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ABSTRACT

Finding an appropriate representation of dynamic activities in the brain is crucial
for many downstream applications. Due to its highly dynamic nature, temporally
averaged fMRI (functional magnetic resonance imaging) cannot capture the whole
picture of underlying brain activities, and previous works lack the ability to learn
and interpret the latent dynamics in brain architectures. In this paper, we build an
efficient graph neural network model that incorporates both region-mapped fMRI
sequences and structural connectivities obtained from DWI (diffusion-weighted
imaging) as inputs. Through novel sample-level adaptive adjacency matrix learn-
ing and multi-resolution inner cluster smoothing, we find good representations
of the latent brain dynamics. We also attribute inputs with integrated gradients,
which enables us to infer (1) highly involved brain connections and subnetworks
for each task (2) keyframes of imaging sequences along the temporal axis, and (3)
subnetworks that discriminate between individual subjects. This ability to iden-
tify critical subnetworks that characterize brain states across heterogeneous tasks
and individuals is of great importance to neuroscience research. Extensive experi-
ments and ablation studies demonstrate our proposed method’s superiority and ef-
ficiency in spatial-temporal graph signal modeling with insightful interpretations
of brain dynamics.

1 INTRODUCTION

Neuroimaging techniques such as fMRI (functional magnetic resonance imaging) and DWI
(diffusion-weighted imaging) provide a window into complex brain processes. Yet, modeling and
understanding these signals has always been a challenge. Network neuroscience (Bassett & Sporns,
2017) views the brain as a multiscale networked system and models these signals in their graph rep-
resentations: nodes represent brain ROIs (regions of interest), and edges represent either structural
or functional connections between pairs of regions.

With larger imaging datasets and developments in Graph Neural Networks (Scarselli et al., 2009),
recent works leverage variants of the graph deep learning, modeling brain signals with data-driven
models and getting rid of Gaussian assumptions typically existed in linear models (Zhang et al.,
2019; Li et al., 2019). These methods are making progress on identifying physiological characteris-
tics and brain disorders: In Kim & Ye (2020), authors combine grad-CAM (Selvaraju et al., 2017)
and GIN (Xu et al., 2018) to highlight brain regions that are responsible for gender classification
with resting-state fMRI data. Li et al. (2020) utilizes the regularized pooling with GNN to iden-
tify fMRI biomarkers. Noman et al. (2021) embeds both topological structures and node signals of
fMRI networks into low-dimensional latent representations for a better identification of depression.
However, the first two works use time-averaged fMRI, losing rich dynamics in the temporal domain.
The third combines nodes’ temporal and feature dimensions instead of handling them separately,
leading to a suboptimal representation (as discussed in section 3.2). To overcome these issues, we
propose ReBraiD (Deep Representations for Time-varying Brain Datasets), a graph neural network
model that jointly models dynamic functional signals and structural connectivities, leading to a more
comprehensive deep representation of brain dynamics.

To simultaneously encode signals along spatial and temporal dimensions, some notable works in
traffic prediction and activity recognition domains such as Graph WaveNet (Wu et al., 2019b) alter-
nate TCN (temporal convolution network) (Lea et al., 2016) and GCN (graph convolutional network)
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Figure 1: The proposed ReBraiD model for integrating brain structure and dynamics (the architec-
ture shown is for classification). For each batch with batch size B, input X has a dimension of
(B, 1, N, T )1, and A,Aadp both have the dimension (B,N,N). The encoder (green part) encodes
temporal and spatial information alternatively, producing a latent representation in (B, dlatent, N, 1).
These embeddings are followed by linear layers for pooling and classification. The final output has
a dimension of (B,C).

(Kipf & Welling, 2017). Others (Song et al., 2020; Liu et al., 2020) use localized spatial-temporal
graph to embed both domains’ information in this extended graph. There are also works incorporat-
ing gated recurrent networks for the temporal domain such as (Seo et al., 2018; Ruiz et al., 2020).
We choose the first option for ReBraiD, as it is more memory and time efficient, and can support
much longer inputs. We also explore the best option when alternating spatial and temporal layers
for encoding brain activities with extensive ablation studies. Upon this structure, we propose novel
sample-level adaptive adjacency matrix learning and multi-resolution inner cluster smoothing, both
of which learn and refine latent dynamic structures. We also make the model more efficient while
being effective with the choice of the temporal layer.

Equally important as finding a good representation of brain dynamics is interpreting them. We
utilize integrated gradients (Sundararajan et al., 2017) to identify how brain ROIs participate in
various processes. This can lead to better behavioral understanding, biomarker discoveries, and
characterization of individuals or groups with their brain imagings. We also make the novel contri-
bution of identifying temporally important frames with graph attribution techniques; this can enable
more fine-grained temporal analysis around keyframes when combined with other imaging modali-
ties such as EEG (electroencephalogram). In addition, our subject-level and group-level attribution
studies unveil heterogeneities among ROIs, tasks, and individuals.

2 METHOD

2.1 PRELIMINARIES

We utilize two brain imaging modalities mapped onto a same coordinate: SC (structural connec-
tivity) from DWI scans, and time-varying fMRI scans. We represent them as a set of L graphs
Gi = (Ai, Xi) with i ∈ [1, L], in which Ai ∈ RN×N represents normalized adjacency matrix with
an added self-loop: Ai = D̃

− 1
2

SCi
˜SCiD̃

− 1
2

SCi
, ˜SCi = SCi + IN and D̃SCi =

∑
w( ˜SCi)vw is the diagonal

node degree matrix. Graph signal matrix obtained from fMRI scans of the ith sample is represented
as Xi ∈ RN×T . Here N is the number of nodes, and each node represents a brain region; T is the
input signal length on each node. Our objective focuses on classifying brain signals Gi into one of
C task classes through learning latent graph structures.

2.2 MODEL

ReBraiD takes (A,X) as inputs, and outputs task class predictions. The overall model structure is
shown in fig. 1. For the ith sample Xi ∈ RN×1×T , the initial 1 × 1 convolution layer increases

1Axis order follows PyTorch conventions. Dimension at the second index is the expanded feature dimension.
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Figure 2: Comparison of strided non-causal TCN (left) and dilated causal TCN (right). The causal
aspect is achieved through padding (kernel size − 1) × dilation zeros to the layer’s input. The
resulting y always has the same length as input x, in which yτ only depends on inputs xt≤τ . We
can view strided non-causal TCN as the rightmost node of a dilated causal TCN.

its hidden feature dimension to dh1, outputting (N, dh1, T ). The encoder then encodes temporal
and spatial information alternately, reducing information to feature axis and generating a hidden
representation of size (N, dh2, 1). The encoder is followed by two linear layers to perform node
embedding pooling and two MLP layers for classification. Cross entropy is used as the loss function:
L

(i)
CE = −

∑
C yi log ŷi, where yi ∈ RC is the one-hot vector of ground truth task label and ŷi ∈ RC

is model’s predicted distribution. We now explain different components of the model.

(I) Learning sample-level latent graph structures. Structural scans serve as our graph adjacency
matrices. However, they are static not only across temporal frames but also across different tasks.
In contrast, functional connectivities (FC) are highly dynamic, as shown in appendix A.1.1. To
better capture dynamic graph structures, we assign an adaptive adjacency matrix to each input graph
signal. Unlike other works such as Wu et al. (2019b) that use a universal latent graph structure, our
model do not assume all samples share the same latent graph. Instead, in ReBraiD, each sample
has a unique latent structure reflecting its signal status. This implies that the latent adjacency matrix
cannot be treated as a learnable parameter as a part of the model. To solve this, we minimize the
assumption down to a shared projection Θadp that projects each input sequence into an embedding
space and use this embedding to generate the latent graph structure. Θadp can be learned in an end-
to-end manner. The generated adaptive adjacency matrix for the ith sample can be written as, where
Softmax is applied column-wise:

Ai adp = Softmax
(

ReLU
(

(XiΘadp ) (XiΘadp )>
))

,Θadp ∈ RT×hadp (1)

(II) Gated TCN (Temporal Convolutional Network). To encode temporal information, we use the
gating mechanism as in Oord et al. (2016) in our temporal layers: H(l+1) = tanh

(
TCNemb(H

(l))
)
�

σ
(

TCNgate(H
(l))
)

, where H(l) ∈ RN×d×t is one sample’s activation matrix of the lth layer, � de-
notes the Hadamard product, and σ is the Sigmoid function. Different from TCNs generally used in
sequence to sequence models that consist of dilated Conv1d and causal padding along the temporal
dimension (van den Oord et al. (2016)), we simply apply Conv1d with kernel 2 and stride 2 as our
TCNemb and TCNgate to embed temporal information. The reason is twofold: first, for a sequence
to sequence model with a length-T output, yτ should only depend on xt≤τ to avoid information
leakage, and causal convolution can ensure this. In contrast, our model’s task is classification, and
the goal of our encoder along the temporal dimension is to embed signal information into the feature
axis while reducing temporal dimension to 1. The receptive field of this single temporal point (with
multiple feature channels) is meant to be the entire input sequence. Essentially, our TCN is the same
as the last output node of a kernel 2 causal TCN whose dilation increases by 2 at each layer (fig. 2).
Second, from a practical perspective, directly using strided non-causal TCN works the same as us-
ing dilated causal TCNs and taking the last node, while simplifies the model structure and reduces
training time to less than a quarter.

(III) Graph Network layer. In our model, every l temporal layers (appendix A.2.3 studies the best
l to choose) are followed by a spatial layer to encode signals with the graph structure. Building tem-
poral and spatial layers alternatively helps spatial modules to learn embeddings at different temporal
scales, and this generates better results than putting spatial layers after all temporal ones.

To encode spatial information, Kipf & Welling (2017) uses first-order approximation of spectral fil-
ters to form the layer-wise propagation rule of a GCN layer: H(l+1) = GCN(H(l)) = f(AH(l)W (l)).
It can be understood as spatially aggregating information among neighboring nodes to form new
node embeddings. In the original setting without temporal signals, H(l) ∈ RN×d is the activation
matrix of lth layer, A ∈ RN×N denotes the normalized adjacency matrix with self-connections
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as discussed in section 2.1, W (l) ∈ Rd×d′ is learnable model parameters, and f is a nonlinear
activation function of choice. Parameters d and d′ are the number of feature channels.

We view a GCN layer as a local smoothing operation followed by an MLP, and simplify stacking
K layers to AKH as in Wu et al. (2019a). In ReBraiD, every graph network layer aggregates infor-
mation from each node’s K-hop neighborhoods based on both brain structural connectivity and the
latent adaptive adjacency matrix: namely we have both Ai

KH(l)WK and Ai adp
KH(l)WK adp for input

H(l). We also gather different levels (from 0 to K) of neighbor information with concatenation. In
other words, one graph convolution layer here corresponds to a small module that is equivalent to K
simple GCN layers with residual connections. We can write our layer as:

H(l+1) = GNN(l)
(
H(l)

)
= MLP

[
ConcatKk=1

(
H(l),ReLU(Ai

kH(l)),ReLU(Ai adp
kH(l))

)]
(2)

With the additional temporal dimension, H(l) ∈ RN×d×t in eq. (2), and Ai ∈ RN×N applies on
H(l)’s first two dimensions while multiplying. Outputs of different GNN(l) layers are parametrized
and then skip connected with a summation. Since the temporal lengths of these outputs are different
because of TCNs, max-pooling is used before each summation to make the lengths identical.

(IV) Multi-resolution inner cluster smoothing. While GNN layers can effectively passing in-
formation between neighboring nodes, long-range relationships among brain regions that neither
appear in SC nor learned by latent Aadp can be better captured using soft assignments similar to
DIFFPOOL (Ying et al. (2018)). To generate the soft assignment tensor assigning N nodes into c
clusters (c chosen manually), we use GNN

(l)
pool that obeys the same propagation rule as in eq. (2),

followed by Softmax along c. This assignment is applied to the output of GNN
(l)
emb which carries

out the spatial embedding for the lth layer input H(l):

S(l) = Softmax
(

GNN
(l)
pool

(
H(`)

)
, 1
)
∈ RN×c×t

Z(l) = GNN
(l)
emb

(
H(l)

)
∈ RN×d×t

H̃(l) = S(l)>Z(l) ∈ Rc×d×t

(3)

The extra temporal dimension allows nodes to be assigned to heterogeneous clusters at different
frames. We find that using coarsened A(l+1)

i = S(l)>A
(l)
i S(l) ∈ Rc×c as the graph adjacency matrix

leads to worse performance compared to using SC-generated Ai and learned Ai adp (comparison
in section 3.1). In addition, if the number of nodes is changed, residual connections coming from
the beginning of temporal-spatial blocks can not be used and this impacts overall performance. To
continue use Ai and Ai adp as graph adjacency matrices and allow residual connections, we reverse-
assign H̃(l) with assignment tensor obtained from applying Softmax on S(l)> along N , so that the
number of nodes is kept unchanged:

S̃(l) = Softmax
(
S(l)>, 1

)
∈ Rc×N×t

H(`+1) = S̃(l)>H̃(l) ∈ RN×d×t
(4)

In fact, eqs. (3) and (4) perform signal smoothing on nodes within each soft-assigned cluster (ap-
pendix A.1.2 shows a toy example). With the bottleneck c < N , the model is forced to pick up latent
community structures. This inner-cluster smoothing is carried out at different spatial resolutions: as
the spatial receptive field increases with more graph layers, we decrease cluster number c for the
assignment operation.

2.3 ATTRIBUTION WITH IG (INTEGRATED GRADIENTS).

As one approach to model interpretability, attribution assigns credits to each part of the input, as-
sessing how important they are to the final predictions. Wiltschko et al. (2020) gives an extensive
comparison between different graph attribution approaches, in which IG (Sundararajan et al. (2017))
is top-performing and can be applied to trained models without extra alterations of the model struc-
ture. IG also has other desirable properties such as implementation invariance that other gradient
methods are lacking. It is also more rigorous and accurate than obtaining explanations from atten-
tion weights or pooling matrices that span multiple feature channels. Intuitively, IG calculates how
real inputs contribute differently compared to a selected baseline; it does so by aggregating model
gradients at linearly interpolated inputs between the real and baseline inputs. For each sample, we
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(a) (b)

Figure 3: 3a: Ablation studies on different input length (please see table 3 in appendix for numerical
values of weighted F1 under each setting); 3b: Choosing number of GNN to TCN layer ratio.

calculate attributions at each point of both input A ∈ RN×N and X ∈ RN×T :

ATTRAvw =
(
Avw −A′vw

)
×

M∑
m=1

∂F (AIntrpl, X)

∂AIntrplvw

× 1

M
, AIntrpl = A′ +

m

M
×
(
A−A′

)
ATTRXvt =

(
Xvt −X ′vt

)
×

M∑
m=1

∂F (A,XIntrpl)

∂XIntrplvt

× 1

M
, XIntrpl = X ′ +

m

M
×
(
X −X ′

) (5)

F (A,X) here represents our signal classification model,M is the step number when doing Riemann
approximation of the path integral, and A′, X ′ are baselines of A,X (see section 3.3 for more
details). Note that eq. (5) calculates the attribution of one point on one sample. The process is
repeated for every point of the input, so attributions have identical dimensions as inputs. To obtain
brain region importance of a task, we aggregate attributions across multiple samples of that task.

3 EXPERIMENTS

We use fMRI signals from CRASH dataset (Lauharatanahirun et al. (2020)) for our experiments.
The model classifies input fMRI into 6 tasks: resting state, visual working memory task (VWM),
dynamic attention task (DYN), math task (MOD), dot probe task (DOT), and psychomotor vigilance
task (PVT) (appendix A.2.1 has detailed task descriptions). We preprocess 4D voxel-level fMRI
images into graph signals G = (A,X) by averaging voxel activities into regional signals with the
200-ROI cortical parcellation (voxel to region mapping) specified by Schaefer et al. (2018). We
also standardize signals for each region and discard scan sessions with obvious abnormal spikes that
may be caused by head movement, etc.. DWI scans are mapped into the same MNI152 coordinate
and processed into adjacency matrices with the same parcellation as fMRI uses. Valid data contains
1940 scan sessions from 56 subjects, session length varies from 265 frames to 828 frames and TR
(Repetition Time) is 0.91s. These 1940 scan sessions are separated into training, validation, and
test sets with a ratio of 0.7-0.15-0.15. Hyperparameters including dropout rate, learning rate, and
weight decay are chosen with grid search based on validation loss, and all results reported in this
section are obtained from the test set. For each scan session, we use a sliding window to generate
input sequences (in the following experiments T ∈ {8, 16, 32, 64, 128, 256}) and feed them to the
model. To encode temporal and spatial information alternatively, we find stacking two TCN layers
per one GNN layer leads to better performance most times (fig. 3b, see more on appendix A.2.3
(II)). Models are written in PyTorch, trained with Google Colab GPU runtimes, and 60 epochs are
run for each experiment setting. Codes and data will be released upon acceptance.

3.1 MODEL COMPONENTS

Graph adjacency matrices. For each input sample Gi, we test different options to provide graph
adjacency matrices to the GNN layer. They include (i) our proposed method: using both adaptive
adjacency matrix Ai adp and SC-induced Ai; (ii) only using Ai; (iii) only using Ai adp; (iv) replacing
Ai adp in setting i with Ai FC derived from functional connectivity; (v) only using random graph
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adjacency matrices with the same level of sparsity as real As. We set hadp to be 5 in eq. (1), which
works better for our data than larger hadp choices. K is set to 2 for eq. (2), meaning each GNN ag-
gregates information from 2-hop neighbors based on the provided adjacency matrices. We evaluate
our model with weighted F1 as the metric because of the imbalance among tasks. The results under
different settings are reported in fig. 3a (and table 3 in appendix for numerical values).

From the results of setting (ii) plotted in fig. 3a, we see that removing the adaptive adjacency matrix
impacts the performance differently at different input lengths: the gap peaks for signals of length 64
- 128, and becomes smaller for either shorter or longer sequences. This could suggest the existence
of more distinct latent states of brain signals of this length that cannot be captured by structural
connectivities. On the other hand, removing SC (setting (iii)) seems to have a more constant impact
on the model performance, with shorter inputs more likely to see a slightly larger drop. In general,
only using Aadp leads to smaller performance drop than only using SC, indicating the effectiveness
of Aadp in capturing useful latent graph structures. More detailed studies in appendix A.2.3 shows
Aadp learns distinct representations not captured by A.

As mentioned in section 2, our motivation behind creating sample-level adaptive adjacency matrices
is FC’s highly dynamic nature. Therefore, for setting (iv), we test directly using adjacency matri-
ces Ai FC obtained from FC instead of the learned Ai adp. In particular, Ai FC = D̃

− 1
2

FCi
˜FCiD̃

− 1
2

FCi
∈

R200×200, where (FCi)vw = corr((Xi)v, (Xi)w), ˜FCi = FCi + IN and D̃FCi =
∑

w( ˜FCi)vw. Fig.
3a shows Ai FC constantly underperforms Ai adp, except for being really close with length-8 inputs.
Larger performance gaps are observed for longer inputs, where Corr((Xi)v, (Xi)w) struggles to
capture the changing dynamics in the inputs. This demonstrates that our input-based latent Ai adp
has better representation power than input-based FC. We also notice batch correlation coefficients
calculation for Ai FC results in a slower training speed than computing Ai adp.

An interesting result comes from setting (v), where we use randomly generated Erdős-Rényi graphs
with the edge creation probability the same as averaged edge existence probability of As. Its perfor-
mance is at a similar level or even better than settings (ii) and (iii). Our hypothesis is the model can
learn the latent graph structure out of randomness, and we will verify this hypothesis in section 3.3.

Multi-resolution inner cluster smoothing. To verify the capability of inner-cluster smoothing
operation in capturing latent graph dynamics, we test the following settings: (vi) using our proposed
model and inputs, except removing paralleled GNNpool and inner-cluster smoothing module; (vii)
previous setting (v) but remove GNNpool and inner-cluster smoothing module; (viii) keep GNNpool,
but using coarsened graph instead of performing smoothing and increasing the node number back
(essentially performing DIFFPOOL with an added temporal dimension). In this last setting, we
hierarchically pool graph nodes until node number reaches 1, and we keep the total number of GNN
layers the same as our other settings. Values of soft-assigned cluster number c are chosen to be
halved per smoothing module, starting from half of the graph nodes number, namely: 100, 50, 25,
etc. for our experiments. Different choices of c affect model converging rate, but only have minor
impacts on the final performance (see appendix A.2.3 (III)). Results are reported in fig. 3a (and
table 3 in appendix). Apart from these three settings, we also test adding pooling regularization terms
(described in appendix A.1.3) into the loss function but this does not lead to much of a difference.

The above results demonstrate that both setting (vi) and (vii) outperforms (viii) by a large margin,
indicating the importance of keeping the original node number when representing brain signals.
In addition, all three settings underperform our proposed method, and they are mostly worse than
changing graph adjacency matrices as in settings (ii)-(v): this shows inner-cluster smoothing module
has a large impact in learning latent graph dynamics. We also find using adaptive adjacency matrices
and inner cluster smoothing can stabilize training, making the model less prone to over-fitting and
achieving close-to-best performance over a larger range of hyperparameters (see fig. 11).

3.2 MODEL COMPARISONS

In this section, we compare our model with the vanilla GCN from Kipf & Welling (2017), Chebyshev
Graph Convolutional Gated Recurrent Unit (GConvGRU) from Seo et al. (2018), GraphSAGE from
Hamilton et al. (2017), GAT V2 from Brody et al. (2021) and Graph Transformer as in Shi et al.
(2021). To use them in our fMRI classificaiton problem, we directly take corresponding layers from
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Table 1: Model comparisons under the 256 input length setting.

Model Accuracy
(%) Weighted F1 Training time

(s / epoch)
GCN (Kipf & Welling (2017)) 41.53 42.84 713
GAT V2 (Brody et al. (2021)) 50.44 50.36 1142

GConvGRU (Seo et al. (2018)) 52.26 56.05 9886
GraphSAGE (Hamilton et al. (2017)) 61.84 61.87 1048
Graph Transformer (Shi et al. (2021)) 66.51 66.11 1890

ReBraiD (proposed method: TCN + GNN) 85.56 90.85 298
ReBraiD (TCN only) 72.44 71.98 119

ReBraiD (TCN + CNN) 75.89 75.79 124

PyTorch Geometric 2 and PyTorch Geometric Temporal 3 and construct the models similar to ours:
four graph layers taking in both signals and adjacency matrices, followed by two linear layers along
node axis and two linear layers for the final classification. We train baseline models with the same
setting as our model: 256-frame inputs, Adam optimizer, cross entropy loss, and 60 epochs (all
models well-converged). Grid search is used to optimize the rest of hyperparameters. We compare
accuracy, weighted F1 score, and training time per epoch in table 1; we also plot our model and
Graph Transformer’s confusion matrices in appendix fig. 12.

We observe that our proposed method significantly outperforms the baseline graph models by a mar-
gin of 20 to 40 percent and has much less training time. This demonstrates our proposed model’s
effectiveness in capturing latent brain dynamics. For these baseline models, temporal content is used
as features; the comparison shows separating them into different axis is more advantageous. This is
further confirmed with models only having TCN layers: we test both removing GNN layers all to-
gether and replacing them with 1×1 CNN layers. Both outperform graph models that focuses on the
spatial modeling aspect. Although temporal modeling is crucial, including the spatial information
in its graph format as our proposed model can improve the performance much further.

3.3 INTERPRETATIONS WITH IG

In this section, we study the contributions of different brain ROIs and subnetworks defined by
their functionalities. For the subnetwork definition, we choose to use the 17 networks specified
in Thomas Yeo et al. (2011)) which has a mapping from our previous 200-ROI parcellation. See
table 4 in appendix for all subnetwork names. We compute IG of a model trained on length-256 in-
put signals because the model has higher performance with longer inputs, leading to more accurate
attributions. To select baseline inputs, we follow the general baseline selection principle for attribu-
tion methods: when the model takes in a baseline input, it should produce a near-zero prediction and
Softmax(outputs) should give each class about the same probability in a classification model. All-
zero A′ and X ′ can roughly achieve this for our model, so we choose them as our baseline inputs.
For each task, the IG computation is done on 900 inputs to get an overall distribution.

Temporal importance. On the single input level, we can attribute which parts of the inputs in Gi
are more important in predicting the target class by looking into (ATTRX)i. This attribution map
not only shows which brain regions contribute more but also reveals the important signal frames.
One critical drawback of fMRI imaging is its low temporal resolution, but if we can know which
part is more important, we can turn to more temporally fine-grained signals such as EEG to see if
there are any special activities during that time. To confirm that the attributions we get are valid
and consistent, we perform a sanity check of IG results on two overlapped inputs with an offset
τ : the first input is obtained from window [t0, t0 + T ] and the second is obtained from window
[t0 + τ, t0 + τ +T ]. Offset aligned results are shown in fig. 4a, and we can see the attributions agree
with each other quite well.

Spatial importance. We examine the connection importance between brain ROIs by looking at
ATTRA (task-averaged ATTRA are plotted in fig. 14 in appendix). In particular, columns in ATTRA
with higher average values are sender ROIs of high-contributing connections, which is what matters
in the GNN operation. We also explore why using random graph adjacency matrices (setting (v) in
section 3.1) can produce a similar result for length-256 inputs compared to using both SC-induced

2https://pytorch-geometric.readthedocs.io/
3https://pytorch-geometric-temporal.readthedocs.io/
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(a) (b)

Figure 4: 4a: Temporal importance sanity check of IG results on two pieces of inputs with a large
overlap period. Attribution maps are offset aligned; 4b: ATTRX distributions across brain regions for
VWM task, where the upper one separates left and right hemispheres and the lower one combines
them (e.g. LH VisCent and RH VisCent are combined to region VisCent). Refer to table 4 in
appendix to see brain region names that the x-axis numbers represent.

Figure 5: Column averages of task-averaged ATTRA (mapped into 34 subnetworks defined by the
17-network parcellation with left, right hemispheres). Top row is obtained from real SC induced A
and bottom rows is obtained from random SC induced Arand. Attributions are normalized to [0, 1].

Ai and Ai adp (setting (i)). By examining ATTRA under both settings (fig. 5), we see that the column
averages of ATTRA under these two settings are similar for almost all tasks, meaning the model can
learn where to pay attention to even using random adjacency matrix inputs. We credit this ability
partially to multi-resolution inner cluster smoothing, as the performance would drop notably without
it (setting (vii)). However, using ground truth SC not only gives us higher performance for shorter
inputs but also provides the opportunity to better interpret brain region connections. We can directly
use task-averaged ATTRA as the weighted adjacency matrix to plot edges between brain ROIs, just as
in fig. 6. Important brain regions obtained from ATTRA mostly comply with the previous literature
(see appendix A.2.5 for details).

ATTRX can also give us insights on spatial importance when the attribution maps are averaged or
summed up along the temporal dimension. But it does so from another perspective: instead of
showing important structural connections that support information passing, it reveals regions or
subnetworks that are sources of the important signals. In fig. 4b, we plot the distribution of t-
averaged and subnetwork-averaged (mapping 200 ROIs into 17 subnetworks) ATTRX during VWM
task. We can see the clear dominance of VisCent, DorsAttnA, and ContA subnetworks (numbered
as 1, 5, 11), indicating signals from these regions are useful for model to decide if the input is
from VWM task. For the boxplots of other tasks and subnetwork rankings, please see fig. 16,
table 5 and table 6 in appendix. More informative than the rankings is the distribution itself: even
though VisCent, DorsAttnA, and ContA ranked top 3 for both resting state and VWM task for signal
attributions, their relative importance and attribution distribution variances are totally different. In a
sense, the distribution can act as a task fingerprint based on brain signal states.

We notice that signal-important ROIs are not necessarily the same as connection-important ROIs:
top-ranked subnetworks for resting state are DefaultA and DefaultB by ATTRA, and VisCent and
DorsAttnA by ATTRX ; although they do coincide with each other for tasks like VMN. This disparity
is reflected in fig. 6 as edge and node differences.

Group, session, and region heterogeneity. Average variances of attributions are very different
across tasks, especially those of ATTRX : VWM and DYN have much smaller attribution variances
compared to other tasks. This can be caused by either task dynamics when certain tasks have more
phase transitions and brain status changes, or/and group heterogeneity when individuals carry out

8
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Figure 6: ROI attributions from ATTRA and ATTRX . Tasks are: Resting, VWM, DYN, DOT, MOD,
PVT from left to right. Edge color and width are based on task-averaged ATTRA ∈ R200×200, and
nodes color and size are based on task and temporal-averaged ATTRX ∈ R200. For the visualization
purpose, only edges with highest attributions are kept to ensure sparsity being 0.009 (down from
around 0.196). For ROI attributions based only on ATTRA where important sender ROIs are reflected
by node sizes, please refer to fig. 13 in appendix.

Figure 7: ATTRX distributions of 3 subjects doing VWM task (left) and MOD task (right). Outliers
that go beyond [Q1 − 1.5 IQR, Q3 + 1.5 IQR] are omitted. VWM has a much smaller average
attribution variance than MOD.

certain tasks more differently than the others. We investigate the cause by looking into 3 subjects;
each of them has multiple scan sessions for every task.

We report the following findings: (1) Even only aggregating attributions over a single subject’s
sessions, attribution variances of the other four tasks are still larger than VWM and DYN. The
variance values are comparable to that of aggregating over many subjects. This means the large
variances are not mainly due to group heterogeneity, rather some tasks having more states than
others. (2) Apart from different task dynamics, there is still group heterogeneity. For tasks with
more dynamics (high attribution variances), the group heterogeneity is also more obvious. We can
see from fig. 7 that attributions for VMM are much more concentrated and universal across subjects
than that of MOD. (3) Flexibility of different subnetworks varies: subnetworks that have small
distribution IQR (Interquartile Range) of the same subject’s different sessions will also be more
consistent across subjects. One example is subnetwork 18 during MOD task has both higher within-
subject IQR and larger across-subject differences compared to subnetwork 19. This indicates for a
certain task, some subnetworks are more individual and flexible (may activate differently across t),
while others are more universal and fixed. In summary, we can reveal both critical regions that a
particular task must rely on, and regions that can characterize individual differences during tasks.

4 CONCLUSIONS

In this paper, we propose ReBraiD, a high-performing and efficient graph neural network model
that embeds both structural and dynamic functional brain signals for task classifications. To better
capture latent dynamics, we propose input-dependent adjacency matrix learning and inner-cluster
smoothing at multiple resolutions. Apart from quantitative results showing ReBraiD’s superiority in
representing brain activities, we also leverage integrated gradients to attribute and interpret the im-
portance of both spatial brain regions and temporal keyframes, as well as presenting heterogeneities
among subnetworks, tasks, and individuals. These findings can potentially reveal new neural basis
or biomarkers of tasks and brain disorders when combined with behavioral metrics, and enable more
fine-grained temporal analysis around keyframes when combined with other imaging techniques.
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A APPENDIX

A.1 MODELS

A.1.1 DYNAMIC FUNCTIONAL CONNECTIVITIES.

Fig. 8 shows functional connectivities (FCs) among N brain regions, where each FC ∈ RN×N . The
value at FCij is calculated as the Pearson correlation coefficient between signals of brain region i
and region j. The figure shows 6 FCs calculated from 6 consecutive sliding windows within a same
fMRI session, with signal window length being 30 and sliding stride being 30. From the figure, we
can clearly tell that FCs are highly dynamic.

Figure 8: Dynamic functional connectivities.

A.1.2 INNER-CLUSTER SMOOTHING TOY EXAMPLE.

Here we show a toy example demonstrating the inner-cluster smoothing module described in eqs. (3)
and (4). Note that we will only show one time slice, and the same operation is done along every
t: on a particular t, we have Z ∈ RN×d, S ∈ RN×c. We will use N = 3, c = 2 and node values
a, b, c ∈ Rd for this toy example. In addition, this example is just to illustrate the concept behind the
smoothing operation, and Softmax along the axis 1 is simplified as row normalization for a clearer
presentation.

Z =

(
a
b
c

)
, S =

 1 0
1
2

1
2

0 1

⇒ H̃ = S>Z =

(
a+ 1

2b
1
2b+ c

)

S̃ = row-normalized
(
ST
)

=

(
2
3

1
3 0

0 1
3

2
3

)

⇒ Hnew = S̃>H =

 2
3a+ 1

3b
1
3a+ 1

3b+ 1
3c

1
3b+ 2

3c


Figure 9: Inner-cluster smoothing toy example.

In this example, 1st and 2nd nodes are assigned to the first cluster, and 2nd and 3rd node are assigned
to the second cluster. The final Hnew after our smoothing module will mingle the first two nodes’
values, and the last two nodes’ values (based on assignment weights) while keeping their original
node number unchanged.

A.1.3 REGULARIZATION TERMS FOR THE SOFT-ASSIGNMENT.

For each soft assignment matrix S ∈ RN×c×t in eq. (3), we test three regularization terms:

• Similar to DIFFPOOL, for ensuring a more clearly defined node assignment, namely each
node is only assigned to few clusters (the closer to one the better), we can minimize the
entropy of single node assignments: LE1 = 1

c

∑c
i=1H(Si), where Si is along c.

• To ensure a representation separation among nodes, meaning the assignment shouldn’t as-
sign all the nodes a same way, we maximize the entropy of node assignment patterns across
all nodes: LE2 = − 1

c

∑c
i=1H(

∑n
j=1 Sij), where j is along n and i is along c.
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• To make assignment along temporal axis smoother, we penalize assignment variances
within a small window [t̂, t̂+τ ]: LT = 1

t−τ
∑t−τ
t̂=0

σ(S[t̂,t̂+τ ]), where σ represents standard
deviation.

Together with cross entropy classification loss LCE , the final loss function of the model will be:

Lreg = α1LCE + α2LE1
+ α3LE2

+ α4LT ,
∑
i

αi = 1 (6)

A.2 EXPERIMENTS

A.2.1 TASK DESCRIPTIONS.

The following are task descriptions of CRASH (Cognitive Resilience and Sleep History) dataset:

Resting state: The subject simply lays in the scanner awake, with eyes open for 5 minutes.

Visual working memory task (VWM): The subject is presented with a pattern of colored squares
on a computer screen for a very brief period (100ms). After 1000ms, they are presented with a
single square and must determine if it is the same or different color as the previously presented
square at that location. Responses are made with a button press (Luck & Vogel (1997)).

Dynamic Attention Task (DYN): Two streams of orientation gratings are presented to the left and
right of fixation. Subjects monitor specified stream for a target (about 2 degree shift in orientation,
clockwise or counter clockwise) that indicates whether the subject should continue to monitor the
current stream (hold) or monitor the other stream (shift) and respond with a button press (Yantis
et al. (2002)).

Dot Probe Task (Faces) (DOT): On each trial, two faces are presented, one neutral and the other
happy or angry for 500ms. Then, either of two simple symbols is presented at the position of either
of the faces. The subject must make a forced choice discrimination of the symbol. Reaction time
differences as a function of the valance for the preceding facial expression are calculated. There is
increased variability of the bias with PTSD and fatigue (Sipos et al. (2014)).

Math task (MOD): Subjects perform a modular math computation every 8 seconds and respond
with a yes or no button press. The object of modular arithmetic is to judge the validity of problems
such as 51=19(mod 4). One way to solve it is to subtract the middle number from the first number
(i.e., 51–19) and then divide this difference is by the last number (32/4). If the dividend is a whole
number, the answer is “true.” Otherwise the answer is false (Mattarella-Micke et al. (2011)).

Psychomotor vigilance task (PVT): The subject monitors the outline of a red circle on a computer
screen for 10 minutes, and whenever a counter clockwise red sweep begins, they press a button
as fast as possible. Subjects are provided with response time feedback. The experimenter records
response latencies (Loh et al. (2004)).

A.2.2 DATA DETAILS

After discarding scan sessions with abnormal spikes that may be caused by head movements, the
valid session details for different tasks are listed in table 2.

Table 2: fMRI scan details for six tasks.

Tasks Resting VWM DYN DOT MOD PVT (Total)
Valid scan sessions 209 514 767 155 138 157 1940

Frames / Scan 321 300 265 798 828 680 /

A.2.3 ABLATION STUDIES

Numerical values of fig. 3a are reported in table 3. Training time ranges from 51 seconds / epoch
for length-8 inputs to 298 seconds / epoch for length-256 inputs. Although the model is trained for
60 epochs in all experiments, it converges to a relatively stable loss level within 20 epochs.
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Table 3: Weighted F1 of ablation study settings.

Input length (frames) 8 16 32 64 128 256
(i): SC + adp 66.19 70.18 75.87 76.14 82.91 90.85
(ii): SC only 64.54 65.58 71.79 70.31 73.63 89.79
(iii): adp only 64.32 65.20 74.01 71.42 80.63 89.46
(iv): SC + FC 66.10 67.58 70.26 75.02 76.91 84.68

(v): random adj 62.17 66.25 72.30 73.72 76.58 89.22
(vi): (i) without smoothing 63.57 62.82 70.19 65.82 72.91 79.65

(vii): (v) without smoothing 56.88 64.08 72.27 62.72 75.16 83.75
(viii): coarsened graph 37.92 42.23 46.18 52.12 57.17 64.25

(a) Ai adp ∈ R200×200 of 6 randomly sampled inputs during DOT task.

(b) Ai adp ∈ R200×200 of 6 consecutive inputs from a same session during DOT task.

(c) Task-averaged Aadp ∈ R200×200 for resting state, VWM, DYN, DOT, MOD, PVT.

(d) 200 ROIs’ column averages of task-averaged Aadp. Task order is the same as (c).

(e) 34 (17 with LR) subnetworks’ column averages of task-averaged Aadp. Task order is the same as (c).

Figure 10: Learned latent adaptive adjacency matrices Aadp.

(I) Latent adaptive adjacency matrix Aadp. As we mentioned in section 3.1, latent Aadp can
complement the task- and temporal-fixed A. We will now show that the learned Ai adp is sparse for
each sample, has evident task-based patterns, and differs from what Ai can provide: fig. 10 shows
visualizations of latent Aadp, which we can tell is quite sparse as in fig. 10a: each input only gets
few important columns (information providing nodes in GNN), and they vary from one sample to
another, indicating Aadp’s ability to adapt to changing inputs within a same task. However, when we
look into inputs (not shuffled) generated by consecutive sliding windows from a same scan session
as in fig. 10b, we can see the latent structures appear to be in a smooth transition. In addition, when
averaged across many samples for each task, undeniable task-based patterns emerge, as in figs. 10c
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to 10e. But the task-average patterns are also different from what we saw from AttrA in fig. 5,
suggesting Aadp is embedding dynamics that are not captured by A. One interesting phenomenon
in fig. 10e is that across all tasks, LimbicB OFC, Default B, and LimbicA TempPole are always
among the most important subnetworks appeared in the latent Aadp. Further exploration is needed
for explaining the case.

(II) Number of GNN layers. The total number of temporal layers depends on the input signal
length since each strided TCN layer reduces the temporal length by a factor of 2: if the input length
is 2i, there need to be i temporal layers. But is alternating every TCN with GNN the best strategy, or
do we only need to follow one GNN after a few TCNs? We study this question with different input
lengths.

Model weighted F1 are plotted in fig. 3b for all possible GNN to total TCN ratios (e.g. length-256
inputs requires 8 TCN layers. The possible ratios are 1

8 ,
1
4 ,

1
2 , 1 since we can insert one GNN per

8, 4, 2, 1 TCN layers). The figure shows alternating every layer rarely yields the highest perfor-
mance and the best ratio lines around one GNN per two TCN layers for our dataset. We repeat the
experiment for K = 1, 3 (in eq. (2)) to rule out the possibility that this result is related to how many
neighbors one GNN layer can reach; we find they have roughly the same pattern as the K = 2 case.
Our hypothesis is that lower GNN to TCN ratio does not capture enough spatial context, while
higher ones might be overfitting. We leave exploring the relationship between this ratio and nodes
number N to a future study.

The best GNN to TCN ratio also depends on whether model incorporates latent adjacency matrices
or not: without Aadp, length-128 signals achieves its relative best (among all ratios) when having
one GNN per two TCNs, but it only needs one GNN per three TCNs if using Aadp. This shows
learning latent structures Aadp not only improves overall model accuracy but can also reduce model
parameters, thus complexity, in achieving the relative best results.

(III) Effects of soft-assignment cluster numbers. During our experiments, we find as long as the
smoothing module is used, the final performance will be close to each other, only the convergence
rates are different. Fig. 11b shows how validation loss converges with different c settings and when
there is no smoothing module used. From it, we can see halving numbers (100-50-25-12) is most
helpful and we use it for our other experiments; decreasing numbers (160-120-80-40) or all larger
numbers (all 100) works better than increasing numbers (12-25-50-100) or all smaller numbers (all
12). Using the inner-cluster smoothing module, all cluster number settings converges to around 0.23
at their smallest when trained for 60 epochs and have test weighted F1 from 89.47 (model with 12-
25-50-100) to 90.85 (model with 100-50-25-12). On the contrary, if no smoothing module is used,
the model overfits easily and the validation loss can only reach about 0.4 before going up (with the
best set of learning rate and weight decay parameters found with grid search). It is understandable
that the model is prone to overfitting given the complexity of GNN and the relatively small dataset
size. Our added inner-cluster smoothing module seem to effectively countering the effect and brings
the loss down further and stabler.

A.2.4 MODEL COMPARISONS.

We plot confusion matrices of our model, model from ablation study setting (viii), and the best
performing baseline in fig. 12. Misclassification pairs clustered as the first three tasks (resting,
VWM, DYN) and the latter three (DOT, MOD, PVT). Shown confusion matrices are from models
trained on 256-frame inputs. We note that these misclassification pairs may be different for models
trained on other input lengths (like 128-frame, etc.).

A.2.5 IG AttrA AND AttrX

See fig. 13 for the visualization of important ROIs based on AttrA, and fig. 14 for task-averaged
AttrA under real and random SC settings. Many discriminatory regions obtained from AttrA com-
plies with the literature:
For resting state: the top attributed ROIs belong to the default mode network, which is regarded
salient during the resting state (Raichle, 2015).
For VWM: the dominant attributions are from visual regions and posterior parietal regions, which
complies with Todd & Marois (2004).
For DYN: attributions from our model suggest regions along cingulate gyrus (defaultA-
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(a) (b)

Figure 11: 11a: adding inner cluster smoothing or input-dependent adaptive adjacency matrix makes
the model more stable across various learning rates. 11b: Validation loss v.s. training epochs. Input
length is 256 and four smoothing modules are used. Legends are the soft-assignment cluster numbers
of the four smoothing modules. Our other experiments are using decreasing cluster numbers that
halved each module, corresponding to the 100-50-25-12 here.

(a) (b) (c)

Figure 12: Confusion matrices of: (12a) ReBraiD (our proposed model), (12b) model with coarsened
graph (setting (viii)), (12c) Graph Transformer (best-performing baseline). Tasks are 1-Resting, 2-
VWM, 3-DYN, 4-DOT, 5-MOD, 6-PVT.

Figure 13: Important ROIs based on AttrA. Tasks are: Resting, VWM, DYN, DOT, MOD, PVT
from left to right. Node sizes are based on column sums of AttrA ∈ R200×200 and edge width are
direcly based on AttrA. For the visualization purpose, only edges with highest attributions are kept
to ensure sparsity being 0.009 (down from around 0.196).

SalValAttnB-ContA-ContC-defaultC), as well as peripheral visual and somatomotor regions. Liter-
ature suggests anterior cingulate cortex (ACC) to be active (Kim et al., 2016) and posterior cingulate
cortex (PCC) to be inactive (Leech & Sharp, 2014) during visual attention tasks. This means both
regions provide discriminative information about classifying DYN states, which is what our attribu-
tion method is voting for.
For DOT: important ROIs from our analysis are located in control networks, in particular both ACC
and PCC, as well as in the peripheral visual system. In the literature, dorsal and rostral regions of
the ACC are proved to be involved with dot-probe performance (Carlson et al., 2012; 2013).
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Figure 14: Task-averaged ATTRA ∈ R200×200. The top row is obtained from real SC induced A,
and the bottom row is obtained from random SC induced Arand.

For MOD: our important ROIs are mostly in temporal-parietal regions and default mode network
(anatomically fronto-parietal), and literature suggests similar regions: parietal (Grabner et al., 2011)
and prefrontal (Friedrich & Friederici, 2013).
For PVT: our top attributed ROIs belong to control networks, attention networks, and somatomotor
regions. Similar as stated in Drummond et al. (2005), where both attention and motor systems are
considered important.

To view brain regions in the 17-networks setting instead of 200-ROI parcellations, table 5 has the
subnetwork rankings based on column-average AttrA and table 6 has the subnetwork rankings based
on temporal-averaged AttrX . For a visualization of the 17-network parcellation, please refer to
fig. 15.

See fig. 16 for the complete attribution distributions for every task based on temporal-averaged
AttrX . Corresponding brain regions of a certain number are listed in table 4. For boxplots showing
17 regions, we combine LH and RH for their common network.

Table 4: Brain subnetworks in the 17-network definition.

1 LH VisCent 18 RH VisCent
2 LH VisPeri 19 RH VisPeri
3 LH SomMotA 20 RH SomMotA
4 LH SomMotB 21 RH SomMotB
5 LH DorsAttnA 22 RH DorsAttnA
6 LH DorsAttnB 23 RH DorsAttnB
7 LH SalVentAttnA 24 RH SalVentAttnA
8 LH SalVentAttnB 25 RH SalVentAttnB
9 LH LimbicB OFC 26 RH LimbicB OFC
10 LH LimbicA TempPole 27 RH LimbicA TempPole
11 LH ContA 28 RH ContA
12 LH ContB 29 RH ContB
13 LH ContC 30 RH ContC
14 LH DefaultA 31 RH DefaultA
15 LH DefaultB 32 RH DefaultB
16 LH DefaultC 33 RH DefaultC
17 LH TempPar 34 RH TempPar
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Figure 15: Network parcellation of Yeo’s 17-networks. Figure is from Kahali et al. (2021)

Table 5: AttrA: Top 10 brain subnetworks initiate important connections during different tasks
(fig. 13 provides a ROI-based visualization).

rest VWM DYN DOT MOD PVT
1 RH DefaultA RH VisPeri LH SomMotB RH VisPeri RH DefaultA RH ContA
2 LH DefaultA LH VisPeri RH DefaultC LH VisPeri LH DefaultA RH SalVentAttnA
3 RH DefaultB LH VisCent LH VisPeri RH ContC LH DefaultC RH ContC
4 RH ContB RH VisCent LH SalVentAttnA RH DorsAttnA RH DefaultC LH SalVentAttnA
5 RH LimbicB OFC LH DefaultC RH ContC RH SalVentAttnA RH DefaultB RH DefaultA
6 RH SalVentAttnB RH SomMotB RH ContA LH ContC RH LimbicB OFC LH ContC
7 RH SomMotB RH DefaultC RH DefaultA RH DefaultC LH SomMotB RH DorsAttnA
8 RH TempPar LH SomMotB RH SalVentAttnA LH SomMotB RH LimbicA TempPole LH LimbicB OFC
9 LH DefaultB LH LimbicA TempPole LH DefaultC RH ContA LH DefaultB LH SomMotB
10 RH SalVentAttnA RH LimbicA TempPole RH VisPeri RH VisCent RH SomMotB RH DefaultC

Table 6: AttrX : Top 10 brain subnetworks that are sources of the important signals during different
tasks (fig. 6 provides a ROI-based visualization).

rest VWM DYN DOT MOD PVT
1 RH VisCent RH VisCent LH TempPar RH LimbicB OFC LH TempPar RH VisCent
2 LH VisCent LH VisCent RH SomMotB LH LimbicA TempPole LH LimbicA TempPole LH DorsAttnA
3 LH DorsAttnA LH DorsAttnA LH VisPeri RH DefaultB RH SomMotB LH VisCent
4 RH DorsAttnA RH DorsAttnA LH DefaultA LH TempPar LH DefaultB RH DorsAttnA
5 LH ContA LH ContA LH DefaultC RH LimbicA TempPole RH DefaultA RH LimbicB OFC
6 LH DorsAttnB LH DorsAttnB RH DefaultC RH TempPar RH LimbicA TempPole LH ContA
7 LH SomMotA LH SalVentAttnA RH SomMotA LH DefaultB LH LimbicB OFC RH LimbicA TempPole
8 LH SalVentAttnA LH SomMotA LH ContB LH LimbicB OFC RH DefaultB LH SomMotA
9 RH ContA RH LimbicB OFC RH SalVentAttnA RH SomMotB LH ContB LH LimbicB OFC
10 LH LimbicB OFC LH LimbicB OFC LH DefaultB LH DefaultA LH DefaultA LH DorsAttnB
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(a) Resting state. (b) Visual working memory task.

(c) Dynamic Attention Task. (d) Dot Probe Task.

(e) Math Task. (f) Psychomotor vigilance task.

Figure 16: Brain subnetwork attribution distributions from AttrX .
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A.2.6 ATTRIBUTION REPRODUCIBILITY

In order to be used for downstream tasks, the extracted important regions should be reproducible
across different initializations. Since the overall problem is non-convex, we test the reproducibility
empirically with two models trained on two data splits, both initialized randomly and taking in
length 256 inputs.

(a) Column averages of AttrA ∈ R200×200.

(b) Temporal averages of AttrX ∈ R200×256

Figure 17: Reproducibility validation: attributions obtained from two models trained on different
data split and initialized randomly. Attribution values are normalized to [0, 1] and the larger the
attribution value, the stronger indicating power that ROI has for a certain task. Tasks are Resting,
VWM, DYN, DOT, MOD, and PVT.
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A.2.7 SIMULATION STUDY

To validate interpretation results, we perform simulation studies with know ground truth. For gener-
ating graph signals, we first define graph structures. All graphs are generated with stochastic block
model (SBM) using a same community structure (200 nodes, 10 communities), but each graph has
its own adjacency matrix. This mimics brain structures in that samples share similar community
structures but have different structural connectivities. Fig 18a shows a typical adjacency matrix of
a synthetic graph. All adjacency matrices are binary. Time-series on each node are then generated
with codes adapted from this repo 4. In particular, the value at each time step of each node is a
small temporal Gaussian random noise plus signals from neighbors (a small Gaussian spatial noise
is added to the adjacency matrix).

Simulation (I) We create two classes for this simulation: in class one, only the first three commu-
nities (nodes 1 - 60) generate small temporal noises and other nodes are only affected by neighbors;
in class two, only the last three communities (nodes 141 - 200) generate small temporal noises and
other nodes are only affected by neighbors. We visualize task aggregated AttrX and Aadp and in
figs. 18b and 18c. The signal importance differences are relatively well reflected in AttrX . For the
generated series, signals are more important in node 1 - 60 for class 1 and 141 - 200 for class 2:
Aadp catches this up and help propagating signals in these regions better. We notice that AttrA are
mostly random and no obvious patterns are shown. This also reflects the graph signal generation:
when aggregating information from neighbors, all connected edges are weighted the same (binary),
thus the connections not really affect generated signals. To see the opposite, we perform another
study below.

Simulation (II) We again create two classes for the simulation: in class one, connections from nodes
61 - 100 are strengthened; in class two, connections from nodes 101 - 140 are strengthened. The
weights of strengthened edges are increased from 1 to 5 during signal generation, but model still
takes in binary adjacency matrices as inputs (processed as mentioned in section 2.1 before feeding
to the model). We visualize task aggregated Aadp and AttrA in figs. 18d and 18e. We can see this
time the connection differences are reflected in AttrA. Signals in node 61 - 100 for class 1 or 101
-140 for class 2 are less important because they can be sent out by stronger connections: this results
in smaller values for corresponding columns in Aadp. Combined with previous simulation, regions
that are strong signal senders and connections from them are weak or not reflected in graph adja-
cency matrices tend to have higher Aadp values. In other words, Aadp complements both signals and
connections to encode latent dynamics, while attributions obtained from IG are better at interpreting
the modalities separately.

4https://github.com/alelab-upenn/graph-neural-networks
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(a) Adjacency matrix (b) Simulation (I) AttrX

(c) Simulation (I) Aadp

(d) Simulation (II) Aadp (e) Simulation (II) AttrA

Figure 18: 18a: A typical adjacency matrix for simulated graph signals. 18b: Task averaged AttrX
of simulation (I). Attribution values are normalized. 18c: Task averaged Aadp of simulation (I) and
its entry averages per column. 18d: Task averagedAadp of simulation (II). 18e: Task averaged AttrA
of simulation (II). Attribution values are normalized.
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