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ABSTRACT

Foundation models have emerged as a promising approach in time series forecasting
(TSF). Existing approaches either repurpose large language models (LLMs) or build
large-scale time series datasets to develop TSF foundation models for universal
forecasting. However, these methods face challenges due to the severe cross-
domain gap or in-domain heterogeneity. This paper explores a new road to building
a TSF foundation model from rich, high-quality natural images. Our key insight is
that a visual masked autoencoder, pre-trained on the ImageNet dataset, can naturally
be a numeric series forecaster. By reformulating TSF as an image reconstruction
task, we bridge the gap between image pre-training and TSF downstream tasks.
Surprisingly, without further adaptation in the time-series domain, the proposed
VISIONTS could achieve superior zero-shot forecasting performance compared
to existing TSF foundation models. With fine-tuning for one epoch, VISIONTS
could further improve the forecasting and achieve state-of-the-art performance in
most cases. Extensive experiments reveal intrinsic similarities between images and
real-world time series, suggesting visual models may offer a “free lunch” for TSF
and highlight the potential for future cross-modality research. Our code is available
in the Supplementary Material.

The game began
development in 2010,
carrying over a large
portion of the work...

Natural Texts Time-Series Natural Images
（no time-series training）

No Pre-training

Pre-training
Dataset

few-shot zero-shot
10% downstream
training dataset

no downstream
training dataset

Mean Square Error (MSE)
Averaged on six long-term time series forecasting datasets and four prediction lengths

Figure 1: Long-term forecasting performance comparison. Our VISIONTS, without any training on
time series data, outperforms the largest foundation model MOIRAILarge in the zero-shot setting.

1 INTRODUCTION

Foundation models (Bommasani et al., 2021) have revolutionized natural language processing (NLP)
and computer vision (CV) in recent years (Brown et al., 2020; He et al., 2022). By pretraining on
large-scale data, they have shown remarkable few-shot and even zero-shot performance across various
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Figure 2: An image of the ImageNet dataset (Deng et al., 2009), in which the pixel arrays can display
many well-known features of real-world time series, such as trend, seasonality, and stationarity (Qiu
et al., 2024). By self-supervised pre-training on ImageNet, it is reasonable that a visual model could
understand these features and exhibit a level of time series forecasting ability.

downstream tasks. This has motivated an emergent paradigm shift in time series forecasting (TSF),
moving from a traditional one-model-per-dataset framework to universal forecasting with a single
pre-trained model (Woo et al., 2024; Goswami et al., 2024). A TSF foundation model can greatly
reduce the need for downstream data and demonstrate strong forecasting performance on diverse
domains, such as energy consumption planning, weather forecasting, and traffic flow.

We have recently witnessed two roads to building a TSF foundation model for universal forecasting.
The first tries to repurpose large language models (LLMs) that have been pre-trained on text data for
TSF tasks (i.e., text-based) (Zhou et al., 2023; Jin et al., 2024), based on the observation that LLMs
and TSF models share a similar left-to-right forecasting paradigm. However, due to the significant
gap between these two modalities, the effectiveness of such transferability between language and
time series has recently been questioned by Tan et al. (2024).

The second road focuses on constructing large-scale time-series datasets collected from diverse
domains to train a TSF foundation model from scratch (i.e., time series-based or TS-based) (Woo
et al., 2024; Das et al., 2024). Nevertheless, unlike images or language with unified formats, time
series data is highly heterogeneous in length, frequency, number of variates, domains, and semantics,
limiting the transferability between pre-training and downstream domains. Until recently, constructing
a high-quality dataset remains challenging and is still in the early exploration stage.

In this paper, we investigate a third road that is less explored yet promising: building TSF foundation
models with pre-trained visual models. Our key idea is that pixel variations in a natural image can be
interpreted as temporal sequences, which share many intrinsic similarities with time series: 1 Similar
modalities: Unlike discrete texts, both images and time series are continuous; 2 Similar origin:
Both time series and images are observations of real-world physical systems, whereas languages are
products of human cognitive processes; 3 Similar information density: Languages are human-
generated signals with high semantic density, while images and time series are natural signals with
heavy redundancy (He et al., 2022); and 4 Similar features: As shown in Fig. 2, images often
display many features of real-world time series, which are rarely found in language data. Based on
these findings, images could be a more promising modality for transferring to TSF. We are motivated
to answer the question: Can a visual model pre-trained on images be a free-lunch foundation model
for zero-shot time series forecasting?

We focus on visual masked autoencoder (MAE)1, a popular CV foundation model (He et al., 2022)
by self-supervised pre-training on ImageNet (Deng et al., 2009). As an image reconstruction and
completion model, MAE can naturally be a numeric series forecaster. Inspired by the well-known
prompt technique in NLP (Schick & Schütze, 2021), we propose a simple method to reformulate TSF
as a patch-level image reconstruction task to bridge the gap between pre-training and downstream
tasks. Specifically, we transform 1D time series data into 2D matrices via segmentation. Then, we
render the matrices into images and align the forecasting window with masked image patches. This
method allows us to make zero-shot forecasting without further adaptation.

1We use fonts to distinguish MAE (Masked Autoencoder) and MAE (Mean Absolute Error) in this paper.
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We evaluate our proposed VISIONTS on 43 TSF benchmarks across various domains, including
long-term TSF datasets (Zhou et al., 2021; Wu et al., 2021), Monash (Godahewa et al., 2021), and
PF (Woo et al., 2024). As demonstrated in Fig. 1, without any further adaptation in the time-series
domain, a vanilla MAE can surprisingly achieve a comparable performance or even outperform
the state-of-the-art (SOTA) zero-shot TSF foundation models, including text-based and TS-based
methods. By fine-tuning MAE on each downstream dataset for only one epoch, VISIONTS can lead to
a SOTA performance on most long-term TSF benchmarks.

To further understand and explain the transferability, We use an MAE encoder to visualize both
modalities, showing a level of similarity between time series and natural image representations.
Additionally, we observe considerable heterogeneity within time series data, and images can serve as
a bridge to connect these isolated time series representations. Our findings suggest that time series
and natural images may be two sides of a coin, and visual models can be a free lunch for time series
forecasting. We hope our findings can inspire future cross-modality research on CV and TSF.

Our contributions are summarized as follows:

• We explore a road to building a TSF foundation model from natural images, which is conceptually
different from the existing text-based and TS-based pre-training methods.

• We introduce VISIONTS, a novel TSF foundation model based on a visual MAE. To bridge the gap
between the two modalities, we reformulate the TSF task into an image reconstruction task.

• Comprehensive evaluations of VISIONTS on 43 benchmarks across multiple domains demonstrate
its significant zero-shot forecasting performance, surpassing few-shot text-based TSF foundation
models and achieving comparable or superior results to zero-shot TS-based models.

2 PRELIMINARIES

Time Series Forecasting (TSF) For a multivariate time series with M variables, let xt ∈ RM

represent the value at t-th time step. Given a historical sequence (i.e., look-back window) Xt−L:t =
[xt−L, · · · ,xt−1] ∈ RL×M with context length L, the TSF task is to predict future values (i.e.,
forecast horizon) with prediction length H: X̂t:t+H = [xt, · · · ,xt+H−1] ∈ RH×M .

Patch-Level Image Reconstruction To obtain high-quality visual representation for downstream
CV tasks, He et al. (2022) proposed masked autoencoder (MAE) to pre-train a Vision Transformer
(ViT) (Dosovitskiy et al., 2021) using a patch-level image reconstruction task on ImageNet. Specif-
ically, for an image of size W ×W (where W represents both the width and height, as ImageNet
images are square), the image is evenly divided into N ×N patches, each with a width and height
of S = W/N. During pre-training, some random patches are masked, while the remaining visible
patches are fed into the ViT with their position encodings. MAE are trained to reconstruct the masked
pixel values from these visible patches.

3 METHODOLOGY

As noted in the Introduction, time series and images share intrinsic similarities, suggesting the transfer
potential of pre-trained visual models (particularly MAE in this paper) for TSF tasks. We explain how
to reformulate TSF tasks into MAE’s pre-training task, i.e., patch-level image reconstruction.

Our high-level idea is straightforward: map the look-back/forecasting windows to visible/masked
patches, respectively. This idea is supported by the recent success of prompt tuning (Schick &
Schütze, 2021) in NLP, where the predictions for [mask] token in pre-trained language models, e.g.,
BERT (Devlin et al., 2019), are directly used for downstream tasks. By unifying the forms of the
two tasks, we bridge the gap between the two domains, enabling a MAE for zero-shot TSF directly
without adapting the pre-trained parameters.

Notably, this idea is limited to univariate forecasting since multivariates are intractable to be encoded
in a single image. Fortunately, recent work shows that channel independence — predicting each
variable separately for multivariate forecasting — can be highly effective (Nie et al., 2022; Han et al.,
2024). Therefore, we leave the exploration of multivariate interactions for future work.
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Figure 3: VISIONTS architecture. The input is first segmented by period, rendered into a grayscale
image, and then aligned with the visible patches on the left through resampling. MAE is used to
predict the masked patches on the right, and the reconstructed image is then reversed to forecasting.

However, implementing this idea poses a challenge: the dimension of time-series data (1D) is different
from images (2D). Moreover, the size of images in the pre-training dataset is fixed at 224 × 224,
while the lengths of time series data can vary dynamically. In the following, we describe the details
of VISIONTS to address this challenge. Our architecture is depicted in Fig. 3.

Segmentation Given a univariate input X ∈ RL, the first goal is to transform it into a 2D matrix.
We propose to segment it into ⌊L/P⌋ subsequences of length P , where P is the periodicity. Notably,
when the time series lacks clear periodicity, we can set P = 1 directly, which is also effective in our
experiments (Appendix B.4). In practice, P can be determined using statistical methods like Fast
Fourier Transform (Wu et al., 2023; Chen et al., 2024) or domain knowledge like sampling frequency
(Godahewa et al., 2021; Alexandrov et al., 2020). In this paper, we select P based on the sampling
frequency, elaborated in Appendix A.2.

After that, these subsequences are then stacked into a 2D matrix, denoted by Iraw ∈ RP×⌊L/P⌋.
This encoding strategy is proven to be efficient by recent work like TimesNet (Wu et al., 2023) and
SparseTSF (Lin et al., 2024), as it allows for the simultaneous capture of both variations within the
same period (i.e., intra-period) and across periods with the same phase (i.e., inter-period). Moreover,
it ensures that each element in Iraw and its neighbors align with the spatial locality property of images
(Krizhevsky et al., 2012), where nearby pixels tend to be similar due to the inherent cohesiveness of
objects in the real world. Therefore, this further narrows the gap between time series and images.

Normalization MAE standardizes each image based on the mean and standard deviation computed
on ImageNet. Therefore, we apply instance normalization to Iraw, which is also a standard practice in
current TSF (Kim et al., 2022). Notably, we observed that normalizing Iraw to a standard deviation
of r, where r is a hyperparameter less than 1, yields superior performance. One explanation is that
the magnitude of inputs/outputs during MAE pretraining is constrained by the limited range of color
values. Therefore, reducing the magnitude of Iraw prevents exceeding these limits. However, an
excessively low r can result in values that are difficult to distinguish. We found that a moderate value
(0.4) of r performs well across most scenarios (See Appendix B.8 for more details). Let Inorm denote
the normalized matrix, which is computed as follows:

Inorm = r · Iraw − Mean(Iraw)

Standard-Deviation(Iraw)
.

Rendering It is well-known that each image has three channels. We simply render Inorm as a
grayscale image Igrey ∈ RP×⌊L/P⌋×3, where all three channels are identical to Inorm. This choice
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is purely result-driven: In our early experiments, we added a convolutional layer with three output
channels to convert the grayscale image into a color image and then fine-tuned it to find the optimal
color transformation, which, however, did not significantly influence the performance.

Alignment Our goal is to predict the columns on the right of Igrey to forecast the future sequence.
A straightforward approach is to treat Igrey as the visible left portion and the predicted columns as the
masked right portion. However, since the image size during pre-training may not match the size of
Igrey, we propose to resize Igrey to align with the pre-training data. Formally, let the total number of
2D patches used in pre-training be N ×N and the size of each patch be S × S. We set the number
of visible patches to N × n and the masked patches to N × (N − n), where n = ⌊N · L/(L+H)⌋ is
determined by the ratio of context length L to prediction length H . We resample the image Igrey to
adjust the size from the original dimensions (P, ⌊L/P⌋) to (N · S, n · S), making it more compatible
with MAE. We select bilinear interpolation for the resampling process.

Moreover, we found that reducing the width of the visible portion can further improve performance.
One possible explanation is that MAE uses a large masked ratio during pre-training, with only 25% of
patches visible. Reducing the image width may align the masked ratio more closely with pre-training.
Therefore, we propose multiplying n by a hyperparameter c ∈ [0, 1]. Similar to r, we found that
setting c = 0.4 performs well in our experiments (See Appendix B.8). Final n can be formulated as:

n =

⌊
c ·N · L

L+H

⌋
.

Reconstruction and Forecasting After obtaining the MAE-reconstructed image, we simply reverse
the previous steps for forecasting. Specifically, we resize the entire image back to the original time
series segmentations through the same bilinear interpolation, and average the three channels to obtain
a single-channel image. After de-normalizing and flattening, the forecasting window can be extracted.

4 EXPERIMENTS

We use MAE (Base) as our backbone, while we also test other sizes of MAE and LaMa (Suvorov
et al., 2022) afterward. We select representative baselines for comparison, including two TS-based
foundation models, three Text-based foundation models, and other popular TSF baselines covering
both Transformer-based, MLP-based and CNN-based architectures. Baseline and benchmark details
are elaborated in Appendix A.1.

4.1 ZERO-SHOT TIME SERIES FORECASTING

Setups We first evaluate VISIONTS’s zero-shot TSF performance without any fine-tuning on time-
series modalities. To prevent data leakage and assess the out-of-distribution capabilities, we selected
six widely-used datasets from the long-term TSF benchmark that are not included in MOIRAI’s
pre-training set for evaluation. Since most baselines cannot perform zero-shot forecasting, we
report their few-shot results by fine-tuning on the 10% of the individual target datasets. We also
evaluate the Monash benchmark (including 29 test datasets) and PF benchmark (including 6 test
datasets). Notably, the Monash benchmark is more challenging for VISIONTS since they were used in
MOIRAI’s pre-training but not for VISIONTS. We set the hyperparameters to r = c = 0.4. Following
common practice (Nie et al., 2022; Zhou et al., 2023; Woo et al., 2024), we conduct hyperparameter
tuning on validation sets to determine the optimal context length L, detailed in Appendix B.1.

Results on Long-Term TSF Benchmark Table 1 shows that VISIONTS surprisingly achieves the
best forecasting performance in most cases (7 out of 14). Specifically, VISIONTS demonstrates a
relative average MSE reduction of approximately 6% compared to MOIRAISmall and MOIRAILarge, and
performs comparably to MOIRAIBase. When compared to the various few-shot baselines, VISIONTS
shows a relative average MSE reduction ranging from 8% to 84%. Given that all baselines except for
VISIONTS are trained on the time-series domain, this result is particularly encouraging. It suggests
that the transferability from images to time-series is stronger than from text to time-series,
and even comparable to the in-domain transferability between time-series. We also include a
comparison with traditional algorithms (ETS, ARIMA, and Seasonal Naïve) in Appendix B.3, where
VISIONTS still outperforms all of these traditional methods.
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Table 1: Zero-shot or few-shot results on the long-term TSF benchmark. Results are averaged across
prediction lengths {96, 192, 336, 720}, with full results in Appendix B.2. Bold: the best result.

Zero-Shot Few-Shot (10% In-distribution Downstream Dataset)

Pretrain Images Time series Text No Pretrain
Method VISIONTS MOIRAIS MOIRAIB MOIRAIL TimeLLM GPT4TS DLinear PatchTST TimesNet Autoformer Informer

ETTh1
MSE 0.390 0.400 0.434 0.510 0.556 0.590 0.691 0.633 0.869 0.702 1.199
MAE 0.414 0.424 0.439 0.469 0.522 0.525 0.600 0.542 0.628 0.596 0.809

ETTh2
MSE 0.333 0.341 0.346 0.354 0.370 0.397 0.605 0.415 0.479 0.488 3.872
MAE 0.375 0.379 0.382 0.377 0.394 0.421 0.538 0.431 0.465 0.499 1.513

ETTm1
MSE 0.374 0.448 0.382 0.390 0.404 0.464 0.411 0.501 0.677 0.802 1.192
MAE 0.372 0.410 0.388 0.389 0.427 0.441 0.429 0.466 0.537 0.628 0.821

ETTm2
MSE 0.282 0.300 0.272 0.276 0.277 0.293 0.316 0.296 0.320 1.342 3.370
MAE 0.321 0.341 0.321 0.320 0.323 0.335 0.368 0.343 0.353 0.930 1.440

Electricity
MSE 0.207 0.233 0.188 0.188 0.175 0.176 0.180 0.180 0.323 0.431 1.195
MAE 0.294 0.320 0.274 0.273 0.270 0.269 0.280 0.273 0.392 0.478 0.891

Weather
MSE 0.269 0.242 0.238 0.260 0.234 0.238 0.241 0.242 0.279 0.300 0.597
MAE 0.292 0.267 0.261 0.275 0.273 0.275 0.283 0.279 0.301 0.342 0.495

Average
MSE 0.309 0.327 0.310 0.329 0.336 0.360 0.407 0.378 0.491 0.678 1.904
MAE 0.345 0.357 0.344 0.350 0.368 0.378 0.416 0.389 0.446 0.579 0.995

1st count 7 0 3 1 2 1 0 0 0 0 0

LLM
Time SES

Theta
ARIMA ETS PR

N-BEATS Trsf
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DeepAR
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Figure 4: Aggregated results on the Monash TSF
Benchmark, with full results in Appendix B.4.

VISIONTS MOIRAIS MOIRAIB MOIRAIL

Electricity 0.448 0.840 0.551 0.465
Solar 0.975 1.135 1.034 1.014

Walmart 0.225 0.324 0.291 0.332
Weather 0.247 0.229 0.417 0.331
Istanbul 0.250 0.294 0.194 0.186
Turkey 0.154 0.149 0.118 0.102

1st count 3 1 0 2

Table 2: Results (NRMSE) on the PF bench-
mark, with full results in Appendix B.5.

Table 3: MAE results of TimesFM and
LLMTime for zero-shot forecasting, on the
last test window of the original test split.

Method VISIONTS TimesFM LLMTime

ETTh1
96 0.35 0.45 0.42

192 0.45 0.53 0.50

ETTh2 96 0.24 0.35 0.33
192 0.60 0.62 0.70

ETTm1 96 0.12 0.19 0.37
192 0.23 0.26 0.71

ETTm2 96 0.19 0.24 0.29
192 0.24 0.27 0.31

Average 0.30 0.36 0.45

Results on Monash and PF Benchmarks Fig. 4
shows the results aggregated from 29 Monash datasets,
showing that VISIONTS in the zero-shot setting sur-
passes all models individually trained on each dataset
(e.g., FFNN, WaveNet, and TBATS) and significantly
outperforms the other cross-domain baseline (i.e., LLM-
Time). It achieves second place among all baselines,
just behind MOIRAI that pre-trained on all the training
datasets. Table 2 shows that for the six PF datasets,
where neither VISIONTS nor MOIRAI has been ex-
posed to downstream data, VISIONTS demonstrates
competitive zero-shot performance. This highlights
VisionTS’s strong zero-shot forecasting ability and ef-
fective cross-modality transferability.

Comparisons of TimesFM and LLMTime Due to the relatively slow efficiency of the autoregres-
sive decoder architecture, when compared with LLMTime (Gruver et al., 2023), Das et al. (2024) only
reported results of TimesFM for the last test window on four ETT datasets. We compared VISIONTS
with their results under the same setting. Table 3 shows that VISIONTS outperforms TimesFM and
LLMTime in terms of MAE, indicating that image-based TSF models are on par with or even better
than TS-based and text-based models.

4.2 FURTHER ANALYSIS OF VISIONTS

ScalingBackbone Analysis In Table 4 (full results in Appendix B.6), we observe that the over-
all performance of three MAE variants (112M, 330M, and 657M) outperforms MOIRAISmall and
MOIRAILarge. Particularly, larger models show a slight decrease in performance. This may be due to
larger visual models overfitting image-specific features, reducing their transferability. A similar
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Table 4: MSE of different MAE variants,
averaged on four prediction lengths.

Base Large Huge
112M 330M 657M

ETTh1 0.390 0.378 0.391
ETTh2 0.333 0.340 0.339
ETTm1 0.374 0.379 0.383
ETTm2 0.282 0.286 0.284

Electricity 0.207 0.209 0.202
Weather 0.269 0.272 0.292

Avg. 0.309 0.311 0.315

Table 5: Computational cost in terms of seconds for fore-
casting a batch of 32 time series data.

Context Length 1k 1k 2k 3k 4k
Prediction Length 1k 2k 3k 4k 1k
PatchTST 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04
DeepAR 0.26 0.32 0.37 0.43 0.26 4.06 6.10 8.17
GPT4TS 0.01 0.01 0.01 0.02 0.01 0.03 0.04 0.06
MOIRAIBase 0.03 0.04 0.04 0.05 0.03 0.04 0.05 0.06
TimesFM 0.08 0.14 0.20 0.27 0.07 0.13 0.20 0.25
LLMTime (8B) > 200 > 200

VISIONTS (c = 0.4) 0.04 0.03 0.03 0.03 0.04 0.04 0.05 0.05

1000 2000 3000 4000

0.28

0.30

0.32
Weather

(a) Weather
1000 2000 3000 4000

0.38
0.39
0.40
0.41
0.42

ETTm1

(b) ETTm1

1000 2000 3000 4000
0.28

0.29

0.30

0.31

ETTm2

(c) ETTm2
1000 2000 3000 4000

0.21
0.22
0.23
0.24
0.25

Electricity

(d) Electricity

Figure 5: MSE (Y-axis) performance of dif-
ferent context lengths L (X-axis), averaged
on four prediction lengths.

Monash
Weather
ETTm1
Electricity
ImageNet

Figure 6: Modality visualization of the images (Ima-
geNet) and time series (Monash, Weather, Electricity,
and ETTm1) based on the MAE encoder.

phenomenon was reported in MOIRAI, where larger models were found to degrade performance.
We leave the exploration of scaling laws in image-based TSF foundation models for the future.
Additionally, to explore the potential with other vision models, we also test LaMa (Suvorov et al.,
2022), a visual inpainting model. Results in Appendix B.6 demonstrate that VISIONTS with LaMa
performs similarly to MOIRAI in the zero-shot setting. This suggests that the performance is driven
by the inherent similarity between images and time series, not solely by the MAE model.

Computational Cost We evaluate the computation cost of different baselines on an NVIDIA
A800 GPU. Results are averaged on 90 runs. Table 5 shows the results between various TSF
foundation models, showing that VISIONTS are comparable to MOIRAIBase and GPT4TS and faster
than TimesFM, which is an auto-regressive model. While computation time increases with context
length for all the other Transformer-based baselines, VISIONTS remains nearly constant. This
is because VISIONTS encodes input sequences into an image with constant size, ensuring O(1)
efficiency. In contrast, Transformer-based methods operate at O(L2) relative to context length L.

Hyperparameter Analysis Appendix B.8 illustrates the impact of three hyperparameters. For
context length L, as shown in Fig. 5, performance typically improves with increasing L, particularly
on high-frequency datasets like Weather (10-minute frequency) and ETTm1/ETTm2 (15-minute
frequency). This aligns with other TSF foundation models like MOIRAI. As for the normalization
constant r and alignment constant c, when both of them are around 0.4, performance is generally
well across most benchmarks.

Modality Analysis: Where does the zero-shot forecastability come from? We further examine
the gap between time series and images to explain the transferability of zero-shot forecasting. We
sampled 1,000 images from ImageNet-1k and 300 samples from each time series dataset. We fed
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them into the MAE, maintaining a consistent image mask across all data. Fig. 6 visualizes the MAE
encoder outputs of these data, which are flattened and reduced to 2-dimension by t-SNE. Notably,
some time series, such as ETTm1 and Electricity, fall within the ImageNet distribution. It suggests
a relatively small gap between images and some time series, which could explain the good
transferability. Additionally, while ImageNet displays a concentrated distribution, time series are
generally more scattered. For instance, ETTm1 clusters in the upper right, whereas Monash is found
in the lower left, with a significant gap. This indicates strong heterogeneity within time series
data and suggests that images may serve as a bridge to connect isolated time series modality.

Ablation Study We conduct experiments to validate our choices in the Alignment step, detailed
in Appendix B.7. First, we test three different interpolation strategies, which shows that Bilinear
interpolation performs best. Second, we apply horizontal and vertical flips on the image to examine
whether the assumed left-to-right, top-to-bottom order is efficient. Results show that these changes
do not significantly affect performance, suggesting that image reconstruction is isotropic and not
influenced by certain orientation.

Qualitative Analysis: When does VISIONTS perform well, and when does it not? In Ap-
pendix D, we visualize the zero-shot forecasting of VISIONTS alongside the input and reconstruction
images, highlighting both successful cases (where VISIONTS outperforms MOIRAI) and failures
(where MOIRAI prevails). When the input exhibits strong regularity (Fig. 10), VISIONTS effectively
forecasts both the periodicity (via segmentation) and trends (via MAE’s capabilities). In contrast,
MOIRAI , akin to seasonal naïve methods, struggles to capture inter-period trends. For less-structured
input (Figs. 11 to 13), MOIRAI adopts a conservative approach with lower volatility to minimize
errors, while VISIONTS takes a more aggressive stance. This strategy occasionally yields more
accurate trend predictions (Figs. 11 and 12) but may also result in greater MAE (Fig. 13).

4.3 FULL-SHOT LONG-TERM TIME SERIES FORECASTING

Setups We evaluate the full-shot capability of each baseline trained on individual long-term TSF
benchmarks. In addition to the six datasets used for zero-shot forecasting, we also include the popular
Traffic and Illness datasets. As self-attention and feed-forward layers contain rich knowledge that
can be transferred to TSF, we choose to fine-tune only the layer normalization (LN) layers while
freezing the other parameters, which is also adopted by Zhou et al. (2023). Training details are
elaborated in Appendix C.1.

Main Results Table 6 summarizes the full-shot results, with standard deviations detailed in Ap-
pendix C.2. It shows that VISIONTS outperforms other baselines in most cases (46 out of 80),
surpassing the non-pretrained PatchTST and the language-pretrained GPT4TS. Remarkably, except
for Illness with the least data, VISIONTS demands only a single epoch of fine-tuning. This suggests
that even minimal fine-tuning enables VisionTS to adapt to time series effectively. Compared with
Table 1, fine-tuning provides limited benefits for ETTh1 and ETTh2 but significantly improves other
datasets. We attribute this to the smaller data scale of ETTh1 and ETTh2.

Ablation Study Tan et al. (2024) proposed several ablation variants for text-based foundation
models, including w/o LLM (removing the LLM), LLM2Attn/LLM2Trsf (replacing the LLM with
a single self-attention/Transformer layer), and RandLLM (randomly initializing the LLM). They
found no significant performance differences and concluded that textual knowledge is unnecessary
for TSF. We conducted similar ablations to assess the role of the vision model (VM), including w/o
VM, VM2Attn, VM2Trsf, and RandVM. Table 7 with full results in Appendix C.3 shows that these
variants lead to worse performance, indicating that visual knowledge is beneficial for TSF.

Analysis: Fine-tuning strategies As stated before, we fine-tune only the layer normalization
(LN). We also tested fine-tuning the bias, MLP, or attention layers, in addition to full fine-tuning and
freezing. All hyperparameters were kept constant. Note that freezing differs from the previous zero-
shot experiment, where a longer context length was used. Table 8 with full results in Appendix C.3
show that fine-tuning LN is the best. Modifying MLP or attention layers results in significant
performance drops, suggesting that valuable knowledge resides in these components.
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Table 6: Full-shot forecasting performance on the long-term TSF benchmark. VISIONTS is fine-tuned
only a single epoch on each dataset except for Illness.

Pretrain Images Text No Pretrain
Method VISIONTS Time-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.347 0.376 0.376 0.402 0.370 0.389 0.375 0.399 0.370 0.399 0.384 0.402 0.376 0.419 0.449 0.459 0.513 0.491 0.494 0.479 0.865 0.713
192 0.385 0.400 0.407 0.421 0.412 0.413 0.405 0.416 0.413 0.421 0.436 0.429 0.420 0.448 0.500 0.482 0.534 0.504 0.538 0.504 1.008 0.792
336 0.407 0.415 0.430 0.438 0.448 0.431 0.439 0.443 0.422 0.436 0.491 0.469 0.459 0.465 0.521 0.496 0.588 0.535 0.574 0.521 1.107 0.809
720 0.439 0.443 0.457 0.468 0.441 0.449 0.472 0.490 0.447 0.466 0.521 0.500 0.506 0.507 0.514 0.512 0.643 0.616 0.562 0.535 1.181 0.865
avg 0.395 0.409 0.418 0.432 0.418 0.421 0.423 0.437 0.413 0.431 0.458 0.450 0.440 0.460 0.496 0.487 0.570 0.537 0.542 0.510 1.040 0.795

E
T
T
h
2

96 0.269 0.328 0.286 0.346 0.280 0.335 0.289 0.353 0.274 0.336 0.340 0.374 0.358 0.397 0.346 0.388 0.476 0.458 0.340 0.391 3.755 1.525
192 0.332 0.374 0.361 0.391 0.348 0.380 0.383 0.418 0.339 0.379 0.402 0.414 0.429 0.439 0.456 0.452 0.512 0.493 0.430 0.439 5.602 1.931
336 0.351 0.395 0.390 0.414 0.380 0.405 0.448 0.465 0.329 0.380 0.452 0.452 0.496 0.487 0.482 0.486 0.552 0.551 0.485 0.479 4.721 1.835
720 0.390 0.430 0.405 0.434 0.406 0.436 0.605 0.551 0.379 0.422 0.462 0.468 0.463 0.474 0.515 0.511 0.562 0.560 0.500 0.497 3.647 1.625
avg 0.336 0.382 0.361 0.396 0.354 0.389 0.431 0.447 0.330 0.379 0.414 0.427 0.437 0.449 0.450 0.459 0.526 0.516 0.439 0.452 4.431 1.729

E
T
T
m
1

96 0.281 0.322 0.291 0.341 0.300 0.340 0.299 0.343 0.290 0.342 0.338 0.375 0.379 0.419 0.505 0.475 0.386 0.398 0.375 0.398 0.672 0.571
192 0.322 0.353 0.341 0.369 0.343 0.368 0.335 0.365 0.332 0.369 0.374 0.387 0.426 0.441 0.553 0.496 0.459 0.444 0.408 0.410 0.795 0.669
336 0.356 0.379 0.359 0.379 0.376 0.386 0.369 0.386 0.366 0.392 0.410 0.411 0.445 0.459 0.621 0.537 0.495 0.464 0.435 0.428 1.212 0.871
720 0.391 0.413 0.433 0.419 0.431 0.416 0.425 0.421 0.416 0.420 0.478 0.450 0.543 0.490 0.671 0.561 0.585 0.516 0.499 0.462 1.166 0.823
avg 0.338 0.367 0.356 0.377 0.363 0.378 0.357 0.379 0.351 0.381 0.400 0.406 0.448 0.452 0.588 0.517 0.481 0.456 0.429 0.425 0.961 0.734

E
T
T
m
2

96 0.169 0.256 0.162 0.248 0.163 0.249 0.167 0.269 0.165 0.255 0.187 0.267 0.203 0.287 0.255 0.339 0.192 0.274 0.189 0.280 0.365 0.453
192 0.225 0.294 0.235 0.304 0.222 0.291 0.224 0.303 0.220 0.292 0.249 0.309 0.269 0.328 0.281 0.340 0.280 0.339 0.253 0.319 0.533 0.563
336 0.278 0.334 0.280 0.329 0.273 0.327 0.281 0.342 0.274 0.329 0.321 0.351 0.325 0.366 0.339 0.372 0.334 0.361 0.314 0.357 1.363 0.887
720 0.372 0.392 0.366 0.382 0.357 0.376 0.397 0.421 0.362 0.385 0.408 0.403 0.421 0.415 0.433 0.432 0.417 0.413 0.414 0.413 3.379 1.338
avg 0.261 0.319 0.261 0.316 0.254 0.311 0.267 0.334 0.255 0.315 0.291 0.333 0.305 0.349 0.327 0.371 0.306 0.347 0.293 0.342 1.410 0.810

I
ll
n
es
s

24 2.034 0.937 1.792 0.807 1.869 0.823 2.215 1.081 1.319 0.754 2.317 0.934 3.228 1.260 3.483 1.287 2.294 0.945 2.527 1.020 5.764 1.677
36 1.866 0.888 1.833 0.833 1.853 0.854 1.963 0.963 1.430 0.834 1.972 0.920 2.679 1.080 3.103 1.148 1.825 0.848 2.615 1.007 4.755 1.467
48 1.784 0.870 2.269 1.012 1.886 0.855 2.130 1.024 1.553 0.815 2.238 0.940 2.622 1.078 2.669 1.085 2.010 0.900 2.359 0.972 4.763 1.469
60 1.910 0.912 2.177 0.925 1.877 0.877 2.368 1.096 1.470 0.788 2.027 0.928 2.857 1.157 2.770 1.125 2.178 0.963 2.487 1.016 5.264 1.564

avg 1.899 0.902 2.018 0.894 1.871 0.852 2.169 1.041 1.443 0.798 2.139 0.931 2.847 1.144 3.006 1.161 2.077 0.914 2.497 1.004 5.137 1.544

W
ea
th
er

96 0.142 0.192 0.155 0.199 0.148 0.188 0.176 0.237 0.149 0.198 0.172 0.220 0.217 0.296 0.266 0.336 0.173 0.223 0.197 0.281 0.300 0.384
192 0.191 0.238 0.223 0.261 0.192 0.230 0.220 0.282 0.194 0.241 0.219 0.261 0.276 0.336 0.307 0.367 0.245 0.285 0.237 0.312 0.598 0.544
336 0.246 0.282 0.251 0.279 0.246 0.273 0.265 0.319 0.245 0.282 0.280 0.306 0.339 0.380 0.359 0.395 0.321 0.338 0.298 0.353 0.578 0.523
720 0.328 0.337 0.345 0.342 0.320 0.328 0.333 0.362 0.314 0.334 0.365 0.359 0.403 0.428 0.419 0.428 0.414 0.410 0.352 0.388 1.059 0.741
avg 0.227 0.262 0.244 0.270 0.227 0.255 0.249 0.300 0.226 0.264 0.259 0.287 0.309 0.360 0.338 0.382 0.288 0.314 0.271 0.334 0.634 0.548

T
ra

f
f
ic

96 0.344 0.236 0.392 0.267 0.396 0.264 0.410 0.282 0.360 0.249 0.593 0.321 0.587 0.366 0.613 0.388 0.612 0.338 0.607 0.392 0.719 0.391
192 0.372 0.249 0.409 0.271 0.412 0.268 0.423 0.287 0.379 0.256 0.617 0.336 0.604 0.373 0.616 0.382 0.613 0.340 0.621 0.399 0.696 0.379
336 0.383 0.257 0.434 0.296 0.421 0.273 0.436 0.296 0.392 0.264 0.629 0.336 0.621 0.383 0.622 0.337 0.618 0.328 0.622 0.396 0.777 0.420
720 0.422 0.280 0.451 0.291 0.455 0.291 0.466 0.315 0.432 0.286 0.640 0.350 0.626 0.382 0.660 0.408 0.653 0.355 0.632 0.396 0.864 0.472
avg 0.380 0.256 0.422 0.281 0.421 0.274 0.434 0.295 0.391 0.264 0.620 0.336 0.610 0.376 0.628 0.379 0.624 0.340 0.621 0.396 0.764 0.416

E
le
ct
ri
ci
ty 96 0.126 0.218 0.137 0.233 0.141 0.239 0.140 0.237 0.129 0.222 0.168 0.272 0.193 0.308 0.201 0.317 0.169 0.273 0.187 0.304 0.274 0.368

192 0.144 0.237 0.152 0.247 0.158 0.253 0.153 0.249 0.157 0.240 0.184 0.289 0.201 0.315 0.222 0.334 0.182 0.286 0.199 0.315 0.296 0.386
336 0.162 0.256 0.169 0.267 0.172 0.266 0.169 0.267 0.163 0.259 0.198 0.300 0.214 0.329 0.231 0.338 0.200 0.304 0.212 0.329 0.300 0.394
720 0.192 0.286 0.200 0.290 0.207 0.293 0.203 0.301 0.197 0.290 0.220 0.320 0.246 0.355 0.254 0.361 0.222 0.321 0.233 0.345 0.373 0.439
avg 0.156 0.249 0.165 0.259 0.170 0.263 0.166 0.264 0.162 0.253 0.193 0.295 0.214 0.327 0.227 0.338 0.193 0.296 0.208 0.323 0.311 0.397

1st count 46 4 12 0 19 0 0 0 0 0 0

Table 7: MSE results for ablation studies, averaged
on four prediction lengths.

- w/o VM VM2Attn VM2Trsf Rand-VM
ETTh1 0.395 0.785 0.448 0.459 0.534
ETTh2 0.336 0.420 0.418 0.448 0.411
ETTm1 0.338 0.676 0.397 0.398 0.433
ETTm2 0.261 0.379 0.274 0.292 0.288

Avg. 0.333 0.565 0.384 0.399 0.417

Table 8: MSE for different fine-tuning strate-
gies, averaged on four prediction lengths.

All LN Bias MLP Attn Freeze
ETTh1 0.534 0.395 0.401 0.534 0.554 0.419
ETTh2 0.411 0.336 0.347 0.401 0.392 0.340
ETTm1 0.433 0.338 0.343 0.441 0.444 0.374
ETTm2 0.288 0.261 0.256 0.292 0.289 0.305

Avg. 0.417 0.333 0.337 0.417 0.420 0.360

5 RELATED WORK

Depending on the pre-training data, TSF foundation models can be categorized into Text-based and
TS-based. We first review these related works, and then introduce recent research for image-based
time series analysis.

Text-based TSF Foundation Models Large Language Models (LLMs) pre-trained on large
amounts of text data are being applied to TSF tasks. For example, Zhou et al. (2023) fine-tuned a
pre-trained GPT (Radford et al., 2019) on each time-series downstream task, such as forecasting,
classification, imputation, and anomaly detection. Based on Llama (Touvron et al., 2023), Jin et al.
(2024) froze the pre-trained LLM and reprogrammed the time series to align with the language
modality. Bian et al. (2024) adopted a two-stage approach by continually pre-training GPT (Radford
et al., 2019) on the time-series domain. Nevertheless, the TSF performance of LLMs has recently
been questioned by Tan et al. (2024), which designed several ablation studies to show that textual
knowledge is unnecessary for forecasting. In this paper, we attribute it to the large modality gap.
Some recent approaches focus on directly transforming the time series into natural texts for LLMs,
allowing for zero-shot forecasting. For example, PromptCast (Xue & Salim, 2023) used pre-defined
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templates to describe numerical time series data, while LLMTime (Gruver et al., 2023) directly sepa-
rated time steps using commas and separates digits using spaces to construct the text input. However,
due to the efficiency issue of the autoregressive decoding strategy and the expensive inference cost of
large language models, their practical use is limited.

Time Series-Based TSF Foundation Models Self-supervised pre-training a TSF model on the
same dataset used for downstream TSF tasks is a well-explored topic (Ma et al., 2023; Zhang et al.,
2024), such as denoising autoencoders (Zerveas et al., 2021) or contrastive learning (Woo et al.,
2022a; Yue et al., 2022). They follow a similar paradigm to the masked autoencoder (MAE) in
computer vision. However, these methods rarely examine the cross-dataset generalization capabilities.
Recently, research has shifted towards training universal foundation models, by collecting large-scale
time series datasets from diverse domains (Goswami et al., 2024; Liu et al., 2024; Das et al., 2024;
Dong et al., 2024; Feng et al., 2024) or generating numerous synthetic time series data (Fu et al., 2024;
Yang et al., 2024). As a representative method, Woo et al. (2024) collected 27 billion observations
across nine domains and trained TSF foundation models of various scales, achieving strong zero-shot
performance. However, given the severe heterogeneity, constructing high-quality large datasets poses
significant challenges for building these foundation models.

Image-Based Time-Series Analysis Previous research has investigated encoding time series data
into images and used convolutional neural networks (CNNs) trained from scratch for classification
(Wang & Oates, 2015a;b; Hatami et al., 2018) or forecasting (Li et al., 2020; Sood et al., 2021;
Semenoglou et al., 2023). Recent researchers explored using pre-trained models for these imaging
time series. Li et al. (2024) used a pre-trained vision transformer (ViT) for classification. Wimmer &
Rekabsaz (2023) and Zhang et al. (2023) employed vision-language multimodal pre-trained models
to extract predictive features and generate text descriptions. Yang et al. (2024) generated synthetic
time series data to pre-train a vision model for the TSF task. However, these studies did not deeply
examine the transferability from natural images to TSF. Despite early efforts by Zhou et al. (2023) to
fine-tune a BEiT (Bao et al., 2022) trained on images for time series forecasting, it still falls short of
the leading text-based and TS-based TSF foundation models. To the best of our knowledge, we are
the first to show that an image-based foundation model, without further time-series adaptation, can
match or even surpass other types of TSF foundation models.

6 CONCLUSION

In this paper, we explore a novel approach to building a time series forecasting (TSF) foundation
model using natural images, offering a new perspective distinct from the traditional text-based and
TS-based methods. By leveraging the intrinsic similarities between images and time series, we
introduced VISIONTS, an MAE-based TSF foundation model that reformulates the TSF task as an
image reconstruction problem. Our extensive evaluations demonstrate that VISIONTS achieves
outstanding forecasting performance in zero-shot and full-shot settings, being a free lunch for a TSF
foundation model. We hope our findings could open new avenues for further cross-modality research.

7 LIMITATION AND FUTURE WORK

• Exploring Other Architectures: As a preliminary study, we employed a basic MAE model.
Utilizing more advanced models like diffusion models (Rombach et al., 2022; Peebles & Xie, 2023)
presents a promising research direction.

• Expanding Time Series Capacities: Due to limitations in the visual model, VISIONTS cannot
utilize exogenous covariates and perform distribution forecasting. Future modifications to the
model structure may empower it with more time series capabilities.

• Continual Pretraining: As discussed in Table 4, larger visual models may overfit image-specific
features, limiting their transferability to time series. Investigating whether continual pretraining on
large-scale time series can reduce the gap between the two modalities is an interesting avenue.
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A DETAILS OF EXPERIMENTS

A.1 BENCHMARK AND BASELINES

Long-Term TSF Benchmark We evaluate our model on 8 widely used long-term TSF datasets
(Zhou et al., 2021; Wu et al., 2021), including ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Traffic,
Illness, and Weather. Performance is assessed using Mean Squared Error (MSE) and Mean Absolute
Error (MAE), with lower values indicating better forecasting accuracy.

Monash Benchmark Following Woo et al. (2024), we tested 29 Monash datasets (Godahewa
et al., 2021) using GluonTS (Alexandrov et al., 2020), including M1 Monthly, M3 Monthly, M3
Other, M4 Monthly, M4 Weekly, M4 Daily, M4 Hourly, Tourism Quarterly, Tourism Monthly, CIF
2016, Australian Electricity Demand, Bitcoin, Pedestrian Counts, Vehicle Trips, KDD Cup, Weather,
NN5 Daily, NN5 Weekly, Carparts, FRED-MD, Traffic Hourly, Traffic Weekly, Rideshare, Hospital,
COVID Deaths, Temperature Rain, Sunspot, Saugeen River Flow, and US Births. Performance is
assessed using MAE.

PF Benchmark Woo et al. (2024) tested their methods on six datasets for evaluating the probability
forecasting ability (PF), including Electricity, Solar, Walmart, Weather, Istanbul Traffic, and Turkey
Power. Since MAE cannot output distributions, we report the point forecasting metrics on these six PF
datasets, including the symmetric mean absolute percentage error (sMAPE), mean absolute scaled
error (MASE) (Hyndman & Koehler, 2006), normalized deviation (ND), and normalized root mean
squared error (NRMSE) (Yu et al., 2016).

Baselines The baseline models selected for comparison are briefly described below:

1. MOIRAI (Woo et al., 2024) is a TSF foundation model trained on the Large-scale Open Time
Series Archive (LOTSA), with over 27B observations across nine domains. It has three variants:
small, base, and large.

2. TimesFM (Das et al., 2024) is a decoder-style TSF foundation model, using a large time-series
corpus comprising both real-world and synthetic datasets.

3. Time-LLM (Jin et al., 2024) is a text-based TSF foundation model built on Llama, which
reprograms time series data to align with the language modality, keeping the LLM frozen.

4. GPT4TS (Zhou et al., 2023) (OneFitsAll) is another text-based model based on GPT, fine-tuned
for forecasting tasks.

5. LLMTime (Gruver et al., 2023) encodes time series data to a text sequence, supporting zero-shot
forecasting.

6. DLinear (Zeng et al., 2023) proposes a linear forecasting model, enhanced by seasonal-trend
decomposition or normalization.

7. PatchTST (Nie et al., 2022) uses Transformer encoders with patching and channel independence
techniques for improved predictions.

8. TimesNet (Wu et al., 2023) applies convolution kernels along the time dimension, using temporal
decomposition and periodical segmentation to capture temporal patterns.

9. FEDformer (Zhou et al., 2022) employs a sparse frequency domain representation, using
frequency-enhanced blocks for cross-time dependency.

10. Autoformer (Wu et al., 2021) uses series decomposition blocks and Auto-Correlation to capture
cross-time dependency.

11. Stationary (Liu et al., 2022) introduces stationarization and de-stationary attention mechanisms.
12. ETSFormer (Woo et al., 2022b) leverages exponential smoothing principles, including exponen-

tial smoothing and frequency attention mechanisms.
13. Informer (Zhou et al., 2021) proposes ProbSparse self-attention and distillation operations.

For the long-term TSF benchmark, we include TS-based foundation model results from their original
papers, Text-based model results from Tan et al. (2024), and other baseline results from Zhou et al.
(2023). For the Monash and PF benchmark, we include results from Woo et al. (2024).
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Table 9: Periodicity (P ) search range for the sampling frequency. x denotes the number of sampling
frequencies. For example, for data with a sampling frequency of 2 minutes (2T), we have x = 2, and
the possible search range of P is {1440/x, 10080/x, 1} = {720, 5040, 1}.

Sampling Frequency Possible Seasonalities Possible P

Second (S) 1 hour {3600/x, 1}
Minute (T) 1 day or 1 week {1440/x, 10080/x, 1}
Hour (H) 1 day or 1 week {24/x, 168/x, 1}
Day (D) 1 week, 1 month, or 1 year {7/x, 30/x, 365/x, 1}
Week (W) 1 year or 1 month {52/x, 4/x, 1}
Month (M) 1 year, 6 months, or 3 months {12/x, 6/x, 3/x, 1}
Business Day (B) 1 week {5/x, 1}
Quarter (Q) 1 year or 6 months {4/x, 2/x, 1}
Others - {1}

Table 10: Final P used for each dataset in our experiment.

Frequency P Datasets

Long-Term TSF

H 24 ETTh1 ETTh2 Electricity Traffic
W 52 Illness

15T 96 ETTm1 ETTm2
10T 144 Weather

PF
H 24 Electricity Solar Istanbul Traffic Turkey Power
W 52 Walmart

10T 144 Weather

Monash

D 1 M4 Daily COVID Deaths
W 1 NN5 Weekly
M 1 FRED-MD
Q 1 M3 Other
M 3 M3 Monthly M4 Monthly CIF 2016 (6)
W 4 M4 Weekly Traffic Weekly
Q 4 Tourism Quarterly
M 6 CIF 2016 (12) Car Parts
D 7 Bitcoin Vehicle Trips Weather NN5 Daily
D 7 US Births Saugeen Day Temperature Rain
M 12 Tourism Monthly Hospital M1 Monthly
H 24 M4 Hourly KDD cup Pedestrian Counts
H 24 Traffic Hourly Rideshare
D 30 Sunspot

0.5H 336 Aus. Elec. Demand

Table 11: Comparison of setting P = 1 for VISIONTS.

VISIONTS P = 1

MSE MAE MSE MAE

ETTh1 0.390 0.414 0.840 0.628
ETTh2 0.333 0.375 0.424 0.445
ETTm1 0.374 0.372 0.660 0.533
ETTm2 0.282 0.321 0.312 0.363
Average 0.344 0.370 0.559 0.492

Environment All experiments are conducted using Time-Series-Library (https://github.
com/thuml/Time-Series-Library) and GluonTS library (Alexandrov et al., 2020) on an
NVIDIA A800 GPU.

A.2 PERIODICITY SELECTION

We first determine a range of period lengths based on the sampling frequency of the data, shown in
Table 9. This frequency-based strategy is also employed by Alexandrov et al. (2020) while we extend
the search range for tuning. We select the optimal P from this range on the validation set. The final
P used in our experiments are summarized in Table 10.
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To demonstrate the influence of P and the effectiveness of our periodicity selection strategy, we set
P = 1 and compare the results with the above strategy. Table 11 shows that such strategy (denoted as
VISIONTS) significantly outperforms the naive strategy that sets P = 1.

B ZERO-SHOT FORECASTING

B.1 HYPERPARAMETERS

Table 12: Hyperparameters for VISIONTS used in our zero-shot forecasting (Long-term TSF).

ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity

Normalization constant r 0.4 0.4 0.4 0.4 0.4 0.4
Alignment constant c 0.4 0.4 0.4 0.4 0.4 0.4

Context length L 2880 1728 2304 4032 4032 2880

We conduct hyperparameter tuning on validation sets to determine the optimal context length L. Final
used hyperparameters are summarized in Table 12.

B.2 FULL FORECASTING RESULTS OF THE LONG-TERM TSF BENCHMARK

Table 13: Full results of Table 1: Zero-shot or few-shot results on the long-term TSF benchmark.
Bold: the best result.

Zero-Shot Few-Shot (10% Downstream Dataset)

Pretrain Images Time-series Text No Pretrain
Method VISIONTIME MOIRAIS MOIRAIB MOIRAIL TimeLLM GPT4TS DLinear PatchTST TimesNet Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.353 0.383 0.375 0.402 0.384 0.402 0.380 0.398 0.448 0.460 0.458 0.456 0.492 0.495 0.516 0.485 0.861 0.628 0.613 0.552 1.179 0.792
192 0.392 0.410 0.399 0.419 0.425 0.429 0.440 0.434 0.484 0.483 0.570 0.516 0.565 0.538 0.598 0.524 0.797 0.593 0.722 0.598 1.199 0.806
336 0.407 0.423 0.412 0.429 0.456 0.450 0.514 0.474 0.589 0.540 0.608 0.535 0.721 0.622 0.657 0.550 0.941 0.648 0.750 0.619 1.202 0.811
720 0.406 0.441 0.413 0.444 0.470 0.473 0.705 0.568 0.700 0.604 0.725 0.591 0.986 0.743 0.762 0.610 0.877 0.641 0.721 0.616 1.217 0.825
avg 0.390 0.414 0.400 0.424 0.434 0.439 0.510 0.469 0.556 0.522 0.590 0.525 0.691 0.600 0.633 0.542 0.869 0.628 0.702 0.596 1.199 0.809

E
T
T
h
2

96 0.271 0.328 0.281 0.334 0.277 0.327 0.287 0.325 0.275 0.326 0.331 0.374 0.357 0.411 0.353 0.389 0.378 0.409 0.413 0.451 3.837 1.508
192 0.328 0.367 0.340 0.373 0.340 0.374 0.347 0.367 0.374 0.373 0.402 0.411 0.569 0.519 0.403 0.414 0.490 0.467 0.474 0.477 3.856 1.513
336 0.345 0.381 0.362 0.393 0.371 0.401 0.377 0.393 0.406 0.429 0.406 0.433 0.671 0.572 0.426 0.441 0.537 0.494 0.547 0.543 3.952 1.526
720 0.388 0.422 0.380 0.416 0.394 0.426 0.404 0.421 0.427 0.449 0.449 0.464 0.824 0.648 0.477 0.480 0.510 0.491 0.516 0.523 3.842 1.503
avg 0.333 0.375 0.341 0.379 0.346 0.382 0.354 0.377 0.370 0.394 0.397 0.421 0.605 0.538 0.415 0.431 0.479 0.465 0.488 0.499 3.872 1.513

E
T
T
m
1

96 0.341 0.347 0.404 0.383 0.335 0.360 0.353 0.363 0.346 0.388 0.390 0.404 0.352 0.392 0.410 0.419 0.583 0.501 0.774 0.614 1.162 0.785
192 0.360 0.360 0.435 0.402 0.366 0.379 0.376 0.380 0.373 0.416 0.429 0.423 0.382 0.412 0.437 0.434 0.630 0.528 0.754 0.592 1.172 0.793
336 0.377 0.374 0.462 0.416 0.391 0.394 0.399 0.395 0.413 0.426 0.469 0.439 0.419 0.434 0.476 0.454 0.725 0.568 0.869 0.677 1.227 0.908
720 0.416 0.405 0.490 0.437 0.434 0.419 0.432 0.417 0.485 0.476 0.569 0.498 0.490 0.477 0.681 0.556 0.769 0.549 0.810 0.630 1.207 0.797
avg 0.374 0.372 0.448 0.410 0.382 0.388 0.390 0.389 0.404 0.427 0.464 0.441 0.411 0.429 0.501 0.466 0.677 0.537 0.802 0.628 1.192 0.821

E
T
T
m
2

96 0.228 0.282 0.205 0.282 0.195 0.269 0.189 0.260 0.177 0.261 0.188 0.269 0.213 0.303 0.191 0.274 0.212 0.285 0.352 0.454 3.203 1.407
192 0.262 0.305 0.261 0.318 0.247 0.303 0.247 0.300 0.241 0.314 0.251 0.309 0.278 0.345 0.252 0.317 0.270 0.323 0.694 0.691 3.112 1.387
336 0.293 0.328 0.319 0.355 0.291 0.333 0.295 0.334 0.274 0.327 0.307 0.346 0.338 0.385 0.306 0.353 0.323 0.353 2.408 1.407 3.255 1.421
720 0.343 0.370 0.415 0.410 0.355 0.377 0.372 0.386 0.417 0.390 0.426 0.417 0.436 0.440 0.433 0.427 0.474 0.449 1.913 1.166 3.909 1.543
avg 0.282 0.321 0.300 0.341 0.272 0.321 0.276 0.320 0.277 0.323 0.293 0.335 0.316 0.368 0.296 0.343 0.320 0.353 1.342 0.930 3.370 1.440

E
le
ct
ri
ci
ty 96 0.177 0.266 0.205 0.299 0.158 0.248 0.152 0.242 0.139 0.241 0.139 0.237 0.150 0.253 0.140 0.238 0.299 0.373 0.261 0.348 1.259 0.919

192 0.188 0.277 0.220 0.310 0.174 0.263 0.171 0.259 0.151 0.248 0.156 0.252 0.164 0.264 0.160 0.255 0.305 0.379 0.338 0.406 1.160 0.873
336 0.207 0.296 0.236 0.323 0.191 0.278 0.192 0.278 0.169 0.270 0.175 0.270 0.181 0.282 0.180 0.276 0.319 0.391 0.410 0.474 1.157 0.872
720 0.256 0.337 0.270 0.347 0.229 0.307 0.236 0.313 0.240 0.322 0.233 0.317 0.223 0.321 0.241 0.323 0.369 0.426 0.715 0.685 1.203 0.898
avg 0.207 0.294 0.233 0.320 0.188 0.274 0.188 0.273 0.175 0.270 0.176 0.269 0.180 0.280 0.180 0.273 0.323 0.392 0.431 0.478 1.195 0.891

W
ea
th
er

96 0.220 0.257 0.173 0.212 0.167 0.203 0.177 0.208 0.161 0.210 0.163 0.215 0.171 0.224 0.165 0.215 0.184 0.230 0.221 0.297 0.374 0.401
192 0.244 0.275 0.216 0.250 0.209 0.241 0.219 0.249 0.204 0.248 0.210 0.254 0.215 0.263 0.210 0.257 0.245 0.283 0.270 0.322 0.552 0.478
336 0.280 0.299 0.260 0.282 0.256 0.276 0.277 0.292 0.261 0.302 0.256 0.292 0.258 0.299 0.259 0.297 0.305 0.321 0.320 0.351 0.724 0.541
720 0.330 0.337 0.320 0.322 0.321 0.323 0.365 0.350 0.309 0.332 0.321 0.339 0.320 0.346 0.332 0.346 0.381 0.371 0.390 0.396 0.739 0.558
avg 0.269 0.292 0.242 0.267 0.238 0.261 0.260 0.275 0.234 0.273 0.238 0.275 0.241 0.283 0.242 0.279 0.279 0.301 0.300 0.342 0.597 0.495

Average 0.309 0.345 0.327 0.357 0.310 0.344 0.329 0.350 0.336 0.368 0.360 0.378 0.407 0.416 0.378 0.389 0.491 0.446 0.678 0.579 1.904 0.995
1st count 32 0 10 8 10 6 0 0 0 0 0

Table 13 shows the full results of zero-shot/few-shot long-term forecasting performance. VISIONTS
achieves the best results in most cases (32 out of 62), outperforming MOIRAIBase (10 out of 62) and
MOIRAILarge (8 out of 62).

B.3 COMPARISON OF TRADITIONAL METHODS

In addition to deep learning models, we also compare traditional methods, including ARIMA, ETS,
and two methods that require periodicity as our VISIONTS: Seasonal Naïve (repeating the last period)
and Seasonal Avg (similar to Seasonal Naïve but repeating the average of all periods in the look-back
window). Due to the high computational cost of ARIMA and ETS, we only compare them on the
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Table 14: Comparison of traditional zero-shot forecasting baselines.

Method VISIONTS ETS ARIMA Seasonal Naïve Seasonal Avg
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.353 0.383 1.289 0.710 0.900 0.719 0.512 0.433 0.589 0.585
192 0.392 0.410 1.319 0.730 0.906 0.724 0.581 0.469 0.598 0.590
336 0.407 0.423 1.324 0.742 0.908 0.731 0.650 0.501 0.610 0.597
720 0.406 0.441 1.329 0.751 0.932 0.753 0.655 0.514 0.656 0.624
avg 0.390 0.414 1.315 0.733 0.912 0.732 0.600 0.479 0.613 0.599

E
T
T
h
2

96 0.271 0.328 0.399 0.408 0.488 0.508 0.391 0.380 0.457 0.494
192 0.328 0.367 0.500 0.459 0.497 0.514 0.482 0.429 0.466 0.500
336 0.345 0.381 0.562 0.498 0.507 0.522 0.532 0.466 0.476 0.509
720 0.388 0.422 0.558 0.506 0.572 0.557 0.525 0.474 0.542 0.548
avg 0.333 0.375 0.505 0.468 0.516 0.525 0.483 0.437 0.485 0.513

E
T
T
m
1

96 0.341 0.347 1.204 0.659 0.702 0.568 0.423 0.387 0.369 0.399
192 0.360 0.360 1.251 0.685 0.704 0.570 0.463 0.406 0.374 0.402
336 0.377 0.374 1.276 0.702 0.709 0.574 0.496 0.426 0.382 0.407
720 0.416 0.405 1.311 0.724 0.713 0.580 0.574 0.464 0.394 0.416
avg 0.374 0.372 1.261 0.693 0.707 0.573 0.489 0.421 0.380 0.406

E
T
T
m
2

96 0.228 0.282 0.257 0.324 0.397 0.434 0.263 0.301 0.365 0.411
192 0.262 0.305 0.331 0.366 0.402 0.436 0.321 0.337 0.369 0.414
336 0.293 0.328 0.402 0.406 0.407 0.439 0.376 0.370 0.375 0.418
720 0.343 0.370 0.512 0.462 0.413 0.443 0.471 0.422 0.380 0.423
avg 0.282 0.321 0.376 0.390 0.405 0.438 0.358 0.357 0.372 0.417

Average 0.344 0.370 0.864 0.571 0.635 0.567 0.482 0.424 0.463 0.484
1st count 41 0 0 0 1

Table 15: Full results of Fig. 4: Forecasting results (MAE) on the Monash TSF benchmark. We
reported the reproduction results of LLMTime based on the GPT3.5 API from Woo et al. (2024).

VISIONTS LLMTime MOIRAISmall Naive SES Theta TBATS ETS (DHR-)ARIMA PR CatBoost FFNN DeepAR N-BEATS WaveNet Transformer
M1 Monthly 1987.69 2562.84 2082.26 2707.75 2259.04 2166.18 2237.5 1905.28 2080.13 2088.25 2052.32 2162.58 1860.81 1820.37 2184.42 2723.88
M3 Monthly 737.93 877.97 713.41 837.14 743.41 623.71 630.59 626.46 654.8 692.97 732 692.48 728.81 648.6 699.3 798.38
M3 Other 315.85 300.3 263.54 278.43 277.83 215.35 189.42 194.98 193.02 234.43 318.13 240.17 247.56 221.85 245.29 239.24
M4 Monthly 666.54 728.27 597.6 671.27 625.24 563.58 589.52 582.6 575.36 596.19 611.69 612.52 615.22 578.48 655.51 780.47
M4 Weekly 404.23 518.44 339.76 347.99 336.82 333.32 296.15 335.66 321.61 293.21 364.65 338.37 351.78 277.73 359.46 378.89
M4 Daily 215.63 266.52 189.1 180.83 178.27 178.86 176.6 193.26 179.67 181.92 231.36 177.91 299.79 190.44 189.47 201.08
M4 Hourly 288.37 576.06 268.04 1218.06 1218.06 1220.97 386.27 3358.1 1310.85 257.39 285.35 385.49 886.02 425.75 393.63 320.54
Tourism Quarterly 12931.88 16918.86 18352.44 15845.1 15014.19 7656.49 9972.42 8925.52 10475.47 9092.58 10267.97 8981.04 9511.37 8640.56 9137.12 9521.67
Tourism Monthly 2560.19 5608.61 3569.85 5636.83 5302.1 2069.96 2940.08 2004.51 2536.77 2187.28 2537.04 2022.21 1871.69 2003.02 2095.13 2146.98
CIF 2016 570907.24 599313.8 655888.58 578596.5 581875.97 714818.6 855578.4 642421.4 469059 563205.57 603551.3 1495923 3200418 679034.8 5998225 4057973
Aus. Elec. Demand 237.44 760.81 266.57 659.6 659.6 665.04 370.74 1282.99 1045.92 247.18 241.77 258.76 302.41 213.83 227.5 231.45
Bitcoin 2.33E+18 1.74E+18 1.76E+18 7.78E+17 5.33E+18 5.33E+18 9.9E+17 1.1E+18 3.62E+18 6.66E+17 1.93E+18 1.45E+18 1.95E+18 1.06E+18 2.46E+18 2.61E+18
Pedestrian Counts 52.01 97.77 54.88 170.88 170.87 170.94 222.38 216.5 635.16 44.18 43.41 46.41 44.78 66.84 46.46 47.29
Vehicle Trips 22.08 31.48 24.46 31.42 29.98 30.76 21.21 30.95 30.07 27.24 22.61 22.93 22 28.16 24.15 28.01
KDD cup 38.16 42.72 39.81 42.13 42.04 42.06 39.2 44.88 52.2 36.85 34.82 37.16 48.98 49.1 37.08 44.46
Weather 2.06 2.17 1.96 2.36 2.24 2.51 2.3 2.35 2.45 8.17 2.51 2.09 2.02 2.34 2.29 2.03
NN5 Daily 3.51 7.1 5.37 8.26 6.63 3.8 3.7 3.72 4.41 5.47 4.22 4.06 3.94 4.92 3.97 4.16
NN5 Weekly 14.67 15.76 15.07 16.71 15.66 15.3 14.98 15.7 15.38 14.94 15.29 15.02 14.69 14.19 19.34 20.34
Carparts 0.58 0.44 0.53 0.65 0.55 0.53 0.58 0.56 0.56 0.41 0.53 0.39 0.39 0.98 0.4 0.39
FRED-MD 1893.67 2804.64 2568.48 2825.67 2798.22 3492.84 1989.97 2041.42 2957.11 8921.94 2475.68 2339.57 4264.36 2557.8 2508.4 4666.04
Traffic Hourly 0.01 0.03 0.02 0.03 0.03 0.03 0.04 0.03 0.04 0.02 0.02 0.01 0.01 0.02 0.02 0.01
Traffic Weekly 1.14 1.15 1.17 1.19 1.12 1.13 1.17 1.14 1.22 1.13 1.17 1.15 1.18 1.11 1.2 1.42
Rideshare 5.92 6.28 1.35 6.29 6.29 7.62 6.45 6.29 3.37 6.3 6.07 6.59 6.28 5.55 2.75 6.29
Hospital 19.36 25.68 23 24.07 21.76 18.54 17.43 17.97 19.6 19.24 19.17 22.86 18.25 20.18 19.35 36.19
COVID Deaths 137.51 653.31 124.32 353.71 353.71 321.32 96.29 85.59 85.77 347.98 475.15 144.14 201.98 158.81 1049.48 408.66
Temperature Rain 6.37 6.37 5.3 9.39 8.18 8.22 7.14 8.21 7.19 6.13 6.76 5.56 5.37 7.28 5.81 5.24
Sunspot 2.81 5.07 0.11 3.93 4.93 4.93 2.57 4.93 2.57 3.83 2.27 7.97 0.77 14.47 0.17 0.13
Saugeen River Flow 30.22 34.84 24.07 21.5 21.5 21.49 22.26 30.69 22.38 25.24 21.28 22.98 23.51 27.92 22.17 28.06
US Births 519.94 1374.99 872.51 1152.67 1192.2 586.93 399 419.73 526.33 574.93 441.7 557.87 424.93 422 504.4 452.87

Normalized MAE 0.729 1.041 0.657 1.000 1.028 0.927 0.758 0.872 0.898 0.785 0.760 0.741 0.759 0.783 0.749 0.770
Rank 2 16 1 14 15 13 5 11 12 10 7 3 6 9 4 8

small-scale benchmarks, i.e., four ETT datasets. Table 14 shows that VISIONTS also achieves the
best performance.

B.4 FULL FORECASTING RESULTS OF THE MONASH TSF BENCHMARK

Setup Table 10 lists the sampling frequency and the selected period P for each dataset. Datasets
with P = 1 indicate no significant periodicity, where we use a context length of L = 300. For other
datasets with P > 1, we select a longer context length of L = 1000. All datasets were tested with
the hyperparameters r = c = 0.4 as we had done for the long-term TSF benchmark.

Results Table 15 presents VISIONTS ’s MAE test results, with the normalized MAE calculated
by dividing each dataset’s MAE by the naive forecast’s MAE and aggregated using the geometric
mean across datasets. We include the result of each baseline from Woo et al. (2024). Particularly, we
find that VISIONTS outperforms MOIRAI on some datasets with P = 1 (e.g., FRED-MD and NN5
Weekly), showing that VISIONTS can still work effectively without significant periodicity.
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Table 16: Results on the PF benchmark. Results of baselines are based on Woo et al. (2024).

Zero-Shot Full-Shot Baseline
VISIONTS MOIRAISmall MOIRAIBase MOIRAILarge PatchTST TiDE TFT DeepAR AutoARIMA Seasonal Naïve

Electricity

sMAPE 0.109 0.134 0.111 0.106 0.107 0.102 0.106 0.118 0.318 0.108
MASE 0.755 0.981 0.792 0.751 0.753 0.706 0.747 0.844 3.229 0.881
ND 0.061 0.092 0.069 0.063 0.065 0.061 0.063 0.080 0.357 0.070
NRMSE 0.448 0.840 0.551 0.465 0.506 0.514 0.511 0.704 3.296 0.478

Solar

sMAPE 1.370 1.445 1.410 1.400 1.501 1.400 1.391 1.385 1.685 0.691
MASE 1.141 1.465 1.292 1.237 1.607 1.265 1.399 1.222 2.583 1.203
ND 0.484 0.624 0.551 0.528 0.685 0.538 0.594 0.520 1.098 0.512
NRMSE 0.975 1.135 1.034 1.014 1.408 1.093 1.236 1.033 1.784 1.168

Walmart

sMAPE 0.167 0.179 0.168 0.174 0.150 0.145 0.172 0.216 0.219 0.205
MASE 0.949 1.048 0.964 1.007 0.867 0.814 0.948 1.193 1.131 1.236
ND 0.108 0.129 0.117 0.124 0.105 0.097 0.108 0.147 0.141 0.151
NRMSE 0.225 0.324 0.291 0.332 0.218 0.204 0.235 0.298 0.305 0.328

Weather

sMAPE 0.672 0.686 0.623 0.688 0.668 0.636 0.672 0.776 0.770 0.401
MASE 0.737 0.521 0.487 0.515 0.844 0.832 0.692 3.170 0.938 0.782
ND 0.063 0.063 0.048 0.063 0.072 0.066 0.051 0.163 0.139 0.068
NRMSE 0.247 0.229 0.417 0.331 0.260 0.214 0.211 0.486 0.465 0.290

Istanbul Traffic

sMAPE 0.243 0.359 0.284 0.288 0.287 0.280 0.287 0.249 1.141 0.391
MASE 0.706 0.990 0.644 0.631 0.653 0.618 0.620 0.613 3.358 1.137
ND 0.160 0.224 0.146 0.143 0.148 0.140 0.141 0.139 0.758 0.257
NRMSE 0.250 0.294 0.194 0.186 0.190 0.185 0.185 0.181 0.959 0.384

Turkey Power

sMAPE 0.386 0.389 0.378 0.375 0.416 0.389 0.383 0.404 0.244 0.125
MASE 0.856 0.948 0.888 0.870 1.234 0.904 0.890 1.395 1.700 0.906
ND 0.062 0.061 0.051 0.046 0.071 0.059 0.049 0.083 0.150 0.085
NRMSE 0.154 0.149 0.118 0.102 0.158 0.139 0.104 0.181 0.383 0.231

1st count 7 0 2 2 0 7 0 3 0 3

B.5 FULL FORECASTING RESULTS OF THE PF BENCHMARK

Table 17: Comparison of LaMa as the backbone. Results are averaged on four prediction lengths.

MAE LaMa MOIRAISmall MOIRAILarge

MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.390 0.414 0.425 0.433 0.400 0.424 0.510 0.469
ETTh2 0.333 0.375 0.376 0.408 0.341 0.379 0.354 0.377
ETTm1 0.374 0.372 0.400 0.391 0.448 0.410 0.390 0.389
ETTm2 0.282 0.321 0.294 0.337 0.300 0.341 0.276 0.320
Average 0.344 0.370 0.374 0.392 0.372 0.388 0.382 0.388

For all datasets on the PF benchmark, we use c = r = 0.4, and a context length L = 2000. Table 16
summarizes the results on the PF benchmark, where our VISIONTS outperforms MOIRAI in the
zero-shot setting and is comparable with the best full-shot method, TiDE.

B.6 IMPACT OF BACKBONES

Table 18 compares zero-shot forecasting performance of three MAE variants (112M, 330M, and 657M),
showing that the three variants are similar, but larger models show a slight decrease. Particularly, the
smallest model excels in ETTh2, ETTm1, ETTm2, and Weather, while the largest model excels in
Electricity. Additionally, Table 17 compares VISIONTS with another visual backbone, LaMa.

B.7 IMPACT OF THE DIFFERENT IMAGE ENCODING STRATEGIES

Table 19 summarizes the impact of interpolation strategies and image orientations in the Alignment
step. It shows that the smoother Bilinear and Bicubic interpolation perform similarly, both signif-
icantly better than the rougher Nearest Neighbor. This suggests that smooth resizing effectively
handles time series interpolation. Moreover, image orientation has little impact on performance.

B.8 HYPERPARAMETER ANALYSIS

Figs. 7 to 9 show the influence of three hyperparameters, r, c, and L. We report the MSE averaged on
four prediction lengths {96, 192, 336, 720}.
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Table 18: Full results of Table 4: zero-shot forecasting results of different MAE variants. Bold: best
results among three variants. We also include the results from MOIRAI for reference.

Method
MAE (Base) MAE (Large) MAE (Huge) MOIRAI (Small) MOIRAI (Base) MOIRAI (Huge)

112M 330M 657M 14M 91M 311M

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E
T
T
h
1

96 0.353 0.383 0.346 0.382 0.362 0.384 0.375 0.402 0.384 0.402 0.380 0.398
192 0.392 0.410 0.379 0.406 0.407 0.414 0.399 0.419 0.425 0.429 0.440 0.434
336 0.407 0.423 0.391 0.416 0.399 0.419 0.412 0.429 0.456 0.450 0.514 0.474
720 0.406 0.441 0.397 0.433 0.395 0.433 0.413 0.444 0.470 0.473 0.705 0.568
avg 0.390 0.414 0.378 0.409 0.391 0.412 0.400 0.424 0.434 0.439 0.510 0.469

E
T
T
h
2

96 0.271 0.328 0.286 0.334 0.285 0.333 0.281 0.334 0.277 0.327 0.287 0.325
192 0.328 0.367 0.346 0.375 0.337 0.369 0.340 0.373 0.340 0.374 0.347 0.367
336 0.345 0.381 0.356 0.387 0.357 0.388 0.362 0.393 0.371 0.401 0.377 0.393
720 0.388 0.422 0.371 0.409 0.379 0.412 0.380 0.416 0.394 0.426 0.404 0.421
avg 0.333 0.375 0.340 0.377 0.339 0.375 0.341 0.379 0.346 0.382 0.354 0.377

E
T
T
m
1

96 0.341 0.347 0.344 0.349 0.352 0.351 0.404 0.383 0.335 0.360 0.353 0.363
192 0.360 0.360 0.365 0.363 0.360 0.367 0.435 0.402 0.366 0.379 0.376 0.380
336 0.377 0.374 0.381 0.376 0.381 0.383 0.462 0.416 0.391 0.394 0.399 0.395
720 0.416 0.405 0.429 0.411 0.440 0.412 0.490 0.437 0.434 0.419 0.432 0.417
avg 0.374 0.372 0.379 0.375 0.383 0.378 0.448 0.410 0.382 0.388 0.390 0.389

E
T
T
m
2

96 0.228 0.282 0.225 0.282 0.229 0.282 0.205 0.282 0.195 0.269 0.189 0.260
192 0.262 0.305 0.262 0.305 0.265 0.306 0.261 0.318 0.247 0.303 0.247 0.300
336 0.293 0.328 0.299 0.331 0.286 0.324 0.319 0.355 0.291 0.333 0.295 0.334
720 0.343 0.370 0.358 0.377 0.355 0.374 0.415 0.410 0.355 0.377 0.372 0.386
avg 0.282 0.321 0.286 0.324 0.284 0.322 0.300 0.341 0.272 0.321 0.276 0.320

E
le
ct
ri
ci
ty 96 0.177 0.266 0.177 0.268 0.170 0.259 0.205 0.299 0.158 0.248 0.152 0.242

192 0.188 0.277 0.192 0.283 0.182 0.273 0.220 0.310 0.174 0.263 0.171 0.259
336 0.207 0.296 0.213 0.303 0.207 0.295 0.236 0.323 0.191 0.278 0.192 0.278
720 0.256 0.337 0.256 0.337 0.250 0.333 0.270 0.347 0.229 0.307 0.236 0.313
avg 0.207 0.294 0.209 0.298 0.202 0.290 0.233 0.320 0.188 0.274 0.188 0.273

W
ea
th
er

96 0.220 0.257 0.222 0.257 0.235 0.265 0.173 0.212 0.167 0.203 0.177 0.208
192 0.244 0.275 0.246 0.275 0.276 0.288 0.216 0.250 0.209 0.241 0.219 0.249
336 0.280 0.299 0.283 0.301 0.304 0.309 0.260 0.282 0.256 0.276 0.277 0.292
720 0.330 0.337 0.338 0.343 0.351 0.350 0.320 0.322 0.321 0.323 0.365 0.350
avg 0.269 0.292 0.272 0.294 0.292 0.303 0.242 0.267 0.238 0.261 0.260 0.275

Average 0.309 0.345 0.311 0.346 0.315 0.347 0.327 0.357 0.310 0.344 0.329 0.350
1st count 38 17 17 - - -

Table 19: Impact of resampling filters and image orientations.

Interpolation strategies in resampling Image orientation
Method Bilinear Bicubic Nearest Neighbor Method - Horizontal flip Vertical flip
Metric MSE MAE MSE MAE MSE MAE Metric MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.353 0.383 0.351 0.383 0.426 0.424

E
T
T
h
1

96 0.353 0.383 0.348 0.379 0.355 0.385
192 0.392 0.410 0.392 0.409 0.450 0.443 192 0.392 0.410 0.386 0.404 0.394 0.411
336 0.407 0.423 0.407 0.422 0.451 0.450 336 0.407 0.423 0.401 0.416 0.408 0.423
720 0.406 0.441 0.405 0.440 0.454 0.470 720 0.406 0.441 0.399 0.430 0.406 0.442
avg 0.390 0.414 0.389 0.414 0.445 0.446 avg 0.390 0.414 0.384 0.407 0.391 0.415

E
T
T
h
2

96 0.271 0.328 0.274 0.329 0.298 0.349

E
T
T
h
2

96 0.271 0.328 0.274 0.329 0.274 0.330
192 0.328 0.367 0.330 0.367 0.343 0.380 192 0.328 0.367 0.331 0.370 0.330 0.367
336 0.345 0.381 0.345 0.380 0.373 0.401 336 0.345 0.381 0.347 0.386 0.345 0.381
720 0.388 0.422 0.386 0.419 0.404 0.431 720 0.388 0.422 0.376 0.416 0.388 0.422
avg 0.333 0.375 0.334 0.374 0.354 0.390 avg 0.333 0.375 0.332 0.375 0.334 0.375

E
T
T
m
1

96 0.341 0.347 0.366 0.354 0.399 0.374

E
T
T
m
1

96 0.341 0.347 0.345 0.348 0.342 0.347
192 0.360 0.360 0.383 0.367 0.397 0.376 192 0.360 0.360 0.364 0.362 0.360 0.360
336 0.377 0.374 0.396 0.381 0.386 0.380 336 0.377 0.374 0.378 0.375 0.377 0.374
720 0.416 0.405 0.429 0.409 0.417 0.409 720 0.416 0.405 0.419 0.408 0.417 0.405
avg 0.374 0.372 0.393 0.378 0.400 0.384 avg 0.374 0.372 0.376 0.373 0.374 0.372

E
T
T
m
2

96 0.228 0.282 0.246 0.296 0.264 0.326

E
T
T
m
2

96 0.228 0.282 0.230 0.286 0.228 0.283
192 0.262 0.305 0.273 0.313 0.273 0.328 192 0.262 0.305 0.264 0.308 0.262 0.305
336 0.293 0.328 0.303 0.334 0.297 0.343 336 0.293 0.328 0.298 0.332 0.293 0.328
720 0.343 0.370 0.343 0.370 0.334 0.369 720 0.343 0.370 0.350 0.373 0.343 0.369
avg 0.282 0.321 0.291 0.328 0.292 0.341 avg 0.282 0.321 0.285 0.325 0.282 0.321

Average 0.344 0.370 0.352 0.373 0.373 0.391 Average 0.344 0.370 0.344 0.370 0.345 0.371
1st count 30 18 2 1st count 28 16 21
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Figure 7: MSE (Y-axis) performance of different normalization constants r (X-axis).
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Figure 8: MSE (Y-axis) performance of different alignment constants c (X-axis).
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Figure 9: MSE (Y-axis) performance of different context lengths L (X-axis).
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C FULL-SHOT FORECASTING

C.1 TRAINING DETAILS

Table 20: Final hyperparameters for VISIONTS used in our full-shot forecasting.

ETTh1 ETTh2 ETTm1 ETTm2 Illness Weather Traffic Electricity

Normalization constant r 0.4 0.4 0.4 0.4 1.0 1.0 0.4 0.4
Alignment constant c 0.4 0.4 0.4 0.4 0.4 0.7 0.4 0.4

Context length L 1152 1152 2304 1152 104 576 1152 1152

Based on the principle of channel independence (Nie et al., 2022; Han et al., 2024), we treat the
variables of each time series as individual data samples. We use an Adam optimizer with a learning
rate 0.0001 and a batch size 256 to fine-tune MAE. All experiments are repeated three times. The
training epoch is one for all the datasets except Illness, for which we train MAE for 100 epochs with
an early stop due to the limited training dataset scale. We conduct tuning on validation sets for the
three hyperparameters, r, c, and L. The final hyperparameters used are summarized in Table 20.

C.2 STANDARD DEVIATIONS

Table 21: Standard deviations of full-shot experiments.

Method VISIONTS Time-LLM GPT4TS
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.347 ± 0.002 0.376 ± 0.000 0.376 ± 0.003 0.402 ± 0.002 0.370 ± 0.003 0.389 ± 0.001
192 0.385 ± 0.001 0.400 ± 0.000 0.407 ± 0.003 0.421 ± 0.002 0.412 ± 0.003 0.413 ± 0.001
336 0.407 ± 0.001 0.415 ± 0.001 0.430 ± 0.004 0.438 ± 0.001 0.448 ± 0.003 0.431 ± 0.001
720 0.439 ± 0.001 0.443 ± 0.000 0.457 ± 0.003 0.468 ± 0.001 0.441 ± 0.003 0.449 ± 0.001

E
T

T
h2

96 0.269 ± 0.003 0.328 ± 0.002 0.286 ± 0.003 0.346 ± 0.002 0.280 ± 0.001 0.335 ± 0.001
192 0.332 ± 0.001 0.374 ± 0.001 0.361 ± 0.003 0.391 ± 0.002 0.348 ± 0.002 0.380 ± 0.001
336 0.351 ± 0.002 0.395 ± 0.002 0.390 ± 0.003 0.414 ± 0.002 0.380 ± 0.002 0.405 ± 0.001
720 0.390 ± 0.003 0.430 ± 0.002 0.405 ± 0.003 0.434 ± 0.002 0.406 ± 0.002 0.436 ± 0.001

E
T

T
m

1 96 0.281 ± 0.001 0.322 ± 0.001 0.291 ± 0.001 0.341 ± 0.001 0.300 ± 0.001 0.340 ± 0.000
192 0.322 ± 0.006 0.353 ± 0.002 0.341 ± 0.001 0.369 ± 0.001 0.343 ± 0.001 0.368 ± 0.000
336 0.356 ± 0.003 0.379 ± 0.002 0.359 ± 0.002 0.379 ± 0.001 0.376 ± 0.001 0.386 ± 0.000
720 0.391 ± 0.001 0.413 ± 0.001 0.433 ± 0.001 0.419 ± 0.001 0.431 ± 0.001 0.416 ± 0.000

E
T

T
m

2 96 0.169 ± 0.003 0.256 ± 0.002 0.162 ± 0.001 0.248 ± 0.001 0.163 ± 0.001 0.249 ± 0.001
192 0.225 ± 0.003 0.294 ± 0.003 0.235 ± 0.002 0.304 ± 0.001 0.222 ± 0.001 0.291 ± 0.000
336 0.278 ± 0.002 0.334 ± 0.001 0.280 ± 0.002 0.329 ± 0.001 0.273 ± 0.001 0.327 ± 0.001
720 0.372 ± 0.002 0.392 ± 0.002 0.366 ± 0.002 0.382 ± 0.001 0.357 ± 0.001 0.376 ± 0.001

W
ea

th
er 96 0.142 ± 0.000 0.192 ± 0.001 0.155 ± 0.001 0.199 ± 0.001 0.148 ± 0.001 0.188 ± 0.000

192 0.191 ± 0.000 0.238 ± 0.000 0.223 ± 0.001 0.261 ± 0.001 0.192 ± 0.001 0.230 ± 0.000
336 0.246 ± 0.003 0.282 ± 0.001 0.251 ± 0.001 0.279 ± 0.001 0.246 ± 0.001 0.273 ± 0.000
720 0.328 ± 0.004 0.337 ± 0.001 0.345 ± 0.001 0.342 ± 0.001 0.320 ± 0.001 0.328 ± 0.000

Tr
af

fic

96 0.344 ± 0.001 0.236 ± 0.000 0.392 ± 0.001 0.267 ± 0.000 0.396 ± 0.001 0.264 ± 0.000
192 0.372 ± 0.001 0.249 ± 0.001 0.409 ± 0.001 0.271 ± 0.000 0.412 ± 0.001 0.268 ± 0.000
336 0.383 ± 0.001 0.257 ± 0.001 0.434 ± 0.001 0.296 ± 0.000 0.421 ± 0.001 0.273 ± 0.000
720 0.422 ± 0.001 0.280 ± 0.000 0.451 ± 0.001 0.291 ± 0.000 0.455 ± 0.001 0.291 ± 0.000

E
le

ct
ri

ci
ty 96 0.126 ± 0.000 0.218 ± 0.000 0.137 ± 0.000 0.233 ± 0.000 0.141 ± 0.000 0.239 ± 0.000

192 0.146 ± 0.001 0.239 ± 0.001 0.152 ± 0.000 0.247 ± 0.000 0.158 ± 0.000 0.253 ± 0.000
336 0.161 ± 0.001 0.255 ± 0.001 0.169 ± 0.000 0.267 ± 0.000 0.172 ± 0.000 0.266 ± 0.000
720 0.193 ± 0.000 0.286 ± 0.000 0.200 ± 0.000 0.290 ± 0.000 0.207 ± 0.000 0.293 ± 0.000

1st count 42 2 12

We report the standard deviations of our full-shot experiments computed on three runs in Table 21,
including the results of Time-LLM and GPT4TS from Tan et al. (2024) for reference.
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C.3 ABLATION STUDY AND FINE-TUNING STRATEGY COMPARISON

Table 22: Full results of Tables 7 and 8: Ablation studies (left) and fine-tuning strategies (right).
Results are averaged on four prediction lengths: {96, 192, 336, 720}.

Ablation on Visual MAE (VM) Ablation on trained parameters
- w/o VM VM2Attn VM2Trsf Rand-VM All LN Bias MLP Attn Freeze

ETTh1
MSE 0.395 0.785 0.448 0.459 0.534

ETTh1
MSE 0.534 0.395 0.401 0.534 0.554 0.419

MAE 0.409 0.649 0.458 0.462 0.470 MAE 0.470 0.409 0.414 0.471 0.479 0.418

ETTh2
MSE 0.336 0.420 0.418 0.448 0.411

ETTh2
MSE 0.411 0.336 0.347 0.401 0.392 0.340

MAE 0.382 0.453 0.445 0.457 0.432 MAE 0.432 0.382 0.392 0.419 0.414 0.376

ETTm1
MSE 0.338 0.676 0.397 0.398 0.433

ETTm1
MSE 0.433 0.338 0.343 0.441 0.444 0.374

MAE 0.367 0.562 0.415 0.410 0.413 MAE 0.413 0.367 0.368 0.415 0.415 0.372

ETTm2
MSE 0.261 0.379 0.274 0.292 0.288

ETTm2
MSE 0.288 0.261 0.256 0.292 0.289 0.305

MAE 0.319 0.415 0.334 0.344 0.341 MAE 0.341 0.319 0.318 0.342 0.339 0.334

Average
MSE 0.333 0.565 0.384 0.399 0.417

Average
MSE 0.417 0.333 0.337 0.417 0.420 0.360

MAE 0.369 0.520 0.413 0.418 0.414 MAE 0.414 0.369 0.373 0.412 0.412 0.375
1st count 10 0 0 0 0 1st count 0 7 2 0 0 1

We compare the following ablation variants to verify the role of the visual model (VM), similar to
Tan et al. (2024).

• w/o VM removes all the transformer blocks in encoders and decoders.
• VM2Attn replaces both the encoder and decoder with a self-attention layer, matching MAE structure

but with random initialization.
• VM2Trsf is similar to VM2Attn but replaces them with a Transformer block (i.e., a self-attention

layer plus an MLP layer).
• Rand-VM keeps the same architecture as the vanilla MAE, but all the weights are randomly

initialized.

We also compare fine-tuning different components in MAE as follows:

• All fine-tunes all the trainable weights in MAE.
• LN fine-tunes only the layer normalization, which is the default setting used in our experiments.
• Bias fine-tunes only the bias term of all the linear layers, proposed by Zaken et al. (2022).
• MLP and Attn fine-tune only the feed-forward layer and the self-attention layer, respectively.
• Freeze does not fine-tune any weight. Note that it differs from the previous zero-shot experiment,

where a longer context length was used (see Table 12 and Table 20).

The results are shown in Table 22, suggesting that visual knowledge is crucial for VISIONTS and
fine-tuning the layer normalization is the best.

D VISUALIZATION

We visualized the predictions of VISIONTS in the zero-shot setting, including its input and recon-
structed images. We also visualized the predictions of MOIRAILarge and Seasonal Naïve, with their
MAE metrics for comparison. Figs. 10 to 12 show examples where VISIONTS performed well,
with Fig. 10 depicting a more regular pattern, while Figs. 11 and 12 display less obvious patterns.
Fig. 13 illustrates a case where VISIONTS underperformed, as it aggressively predicted the trend
despite the lack of clear patterns in the input sequence, whereas MOIRAILarge made more conservative
predictions.
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(a) Input Image (b) Reconstructed Image

target
prediction

(c) VISIONTS (MAE = 0.312)

target
prediction

(d) MOIRAILARGE (MAE = 0.503)

target
prediction

(e) Seasonal Naïve (MAE = 0.774)

Figure 10: Forecasting visualization on a sample from ETTh1. (a-b) Input/output images of VI-
SIONTS. (c-e) Forecasting visualization.
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(a) Input Image (b) Reconstructed Image

target
prediction

(c) VISIONTS (MAE = 0.157)

target
prediction

(d) MOIRAILARGE (MAE = 0.251)

target
prediction

(e) Seasonal Naïve (MAE = 0.235)

Figure 11: Forecasting visualization on a sample from ETTh2. (a-b) Input/output images of VI-
SIONTS. (c-e) Forecasting visualization.
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(a) Input Image (b) Reconstructed Image

target
prediction

(c) VISIONTS (MAE = 0.821)

target
prediction

(d) MOIRAILARGE (MAE = 1.285)

target
prediction

(e) Seasonal Naïve (MAE = 1.523)

Figure 12: Forecasting visualization on a sample from ETTh2. (a-b) Input/output images of VI-
SIONTS. (c-e) Forecasting visualization.
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(a) Input Image (b) Reconstructed Image

target
prediction

(c) VISIONTS (MAE = 0.327)

target
prediction

(d) MOIRAILARGE (MAE = 0.172)

target
prediction

(e) Seasonal Naïve (MAE = 0.364)

Figure 13: Forecasting visualization on a sample from ETTh1, where MOIRAI outperforms VI-
SIONTS in terms of MAE. (a-b) Input/output images of VISIONTS. (c-e) Forecasting visualization.
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