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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) is a practical, scalable
way to improve large language models on math, code, and other structured tasks.
However, we argue that many headline RLVR gains are not yet validated because
they conflate true policy improvement with three recurring confounds: (i) budget
mismatch between RLVR and base-model evaluation, (ii) calibration/attempt in-
flation that converts abstentions into confident (sometimes incorrect) answers, and
(iii) data contamination in legacy benchmarks. Using matched-budget reproduc-
tions and partial-prompt contamination audits, we find that several celebrated gaps
shrink substantially or disappear under parity-controlled, clean evaluation. These
effects do not imply RLVR is ineffective; rather, they show that current report-
ing often overstates capability gains and obscures reliability costs. We therefore
propose a compact, tax-aware minimum standard for RLVR training and eval-
uation that co-optimizes correctness, grounding, and calibrated refusal, and that
requires budget parity, variance disclosure, judge-robustness probes, and explicit
provenance screening. Our position is constructive: RLVR is effective and deploy-
able for verifiable domains, but “reasoning” gains should be treated as provisional
unless a small core of tax-aware controls—budget parity, calibration/abstention
tracking, robust evaluation with at least one judge stress test, and a simple con-
tamination audit—is enforced.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has become a leading post-training route
for improving large language models on math, code, and other structured tasks (Luong et al.,2024;
Wen et al.| 2025a). By optimizing against automatically computable signals—unit tests for pro-
grams, exact numeric or string matches for math, or retrieval-grounded checks for citations—RLVR
promises a scalable, label-efficient path to better reasoning. Recent results are striking: across mul-
tiple domains, RLVR systems often post large gains on standard benchmarks. Moreover, Figure 2]
shows a rise in RLVR-tagged papers alongside improvements on AIME-24/25 through 2024-H1
2025, underscoring both the field’s activity context and the need to separate genuine reasoning gains
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Figure 1: Paper Roadmap: taxes, evaluation pitfalls, contamination, and the unified protocol.

from measurement and budgeting artifacts. Our position is that RLVR is effective and deployable
for verifiable domains, but “reasoning” gains should be treated as provisional without a small core
of tax-aware controls.

Beneath the surface, however, sits a question that frames the current debate: does RLVR genuinely
impart new reasoning capability, or does it mainly sharpen selection among behaviors the base model
already knows how to produce? Parity-controlled studies show that base models can narrow or
erase RLVR gaps when given matched sampling budgets—consistent with smarter search rather than
capability expansion (Yue et al., 2025; Wu et al., [2025a)). At the same time, several regimes report
gains that are hard to recover by sampling alone: explicitly optimizing the multi-sample objective
(pass@k training) (Wang et al., [2025)), curriculum via self-play with variational problem synthesis
(Zhang et al., 2025a), and distribution-aware reward shaping that counters rank bias and diversity
collapse (Liu et al., 2025b), alongside longer-horizon RL schedules and unlikeliness rewards (Liu
et al.l 2025a; He et al.l [2025a). Even metric choice can flip conclusions: answer-only scores may
diverge from process-aware metrics that require both a correct answer and a valid chain of thought.

A second complication is what we call the RLVR tax: unintended empirical side effects that ride
along with apparent gains under current reasoning-style post-training—reduced abstention, miscal-
ibration, instruction-fidelity drift, and a larger safety/privacy surface due to longer traces. This tax
is not mathematically inevitable and not unique to RLVR; similar patterns arise under reasoning-
heavy SFT and RLHE. We focus on RLVR because verifiable objectives and open weights make
these trade-offs measurable at relatively low cost. In practice, RLVR tends to reduce abstention and
increase stated confidence—sometimes even when answers are wrong—thereby shifting risk from
“I don’t know” to assertive errors (Song et al., [2025; Mei1 et al.l 2025} |Yao et al.l 2025). It can
also chip away at instruction fidelity on longer generations, where adhering to formats or constraints
becomes harder as chains grow (Fu et al.| 2025} [L1 et al.| [2025). Finally, longer, more explicit rea-
soning traces expand the attack and leakage surface, raising jailbreak success and privacy exposure
if left unchecked (Zhou et al., 2025; Jiang et al.,|2025; |/Ackerman & Panicksseryl 2025} |Green et al.}
2025 |Huang et al.| [2025; Zhang et al.l 2025b).

A third, orthogonal complication is measurement. Reported advances are sensitive to sampling
budgets and decoding settings, to the stability of LLM-as-a-judge evaluators, to calibration drift, and
to data provenance (Hochlehnert et al., 2025} (Chandak et al.l[2025; [Brown et al., 2024} Muennighoff
et al., 2025} Zhao et al.,|2025b; Wang et al., [2024aib; [Leng et al., 2024} Shen et al., 2025; Wu et al.,
2025b;|He et al.| 2025b; [Mirzadeh et al., 2024} Liu et al.,|2024b)). When budgets are matched, judges
are stress-tested, and datasets are versioned and decontaminated, reported improvement gaps can
diminish, suggesting that part of the apparent progress reflects evaluation design rather than durable
capability (Hochlehnert et al., 2025} |Chandak et al.| [2025). To help orient the reader, Figure |I|
summarizes three threads (taxes, evaluation pitfalls, and contamination) and previews the tax-aware
protocol we adopt.
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Figure 2: Monthly RLVR activity vs. AIME performance (time span: May 2024—June 2025). Left
axis: count of pages per month whose title or abstract contains “RLVR” or “reinforcement learning
with verifiable rewards” (Google Scholar and arXiv via SerpAPI). Right axis: pass@] (%) on
AIME-24 (circles, warm) and AIME-25 (squares, cool) for selected models; labels show model
names.

Scope and definitions. Throughout, we use RLVR to mean post-training that optimizes LLMs
against automatically checkable signals rather than human preference models (Ouyang et al.,|2022).
Typical implementations adopt PPO/GRPO/DAPO-style updates with a KL penalty to the base
policy, often mixing offline rollouts with online sampling, adding entropy regularization, and us-
ing selective filtering or gating. Rewards are frequently componentized—for correctness, ground-
ing/citation sufficiency, and calibrated refusal—and introduced in stages. Our analysis centers on
open-weight models fine-tuned for math/code/question answering (QA) with verifiable objectives,
in both single- and multi-domain regimes. We deliberately avoid a catalogue of low-level algorith-
mic variants except where they bear on reliability (e.g., unlikeliness rewards that counter rank bias,
or curricula that change variance). The primary threats considered are privacy leakage from long
chains of thought (CoT) and increased jailbreak susceptibility during or after RLVR.

Position, Contributions, and Roadmap. RLVR is valuable and industry-ready, but we encourage
prioritizing reliability, safety, and measurement. Our position is that headline reasoning gains should
be treated as provisional unless a small core of tax-aware controls is in place. Our contributions are
threefold: (1) Measurement: we provide parity-controlled reproductions and a unified gap table that
isolates inflation sources from budget mismatch, judge and template drift, and dataset versioning
(Table[2). (2) Tax: we quantify attempt inflation and the resulting calibration and refusal costs un-
der RLVR and matched SFT controls (Table[I). (3) Protocol: based on these findings, we distill a
compact tax-aware minimum standard for RLVR training and evaluation, intended as a minimum
credible reporting bar with a default instantiation in section[6] not another broad checklist. The paper
is organized accordingly: we (i) synthesize evidence on sharpening vs. expansion (section [2); (ii)
analyze the RLVR tax and how it distorts reported improvements (section [3)); (iii) reproduce repre-
sentative gaps under parity controls (sectiond); (iv) audit contamination with partial-prompt probes
(section[5); and (v) present the tax-aware minimum standard that co-optimizes accuracy, grounding,
and calibrated abstention while standardizing budgeting and provenance checks (section [6).

2  WHAT CHANGES UNDER RLVR? AN EVIDENCE OVERVIEW

We review empirical signals about RLVR’s effects without taking a side on the “expansion vs. sharp-
ening” question. Skeptical and optimistic perspectives recur in the literature, and each tends to
appear under identifiable conditions.
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2.1 SKEPTICAL LENS: SHARPENING AND SAMPLING EFFECTS

Under a skeptical lens, RLVR often appears to improve sample efficiency and steer the model to-
ward high-reward regions already present in the base distribution, rather than broaden fundamental
capability (Gandhi et al.| 2025} [Shah et al.| 2025). When base models are evaluated under matched
sampling budgets (i.e., pass@k), gaps between base and RLVR-trained models often shrink (Yue
et al.l 2025), consistent with selection rather than acquisition. Empirically, outputs can collapse
toward a dominant pretraining mode with reduced diversity (Zhao et al. 2025a), and theory sug-
gests that after RLVR, support shrinkage tends to outweigh support expansion (Wu et al., 2025a).
Stress tests add caution: performance collapses at higher complexities have been reported even with
ample compute (Shojaee et al., 2025), although some failures trace to evaluation artifacts such as
token limits and unsolvable items, underscoring the need for budget parity, seed control, and dataset
hygiene (see Section [ (Opus & Lawsen, 2025). Finally, several works separate knowledge injec-
tion from policy optimization: pipelines that use SFT or distillation to inject knowledge and RLVR
to select among candidates typically beat pure GRPO, suggesting RLVR optimizes within learned
support (Ma et al., 2025; /Wan et al., [2025} |Chen et al.,[2025a)); guidance and self-distillation further
help over vanilla GRPO (Nath et al.| [2025}; [Liu et al., [2025c).

2.2 OPTIMISTIC LENS: SIGNALS OF CAPABILITY BROADENING

Under an optimistic lens, carefully designed RLVR appears to expand what models can do, not
merely sharpen selection. Prolonged optimization with explicit KL control and periodic resets
(ProRL) reports trajectories that are not reachable by sampling the base policy alone, with the largest
gains where the base initially struggles (Liu et al., 2025a). Reward shaping also matters: by diagnos-
ing a GRPO tendency to reinforce high-probability completions, |He et al.|(2025a) show that adding
unlikeliness rewards and training deeper widens the model’s support and improves multi-sample the-
orem proving, indicating qualitative changes to reachable reasoning modes. These effects are condi-
tioned by pretraining coverage: cross-domain analyses find broader benefits in Math/Code/Science,
while under-represented areas such as Logic/Simulation/Tabular realize meaningful gains when
RLVR is applied in-domain (Cheng et al.,|2025). Consistent with this, process-aware metrics that re-
quire both a correct answer and a syntactically valid chain (CoT-pass@k) often reveal larger RLVR
deltas than answer-only measures (Wen et al., 2025b). While generalization to substantially harder
regimes remains an open goal (Sun et al., 2025b), the weight of evidence supports a constructive
view: with sufficient optimization depth, bias-aware rewards, and the right domain coverage, RLVR
can broaden reasoning capabilities.

Reporting note. Answer-only metrics (e.g., pass@k) can show muted gains, whereas process-
aware criteria such as CoT-pass @k—which require both a correct answer and a syntactically valid
chain—often reveal larger deltas in settings explicitly optimized for process rewards (Wen et al.,
2025b). We treat these as behavioral signals rather than explanations: chains need not be faithful to
internal computation (Chen et al.l 2025c). Accordingly, we report both answer- and process-aware
metrics alongside calibration (ECE/abstention), and we prefer budget-matched saturation curves
over single-point pass @k (Section ).

Cross-Lens Lessons: Across both perspectives, two themes are consistent: (i) the base model’s
strength and coverage strongly condition observed gains, and (ii) reward/metric design and evalua-
tion protocol (sampling budgets, seeds, and contamination hygiene) can change the sign of conclu-
sions. These observations motivate our stance: treat reliability, safety, and measurement as first-class
objectives. The following sections detail the RLVR tax (Section [3)), show how evaluation choices
inflate or erode claims (Section ), and present a unified, tax-aware training and evaluation protocol
that yields more trustworthy estimates and more transferable improvements (Section [6).

3 PERSPECTIVE I — THE RLVR TAX: BENEFITS, COSTS, AND CONTROLS

RLVR reliably lifts accuracy on verifiable tasks, but those gains are easy to misread if we ignore sys-
tematic costs—the RLVR tax. By “RLVR tax” we mean empirical side effects observed under current
reasoning-style post-training regimes: reduced abstention, miscalibration and overconfidence, drift
in instruction fidelity on long generations, and a larger safety/privacy surface due to longer and more
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Table 1: Factual-QA control tracking Abstention (), Shared Accuracy (1), and ECE ({). Interpre-
tation. “Not attempted” is the absolute number of items with no extractable answer, computed on
the block-specific evaluation set for that family (totals differ across families). At 14B/32B, reason-
ing SFT sharply reduces abstentions but leaves shared accuracy flat and worsens calibration; at a
larger scale (DeepSeek), RL reduces abstention and improves shared accuracy and ECE, largely by
attempting more items. Accuracy on newly attempted tail items is modest.

Family/Scale ‘ Model (version) ‘ Not attempted | Accuracy (shared, %) 1 ECE (shared) |
Qwen2.5-14B-Instruct 1136 12.5 0.598
Qwen2.5 14B | R1-Distill-Qwen-14B (SFT) 102 10.5 0.692
RL-Reasoning-14B 103 10.0 0.684
Qwen2.5-32B-Instruct 2492 17.4 0.591
Qwen2.532B | R1-Distill-Qwen-32B (SFT) 76 17.5 0.640
RL-Reasoning-32B 63 17.1 0.600
DeepSeek-V3 (Instruct) 480 27.5 0.496
DeepSeek
cepsee DeepSeek-R1 (RL) 81 34.6 0317

explicit traces. This tax is not mathematically inevitable and not unique to RLVR; similar patterns
can arise under reasoning-heavy SFT and RLHF. We center RLVR because verifiable objectives and
open weights make these trade-offs particularly measurable.

We focus on three recurrent pressures: (7) hallucination and overconfidence, (i) erosion of instruc-
tion following, and (iii) safety and privacy exposure. Each maps directly to our broader thesis:
without tax-aware training and sober measurement, reported “reasoning gains” are easy to overstate
and hard to transfer.

3.1 HALLUCINATION AND OVERCONFIDENCE

RLVR can suppress refusals while amplifying confident errors. Empirically, refusal rates often
collapse after RLVR, shifting abstentions into assertive answers (Song et al., [2025); models may
also repeat flawed steps or produce CoT that diverges from the final answer even when accuracy
rises (Yao et al.,|2025)). A plausible mechanistic reading is that sparse, verifiable rewards combined
with entropy pressure tend to encourage determinacy under weak evidence, producing high-variance
gradients and spurious local optima (Li & Ng| 2025). Consistent with this, multiple studies find
substantial miscalibration: self-reported confidence remains high even on incorrect responses and
can increase with longer CoT traces (Mei et al.|[2025; Zeng et al.| [2025; Kirichenko et al.|[2025).

We make this concrete with a factual-QA control that tracks Not attempted (lower is better), Ac-
curacy (shared)—accuracy on items that both models at a given scale attempted (higher is bet-
ter)—and Expected Calibration Error (ECE; lower is better) computed on shared items from the
model’s stated confidence. The dominant effect is attempt inflation: stronger RLVR policies at-
tempt far more questions. For example, moving from DeepSeek-V3 to DeepSeek-R1 (Guo et al.,
2025)) sharply reduces abstentions and improves shared ECE, but accuracy on the newly attempted
tail is modest, so reported gains depend on how one aggregates across attempted vs. unattempted
items (Zeng et al.| 2025)). In other words, scaling RL encourages attempts; whether this yields net
quality improvements depends on calibration and gating.

Formally, let Ay, and Agp denote the sets of items for which the base and RLVR models produce
an extractable answer, and let A = Ap,e N Agp be their intersection. We report “shared accuracy”
and ECE on Ap, and define “attempt inflation” as the number of additionally attempted items

|ARL \ Abase ‘7
i.e., questions the RLVR model answers that the base model leaves unattempted. The dominant

effect in Table E] is attempt inflation: |Agy \ Apase| grows sharply, while accuracy on An changes
only modestly.
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3.2 INSTRUCTION FOLLOWING

Optimizing hard for reasoning can erode controllability—especially for long generations. Sev-
eral studies observe regressions in instruction fidelity when training emphasizes extended chain-of-
thought or purely verifiable endpoints (Fu et al.l 2025} |Li et al.l 2025). Moreover, recent evidence
shows that models tend to overfit to a small set of verifiable constraints and struggle to generalize;
IFBench (58 out-of-domain constraints) documents this gap and finds that RLVR improves precise
instruction-following generalization (Pyatkin et al., 2025). This is why our minimum standard in
Section [6] assumes either an explicit instruction or format component in the reward, or at least a
separate instruction-following evaluation pack.

3.3 SAFETY AND PRIVACY

Long, explicit reasoning traces widen the attack and leakage surface. Frontier reasoning models are
jailbreakable at high rates; automated attacks approach deterministic success in the studied settings,
and success rises with attempt and context budgets (Kassianik & Karbasi, 2025} |[Zhou et al., [2025;
Jiang et al., [2025)). Many-shot evaluations show the same scaling. Targeted defenses tuned specifi-
cally to that regime can sharply reduce measured attack success in controlled tests, but these gains
are brittle across models and budgets and can impose utility costs (Ackerman & Panicksseryl [2025).
Richer CoT also increases privacy risk: attributes, confidential prompts, and dataset contents can be
reconstructed more easily as intermediate reasoning grows (Green et al., 2025)). Safety tuning itself
can impose a “safety tax,” degrading math and coding unless staged and balanced carefully (Huang
et al.,[2025; [Zhang et al., [2025b).

Threat Model (Reasoning Traces). Who sees traces: exposure risk is highest for open-
weight models or deployments that return full CoT; API-only hidden traces lower user-
facing risk, while internal logs can aid auditing. Training vs. inference: RLVR increases
trace length and attempt budgets during training and (unless capped) inference, which can
amplify leakage/jailbreak surfaces. What “risk increase” means: higher probability that
sensitive prompt/data fragments or unsafe behaviors appear in controllable intermediate
text. When traces help: hidden/internal traces improve monitorability and post-hoc safety
audits, so the goal is controlled exposure, not blanket removal.

Takeaway: These taxes distort reported gains in predictable ways: overconfident hallucinations
inflate apparent utility, instruction drift undermines deployability, and expanded attack surfaces raise
real-world risk. The answer is not to abandon RLVR but to co-optimize for reliability—compose
rewards so correctness, grounding, and abstention can all improve; manage variance and difficulty;
and make calibration and provenance part of evaluation. We follow this recipe in the next sections
to show where conclusions change once the tax accounted for in (section[d} section [)).

4 PERSPECTIVE II — PITFALLS IN EVALUATION: ARE WE MEASURING
REAL REASONING GAINS ACCURATELY?

Claims about RLVR progress are highly sensitive to sampling budgets, metric design, and dataset
hygiene. This matters for our thesis: budget mismatch, fragile judge pipelines, and calibration drift
can overstate “reasoning gains” and complicate transfer beyond math and code. We treat contami-
nation separately in Section [5]and focus here on budgeting, metric robustness, and calibration.

4.1 BUDGET PARITY AND SATURATION

A recurring pattern in the literature is to report pass@k for RLVR models while holding base mod-
els to much smaller budgets (e.g., pass@1 or pass@5). In such settings, measured improvements
often reflect extra search rather than a better policy. Prior work stresses matched budgets and decon-
taminated baselines for fair comparison (Wen et al., [2025a; |Wu et al.,|2025b)). Small or underspec-
ified benchmarks inflate estimator variance and reduce statistical power, making single-run point
estimates unstable; averaging across multiple randomized trials materially improves estimate relia-
bility (Mu et al., 2025). Under parity controls (e.g., SoberScore, a standardized, matched-budget,
multi-seed evaluation that fixes decoding/setup and reports mean * std), several prominent gaps
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shrink or disappear (Hochlehnert et al.l 2025). In practice, evaluations should match k across base
and RLVR, plot saturation curves (accuracy vs. k, optionally summarized by area under the curve),
and disclose decoding budgets and parameters.

4.2 METRIC FRAGILITY AND LLM JUDGES

While RLVR often targets verifiable domains (math/coding), many evaluation targets either lack pro-
grammatic verifiers or have only partial/weak ones—e.g., safety/refusal appropriateness, long-form
coherence and rationale quality, multi-turn task success, or fuzzy information extraction. In those
cases, we fall back to LLM-as-a-judge. LLM-judge pipelines offer convenience but can be brit-
tle: small changes—seed choice, k, dataset versioning, instruction placement, option order, or even
tensor-parallel settings—produce swings comparable to reported gains (Sun et al., [2025a)). Judges
are also manipulable (Zhao et al., 2025b). Beyond judges, seemingly modest metric or setup shifts
can alter conclusions about “stable reasoning” (Liu et al.| [2024a). Where programmatic verifiers
exist, they should be preferred. When judges are unavoidable, prompt/format perturbations and
adversarial probes should be part of the protocol, with robustness deltas reported, inter-judge agree-
ment documented, and all templates/configurations released to reduce hidden degrees of freedom.

4.3 CALIBRATION DRIFT AND OVERCONFIDENCE

RL optimization often sharpens the output distribution. Top-1 accuracy can rise even as calibra-
tion worsens, increasing brittleness under distribution shift (Hochlehnert et al., |2025). Combined
with the volatility noted above (Sun et al 2025a), some apparent “wins” likely reflect confident
exploitation of evaluation quirks rather than robust reasoning. Evaluations should therefore track
expected calibration error (ECE), output entropy, and refusal/abstention alongside accuracy, and
consider early stopping or annealing when calibration degrades even if reward continues to increase.

Table 2: Reported scores vs. standardized evaluation (avg @32 of pass@ ], estimated by averaging
32 independent single-sample decodes) with matched decoding budgets and a shared verifier/prompt
family. A denotes Reported — Standardized. See Appendix [] for comprehensive standardized
results of recent RLVR models.

Model (checkpoint) \ Benchmark \ Reported (setup) Standardized Eval A
AIME-24 48.13 (pass@1;|Liu et al.[2025a) 45.62 +2.51

AIME-25 33.33 (pass@1; Liu et al.[2025a) 33.85 —0.52

Nemotron-Research- AMC-23 79.29 (pass@1;|Liu et al.[2025a) 85.70 —6.41
Reasoning-Qwen-1.5B v1 Math 91.89 (pass@1;|Liu et al.[2025a) 92.01 —0.12
Minerva 47.98 (pass@1;|Liu et al.[2025a) 39.27 +8.71

Olympiad 60.22 (pass@1;|Liu et al.[2025a) 64.56 —4.34

AIME-24 78.60 (avg @64;|Yang et al.|[2025) 77.29 +1.31

AceReason-Nemotron-14B ‘ AIME-25 ‘ 67.40 (avg @64: Yang ot al. 2025 66.04 +1.36
DAPO-Qwen-32B | AIME-24 | 50.00 (accuracy;|Yu et al.|[2025) 51.56 —1.56
Open-RS3-1.5B AIME-24 46.70 (pass@1;|Dang & Ngo|2025) 30.94 +15.76
STILL-3-1.5B AIME-24 39.33 (avg@64; T=0.6, top-p=0.95; Min et al.|2025) 31.46 +7.87
DeepScaleR-1.5B AIME-24 43.10 (pass@1;|Luo et al.|2025) 38.54 +4.56
Polaris-7B-Preview AIME-24 72.60 (avg@32;NLP & collaborators|2025) 66.46 +6.14
’ AMC-23 89.00 (avg@8;INLP & collaborators[2025) 93.59 —4.59

4.4 REPORTED VS. REPRODUCED: A GAP ANALYSIS

To make these issues concrete, we compared widely cited checkpoints to parity-controlled runs using
the same verifier, matched decoding budgets, and aligned dataset versions. The gaps in Table2]arise
from three main factors:

Sampling budgets. Multi-sample reporting (e.g., avg@64 with T'=0.6, top-p=0.95 for STILL-3-
1.5B) inflates scores relative to single-shot pass @ I under the same verifier (Min et al.,|[2025). In our
standardized runs this manifests as +7.87 for STILL and +6.14 for Polaris-7B on AIME-24 (NLP,
& collaborators, 2025).

Template and version drift. Changes in prompt templates and dataset slices (e.g., AIME curation,
AMC answer formats) shift accuracy by several points, with exact hashes frequently missing from
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Table 3: Partial-prompt contamination summary. The Math block (left) reports answer—match accu-
racy at an 80% prefix on two legacy sets vs. the fresh AIME—-2025. The SimpleQA block (right) is a
non—math control, where QWEN’s advantage largely attenuates. Full results, including ACC@60/40
and ROUGE-L/EM for all models and datasets, are in Tables in the Appendix.

Model Math (ACC @80) ‘ SimpleQA
MATH-500 AMC-23 AIME-2025 | R@80 EM@80
Llama-3-1.8B 2.8 0.0 0.0 3711 19.86
Qwen2.5-Math-7B 58.0 525 0.0 2934 1247
Qwen2.5-32B 60.0 52.5 33 4106 23.09
Qwen3-14B-Base 58.2 475 0.0 3724 19.40

model cards (NLP & collaborators, [2025; |Liu & contributors, [2025). This helps explain mixed signs
for Nemotron-1.5B v1 (Minerva +8.71 vs. AMC-23 —6.41).

Metric and decision rules. Sources sometimes mix “accuracy,” pass@k, avg @k (mean of pass@ [
across draws), and maj@*k (majority vote), or substitute judges where verifiers exist. Once we nor-
malize to a single verifier/spec, several deltas compress (e.g., DAPO-32B on AIME-24: —1.56) (Sun
et al., [2025a;|Zhao et al., [2025b)).

Finally, small-set variance matters: on AIME-24/25, seed and decode settings alone can yield £3-5
percentage points. Confidence intervals and saturation curves are needed to separate noise from
effect (Mu et al., [2025; [Hochlehnert et al., 2025).

Why this matters Under unmatched budgets, unprobed judges, and untracked calibration, distri-
butional sharpening can masquerade as capability expansion. Clean, parity-controlled evaluation
often shrinks or flips celebrated gains. Hence our checklist—budget parity and saturation curves,
variance disclosure, judge robustness, calibration metrics, and a contamination audit (Section E])—is
essential to distinguish real progress from artifacts and to make the rax-aware protocol credible.

5 PERSPECTIVE III — DATA CONTAMINATION

Data provenance is a first-order confound: if pretraining or RL data overlap evaluation sets, mea-
sured “reasoning” may reflect memorization. Contamination-aware evaluations in coding (Liu et al.,
2024b)) and multi-domain leaderboards (Liang et al., [2023)) already recommend strict provenance
checks; our partial-prompt audit provides direct evidence in math. Partial-prompt reconstruction is
a high-precision but not exhaustive signal of overlap: we treat it as one useful probe to be triangu-
lated with lexical and fuzzy matching and with fresh test sets.

Probe design (partial-prompt completion). Following|Wu et al.[(2025b)), we reveal only the first
2% of each problem (z € {80,60,40}), greedily decode the suffix, and compute ROUGE-L@Lx,
EM@x, and ACC@x. High EM/ACC under large prefixes indicates the model can reconstruct the
hidden tail and final answer verbatim.

Case study: QWEN vs. LLAMA. As summarized in Table QWEN2.5-MATH-7B and
QWEN3-14B-BASE achieve high ACC@80 on legacy math sets (around 58—-60% on MATH-500)
yet collapse on AIME-2025 (0-3%). LLAMA-3—1.8B remains near zero across the same sets,
consistent with clean evaluation. This pattern—strong on older math sets, absent on the newest
release—is consistent with substantial overlap between legacy math benchmarks and the training
corpora of some QWEN-family models, and with comparatively cleaner evaluation for LLAMA.
(See App. Tables [6H9] for ACC/ROUGE/EM at 80/60/40% prefixes.) Similar “contamination-free”
stance and methodology are advocated in code by [Liu et al.| (2024b)) and in broader evaluations by
Liang et al.| (2023).

SimpleQA control. On a non-math control (SIMPLEQA) there is no systematic QWEN advan-
tage: for example, QWEN2.5-32B attains 41.06/23.09 (R@80/EM @80) versus LLAMA-3—1.8B
at 37.11/19.86 (App. Table [I0). The attenuation on an unseen domain supports the interpretation
that elevated partial-prompt math scores on legacy sets reflect contamination rather than a general
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suffix—reconstruction ability. We use SimpleQA as a non-math control to check that strong tail-
reconstruction behavior does not appear uniformly across domains; we do not assume SimpleQA
itself is free of contamination.

Controls and implications. We (i) treat contaminated sets as probes of memorization,
not reasoning; (ii) prioritize uncontaminated or freshly released test sets; and (iii) publish
prompts/seeds/configurations to enable third-party screening. When we re-evaluate RLVR vs. base
models under these controls, widely cited gaps shrink or flip. This directly supports our thesis:
contamination can make modest distributional sharpening appear as frontier expansion.

6 THE TAX-AWARE MINIMUM STANDARD FOR RLVR

Our empirical results in Sections [ and [5] show that three pieces of measurement infrastructure
materially change how RLVR gains appear: parity-controlled budgeting, calibration and attempt
tracking, and contamination audits. Alongside synthesized prior work on judge robustness and safety
evaluations, we package these into a tax-aware minimum standard for reporting RLVR results. The
standard is intentionally narrow and measurement-focused. It does not prescribe a particular RL
algorithm. Instead, it specifies the controls that must be in place before headline reasoning gains are
treated as reliable.

(1) Budget parity and saturation curves. First, RLVR models and their baselines must be evalu-
ated under matched sampling budgets. In our gap analysis, several celebrated improvements shrank
or disappeared once we fixed the verifier, prompt family, decoding parameters, and number of sam-
ples per item (Table[2)). Reporting pass@k for the RLVR model and pass @ for the base model, or
silently changing temperature, top-p, or stopping rules, makes it impossible to tell how much of the
gain comes from extra search rather than a better policy.

Under the minimum standard, any claim that RLVR improves a metric on a given benchmark must
include: (i) the exact sampling budget for both base and RLVR models, (ii) a saturation curve that
plots accuracy as a function of k£ under a shared decoding setup, and (iii) at least three seeds with
mean and confidence intervals or standard deviations (Mu et al., [2025; [Hochlehnert et al., [2025)).
We recommend summarizing performance by area under the saturation curve in addition to a single
pass @k point, since this is less sensitive to one particular choice of k£ and reveals whether RLVR
shifts the whole budget—performance frontier or only improves at very large k.

(2) Calibration, abstention, and judge robustness. Second, evaluations must track calibration
and abstention, not only accuracy. Section[3|showed that RLVR often reduces refusals and increases
stated confidence, which yields more attempted items but also more confident errors. Our factual QA
control (Table[I)) separates shared accuracy from newly attempted tail items and measures expected
calibration error (ECE) on shared items. This reveals a distinct failure mode: headline scores rise
because the model stops saying ~’I do not know” and starts answering everything, while accuracy on
overlapping items barely moves.

Under the minimum standard, each reported accuracy figure must be accompanied by: (i) refusal or
“not attempted” rates, (ii) shared accuracy on the intersection of items both models attempted, and
(iii) a calibration metric such as ECE computed from the model’s confidence scores (Hochlehnert
et al.} 2025} [Leng et al.| 2024). For settings that rely on LLM-as-a-judge rather than programmatic
verifiers, we also require at least one judge stress test: the same outputs scored under several prompt
templates or instruction orderings, with the spread in scores reported (Zhao et al.||2025bj [Sun et al.,
2025a). This does not remove judge fragility, but it makes visible how sensitive a claimed RLVR
gain is to small changes in the judge pipeline. Together, these measurements ensure that gains are
not driven primarily by attempt inflation, miscalibration, or a brittle judge configuration.

(3) Contamination audits and data hygiene. Third, RLVR claims must be supported by explicit
data provenance checks. Section [5|used partial-prompt completion to show that some math bench-
marks are heavily memorized by QWEN families: the model can reconstruct the hidden tail and final
answer when given 80 percent of the problem on legacy sets, but not on fresh ones such as AIME-
2025. Without such checks, apparent reasoning gains can simply reflect better recall of training
data (Liu et al.,|2024b; Liang et al., [2023} |Wu et al.,|2025b).
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Under the minimum standard, any benchmark used to support an RLVR claim must be accompanied
by: (i) a contamination screen that combines fuzzy or lexical matching against pretraining and fine-
tuning corpora (where available) and partial-prompt probes at several prefix lengths, and (ii) at least
one clean held-out set that shows no evidence of tail reconstruction even at large prefixes. For
benchmarks that do show contamination, we treat them as probes of memorization rather than as
primary evidence of reasoning and clearly label them as such. We also require that dataset versions,
prompt templates, and filtering rules be released or described precisely enough for others to re-run
the audit.

Summary. The tax-aware minimum standard asks for three things before treating RLVR gains as
robust: matched budgets with saturation curves and variance disclosure, calibration and abstention
metrics with at least one judge stress test when judges are used, and a contamination audit with at
least one clean held-out benchmark. Our experiments show that each component can change conclu-
sions about whether RLVR expands capability or sharpens selection. Taken together, these controls
provide a simple, concrete bar that future RLVR work can meet without specifying a particular
training recipe, and that can be reused for SFT, RLHF, and test-time compute evaluations.

7 CONCLUSION

Our central position is that RLVR is effective and deployable for verifiable domains, but headline
“reasoning” gains should be treated as provisional unless a small core of tax-aware controls—budget
parity, calibration/abstention tracking, robust evaluation with at least one judge stress test, and a
simple contamination audit—is enforced. RLVR delivers real gains on verifiable tasks, but the field
often over-indexes on headline accuracy while under-weighting taxes (hallucination/overconfidence,
instruction drift, safety & privacy exposure) and measurement (budget mismatch, judge fragility,
calibration drift, contamination). Under parity controls and calibration tracking, several celebrated
“reasoning gains” shrink, suggesting that part of the progress reflects distributional sharpening rather
than durable expansion.

Broader relevance. The same pressures arise in SFT, RLHF, and test-time compute (e.g., CoT and
maj@k). This tax-aware minimum standard applies unchanged beyond RLVR.

Why focus on RLVR. We center RLVR because programmatic verifiers make the measurement
problem tractable and reveal where gains come from. As a result, it is a useful proving ground for
reliability methods that transfer to broader LLM training and deployment. We hope this synthesis
helps the community separate genuine capability expansion from artifacts of budgets, metrics, and
data, and encourages tax-aware training and reporting across RLVR, SFT, and RLHE.

ETHICS STATEMENT

This paper raises some potential ethics concerns under the ICLR Code of Ethics and describes the
steps we took to mitigate them:

Privacy & leakage. Long, explicit chains-of-thought can reveal sensitive content or training arti-
facts. We evaluate only on public math/code benchmarks and do not use private prompts. For any
illustrative traces, we sanitize identifiers and redact potentially sensitive strings. Our standardized
evaluation caps best-of-/V and CoT length to reduce leakage surfaces.

Dual-use: jailbreaks & misuse. Methodological details about jailbreak stress tests could be re-
purposed to increase harm. We report aggregate metrics and robustness deltas, but do not release
attack payloads or automation scripts that would materially increase misuse without corresponding
defenses. Our evaluation protocol co-optimizes calibrated abstention alongside accuracy.

Measurement integrity. Selective budgeting, fragile judge pipelines, or metric switching can mis-
represent results. To reduce this risk, we use matched decoding budgets, fixed verifier/prompt fami-
lies, multi-seed averaging, and release configurations (decoding parameters, seeds, templates) suffi-
cient to reproduce our reported numbers.
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REPRODUCIBILITY STATEMENT

We make our results reproducible by fixing verifiers and a shared prompt family (section ), match-
ing decoding budgets and reporting decoding parameters, and averaging over three seeds (Table
Table2} Figure[2). Datasets and methodology for contamination screens and judge-robustness probes
referenced in section [5|are provided with instructions to re-run the audits. Hardware details and ag-
gregate compute (128 xH100 (96 GB) cluster and ~3,500 GPU-hours) are included to support cost
and throughput replication.
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A APPENDIX

Conventions and metrics. pass@k = probability at least one of k£ samples is correct; avg@k =
mean pass@ [ across k draws; maj@k = majority vote over k; ECE = expected calibration error.
Arrows (1/]) indicate whether higher or lower is better.

Usage of Large Language Models. We used an LLM assistant as a productivity tool for light
editing and formatting: smoothing wording the authors had already written, polishing captions,
refactoring IATEX tables/macros, and drafting small utility snippets (e.g., plotting and CSV load-
ers) that we then modified and verified. All research ideas, evaluation designs, hyperparameters,
and analysis decisions are by the authors, and every experiment and number reported was run and
checked by us.

B POTENTIAL CRITICISMS AND RESPONSES

On capability expansion. RLVR can expand capability under specific regimes (e.g., prolonged
RL with resets and KL control; unlikeliness-based shaping; domain-targeted RLVR with sparse
pretraining) (Liu et al.| 2025aj |[He et al.l 2025a} [Cheng et al., [2025). Our claim is not negation
but measurement: without tax-aware training and parity-controlled evaluation, expansion is often
overstated. The protocol in §6]is compatible with these positive regimes while curbing overclaiming.

On “it’s just data.,” Data quality and curricula matter (Chen et al.,[2025a; Wen et al.,|[2025a), but
reward/metric design independently shapes failure modes (determinacy/overconfidence under judge
rewards; terse/off-topic outputs under naive factuality; calibration drift) (Chen et al., |2025bj Leng
et al.,|2024;|Hochlehnert et al., 2025). We treat both data and objectives as first-class knobs (see §@

On budgeted pass@k. We use pass@k for practical relevance, but ask for matched budgets and
saturation curves. Under these controls, headline gaps often shrink or flip (Hochlehnert et al.,[2025).
Reporting AUC alongside pass @k keeps comparisons fair (§4).

On safety/privacy risk. Jailbreak success scales with attempts/context; many-shot tuning can re-
duce measured rates in controlled settings (Zhou et al., [2025} Jiang et al.|, 2025; |Ackerman & Pan-
ickssery}, [2025)). Longer CoT increases leakage surfaces (Green et al., [2025). Our protocol caps
Best-of-N/CoT length at eval and co-optimizes abstention/privacy with accuracy (§6).

On reliance on LLM judges. When verifiers are unavailable or partial, we use LLM judges with
robustness probes (prompt/format perturbations, adversarial tests) and publish templates/configs;
judges are manipulable, so robustness deltas are reported (Zhao et al., |2025b; |Sun et al., 2025a).
Prefer verifiers when possible (§4).

Scope. Our synthesis centers on verifiable math/code/QA with open-weight models. Agen-
tic/multimodal settings introduce additional privacy/safety channels and may need tailored verifiers
and audits; we expect core principles (budget parity, calibration, abstention, contamination screens)
to transfer with domain-specific adaptations.

C STANDARDIZED EVALUATIONS

We report full results under matched budgets, fixed verifiers, and a shared prompt family. These
tables extend Section 4| and underlie the saturation-curve argument: once k, templates, and dataset
versions are controlled, several headline gaps narrow. All results in this section use the same verifier
and prompt template family; we specify k, number of seeds, and dataset versions below.

Key observations. Thinking-mode (test-time compute) delivers large gains across sizes: for 4B
models, Qwen3-4B—Qwen3-4B (Thinking) yields +50.5/+44.7 on AIME-24/25 and ~+28 on the
averaged score; Polaris-4B-Preview—Thinking shows +52.6/+54.7 and ~+29 on Avg; for 8B,
Qwen3-8B—Thinking adds +51.9/+46.3 and ~+28 on Avg. Small RLVR-tuned models can exceed
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larger non-thinking baselines: the 1.5B Nemotron-Research-Reasoning v2 averages 61.70, outscor-
ing non-thinking 4-8B baselines (Qwen3-4B 46.98, Qwen3-8B 48.96) and leading them by ~24-30
points on AIME-24. Within size families, leaders are consistent across benchmarks (7B AceReason-
1.1 Avg 74.44; 14B AceReason Avg 77.33; 32B DeepSeek-R1-Distill Avg 72.53), while the frontier
DeepSeek-R1-0528 tops overall (AIME-24 90.00, AIME-25 78.33, Avg 81.72). Several columns
(AMC/MATH) cluster in the mid-90s, indicating saturation under our k=32/verifier setup. Together,
these patterns support (i) test-time compute as an effective lever for reasoning; (ii) RLVR’s dispro-
portionate lift at smaller scales; and (iii) the need for matched budgets, response-length controls,
and saturation curves to interpret small nominal deltas fairly.

Table 4: Standardized evaluation across math benchmarks (higher is better). Styling: within each
size family, the best score for a given benchmark is bold and the second-best is underlined. Context:
Parity-controlled scores used in Section 4] Setup: pass@] estimated by averaging over k=32
independent single-sample decodes (avg @32), same verifier and prompt family, 3 seeds. Compute:
evaluations ran on a 128 x H100 (96 GB) cluster and consumed /3,500 GPU-hours.

Model | AIME-241 AIME-257 AMC-237 MATH? Minervat Olympiadf | Avgt
Qwen2.5-Math-1.5B 8.33 6.35 44.06 66.67 18.42 30.74 29.10
Qwen2.5-Math-1.5B-Instruct 10.10 8.85 55.08 74.83 29.32 40.00 36.37
DeepSeek-R1-Distill-Qwen-1.5B 31.15 24.06 72.81 85.01 32.18 51.55 49.46
STILL-3-1.5B 31.46 25.00 75.08 86.24 32.77 53.84 50.73
DeepScaleR-1.5B 38.54 30.52 80.86 88.79 36.19 58.95 55.64
Qwen2.5-Math-1.5B-Oat-Zero 20.00 10.00 52.50 74.20 26.84 37.78 36.89
Open-RS1 30.94 22.60 73.05 84.90 29.92 52.82 49.04
Open-RS2 28.96 24.37 73.52 85.06 29.74 52.63 49.05
Open-RS3 30.94 24.79 72.50 84.47 29.11 52.25 49.01
Nemotron-Research-Reasoning-Qwen-1.5B v1 45.62 33.85 85.70 92.01 39.27 64.56 60.17
Nemotron-Research-Reasoning-Qwen-1.5B v2 51.77 32.92 88.83 92.24 39.75 64.69 61.70
Qwen2.5-Math-7B 15.62 6.56 52.81 67.72 15.64 32.44 31.80
Qwen2.5-Math-7B-Instruct 12.19 9.17 58.36 83.21 35.56 41.60 40.01
DeepSeek-R1-Distill-Qwen-7B 53.23 38.96 89.30 93.95 43.07 66.67 64.20
Qwen?2.5-Math-7B-Oat-Zero 26.67 6.67 67.50 79.20 32.72 41.78 42.42
Skywork-OR1-7B 66.88 51.15 92.73 96.04 44.03 73.61 70.74
LEAD-7B 51.67 37.19 89.06 93.73 43.11 66.34 63.52
AceReason-Nemotron-7B 65.83 47.19 95.08 95.81 45.35 73.92 70.53
AceReason-Nemotron-1.1-7B 71.56 64.58 93.36 96.73 44.05 76.37 74.44
Polaris-7B-Preview 66.46 51.56 93.59 95.68 44.47 73.65 70.90
Qwen2.5-14B 11.04 7.92 47.19 73.19 22.51 37.01 33.14
Qwen?2.5-14B-Instruct 13.65 12.40 58.13 80.28 38.63 43.23 41.05
DeepSeek-R1-Distill-Qwen-14B 67.81 48.33 95.39 95.28 46.43 72.06 70.88
LEAD-14B 64.06 52.29 92.81 95.23 47.52 72.25 70.69
AceReason-Nemotron-14B 77.29 66.04 98.67 96.90 47.73 77.34 77.33
Qwen2.5-32B 15.62 9.17 59.30 76.51 26.42 41.45 38.08
Qwen2.5-32B-Instruct 17.19 14.17 67.66 83.17 40.96 47.85 45.17
DeepSeek-R1-Distill-Qwen-32B 69.06 55.52 95.62 95.74 46.50 72.76 72.53
DAPO-Qwen-32B 51.56 36.98 92.73 80.74 33.07 48.97 57.34
Enigmata-Qwen2.5-32B 61.67 46.88 91.25 93.69 46.32 69.14 68.16
DeepSeek-V3-0324 55.83 4333 92.50 95.12 48.58 6691 67.05
DeepSeek-R1-0528 90.00 78.33 99.38 97.80 48.35 76.44 81.72
Qwen3-4B 21.88 17.92 66.95 84.27 38.50 52.38 46.98
Qwen3-4B (Thinking) 72.40 62.60 95.78 96.31 46.44 76.40 74.99
Polaris-4B-Preview 27.29 23.02 71.56 85.89 39.20 59.13 51.02
Polaris-4B-Preview (Thinking) 79.90 77.71 99.45 97.38 47.21 80.38 80.34
Qwen3-8B 25.42 20.21 69.61 84.54 39.81 54.15 48.96
Qwen3-8B (Thinking) 77.29 66.46 95.00 96.86 49.06 77.56 77.04
DeepSeek-R1-0528-Qwen3-8B 75.73 67.29 97.19 96.32 45.85 74.19 76.10

D SEQUENCE LENGTH AND COMPUTE FOOTPRINT

We summarize generated token lengths by benchmark as a proxy for compute footprint and exposure
surface. Longer chains increase latency and may worsen calibration and safety/privacy risks (Sec-
tion[3), so we report typical generation lengths under the same decoding budgets used in Appx. [C}
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Table 5: Median generated output length (tokens per problem; answer + reasoning) under the stan-
dardized decoding setup. Context: Compute/privacy footprint complementing accuracy. Setup:
Same prompts/verifier as Appx.|C} decoding budget k=32; lengths aggregated across all samples per
problem (correct and incorrect). Takeaway: Reasoning-tuned models often produce much longer
traces (e.g., 2-8x vs. instruct baselines), which impacts evaluation cost and safety/privacy exposure.

Model | AIME-24 AIME-25 AMC-23 Math Minerva Olympiad | Avg

Qwen2.5-Math-1.5B 1114 1033 828 648 959 904 914

Qwen?2.5-Math-1.5B-Instruct 990 891 801 566 640 810 783

DeepSeek-R1-Distill-Qwen-1.5B 16363 16252 9979 5700 8194 11873 11394
STILL-3-1.5B 13350 13000 7716 4314 5921 9345 8941

DeepScaleR-1.5B 9780 8978 5003 3139 5270 5807 6330
Qwen?2.5-Math-1.5B-Oat-Zero 1166 1155 848 626 689 892 896

Open-RS1 13578 13698 7495 4170 5935 8995 8978
Open-RS2 14215 13618 7612 4174 5805 9059 9081

Open-RS3 14394 13606 7884 4233 5688 9047 9142
Nemotron-Research-Reasoning-Qwen-1.5B 7786 7713 6294 5070 6569 6678 6685
Qwen2.5-Math-7B 1201 1152 946 720 1136 950 1018
Qwen?2.5-Math-7B-Instruct 1465 1418 983 670 748 1051 1056
DeepSeek-R1-Distill-Qwen-7B 13613 14543 6402 4125 5595 8988 8878
Qwen?2.5-Math-7B-Oat-Zero 1032 1178 884 673 696 870 889

Skywork-OR1-7B 15366 17845 8361 5541 8566 11818 11250
LEAD-7B 10838 11573 4863 3111 3692 7054 6855
AceReason-Nemotron-1.1-7B 14331 16502 6672 3835 6676 9060 9513
Polaris-7B-Preview 12564 14389 6538 4313 6125 8681 8768
Qwen2.5-14B 1076 1088 847 591 1209 815 938

Qwen?2.5-14B-Instruct 1079 994 850 607 632 844 834

DeepSeek-R1-Distill-Qwen-14B 11295 13389 5735 3781 4919 8042 7860
LEAD-14B 8364 9019 4469 3031 4675 5713 5879
AceReason-Nemotron-14B 13871 16334 7239 4609 7677 10030 9960
Qwen2.5-32B 1165 1055 782 556 1186 800 924

DeepSeek-R1-Distill-Qwen-32B 10979 13012 5826 3652 4663 7924 7676
DAPO-Qwen-32B 6627 6074 3086 2812 3887 5122 4601

Enigmata-Qwen2.5-32B 13204 15417 10195 6358 13770 12098 11840
DeepSeek-V3-0324 3601 3474 2134 1281 705 2386 2264
DeepSeek-R1-0528 16276 18416 10285 6041 7085 13750 11976
MiMo-7B-Base 21716 18842 15734 6390 13809 13299 14965
MiMo-7B-SFT 13012 14250 7030 4177 6152 8421 8841

MiMo-7B-RL-Zero 18105 18575 9950 6564 6546 12152 11982
Qwen3-4B 8909 6079 2369 1289 812 3217 3779
Qwen3-4B (Thinking) 14750 17813 8290 5076 6682 10606 10536
Polaris-4B-Preview 5582 6148 2637 1293 804 4632 3516
Polaris-4B-Preview (Thinking) 28369 33109 15125 9333 13307 21832 20179
Qwen3-8B 8375 6151 2863 1479 662 3624 3859
Qwen3-8B (Thinking) 14764 18296 8756 5391 7105 11384 10949
DeepSeek-R1-0528-Qwen3-8B 20970 22742 12895 7640 9329 16108 14947
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E DATA CONTAMINATION PROBES: MATH

We use partial-prompt completion to detect tail reconstruction: reveal the first % of the problem
(z € {80,60,40}), greedily decode the remainder, and score ACC/EM/ROUGE-L at that prefix.
High scores at large prefixes indicate memorization of legacy sets rather than reasoning. Tables here

expand Section 3]

Table 6: Accuracy of QWEN3 checkpoints on five mathematics benchmarks when each model re-
ceives only the first 2% of the question (z = 80, 60, 40) and must greedily complete the remainder.
Columns “ACC (X%)” report the average accuracy at that prefix length. Takeaway: QWEN3 vari-
ants achieve high ACC@80 on legacy MATH-500/AMC-23 but collapse on AIME-2025, consis-

tent with contamination in older sets.

Model Dataset ‘ ACC (80%) ACC (60%) ACC (40%)
MATH-500 26.40 14.40 5.40
AMC-23 20.00 5.00 0.00
Qwen3-0.6B-Base | AIME 2024 3.33 0.00 0.00
AIME 2025 0.00 0.00 0.00
Minerva-Math 1.10 0.00 0.00
MATH-500 33.80 18.40 9.00
AMC-23 20.00 15.00 0.00
Qwen3-1.7B-Base | AIME 2024 0.00 0.00 0.00
AIME 2025 3.33 3.33 0.00
Minerva-Math 2.94 2.21 0.74
MATH-500 43.20 28.20 15.00
AMC-23 37.50 37.50 17.50
Qwen3-4B-Base AIME 2024 10.00 6.67 10.00
AIME 2025 3.33 0.00 0.00
Minerva-Math 4.78 2.31 0.74
MATH-500 52.00 35.60 24.80
AMC-23 35.00 25.00 27.50
Qwen3-8B-Base AIME 2024 13.33 6.67 10.00
AIME 2025 3.33 3.33 0.00
Minerva-Math 5.88 3.31 1.84
MATH-500 58.20 44.80 30.20
AMC-23 47.50 37.50 32.50
Qwen3-14B-Base | AIME 2024 10.00 16.67 16.67
AIME 2025 0.00 0.00 0.00
Minerva-Math 5.88 2.21 2.94
MATH-500 62.40 51.40 37.80
AMC-23 40.00 25.00 25.00
Qwen3-30B-A3B | AIME 2024 13.33 23.33 13.33
AIME 2025 3.33 0.00 0.00
Minerva-Math 4.78 3.21 1.84
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Table 7: Accuracy of QWEN2.5 and LLAMA-3 checkpoints on five mathematics benchmarks when
each model receives only the first 2% of the question (z = 80, 60, 40) and must greedily complete
the remainder. Takeaway: QWEN?2.5 shows strong tail reconstruction on legacy math; LLAMA-3-
1.8B remains near zero across sets, reinforcing the contamination interpretation.

Model ‘ Dataset ‘ ACC (80%) ACC (60%) ACC (40%)
MATH-500 58.00 44.40 29.20
AMC-23 52.50 42.50 32.50
Qwen2.5-Math-7B AIME 2024 16.67 20.00 16.67
AIME 2025 0.00 0.00 0.00
Minerva-Math 7.72 441 2.94
MATH-500 44.80 27.80 15.00
AMC-23 27.50 27.50 22.50
Qwen2.5-7B AIME 2024 6.67 0.00 3.33
AIME 2025 3.33 3.33 0.00
Minerva-Math 6.62 4.78 1.47
MATH-500 44.80 28.60 14.00
AMC-23 40.00 15.00 12.50
Qwen2.5-7B-Instruct | AIME 2024 3.33 0.00 0.00
AIME 2025 3.33 0.00 0.00
Minerva-Math 10.29 5.51 3.31
MATH-500 50.60 35.80 21.00
AMC-23 40.00 27.50 27.50
Qwen2.5-14B AIME 2024 10.00 3.33 6.67
AIME 2025 3.33 0.00 0.00
Minerva-Math 8.46 6.25 2.21
MATH-500 60.00 47.80 32.00
AMC-23 52.50 45.00 42.50
Qwen2.5-32B AIME 2024 16.67 13.33 10.00
AIME 2025 3.33 0.00 6.67
Minerva-Math 9.93 441 2.94
MATH-500 2.80 2.40 2.00
AMC-23 0.00 0.00 0.00
Llama-3-1.8B AIME 2024 0.00 0.00 0.00
AIME 2025 0.00 0.00 0.00
Minerva-Math 1.84 0.37 0.00
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Table 8: RougeL and exact-match (EM) scores for QWEN3.0 checkpoints on five mathematics
benchmarks when each model receives only the first 2% of the question (z = 80, 60, 40) and must
greedily complete the remainder. Columns “R@2” and “EM @ x” report the average ROUGE-L and
EM for that prefix length. Takeaway: Elevated ROUGE-L/EM at large prefixes on legacy sets (but
not on AIME-2025) indicates suffix reconstruction rather than emergent reasoning.

Model | Dataset | R@80 EM@80 R@60 EM@60 R@40 EM®@40
MATH-500 5331 2080 45.90 640 3933 1.00
AMC-23 52.26 750 4039 0.00 3392 0.00
Qwen3-0.6B-Base | AIME 2024 54.85 2000  27.79 000 2476 0.00
AIME 2025 54.69 1000 3347 0.00  29.16 0.00
Minerva-Math | 31.41 147 2917 0.00  24.86 0.00
MATH-500 55.86 2460 49.05 1020 4191 2.40
AMC-23 64.35 30.00 5257 2000 4495 12.50
Qwen3-1.7B-Base | AIME 2024 56.55 2667 3648 6.67 3656 6.67
AIME 2025 53.90 16.67  39.40 6.00  31.09 0.00
Minerva-Math | 33.99 331 3032 000  27.28 0.00
MATH-500 65.04 3740 5598 18.80  46.44 7.00
AMC-23 73.24 5250  68.56 4500  63.89 35.00
Qwen3-4B-Base | AIME 2024 68.98 4333 5322 3000 53.22 26.67
AIME 2025 55.34 1000 39.29 000  27.72 0.00
Minerva-Math | 34.13 294 3219 037  28.18 0.00
MATH-500 70.98 4720  63.69 29.60  53.84 15.20
AMC-23 78.23 5750 69.09 5250  69.73 47.50
Qwen3-8B-Base | AIME 2024 77.28 60.00  55.76 3333 57.85 30.00
AIME 2025 51.97 1000 38.60 000 3221 0.00
Minerva-Math | 35.87 257 3341 0.00 2852 0.00
MATH-500 74.93 55.80  70.08 39.80  60.23 23.80
AMC-23 75.32 55.00 7320 60.00 7552 52.50
Qwen3-14B-Base | AIME 2024 7231 50.00 6148 40.00  60.54 40.00
AIME 2025 56.07 1000 3641 0.00 3246 0.00
Minerva-Math | 38.12 441 3411 0.74  29.72 0.00
MATH-500 80.12 6240  75.03 4560 6493 33.00
AMC-23 80.40 60.00 7324 5500 7721 55.00
Qwen3-30B-A3B | AIME 2024 74.26 5333 6653 4000 62.90 33.33
AIME 2025 51.57 6.67  43.18 0.00 3055 0.00
Minerva-Math | 37.01 368 34.96 110 2922 0.00
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Table 9: RougeL and exact-match (EM) scores for QWEN2.5 and LLAMA-3 on five mathematics
benchmarks when each model receives only the first % of the question (z = 80, 60, 40) and must
greedily complete the remainder. Takeaway: QWEN2.5 shows strong reconstruction on legacy
math; LLAMA-3 remains low.

Model | Dataset | R@80 EM@80 R@60 EM@60 R@40 EM®@40
MATH-500 79.63 61.60 70.30 41.20 60.81 25.40
AMC-23 77.35 57.50 71.47 50.00 66.29 42.50
Qwen2.5-Math-7B | AIME 2024 69.35 53.33 55.90 30.00 56.53 30.00
AIME 2025 48.20 10.00 36.31 0.00 27.23 0.00
Minerva-Math 3342 2.94 30.41 0.37 26.88 0.00
MATH-500 66.09 38.20 58.15 18.00 48.34 6.00
AMC-23 69.47 47.50 67.70 45.00 61.08 35.00
Qwen2.5-7B AIME 2024 61.28 30.00 46.19 16.67 46.14 16.67
AIME 2025 54.62 10.00 42.41 0.00 30.56 0.00
Minerva-Math 33.88 2.94 31.13 0.00 27.06 0.00
MATH-500 60.05 28.60 51.10 10.40 43.41 2.60
AMC-23 61.38 30.00 51.22 17.50 42.90 10.00
Qwen2.5-7B-Instr AIME 2024 55.41 20.00 36.28 0.00 30.64 0.00
AIME 2025 58.12 10.00 37.96 0.00 29.81 0.00
Minerva-Math 34.37 2.94 28.50 0.00 25.99 0.00
MATH-500 69.50 45.00 61.20 27.00 51.24 12.80
AMC-23 74.58 47.50 68.20 42.50 67.82 37.50
Qwen2.5-14B AIME 2024 65.42 40.00 49.76 23.33 48.97 23.33
AIME 2025 52.56 6.67 38.02 0.00 32.92 0.00
Minerva-Math 35.64 3.68 31.30 0.00 27.93 0.00
MATH-500 76.98 56.60 71.14 41.20 58.32 25.20
AMC-23 79.18 62.50 74.59 60.00 75.78 55.00
Qwen2.5-32B AIME 2024 73.25 56.67 60.92 40.00 60.47 33.33
AIME 2025 53.67 6.67 4091 0.00 31.90 0.00
Minerva-Math 34.88 2.94 32.92 0.00 28.32 0.00
MATH-500 46.49 14.00 38.75 3.00 32.19 0.60
AMC-23 40.46 0.00 29.87 0.00 25.28 0.00
Llama-3-1.8B AIME 2024 49.70 16.67 31.45 0.00 27.13 0.00
AIME 2025 50.16 6.67 32.97 0.00 27.18 0.00
Minerva-Math 35.32 1.47 29.17 0.00 26.95 0.00
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F DATA CONTAMINATION PROBES: SIMPLEQA (CONTROL)

To test whether partial-prompt reconstruction reflects a general suffix-completion ability, we repeat
the probe on SIMPLEQA.. If math-set effects were general, we would expect similarly high ROUGE-
L/EM at large prefixes here. They are not: scores cluster modestly across families.

Table 10: Rouge-L and exact-match (EM) scores on SIMPLEQA when each model receives only the
first % of the question (x =80, 60, 40) and must greedily complete the remainder. Takeaway: No
consistent QWEN advantage; effects seen on legacy math do not generalize, supporting the contam-
ination interpretation.

Model | Dataset | R@80 EM@80 R@60 EM®@60 R@40 EM@40
Qwen2.5-Math-7B SimpleQA 29.34 12.47 16.19 0.69 13.28 0.00
Qwen2.5-7B SimpleQA 37.61 19.63 19.88 1.85 14.64 0.23
Qwen2.5-7B-Instruct SimpleQA 36.06 17.78 19.76 1.62 15.87 0.46
Qwen2.5-14B SimpleQA 39.97 21.94 21.69 3.23 15.98 0.23
Qwen2.5-32B SimpleQA 41.06 23.09 21.87 3.23 14.78 0.00
Llama-3-1.8B SimpleQA 37.11 19.86 20.24 2.08 14.22 0.00
Qwen3-0.6B-Base SimpleQA 26.45 10.39 16.35 0.46 14.42 0.00
Qwen3-1.7B-Base SimpleQA 27.55 12.47 16.50 0.92 14.97 0.23
Qwen3-4B-Base SimpleQA 33.52 16.40 17.87 1.85 14.93 0.00
Qwen3-8B-Base SimpleQA 33.99 16.40 19.23 1.39 15.39 0.00
Qwen3-14B-Base SimpleQA 37.24 19.40 21.44 2.31 16.65 0.23
Qwen3-30B-A3B-Base SimpleQA 38.80 19.63 22.07 3.00 16.55 0.00
Qwen3-23B-A22B-Instr-2507 | SimpleQA 53.88 38.34 34.58 10.39 22.74 1.39
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