchronous and asynchronous Q-learning algorithms for continuous spaces
via discretization. In the online learning framework, Auer, Jaksch, and Ortner [19] gave an algo-
rithm to learn MDPs with discrete state and action spaces. Their algorithm achieves a O(\/T ) regret,
where 7T is the number of time steps. Their work was extended to the continuous setting by Ortner

and Ryabko [22], who gave a O(T3/ 4) regret bound for 1-dimensional state space and O(T%)
when the state space is d-dimensional. The follow-up work of Lakshmanan, Ortner, and Ryabko [18]

improved upon these results, giving a regret of O(T 2/ 3) and O(T%) in 1 and d-dimensional state
space, respectively.

In the quantum setting, Wiedemann et al. [[73]] gave a full implementation and simulation of a policy
iteration algorithm that is based on amplitude amplification. Besides numerically showing that the
policy output by their algorithm is close to optimal, they conjectured that a quadratic speedup in the
size of the set of all possible policies as compared to classical Monte Carlo estimation methods is
achievable. Wang et al. [74] gave two quantum algorithms that approximate an optimal policy, the
optimal value function, and the optimal Q-function using quantum mean estimation and quantum
maximum finding. They showed a quadratic improvement over the best possible classical sample
complexities with respect to the approximation error, the effective time horizon, and the size of the
action space. On the other hand, two quantum policy gradient algorithms were developed by Jerbi et
al. [[15] to estimate the optimal policy using quantum numerical and analytical gradient estimation
respectively, gaining a quadratic reduction in sample complexity over their classical analogues when
the trained policies satisfy certain conditions. Based on the classical least-squares policy iteration
algorithm [8], Cherrat et al. [80] gave a general framework for quantum reinforcement learning via
policy iteration using block-encoding techniques [81}82]]. They showed that the value functions out-
put by the algorithms in their framework are close to optimal. Finally, the first line of study on explo-
ration in online quantum reinforcement learning was done by Zhong et al. [21] who showed a worst-
case regret guarantee that scales logarithmically in the number of episodes, beating the Q(+/T) re-
gret lower bound in classical reinforcement learning. Subsequently, Ganguly ef al. [83] gave an
upper-confidence-bound-based quantum algorithm that achieves an exponential improvement in re-
gret and quadratic improvement in the sample complexity as compared to the classical counterparts.
The aforementioned works consider the discounted reward model and MDPs with discrete state and
action spaces. Other related work in the near-term regime includes [|84} 85} 861, 187, |88]].

B QUANTUM SUBROUTINES

In this section, we restate the quantum subroutines that we use in our paper, starting with quantum
minimum finding by Diirr and Hgyer [26].

Fact 1 (Quantum minimum finding [26]]). Given quantum access to a vector u € R”,~we can find
Unnin 7= Min;e () u(@) with success probability 1 — & using O(/nlog %) queries and O(y/nlog %)
quantum gates.
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The above minimum finding algorithm can be turned straightforwardly into a maximum finding
algorithm. The quantum minimum finding algorithm was later generalized by Chen and de Wolf [27]
for the case when one has quantum access to the entries of u up to some additive error.

Fact 2 (Quantum min-finding with an approximate unitary [27]]). Let 61,02 € (0,1) such that
63 = O(62/(Slog(1/61))), € > 0, and u € RS. Suppose access to a unitary that maps |s) |0) —
|s) |A(s)) such that, for every s € [S], after measuring the state |A(s)), with probability at least

1 — 0 the first register |u(s)) of the measurement outcome satisfies |a(s) — u(s)| < e. Then there
is a quantum algorithm that finds an index s such that u(s) < mingcs u(s’) + 2¢ with probability

at least 1 — 81 and in time O(v/Slog(1/61)).

The next result is the celebrated Grover’s quantum search algorithm.

Fact 3 (Grover’s search [28]). Let m,n € Zy such that m < n/2. Given quantum access to an
unsorted database of n elements with m marked elements, there exists a quantum algorithm that

finds a marked element in O(/ =) time.

The next two results are essential to obtain a better regret bound.

Fact 4 (Quantum multidimensional amplitude estimation [21, 29]). Let ¢,d € (0,1). Assume ac-
cess to a probability oracle Uy : [0) — Y7 | /p(i)|i) |¢;) for any n-dimensional probability
distribution p and ancillary quantum sates {|1;)}_,. There exists a quantum algorithm that re-
turns an approximation p of p such that |p — p||; < € with success probability at least 1 — § using
O(% log %) quantum queries to U, and its inverse.

Fact 5 (Quantum multidimensional mean estimation [21}, 30]). Lete,d € (0,1). Let X : Q — R”
be an n-dimensional bounded variable on a probability space (2, p) such that ||X||2 < C for
some constant C. Assume access to the probability oracle Uy : |0) — > . \/P(W) |w) |pw) for

ancillary quantum states {|d.,) }weq and a binary oracle Uy : |w> |0) = |w) | X (w)) forall w € Q.
Then there is a quantum algorithm that outputs an estimate fi of p = E[X] such that ||fi]]s < C

and ||t — p| o < € with success probability at least 1 — § using O (% log %) quantum queries to
Up, Ux and their inverses.

We tweak the standard quantum norm estimation algorithm [31}132},133] 134} [35] to estimate the norm
of a subvector.

Lemma 1 (Quantum norm estimation of a subvector with additive error). Let § € (0,1/4) and
€1 € (0,5]. Given a probability vector p € [0,1]° stored in KPy, assume access to the operation
[s)10) — |s) |p(s)). Let W C [S] and define the subvector py of p whose entries consist of those

in W. There exists a quantum algorithm that outputs an estimate Ty of |pw ||, = Y sew lPw (s)]
such that Ty — ||pw ||1| < € with success probability at least 1 — § in time O(@ log %) and using
the same amount of O(@ log %) quantum gates.

Proof. Using query access to the probability vector p, create a circuit to prepare the state
% > scs 18) |p(s)) |0). Define a good-states-controlled rotation as

Ugood |p(5)> |O> = {|p(8)i |(0\>/]TS)|1> * mm» E“z ; % (16)

Perform the controlled-rotation in Eq. to get the state

fZI Ip()) (v/p(s) 1) + /1= p(s) |0) ) IZI Ip(s)

seEW s¢gW
s) |s) [p(s) < s) s} [p(s) |s) |p(5)>> |0)
"5 R ﬁ%
= Va|$1)[1) + V1 —algo) |0) (17)
for some normalized states [¢), |¢1), where a = >~y p(Ss) = Hpg"ul.

17
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Let U, be the unitary that prepares the state in Eq. and define the new unitaries U = U, (] —
210) (O)UJ and V = I — I @ |1) (1|. Nondestructive unbiased amplitude estimation [36} 37, 38]

2 2
allows us to obtain an estimate @ of @ = % such that |IE[&]; al < 53 and Var(a) < 3¢ + 55,
restoring the initial state with success probability at least 1 — 2%, using O (K loglog K log(K/eg))

expected number of applications of U and V. Setting K > % 91a via exponential search without
knowledge of a, we have

s - €0 4 (91a e% 4 6(2) 6(2) 1 1 1
Plla—E >7]<7 A (I WP (I I R R
la - Ela]l = 5 —eg<K2+32 2\ ) 168 1

by Chebyshev’s inequality. The success probability 3/4 is boosted with O(log %) repetitions to
1 — /2 via the median of means technique. Hence,

|a —a| < |a—Ela]| + |E[a] — a| < €/2+ €0/2 = €
with success probability at least 1 — 44. The quantity I'yyy := Sa is thus an estimate
ITw — lpwlh| = S|a — a| < Seo =e.
We set ¢g = ¢/, which means that setting X > %x/m = %\/W is sufficient. This

brings the total runtime to O (@ log log @ log S;/ : log %) in expectation. While Ref. [38]] proved

a result in expected time, we use the probabilistic result obtained from Markov’s inequality and
repetition at a cost of another factor of O(log ).

Lastly, we adapt the quantum mean estimation algorithm from [39] to estimate the mean of a vector
with real entries.

Lemma 2 (Quantum mean estimation). Let ¢ > 0 and § € (0,1/8). Let u € RS be a nonzero
vector and p € [0,1]° be a probability vector. Suppose we have access to KPp, KPy and can
make quantum queries in the form |s) |a) |s') |0) — |s) |a) |s) |p(s']s, a)) and |s) |0) — |s) |u(s)).
There exists a quantum algorithm that computes an estimate fi of 1 = 3, s p(s') - u(s") such that

~

| — w| < € with success probability at least 1 — 99 in time O(% log 3).

Proof. Prepare the state Y, s 1/p(5'|s, a) |s') |0) using O (log n) queries to Okp, , O&Pp and ele-
mentary gates. Query Okp,, to obtain

> Vp(s']s a)|s') [u(s)) |0) . (18)
s’eS

Throughout this proof, we will use p(s’) to denote p(s’|s,a) for brevity. Define the positive-
controlled rotation such that

la) (Va|l) + /1 —ala)) ifa € [0,1],

|a) |0) otherwise.

Ucp+ :|a)|0) — {

Apply Uc g+ on the last two registers in Eq. (I8). Using quantum maximum finding to find [|ul|
with sucess probability 1 — §, we obtain

W= 3 \/p(s’)s'>|u(5/)>< uls) gy y 1o M) 0>>+ > p(s)]s') u(s)) |0)

s’e€S:u(s’')>0 ||u||oo ||U-Hoo s’€S:u(s’)<0

= [Py

s’€S:u(s’)>0 HuHOO
N p(s') - u(s) ’ \/7/ ’ /
+ > p(s') e ') [u(s) + Y p(s') |s") [u(s))
s'€S:u(s")>0 > s'€S:u(s")<0

= VIF |60) 1) + /T = it o) |0),

18
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where Ht+ = Zs’ES:u(s’)>0 %ﬁig)

Let U, be the unitary that creates the state |t/ and define the new unitaries U = U, (I —20) (0))U}
and V. = I — I ® |1)(1]. Nondestructive unbiased amplitude estimation [36] 37, 38] allows

1 Y. ./ - 2
us to obtain an estimate aof a = 3 i csu(s)>o % such that [E[a] — a] < 16298 and

Var(a) < %3 + 128, restoring the initial state with success probability at least 1 — 128,

O (K loglog K log(K /eo)) expected number of applications of U and V. Setting K > 16 60 91a via
exponential search without knowledge of a, we have

. _ €0 16 (9la € 16 eg 1 1 1
P [ - E > 7} < S| —=+—=2 )<= <=
la - Ela]] = 3 <K2 T 1ag 556 T128) 16 T8 <1
by Chebyshev’s inequality. The success probability 3 / 4 is boosted with O(lo %) repetitions to
1 — /2 via the median of means technique. Hence,

la — a| < |a@—E[@]] + |E[a] — a| < €0/4+ €0/4 = €0/2

using

with success probability at least 1 — 45. Hence the quantity jiy := |[u]|a is an estimate
iy = > p(s) )| < ulleold —af < [[ufleceo/2 = €/2.
s’e€S:u(s’)>0

We set eg = €/||u|| oo, Which means that setting X > %\/Ma is sufficient. This brings the total

run time to O( ullee 156 10g “”W log ”““"" log 5) in expectation. While Ref. [38]] proved a result

in expected time, we use the probablhstlc result obtained from Markov’s inequality and repetition at
a cost of another factor of O(log }).

We similarly compute the estimate i_ of

a [l
s'€S:u(s")<0 >

up to additive error § with success probability at least 1 — 49. Now, notice that

p(s') - u(s') p(s') - u(s’)
I R o I Il
s'eS s'€S:u(s’)>0 > s'€S:u(s")<0 >
Let i = iy — fi—. Hence, we obtain
o=l = | (i — ) = (e = p)| < Jjis = ps] + i —p| < e
with success probability at least 1 — 94. O

C VALUE ITERATION

Below, we review some useful facts on the convergence of value iteration which we will use to
prove the convergence of approximate value iteration in the next subsection. In particular, these
results revolve around the limiting behaviour of the sequence {e(l) }, where

e =ul —ip* —h*.

We use the operator £ : RS — RS to denote a single run of value iteration, i.e. u*!) = Lu®
for any ¢ € Z. We start with a result on the bounds on the optimal reward and on the optimality
of the policy derived from standard value iteration. We say that a policy 7 is u-improving if 7 €
arg max,c{rr + Pru}.

Fact 6 ([1], Theorem 8.5.5). Let L be defined as above, p* be the optimal average reward and p™
be average reward obtained by a deterministic stationary policy ©°° . Then, for all s € S, any
u® €V and any u-improving policy T,

Isrgg {Lu(s) —u(s)} < p™ < p* < max [Lu(s) —u(s)].
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The following result bounds the value of () and shows that # converges to the optimal reward

p*asi— oo.
Fact 7 (1, Theorem 9.4.1(b)]). For all u® €V,
(i)
u X

min — = p".
i—00 1

C.1 RESULTS ON APPROXIMATE VALUE ITERATION

In this subsection, we restate our results on the limiting behaviour and performance of approximate
value iteration, together with their proofs.

Claim 1. Let e € (0,1) and fix i € Z>¢. Let ult) be the value function obtained after i steps of
standard value iteration and let W"+Y) be its corresponding approximation obtained after i steps of
approximate value iteration. Then

ultth) — (i +1ee < (it < O+,

Proof. We prove the left-hand side of the inequality by induction. As the base case when i = 1, we
have

g1 > R

R

> max {I‘,T + Pﬁﬁ(o) — Ee} — Ee
acA 2 2

= max {rw + Pwu(o)} —e
acA

=ulV —e.

Suppose that the induction hypothesis is true for all ¢ = k. Then wheni = k + 1,
(k1) S { (k)} _f
R

> max {I‘,r +Pa® — Ee} _fe
A 2

ac 2
> max {r,r +Pu® — kee — Ee} — Ee
acA 2 2

=u**Y — (k4 1)ee.

The right-hand side of the inequality is due to the fact that the actions chosen in approximate value
iteration are at most as good as the ones chosen in standard value iteration, resulting in a @(*) value
that is at most u(®). This completes the proof. [

Theorem 1. Let e € (0,1). Forallu® € Vandall s € S,

. o a® ) a® .
p" —ee <liminf — < limsup — < p*.

1—>00 1 i—00 (3

Proof. By Claim[I] we have
u® — jee < a® < u®.
Dividing throughout by ¢ and taking the limit as 7 — oo gives
u® a® a® u®

lim —¢ee < liminf — < limsup — < lim —
—oo 1 1—00 i—00 (3 —o0 1
By Fact[7] we get
5(%) (%)
a u
p* —ee <liminf — < limsup — < p*.
i—00 7 i— 00 2
This completes the proof. O
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Theorem [T|implies the following corollary

Corollary 1. Let € € (0,1) and let w be a policy such that ©° is average optimal. Theorem
implies that

lp" = Prp*ll < e

Proof. By Claimand by definition of u(**t1),
ry 4+ Pru® — (i +1)ee < Y <ulth),

Dividing throughout by ¢ + 1 and taking the limit as 7 — oo, we obtain

() P41 gi+1) (i+1)
lim ,rﬂl + P, <lim h 1) — lim (Z_+ I)Ee < lim 2 < lim 2
71— 00

Using Theorem I]and Fact[7] we have

{0+ FGi+1)
P,p" —ece < liminf < lim sup — < p*,
T di—oo 1+ T i 1H+1 T
which is equivalent to
[Prp™ = p*llc S € O

We say that a policy 7 is u-improving if 7 € arg max c{r. + Pru}. The next theorem bounds
the optimal reward for every state s € S.

Theorem 2. Let 7 be any u-improving policy and p* € R be the optimal average reward. Let L' be
a single run of approximate value iteration. Then, the following holds for all s € S:

Islgél {L'u(s) —u(s)} < p™ < p* < max {L'u(s) —u(s)} +e. (19)

Proof. Let L be a single run of standard value iteration. By construction of £ and £/, for all s € S,
Lu(s) —u(s) —e < L'u(s) —u(s) < Lu(s) — u(s),
which implies that

min {£'u(s) — u(s)} < min {Lu(s) — u(s)}

and

max {Lu(s) —u(s)} < max {L'u(s) — u(s) +€}.

Given Fact[f] we conclude that for all s € S and any u-improving policy 7,

min {£'u(s) —u(s)} < p™ < p* < max{Llu(s) — u(s)} +e. O

C.2 EXTENDED VALUE ITERATION

The classical algorithm by [23| Proposition 2] finds the solution fimax (s, a) to the inner maximiza-
tion problem max,(.)ep(s,a) { Dogres (') - v (s')} of Eq. in O(S) time. The approach is
to place as much transition probability as possible on the state with the largest value wu(s) at the
expense of transition probabilities on states with small u(s). In particular, they first sort the states
according to their values u(s). This takes O(S) time. Then, for the state s,.x that has the highest
value u(Smax ), S€t P(Smax) = P(Smax|S, a) + @. For the remaining states, set p(s’) = p(s'|s, a).
Note that p is no longer a probability distribution since ), s p(s') = 1 + w The vector p is
then truncated on entries that correspond to states with the smallest values u(s). In particular, an
iterative procedure of setting the entry of p that corresponds to the states with the smallest value

u(s) to p(s) = max {0, DD p(s’)} is carried out. This takes O(.S) time.
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C.3 QUANTUM EXTENDED VALUE ITERATION

We give a quantum algorithm for extended value iteration. Specifically, we first give a quantum
subroutine that outputs an estimate fipax (S, @) of fmax (s, @) up to additive accuracy e with success

probability at least 1 — ¢ in time O(@ log %) The approach is similar to that of [19 23]]. In
particular, we find the state s;,.x and set p(Smax) = D(Smax) + @. For the remaining states
s" € S\{Smax}> we set p(s’) = p(s|s, a). For the truncation step, we search over the values u(s’)

for a cut-off point c. We call all states s’ € S with value u(s") < ¢ good states with respect to c. We
require that the transition probabilities of good states with respect to c satisfy

Z p(s']s,a) — d(sa) < €qp;

’ . ’ 2
s'eS:u(s")<c

for some small €4y, € (0,1). In order to find the cut-off point, we perform a binary search over the
values u(s’) of all s € S. At every iteration of the search, we perform ¢;-norm estimation on the
vector

oo (') p(s']s,a) if s’ is a good state with respect to c,
s00d (') = .
Pgood 0 otherwise,

up to additive error €,oy,. After O(log S) iterations, binary search converges to an estimated cut-off
point &. We set p(s’) = 0 for all the good states with respect to ¢.

We describe the steps to compute fimax($, a) in Algorithm while the lemma below discusses the
guarantee of Algorithm 2]

Lemma3. Lete, 6 € (0,1) and tmin, Umax € R. Consider the set P(s, a) of transition probabilities
that satisfy Eq. (9). Let p € [0,1]° be a transition probability vector such that p € P and let
U € [Umin, Umax)~ be a nonzero vector. Given quantum access to the entries of P, u that are stored
in KP-trees KPp and KPy, respectively, there exists a quantum algorithm that outputs an estimate |1
of " = maxp,()ep(s,a) 2ogres P(8') - u(s’) such that |fi — p*| < € with success probability at least

1 — 8. The time complexity is O (@ log %)

Proof. First, we show that binary search eventually terminates. In particular, we prove that the

search range decreases in every step. Let the search range for iteration ¢ be [low(t) , high(t)]. There
are three cases:

o If ‘f(gt)c - @ < €gap, the algorithm returns c¢(*) and we are done.

e If Doy > d(s;l) + €gap, then the new search range will be updated to low®, c¢(M]. We
see that

high(D) — Jow(+D) = () _ Jow®) = high') —low® _ low® = high®) — low!)

< high® — low®
2 2

e IfT<. < d(;’a) — €gap» then the new search range will be updated to [¢(*), high®]. We see

high” —low®  high® — low”

hich®TY) — Jow( Y — hich® — O — hioch® —
ig ow ig c ig 5

< high® — low®

Eventually, the condition high(t) — low® < egist 1S met. Next, we show that the following are
equivalent:

(@) [ — ] < g,

(b) ‘high(t) - low(t)’ < e
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Algorithm 2 Quantum algorithm to compute the inner maximization problem of Eq.

Input: Quantum access to estimates P(-|s, a) stored in KPy and KP,,, and distance d(s, a) for a

state-action pair (s, a), failure probability ¢ € (0, 1), eIrors €mean, €means €norm €gaps €dist € (0, 1).

1: Find tpayx = max u(s’), Smax = argmax u(s’) and Ui, = miré; u(s) with success probability
s'e s/ s'e

€s
1-— % using Fact
Set p(Smax) = P(Smax|s, a) + @ and set p(s') = p(s'|s, a) for all 8’ € S\{Smax}-
Sett =1.
Set high®™ = o, low™) = upin.

while ‘f‘gc - d(s’a)’ > €giop and |c(t+1) - c(t)‘ > i and ‘high(t) — low®

> €gist dO

2
t high® —low(?)
Set ) = Jow® + (7@ o )

Compute the estimate fgcu) of Zs':p(s')<c<t> p(s’]s, a) using Lemma with additive error

A

€norm and success probability 1 — @.

8: if Fgcm > d(sf) + €gap then

9: Set high*+1) = ¢ 1ow(Y) = Jow(®).
10: t=t+1

11: elseif ', < ds,a) _ €oap then

12: Set low 1) = e, high(tH) = high(t).
13: t=1t+1.
14: else

15: Return ¢,

16: end if

17: end while

18: Find the state § = arg min,, . {u(s’) > ¢} using Fact If there exist 4, j € [S] where i # j
such that u(s;) = u(s;), then either one of them will be returned.

19: Compute the estimates [i, fi< ) such that

o= Z ]3(8/‘8, a) : u(sl) < €mean
s'eS

ficor = D B(s'15,0) - ui(s')] < hean
s':(s")<ct)
each with success probability 1 — % using Lemma
20: Set p(5) = T, — 452,
Output: fipax = fi — fi<o) + @ “Umax + P(5) - u(3).

(Case 1): fgc(t) > d(;a) + Estop

D) _ ()] < Edist
-2
ol (EH1) (t+1) .
=N low(t+1) + hlgh low e < Edist
2 -2
PN IOW( ) ) — IOw(t) B C(t) p Edist
2 -2
IOW(t) B & €Edist
2 2 |7 2
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Edist
- 2

low® _ high(t)
2 2

N ‘high(t) f low(t)‘ < g,

(Case 2) fgc(t) S d(52,a) - 6stop

< €dist

‘c<t+1> _®

oh (1) (t+1) .
o [low(HD n high low _ | < Edist
2 - 2
ioh(®) _ At
o o0 high® =l e
2 - 2
high® — | _ e
< Cdis
2 - 2
high® — low® < Cain
2 - 2

= ‘high(t) - 10w(t)‘ < edist

Now, we prove the correctness of Algorithm [2| After exiting the while loop, a cut-off point ¢® is
obtained. We denote the cut-off point as ¢ for brevity. Then, we can bound

|l1maX(sv a) - ﬂmaX(S’ CL)|

. d(s,a _ _
= |p et (2 ).uma"+p(5)'u(s)*NmaX(Sva)
d d
<l e+ 1D (32 506100 ) - (s )5.0) -u(s') + L5

s'eS s’eS:u(s")<c

IN

i — Z p(s|s,a) - u(s") — fi<e + Z p(s'|s,a) - u(s)

s'eS s'eS:u(s")<c

tlice— Y pls.a)- uls)

s'eS:u(s")<c

<li— Y (s a) - uls)

< €mean T+ G:nean'
Setting €mean = €jean = 5 yields the desired bound. A union bound of all steps in the algorithm
succeeding leads to the state total success probability.

For the time complexity, finding Umax, Umin, Smax takes O(\/§ log %) time by quantum minimum
finding. At every iteration of the binary search, we use quantum norm estimation to approximately
compute norm of the transition probability vector on entries that correspond to the good states,

which takes O (ﬁ log %) time. Furthermore, it is known that binary search finds a target solution

after O(log S) iterations. Considering that an additive error of €,orm, is incurred at the end of every
iteration of binary search, the run time of binary search suffers an extra O (log ——) overhead. The

desired ¢ is obtained after O(log S) iterations of binary search, after which we perform quantum
mean estimation on the good states with respect to ¢. This takes time O( L log %) In total, the

run time of Algorithm 2]is "
~ 1 1 1
@) (\/§ ( + ) log > .
eﬂorm emean 5

24

* Umax T p(g) : u(‘g)



Under review as a conference paper at ICLR 2025

Algorithm 3 Quantum extended value iteration

Input: Quantum access to estimates p(-|s, a) stored in KPp and KPy, distance d(s, a) for a state-
action pair (s, a), failure probability § € (0,1), u € R, error € € (0,1).
Set: = 0.
Initialize u(®) (s) = 0 for all s € S.
forall s € Sdo

Let ¢tV (s,a) = 7(s,a) +d(s, a) + fimax(5, a), Where fimax (s, a) is evaluated by running
Algorithm 2 with additive error § and success probability 1 — % using Lemma

bl

5. al*Y(s) « Obtain max {q(”l)(s, a)} with additive error ¢ and success probability 1 —
ac
2 .
485‘%1)2 using Fact
6: end for
7: Update KPy,.
8: Find ugflle ) and uffl?:) using Factwith success probability 1 — %.

9: while max {11(“'1)(3) — ﬂ(i)(s)} - migrgl {&(Hl)(s) - a(i)(s)} > edo
sE s€

10: Seti =14+ 1.

11: Repeat Lines 3-8.

12: end while

13: for doalls € S

14: Find 7(9)(s) = {a € A:q(s,a) > maﬁiq(s,a) — e}.
ac

15: end for‘
Output: 0D, 7.

Setting €mean = €norm = 5 yields a total run time of 0 (@ log %) 0

Now, we propose the quantum extended value iteration algorithm. At every iteration, this algorithm
uses Algorithm [2] as a subroutine to compute the inner maximization of Eq. (TI). It then uses a
generalization of minimum finding to obtain the value function for every state s € S. The steps of
the quantum extended value iteration algorithm are detailed in Algorithm 3]

The lemma below states the guarantees of one iteration of quantum extended value iteration.

Lemma 4 (Guarantees of one iteration of quantum extended value iteration). Let e,6 € (0,1). Fix
i € Z>o. Given access to estimated rewards 7 (s, a), estimated maximum mean value i, q4 (s, a) and
distance d(s,a) for a state-action pair, there exists a quantum algorithm that outputs an estimate

@tV () of the solution uC+1)(s) to Eq. such that a0+ (s) > w1V (s) — € with success
probability at least 1 — 6 for all s € S. This requires O (% log %) time.

Proof. We first analyze the correctness of Algorithm [3|for every s € S. By Lemma 3] Algorithm 2]
returns [imax (S, a) such that

‘ﬁmax(sva) - Nmax(sa a)| S

[NC e

Then by Fact[2] we get an estimate @(s) such that
u(s) > u(s) — e,

where u(s) is defined as in Eq. . A union bound of all steps in the algorithm succeeding leads to
a total success probability of 1 — 6.

Now, we analyze the time complexity of the algorithm. For every s € S, we find the maximum
of g(s,a) over all a € A in Algorithm This takes O (@ log %) time. For every run of the

maximum finding in Line 5, we run Algorithm [2[to find fiax (s, a) in o} (@ log %) time. The
run time till Line 6 is therefore O (S 1'5\@10g %) Finding umax and umi, takes O(\/g log %)
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time. Therefore, the total amount of time for a single run of quantum extended value iteration is
~ Sl.5 \/Z 1
O ( log 3). O

€

Before proceeding to proving convergence for quantum extended value iteration, we show that the
policy chosen by the algorithm is always a policy with aperiodic transition matrix. Ref. [19] argued
that extended value iteration always chooses a policy with aperiodic transition matrix. In particular,
define set F and F’ as follows

E={rell:P,p*=p*}, F={recll:P,isaperiodic}. (20)

Then, there exists an 7o such that for all 7 > 17,
max {rw + Pﬂu(i)} = max {r7r + Pﬂu(i)} .
mell r€ENF

Since quantum extended value iteration is erroneous, we replace the set £ by
B = {rell: [P’ — pll < &) @
and use the same argument as [19] to show that the same policy choice holds.

Lemma 6. Let I be the set of all policies and let fi,. be defined as in Eq. @) Let {ﬁ(i)} be a
sequence generated by Algorithmand let E', F be defined as in Egs. and . Then, there
exists an ig € Z such that for all © > 1,

G — MY
Rt A) = gt A

Proof. Since there are only finitely many deterministic policies with aperiodic transition probabili-
ties 1]}, there exists an g and a set IT" such that for ¢ > i, arg max {rﬂ + ;]Ef) — ee} € IT'. Choose
mell
a7’ € II'. Then, there exists a subsequence { ﬁ(ik)} such that
G+ — T+ ll(i/) —e> a1 _ (ix + 1)ee

by Claim[I] Dividing both sides of the equality by i), + 1 and letting k — oo, we get
i i) w0 — (i + 1)ee

© > 1 > i > i ) —ce=Pp —
e A AL B el NI e it 1 prooce=tmp e

where the first inequality is due to Theorem [I] the second last equality follows from Fact[7|and the
last inequality follows from the implication of Fact[7} On the other hand,

et = r,T—i—[lSri) —e < ulisth

by Claim[I] Dividing both sides of the equality by i), + 1 and letting k — oo, we get

g (ie+1) g (ie+1) g (ie+1) , 4+ Polie)
p* —ee <lim inf? < lim u < lim sup u < lim M =P, p".
k—oo 1 + 1 k—oo 1 + k—oo Itk t+1 k—oo i+ 1
Therefore, 7’ € E' N F. O

Next, we define a J-stage span contraction as follows.

Definition 5 (J-stage span contraction). Let 0 < y < 1 and u,v € V. Denote the span of a vector
v as

sp(v) = max {u(s)} — min {v(s)}

For some positive integer J, we say that an operator L : V — V is a J-stage span contraction if L
satisfies

sp(L7u—L7v) <vsp(u—v).

In the following lemma, we show that Algorithm [3| will eventually terminate.
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Lemma 7. Let e, € € (0,1). There exists some positive integer k such that L' satisfies

~(k+1) () _ (k) Comin LD () (R) <
r;leag({u (s)—u (s)} Isnelg{u (s)—a (s)}_a,

where o = € + 2iJe.

Proof. First, notice that by Claim|[T]
L'v(s) — L'u(s) < Lo(s) — Lu(s) + ¢
for all s € S. Taking the maximum on both sides gives

max {L'v(s) = Lu(s)} < max {Lv(s) — Lu(s)} + e.

Again by Claim[T] we have
L'v(s) — L'u(s) > Lu(s) — e — Lu(s)
for all s € S. Taking the minimum on both sides gives

. ! _ ! > . _ _ .
min {Lv(s) = L'u(s)} > min {Lv(s) — Lu(s)} — €
Combining Egs. (22) and (23)), we have for some positive integer J,
sp (L’u(‘]) - E’V(J)>

- " () — /o) —mi "u () — o)
—r;leagc{ﬁu (s) — L (s)} mlg{ﬁu (s) — L' (s)}

< max {Ev(‘])(s) . ﬁu(‘])(s)} — min {EU(J)(S) — £u(J)(s)} +2Je

seS
= sp (EV(J) — Lu(J)) + 2Je
=sp ([,Ju — ,CJV) + 2Je
<wsp(u—v)+2Je,

(22)

(23)

where 0 < v < 1 and the last inequality is due to the fact that £ is a .J-stage span contraction [[1].

By setting v = u(® and u = Lu(®), we get

sp (ﬁ<U+1) — ﬁ(“)) <visp (u(l) — u(O)) +2iJe < € + 2iJe,

where the last inequality is due to [I, Theorem 8.5.2(b)]. Setting 0 = €’ + 2iJe completes the

proof.

Now, we are ready to prove the convergence of Algorithm 3]

O

Theorem 3 (Convergence of quantum extended value iteration). Let ¢, € (0,1). Let M be the set
of all MDPs with state space S, action space A, transition probabilities P(-|s, a), and mean rewards
7(s,a) that satisfy Eq.(9) and (I0) for given probability distributions p(-|s,a), values #(s,a) €
[0,1],d(s,a) > 0, and d'(s,a) > 0. If M contains at least one communicating MDP, Algorithm 3]

satisfies

a® .

<p".

pF—ee < lim —
i—o0 1

Furthermore, terminating Algorithm 5| when

S(41) )~ (D) e [ oy () <
r;leag({u (s) —a (s)} Isnelg{u (s)— (5)}_6,

the greedy policy with respect to 0\ is e-optimal.
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Proof. By Lemmal6] the optimal policy 7* has aperiodic transition matrix. Replacing E with E'NF,
u® with @(® and using Lemmaé]instead of Lemma 9.4.3, the proof of [1, Theorem 9.4.4] follows

by the aperiodicity of P, from Lemma El By Theorem , we showed that the value of # is
bounded between p* — ee and ho as i — oo.

Now, we prove the error bound. Define

p = 1 [max {ﬂ(”l)(s) - ﬂ(i)(s)} + min {ﬂ(”l)(s) - ﬂ(z)(s)}]

2 | seS sES

By the same approach as [1]], observe thatif a < b < cfora,b,c € Rand ¢ — a < ¢, then

€ a—c a-+c c—a €
<b-— < .
2< 2 s 2 = 2 <2

By Theorem setting @t = ("), we get

DN ™

. € o
=<3 ‘p’—p’r ‘S
By triangle inequality,

i * > /
pm = p

pr = 4 = p

Slp’—p*|+‘p’—p”w‘§6- O

D QUANTUM-ACCESSIBLE ENVIRONMENTS

In order to access the MDPs, we assume access to a quantum sampling oracle for the transition prob-
abilities, a quantum oracle for the rewards and a quantum policy evaluation oracle (see Definitions 2]
to[d). Using these oracles, we describe a Classical Sampling via Quantum Access (CSQA) [21]
procedure in Algorithm 4]

Algorithm 4 Classical sampling via quantum access

Input: Policy 7, time step ¢
1: Prepare (1) := |z(1).
2: fort' =1,2,--- ,t—1do
3 Query Oy on |¢()) |0) to compute |p()) == O [¢()) |0).
Query O, on |¢())]0) to compute |¢'*)) := O |} |0).
Query O, on |¢/(*))|0) and collect the fourth register as |¢*' +1).
end for
: Query Oy on |¢(*)) |0) to compute [p(*)) = O |1} |0).
: Measure the resulting state in the standard basis of S.

A A

Lemma 5. Given a policy w and an integer t € Z.. Let d$f ) be the probability distribution over
states s € S at step t according to m. Suppose we have access to oracle O, , then there exists a

quantum algorithm that outputs a sample of s ~ d%" in time O(t).
Proof. We slightly modify the CSQA algorithm by [21]]. Starting with |¢(V)) = |z(1)), CSQA per-

forms a discretization to produce |¢(*")), followed by a quantum evaluation of 7 on |¢(")) to produce
|¢/*")). Then, the algorithm queries O, on |¢/(*")) and obtains the fourth register as |¢(* T1)). If

6 = [V @)
then by Eq. , the fourth register of O, |¢/*)) |0) is

3¢ +D) = / ¢ () [x)
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This can be seen from the fact that
’ ’ (t) /
GO0 = [V @ 191010 =5 [ Ja @ a9 ).
- .

Therefore, the fourth register is

/"¢/dw @lsa)le') = [ @) ) = 500

Querying Ox on |¢(*'+1)) and measuring |¢*)) gives a classical sample (") ~ a?

by induction.
O

E PROOF OF THEOREM [4]
In this section, we prove the regret bound in Theorem 4]

E.1 SPLITTING IN EPISODES

Let n (s, a) denote the number of times action a is chosen in episode k& when being in state repre-
sented by s. Let the regret in episode k be

E= Z Z nk(s,a) (p* —r(s,a)). (24)

s€SacA

As in Sectlon 5.2.2 of [18] (cf. Section 5.1 of [22] and Section 4.1 of [19]), with probability at least
1- the regret of Algorlthmls upper bounded by

5 8T
T log (5> + zk:Ak. (25)

12To/4’

E.2 FAILING CONFIDENCE INTERVAL

In this subsection, we consider the regret when the true MDP is not contained in the set of plausible
MDPs. As mentioned in the previous section, the estimates (z,a) and p;**(z, a) are computed
using their respective samples on the discretized state-action pair (s, a).

Rewards Using the algorithm in Fact[d] one can obtain an estimate 7(z, a) of E [#(x, a)] such that

A S \/LSYiA
|7(z,a) — E[f(z,a)]| < max{1, Ni(s,a)}

with success probability at least 1 — 5 47‘50 7 using O(max{1, Ni(s,a)}) calls to O,. Combining
with Eq. (3), we have forall s € S,a € A

VSA

Ir(z,a) — #(z,a)| < LS™ + max{1, Ni(s,a)}

(26)

with success probability at least 1 — 24%#5/4.

Transition probabilities Using the algorithm in Fact[4] one obtains an estimate p’ 88 (-|z, a) of
p*88(-|x, a) such that

: S
5388 (. _ R [5288(. <
1572 fo,0) ~ Bl <
with success probability at least 1 — 24T5/4 [21]] using O (Ny (s, a)) calls to O, . Combining with
Eq. (@), we have for all a € A and I; for j € [n],
S

age (. _ pagg, <LS %4 ——
P55 (|, @) — 555 (|, a)|y < " Ne(s,a)

(27
with success probability at least 1 — mi#m-
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Regret when confidence interval fail Ref. [19] gave a regret bond for the case when the true
MDP is not contained in the set of plausible MDPs. They showed that

ZAk]leng. <VT (28)
%

with probability at least 1 — 12T5 —57s7x- This bound was also used by [[18, 22]. In our case, the this
regret bound holds with the same probability.

E.3 REGRET IN EPISODES WITH M € M,

We now analyze the regret when the true MDP M lies in set of plausible MDPs. Note that by the

\%-optimal choice of 7y, it holds that g, == p* (Mk> >pf = ﬁ Therefore,

" —r(z,a) < (5 — Fr(@,a) + (Fr(e,a) — r(z,a) + —=

VT’
By Egs. (13), and (26), we have
A £ Y (@G = (o @) + 2087 n 4 2WEAY 3 gk 2 D
x s€S aGA 5,0

(29)

where we abuse the notation n(z, 7(x)) = ng(s,a) for s that represents « and 73, = tg41 — t
denotes the length of episode k.

Dealing with the transition functions The term Z ng(x, 7(x))(p), — Tr(z,7(x)) can be ana-

lyzed similar to Section 5.2.4 of [18]] and Section 5.1 of [22]]. Namely, let S\k = \(7k, -) be the bias
function of policy 7y in the optimistic MDP M},. By the Poisson equation,

o, — T, T (2))

= /Xﬁk(dxﬂx,frk(x)) (') = Ai(z)
= / p(da’ |z, T (z)) - Ae(2') — Me(2) +/ (Pr(da’ |z, 7 (7)) — p(da’ |z, 7i(2))) - Ak (@)
" X

(30)
The last term in Eq. (30) can be bounded by
ﬁk(|x7 a’) - p(|z,a) = (ﬁk(‘za a) - ﬁk(|z7a)) + (f)k(|$7 CL) - pk('|xa a))
S
< —aio9 2
<2LS +2Nk(s,a)
using Eqgs. (T4) and (27). This gives
an(%ﬁk(ff))/ (pr(da'|, 7i () — p(da’ |z, Ty (x))) Ao (')
<2HSY Z + 2HLS ‘7. 31)

seS aG.A 5a

For the first term in Eq. (30), the same result from Equation (29) of [18]] and Equation(18) of [22]
holds with probability at least 1 — ie.

1275/4>
O3 e, () ( R i(a:))
k T
5 8T 8T
<H iTlogTJrHSAl nA (32)
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E.4 TOTAL REGRET

As in Ref. [22} |18} [19], main regret term in the MDP comes from a sum over all confidence intervals
in the visited state-action pairs. In order to bound this term, we rove the following lemma.

Lemma 8. For any sequence of positive numbers z1,--- ,z, with 0 < zp < Zp_1 =

max{1, i zi},
i=1

It suffices to find the value of « that minimizes 22 . Taking the derivative of 552+ with respect to

« and letting it be 0, we get
—Z5 (—2%log Z, +log Z, +2%10g2) =0
2%log Z,, —2%log2 =log Z,
2% (log Z,, — log2) = log Z,,
log Z,
log Z,, — log 2

o —log, [ 108%n
— 82 log Z, —log2 )"

2% =

Then,

1 log Zn 1 log Zp
En: e Zn0g2(log Zp —log 2) B (log Zn _ log 2)Znog2( Tog Zn—logQ) B log(Zn/2) ZlogQ(%)

— 1 Zn - n
k=1 Zk 1 log gi—logQ -1 10g2 10g2
log, Zn

_ log(Z,/2) (210g2 Zn>log2(mlz‘”iif@g2) _ log(Z,/2) log Z,, 82

log 2 log 2 log(Z,,/2)
_ log(Zn/2) (log(Z,/2) + log?2 logz Zn _ log(Z,/2) . log 2 logs Zn
~ log2 log(Z/2) ~ log2 log( n/2)
_ log(Z./2) (1010g1<°zgf2/2>)10g2 Zn_log(Zn/2) (101 2)71052272) < —log Z,.

log 2 log 2 l

where the first inequality uses the fact that log(1 + z) < x and the last inequality is due for the
first inequality and the fact that log« is monotonically increasing for z € R,. for the second
inequality. O

We note that a generalized version of Lemma[8]is given in Lemma 2 of [18]. However, the authors
claimed that their lemma holds for all « € [0, 1], which is not the case.

We now bound the total regret. Summing up Ay over all episodes with M € My, we obtain, by
Egs. (29) to (32),

ZAkﬂMeMk
%
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/ T T
<2LS 7 +2Vn Zzznk ngog%—l—HSAlog;—A

k SGS acA 5a
ng(s,a)
2H
PSS B g CSS S 6
k s€S aeA k scSacA
Notice that by definition, 7, < T" and by Lemma 8] we have

CE Y e < g3 L L sVl <

k seSacA

log(SAT)

due to Jensen’s inequality, the definition N (s,a) = an s,a) such that Z Z N(s,a) =

s€eSacA
T [19]. Then, from Eq. (33), we have

S Aglurens, < 20TS ™ + ——VSAlog(SAT) + Hy | 2Tlog o + HS Alog oo
- log 2 2 ) SA

4
+ @HS log(SAT) + 2HT LS~ + eVT. (34)

E.5 TOTAL REGRET
By Eqs. (23), (28) and (34), we have

5 8T
zk: A= zk: Aplaggm, + Z Arlaem, + g Llog —-

< VT +2rrs + 54y, g(SAT) + HU%T@% + HSAlogg—i

log 2
+ %HS log(SAT) + 2HTLS~ + /T + + §Tlog 85T
(0]
AT AT
<2(H+1)LTS™® + (14 + 15H)SAlog 55 + (2H + 3)VT log 55 (35)

oo

with probability at least 1 — 4%/4. Since Z 175/ < 4§, a union bound over all possible values of
T_

T gives
SAT

> AR <2(H 4+ 1)LTS™ + (14 + 15H)SAlog SAT 5

s+ (2H + 3)VT log

with probability at least 1 — 4.

Remark 1. The general d-dimensional case is almost similar the 1-dimensional case, with the
only difference being that the discretization now has n® states. Replacing S with S and setting

S = T bounds the regret by O (Tﬁ) when da < 1 and O(v/T) when do > 1.
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