
AffinityFlow: Guided Flows for Antibody Affinity Maturation

Can (Sam) Chen 1 2 Karla-Luise Herpoldt 2 Chenchao Zhao 2 Zichen Wang 2 Marcus Collins 2 Shang Shang 2

Ron Benson 2

Abstract
Antibodies are widely used as therapeutics, but
their development requires costly affinity matu-
ration, involving iterative mutations to enhance
binding affinity. This paper explores a sequence-
only scenario for affinity maturation, using solely
antibody and antigen sequences. Recently Al-
phaFlow wraps AlphaFold within flow matching
to generate diverse protein structures, enabling a
sequence-conditioned generative model of struc-
ture. Building on this, we propose an alternat-
ing optimization framework that (1) fixes the se-
quence to guide structure generation toward high
binding affinity using a structure-based affinity
predictor, then (2) applies inverse folding to cre-
ate sequence mutations, refined by a sequence-
based affinity predictor for post selection. A key
challenge is the lack of labeled data for training
both predictors. To address this, we develop a co-
teaching module that incorporates valuable infor-
mation from noisy biophysical energies into pre-
dictor refinement. The sequence-based predictor
selects consensus samples to teach the structure-
based predictor, and vice versa. Our method, Affin-
ityFlow, achieves state-of-the-art performance in
proof-of-concept affinity maturation experiments.

1. Introduction
Natural antibodies protect organisms by specifically binding
to target antigens such as viruses and bacteria with high affin-
ity (Murphy & Weaver, 2016), while therapeutic antibodies
bind various targets to inactivate them, recruit immune cells
to them, or deliver an attached drug compound (Chiu &
Gilliland, 2016). In vivo, antibodies undergo affinity matu-
ration, where their target-binding capacity is incrementally
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enhanced through somatic hypermutation and clonal selec-
tion (Victora & Nussenzweig, 2022). When developing a
therapeutic antibody, in vitro affinity maturation—through
targeted mutation and selection—improves the binding affin-
ity of existing antibodies to target antigens (Tabasinezhad
et al., 2019; Chiu & Gilliland, 2016).

These in vitro methods, such as random mutagenesis, are
labor-intensive and time-consuming. Recent advancements
in deep learning have propelled in silico affinity maturation
forward. One line of research enhances affinity prediction
for mutated antibodies (Shan et al., 2022; Liu et al., 2021;
Cai et al., 2024; Lin et al., 2024; Xiong et al., 2017); an-
other investigates mutation strategies. Specifically, protein
language models propose plausible mutations to enhance
binding affinities, though they lack specificity for target
antigens (Hie et al., 2024; Ruffolo et al., 2021; Shuai et al.,
2021). Similarly, diffusion models guide the sampling to-
wards high-affinity antibody sequences but require the often
unavailable or insufficiently accurate antigen-antibody com-
plex structure (Luo et al., 2022; Zhou et al., 2024). Our
research aligns more with the second line of mutation strate-
gies. In particular, we focus on enhancing antibody binding
affinity through sequence mutations, relying solely on the
antigen-antibody sequence.

Recognizing the crucial link between antibody structure
and function, it is essential to integrate structure into the
sequence mutation process. The recent release of Al-
phaFlow (Jing et al., 2024) builds a sequence-conditioned
generative model of protein structure, which opens path-
ways for structure-based optimization of antibody sequences.
Specifically, AlphaFlow repurposes AlphaFold (Jumper
et al., 2021) in a flow matching framework to generate di-
verse protein conformations.

This motivates the proposal of an alternating optimization
framework, as illustrated in Figure 1: (1) We fix the se-
quence to guide noisy structures toward high-affinity clean
structures. Rather than re-training the entire AlphaFlow
model—a process that is inherently time-consuming—we
achieve guided structure generation through predictor guid-
ance (Dhariwal & Nichol, 2021). Specifically, a trained
structure-based affinity predictor is integrated into the Al-
phaFlow sampling process to direct coordinate denoising.
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Figure 1: Illustration of alternating optimization.

(2) With the high-affinity clean structure, we perform in-
verse folding to introduce targeted mutations, and use a
sequence-based predictor for post selection, which identi-
fies promising mutated sequences for the next iteration.

A significant challenge in training both predictors is the
scarcity of labeled data. To address this, we develop a co-
teaching module that leverages valuable information from
noisy biophysical energies to refine the predictors, as shown
in Figure 2. For any antigen i and antibodies j, k,m, n, we
use Rosetta (Alford et al., 2017) to compute the binding
free energy ∆G and then calculate the change in binding
free energy ∆∆Gijk = ∆Gij − ∆Gik to form pairwise
discrete labels. The sequence-based predictor selects pairs
with which it concurs, considering them likely to be ac-
curate and informative, and uses these consensus samples
to enhance the structure-based predictor. For instance, if
the sequence-based predictor predicts ∆∆Ĝijk > 0, it se-
lects ∆∆Gijk > 0 for training the structure-based predic-
tor. Similarly, the structure-based predictor reciprocates
by informing the sequence-based predictor; for example, it
selects ∆∆Gijm < 0 to refine the sequence predictor, as
shown in Figure 2. Noisy data, such as ∆∆Gijn > 0, are
filtered out. This module effectively integrates biophysical
insights into both predictors, enhancing their accuracy.

In summary, we introduce AffinityFlow, guided flows for
affinity maturation. Our contributions are three-fold:

• We present an AlphaFlow-based alternating optimization
framework that guides structure generation towards high
binding affinity through predictor guidance, followed by
targeted mutations.

• We propose a co-teaching module that utilizes valuable in-
sights from noisy biophysical energies to refine structure-
and sequence-based predictors.

• AffinityFlow achieves state-of-the-art performance in affin-
ity maturation experiments.

2. Preliminaries
2.1. Problem Definition

Binding affinity between an antibody (Ab) and its antigen
(Ag) is predominantly determined by the complementarity
determining regions (CDRs) within these chains (Akbar
et al., 2022). An antibody consists of two heavy chains
and two light chains with a similar overall structure. Its
specificity is determined by six variable regions known as
Complementarity Determining Regions (CDRs), denoted as
H1, H2, H3, L1, L2, and L3. Typically, heavy chain CDRs
range from 8 to 16 amino acids, while light chain CDRs
range from 3 to 10 amino acids. We model an antibody
chain as a sequence of amino acids, each characterized by a
type ai ∈ {A,C,D, . . . , Y }.

While AffinityFlow is applicable to all antibody types,
this study specifically focuses on single-domain antibod-
ies (sdAb), which consist only of heavy chains (Wesolowski
et al., 2009). We select sdAb for their high specificity, solu-
bility, stability, and lower toxicity and immunogenicity. Our
goal in affinity maturation is to effectively mutate the CDRs
within the context of the entire Ab-Ag sequence complex to
improve binding affinity.

2.2. Flow Matching

Flow matching is a robust generative modeling framework
(Lipman et al., 2022; Le et al., 2024). It is characterized by
a conditional probability path pt(x | x1), t ∈ [0, 1], which
transitions from a prior distribution p0(x | x1) = q(x) to an
approximate Dirac delta function p1(x | x1) ≈ δ(x− x1)
conditioned on a data point x1 from pdata. The evolution
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Figure 2: Illustration of co-teaching.

is facilitated by a conditional vector field ut(x | x1). The
marginal vector field v(x, t) is modeled through a neural
network parameterized by θ:

v̂(x, t; θ) ≈ v(x, t) = Ex1∼pt(x1|x)[ut(x | x1)] (1)

Using this modeled vector field, we can generate samples
from the data distribution pdata(x) by utilizing the corre-
sponding neural Ordinary Differential Equation (ODE).

2.3. AlphaFlow

AlphaFold (Jumper et al., 2021) serves as a precise single-
state protein structure predictor, and AlphaFlow (Jing et al.,
2024) repurposes AlphaFold within a flow matching frame-
work to generate diverse protein conformations. Given a
protein sequence a of length N , the objective is to model the
structural ensemble, denoted by p(x | a), where x ∈ R3×N

represents the protein 3D coordinates.

AlphaFlow defines the conditional probability path by sam-
pling initial noise x0 from q(x0) and linearly interpolating
it with the data point x1:

x | x1, t = (1− t) · x0 + t · x1, x0 ∼ q(x0) (2)

The vector field is derived as:

ut(x | x1) = (x1 − x)/(1− t) (3)

Instead of directly parameterizing the marginal vector field
as in Eq. (1), the marginal vector field is parameterized in
terms of a neural network x̂1(x, t;θ) as:

v̂(x, t;θ) = (x̂1(x, t; θ)− x)/(1− t) (4)

This approach allows the reuse of the AlphaFold2 tem-
plate embedding stack to reconstruct the clean structure
x1 from the noisy input x, with t serving as an additional
time embedding. The model focuses on the 3D coordi-
nates of β-carbons (or α-carbon for glycine), defining the

prior distribution q(x) over these positions as a harmonic
prior (Jing et al., 2023) to ensure that inputs to the neural
network remain physically plausible. For this study, the pre-
trained AlphaFlow model, which was trained using FAPE
loss, is used directly without any further fine-tuning. Since
AlphaFlow is trained solely on single proteins, this study
connects the antibody sequence and the antigen sequence
into one sequence using a linker of 32 GGGGS repeats (Lin
et al., 2023). The linked sequence complex is then input
into the system.

2.4. Affinity Prediction

This paper focuses on enhancing binding affinity, deter-
mined by the difference in free energy between the bound
and unbound states, denoted ∆G. A negative value indicates
that the overall free energy of the system decreases upon
binding, meaning that the antibody–antigen interaction is
energetically favored. Consequently, we use ∆G as a mea-
sure of binding affinity where sequence- and structure-based
predictors directly output a negative value of the binding
affinity (Kd). Protein properties can be predicted from two
views: sequence and structure, leading to two prediction
methods: sequence-based (Xu et al., 2022) and structure-
based (Gligorijević et al., 2021).

Leading sequence-based models like ESM-2 (Lin et al.,
2022), AntiBERTy (Ruffolo et al., 2021), and IgLM (Shuai
et al., 2023) are pre-trained on extensive unlabeled protein
sequences. These models extract hidden representations
to predict properties such as binding energy, denoted as
fα(∆G|a), where α represents the model parameters. We
choose ESM-2 as our sequence-based predictor due to its
versatility, as the antigen is a general protein rather than an
antibody. Specifically, we input the antibody and antigen
sequences separately into ESM-2 to obtain embeddings,
which are then concatenated and fed into a three-layer MLP
for the final prediction.
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For structure-based prediction, the GVP model is notable
for utilizing features from the 3D graph of proteins to pre-
dict properties, denoted as fβ(∆G|x) (Jing et al., 2021).
Integrating the ESM2 model as a feature extractor within
the GVP model further enhances performance (Wang et al.,
2022). Thus, we employ the ESM2-GVP model as our
structure-based predictor in this study. The linked antibody-
antigen complex is processed by the pre-trained ESM2
to generate residue embeddings, from which intersected
residues are selected for the GVP model.

It is important to note two aspects: (1) The ESM2-GVP
model may not outperform the standalone ESM-2 model
due to potential unavailability of ground-truth structures
and the challenges in making reliable structure predictions
for antibodies and antigens; (2) Given that our AlphaFlow
system operates solely on Cβ coordinates and does not
account for side-chains, we do not utilize affinity prediction
models that require side chain modeling (Liu et al., 2021;
Cai et al., 2024).

Related works on generative protein modeling and co-
teaching are detailed in Appendix A.

3. Method
In this section, we introduce AffinityFlow, designed to en-
hance the binding affinity of antibodies through targeted
sequence mutations. Our method, built on AlphaFlow, em-
ploys an alternating optimization framework for sequence
mutation via predictor guidance, as detailed in Section 3.1.
To overcome the challenge of limited labeled data, we pro-
pose a co-teaching module in Section 3.2. This module
leverages useful knowledge from noisy biophysical energies
to improve our predictors.

3.1. Alternating Optimization

Initially, the sequence is fixed while we guide the Ab struc-
ture generation to achieve high binding affinity, supple-
mented with predictor-corrector refinement. Based on the
generated structure, we then use inverse folding to introduce
targeted mutations into the Ab, with the sequence-based pre-
dictor selecting promising sequences for the next iteration.

Guided Structure Generation While AlphaFlow gener-
ates structures unconditionally, we aim to steer structure
generation toward improved binding affinity using predic-
tor guidance. Following Lemma 1 in (Zheng et al., 2023),
predictor guidance in flow matching is formulated as:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ)+
1− t

t
∇xt log pβ(∆G | xt, t).

(5)
where pβ(∆G | xt, t) denotes the target binding energy
distribution. The derivation details are in Appendix B.

Training the predictor at different time steps t is resource-
intensive; instead, we approximate pβ(∆G | xt, t) directly
from pβ(∆G | x̂1(xt), 1):

pβ(∆G | xt, t) ≈ pβ(∆G | x̂1(xt), 1). (6)

This approximation, termed pβ(∆G | x̂1(xt)), is effective
when t is close to 1; therefore, we primarily apply predictor
guidance in the later stages of sampling.

The desired binding energy distribution is formulated
as (Lee et al., 2023):

pβ(∆G | x̂1(xt)) = e−γf̂β(x̂1(xt))/Z, (7)

where γ is a scaling factor and Z a normalization constant,
with the negative sign indicating a preference for lower
binding energy. Integrating this into Eq.(5) leads to:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ)− γ
1− t

t
∇xt

f̂β(x̂1(xt)).

(8)
This vector field guides the ODE sampling process towards
lower binding energy. During sampling, we target the pre-
dictor guidance only to CDR coordinates rather than the full
protein to simplify the system and enhance its relevance.

Predictor-Corrector Given that x̂1 represents the Cβ

coordinates of the protein structure, which are subject to
energy constraints, we apply Amber relaxation (Lindorff-
Larsen et al., 2010) to adjust x̂1 at each iteration before
initiating guided structure generation. This correction step
is essential, as predictor guidance on clashed protein struc-
tures is ineffective. This approach aligns with the Predictor-
Corrector methods described in (Allgower & Georg, 2012;
Song et al., 2020), and we therefore adopt the same ter-
minology. Predictor corresponds to the protein coordinate
generation process governed by the learned vector field, and
Corrector refers to the Amber energy minimization used
to refine the coordinates. Additional related techniques are
discussed in Appendix C.

Sequence Mutation Using the generated structure as a ref-
erence, we employ inverse folding with ProteinMPNN (Dau-
paras et al., 2022) to identify potential mutations in the CDR
regions. At each iteration, we apply single-, double-, and
triple-point mutations using ProteinMPNN. For each posi-
tion, we calculate the probability difference between the cur-
rent and alternative amino acids, selecting the mutation with
the highest difference. Double- and triple-point mutations
build sequentially on prior mutations. A sequence-based
predictor selects the top K (K = 3) sequences at each stage
for further refinement. Since the generated structure is con-
ditioned on the sequence, we avoid multiple simultaneous
mutations to preserve the protein structure and minimize
disruptive changes. However, under our alternating opti-
mization framework, we can introduce a few mutations per
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iteration, gradually accumulating enough mutations over
successive iterations.

3.2. Co-teaching

A primary challenge is the scarcity of labeled data for train-
ing both structure-based and sequence-based affinity predic-
tors. To address this, we enhance the predictors by incorpo-
rating insights from noisy biophysical energies.

Complex Generation To compute biophysical energies,
initial protein complexes are required. We extract A sdAb
structures and B antigen structures from existing PDB files,
and then use the docking tool GeoDock (Chu et al., 2023)
to generate AB complex structures. Next, we employ
Rosetta (Alford et al., 2017) to calculate the binding free
energy ∆G for each complex.

Pairwise Discrete Data Instead of relying on pointwise
continuous samples, which can be highly variable and noisy,
we generate robust pairwise discrete data. For the i-th anti-
gen, we pair antibody j with antibody k and compute the
change in binding free energy as ∆∆Gijk = ∆Gij−∆Gik.
We assign a pairwise label Yijk as 1 if ∆∆Gijk > 0, in-
dicating stronger binding by antibody k, and 0 otherwise.
This approach provides a more reliable measure than using
absolute property values.

Sample Selection Given the potential noise from unreli-
able biophysical energy calculations, we implement a re-
ciprocal filtering approach to refine the quality of input
for each predictor. Each predictor selects samples that
align with its predictions to inform the other. Specifi-
cally, the sequence-based predictor fα(∆G|a) computes
Ŷ a
ijk = (∆∆Ĝijk > 0). If Ŷ a

ijk = Yijk, this indicates prob-
able accuracy, prompting us to use this consensus sample for
the structure-based predictor. The structure-based predic-
tor undergoes a similar process, creating a cyclical filtering
system. This ensures both predictors receive well-vetted,
high-quality samples for improved reliability.

Fine-tuning With the selected samples, we aim to en-
hance the performance of our predictors. For the sequence-
based predictor, we minimize the following loss function:

L(α) =−
∑
i,j,k

[
Yijk log pα(Yijk = 1)

+ (1− Yijk) log(1− pα(Yijk = 1))

]
,

(9)

where pα(Yijk = 1) = σ(∆Ĝa
ij − ∆Ĝa

ik) and σ(·) is the
sigmoid function. The structure-based predictor undergoes
a similar fine-tuning process. Through this co-teaching
module, both predictors exchange valuable biophysical in-
formation, significantly improving their effectiveness.

4. Experiments
4.1. Benchmark

Dataset We conduct our experiments using a sdAb subset
of the SAbDab dataset (Dunbar et al., 2014). Following
the protocol of (Luo et al., 2022), we exclude structures
with a resolution poorer than 4Å and antibodies targeting
non-protein antigens. Our study focuses on sdAbs, selecting
PDB files of 120 labeled sdAb-antigen pairs to initially train
our predictors using mean squared loss. From these files,
we extract 77 sdAbs and 54 antigens, resulting in 4, 158
docked complex structures generated by GeoDock. Rosetta
is then used to calculate the ∆G for these complexes. For
maturation testing, we select 60 sdAb-antigen PDB files,
ensuring that each antigen is unique and these antigens and
antibodies were not included in the training set.

Evaluation Our evaluation considers mutations in CDR-
H1, CDR-H2, CDR-H3, and the entire CDR region. Each
comparative method generates three mutated sequences per
antigen, resulting in a total of 180 sequence designs.

We measure performance using three metrics: functional-
ity, specificity, and rationality, following (Ye et al., 2024).
Functionality is assessed by the Improvement Percent-
age (IMP) as described in (Luo et al., 2022). IMP re-
flects the proportion of mutated sdAbs with reduced bind-
ing energy compared to the original. Structures are pre-
dicted using IgFold (Ruffolo et al., 2023), docked with
GeoDock (Chu et al., 2023), and binding energies are an-
alyzed via Rosetta (Alford et al., 2017). We report IMP
instead of absolute values to ensure robustness, where a
higher IMP indicates better performance. Specificity mea-
sures the sequence similarity among antibodies targeting
different antigens. An effective method should generate
distinct antibodies for different antigens, so lower similarity
(Sim) indicates better specificity. Rationality is evaluated
using inverse perplexity calculated by AntiBERTy (Ruffolo
et al., 2021). This metric, also referred to as naturalness
(Nat), indicates that higher values of Nat generally reflect
better rationality.

4.2. Comparisons with Other Methods

In this paper, we primarily benchmark our method against
language model-based methods, given our focus on se-
quence design. Since our method incorporates additional
biophysical energies for training, we ensure fair compar-
isons by applying the same trained sequence-based predictor
across all methods, unless stated otherwise. Each method
generates a pool of candidate designs, and the sequence-
based predictor selects the top three for final evaluation.

We consider the following language model-based methods:
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1. ESM (Hie et al., 2024): This method uses a pre-trained
language model to identify potential mutations. Mutation
consensus among six ESM models is assessed, and all
promising sequences are collected over nine rounds.

2. AbLang (Tobias H. Olsen & Deane, 2022): Specifi-
cally trained on antibody sequences, the AbLang model
includes separate models for heavy and light chains. For
our purposes, we utilize the heavy chain model to iden-
tify promising mutations across nine rounds.

3. nanoBERT (Hadsund et al., 2024): Given our focus
on sdAbs, nanoBERT, a model pre-trained on sdAb se-
quences, is employed. We conduct nine rounds of muta-
tion identification.

Beyond language model-based methods, we include an ad-
ditional sequence-design baseline:

4. dWJS (Frey et al., 2023): handles discrete sequences
by learning a smoothed energy function, sampling from
the smoothed data manifold, and projecting the sample
back to the true data manifold with one-step denoising.

We also evaluate three structure-based methods. Although
our approach is sequence-based and does not inherently
require structures for design, we use AlphaFold2 (Jumper
et al., 2021) to predict the structures needed for these com-
parisons. The following methods are considered:

5. DiffAb (Luo et al., 2022): Trains a diffusion model
on amino acid types, coordinates, and orientations. An-
tibody optimization is achieved by introducing small
perturbations into the existing antibody-antigen complex
and subsequently denoising the structure. We generate
ten designs per antigen and use our predictor to select
the top three for evaluation.

6. AbDPO (Zhou et al., 2024): Based on DiffAb, this
model fine-tunes a pre-trained diffusion model using a
residue-level decomposed energy preference to enable a
low-energy protein sampling process. The sampling and
selection processes are similar to those of DiffAb.

7. GearBind (Cai et al., 2024): Utilizes multi-level geo-
metric message passing and contrastive pretraining to
improve predictions of affinity. We employ AbDPO to
produce ten designs per antigen, from which GearBind
selects the three most promising for assessment.

4.3. Training Details

We use a linker composed of 32 GGGGS repeats to connect
the sdAb and antigen. Our method utilizes the alternating
optimization framework with three iterations, where each

iteration introduces single-point, double-point, and triple-
point mutations. This allows for producing 1 to 9 mutations
in total. We set the AlphaFlow sampling steps T to 3 per iter-
ation with a schedule of [1.0, 0.6, 0.3, 0.0] and use a default
scaling factor γ of 5. We employ ESM2-8M, followed by a
hidden-dim-320 three-layer MLP, as the sequence-based pre-
dictor parameterized by α. For the structure-based predictor
parameterized by β, we use a five-layer GVP model, which
takes the structure and ESM2-8M residue embeddings as
input. For the co-teaching module, we use a batch size of
256 and a learning rate of 1 × 10−4 with the Adam opti-
mizer (Kingma, 2014). Computational efficiency is detailed
in Appendix D, and hyperparameter sensitivity is addressed
in Appendix E.

4.4. Results and Analysis

In Table 1, we present the experimental results on four set-
tings CDR-H1, CDR-H2, CDR-H3 and all design positions.
Delineating lines are drawn to distinguish between different
groups of methods. The best and second-best performance
are highlighted in bold and underlined, respectively.

We make the following observations: (1) As shown in Ta-
ble 1, our method consistently achieves the best perfor-
mance in terms of IMP and Sim, thereby highlighting its
effectiveness. (2) The notable IMP is mainly due to our
effective predictor guidance, which directs the structure
sample generation towards low binding energy. (3) The low
Sim scores can be attributed to antigen-specific modeling
and the diversity introduced by the AlphaFlow sampling
process. Language-based methods like ESM, AbLang, and
nanoBERT lack this feature, as they do not incorporate spe-
cific antigens into their design processes. Structure-based
methods such as DiffAb, AbDPO, and GearBind consider
specific antigens, but their simplistic diffusion models are
less effective at capturing antigen information compared to
our method.

(4) The language model-based methods ESM, AbLang, and
nanoBERT achieve the highest Nat scores, as they are im-
plicitly trained for this metric. Beyond these methods, our
approach achieves the best Nat. We attribute this to the
realistic structure modeling enabled by AlphaFlow and the
reliable inverse folding performed by ProteinMPNN, which
together translate structures into natural sequences. (5) Ab-
DPO, as a robust baseline, often achieves strong perfor-
mance in IMP, likely due to incorporating energy infor-
mation into its training, allowing for low-energy protein
sampling. However, AbDPO requires training a separate
diffusion model for each complex, adding complexity. (6)
Lastly, the high IMP scores for baseline methods can largely
be attributed to our trained sequence-based predictor. When
using a standard predictor trained only on supervised data,
IMP scores drop significantly. For example, in the CDR-H3
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Table 1: Overall performance comparison

Method CDR-H1 CDR-H2 CDR-H3 All
IMP ↓ Sim↓ Nat ↓ IMP ↓ Sim↓ Nat ↓ IMP ↓ Sim↓ Nat ↓ IMP ↓ Sim↓ Nat ↓

ESM 85.5% 0.559 0.347 72.9% 0.566 0.358 64.0% 0.573 0.359 84.1% 0.562 0.361
AbLang 88.0% 0.536 0.330 85.4% 0.537 0.322 88.5% 0.542 0.336 82.9% 0.548 0.349

nanoBERT 84.7% 0.534 0.322 85.9% 0.536 0.321 81.6% 0.537 0.328 86.0% 0.544 0.341

dWJS 82.7% 0.535 0.319 69.4% 0.537 0.304 66.1% 0.522 0.294 85.6% 0.545 0.317

DiffAb 85.5% 0.541 0.317 86.7% 0.548 0.318 85.6% 0.528 0.317 84.4% 0.540 0.316
AbDPO 88.3% 0.540 0.318 91.1% 0.545 0.318 87.8% 0.525 0.319 90.0% 0.540 0.315

GearBind 87.7% 0.543 0.315 87.1% 0.544 0.317 86.7% 0.527 0.317 88.9% 0.541 0.314

AffinityFlow 88.9% 0.526 0.320 93.3% 0.528 0.321 89.7% 0.514 0.322 91.2% 0.528 0.323

design setting, IMP drops from 64.0% to 22.7% for ESM,
from 88.5% to 49.4% for AbLang, from 81.6% to 46.7% for
nanoBERT, from 66.1% to 23.9% for dWJS, from 85.6% to
49.4% for DiffAb, from 87.8% to 50.6% for AbDPO, from
86.7% to 50.6% for GearBind, and from 89.7% to 68.3%
for our method. In this context, our method demonstrates a
clear advantage over the comparison methods.

Additional Comparisons. We further conduct experiments
with gg-dWJS (Ikram et al., 2024b), employing the trained
affinity predictor to guide sampling. Specifically, for the
CDR-H3 region, gg-dWJS achieves IMP, Sim, and Nat
scores of 67.2, 0.520, and 0.291, respectively, which are
still worse than our method. We observe that the IMP score
does not significantly improve compared to the original
dWJS (which is 66.1). This suggests that the affinity pre-
dictor used in the post-selection step of the original dWJS
already contributes effectively to guided generation.

Additionally, we implement an MCMC variant: At each step,
we use ESM to identify the top 20 most probable mutations,
randomly choose one mutation as a proposal, and use the
affinity predictor to compute its acceptance probability. We
repeat this procedure for a total of 9 steps for consistency.
Evaluating the resulting sequences, we obtain scores for
IMP, Sim, and Nat of 65.6, 0.562, and 0.360, respectively.
While the IMP score slightly improves (from the original
64.0 to 65.6), it remains inferior to our proposed method.
The drop in Sim likely stems from strong antigen-specific
guidance every step, while Nat improves due to MCMC’s
conservative acceptance.

4.5. Ablation Studies

We use AffinityFlow as the baseline to evaluate the effect of
removing specific modules, with results shown in Table 2.
The ablation studies are conducted on CDR-H3, considering
10 antigens for efficiency. Our focus is primarily on the IMP
metric, so the discussion centers around this metric.

Table 2: Ablation Study of AffinityFlow on CDR-H3.

Methods IMP ↓ Sim↓ Nat ↓

one-iteration 73.3% 0.512 0.319
w/o PC 83.3% 0.521 0.316

w/o AlphaFlow 63.3% 0.528 0.314

w/o energy 66.7% 0.531 0.322
w/o selection 76.7% 0.523 0.326

Ours 93.3% 0.514 0.330

Alternating Optimization This framework alternates be-
tween updating the structure with the sequence fixed, and
mutating the sequence with the structure fixed. In this study,
we perform a single iteration, applying multiple mutations si-
multaneously, referred to as one-iteration. We also evaluate
the impact of the predictor-corrector technique by excluding
the Amber relaxation step, denoted w/o PC. As shown in
Table 2, both ablations reduce performance, demonstrating
the predictor-corrector and Amber relaxation effectiveness.

We also evaluate the effect of directly removing the Al-
phaFlow framework. In this variant, we perform gradient
optimization on the existing protein structure instead of us-
ing predictor guidance. This step is followed by Amber
relaxation, after which we use ProteinMPNN to identify po-
tential mutations. This variant is denoted by w/o AlphaFlow
in Table 2, which shows that leaving out AlphaFlow leads
to the greatest performance drop compared to the other two
variants. We attribute this to AlphaFlow’s ability to capture
the natural fluctuations of proteins, resulting in more realis-
tic structures than those generated through direct gradient
ascent alone, and accessing binding conformations that may
be different from either a structure determined experimen-
tally or predicted by a model like AlphaFold. Less realistic
structures in turn yield less natural mutated sequences, as
reflected by the Nat score decreasing from 0.330 to 0.314.
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Figure 3: Visualizations of model-generated antibody structures bound to the SARS-CoV-2 RBD (a) Relative to a fixed
antigen, most model-generated antibodies (green) are predicted to bind with a noticeable rotation in binding pose compared
to the WT conformation (blue). (b) Our model suggests several mutations frequently, in particular Ala105Pro may stabilize
the CDR loop. (c) The buried Lys99Trp mutation interacts with multiple other aromatic residues across the interface.

Co-teaching We evaluate the co-teaching module with
two variants: (1) w/o energy: using the trained predictor on
limited labeled data only. (2) w/o selection: training on pair-
wise discrete data without sample selection. As shown in Ta-
ble 2, both variants reduce the IMP metric, highlighting the
effectiveness of the module. Notably, w/o energy performs
worse than w/o selection, demonstrating the value of bio-
physical energy data. We also observe that a better-trained
predictor improves specificity: our method achieves the
best Sim, while w/o selection ranks second. This likely re-
sults from the predictor’s role in estimating antigen-specific
binding energy, leading to greater specificity.

Additionally, we report the Spearman’s rank correlation
coefficient R (Spearmanr) on the test set. We isolate 10
antigens from the total dataset, with each antigen paired
with 77 sdAbs. We calculate Spearman’s R for each anti-
gen and present the average across the 10 antigens. The
models without energy data achieve R values of 0.0956 for
the sequence-based predictor and −0.0043 for the structure-
based predictor, respectively, reflecting the limitations of
the 120 labeled entries. By utilizing biophysical energy data
for direct fine-tuning, the sequence-based predictor reaches
a coefficient of 0.40, while the structure-based predictor
achieves 0.50. While not state-of-the-art for antibody bind-
ing energy prediction in general, these values demonstrate
the effectiveness of our approach when limited data is avail-
able. Sample selection further improves performance, with
the sequence-based predictor achieving a coefficient of 0.51
and the structure-based predictor reaching 0.52. These re-
sults highlight the benefits of using biophysical energies and
sample selection to enhance prediction accuracy.

4.6. Case Study

To further understand how AffinityFlow generates muta-
tions to improve binding, we analyze the structures of our
proposed mutants and the wild-type of a single-domain
antibody (sdAb) known to bind the SARS-CoV-2 receptor-
binding domain (RBD) (Yao et al., 2021). We generate 30
mutated structures, with half containing mutations only in
the CDR3 loop and half having mutations across all CDRs.
We use Rosetta to calculate binding energies (∆∆G) and
other interface metrics relative to the wild-type structure
(PDB ID 7D30).

All computed structures show ∆∆G < 0, suggesting that
the designed antibodies bind the antigen more tightly than
the native sequence. However, we do not observe any cor-
relation between ∆∆G and which CDRs are allowed to
mutate. We measure other interface metrics (dSASA, shape
complementarity) for all 30 structures and compare these
values with those computed for native antibody-antigen in-
terfaces in the PDB (Adolf-Bryfogle et al., 2018). Both
metrics indicate interface quality: (1) dSASA (change in
solvent-accessible surface area) reflects how well hydropho-
bic residues are buried and how closely the antibody and
antigen interact, and (2) shape complementarity measures
how well the two proteins fit together. The results align
well with natural structures, demonstrating that our model
preserves the correct shape profile of the binding surface.
Interestingly, despite conserving the binding interface shape,
most mutants (21/30) dock with a rotated binding pose of
approximately 67 degrees (Figure 3a). This rotation shifts
interactions away from CDR1 and toward stronger interac-
tions in CDR2 and CDR3.

Certain mutations occur frequently across all model-
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proposed antibodies, indicating that the model focuses at-
tention on these residues. Notably, Lys99Gly, Ala105Pro,
and Asp109Gly appear often, regardless of whether muta-
tions are restricted to the CDR3 loop or allowed across all
positions (Figure 3b). We believe that the Ala105Pro muta-
tion stabilizes the CDR3 loop into an optimal conformation
for this antigen. We used scikit-learn’s RandomForestRe-
gressor with 100 decision trees, training on mutation types
(input) and Rosetta-predicted ∆∆G (output). Model was
validated using R² on a 20% held-out test set. We find that
the rarer Ala105Leu mutation contributes most to improving
∆∆G, likely by increasing hydrophobicity at the interface
and promoting assembly.

Most intriguingly, one model-generated sequence includes a
Lys99Trp mutation, an unusual amino acid to insert within
an interface. Visual examination reveals that this tryptophan
residue is inserted such that it creates π-π interactions with
two aromatic residues across the interface as well as provid-
ing stabilizing interactions with a tyrosine on the antibody
itself (Figure 3c). This mutation is especially interesting, as
we detail below. Our case study uses the MR17 nanobody
(PDB: 7D30) from (Yao et al., 2021), which has a reported
KD of 83.7 nM. (Li et al., 2020) later introduced a mutant,
MR17m, with a Lys99Tyr substitution that improved IC50,
indicating higher potency (i.e., requiring less antibody to
achieve the same effect). They also suggested Lys99Trp
could be even more effective—an uncommon mutation that
AffinityFlow independently identified.

Our structural analysis of mutant and wild-type antibody
structures reveals several key insights into the nature of mu-
tations governing antibody-antigen binding. These results
validate our computational approach and also highlight its
potential to guide rational design of improved antibodies
against SARS-CoV-2 and other pathogens, opening new
avenues for therapeutic development.

5. Conclusion
We present AffinityFlow for optimizing antibody sequences,
introducing several key innovations. First, we develop an
AlphaFlow-based alternating optimization framework that
leverages predictor guidance to steer structure generation
toward high binding affinity, followed by targeted sequence
mutations. Second, we propose a co-teaching module that
integrates insights from noisy biophysical energies to refine
both structure- and sequence-based predictors. Our method
achieves state-of-the-art performance in affinity maturation
experiments across functionality, specificity, and rationality
metrics, demonstrating the effectiveness of AffinityFlow in
advancing antibody sequence design.

Impact Statement
Antibody affinity maturation aims to enhance the binding
affinity of antibodies to their target antigens, which has
broad implications in therapeutic development. This re-
search has the potential to significantly improve the efficacy
of antibody-based treatments for various diseases, including
cancer, autoimmune disorders, and infectious diseases. For
instance, optimizing antibodies against emerging pathogens
could play a crucial role in mitigating future pandemics and
saving millions of lives. While this work offers substantial
societal benefits, we acknowledge the potential for dual-use
concerns. Advances in antibody affinity maturation could, in
principle, be misused to develop harmful applications, such
as targeting specific biomolecules for malicious purposes.
As researchers, we are committed to raising awareness of
these risks and promoting ethical use of these methods. We
firmly believe that the potential benefits of this research
far outweigh the risks, given its promise to address critical
global health challenges. Additionally, we emphasize the
importance of community oversight and regulatory frame-
works to mitigate misuse. In this study, we have focused
solely on advancing machine learning methodologies for
antibody optimization, and we do not foresee any immediate
ethical concerns associated with this work.
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A. Related Work
Generative Protein Modeling Generative protein modeling primarily includes sequence-based language models and
structure-based score generative models. Language models are trained on protein sequence datasets using masked predic-
tion (Rives et al., 2019) or auto-regressive prediction (Ferruz et al., 2022). These models are often fine-tuned for specific
domains like antibodies, with examples including AbLang (Tobias H. Olsen & Deane, 2022), AntiBERTa (Leem et al.,
2022), IgLM (Shuai et al., 2021), and nanoBERT (Hadsund et al., 2024). Language models have also been explored for
modeling tokenized protein structures (Hayes et al., 2024; Su et al., 2023).

Score-based models, such as diffusion-based and flow matching models, mainly focus on generating protein structures.
(1) Diffusion-based models like RFdiffusionAA (Krishna et al., 2024) and AlphaFold3 (Abramson et al., 2024) generate
structures through coordinate denoising. RFdiffusionAA has been applied to antibody design (Bennett et al., 2024), but its
code is not open-sourced. Chroma (Ingraham et al., 2023) introduces property-specific guidance into diffusion models but
does not research antibody design. Similarly, (Kulytė et al., 2024) incorporates force-field guidance but struggles to capture
realistic structures due to the simplicity of the diffusion model. (2) Flow matching models have shown greater effectiveness
and efficiency compared to diffusion models. Recent studies like AlphaFlow (Jing et al., 2024) and FoldFlow-2 (Huguet
et al., 2024) explore sequence-conditioned flow matching for protein structure generation. In this work, we utilize the
AlphaFlow framework for antibody sequence design due to its demonstrated effectiveness. It is worth noting that score-based
generative models have also been applied to model discrete biological sequences (Campbell et al., 2024; Frey et al., 2023; Li
et al., 2024; Ikram et al., 2024a).

Co-teaching Co-teaching (Han et al., 2018) is a robust technique for addressing label noise by utilizing two collaborative
models. Each model identifies small-loss samples from a noisy mini-batch to train the other. Co-teaching is conceptually
related to decoupling (Malach & Shalev-Shwartz, 2017) and co-training (Blum & Mitchell, 1998), as all these approaches
involve collaborative learning between two models. In this study, we adapt co-teaching to work with biophysical binding
energy data rather than a noisy dataset. Specifically, the sequence-based predictor identifies clean samples for training the
structure-based predictor, and vice versa.

B. Predictor Guidance in Flow Matching
According to Lemma1 in (Zheng et al., 2023),

ṽ(xt, t,∆G;θ) = atxt + bt∇xt log pβ(xt, t | ∆G) (10)

Based on this, we can derive:

ṽ(xt, t,∆G;θ) = atxt + bt∇xt
log pβ(xt, t) + bt∇xt

log pβ(∆G | xt, t)

= ṽ(xt, t;θ) + bt∇xt
log pβ(∆G | xt, t)

(11)

In our case, bt = 1−t
t , and this leads to:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ) +
1− t

t
∇xt

log pβ(∆G | xt, t). (12)

C. Computation Approximation
The guided vector field is defined by:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ)− γ
1− t

t
∇xt

f̂β(x̂1(xt)). (13)

We compute ∇xt
f̂β(x̂1(xt)) as:

∇xt
f̂β(x̂1(xt)) =

∂f̂β(x̂1(xt))

∂x̂1

∂x̂1(xt)

∂xt
(14)

As t approaches 1, x̂1 closely approximates xt, allowing for the simplification:

∂x̂1(xt)

∂xt
≈ I, (15)
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Figure 4: The antibody metrics versus scaling factor γ,
normalized to their values at γ to those with γ = 5.0.
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Figure 5: The three antibody metrics versus scaling
factor T , normalized to their values at T = 3.

where I represents the identity matrix. Consequently, we approximate the gradient as:

∇xt
f̂β(x̂1(xt)) ≈

∂f̂β(x̂1)

∂x̂1
(16)

D. Computational Efficiency
All experiments are conducted on a g5.24xlarge server equipped with GPUs with 23GB of memory. One iteration of our
alternating optimization framework takes approximately 10 minutes for a protein of length 500. Language model-based
methods are more computationally efficient, with processing times of 18.3 seconds for ESM, 13.0 seconds for Ablang,
and 11.4 seconds for nanoBert per sample. However, our method consistently produces significantly better designs than
these methods, as discussed. In applications such as antibody design, the most time-consuming and costly stage is often the
evaluation of properties in wet-lab experiments. Thus, the differences in computation time between methods for generating
high-performance designs are less significant in practical production settings, where optimization performance is prioritized
over computational speed. This is consistent with the discussions in A.7.5 Computational Cost (Chen et al., 2023).

E. Hyperparameter Analysis
This section examines the sensitivity of our method to various hyperparameters—namely, the scaling factor (γ) and the
number of sampling steps (T ) on CDR-H3 with 10 antigens. The reported metrics are normalized by dividing by the default
hyperparameter result to facilitate comparative analysis.

Scaling Factor (γ): The effect of varying γ is investigated with values 0.0, 2.5, 5.0, 7.5, and 10, and γ = 5.0 as the standard
setting. As indicated in Figure 4, the Sim and Nat metrics are stable across the range of γ. However, below γ ∼ 5.0 the IMP
metric drops substantially, presumably because there is insufficient exploration of alternate backbone conformations when γ
is small.

Number of Sampling Steps (T ): We analyze the impact of the number of sampling steps T on the effectiveness of our
method. The normalized metric is plotted as a function of T in Figure 5. Again the Sim and Nat metrics are relatively
unaffected by the choice of T , but IMP requires 3 sampling steps for maximum benefit. Again this suggests that more
exploration of the conformational space improves the final design.

14


