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Abstract

PAC-Bayes learning is a comprehensive setting for (i) studying the generalisation
ability of learning algorithms and (ii) deriving new learning algorithms by opti-
mising a generalisation bound. However, optimising generalisation bounds might
not always be viable for tractable or computational reasons, or both. For example,
iteratively querying the empirical risk might prove computationally expensive. In
response, we introduce a novel principled strategy for building an iterative learning
algorithm via the optimisation of a sequence of surrogate training objectives, inher-
ited from PAC-Bayes generalisation bounds. The key argument is to replace the
empirical risk (seen as a function of hypotheses) in the generalisation bound by its
projection onto a constructible low dimensional functional space: these projections
can be queried much more efficiently than the initial risk. On top of providing
that generic recipe for learning via surrogate PAC-Bayes bounds, we (i) contribute
theoretical results establishing that iteratively optimising our surrogates implies
the optimisation of the original generalisation bounds, (ii) instantiate this strategy
to the framework of meta-learning, introducing a meta-objective offering a closed
form expression for meta-gradient, (iii) illustrate our approach with numerical
experiments inspired by an industrial biochemical problem.

1 Introduction

Generalisation is arguably one of the central problems in machine learning. Among the different
techniques to study generalisation, PAC-Bayes has gained considerable traction over the past decade,
as evidenced by the surge in publications. We refer to the seminal works of Shawe-Taylor and
Williamson [1997], McAllester [1999], Catoni [2004, 2007] and to the recent surveys and monographs
from Guedj [2019], Hellström et al. [2023], Alquier [2024] for a thorough overview of the field.

One appealing feature is that PAC-Bayes learning is a comprehensive setting for (i) studying the
generalisation ability of learning algorithms and (ii) deriving new learning algorithms by optimising
a PAC-Bayes generalisation bound. This is the strategy pursued in a number of recent works, among
which Germain et al. [2009], Biggs and Guedj [2021], Germain et al. [2015], Viallard et al. [2023],
Zantedeschi et al. [2021], Rivasplata et al. [2019], Pérez-Ortiz et al. [2021], Zhou et al. [2019].

We now regard this strategy of substituting a generalisation bound to more classical training objectives
as established, and we focus here on the computational aspect of this strategy. Indeed, optimising
generalisation bounds might not always be viable for tractable or computational reasons, or both.

∗Centre International de Recherche Sur l’Eau et l’Environnement.
†Department of Computer Science and Centre for Artificial Intelligence.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

antoine.picard.ext@suez.com
roman.moscoviz@suez.com
benjamin.guedj@inria.fr


Most PAC-Bayes bounds do not admit a close form minima formulation; moreover, such bounds
involve expectations and divergence terms which in general settings can not be evaluated in closed
form and thus require the use of approximation methods such as Monte-Carlo sampling (see amongst
others Seldin and Tishby [2010], Dziugaite and Roy [2017], Neyshabur et al. [2017], Mhammedi et al.
[2019]). Such approximation methods can prove computationally intensive, notably if the empirical
risk, whose expectation is optimised in the bound, is hard to query. Picard-Weibel et al. [2024] reports
that such queries proved to be the main computational bottleneck when optimising a PAC-Bayes
bound in a bio-chemical model calibration task. More generally, models whose predictions require
solving stiff ordinary differential equations (ODE) or partial differential equations (PDE), such as
naturally occurs in physics or biology inspired problems, result in empirical risks whose query can be
computationally expensive, in practice all but making numerous iterative computations of PAC-Bayes
objective’s gradients impracticable.

In response to the aforementioned difficulties for optimising PAC-Bayes generalisation bounds
in practice, we introduce a novel principled strategy designed to mitigate the computational cost
of querying the empirical risk, Surrogate PAC-Bayes Learning (SuPAC, see algorithm 1). We
build a learning algorithm which iteratively optimises a sequence of surrogate training objectives
in which the empirical risk is replaced by a proxy. This proxy is built as the orthogonal projection
of the true empirical risk on a functional vector space of finite dimension, which we conjecture
can be queried much more efficiently than the initial risk. A key motivation is that such surrogate
objectives can offer adequate approximations of the true objective valid much further away than the
linear approximation offered by the gradient, and enable larger optimisation steps. This effectively
decouples the complexity of querying the empirical risk and optimising PAC-Bayes objectives.

Our contributions. We list below our four main contributions, spanning theory, algorithmic,
application to meta-learning and numerical experiments.

1. We provide a generic recipe for learning via surrogate PAC-Bayes bounds, which we believe
is of practical interest for machine learning tasks involving computationally intensive models
with moderate dimension (e.g. physics models with less than few hundred parameters),

2. contribute theoretical results establishing that iteratively optimising our surrogates implies
the optimisation of the original generalisation bounds. This is established by Theorem 1 and
further developed in Corollary 1 and Theorem 2,

3. instantiate this strategy to the framework of meta-learning, introducing a meta-objective
with a closed form expression for meta-gradient,

4. illustrate our approach with numerical experiments inspired by an industrial biochemical
setting using an anaerobic digestion model.

Outline. The paper is organised as follows: in Section 2 we set the stage and introduce our
generic framework. In Section 3, we construct functional approximation spaces and establish generic
guarantees for our framework. In Section 4, we focus on Catoni’s bound [Catoni, 2007] and describe
a practical implementation of our framework. In Section 5, we investigate how our surrogate PAC-
Bayes minimisation strategy can be used in meta-learning settings. Numerical experiments are
described in Section 6. Future prospects are discussed in Section 7. The manuscript closes with
an appendix in which we gather (i) technical proofs in Appendix A, (ii) implementation details in
Appendix B.

2 A generic surrogate framework

Consider a measurable spaceH of predictors, denote P the set of all probability distributions onH,
andM(H) the set of measurable real valued functions. For a probability distribution π ∈ P , let
L1(π) (resp. L2(π)) denote the set of integrable (resp. square integrable) functions with respect to π.
For a f ∈ L1(π), π[f ] denotes the mean of f with respect to π (the notation is extended for functions
outputting vectors), while for functions in L2(π), Vπ[f ] denotes the variance of f (resp. covariance).

A PAC-Bayes bound, denoted PB, can generically be summarised as a real valued function of four
variables: a generic distribution π ∈ P , a prior distribution πp ∈ P , an empirical risk function R ∈ P ,
and other factors which we regroup as γ (e.g. the confidence level, the PAC-Bayes temperature, the
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size of the dataset). A PAC-Bayes theorem states that, under given assumptions on the data generation
mechanisms and risk, the average risk function R = E[R] satisfies for some function q

P
[
∀π ∈ P, π

[
R
]
≤ PB (π,R, πp, γ)

]
≥ 1− q(γ), (1)

where the probability is taken on the data generation mechanism. Due to the bound holding simul-
taneously for all distributions with high probability, it notably holds with high probability on the
minimiser of the bound, hence the PAC-Bayes minimisation task

arg inf
π∈P

PB (π,R, πp, γ) . (2)

We consider a restriction of this minimisation task on a subset Π ⊂ P of all probability distributions.
Such a restriction might be justified by various considerations, including storage of the calibrated
distribution, simplification of the minimisation task or even expert knowledge [Alquier et al., 2016,
Dziugaite and Roy, 2017, Picard-Weibel et al., 2024]. However, even this simplified minimisation
problem might prove computationally difficult for Gradient Descent (GD) based algorithm. This
is especially the case when evaluating the empirical risk is costly, e.g. when the prediction model
involves solving stiff ODEs or PDEs. As PAC-Bayes bounds depend on the π-mean of the empirical
risk, each gradient estimation rely on numerous new evaluations of the empirical risk. For ODEs
Ṡ = F (S, t, x) where F is very sensitive with respect to S, numerous evaluations of F are required
to obtain adequate numerical solutions in a given range [t0, t1]. These evaluations must moreover be
performed iteratively, and hence can not be parallelized. Moreover, implementing the ODE solver
in a way to benefit from GPU speed up when simulating for multiple parameters xs simultaneously
might not be practicable, since most ODE solver use a varying step size which will depend on x.
This will result in typically long model calls which can not be massively parallelised. To overcome
this difficulty, we introduce the Surrogate PAC-Bayes bound learning framework (SuPAC), which is
based on alternatively building and solving surrogate problems. It is designed to reduce the number
of calls to the risk - and consequently, in our ODE example, to the ODE solver.

Formally, we consider an approximation algorithm F : Π×M(H) 7→ M(H) in conjunction with
an approximate solving algorithm Solve : P ×Π×M(H) 7→ Π. Informally, F constructs a proxy
of the empirical risk valid for the current posterior estimation π; while Solve updates the posterior
estimation by solving the resulting surrogate objective (Algorithm 1).

Algorithm 1 Surrogate PAC-Bayes Learning
framework (SuPAC)

Require: PB, π0 ∈ Π, πp ∈ P , R ∈M(H)
π ← π0

while not converged do
f ← F(π,R)
π ← Solve(πp, π, f)

end while

Algorithm 1 offers a lot of leeway for building
surrogates (e.g., iteratively refining an ODE or
PDE solver, tailor-made surrogates for phys-
ical models, polynomial approximations) as
well as solving the surrogate problem. For
such a framework to be practicable, two con-
ditions should apply: the construction of the
surrogate and approximate solving should be
faster than solving the initial problem, and the
algorithm’s result should tend to diminish the
PAC-Bayes bound. Intuitively, the choice of
the approximation mechanisms plays a critical
role; indeed, the more precise the approxima-

tion, the more likely is the minima of the surrogate task to be close to the true minimiser, but the
harder the approximation task and the surrogate construction task.

3 Constructing surrogate function spaces

A core contribution of the present work is to show that for generic PAC-Bayes bounds and generic
probability families Π of dimension d, L2(π) orthogonal projection of the true score on a functional
vector space of dimension d+ 1 is sufficient to obtain convergence guarantees.

A few assumptions on the PAC-Bayes bounds, the risk R and the probability family Π are required.
Assumptions. (A1) Π = {πθ, θ ∈ Θ} is a parametric set indexed by an open subset Θ ⊆ Rd;

(A2) ∀θ ∈ Θ, πθ is absolutely continuous with respect to πp and dπθ

dπp
(x) = exp(ℓ(θ, x)) with

θ 7→ ℓ(θ, x) differentiable for all x;
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(A3) ∀θ ∈ Θ, ∃Nθ a neighbourhood of θ such that x 7→ supθ∈Nθ
|∂θℓ(θ, x)| ∈ L2(πθ);

(A4) R ∈ ∩θ∈ΘL2(πθ);

(A5) There exists P̃B such that PB(πθ, R, πp, γ) = P̃B(θ, πθ[R], πp, γ) (i.e. PB’s dependence on
the empirical risk is limited to the posterior average of the empirical risk). Moreover, P̃B is
differentiable with respect to its two first arguments.

We emphasise that these assumptions are valid for essentially all PAC-Bayes bounds, most risks, and
for a wide variety of probability distributions, and are thus rather more technical than restrictive.
Although the second assumption rules out probability distributions whose support is not included in
the prior support, we remark that such distributions usually yield vacuous PAC-Bayes bounds due to
penalisation terms (e.g., vacuous Kullback-Leibler divergence), and as such are already ruled out.
Most standard family of distributions, including Gaussian and Gaussian mixtures, satisfy (A1) to (A3)
for adequate parameterizations. The fourth assumption is automatically satisfied for all bounded risks,
which is a typical assumption of PAC-Bayes bounds, but also allows for unbounded risks provided
that they are square integrable (e.g. polynomials if Π span Gaussian would satisfy (A4)). The last
assumption is satisfied by most PAC-Bayes bound, e.g. those of McAllester [1999], Maurer [2004].

Since Π is parameterized by Θ, we will abuse notations for functions of Π and write G(θ) := G(πθ).
For a given θ, the functional vector space Fθ :=

{
fη,C : x 7→ η · ∂θℓ(θ, x) + C | η ∈ Rd, C ∈ R

}
provides a natural approximation space of dimension d+ 1. We are now in a position to state our
main approximation result.
Theorem 1. Under assumptions (A1) to (A5), replacing the empirical risk R by the proxy risk

fR,θ := arg inf
f∈Fθ

πθ[(R− f)2]

leaves the gradient of the objective PB invariant, i. e.

∂1PB(θ,R, πp, γ) = ∂1PB(θ, fR,θ, πp, γ).

This result also holds if the approximation space Fθ is replaced by Fθ + G := {f + g | f ∈ Fθ,G}
for any set G ⊂ L2(πθ).

Proof. Assumptions (A3) and (A4) allow differentiating θ 7→ πθ[R] = π
[ dπθ

dπ R
]

under the integral
sign (see Theorem 6.28 in Klenke [2020]), yielding ∇πθ[R] = πθ[R∂θℓ]. As such, the derivative of
P̃B(θ, πθ[R], πp, γ) with respect to θ equals ∂1P̃B(θ, πθ[R], πp, γ)+ ∂2P̃B(θ, πθ[R], πp, γ)πθ[R∂θℓ].

As the only dependence on the gradient with respect to R is on the value of π[R] at which the
derivative is evaluated and on the vector πθ[R∂θℓ], it follows that ∂θPB is not modified by replacing
R by a function f ∈ L2(πθ) satisfying the following linear system:

{
πθ[R∂θℓ] = πθ[f∂θℓ],

πθ[R] = πθ[f ].
(3)

By construction of Fθ, the linear system (3) is satisfied if and only if (f − R) ∈ F⊥
θ , where A⊥

denotes the orthogonal complement of A in L2(πθ). Hence for any set G ⊂ L2(πθ), the orthogonal
projection of R on F̃ = Fθ+G satisfies the linear system (3). Noticing that the orthogonal projection
fR,θ of R on space F̃ satisfies fR,θ = arg inff∈F̃ πθ[(R− f)2] ends the proof.

Informally, Theorem 1 guarantees that if searching for a PAC-Bayes posterior in a space of size
d, adequately projecting the score on a space of dimension at most d+ 1 preserves the immediate
surrounding of the PAC-Bayes objective. If the approximation built at θ maintains near optimal
performance for a large neighbourhood of θ, this surrogate task provides a valid approximation of the
true task for a wide range of distributions, and offers approximate solutions θ̃ much further away than
the range of validity of the objective’s gradient.

The extension of the result for Fθ + G implies that proxy score functions combining a known,
simplified model with a learnt correction term can be used. For G = {h}, it implies that the result
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holds if the approximation space consists of a fixed user defined proxy and a correction term. This
can have direct practical implications in settings where efficient, natural proxy are available; the
learnt corrective term would presumably be smaller, and hence the approximation’s validity larger.

A direct consequence of Theorem 1 is a fixed point characterisation of the minima of the PAC-Bayes
objective for instances of Algorithm 1 using GD based surrogate solver (see proof in Appendix A.1):

Corollary 1. Under assumptions (A1) to (A5), the minimiser θ̂ of the original PAC-Bayes bound is a
fixed point of any instance of Algorithm 1 such that:

• the approximation function is F(πθ, R) := arg inff∈Fθ
πθ[(R− f)2],

• the surrogate solving Solve strategy is any (corrected) gradient descent strategy starting
at the current θ, using update steps of form Updt(θ) = θ −M(π, θ, f, γ)∂θPB(θ, f, πp, γ),
where M stands for any function returning an endomorphism, for any number of steps, any
convergence criteria.

It should be stressed that Corollary 1 does not imply that Algorithm 1 improves on GD. Corollary 1
only guarantees that replacing the score by a low dimensional approximation is harmless locally.
Informally, if the approximation built at θ maintains near optimal performance for a large neighbour-
hood of θ, this surrogate task provides a valid approximation of the objective for this wide radius, and
can construct approximate solutions θ̃ much further away than the range of validity of the gradient.
SuPAC decouples the variations of the bound due to the evolution of θ and fθ,R; such a decoupling is
particularly interesting if the approximation fθ,R is stable.

4 Exponential family and Catoni’s bound

4.1 Closed form surrogate solution and fixed point property

Theorem 1 involves approximation of the empirical risk through orthogonal projection on a local
functional vector space Fθ of dimension at most d + 1. A setting of particular interest concerns
families of probabilities such that the space Fθ does not depend on θ. Exponential families, i.e.
family of distributions of the form

ΠT =

{
πθ |

dπθ

dπref
= exp(θ · T − g(θ) + h)

}
,

are a well studied class of probability family which satisfy this property (and essentially the only
such class if Θ is connected and the likelihood smooth, see Theorem 3 in Appendix A.3). The
approximation space can be written as F = {fC,θ := θ · T + C}. Without loss of generality, we
assume that functions (1, T1, . . . , Td) are linearly independent.

Exponential families define a tractable, yet flexible class of probability families, spanning from
simple, fixed variance distributions to multimodal distributions [Cobb et al., 1983]. They englobe
most familiar distribution families such as multivariate Gaussians, Beta and Gamma [Brown, 1986].
The approximation space they generate can equally vary. For Gaussian distributions, we remark that
F covers quadratic forms.

We now focus on the celebrated PAC-Bayes bound from Catoni [Catoni, 2007, Alquier, 2024],

PBCat(π, πp, R, (λ, δ, n, C)) = π[R] + λKL(π, πp) +
C2

8λn
− λ log(δ), (4)

where KL(ν, µ) = ν
[

dν
dµ

]
is the Kullback–Leibler divergence and λ is the PAC-Bayes temperature.

Catoni’s bound holds with probability 1− δ if 0 ≤ R ≤ C. Due to its particular form, minimising
the bound amounts to minimising the simpler objective ObjCat,λ := π[R] + λKL(π, πp).

For simplicity, we will assume that πp = πθp ∈ Θ. In this setting, (A1), (A2) and (A4) are
automatically verified. A key incentive to use Catoni’s bound is that the surrogate objective can
be solved in closed form; for risks of form fη,C , if the prior belongs to the exponential family, the
minimiser of Catoni’s bound on P belongs to Π, and it follows that

arg inf
θ

PBCat(πθ, πθp , fη,C) = θ̃(η) := θp − λ−1η,
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provided that θp − λ−1η ∈ Θ (if not, Catoni’s bound does not admit a minima) (see Lemma 2.2, and
Corollary 2.3 in Alquier [2024]). Since the posterior distribution does not depend on the constant
term C we will note fη for any fη,C ∈ F .

We can here use the exact solution of the surrogate PAC-Bayes bound rather than have to minimise
the bound through GD. The following lemma (proved in Appendix A.2) bridges the gap by showing
that the update rule using the closed form solution can be interpreted as a corrected GD step:

Lemma 1. Consider an exponential family Π := {πθ | θ ∈ Θ} with sufficient statistic T . Noting
F := {fη : x 7→ η · T (x) +C | η ∈ Rd, C ∈ R}, let fη ∈ F . Then for any prior parameter θp ∈ Θ,
for any parameter θ, the mapping θ̃(η) := θp − λ−1η satisfies:

θ̃ = −λ−1I(θ)−1∇θPBCat(θ, θp, fη, γ) + θ,

where I(θ) denotes Fisher’s information matrix.

A direct consequence of Lemma 1 is that Corollary 1 applies when using the exact solver for the
surrogate Catoni task. Since Fisher’s information is positive, it follows that the update direction θ̃− θ
always diminishes the bound locally. We summarise these results in the following theorem.

Theorem 2. The minimiser of Catoni’s PAC-Bayes objective on an exponential family is a fixed point
of Algorithm 1 with approximation function

F(πθ, R) := arg inf
f∈F

πθ[(R− f)2],

and surrogate solver

Solve(πp, θ, fη) := θp − λ−1η = arg inf
θ∈Θ

PBCat(θ, πp, fη, γ).

Moreover, for all θ,
∇PBCat · (Solve(πp, θ,F(θ,R))− θ) ≤ 0.

As noted above, the solution of the surrogate task must belong to Θ to define a probability distribution.
There is however no guarantee that such is the case for any approximated risk. For instance, if the risk
is estimated close to a local maxima by a quadratic function, the resulting surrogate task might not
have a minima, and hence the resulting θ(η) might fail to be a probability distribution, causing the
algorithm to break. Another difficulty lies in solving the approximation task. Involving an integral of
a function of the risk, the objective theoretically requires evaluations of the risk at all predictors. We
show in the next section how both these issues can be solved in practice.

4.2 Framework implementation: SuPAC-CE

Following Theorem 2, we propose an algorithm, SuPAC-CE (https://github.com/
APicardWeibel/surpbayes), designed to efficiently find the minimiser of Catoni’s bound on
Exponential families.

4.2.1 Implementing the approximation

As the surrogate PAC-Bayes bound is solved using a closed form expression, the computational
bottleneck of Algorithm 1 is the approximation task of computing η(θ) = arg infRd πθ[(fη −R−
πθ[fη −R])2]. Due to the form of fη, this is formally a least square weighted linear approximation
problem with infinite number of observations, whose solution can be explicitly written as η =
Vπ[T ]

−1π[R(T − π[T ])]. This solution can be approximated using a finite number of function
evaluations R(xi), replacing the probability π by an empirical counterpart πemp =

∑N
i=1 ωiδxi

.

Different choices of (xi, ωi) can be considered. A first approach consists in drawing i.i.d. samples
from πθ and considering uniform weights. This guarantees that the approximated objective is
unbiased. A main shortcoming of this approach, however, is that it disregards all previous risk
evaluations at each step. Corrections of the form dπθ

dπθ̃
can be used to salvage samples drawn from πθ̃,

all the while guaranteeing unbiased approximated objective. This however can drastically increase
the variance, and thus might not be practical.
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We advocate a generation agnostic approach for the weighing process, which treats all available
risk evaluations in a like manner. We assume thatH is a metric space. For all predictors (xi)i∈[1,N ]

whose risk R(xi) is known, target weights ω̃i are defined as the probability given to the Voronoi
cell xi by distribution πθ. This target weight can be approximated using Monte Carlo simulations
and solving nearest neighbour in (xi)i∈[1,N ] tasks. The distance used for the Voronoi cell can
depend on the distribution πθ –(e.g. Mahalanobis distance for Gaussian exponential families). This
approach requires, if the empirical distribution

∑
ωiδxi is to form an adequate approximation of

the distribution πθ, some queries from to πθ. The stack of function evaluation is hence appended at
each approximation step by evaluating samples from πθ. As this weight computation can bring some
overhead, it is only appropriate when risk queries are the main computational bottleneck.

4.2.2 Boundary issues

PAC-Bayes bounds typically hold for empirical risk functions satisfying moment bounds (with
respect to the data generation mechanism) or boundedness conditions (the latter being usually
required for Catoni’s bound). Such assumptions might no longer be met for the approximated risks. A
consequence is that the minimiser of the surrogate task might not exist. For instance, a local quadratic
approximation of the score near a local maxima can induce a surrogate task whose minima is − inf .

To ensure that for any score approximation fη,C , the surrogate solver always define a probability
distribution, two regularisation hyperparameters klmax and αmax are introduced. klmax ∈ R+ ∪+∞
determines the maximum step size allowed between two successive posterior estimation, measured
in Kullback–Leibler divergence. αmax ∈]0, 1] acts as a dampening hyperparameter. The corrected
update rule is changed to θ̃c(θ) = α̃(θ̃(η) − θ) + θ with α̃ the highest α ≤ αmax such that
KL(θ̃c, θ) ≤ klmax. Such α̃ can be easily obtained through a Newton scheme or dichotomy, noticing
that it is defined through f(α̃) = C for a non decreasing function f .

This modification does not impact the fixed point property of Theorem 2. Moreover, if the empirical
risk R belongs to F , choosing klmax <∞, αmax = 1 results in convergence in a finite number of
steps (resp. exponential convergence for αmax < 1) (see Appendix A.4).
Remark 4.1. While SuPAC-CE is designed to optimize Catoni’s PAC-Bayes bound (4), it can serve
as a work engine for the minimisation of other PAC-Bayes bounds. For instance, Proposition 2.1
from Germain et al. [2015] implies that Maureer-Langford-Seeger’s bound (MLS bound, Maurer
[2004], Langford and Seeger [2001] can be rewritten as

PBMLS = inf
λ>0

1− exp
(
−ObjCat,λ

λn − log(ξ(n)/δ
n

)
1− exp (−1/(λn))

 .

As such, the minimisation of MLS bound could be performed by alternatively minimizing Catoni’s
objective at fixed temperature using SuPAC-CE and solving on the temperature at fixed posterior. The
generation agnostic weighing approach moreover implies that re-optimising Catoni’s objective after a
small change of temperature can be done with few new risk queries (see the strategy developed in
Section 5). This strategy is further detailed in Appendix C.

5 Surrogate Catoni in a Meta-Learning framework

Both the Bayes and PAC-Bayes framework offer a natural connection with Meta-Learning, as both
involve a natural inductive bias in the form of the prior. Previous work which studied Meta-Learning
for PAC-Bayes include Pentina and Lampert [2014], Amit and Meir [2018], Rothfuss et al. [2023],
Zakerinia et al. [2024]. The aim of PAC-Bayes Meta-Learning is the construction, from a sample
of independent train tasks, of a prior yielding optimal generalisation bounds on new unknown test
tasks. Such optimisation of the prior brings two benefits: tighter generalisation bounds (smaller
penalisation); and simplified PAC-Bayes learning task (better initial guess). For PAC-Bayes meta
learning, a natural training objective can be derived from the minimised PAC-Bayes bounds obtained
for each task. This defines the following meta training objective, analogue to an empirical risk at the
meta level:

M(πp) =
∑
i

inf
π∈Π

PB(π̂i, Ri, πp, ηi), (5)
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where π̂i denotes the task posterior and is a function of Ri, πp and ηi. The objective defined in
Equation (5) departs from previous formulations which typically involve a further penalisation term at
the meta level. We advance two justifications for this simplification. First, the extra penalisation term
involves divergence terms between a meta prior and meta posterior (both distributions on probability
distributions) which in practice make the bound vacuous and thus of limited practical interest. Second,
PAC-Bayes theory already offers guarantees on the generalisation performances of each test task,
limiting the need to assess the generalisation performance at the meta level. Arguably, the task
specific bound provided by using PAC-Bayes as inner algorithm is more informative than the "mean"
task bound offered by a meta PAC-Bayes algorithm (when PAC-Bayes learning is used both as inner
algorithm and meta training algorithm).

We consider that assumptions (A1) to (A5) hold, and also these further mild assumptions: the prior is
looked for in Π, i.e π = πθp ; the PAC-Bayes bound PB is differentiable w.r.t. θp. Then, noting θ̂i the
posterior parameter for each task, a simplification of the meta gradient occurs:

∇M(θp) = ∂θpPB(θ̂i(θp), Ri, θp, ηi) = ∂3PB(θ̂i, Ri, θp, ηi). (6)

Remarkably, the knowledge of the derivative of θ̂i with respect to θp is not required to compute the
meta gradient. This is due to ∂1PB being 0 when evaluated for the prior posterior. We stress that
such a simplification is specific to our meta-learning objective. It does not occur in meta-learning
strategies such as MAML [Finn et al., 2017], where the performance of each task is assessed on a
test set. In the context of PAC-Bayes, such reliance on test sets can be optimistically replaced by the
PAC-Bayes bounds, which give test guarantees with high probability. It is unclear whether such a
simplification occurs in previous PAC-Bayes Meta Learning objectives from the literature, as these
involve distributions on priors rather than a single prior.

A key consequence is that training the meta learning algorithm is as hard as cycling all the Bayesian
optimisation tasks. In a nutshell, meta learning is as hard as re optimising the bound for a new prior.

SuPAC-CE brings two main benefits when used in conjunction with meta-learning. First, by improving
the optimisation efficiency for a given prior, SuPAC-CE speeds up the meta-learning procedure.
Second, the "generation agnostic" weighing approach implies that risk revaluations from previous
optimisation procedures can be reused. As a consequence, re optimisation of a PAC-Bayes bound for
a new prior can conceivably be performed with few risk queries, bringing an additional speed-up.
Moreover, the setting considered for SuPAC-CE enjoys an analytical expression for meta-gradients,
∇M(θp) =

∑
i λi(∇g(θ̂i)−∇g(θp)) which can be efficiently evaluated.

6 Experiments

SuPAC-CE was assessed on the learning task described by Picard-Weibel et al. [2024]. A PAC-Bayes
bound is minimised on Gaussian distributions with block diagonal covariance in order to calibrate
30 parameters of a biological inspired numerical model describing anaerobic digestion processes,
ADM1 [Batstone et al., 2002]. This model relies on solving a stiff ODE to predict the evolution of
the states, and is therefore quite computationally intensive (about 3 seconds per model query in our
experiments).

We compared SuPAC-CE to standard GD on a synthetic dataset from Picard-Weibel et al. [2024],
using the same family of distributions and risk function. For SuPAC-CE, 160 risk queries where
performed for the initial step, and 32 for all further step. A maximal budget of 9600 empirical risk
queries was fixed; hyperparameters for the GD were selected after evaluating a grid on the first 1600
queries. Mean risks were assessed at test time by resampling new predictors from the posterior. The
PAC-Bayes temperature was set to 0.002. Training procedures were repeated 20 times.

The performance of the sequence of posteriors were compared by aligning the number of empirical
risk queries. Indeed, the main motivation of SuPAC-CE is the setting when querying the empirical
risk is computationally expensive, and can be assumed to be the computational bottleneck. This is
indeed the case for the anaerobic digestion example considered here. At equal number of risk queries,
SuPAC-CE required an extra 3.5% processing time compared to gradient descent, mainly caused by
the weighing process.

SuPAC-CE proved significantly more efficient at minimising the bound than GD (see Figure 1a). The
average performance of our algorithm proved better after 1800 queries than the best performance
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Figure 1: Experiments results. Figure 1a compares the optimisation performance of our algorithm
SuPAC-CE with gradient descent approaches on an biochemical calibration task. Optimisation
procedures were repeated 20 times; median performance and quantiles 0.2 and 0.8 are represented.
Figure 1b investigates train and test performance of the meta-learning approach of Section 5. Mean
test performance, as well as quantiles 0.2 and 0.8 for the sequence of built prior is assessed on
40 tasks and compared to the train performance. SuPAC-CE reduced the PAC-Bayes objective to
0.121± 0.004 (avg. risk of posterior of 0.102± 0.003).

obtained after the full 9600 queries for GD. The experiments also indicate that our procedure offers
much higher stability compared to GD, both during training and between the training duplicates. This
could be attributed to the "generation agnostic" weighing approach, which relies on all previous risk
evaluations at each step and is thus more stable. On the other hand, the noisy gradients estimates
have some probability of leading to problematic steps during GD, leading to sharp increase in the
objective. In our experiments, 4 out of 20 GD procedures thus led to a worse performance than the one
obtained by a single optimisation step of SuPAC-CE. The posterior distributions constructed through
SuPAC-CE obtained an average empirical risk of 0.102± 0.003, similar to the 0.101 value reported
in Picard-Weibel et al. [2024]. The resulting PAC-Bayes bound proved also similar (0.121± 0.004 vs.
0.122). Thus SuPAC-CE constructed as good a posterior as Picard-Weibel et al. [2024], but twenty
times faster.

Further assessments of SuPAC-CE’s performance for other hyperparameters values and comparison
to Nesterov accelerated GD were also conducted. SuPAC-CE proved to have a stable behaviour for
a wide range of hyperparameters value (0.25 ≤ αmax ≤ 0.75, 0.5 ≤ klmax ≤ 2), with instabilities
starting to appear for klmax > 5, and speed decrease for klmax < 0.1. Nesterov acceleration,
requiring some iterations to build up momentum, proved unable to compete with SuPAC-CE’s almost
instantaneous optimisation. Results for these experiments can be found in Appendix B.

Preliminary experiments were also performed for the meta-learning objective described in Section 5.
To facilitate the evaluation of the learnt meta priors, wholly synthetic risk functions were used
in this case, and PAC-Bayes objective minimised on Gaussian distributions. The risk functions
considered were bounded, smooth functions of R8, achieving their global minima at x0 ∼ N(x̃0,Σ0).
x̃0 was chosen so that ∥x̃0∥ = 2, and Σ0 such that only two of its eigenvalues are higher than
0.052 (drawn at random between exp(−1) and exp(1)). Such choices ensure that the original prior
distribution, N (0, Ik), can be improved upon both by shifting its mass centre and adjusting its
covariance. The performance of the meta-learning algorithm was assessed for two temperatures,
λ = 0.1 and λ = 0.01. Meta training was performed using stochastic gradient descent. The sequence
of prior thus constructed was evaluated on a further 40 test tasks, each time restarting the optimisation
procedure from scratch, and evaluating the final score on 104 draws from the posterior.

The meta-learning algorithm was able to satisfactorily reduce the objective, from an initial average
generalisation bound of 0.61 (resp. 0.14) to 0.24 (resp. 0.050) after 150 gradient steps for λ = 0.1
(resp. λ = 0.01). Most of the meta-objective reduction takes place during the early phase of training,
with the first 15 steps amounting to more than 80 % of the objective decrease. For both temperatures
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tested, the average performance on the test tasks followed the objective decrease throughout training,
even though the number of queries per optimisation was minimal after the first meta step (less than
40), supporting both our meta-learning objective and the use of SuPAC-CE.

Full implementation details on the experiments can be found in Appendix B and in the source code ().

7 Discussion

The present work shows that it is possible to locally decouple the complexity related to querying the
empirical risk and the minimisation of a PAC-Bayes bound. A main motivation for such decoupling
is that the approximated risk function defines a non linear surrogate objective which might be valid
(i.e. close to the original objective) for a wider range of probabilities than the linear approximations
offered by the gradients. As a consequence, the surrogate bound solution can be reasonably allowed
to be much further away from the current posterior estimation than is the case for GD. A key
implementation difficulty remains picking the range of validity, i.e. how far away from the current
posterior the surrogate solver can be allowed to choose a distribution. Such a choice, formalised in
the selection of an adequate surrogate solving algorithm, is analogue to the choice of a step size in
gradient descent procedures, and balances the stability and speed of the procedure. Automating the
selection of the surrogate validity range offers an exciting prospect for the framework.

The Voronoi cell weighing approach used to solve the approximation problem is equivalent to
replacing the empirical risk function by a 1-nearest neighbour trained predictor, and approximating
this predictor. Variants following this two step approximation approach could be worth investigating.
Notably, an interesting perspective would be to approximate the empirical risk through Gaussian
processes, taking inspiration from Gaussian Optimisation. This would notably track the uncertainty
on the approximate risk on extrapolated values, which could drive the choice of new predictors to
evaluate and improve on the current random draws.

A key restriction of the present work is that our surrogate PAC-Bayes framework is only practicable
when the dimension of the predictor space and of the probability family are small (i.e. less than a
few hundreds). This is due to two factors; first of all, the larger the dimension of the probability
family, the larger becomes the approximation space, and hence the more empirical risk evaluations
are required. Notably, at least d + 1 evaluations of the empirical risk are required for probability
families of dimension d. The second factor is that the "generation agnostic" weighing approach
described in Section 4.2.1 is unlikely to give adequate performances ifH is high dimensional. This
effectively rules out deep learning settings, which have been recently the main focus of the PAC-
Bayes community. Still, we believe that PAC-Bayes learning offers meaningful prospects for a wide
range of physics, biology or medical inspired problems which involve few parameters and expensive
model computations, and therefore can be efficiently trained using our framework. Concrete fields of
application of SuPAC-CE include, but are not limited to, fluid dynamics simulations with dimension
reduction [Callaham et al., 2021], metabolic models for microbial communities [Cerk et al., 2024]
and greenhouse gas emission inverse problems [Nalini et al., 2022]. We remark that, as of now,
PAC-Bayes has not been much used outside of the learning community. While this can be vastly
attributed to a lack of awareness of PAC-Bayes theory outside of the learning community, the use of
PAC-Bayes was also hampered by the fact that previous PAC-Bayes algorithm required a prohibitive
number of simulations and hence computation time. We believe SuPAC-CE is a game changer in that
respect, due to its focus on limiting the number of risk queries, and readily usable implementation,
and we hope that this can be leveraged in different disciplines.

Conclusion. We introduced a generic framework for minimising PAC-Bayes bounds designed to
tackle computationally intensive empirical risks for low to moderate dimensional problems such as
naturally arise in physical models. We established that our optimisation strategy was theoretically
well supported. We instantiated this framework for the optimisation of bounds on exponential family,
and considered how this implementation could interact with meta-learning. Preliminary experiments
showed that our framework could significantly reduce the number of empirical risks queries when
calibrating a biochemical model, thus opening exciting new fields of applications for PAC-Bayes.
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A Technical proofs

A.1 Proof of Corollary 1

As assumptions (A1) to (A5) hold, Theorem 3 can be used. It implies that replacing R by fR,θ

does not change the gradient of PB. Hence, starting from θ = θ∗, since ∂1PB(θ∗, R, πp, γ) =

∂1PB(θ∗, fR,θ∗
, πp, γ) = 0, the update step in the solving strategy satisfies Updt(θ∗) = θ∗ −

M(π, θ, f, γ)× 0 = θ∗. Hence, by recursion, it follows that Solve(πp, πθ∗ , fR,θ∗
) = πθ∗ . Since we

assume that F(πθ, R) = fR,θ, this implies that πθ∗
is a fixed step of π → Solve(πp, π,F(π,R))), and

hence that the posterior is a fixed point of SuPAC for the specified F and Solve strategies, concluding
the proof.

A.2 Proof of Lemma 1

We consider the broader problem where the prior πp might not belong to the exponential family, but
any probability satisfying the following assumptions:
Assumptions. (A6) πp is absolutely continuous with respect to πref;

(A7) ∀θ ∈ Θ, h := log
(

dπp

dπref

)
∈ L2(πθ).

Note that when πp ∈ Π, one can use πref = πp for which assumptions (A6) and (A7) are automatically
fulfilled. The generalisation of the approximation space becomes

F = {fη,C := θ · T + C + λh},

which fits into the framework described in Theorem 1. For any fη ∈ F , the solver of Catoni’s bound
on all distributions is given by θ̃ = −λ−1η, provided this defines a probability distribution (else
Catoni’s bound does not reach its minima on Π or P). Note that the choice of θ̃ is coherent with the
formula given in Lemma 1 when the prior belongs to Π, since in that case h = θp · T , leading to a
change of coordinate in the definition of F .

Under the assumptions, Catoni’s bound is differentiable and its gradient with respect to θ can be
computed under the integral. Thus, for score fη ,

∇PBCat = πθ[fη(T −∇g(θ))] + λπθ[(θ · T − g(θ)− h)(T −∇g(θ))]
= πθ[(fη + λθ · T − g(θ)− λh)(T −∇g)]
= πθ[(fη + λθ · T − λh)(T − πθ[T ])]

= πθ[(η · T + C)(T − πθ[T ])] + λVπθ
[T ]θ

= Vπθ
[T ](η + λθ)

where we use the well known identity πθ[T ] = ∇g (see Brown [1986]). For exponential families,
the variance Vπθ

[T ] coincides with Fisher’s information, and hence the previous equality reads
∇PBCat = λI(θ)(θ − θ̃(η)), which implies Lemma 1.

A.3 Probability families with constant approximation space

Theorem 1 considers projections of the risk on a local vector space of functions Fθ. A special case of
interest concerns families of distributions such that the approximation set is constant. Exponential
families offer such a characteristic. We show here that exponential families (and its restrictions) are
the only smoothly parameterised distributions with this characteristic:
Theorem 3. For family of distributions satisfying the first three hypotheses of Section 3 such that,
moreover:

• Θ is a connected,

• θ → ℓ(θ, x) is twice continuously differentiable for all x.

If there exists a vector space of finite dimension F such that Fθ ⊂ F for all θ ∈ Θ, then there exists
an exponential family ΠT defined on Θ̃ and a connected, open set ΘΠ such that Π = {πθ | θ ∈ ΘΠ}.

14



Proof. For F of dimension d̃+1, choose T1, . . . , Td̃, Td̃+1 = 1 a basis of F . Then, for all θ, there

exists a unique matrix A(θ) ∈ Rd,d̃, and a unique vector c ∈ Rd̃,1 such that

∂θℓ = (A(θ) c(θ))

 T1

· · ·
Td̃+1


Assume that A(θ) and c(θ) are differentiable (this is proved afterwards). Since ℓ is twice continuously
differentiable, it follows ∂θi∂θj ℓ = ∂θj∂θiℓ, and therefore that ∂θiAj,k = ∂θjAi,k and that ∂θjci =
∂θicj . This, in conjunction with the hypothesis that Θ is connected, implies that A(θ) is a gradient
of some β : Rd 7→ Rd̃ while c is the gradient of some −g : Rd 7→ R (see Lang [1999]). Hence,
ℓ(θ) = β(θ) · T (x)− g(θ) + h for h a solution of ∂θh = 0. Since Θ is connected, this implies that h
can not be a function of θ. Hence Π is the restriction of an exponential family on Θ.

It remains to show that A(θ) and c(θ) are differentiable. First of all, we remark that for all finite
collection of linearly independent real valued functions (f1, . . . , fn), there exists d points (x1, . . . , xn

such that (fi(xj))i,j≤n is inversible. Indeed, this result holds for a single function, since f1 must be
non zero. Then if the result holds for x1, . . . , xk, i.e. D = det((fi(xj))i,j≤k) ̸= 0 then consider the
matrix m(z) = (fi(x̃j)i,j≤k+1 with x̃j = xj if j ≤ k, x̃k+1 = z. Then the determinant of matrix m
is Dfk+1(z) +

∑
i≤k Cifi(z). Since f1, . . . , fk+1 are linearly independent and since D is not zero,

there must exist z such that det(m(z)) ̸= 0, which we can pick as xk+1. This proves the result by
recursion.

Since T1, . . . Td̃+1 are linearly independent, we can therefore pick such x1, . . . , xd̃+1. By definition
of A(θ) and c(θ), it follows that for all θ,

(A(θ) c(θ)) =


∂θ1ℓ(θ, x1) . . . ∂θ1ℓ(θ, xd̃+1)

...
...

∂θkℓ(θ, x1) . . . ∂θkℓ(θ, xd̃+1)


 T1(x1) . . . T1(xd̃+1)

...
...

Td̃+1(x1) . . . Td̃+1(xd̃+1)


−1

This implies that A and c are linear combinations of the differentiable functions (∂ℓ(·, xi))i∈[1,d̃+1],
and hence that they are differentiable.

A.4 Regularisation and convergence for Catoni’s bound

If R = fη ∈ F , the uncorrected step direction results in one step convergence, implying that the
update direction at θ is θ̂ − θ. This implies that all successive estimation θi belongs to the segment
[θ0, θ̂]. Note ∆θ = θ̂ − θ0. Since the normalisation function g is strictly convex, it follows that the
function t→ ∆θ · ∇g(θ0 + t∆θ) is non decreasing, and hence, for all t,

∆θ · ∇g(θ0) ≤ ∆θ · ∇g(θ0 + t∆θ) ≤ ∆θ · ∇g(θ̂).

Using the convexity of g, this implies that for t1 < t2, g(θ0+ t1∆θ)− g(θ0+ t2∆θ) ≤ (t1− t2)∆θ ·
∇g(θ0) while (t2 − t1)∆θ · ∇g(θ + t2∆θ) ≤ (t2 − t1)∆θ · ∇g(θ̂).
It follows that for all t1 < t2,

KL(θ0 + t2∆θ, θ0 + t1∆θ) ≤ (t2 − t1)∆θ · (∇g(θ̂)−∇g(θ0)).

This implies that for θi = θ0 + ti∆θ, θi+1 = θ0 + ti+1∆θ, if the condition KL(θi+1, θi) ≤ klmax

is active, then ti+1 − ti ≥ klmax

∆θ·(∇g(θ̂)−∇g(θ0))
. Since ti+1 − ti ≥ 0 and for all i, ti ≤ 1, this

implies that the condition is active a finite number of time at most. In the case of αmax = 1, this
implies convergence in a finite number of steps. For 0 ≤ αmax < 1, this implies that after some K,
ti+K = (1− αmax)

i(1− tK), and hence exponential convergence of (θi) to θ̂.
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B Implementation details

The code described in this section can be found in the publication repo: https://github.com/
APicardWeibel/surpbayes.

B.1 Further notes on SuPAC-CE

SuPAC-CE can be summarised in the following pseudo-code:

Algorithm 2 Surrogate Catoni solver for exponential families (SuPAC-CE)

Require: λ > 0, θ0 ∈ Θ, θp ∈ Θ, R ∈M(H), Ev = (xi, R(xi))
n
i=1, 0 < αmax ≤ 1, 0 < klmax

θ ← θ0
while not converged do

Draw i.i.d. xn+1, . . . , xn+k ∼ πθ

Ev, n← Ev ∪ ((xn+1, R(xn+1)), . . . , (xn+k, R(xn+k))), n+ k
ωi ← π[xi] ▷ Solving nearest neighbour problems
η∗, C = arg infη,C

∑
i≤n ωi(T (xi)−R(xi)− C)2

δθ = θ0 − λ−1η∗ − θ
α̃← sup{α | α < αmax,KL(θ + αδθ, θ) ≤ klmax}
θ ← θ + α̃δθ

end while

Our implementation is based on the pre-existing code source provided by Picard-Weibel et al.
[2024]. Part of the original code was reworked to fit our new setting. New classes for exponential
families of distributions were introduced, and implementation of the Gaussian family classes modified
accordingly. A modular and generic solver class for the minimisation of Catoni’s PAC-Bayes bound
on exponential families was introduced, as well as more specific implementations for probability
families outputting Gaussian distributions, using the Mahalanobis distance when approximating the
weights. These solvers rely on closed form expressions for the Kullback–Leibler divergence and its
derivative, inferred from the normalisation function and its derivatives.

The default weighing approach for the score approximation uses exact 1-NN for a user specified
number of samples ("n_estim_weights" argument), performed using Faiss library [Douze et al., 2024].
Another weight approximation method, relying on approximate k-NN solving, is also provided.

The corrected update rule parameter α̃ is estimated by dichotomy, using the fact that for all θ, δθ,
the function α → KL(θ + αδθ, θ) is not decreasing. The resulting α̃ is guaranteed to result in a
Kullback–Leibler step of less than klmax.

B.2 Experiments

B.2.1 Catoni’s bound minimisation

The implementation of ADM1 from Picard-Weibel et al. [2024] was used to perform the experiments,
and slightly modified to benefit from just-in-time compilation. The dataset used was the training part
of dataset "LF". The probability family (Gaussian with block diagonal covariance with fixed blocks)
and prior distribution considered in the original paper was used. For SuPAC-CE, the regularisation
hyperparameters were set to klmax = 1 and αmax = 0.5, while the number of samples generated to
evaluate the weights was set to 40 000. The optimisation algorithm was trained on 296 steps; for the
initial step, 160 risk queries were performed, while for all the remaining steps, 32 risk queries were
performed. This larger number of queries for the initial step is due to the necessity of having a least
more evaluations than the dimension of the family of probability.

Hyperparameters for GD were selected after assessing the grid per_step ∈ {80, 160}, step_size ×
{0.025, 0.05, 0.07} on a preliminary 1600 score queries budget, with 20 repeats. The larger step size
0.07 was rejected due to its erratic behaviour between repeats, obtaining both optimal and worse GD
performance. This erratic behaviour was also observed for step size 0.05 when estimating gradients
from 80 risk queries. On the other hand, for per_step set to 160, the step size of 0.025 clearly under-
performed compared to the step size of 0.05, although slightly more stable. This led to the selection of
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Figure 2: Overview of SuPAC-CE. At each step, some new predictors are drawn from the current
posterior approximation and evaluated (top right figure). All evaluated predictors are then weighted
according to the weight of their Voronoi cell (bottom right figure). These weighted evaluations are
used to construct an optimal approximation of the score through a linear least square task (bottom
left figure). The approximated score is used to update the posterior using a closed form expression
(top left figure). This procedure is looped until convergence (center).

(a) η = 0.025 (b) η= 0.05 (c) η = 0.07

Figure 3: Preliminary GD optimisation procedures for different choices of hyperparameters. The
evaluations of each optimisation procedure was repeated 20 times; the median performance and 0.2
and 0.8 quantiles are represented. The performance of SuPAC-CE is given for comparison.

the two sets of hyperparameters, (per_step=80, step_size=0.025) and (per_step=160, step_size=0.05),
which had similar performances. Both were assessed, and the set of hyperparameters obtaining the
lowest score, (per_step=160, step_size=0.05), was kept for comparison (see Appendix B.2.1).

SuPAC-CE was further compared to Nesterov accelerated gradient descent (implementation in the
publication repo). Starting from the two sets of hyperparameters preselected for GD, optimisation
procedures using a momentum of 0.5, 0.9 and 0.95, and either the original step size or twice the
step size were assessed. Each of these 12 new optimisation procedures was repeated 8 times, and
compared to SuPAC-CE (see Appendix B.2.1). For no choice of hyperparameter values did Nesterov

17



Figure 4: Comparison of the optimisation procedures as performed by SuPAC-CE and gradient
descent (GD) for the two selected sets of hyperparameters. Each optimisation procedure was repeated
20 times; the median performance and 0.2 and 0.8 quantiles are represented. SuPAC-CE was
performed with hyperparameters αmax = 0.5 and klmax = 1.

accelerated GD proved more efficient than SuPAC-CE (Appendix B.2.1). The increase of step size
in conjunction with the moderate momentum improved the speed of the optimisation procedure,
but at the cost of a higher risk of optimisation failure, leading to 3 out of 8 runs (resp. 2 out of
8 runs) for 160 simulations per step (resp. 80 simulations per step) with a final objective higher
than the initial objective. Higher momentum led to major instabilities, with less than 3 runs out
of 8 managing to reduce the objective below 0.2 (compared to 0.121 obtained by SuPAC-CE) for
all hyperparameter combinations. For the original step size, momentum appeared to improve the
stability of the procedures for all setting except moderate momentum for a per step hyperparameter
of 80. Higher momentum procedures led to a speed decrease, caused by the larger number of steps
necessary for momentum to build up.

The impact of SuPAC-CE’s hyperparameters was investigated by running further optimisation pro-
cedures with different choices of hyperparameters. A grid was assessed, with values of klmax in
{0.5, 1, 2} and αmax in {0.25, 0.5, 0.75}, with each optimisation process repeated ten times (see
Appendix B.2.1). The resulting optimisation procedures proved to all have similar performances, with
only a slight decrease in speed in the early phase between the most regularized and less regularized hy-
perparameters which was below the noise level after the fourth optimisation step (see Appendix B.2.1).
Two further sets of slow hyperparameters values ((klmax, αmax) ∈ {(0.1, 0.9), (0.01, 0.9)}) and fast
hyperparameters values ((klmax = 5, αmax = 0.1), (klmax = 10, αmax = 0)) were also assessed,
with 8 repeats (see Appendix B.2.1). The slow hyperparameters led to more stable and reproducible
optimisation procedures. For the small maximum step size of klmax = 0.01, the average performance
of the optimisation process was similar (i.e. difference below the noise level) to the performance of
the optimisation process with standard hyperparameters after 2000 risk queries. The highest maximal
step size assessed of klmax = 10 resulted in a final average PAC-Bayes bound of 0.147± 0.022, with
a standard deviation between runs of 0.061, significantly higher than the standard deviation for the
standard hyperparameters (0.0032, p-value of 1.95e− 09).

Computations were performed using Azure Machine Learning compute clusters with 32 cores and
Intel Xeon Platinum 8272CL processors.
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Figure 5: Comparison of the optimisation procedures as performed by SuPAC-CE and Nesterov
accelerated gradient descent (x axis: number of empirical risk queries). Each optimisation procedure
was repeated 8 times; the median performance and 0.2 and 0.8 quantiles are represented. SuPAC-CE
was performed with hyperparameters αmax = 0.5 and klmax = 1. Momentum of 0.5, 0.9 and 0.95
were assessed for Nesterov gradient descent. Both the original step size (η) parameter as well as
twice the step size parameter for gradient descent comparisons were investigated. At twice the step
size, all momentum accelerated procedures proved unstable. At the original step size, the momentum
tended to increase the stability of the procedure at the cost of speed. All Nesterov accelerated gradient
descent procedures assessed were slower than SuPAC-CE
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Figure 6: Comparison of SuPAC-CE with Nesterov accelerated gradient descent for a variety of
hyperparameters choices. Each optimisation procedure was repeated 8 times; the median performance
and 0.2 and 0.8 quantiles are represented. SuPAC-CE proved to be consistently more efficient for all
hyperparameters values tested. The hyperparameter for SuPAC-CE assessed in the main part of the
publication is highlighted.
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Figure 7: Performance of SuPAC-CE with extreme hyperparameters values. Each optimisation
procedure was repeated 8 times; the median performance and 0.2 and 0.8 quantiles are represented.
SuPAC-CE exhibited noticeable instabilities and speed loss for hyperparameters leading to insufficient
regularization (blue curve). Too much regularisation lead to speed decrease in the early phase of the
optimisation procedure (purple curve)

B.3 Meta-Learning experiments

For the meta-learning experiments, the tasks were generated as follow. Empirical risk functions of
form

Rω,A,x0
: x 7→ tanh(h(ω∥A(x− x0)∥2)/10) (7)

with h(x) = cos(x)+x were considered. These are such that x0 is the only global minima of Rω,A,x0
,

while all xs such that ω∥A(x− x0)∥2 = π/2 + 2kπ are local minima. The distributions of the risk
parameters are as follow: x0 ∼ N (x̃0,Σ0), ω ∼ U( 32π,

5
2π) and Ai,j ∼ N (δi,j , σ

2 = 0.052). The
mean parameter x̃0 was initiated at random on the sphere of radius 2, while the covariance Σ0 was
initiated at random as

Σ0 = O × diag(σ2
1 , . . . , σ

2
d)×Ot,

where σ1, . . . , σd−2 = 0.05, σd−1, σd ∼ exp(U(−0.5, 0.5)) and O is drawn at random amongst
orthonormal matrices. The dimension of the predictor space d is fixed to 8.

The meta training process was performed as follow. The initial calibration phase for each task was
performed in 15 steps, with 100 score queries for the first five steps and 50 score queries for the
remaining steps. The hyperparameters were set to klmax = 0.5, αmax = 0.3 and 104 samples are
used to estimate weights. This initial meta step used a mini batch size of 10, a maximum meta kl
step of 0.2 and step size of λ−1. After all tasks have been trained once, the hyperparameters for
SuPAC-CE were modified: the number of steps was reduced to 4, and αmax set to 0.7. 20 risk queries
are performed on the first and third step, and none on the second and fourth. This accounts for the fact
that the posterior distribution updates are expected to be small at this stage. The mini batch size is
increased to 20. After 19 epochs, the step size is reduced to 0.5λ−1 and the maximum meta kl step to
0.1. After 30 more epochs, the step size was reduced to 0.4λ−1, and trained for a further 100 epochs.

The performance of sequence of priors was assessed in the following way. 40 test tasks were
drawn. For each prior, a full independent calibration was performed on each task, using 20 steps
of SuPAC-CE (100 risk queries for the first 5 steps, 50 for the remaining steps). The resulting
posterior performance is assessed by computing the bound using 104 fresh evaluations of the risk.
The mean of these performance over the task defines the meta test score. The dispersion of these test
performance between different test task is assessed by computing the quantiles 0.2 and 0.8 of the test
performances at a given prior. This procedure being quite computationally intensive, only the first ten
priors constructed and afterwards one prior out of five were assessed.

Computations were performed using Azure Machine Learning compute clusters with 16 cores and
Intel Xeon Platinum 8272CL processors.
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C SuPAC for Maureer-Langford-Seeger’s bound

We here provide details for the use of SuPAC-CE for the minimisation of Maureer-Langford-Seeger’s
objective, as mentionned in Remark 4.1. Maurer-Langford–Seeger’s bound [Maurer, 2004, Langford
and Seeger, 2001] states that, for n i.i.d. observations zi, risks R = 1

n

∑n
i=1 ℓzi with 0 ≤ ℓzi ≤ 1,

for any 0 < δ < 1, with probability at least 1− δ, for any posterior distribution π ≪ πp,

kl(π [R] , π
[
R
]
) ≤ 1

n

(
KL(π, πp) + log

(
ξ(n)

δ

))
(8)

where ξ(n) = 2
√
n and kl(q, p) is the Kullback–Leibler divergence between two Bernoulli distribu-

tions with means q and p, respectively. Germain et al. [2009] noted that kl(q, p) satisfies

kl(q, p) = max
C≥0

{
− log (1− p(1− exp(−C))− Cq)

}
. (9)

Equation (9) can be plugged in the MLS bound (8), and, after the change of variable λ = C−1, this
implies that with probability at least 1− δ,

π
[
R
]
≤

1− exp(− 1
λn (π [R] + λKL(π, πp))− log(ξ(n)/δ)

n )

1− exp(−1/λ)
:= PBMLS(π[R], π, πp, λ)

holds simultaneously for any measures π ≪ πp and any temperature λ > 0.

At a fixed temperature λ > 0, minimising the right hand side is equivalent to minimising π[R] +
λKL(π, πp), which is the objective defined by Catoni’s bound. At a fixed posterior π, the right hand
side is a smooth function of the temperature, and derivatives of arbitrary orders can be computed if
KL(π, πp) and π[R] are known. Searching for the minimiser of Seeger’s bound in an exponential
family leads us to Algorithm 3, relying on SuPAC-CE for optimisation at a given temperature.

Algorithm 3 Surrogate PAC-Bayes Learning for MLS (SuPAC-MLSE)

Require: PB, π0 ∈ Π, πp ∈ P , R ∈M(H), λ0 ∈ R+,
π ← π0

λ← λ0

Ev = () ▷ No evaluations
while not converged do

π,Ev← SuPAC-CE(R, πp, π, λ,Ev)
Evaluate π[R] ▷ Use Ev
Evaluate KL(π, πp) ▷ Closed form
λ← arg infλ>0 PBMLS(π[R], π, πp, λ) ▷ e.g. Newton, Householder

end while

In practical implementations of Algorithm 3, the hyperparameters of SuPAC-CE should be modified
after the first optimisation procedure to lower the number of risk queries. Indeed, the risk queries
from previous optimisation procedure (conducted at other temperature) are used in new optimisation
procedures through the generation agnostic weighing process. As noted in section 7, this limits the
applicability of SuPAC-CE, and hence of SuPAC-MLSE, to the low to moderate dimension setting.

We remark that the two level optimisation strategy pursued by Algorithm 3 relies on a greedy
optimisation of the PAC-Bayes temperature. While this might lead to convergence to a local minima,
it has the benefit of guaranteeing that the objective can only decrease during the optimisation
procedure (as long as proper safeguards are put into place when using SuPAC-CE, e.g., by adapting
the step size).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction reflect the paper’s contribu-
tions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The main limits of the work are discussed in the section dedicated to discus-
sions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are given with the full set of assumptions and proof.
These are provided both in the core of the paper and in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: a link to the code executed for the experiments is provided. Moreover high
level description of the code is given in the main part of the submission, with additional
details provided in the appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: data and code are available in open access. Scripts enabling the reproduction
of the main experimental results are provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details are specified in the appendix. The code is also available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: uncertainty quantification is provided for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The specifications of the compute used for the experiments are specified in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research did not involve human subjects or participants. The data used is
synthetic and therefore concern free. The authors do not anticipate any harmful consequence
to their research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No societal impact of the paper is performed. The current paper introduces
a generic methodology for optimisation of PAC-Bayes generalisation bounds. As such,
specific applications and societal impacts are beyond the scope of the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper does not pose any such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the assets are cited and referenced in the code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code released with the paper is thoroughly commented and comes with
demo notebooks.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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