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ABSTRACT

Decoding visual representations from brain signals has attracted significant at-
tention in both neuroscience and artificial intelligence. However, the extent to
which EEG signals contain actual visual information remains unclear. Current
visual decoding approaches explore various EEG-image alignment strategies, yet
most emphasize high-level semantic features while neglecting pixel-level details,
thereby limiting our understanding of the human visual system. In this paper,
we propose an EEG-image alignment strategy that leverages multiple pre-trained
visual encoders with distinct inductive biases to capture hierarchical and multi-
scale visual representations, while employing a contrastive learning objective to
achieve effective alignment between EEG and visual embeddings. Furthermore,
we introduce a Fusion Prior, which learns a stable mapping on large-scale visual
data and subsequently matches EEG features to this pre-trained prior, thereby en-
hancing distributional consistency across modalities. Both quantitative and quali-
tative experiments demonstrate that our method achieves a strong balance between
retrieval and reconstruction capabilities.

1 INTRODUCTION

With the rapid development of text-to-image generative models (Rombach et al., 2022} Zhang et al.|
2023; |[Esser et al., 2024), reconstructing human visual stimuli from brain signals has become a
prominent research focus in both neuroscience and artificial intelligence. Visual processing is a core
function of the human brain. When visual stimuli is processed by the brain, the primary visual cortex
initially deciphers basic pixel attributes such as color, edges, and textures, subsequently forwarding
them to various higher-order visual cortices for further hierarchical processing (Blasdel & Lund,
1983} Tsumoto et al., [1978). These higher-level regions collaborate to synthesize and generalize
visual data, resulting in semantic characteristics such as objects and environments, and thus formu-
lating the essential processes underlying human visual perception of the external world. (Merigan
& Maunsell, [1993).

To investigate these complex and dynamic relationships between the human visual system and brain
representations, researchers commonly employ Functional magnetic resonance imaging (fMRI),
Magnetoencephalography (MEG), and Electroencephalogram (EEG) for visual decoding and re-
construction (Zhang et al., 2025} [Benchetrit et al., [2023). fMRI measures brain activity indirectly
through blood-oxygen-level-dependent signals, offering high spatial resolution but limited temporal
resolution, which makes it difficult to capture rapid neural dynamics (Logothetis et al., 2001)). In
contrast, EEG and MEG directly reflect the brain’s electrophysiological activity. EEG provides high
temporal resolution but suffers from low spatial resolution and a poor signal-to-noise ratio. MEG,
while also offering millisecond-level temporal precision, provides comparatively better spatial res-
olution (L1u et al., [2023a;|da Silva, 2013)).

Previous research has explored decoding brain signals by aligning them with visual representations,
enabling classification, retrieval, and reconstruction. [Song et al.| (2023)) employed contrastive learn-
ing to maximize the similarity of matched brain—image pairs while minimizing that of mismatched
ones. |Li et al.| (2024) proposed the Adaptive Thinking Mapper (ATM) to align brain signal features
with CLIP-derived visual embeddings, combined with a two-stage multi-pipe strategy for brain-to-
image generation. However, these approaches rely on direct alignment between brain signals and
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image features, whereas the structural gap between the two modalities makes this strategy insuffi-
cient to capture the underlying shared representations.

Recently, several studies have attempted to improve direct alignment by introducing priors or en-
riching visual representations. [Wu et al.| (2025)) introduced the Uncertainty-aware Blur Prior (UBP),
which mitigates brain-image mismatches by blurring high-frequency image details. [Zhang et al.
(2025) extended CLIP-derived image embeddings with depth information to enhance brain—image
alignment. However, these methods focus primarily on high-level semantic alignment while over-
looking low-level pixel information. This oversight prevents a comprehensive understanding of the
visual content encoded in brain signals and reduces interpretability.

To bridge the structural gap between the temporal dynamics of brain signals and the spatial hierar-
chies of images, we introduce Hierarchical Visual Fusion with Fusion Prior, a framework inspired by
perceptual mechanisms of the human visual system. The framework integrates multiple pre-trained
encoders to construct multiscale visual representations, ranging from pixel-level details to high-level
semantics, and leverages contrastive learning to align brain and visual features. To address the limi-
tations of CLIP and related encoders in capturing local and fine-grained information, we incorporate
low-level visual features modeled by a Variational Autoencoder (VAE) into the fused representation.
In addition, we pretrain a Fusion Prior on large-scale visual data to provide a stable mapping from
fused features to diffusion conditions, which substantially improves retrieval accuracy, reconstruc-
tion fidelity, and interpretability. The key contributions of this work are as follows:

* We incorporate low-level visual information from a VAE upon semantic alignment, com-
pensating for the limitations of CLIP-based encoders in modeling pixel-level details.

* We propose a Fusion Prior that learns a robust visual representation from large-scale data,
providing a stable bridge for aligning brain signals to improve cross-modal consistency.

* Our method achieves the state-of-the-art performance in retrieval tasks with significant
advancements over prior work, while delivering superior reconstruction quality.

2 RELATED WORK

Brain Visual Decoding Neural decoding aims to infer human cognitive and perceptual states from
brain signals such as EEG (Bai et al.| 2023} L1 et al., [2024), MEG (Cichy et al., |2016b), or fMRI
(Kay et al.l [2008; Takagi & Nishimoto| 2023b). Among these, visual decoding has become a par-
ticularly challenging and promising direction, mainly including tasks like image classification (Xu
et al.| [2024) , retrieval (Liu et al.,[2023c) and reconstruction (Ozcelik & VanRullen, 2023} |Takagi &
Nishimoto, [2023a)). A central focus has been on encoding EEG signals into effective representation
vectors that capture temporal and frequency characteristics (Fu et al., 2025). To bridge the modal-
ity gap, CLIP-based models are commonly adopted as benchmarks (Liu et al., 2023c; [Wang et al.,
2024), while recent methods have explored strategies such as diffusion priors (Aggarwal et al.| [ 2023)
for enhancing semantic consistency in the generative space (Ozcelik & VanRullen, |2023; Takagi &
Nishimoto, 2023b; Li et al., 2025)), or bidirectional mappings to enforce cross-modal cycle consis-
tency (Wei et al., [2024). At the same time, research on the image modality itself has explored ways
to complement the limited semantic expressiveness of neural signals, including blurred preprocess-
ing to suppress high-frequency noise (Li et al., [2024) and textual descriptions to enrich semantic
guidance (Takagi & Nishimoto, 2023b). However, most existing approaches primarily emphasize
high-level semantics without sufficiently capturing pixel-level, fine-grained representations, leaving
notable gaps in the fidelity of generated or reconstructed images.

Hierarchical and Multiscale Visual Representations Recent advances in image-only represen-
tation learning emphasize multi-level semantics and dense structure within a single modality. Vision
Transformers (Dosovitskiy et al.|[2020) trained with self-supervision (e.g., token-level pretext objec-
tives) yield strong global semantics without textual supervision (Bao et al.,|[2021; | Xie et al., 2022; |He
et al., 2022} Caron et al.,[2021;|/Oquab et al., 2023)), while generative latent models such as VAEs and
VQ-VAEs provide compact pixel-level codes with high reconstruction fidelity (Kingma & Welling,
2013} [Higgins et al.L 2017;|Van Den Oord et al., [2017}; |Razavi et al., 2019). A complementary per-
spective from neuroscience links deeper network features to higher visual areas and early layers to
fine spatial detail and rapid dynamics (Yamins et al.| |2014;|Cichy et al.l|2016a), motivating the com-
bination of coarse semantic abstractions with fine-grained local cues. In practice, however, many
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decoding pipelines (Li et al.|[2024;|Wu et al.|[2025;|Zhang et al.|, |2025) instantiate a single semantic
embedding space for simplicity and zero-shot transfer, which may underweight local structures that
are important for faithful image reconstruction from neural signals.

Cross-modal Contrastive Learning Cross-modal contrastive learning (CMCL) aligns heteroge-
neous inputs within a shared embedding space by maximizing agreement between matched pairs
under a temperature-scaled InfoNCE objective (Oord et al., [2018; Wu et al., 2018} [He et al., [2020).
Bi-encoder formulations with cosine similarity and (often) symmetric losses have become the de-
fault recipe for scalable pretraining and zero-shot transfer (Radford et al.l 2021} Jia et al.l 2021}
Zhai et al., 20225 |L1 et al., [2022). Building on this recipe, large-scale vision—language systems such
as CLIP/ALIGN demonstrate strong generalization across retrieval and classification benchmarks,
and the paradigm extends beyond image—text to audio—visual (Arandjelovic & Zisserman, 2017;
Morgado et al., [2021; Wu et al., |[2022), video—language (Miech et al., 2019; |2020; | Xu et al., 2021}
Bain et al, 2021} [Luo et al., [2022), and 3D-language (Xue et al., |2023; |[Zhang et al., 2022; Liu
et al.| 2023b) alignment. Despite this progress, CMCL typically assumes accurately paired data. At
web scale, weak captions, temporal asynchrony, and domain shift impair alignment quality, motivat-
ing data curation, caption bootstrapping, and bridging/distillation strategies (Jia et al.,[2021; Miech
et all 2019). Recent analyses (Liang et al., |2022; Wang et al., [2023) also reveal a modality gap
between modalities in the shared space, which can complicate fine-grained alignment. In neural
decoding, the brain—vision pairing is intrinsically scarce and noisy (limited trials, low SNR, trial-
to-trial latency variability), so naively aligning brain signals to a single semantic-only space risks
under-representing pixel-level structure and amplifying modality mismatch (Cichy et al.,2016a).

Adapters for Image Diffusion Models Adapters have emerged as parameter-efficient modules
that extend pretrained diffusion models with controllability and editing while largely freezing base
weights, offering a unifying recipe across tasks and modalities (Wang et al.| [2025). T2I-Adapter
(Mou et al.,|2024) learns lightweight branches that align external control signals (e.g., edges, depth,
sketches) with internal features of a frozen text-to-image model, enabling accurate and composable
multi-condition control. ControlNet (Zhang et al.| 2023)) freezes the pretrained backbone and adds
zero-initialized side networks to inject spatial conditions without destabilizing the original prior.
IP-Adapter (Ye et al.,|2023)) decouples cross-attention to integrate image prompts alongside text, de-
livering strong multimodal conditioning with 22M trainable parameters while keeping the diffusion
backbone frozen.

3 METHOD

3.1 PROBLEM STATEMENT

The goal of visual decoding is to retrieve or reconstruct the visual information corresponding to
recorded brain signals. We denote paired brain signals and visual images as (x,,x;,) € D, where
x, € REXWX3 represents the visual stimulus, with H and W denoting the image height and width,
respectively. 2, € RE*T represents the brain signals recorded under the same stimulus, where C
corresponds to the number of electrode channels and 7" indicates the length of time samples.

3.2 ALIGNING BRAIN SIGNALS WITH HIERARCHICAL VISUAL REPRESENTATIONS

Directly aligning brain signals with visual representations may fail to capture the intrinsic multiscale
nature of the visual information, thereby limiting alignment performance. While high-level seman-
tic features in the visual modality are crucial for category recognition and abstract understanding,
low-level features provide complementary structural information and pixel-level details, which are
indispensable for improving reconstruction quality. Inspired by this visual perception mechanism
(Blasdel & Lund, |1983; |Tsumoto et al., |1978)), we integrate multiple pretrained visual encoders to
separately extract high-level semantic features and low-level pixel features, and align them with
brain signal embeddings through a contrastive learning objective to construct a unified hierarchical
visual representation.

Hierarchical visual representations As depicted in Fig. [T}(a), we devise a multi-head encoder
structure to obtain hierarchical visual representations ranging from high-level visual semantics (e.g.,
objects, scenes, and relations) to low-level visual features (e.g., colors, textures, and layouts). We
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Figure 1: Learning pipelines. Left: Retrieval objective that aligns the brain embedding z; with
the fused visual embedding 2y (HVF over K pretrained encoders) using a symmetric InfoNCE;
evaluation is nearest-neighbor retrieval in the fused space. Right: Reconstruction pipeline with a
frozen, pretrained fusion prio—HVF plus a Conditioning Adapter (MLP projector + IP-Adapter
with decoupled cross-attention). We contrastively align z;, to the frozen z ¢, project to 2., and inject
z. into a frozen SDXL UNet to synthesize the image. Visual encoders and the UNet are frozen; only
the brain side is updated during alignment.

apply K pretrained encoders (=3 by default) to the image x,, yielding z = fo (k)( ») for
k=1,..., K. For high-level visual semantics, we integrate multiple CLIP encoders and use a sin-
gle global token from each (i.e., [CLS] token for ViT-based models and the pooled projection for
ResNet-based models). For low-level visual features, the VAE encoder outputs a latent of shape
[H/8,W/8, 4], which we flatten into a vector of length (H/8)(W/8) x4 = HW/16, preserving
local structure and visual detail.

We fuse features with a post-norm residual Hierarchical Visual Fuser (HVF). For each encoder, a
learned linear map Wé’” € R >4 aligns the embedding to the shared dimension d=1024:

K
Zo=y 2w H), (1)
k=1
The aligned features are fused with a residual Multi-Layer Perceptron (MLP), and we have
zy = ResBlock(z,) = LayerNorm(Zv + gbv(év)), 2)

where ¢, denotes a two-layer MLP with hidden size d,, = 1024 and GELU activation.

Contrastive learning objective For the brain modality, we adopt an MLP-based Brain Projection
(MBP) network that projects the EEG signal to an embedding. We first align the preprocessed
signal to the visual embedding width using a learned linear projection W;, € R“T*¢ We then reuse
the same architecture as Eq. (2) to produce a d-dimensional embedding compatible with z; with a
hidden size of d that

zp = xpWh, 2p = ReSBlOCk(Zb) = LayerNorm(Zb + ¢b(5b))7 3)
where ¢}, denotes a two-layer MLP with hidden size dj, = 1024 and GELU activation.

We employ a CLIP-style InfoNCE loss (Oord et al., 2018)) to align brain and visual embeddings.
Given N paired samples, we compute cosine-similarity logits with a trainable temperature 7:

(4) () (DT 5(9)
) _ A ) _ % A Zf 4
Zb - (7,) 9 Zf - (,L) 9 sl] - 9 ( )
[E P 125112 T
where || - ||2 is L2 norm. The learning objective is defined as:

N N

1 OXP\(Sii exp(si;
Lcontrastive = _W (Z IOg # + Z log Np()> ; (5)

i—1 > j—18xp(sij) i 2 j—1€xp(s;i)
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3.3 PRETRAINED FUSION PRIOR FOR RECONSTRUCTION

While the above contrastive learning aligns brain signals with hierarchical visual representations,
directly feeding these fused representations into a pretrained diffusion model for reconstruction
often results in unstable outputs. The core issue is the absence of a stable conditioning prior: brain-
driven features do not yet match the distribution expected by the generative model, leading to noisy
or misaligned guidance. To address this, we introduce the fusion prior to learn a robust mapping
from fused visual features to diffusion conditions.

Fusion prior pretraining As depicted in Fig. [T}(b), we first feed the fused visual representation
zy from the HVF into an additional projector to obtain z:

Ze = 2§ + ¢c(2y), 6)

where z¢, 2. € R¢ and both ¢, in Eq. and ¢. denotes a two-layer MLP with hidden size d. = 4096
and GELU activation. The IP-Adapter (Ye et al.,|2023) then injects z. into a frozen SDXL (Podell
et al., 2023) UNet via cross-attention. Given noisy latent z; at timestep ¢, the whole network ¢ is
trained to predict the noise € with

»Cprior :H € — 6(xt7 t, ZC) H%’ %)
where € ~ A/(0, I) is the diffusion target and Lprior 18 the loss function.

During pretraining on large-scale visual data, the UNet backbone remains frozen, while the HVF
and the projector are trained from scratch, the IP-Adapter is initialized from pretrained weight to
accelerate convergence. Text prompts are left empty, ensuring the model learns a text-free mapping
from fused visual features to diffusion conditions.

Brain-to-fusion alignment Once the HVF is pretrained, we freeze it and update only the brain
encoder using the same loss function Lnastive @ in Eq. @), which ensures that brain-derived em-
beddings are projected into a stable, pretrained fusion space. This prevents representational drift and
yields robust reconstruction when passed to the diffusion model.

Full pipeline for reconstruction In all, training uses two stages and inference one. (i) Prior pre-

training: for input images x,,, extract {zék) }le, fuse and project them via the HVF and projector to
obtain z., and train the IP-Adapter jointly with the HVF and projector (UNet frozen) by minimizing
Lyprior in Eq. (7) under empty text prompts, yielding a stable, text-free fusion prior. (ii) Brain—fusion
alignment: freeze the pretrained fusion prior (HVF, projector and IP-Adapter) and the UNet, and up-
date only the brain side (i.e., the MBP module only) on paired (z, 2, ) with the symmetric InfoNCE
loss in Eq. (5) so that 2 lies in the fusion space of z;. (iii) Reconstruction: given test brain signals
xp, compute z, = fp (), feed it to the projector to obtain z., and use z.. as the sole condition for the
frozen IP-Adapter/UNet; a standard diffusion sampler(SDXL uses an Euler—ancestral sampler (Kar-
ras et al.,2022)) then produces &, yielding stable and semantically faithful reconstructions.

4 EXPERIMENT

4.1 EXPERIMENTAL DETAILS

We train the contrastive stage on a single NVIDIA 5090 32GB GPU for 25 epochs with a global
batch size of 1024. We use AdamW with a peak learning rate of 5 x 10~* under a cosine decay
schedule and a 10-step warmup from zero. Unless otherwise stated, retrieval uses a fixed encoder
set comprising OpenAl CLIP RN50, LAION CLIP ViT-B/32 (Schuhmann et al., 2022), and an
SDXL VAE; each backbone follows its canonical preprocessing. The VAE supports multiple input
resolutions and defaults to 128 x 128. The temperature 7 is initialized to 0.07. For generation, we
swap RN50 for LAION CLIP ViT-H/14, freeze the pretrained HVF on the visual side, and train only
the MBM module of the brain modality.

1https ://huggingface.co/h94/IP-Adapter/resolve/main/sdxl_models/
ip-adapter_sdxl_vit-h.safetensors
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Table 1: Average Top-1 / Top-5 accuracy (%) for 200-way zero-shot retrieval on THINGS-EEG and
THINGS-MEG. All numbers are subject-wise averages; “—" indicates not reported.

EEG MEG
Method Intra-subject Inter-subject Intra-subject Inter-subject
Top-1  Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
BraVL 5.8 17.5 1.8 7.0 - - - -
NICE 16.1 43.6 6.2 21.4 12.8 36.0 - -

NICE-SA 14.7 41.7 7.0 23.1 12.7 35.0 - -
NICE-GA 15.6 42.8 5.9 21.6 14.3 423 - -

MB2C 28.5 60.4 - - - - - -
ATM 28.5 60.4 11.8 33.7 - - - -
VE-SDN 372 69.9 - - - - - -
CC-All 35.6 80.2 - - - - - -
UBP 50.9 79.7 12.4 334 26.7 552 2.2 10.4
Ours 76.1 94.2 20.0 4.1 33.7 60.5 54 15.2

The contrastive stage is trained on THINGS-EEG (Grootswagers et al., 2019; |Gifford et al.| 2022b))
and THINGS-MEG (Hebart et al., [2023). For THINGS-EEG (10 participants), the training split
contains 1654 concepts with 10 images per concept and 4 repetitions per image; the test split contains
200 concepts with 1 image per concept and 80 repetitions per image. We follow prior work(L1 et al.,
2024; Wu et al., [2025) to select 17 occipito—parietal channels (O+P) and standard preprocessing
(Song et al., 2023). For THINGS-MEG (4 participants, 271 channels), the training split consists of
1854x12x1 (concepts x images X reps) and the test split 200x1x12. To improve signal-to-noise
ratio(SNR), repetitions for the same stimulus are averaged within subject in both datasets (training
and test). Additional details are provided in the appendix.

For fusion-prior pretraining, we explore multiple prior configurations. Unless noted, training uses
two NVIDIA 5090 32 GB GPUs, a fixed learning rate of 1 x 10~*, SDXL-base as the diffusion
backbone, and the largest feasible batch size of 12 per GPU. Each configuration is trained at 512 X
512 for 100k steps, about two epochs, and takes roughly 15 hours per prior configuration. Pretraining
uses ImageNet-1k with about 1.3M images. For reconstruction at inference we use SDXL-Turbo
with a 4-step sampler for fast evaluation.

4.2 QUANTITATIVE EVALUATION

We evaluate two tasks, brain—visual retrieval and brain—visual reconstruction. For retrieval, we
report 200-way zero-shot top-1 and top-5 accuracy on THINGS-EEG and THINGS-MEG under
both intra-subject and inter-subject protocols. For reconstruction, following prior work (Ozcelik &
VanRullen, 2023} Benchetrit et al., 2023} [Li et al.,|2024)), we measure low-level fidelity with PixCorr
and SSIM and adopt the remaining semantic and feature-level metrics from these works, including
AlexNet(2/5), Inception, CLIP and SwAV distance, where lower is better.

The retrieval baselines are BraVL (Du et al.,|2023), NICE and its spatial variants (NICE-SA, NICE-
GA) (Song et al.|, [2023), ATM (L1 et al., 2024), VE-SDN (Chen et al., 2024), MB2C (Wei et al.,
2024)), UBP (Wu et al., 2025)), and CognitionCapturer (C.C., All/Image/Depth/Text) (Zhang et al.,
2025)). For reconstruction, we compare with ATM (Li et al.| [2024), CognitionCapturer (Zhang et al.,
2025)), and Brain Decoding (B.D.) (Benchetrit et al.,2023). When prior work reports single-subject
results only (e.g., ATM on subj-8), we indicate this in the tables.

Compared to the strongest prior work (UBP), our model consistently improves 200-way zero-shot
retrieval across all protocols (Top-1/Top-5): EEG intra 76.1/94.2 vs 50.9/79.7, EEG inter 20.0/44.1
vs 12.4/33.4, MEG intra 33.7/60.5 vs 26.7/55.2, and MEG inter 5.4/15.2 vs 2.2/10.4 (Tab.[I). Gains
are largest in the inter-subject setting, indicating stronger cross-participant generalization.

Table[2]summarizes reconstruction. On MEG our model matches or exceeds prior work on both low-
level similarity and semantic alignment while maintaining a competitive SWAV distance. On EEG
it improves the commonly reported subj-8 case and delivers clear subject-averaged gains over ATM
and C.C. The average EEG PixCorr increases from 0.150 with C.C.(All) to 0.186 with our model
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Table 2: Quantitative assessments of the reconstruction quality for EEG and MEG.

Method Dataset Low-level High-level
PixCorr T SSIM 1 AlexNet(2) T AlexNet(5) T Inceptiont CLIPT SwAV ]
B.D. 0.076 0.336 0.736 0.826 0.671 0.767 0.584
MEG ATM 0.104 0.340 0.613 0.672 0.619 0.603 0.651
Ours 0.137 0.292 0.737 0.836 0.721 0.775 0.600
C.C.(All) 0.150 0.347 0.754 0.623 0.669 0.715 0.590
C.C.(Image) 0.132 0.321 0.813 0.671 0.664 0.715 0.590
EEG C.C.(Depth) 0.104 0.370 0.796 0.638 0.565 0.579 0.686
C.C.(Text) 0.102 0.288 0.727 0.582 0.586 0.598 0.673
Ours 0.195 0.336 0.843 0.905 0.756 0.808 0.554
EEG (subj-8) ATM 0.160 0.345 0.776 0.866 0.734 0.786 0.582
) Ours 0.227 0.361 0.878 0.924 0.796 0.826 0.531

while SSIM remains comparable, and semantic similarities improve across AlexNet, Inception, and
CLIP with a lower SWAV distance than C.C. and B.D. Taken together, the metrics indicate that
our approach raises both fidelity and semantic agreement and that the improvements persist beyond
single-subject evaluation.

ik ',
CognitionCapturer

Seen - Seen CognitionCapturer Ours

Figure 2: Qualitative comparison of brain-to-image reconstructions. Each triplet shows the
ground-truth stimulus (left), baseline (middle), and our reconstruction (right). All examples use
EEG recordings from subject 8.

4.3 VISUAL COMPARISON

In Fig. 3] we show the top-5 retrieved images on the Hard-Case set for our method and the UBP base-
line, with our method performing better. We further provide qualitative comparisons with previous
brain decoding approaches. As shown in Fig.[2] our method reconstructs images with clearer object
contours and more faithful color distribution compared to CognitionCapturer (Zhang et al.l [2025))
and ATM [2024). In particular, our reconstructions preserve fine-grained structural details
while capturing semantically consistent attributes that are often missing in the baselines. Moreover,
the overall perceptual quality aligns more closely with the ground-truth stimuli, demonstrating the
effectiveness of our framework in bridging brain signals and visual representations.

4.4 ABLATION STUDIES

We study how the composition of visual encoders affects both retrieval and reconstruction. Across
various settings, fusing complementary semantics with pixel-level cues consistently outperforms
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Figure 3: Hard-case retrieval comparison. The top-5 retrieved images on the hard-case set from
our method and the UBP baseline.

Table 3: Ablation on EEG retrieval: average top-1/top-5 accuracy (%) for 200-way zero-shot; we
compare single encoders, pairwise, and triple combinations, with the VAE input fixed at 128 x 128.

Intra-subject  Inter-subject

Setting Configuration Top-1 Top-5 Top-1 Top-5
B32 52.2 83.3 13.3 33.9

Individual module RN50 48.1 80.4 12.7 31.7
VAE 443 75.2 10.2 23.9
RN50 + B32 56.9 86.1 144 36.8

Pairwise combination =~ RN50 + VAE 65.8 90.4 17.4 37.3
B32 + VAE 73.6 94.3 19.1 41.2

Triple combination RN50+B32+ VAE 75.8 94.5 20.0 4.1

single-encoder baselines. Stacking multiple semantic encoders (e.g., RN50 + B32) brings smaller,
saturating gains, whereas adding a VAE latent (fixed at 128 x128) provides the largest improve-
ments—suggesting that localized pixel-level features complement CLIP-style semantics that domi-
nate most pipelines.

On the 200-way EEG retrieval (Tab. [3), single encoders form reasonable baselines (e.g., B32:
52.2/83.3 Top-1/Top-5 intra; 13.3/33.9 inter), but semantic stacking alone is modest (RN50+B32:
56.9/86.1 intra; 14.4/36.8 inter). In contrast, pairing a semantic encoder with the VAE yields large
jumps (B32+VAE: 73.6/94.3 intra; 19.1/41.2 inter; RN50+VAE: 65.8/90.4 intra; 17.4/37.3 inter).
The triple combination (RN50+B32+VAE) offers a small, consistent further boost to 75.8/94.5 (in-
tra) and 20.0/44.1 (inter). Gains persist on the harder inter-subject split with attenuated absolute
scores, indicating that low-level structure stabilizes cross-subject variability more effectively than
semantics alone.

For reconstruction (Tab. ), multiscale conditioning improves both pixel-level and recognition met-
rics. Relative to H14 alone, adding B32 increases SSIM (0.327 — 0.340) and strengthens recog-
nition (AlexNet(5): 0.872 — 0.908; CLIP: 0.773 — 0.814) while lowering SWAV] (0.574 —
0.547). Incorporating the VAE reaches the best PixCorr (0.195) and the strongest AlexNet(2/5)
(0.843/0.905) with CLIP competitive (0.808); SSIM remains close to the two-CLIP setting (0.336
vs. 0.340), and Inception shows a mild trade-off (0.756 vs. 0.783). Visually (Fig. EI), B32 enhances
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global layout and semantics, VAE sharpens edges and textures, and the combined H14+B32+VAE
setting offers the best perceptual balance.

Table 4: Ablation study on the effect of different fusion priors for Brain-to-Image reconstruction.

Prior Setting PixCorr 1 SSIM 1 AlexNet(2) T AlexNet(5) T Inceptiont CLIP1T SwAV |
H14 0.174 0.327 0.825 0.872 0.733 0.773 0.574
H14 + B32 0.187 0.340 0.836 0.908 0.783 0.814 0.547
H14 + VAE 0.173 0.312 0.789 0.838 0.672 0.721 0.611
H14 + B32 + VAE 0.195 0.336 0.843 0.905 0.756 0.808 0.554

Seen H14 H14 + VAE H14 + B32 H14 + B32 + VAE

Figure 4: Ablative study. Each row shows the ground-truth stimulus and reconstructions produced
with different fused configuration: H14, H14+B32, H14+VAE, and H14+B32+VAE. All examples
use EEG recordings from subject 8.

The fused configuration, which integrates complementary semantic encoders with a VAE latent,
produces a well-balanced system across retrieval and reconstruction. It strengthens cross-subject
robustness and preserves fine-grained local structure while maintaining high-level semantic fidelity,
reducing typical errors such as oversmoothing and category drift. While effective on average, we
do not claim this three-way fusion to be optimal; alternative encoder sets, latent resolutions, or
fusion depths may further improve the trade-offs. More qualitative examples are provided in the
supplementary materials.

5 CONCLUSION

In this paper, we present a brain-to-image framework that unifies retrieval and generation through
contrastive learning and pretrained vision priors. By integrating multi-level fusion of CLIP and
VAE features, our method achieves precise brain-image alignment, while the use of strong diffusion
backbones enables high-fidelity image reconstruction. Extensive experiments and ablation studies
demonstrate the effectiveness of our design choices, showing clear gains from multi-stream feature
fusion, moderate-resolution VAEs, and robust pretrained priors. Our results highlight a scalable and
generalizable approach that advances both retrieval accuracy and generative quality in brain visual
decoding.



Under review as a conference paper at ICLR 2026

REFERENCES

Pranav Aggarwal, Hareesh Ravi, Naveen Marri, Sachin Kelkar, Fengbin Chen, Vinh Khuc, Midhun
Harikumar, Ritiz Tambi, Sudharshan Reddy Kakumanu, Purvak Lapsiya, et al. Controlled and
conditional text to image generation with diffusion prior. arXiv preprint arXiv:2302.11710, 2023.

Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In Proceedings of the IEEE
international conference on computer vision, pp. 609-617, 2017.

Yunpeng Bai, Xintao Wang, Yan-pei Cao, Yixiao Ge, Chun Yuan, and Ying Shan. Dreamdiffusion:
Generating high-quality images from brain eeg signals. arXiv preprint arXiv:2306.16934, 2023.

Max Bain, Arsha Nagrani, Giil Varol, and Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1728-1738, 2021.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Yohann Benchetrit, Hubert Banville, and Jean-Rémi King. Brain decoding: toward real-time recon-
struction of visual perception. arXiv preprint arXiv:2310.19812, 2023.

Gary G Blasdel and Jennifer S Lund. Termination of afferent axons in macaque striate cortex.
Journal of Neuroscience, 3(7):1389-1413, 1983.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650-9660, 2021.

Hongzhou Chen, Lianghua He, Yihang Liu, and Longzhen Yang. Visual neural decoding via im-
proved visual-eeg semantic consistency. arXiv preprint arXiv:2408.06788, 2024.

Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva.
Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object
recognition reveals hierarchical correspondence. Scientific reports, 6(1):27755, 2016a.

Radoslaw Martin Cichy, Dimitrios Pantazis, and Aude Oliva. Similarity-based fusion of meg and
fmri reveals spatio-temporal dynamics in human cortex during visual object recognition. Cerebral
Cortex, 26(8):3563-3579, 2016b.

Fernando Lopes da Silva. Eeg and meg: relevance to neuroscience. Neuron, 80(5):1112-1128,
2013.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Changde Du, Kaicheng Fu, Jinpeng Li, and Huiguang He. Decoding visual neural representations
by multimodal learning of brain-visual-linguistic features. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(9):10760-10777, 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Honghao Fu, Hao Wang, Jing Jih Chin, and Zhiqi Shen. Brainvis: Exploring the bridge between
brain and visual signals via image reconstruction. In ICASSP 2025-2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2025.

Alessandro T. Gifford, Kshitij Dwivedi, Gemma Roig, and Radoslaw M. Cichy. A large and
rich eeg dataset for modeling human visual object recognition. Neurolmage, 264:119754,
2022a. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2022.119754. URL https:
//www.sciencedirect.com/science/article/pii1/S1053811922008758.

10


https://www.sciencedirect.com/science/article/pii/S1053811922008758
https://www.sciencedirect.com/science/article/pii/S1053811922008758

Under review as a conference paper at ICLR 2026

Alessandro T Gifford, Kshitij Dwivedi, Gemma Roig, and Radoslaw M Cichy. A large and rich eeg
dataset for modeling human visual object recognition. Neurolmage, 264:119754, 2022b.

Tijl Grootswagers, Amanda K Robinson, and Thomas A Carlson. The representational dynamics of
visual objects in rapid serial visual processing streams. Neurolmage, 188:668-679, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729-9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Martin N Hebart, Oliver Contier, Lina Teichmann, Adam H Rockter, Charles Y Zheng, Alexis Kid-
der, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I Baker. Things-data, a multimodal
collection of large-scale datasets for investigating object representations in human brain and be-
havior. Elife, 12:€82580, 2023.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904-4916.
PMLR, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

Kendrick N Kay, Thomas Naselaris, Ryan J Prenger, and Jack L Gallant. Identifying natural images
from human brain activity. Nature, 452(7185):352-355, 2008.

Diederik P Kingma and Max Welling.  Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Dongyang Li, Chen Wei, Shiying Li, Jiachen Zou, and Quanying Liu. Visual decoding and recon-
struction via EEG embeddings with guided diffusion. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=RxkcroC8gPl

Haoyu Li, Hao Wu, and Badong Chen. Neuraldiffuser: Neuroscience-inspired diffusion guidance
for fmri visual reconstruction. IEEE Transactions on Image Processing, 2025.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888-12900. PMLR, 2022.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
gap: Understanding the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:17612—-17625, 2022.

Fang Liu, Pei Yang, Yezhi Shu, Niqi Liu, Jenny Sheng, Junwen Luo, Xiaoan Wang, and Yong-Jin
Liu. Emotion recognition from few-channel eeg signals by integrating deep feature aggregation
and transfer learning. IEEE Transactions on Affective Computing, 15(3):1315-1330, 2023a.

Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai,

Fatih Porikli, and Hao Su. Openshape: Scaling up 3d shape representation towards open-world
understanding. Advances in neural information processing systems, 36:44860-44879, 2023b.

11


https://openreview.net/forum?id=RxkcroC8qP
https://openreview.net/forum?id=RxkcroC8qP

Under review as a conference paper at ICLR 2026

Yulong Liu, Yonggiang Ma, Wei Zhou, Guibo Zhu, and Nanning Zheng. Brainclip: Bridging brain
and visual-linguistic representation via clip for generic natural visual stimulus decoding. arXiv
preprint arXiv:2302.12971, 2023c.

Nikos K Logothetis, Jon Pauls, Mark Augath, Torsten Trinath, and Axel Oeltermann. Neurophysio-
logical investigation of the basis of the fmri signal. nature, 412(6843):150-157, 2001.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing, 508:
293-304, 2022.

William H Merigan and JH Maunsell. How parallel are the primate visual pathways? Annual review
of neuroscience, 1993.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howtol00m: Learning a text-video embedding by watching hundred million narrated
video clips. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
2630-2640, 2019.

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zis-
serman. End-to-end learning of visual representations from uncurated instructional videos. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9879—
9889, 2020.

Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-visual instance discrimination with
cross-modal agreement. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 12475-12486, 2021.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 4296—
4304, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using genera-
tive latent diffusion. Scientific Reports, 13(1):15666, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in neural in-
formation processing systems, 35:25278-25294, 2022.

12



Under review as a conference paper at ICLR 2026

Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. Decoding
natural images from eeg for object recognition. arXiv preprint arXiv:2308.13234, 2023.

Yu Takagi and Shinji Nishimoto. High-resolution image reconstruction with latent diffusion models
from human brain activity. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 14453—14463, 2023a.

Yu Takagi and Shinji Nishimoto. Improving visual image reconstruction from human brain activity
using latent diffusion models via multiple decoded inputs. arXiv preprint arXiv:2306.11536,
2023b.

T Tsumoto, OD Creutzfeldt, and CR Legendy. Functional organization of the corticofugal system
from visual cortex to lateral geniculate nucleus in the cat: With an appendix on geniculo-cortical
mono-synaptic connections. Experimental Brain Research, 32(3):345-364, 1978.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Jia Wang, Jie Hu, Xiaoqi Ma, Hanghang Ma, Xiaoming Wei, and Enhua Wu. Image editing with
diffusion models: A survey. arXiv preprint arXiv:2504.13226, 2025.

Shizun Wang, Songhua Liu, Zhenxiong Tan, and Xinchao Wang. Mindbridge: A cross-subject
brain decoding framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11333-11342, 2024.

Zehan Wang, Yang Zhao, Haifeng Huang, Jiageng Liu, Aoxiong Yin, Li Tang, Linjun Li, Yongqi
Wang, Ziang Zhang, and Zhou Zhao. Connecting multi-modal contrastive representations. Ad-
vances in Neural Information Processing Systems, 36:22099-22114, 2023.

Yayun Wei, Lei Cao, Hao Li, and Yilin Dong. Mb2c: Multimodal bidirectional cycle consistency
for learning robust visual neural representations. In Proceedings of the 32nd ACM International
Conference on Multimedia, pp. 8992-9000, 2024.

Haitao Wu, Qing Li, Changqing Zhang, Zhen He, and Xiaomin Ying. Bridging the vision-brain
gap with an uncertainty-aware blur prior. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 2246-2257, 2025.

Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, and Juan Pablo Bello. Wav2clip: Learning
robust audio representations from clip. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4563—4567. IEEE, 2022.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733-3742, 2018.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9653-9663, 2022.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze, Luke
Zettlemoyer, and Christoph Feichtenhofer. Videoclip: Contrastive pre-training for zero-shot
video-text understanding. arXiv preprint arXiv:2109.14084, 2021.

Xiran Xu, Bo Wang, Boda Xiao, Yadong Niu, Yiwen Wang, Xihong Wu, and Jing Chen. Beware of
overestimated decoding performance arising from temporal autocorrelations in electroencephalo-
gram signals. arXiv preprint arXiv:2405.17024, 2024.

Le Xue, Mingfei Gao, Chen Xing, Roberto Martin-Martin, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
images, and point clouds for 3d understanding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1179-1189, 2023.

13



Under review as a conference paper at ICLR 2026

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the national academy of sciences, 111(23):8619-8624, 2014.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 18123-18133, 2022.

Kaifan Zhang, Lihuo He, Xin Jiang, Wen Lu, Di Wang, and Xinbo Gao. Cognitioncapturer: De-
coding visual stimuli from human eeg signal with multimodal information. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 14486-14493, 2025.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp- 3836-3847, 2023.

Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, and
Hongsheng Li. Pointclip: Point cloud understanding by clip. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8552-8562, 2022.

14



Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

We used LLM for grammar checking and language polishing to improve readability.

B DATASETS DETAILS

THINGS-EEG THINGS-EEG (Gifford et al., [2022a) is a large-scale dataset of electroen-
cephalography (EEG) recordings from 10 participants. Signals are acquired with a 64-channel
EASYCAP arranged according to the international 10-10 system. The training split spans 1,654
object concepts, each represented by 10 images; every image is shown four times to each partici-
pant (1,654 x 10 x 4). The test split covers 200 concepts with a single image per concept, repeated
80 times (200 x 1 x 80). Preprocessing follows |Wu et al| (2025): raw EEG is filtered to 0.1-100
Hz, yielding 63 channels at 1,000 Hz; trials are segmented from 0-1,000 ms post-stimulus with
baseline correction using the prior 200 ms average. Data is then downsampled to 250 Hz, and 17
posterior channels over occipital and parietal sites associated with visual processing are retained. To
improve signal-to-noise ratio, repetitions are averaged, producing 16,540 training samples and 200
test samples per participant.

THINGS-MEG THINGS-MEG (Hebart et all [2023) is a large-scale dataset of magnetoen-
cephalography (MEG) recordings from 4 participants. Signals are acquired with 271 channels. Each
trial presents an image for 500 ms, followed by a blank screen of 1000 + 200 ms. The training split
spans 1,854 object concepts, each represented by 12 images; every image is shown once to each
participant (1,854 x 12 x 1). The test split covers 200 concepts with a single image per concept,
repeated 12 times (200 x 1 x 12). To construct the zero-shot task, 200 test concepts are discarded
from the training set. Preprocessing follows Wu et al.| (2025): raw MEG is filtered to 0.1-100 Hz;
trials are segmented from 0—1,000 ms post-stimulus with baseline correction. Data is then down-
sampled to 200 Hz. To improve signal-to-noise ratio, repetitions are averaged, producing 19,848
training samples and 200 test samples per participant.

C RESULTS DETAILS

Per-Subject retrieval on THINGS-EEG and THINGS-MEG We report 200-way zero-shot Top-
1/Top-5 accuracy per subject for THINGS-EEG and THINGS-MEG. For each subject, we evaluate
individual encoders (RN50, B32, VAE), pairwise stacks (RN50+B32, RN50+VAE, B32+VAE), and
the triple stack (RN50+B32+VAE) with the VAE input fixed at 128 x128.

Table 5: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval on THINGS-EEG.

Method Subl Sub2 Sub3 Subd Subs Sub6 Sub7 Sub8 Sub9 Sub10 Avg
top-1 top-5 top-l top-5 top-l top5 top-l top-5 top-l top5 top-l top-5 top-l top-5 top-1 top3 top-l top-5 top-l top-5 top-1 top-5
BraVL 61 179 49 149 56 174 50 151 40 134 60 182 65 204 88 237 43 140 70 197 58 175
NICE 132395 135 403 145 427 206 527 101 315 165 440 170 421 229 561 154 416 174 458 161 436
NICE-SA 133402 121 361 153 396 159 490 98 344 142 424 179 436 182 502 144 387 160 428 147 417
NICE-GA 152 401 139 401 147 427 176 489 90 297 164 444 149 431 203 521 141 397 196 467 156 428
MB2C 237 563 227 505 263 602 348 670 213 530 310 623 250 548 390 693 275 593 332 708 285 604
ATM-S 256 604 220 545 250 624 314 609 129 430 213 511 305 615 388 720 344 515 290 635 285 604
VE-SDN 326 637 344 699 387 735 398 720 294 586 345 688 345 683 493 798 390 69.6 398 753 372 699
CognitionCapturer-All 314 797 314 778 382 857 404 858 244 663 348 788 347 810 481 886 314 794 356 793 356 802
412705 512 809 512 820 511 769 422 728 575 835 490 799 586 858 451 762 615 882 509 797
Ours 643 888 763 953 740 950 67 918 680 915 815 963 768 968 848 985 768 958 873 993 757 946

Table 6: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval on THINGS-EEG across
different configurations.

‘ Subl Sub2 Sub3 Sub4 Subs Sub6 Sub? Sub8 Sub9 Sub10 Avg
Configuration
top-1 top5 top-l top3 top-l top3 top-l top-5 top-1 top-5 ftop-l top-5 top-l top-5 top-l top-5 top-l top-5 top-l ftop3 top-l top-3
B32 393 753 488 793 533 845 548 870 428 750 578 843 470 810 623 893 443 800 618 943 512 830
RNS50 40.0 69.5 48.5 79.5 485 85.0 458 82.0 41.5 74.0 55.8 83.0 485 71.5 55.5 88.0 41.8 77.0 553 89.5 48.1 80.5
VAE 388 715 413 725 433 753 335 653 398 705 505 818 443 750 550 863 428 733 520 835 44l 755
RN50+B32 47.3 79.0 55.8 81.0 56.3 87.5 59.8 88.8 46.8 81.0 63.0 87.5 53.0 85.0 65.0 91.3 50.0 86.5 68.3 945 56.5 86.2
RNS50+VAE 60.8 860 628 920 598 910 533 870 580 840 730 940 625 88 770 973 683 908 770 965 652 907
B32+VAE 630 883 703 940 735 943 643 923 705 910 780 960 733 933 848 975 750 960 848 988 737 941

RN50+B32+VAE 643 888 763 953 740 950 67 91.8 680 915 815 963 768 968 848 985 768 958 873 993 757 946
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Table 7: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval on THINGS-MEG

Subl Sub2 Sub3 Sub4 Avg
Method
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
NICE 96 27.8 185 478 142 41.6 9.0 26.6 12.8 36.0

NICE-SA 9.8 27.8 18.6 464 105 384 11.7 272 127 35.0
NICE-GA 8.7 305 21.8 56.6 165 49.7 103 323 143 423
UBP 15.0 38.0 46.0 80.5 273 59.0 185 435 26.7 55.2
Ours 326 637 344 699 387 735 39.8 720 372 699

Table 8: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval on THINGS-EEG across
different configurations.

. Subl Sub2 Sub3 Sub4 Avg

Configuration

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
B32 9.8 315 528 813 318 670 195 475 284 568
RNS50 120 375 503 83.0 298 658 190 445 278 577
VAE 120 375 503 830 298 658 190 445 278 577
RN50+B32 98 315 520 830 325 678 188 478 283 575
RN50+VAE 90 228 480 8.3 265 613 115 303 238 499
B32+VAE 120 335 645 913 390 768 173 438 332 613

RN50+B32+VAE 140 318 638 918 410 783 170 410 339 60.7

Per-Subject reconstruction metrics We further report reconstruction metrics per subject. For
each subject, we compute low-level measures (PixCorr, SSIM) and high-level perceptual similarity
(AlexNet(2/5), Inception, CLIP) with SWAV | as a diversity/consistency proxy. Results are shown
for the single target (H14 only), semantic pair (H14+B32, H14+VAE) and the full multiscale stack
(H14+B32+VAE). The last row gives subject-wise means.

Reconstruction from different subjects As shown in Fig. [5| for the same visual stimulus, we
reconstruct images from EEG recorded from different subjects.

Subj-10

Figure 5: Cross-subject EEG reconstructions.
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Table 9: Reconstruction metrics across subjects using the H14 setting (higher 1 is better, lower | is
better).

Low-level High-level
Subject Pixcorrf SSIM?T AlexNet(2)T AlexNet(5)t Inceptionf CLIPT SwAV|
1 0.179 0.305 0.828 0.870 0.719 0.732  0.588
2 0.174 0.331 0.826 0.868 0.712 0.769  0.588
3 0.177 0.317 0.832 0.872 0.703 0.802 0.574
4 0.167 0.326 0.803 0.863 0.752 0.778  0.573
5 0.163 0.315 0.804 0.846 0.676 0.745  0.593
6 0.181 0.316 0.838 0.874 0.715 0.763  0.588
7 0.155 0.328 0.811 0.874 0.736 0.775  0.569
8 0.193 0.349 0.852 0.906 0.781 0.795  0.550
9 0.163 0.330 0.820 0.872 0.765 0.762  0.561
10 0.192 0.350 0.837 0.870 0.773 0.810  0.556
Ave 0.174 0.327 0.825 0.871 0.733 0.773  0.574

Table 10: Reconstruction metrics across subjects using the H14+B32 setting (higher 1 is better,
lower | is better).

Low-level High-level
Subject Pixcorrf SSIM?T AlexNet(2)T AlexNet(5)1T Inceptionf CLIPT SwAV|
1 0.193 0.317 0.816 0.886 0.761 0.771 0.568
2 0.190 0.346 0.845 0.919 0.789 0.821 0.551
3 0.191 0.330 0.834 0.903 0.758 0.827  0.559
4 0.183 0.334 0.825 0.905 0.805 0.840  0.535
5 0.176 0.326 0.825 0.903 0.720 0.795  0.561
6 0.191 0.326 0.833 0.907 0.791 0.817  0.552
7 0.166 0.337 0.831 0.910 0.765 0.794  0.556
8 0.207 0.365 0.861 0.918 0.815 0.827  0.528
9 0.183 0.348 0.838 0.904 0.792 0.797  0.535
10 0.190 0.365 0.848 0.921 0.830 0.854  0.521
Ave 0.187 0.339 0.836 0.908 0.783 0.814  0.547

Table 11: Reconstruction metrics across subjects using the H14+VAE setting (higher 1 is better,
lower | is better).

Low-level High-level
Subject Pixcorrf SSIM?T AlexNet(2)T AlexNet(5)1T Inceptionf CLIPT SwAV|
1 0.156 0.301 0.755 0.762 0.653 0.646  0.658
2 0.175 0.323 0.801 0.852 0.643 0.743  0.608
3 0.171 0.290 0.793 0.853 0.651 0.730  0.621
4 0.167 0.307 0.798 0.851 0.707 0.761 0.589
5 0.174 0.295 0.783 0.847 0.670 0.723  0.611
6 0.174 0.304 0.806 0.845 0.669 0.720  0.612
7 0.154 0.315 0.764 0.828 0.655 0.711 0.622
8 0.196 0.335 0.817 0.859 0.691 0.734  0.590
9 0.166 0.315 0.765 0.827 0.678 0.701 0.605
10 0.194 0.337 0.810 0.856 0.703 0.746  0.594
Ave 0.173 0.312 0.789 0.838 0.672 0.721 0.611
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Table 12: Reconstruction metrics across subjects using the H14+B32+VAE setting (higher 1 is
better, lower | is better).

Low-level High-level
Subject Pixcorrf SSIM?T AlexNet(2)T AlexNet(5)1T Inceptionf CLIPT SwAV|
1 0.193 0.332 0.835 0.883 0.727 0.757  0.578
2 0.188 0.341 0.846 0.901 0.769 0.807  0.559
3 0.196 0.324 0.834 0.900 0.755 0.826  0.566
4 0.187 0.320 0.821 0.903 0.774 0.824  0.553
5 0.179 0.317 0.831 0.893 0.705 0.797  0.565
6 0.211 0.329 0.852 0.920 0.758 0.811 0.561
7 0.179 0.336 0.833 0914 0.754 0.805  0.554
8 0.219 0.356 0.876 0.926 0.788 0.827  0.531
9 0.198 0.342 0.842 0.889 0.757 0.783  0.546
10 0.203 0.358 0.858 0.922 0.777 0.846  0.530
Ave 0.195 0.336 0.843 0.905 0.756 0.808  0.554
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