

POSITION: THE HIDDEN COSTS AND MEASUREMENT GAPS OF REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Aaron Tu^{1*} Weihao Xuan^{2*} Heli Qi^{3*} Fang Wu^{6*} Xu Huang⁴ Qingcheng Zeng⁵
 Shayan Talaei⁶ Yijia Xiao⁷ Peng Xia⁸ Xiangru Tang⁹ Yuchen Zhuang⁴
 Bing Hu¹⁰ Hanqun Cao¹¹ Wenqi Shi¹² Tianang Leng¹³ Rui Yang¹⁴
 Yingjian Chen¹⁰ Ziqi Wang¹⁵ Irene Li² Nan Liu¹⁴ Huaxiu Yao⁸
 Li Erran Li^{16,17} Ge Liu¹⁸ Amin Saberi⁶ Naoto Yokoya² Jure Leskovec⁶
 Yejin Choi⁶

¹University of California, Berkeley ²The University of Tokyo ³Waseda University

⁴Georgia Institute of Technology ⁵Northwestern University ⁶Stanford University

⁷University of California, Los Angeles ⁸University of North Carolina at Chapel Hill

⁹Yale University ¹⁰Independent Researcher ¹¹The Chinese University of Hong Kong

¹²University of Texas Southwestern Medical Center ¹³University of Pennsylvania

¹⁴National University of Singapore ¹⁵Liverpool University ¹⁶AWS AI, Amazon

¹⁷Columbia University ¹⁸University of Illinois at Urbana-Champaign

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) is a practical, scalable way to improve large language models on math, code, and other structured tasks. However, we argue that many headline RLVR gains are not yet validated because they conflate true policy improvement with three recurring confounds: (i) *budget mismatch* between RLVR and base-model evaluation, (ii) *calibration/attempt inflation* that converts abstentions into confident (sometimes incorrect) answers, and (iii) *data contamination* in legacy benchmarks. Using matched-budget reproductions and partial-prompt contamination audits, we find that several celebrated gaps shrink substantially or disappear under parity-controlled, clean evaluation. These effects do not imply RLVR is ineffective; rather, they show that current reporting often overstates capability gains and obscures reliability costs. We therefore propose a compact, *tax-aware* minimum standard for RLVR training and evaluation that co-optimizes correctness, grounding, and calibrated refusal, and that requires budget parity, variance disclosure, judge-robustness probes, and explicit provenance screening. Our position is constructive: RLVR is effective and deployable for verifiable domains, but “reasoning” gains should be treated as provisional unless a small core of tax-aware controls—budget parity, calibration/abstention tracking, robust evaluation with at least one judge stress test, and a simple contamination audit—is enforced.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has become a leading post-training route for improving large language models on math, code, and other structured tasks (Luong et al., 2024; Wen et al., 2025a). By optimizing against automatically computable signals—unit tests for programs, exact numeric or string matches for math, or retrieval-grounded checks for citations—RLVR promises a scalable, label-efficient path to better reasoning. Recent results are striking: across multiple domains, RLVR systems often post large gains on standard benchmarks. Moreover, Figure 2 shows a rise in RLVR-tagged papers alongside improvements on AIME-24/25 through 2024–H1 2025, underscoring both the field’s activity context and the need to separate genuine reasoning gains

*Equal contribution

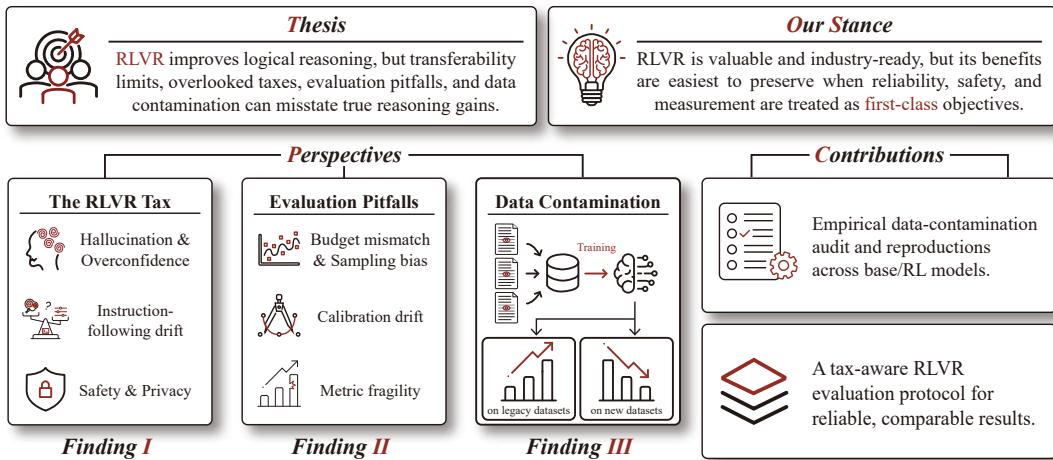


Figure 1: Paper Roadmap: taxes, evaluation pitfalls, contamination, and the unified protocol.

from measurement and budgeting artifacts. Our position is that RLVR is effective and deployable for verifiable domains, but “reasoning” gains should be treated as provisional without a small core of tax-aware controls.

Beneath the surface, however, sits a question that frames the current debate: does RLVR genuinely impart new reasoning capability, or does it mainly sharpen selection among behaviors the base model already knows how to produce? Parity-controlled studies show that base models can narrow or erase RLVR gaps when given matched sampling budgets—consistent with smarter search rather than capability expansion (Yue et al., 2025; Wu et al., 2025a). At the same time, several regimes report gains that are hard to recover by sampling alone: explicitly optimizing the multi-sample objective (*pass@k* training) (Wang et al., 2025), curriculum via self-play with variational problem synthesis (Zhang et al., 2025a), and distribution-aware reward shaping that counters rank bias and diversity collapse (Liu et al., 2025b), alongside longer-horizon RL schedules and unlikeliness rewards (Liu et al., 2025a; He et al., 2025a). Even metric choice can flip conclusions: answer-only scores may diverge from process-aware metrics that require both a correct answer and a valid chain of thought.

A second complication is what we call the *RLVR tax*: unintended *empirical* side effects that ride along with apparent gains under current reasoning-style post-training—reduced abstention, miscalibration, instruction-fidelity drift, and a larger safety/privacy surface due to longer traces. This tax is not mathematically inevitable and not unique to RLVR; similar patterns arise under reasoning-heavy SFT and RLHF. We focus on RLVR because verifiable objectives and open weights make these trade-offs measurable at relatively low cost. In practice, RLVR tends to reduce abstention and increase stated confidence—sometimes even when answers are wrong—thereby shifting risk from “I don’t know” to assertive errors (Song et al., 2025; Mei et al., 2025; Yao et al., 2025). It can also chip away at instruction fidelity on longer generations, where adhering to formats or constraints becomes harder as chains grow (Fu et al., 2025; Li et al., 2025). Finally, longer, more explicit reasoning traces expand the attack and leakage surface, raising jailbreak success and privacy exposure if left unchecked (Zhou et al., 2025; Jiang et al., 2025; Ackerman & Panickssery, 2025; Green et al., 2025; Huang et al., 2025; Zhang et al., 2025b).

A third, orthogonal complication is *measurement*. Reported advances are sensitive to sampling budgets and decoding settings, to the stability of LLM-as-a-judge evaluators, to calibration drift, and to data provenance (Hochlehnert et al., 2025; Chandak et al., 2025; Brown et al., 2024; Muennighoff et al., 2025; Zhao et al., 2025b; Wang et al., 2024a;b; Leng et al., 2024; Shen et al., 2025; Wu et al., 2025b; He et al., 2025b; Mirzadeh et al., 2024; Liu et al., 2024b). When budgets are matched, judges are stress-tested, and datasets are versioned and decontaminated, reported improvement gaps can diminish, suggesting that part of the apparent progress reflects evaluation design rather than durable capability (Hochlehnert et al., 2025; Chandak et al., 2025). To help orient the reader, Figure 1 summarizes three threads (taxes, evaluation pitfalls, and contamination) and previews the tax-aware protocol we adopt.

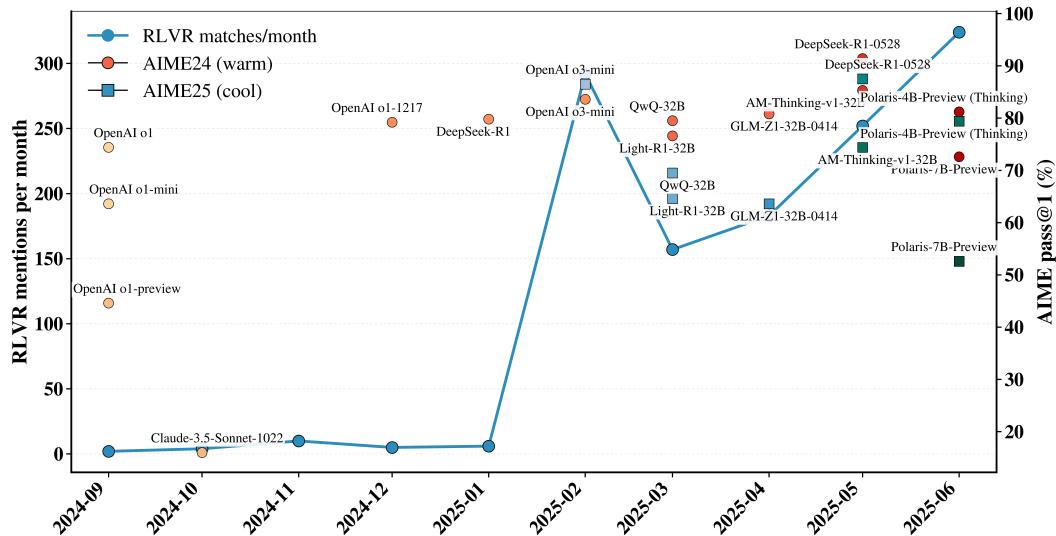


Figure 2: Monthly RLVR activity vs. AIME performance (time span: May 2024–June 2025). **Left axis:** count of pages per month whose *title or abstract* contains “RLVR” or “reinforcement learning with verifiable rewards” (Google Scholar and arXiv via SerpAPI). **Right axis:** *pass@1 (%)* on AIME-24 (circles, warm) and AIME-25 (squares, cool) for selected models; labels show model names.

Scope and definitions. Throughout, we use *RLVR* to mean post-training that optimizes LLMs against *automatically checkable* signals rather than human preference models (Ouyang et al., 2022). Typical implementations adopt PPO/GRPO/DAPO-style updates with a KL penalty to the base policy, often mixing offline rollouts with online sampling, adding entropy regularization, and using selective filtering or gating. Rewards are frequently *componentized*—for correctness, grounding/citation sufficiency, and calibrated refusal—and introduced in stages. Our analysis centers on open-weight models fine-tuned for math/code/question answering (QA) with verifiable objectives, in both single- and multi-domain regimes. We deliberately avoid a catalogue of low-level algorithmic variants except where they bear on reliability (e.g., unlikeliness rewards that counter rank bias, or curricula that change variance). The primary threats considered are privacy leakage from long chains of thought (CoT) and increased jailbreak susceptibility during or after RLVR.

Position, Contributions, and Roadmap. RLVR is valuable and industry-ready, but we encourage prioritizing reliability, safety, and measurement. Our position is that headline reasoning gains should be treated as provisional unless a small core of tax-aware controls is in place. Our contributions are threefold: (1) *Measurement*: we provide parity-controlled reproductions and a unified gap table that isolates inflation sources from budget mismatch, judge and template drift, and dataset versioning (Table 2). (2) *Tax*: we quantify attempt inflation and the resulting calibration and refusal costs under RLVR and matched SFT controls (Table 1). (3) *Protocol*: based on these findings, we distill a compact *tax-aware minimum standard* for RLVR training and evaluation, intended as a minimum credible reporting bar with a default instantiation in section 6, not another broad checklist. The paper is organized accordingly: we (i) synthesize evidence on sharpening vs. expansion (section 2); (ii) analyze the RLVR tax and how it distorts reported improvements (section 3); (iii) reproduce representative gaps under parity controls (section 4); (iv) audit contamination with partial-prompt probes (section 5); and (v) present the tax-aware minimum standard that co-optimizes accuracy, grounding, and calibrated abstention while standardizing budgeting and provenance checks (section 6).

2 WHAT CHANGES UNDER RLVR? AN EVIDENCE OVERVIEW

We review empirical signals about RLVR’s effects without taking a side on the “expansion *vs.* sharpening” question. Skeptical and optimistic perspectives recur in the literature, and each tends to appear under identifiable conditions.

2.1 SKEPTICAL LENS: SHARPENING AND SAMPLING EFFECTS

Under a skeptical lens, RLVR often appears to improve sample efficiency and steer the model toward high-reward regions already present in the base distribution, rather than broaden fundamental capability (Gandhi et al., 2025; Shah et al., 2025). When base models are evaluated under matched sampling budgets (i.e., $pass@k$), gaps between base and RLVR-trained models often shrink (Yue et al., 2025), consistent with selection rather than acquisition. Empirically, outputs can collapse toward a dominant pretraining mode with reduced diversity (Zhao et al., 2025a), and theory suggests that after RLVR, support *shrinkage* tends to outweigh support *expansion* (Wu et al., 2025a). Stress tests add caution: performance collapses at higher complexities have been reported even with ample compute (Shojaee et al., 2025), although some failures trace to evaluation artifacts such as token limits and unsolvable items, underscoring the need for budget parity, seed control, and dataset hygiene (see Section 4) (Opus & Lawsen, 2025). Finally, several works separate *knowledge injection* from *policy optimization*: pipelines that use SFT or distillation to inject knowledge and RLVR to select among candidates typically beat pure GRPO, suggesting RLVR optimizes within learned support (Ma et al., 2025; Wan et al., 2025; Chen et al., 2025a); guidance and self-distillation further help over vanilla GRPO (Nath et al., 2025; Liu et al., 2025c).

2.2 OPTIMISTIC LENS: SIGNALS OF CAPABILITY BROADENING

Under an optimistic lens, carefully designed RLVR appears to *expand* what models can do, not merely sharpen selection. Prolonged optimization with explicit KL control and periodic resets (ProRL) reports trajectories that are not reachable by sampling the base policy alone, with the largest gains where the base initially struggles (Liu et al., 2025a). Reward shaping also matters: by diagnosing a GRPO tendency to reinforce high-probability completions, He et al. (2025a) show that adding unlikeliness rewards and training deeper widens the model’s support and improves multi-sample theorem proving, indicating qualitative changes to reachable reasoning modes. These effects are conditioned by pretraining coverage: cross-domain analyses find broader benefits in Math/Code/Science, while under-represented areas such as Logic/Simulation/Tabular realize meaningful gains when RLVR is applied in-domain (Cheng et al., 2025). Consistent with this, process-aware metrics that require both a correct answer and a syntactically valid chain (CoT- $pass@k$) often reveal larger RLVR deltas than answer-only measures (Wen et al., 2025b). While generalization to substantially harder regimes remains an open goal (Sun et al., 2025b), the weight of evidence supports a constructive view: with sufficient optimization depth, bias-aware rewards, and the right domain coverage, RLVR can broaden reasoning capabilities.

Reporting note. Answer-only metrics (e.g., $pass@k$) can show muted gains, whereas process-aware criteria such as CoT- $pass@k$ —which require both a correct answer and a syntactically valid chain—often reveal larger deltas in settings explicitly optimized for process rewards (Wen et al., 2025b). We treat these as *behavioral* signals rather than explanations: chains need not be faithful to internal computation (Chen et al., 2025c). Accordingly, we report both answer- and process-aware metrics alongside calibration (ECE/abstention), and we prefer budget-matched saturation curves over single-point $pass@k$ (Section 4).

Cross-Lens Lessons: Across both perspectives, two themes are consistent: *(i)* the base model’s strength and coverage strongly condition observed gains, and *(ii)* reward/metric design and evaluation protocol (sampling budgets, seeds, and contamination hygiene) can change the sign of conclusions. These observations motivate our stance: treat reliability, safety, and measurement as first-class objectives. The following sections detail the RLVR tax (Section 3), show how evaluation choices inflate or erode claims (Section 4), and present a unified, tax-aware training and evaluation protocol that yields more trustworthy estimates and more transferable improvements (Section 6).

3 PERSPECTIVE I — THE RLVR TAX: BENEFITS, COSTS, AND CONTROLS

RLVR reliably lifts accuracy on verifiable tasks, but those gains are easy to misread if we ignore systematic costs—the *RLVR tax*. By “RLVR tax” we mean empirical side effects observed under current reasoning-style post-training regimes: reduced abstention, miscalibration and overconfidence, drift in instruction fidelity on long generations, and a larger safety/privacy surface due to longer and more

Table 1: Factual-QA control tracking Abstention (\downarrow), Shared Accuracy (\uparrow), and ECE (\downarrow). *Interpretation.* “Not attempted” is the *absolute* number of items with no extractable answer, computed on the block-specific evaluation set for that family (totals differ across families). At 14B/32B, reasoning SFT sharply reduces abstentions but leaves shared accuracy flat and worsens calibration; at a larger scale (DeepSeek), RL reduces abstention and improves shared accuracy and ECE, largely by *attempting more items*. Accuracy on *newly attempted* tail items is modest.

Family/Scale	Model (version)	Not attempted \downarrow	Accuracy (shared, %) \uparrow	ECE (shared) \downarrow
Qwen2.5 14B	Qwen2.5-14B-Instruct	1136	12.5	0.598
	R1-Distill-Qwen-14B (SFT)	102	10.5	0.692
	RL-Reasoning-14B	103	10.0	0.684
Qwen2.5 32B	Qwen2.5-32B-Instruct	2492	17.4	0.591
	R1-Distill-Qwen-32B (SFT)	76	17.5	0.640
	RL-Reasoning-32B	63	17.1	0.600
DeepSeek	DeepSeek-V3 (Instruct)	480	27.5	0.496
	DeepSeek-R1 (RL)	81	34.6	0.317

explicit traces. This tax is not mathematically inevitable and not unique to RLVR; similar patterns can arise under reasoning-heavy SFT and RLHF. We center RLVR because verifiable objectives and open weights make these trade-offs particularly measurable.

We focus on three recurrent pressures: *(i)* hallucination and overconfidence, *(ii)* erosion of instruction following, and *(iii)* safety and privacy exposure. Each maps directly to our broader thesis: without tax-aware training and sober measurement, reported “reasoning gains” are easy to overstate and hard to transfer.

3.1 HALLUCINATION AND OVERCONFIDENCE

RLVR can suppress refusals while amplifying confident errors. Empirically, refusal rates often collapse after RLVR, shifting abstentions into assertive answers (Song et al., 2025); models may also repeat flawed steps or produce CoT that diverges from the final answer even when accuracy rises (Yao et al., 2025). A plausible mechanistic reading is that sparse, verifiable rewards combined with entropy pressure tend to encourage determinacy under weak evidence, producing high-variance gradients and spurious local optima (Li & Ng, 2025). Consistent with this, multiple studies find substantial miscalibration: self-reported confidence remains high even on *incorrect* responses and can increase with longer CoT traces (Mei et al., 2025; Zeng et al., 2025; Kirichenko et al., 2025).

We make this concrete with a factual-QA control that tracks *Not attempted* (lower is better), *Accuracy (shared)*—accuracy on items that both models at a given scale attempted (higher is better)—and *Expected Calibration Error (ECE)* (*lower is better*) computed on shared items from the model’s stated confidence. The dominant effect is *attempt inflation*: stronger RLVR policies attempt far more questions. For example, moving from **DeepSeek-V3** to **DeepSeek-R1** (Guo et al., 2025) sharply reduces abstentions and improves shared ECE, but accuracy on the *newly attempted* tail is modest, so reported gains depend on how one aggregates across attempted vs. unattempted items (Zeng et al., 2025). In other words, scaling RL *encourages attempts*; whether this yields net quality improvements depends on calibration and gating.

Formally, let A_{base} and A_{RL} denote the sets of items for which the base and RLVR models produce an extractable answer, and let $A_{\cap} = A_{\text{base}} \cap A_{\text{RL}}$ be their intersection. We report “shared accuracy” and ECE on A_{\cap} , and define “attempt inflation” as the number of additionally attempted items

$$|A_{\text{RL}} \setminus A_{\text{base}}|,$$

i.e., questions the RLVR model answers that the base model leaves unattempted. The dominant effect in Table 1 is attempt inflation: $|A_{\text{RL}} \setminus A_{\text{base}}|$ grows sharply, while accuracy on A_{\cap} changes only modestly.

3.2 INSTRUCTION FOLLOWING

Optimizing hard for reasoning can erode controllability—especially for long generations. Several studies observe regressions in instruction fidelity when training emphasizes extended chain-of-thought or purely verifiable endpoints (Fu et al., 2025; Li et al., 2025). Moreover, recent evidence shows that models tend to overfit to a small set of verifiable constraints and struggle to generalize; IFBench (58 out-of-domain constraints) documents this gap and finds that RLVR improves precise instruction-following generalization (Pyatkin et al., 2025). This is why our minimum standard in Section 6 assumes either an explicit instruction or format component in the reward, or at least a separate instruction-following evaluation pack.

3.3 SAFETY AND PRIVACY

Long, explicit reasoning traces widen the attack and leakage surface. Frontier reasoning models are jailbreakable at high rates; automated attacks approach deterministic success in the studied settings, and success rises with attempt and context budgets (Kassianik & Karbasi, 2025; Zhou et al., 2025; Jiang et al., 2025). Many-shot evaluations show the same scaling. Targeted defenses tuned specifically to that regime can sharply reduce measured attack success in controlled tests, but these gains are brittle across models and budgets and can impose utility costs (Ackerman & Panickssery, 2025). Richer CoT also increases privacy risk: attributes, confidential prompts, and dataset contents can be reconstructed more easily as intermediate reasoning grows (Green et al., 2025). Safety tuning itself can impose a “safety tax,” degrading math and coding unless staged and balanced carefully (Huang et al., 2025; Zhang et al., 2025b).

Threat Model (Reasoning Traces). *Who sees traces:* exposure risk is highest for open-weight models or deployments that return full CoT; API-only hidden traces lower user-facing risk, while internal logs can aid auditing. *Training vs. inference:* RLVR increases trace length and attempt budgets during training and (unless capped) inference, which can amplify leakage/jailbreak surfaces. *What “risk increase” means:* higher probability that sensitive prompt/data fragments or unsafe behaviors appear in controllable intermediate text. *When traces help:* hidden/internal traces improve monitorability and post-hoc safety audits, so the goal is controlled exposure, not blanket removal.

Takeaway: These taxes distort reported gains in predictable ways: overconfident hallucinations inflate apparent utility, instruction drift undermines deployability, and expanded attack surfaces raise real-world risk. The answer is not to abandon RLVR but to *co-optimize* for reliability—compose rewards so correctness, grounding, and abstention can all improve; manage variance and difficulty; and make calibration and provenance part of evaluation. We follow this recipe in the next sections to show where conclusions change once the tax accounted for in (section 4, section 6).

4 PERSPECTIVE II — PITFALLS IN EVALUATION: ARE WE MEASURING REAL REASONING GAINS ACCURATELY?

Claims about RLVR progress are highly sensitive to sampling budgets, metric design, and dataset hygiene. This matters for our thesis: budget mismatch, fragile judge pipelines, and calibration drift can overstate “reasoning gains” and complicate transfer beyond math and code. We treat contamination separately in Section 5 and focus here on budgeting, metric robustness, and calibration.

4.1 BUDGET PARITY AND SATURATION

A recurring pattern in the literature is to report *pass@k* for RLVR models while holding base models to much smaller budgets (e.g., *pass@1* or *pass@5*). In such settings, measured improvements often reflect extra search rather than a better policy. Prior work stresses matched budgets and decontaminated baselines for fair comparison (Wen et al., 2025a; Wu et al., 2025b). Small or underspecified benchmarks inflate estimator variance and reduce statistical power, making single-run point estimates unstable; averaging across multiple randomized trials materially improves estimate reliability (Mu et al., 2025). Under parity controls (e.g., *SoberScore*, a standardized, matched-budget, multi-seed evaluation that fixes decoding/setup and reports mean \pm std), several prominent gaps

shrink or disappear (Hochlehnert et al., 2025). In practice, evaluations should match k across base and RLVR, plot saturation curves (accuracy vs. k , optionally summarized by area under the curve), and disclose decoding budgets and parameters.

4.2 METRIC FRAGILITY AND LLM JUDGES

While RLVR often targets verifiable domains (math/coding), many evaluation targets either lack programmatic verifiers or have only partial/weak ones—e.g., safety/refusal appropriateness, long-form coherence and rationale quality, multi-turn task success, or fuzzy information extraction. In those cases, we fall back to LLM-as-a-judge. LLM-judge pipelines offer convenience but can be brittle: small changes—seed choice, k , dataset versioning, instruction placement, option order, or even tensor-parallel settings—produce swings comparable to reported gains (Sun et al., 2025a). Judges are also manipulable (Zhao et al., 2025b). Beyond judges, seemingly modest metric or setup shifts can alter conclusions about “stable reasoning” (Liu et al., 2024a). Where programmatic verifiers exist, they should be preferred. When judges are unavoidable, prompt/format perturbations and adversarial probes should be part of the protocol, with robustness deltas reported, inter-judge agreement documented, and all templates/configurations released to reduce hidden degrees of freedom.

4.3 CALIBRATION DRIFT AND OVERCONFIDENCE

RL optimization often sharpens the output distribution. Top-1 accuracy can rise even as calibration worsens, increasing brittleness under distribution shift (Hochlehnert et al., 2025). Combined with the volatility noted above (Sun et al., 2025a), some apparent “wins” likely reflect confident exploitation of evaluation quirks rather than robust reasoning. Evaluations should therefore track expected calibration error (ECE), output entropy, and refusal/abstention alongside accuracy, and consider early stopping or annealing when calibration degrades even if reward continues to increase.

Table 2: Reported scores vs. standardized evaluation ($avg@32$ of $pass@1$, estimated by averaging 32 independent single-sample decodes) with matched decoding budgets and a shared verifier/prompt family. Δ denotes Reported – Standardized. See Appendix 4 for comprehensive standardized results of recent RLVR models.

Model (checkpoint)	Benchmark	Reported (setup)	Standardized Eval	Δ
Nemotron-Research-Reasoning-Qwen-1.5B v1	AIME-24	48.13 ($pass@1$; Liu et al. 2025a)	45.62	+2.51
	AIME-25	33.33 ($pass@1$; Liu et al. 2025a)	33.85	-0.52
	AMC-23	79.29 ($pass@1$; Liu et al. 2025a)	85.70	-6.41
	Math	91.89 ($pass@1$; Liu et al. 2025a)	92.01	-0.12
	Minerva	47.98 ($pass@1$; Liu et al. 2025a)	39.27	+8.71
	Olympiad	60.22 ($pass@1$; Liu et al. 2025a)	64.56	-4.34
AceReason-Nemotron-14B	AIME-24	78.60 ($avg@64$; Yang et al. 2025)	77.29	+1.31
	AIME-25	67.40 ($avg@64$; Yang et al. 2025)	66.04	+1.36
DAPO-Qwen-32B	AIME-24	50.00 (accuracy; Yu et al. 2025)	51.56	-1.56
Open-RS3-1.5B STILL-3-1.5B DeepScaleR-1.5B	AIME-24	46.70 ($pass@1$; Dang & Ngo 2025)	30.94	+15.76
	AIME-24	39.33 ($avg@64$; $T=0.6$, $top-p=0.95$; Min et al. 2025)	31.46	+7.87
	AIME-24	43.10 ($pass@1$; Luo et al. 2025)	38.54	+4.56
Polaris-7B-Preview	AIME-24	72.60 ($avg@32$; NLP & collaborators 2025)	66.46	+6.14
	AMC-23	89.00 ($avg@8$; NLP & collaborators 2025)	93.59	-4.59

4.4 REPORTED VS. REPRODUCED: A GAP ANALYSIS

To make these issues concrete, we compared widely cited checkpoints to parity-controlled runs using the same verifier, matched decoding budgets, and aligned dataset versions. The gaps in Table 2 arise from three main factors:

Sampling budgets. Multi-sample reporting (e.g., $avg@64$ with $T=0.6$, $top-p=0.95$ for STILL-3-1.5B) inflates scores relative to single-shot $pass@1$ under the same verifier (Min et al., 2025). In our standardized runs this manifests as +7.87 for STILL and +6.14 for Polaris-7B on AIME-24 (NLP & collaborators, 2025).

Template and version drift. Changes in prompt templates and dataset slices (e.g., AIME curation, AMC answer formats) shift accuracy by several points, with exact hashes frequently missing from

Table 3: Partial-prompt contamination summary. The Math block (left) reports answer-match accuracy at an 80% prefix on two legacy sets vs. the fresh AIME-2025. The SimpleQA block (right) is a non-math control, where QWEN’s advantage largely attenuates. Full results, including ACC@60/40 and ROUGE-L/EM for all models and datasets, are in Tables 6–10 in the Appendix.

Model	Math (ACC@80)			SimpleQA	
	MATH-500	AMC-23	AIME-2025	R@80	EM@80
LLAMA-3-1.8B	2.8	0.0	0.0	37.11	19.86
Qwen2.5-Math-7B	58.0	52.5	0.0	29.34	12.47
Qwen2.5-32B	60.0	52.5	3.3	41.06	23.09
Qwen3-14B-Base	58.2	47.5	0.0	37.24	19.40

model cards (NLP & collaborators, 2025; Liu & contributors, 2025). This helps explain mixed signs for Nemotron-1.5B v1 (Minerva +8.71 vs. AMC-23 –6.41).

Metric and decision rules. Sources sometimes mix “accuracy,” $pass@k$, $avg@k$ (mean of $pass@1$ across draws), and $maj@k$ (majority vote), or substitute judges where verifiers exist. Once we normalize to a single verifier/spec, several deltas compress (e.g., DAPO-32B on AIME-24: –1.56) (Sun et al., 2025a; Zhao et al., 2025b).

Finally, small-set variance matters: on AIME-24/25, seed and decode settings alone can yield ± 3 –5 percentage points. Confidence intervals and saturation curves are needed to separate noise from effect (Mu et al., 2025; Hochlehnert et al., 2025).

Why this matters Under unmatched budgets, unprobed judges, and untracked calibration, distributional *sharpening* can masquerade as capability *expansion*. Clean, parity-controlled evaluation often shrinks or flips celebrated gains. Hence our checklist—budget parity and saturation curves, variance disclosure, judge robustness, calibration metrics, and a contamination audit (Section 5)—is essential to distinguish real progress from artifacts and to make the *tax-aware* protocol credible.

5 PERSPECTIVE III — DATA CONTAMINATION

Data provenance is a first-order confound: if pretraining or RL data overlap evaluation sets, measured “reasoning” may reflect memorization. Contamination-aware evaluations in coding (Liu et al., 2024b) and multi-domain leaderboards (Liang et al., 2023) already recommend strict provenance checks; our partial-prompt audit provides direct evidence in math. Partial-prompt reconstruction is a high-precision but not exhaustive signal of overlap: we treat it as one useful probe to be triangulated with lexical and fuzzy matching and with fresh test sets.

Probe design (partial-prompt completion). Following Wu et al. (2025b), we reveal only the first $x\%$ of each problem ($x \in \{80, 60, 40\}$), greedily decode the suffix, and compute ROUGE-L@ x , EM@ x , and ACC@ x . High EM/ACC under large prefixes indicates the model can reconstruct the hidden tail and final answer verbatim.

Case study: QWEN vs. LLAMA. As summarized in Table 3, QWEN2.5-MATH-7B and QWEN3-14B-BASE achieve high ACC@80 on legacy math sets (around 58–60% on MATH-500) yet collapse on AIME-2025 (0–3%). LLAMA-3-1.8B remains near zero across the same sets, consistent with clean evaluation. This pattern—strong on older math sets, absent on the newest release—is consistent with substantial overlap between legacy math benchmarks and the training corpora of some QWEN-family models, and with comparatively cleaner evaluation for LLAMA. (See App. Tables 6–9 for ACC/ROUGE/EM at 80/60/40% prefixes.) Similar “contamination-free” stance and methodology are advocated in code by Liu et al. (2024b) and in broader evaluations by Liang et al. (2023).

SimpleQA control. On a non-math control (SIMPLEQA) there is no systematic QWEN advantage: for example, QWEN2.5-32B attains 41.06/23.09 (R@80/EM@80) versus LLAMA-3-1.8B at 37.11/19.86 (App. Table 10). The attenuation on an unseen domain supports the interpretation that elevated partial-prompt math scores on legacy sets reflect contamination rather than a general

suffix-reconstruction ability. We use SimpleQA as a non-math control to check that strong tail-reconstruction behavior does not appear uniformly across domains; we do not assume SimpleQA itself is free of contamination.

Controls and implications. We (i) treat contaminated sets as *probes* of memorization, not reasoning; (ii) prioritize uncontaminated or freshly released test sets; and (iii) publish prompts/seeds/configurations to enable third-party screening. When we re-evaluate RLVR vs. base models under these controls, widely cited gaps shrink or flip. This directly supports our thesis: contamination can make modest distributional sharpening appear as frontier expansion.

6 THE TAX-AWARE MINIMUM STANDARD FOR RLVR

Our empirical results in Sections 4 and 5 show that three pieces of measurement infrastructure materially change how RLVR gains appear: parity-controlled budgeting, calibration and attempt tracking, and contamination audits. Alongside synthesized prior work on judge robustness and safety evaluations, we package these into a *tax-aware minimum standard* for reporting RLVR results. The standard is intentionally narrow and measurement-focused. It does not prescribe a particular RL algorithm. Instead, it specifies the controls that must be in place before headline reasoning gains are treated as reliable.

(1) Budget parity and saturation curves. First, RLVR models and their baselines must be evaluated under matched sampling budgets. In our gap analysis, several celebrated improvements shrank or disappeared once we fixed the verifier, prompt family, decoding parameters, and number of samples per item (Table 2). Reporting *pass@k* for the RLVR model and *pass@1* for the base model, or silently changing temperature, top-*p*, or stopping rules, makes it impossible to tell how much of the gain comes from extra search rather than a better policy.

Under the minimum standard, any claim that RLVR improves a metric on a given benchmark must include: (i) the exact sampling budget for both base and RLVR models, (ii) a saturation curve that plots accuracy as a function of *k* under a shared decoding setup, and (iii) at least three seeds with mean and confidence intervals or standard deviations (Mu et al., 2025; Hochlehnert et al., 2025). We recommend summarizing performance by area under the saturation curve in addition to a single *pass@k* point, since this is less sensitive to one particular choice of *k* and reveals whether RLVR shifts the whole budget–performance frontier or only improves at very large *k*.

(2) Calibration, abstention, and judge robustness. Second, evaluations must track calibration and abstention, not only accuracy. Section 3 showed that RLVR often reduces refusals and increases stated confidence, which yields more attempted items but also more confident errors. Our factual QA control (Table 1) separates *shared* accuracy from *newly attempted* tail items and measures expected calibration error (ECE) on shared items. This reveals a distinct failure mode: headline scores rise because the model stops saying “I do not know” and starts answering everything, while accuracy on overlapping items barely moves.

Under the minimum standard, each reported accuracy figure must be accompanied by: (i) refusal or “not attempted” rates, (ii) shared accuracy on the intersection of items both models attempted, and (iii) a calibration metric such as ECE computed from the model’s confidence scores (Hochlehnert et al., 2025; Leng et al., 2024). For settings that rely on LLM-as-a-judge rather than programmatic verifiers, we also require at least one *judge stress test*: the same outputs scored under several prompt templates or instruction orderings, with the spread in scores reported (Zhao et al., 2025b; Sun et al., 2025a). This does not remove judge fragility, but it makes visible how sensitive a claimed RLVR gain is to small changes in the judge pipeline. Together, these measurements ensure that gains are not driven primarily by attempt inflation, miscalibration, or a brittle judge configuration.

(3) Contamination audits and data hygiene. Third, RLVR claims must be supported by explicit data provenance checks. Section 5 used partial-prompt completion to show that some math benchmarks are heavily memorized by QWEN families: the model can reconstruct the hidden tail and final answer when given 80 percent of the problem on legacy sets, but not on fresh ones such as AIME-2025. Without such checks, apparent reasoning gains can simply reflect better recall of training data (Liu et al., 2024b; Liang et al., 2023; Wu et al., 2025b).

Under the minimum standard, any benchmark used to support an RLVR claim must be accompanied by: (i) a contamination screen that combines fuzzy or lexical matching against pretraining and fine-tuning corpora (where available) and partial-prompt probes at several prefix lengths, and (ii) at least one clean held-out set that shows no evidence of tail reconstruction even at large prefixes. For benchmarks that do show contamination, we treat them as *probes* of memorization rather than as primary evidence of reasoning and clearly label them as such. We also require that dataset versions, prompt templates, and filtering rules be released or described precisely enough for others to re-run the audit.

Summary. The tax-aware minimum standard asks for three things before treating RLVR gains as robust: matched budgets with saturation curves and variance disclosure, calibration and abstention metrics with at least one judge stress test when judges are used, and a contamination audit with at least one clean held-out benchmark. Our experiments show that each component can change conclusions about whether RLVR expands capability or sharpens selection. Taken together, these controls provide a simple, concrete bar that future RLVR work can meet without specifying a particular training recipe, and that can be reused for SFT, RLHF, and test-time compute evaluations.

7 CONCLUSION

Our central position is that RLVR is effective and deployable for verifiable domains, but headline “reasoning” gains should be treated as provisional unless a small core of tax-aware controls—budget parity, calibration/abstention tracking, robust evaluation with at least one judge stress test, and a simple contamination audit—is enforced. RLVR delivers real gains on verifiable tasks, but the field often over-indexes on headline accuracy while under-weighting *taxes* (hallucination/overconfidence, instruction drift, safety & privacy exposure) and *measurement* (budget mismatch, judge fragility, calibration drift, contamination). Under parity controls and calibration tracking, several celebrated “reasoning gains” shrink, suggesting that part of the progress reflects distributional *sharpening* rather than durable expansion.

Broader relevance. The same pressures arise in SFT, RLHF, and test-time compute (e.g., CoT and $maj@k$). This tax-aware minimum standard applies unchanged beyond RLVR.

Why focus on RLVR. We center RLVR because programmatic verifiers make the measurement problem tractable and reveal where gains come from. As a result, it is a useful *proving ground* for reliability methods that transfer to broader LLM training and deployment. We hope this synthesis helps the community separate genuine capability expansion from artifacts of budgets, metrics, and data, and encourages tax-aware training and reporting across RLVR, SFT, and RLHF.

ETHICS STATEMENT

This paper raises some potential ethics concerns under the ICLR Code of Ethics and describes the steps we took to mitigate them:

Privacy & leakage. Long, explicit chains-of-thought can reveal sensitive content or training artifacts. We evaluate only on public math/code benchmarks and do not use private prompts. For any illustrative traces, we sanitize identifiers and redact potentially sensitive strings. Our standardized evaluation caps best-of- N and CoT length to reduce leakage surfaces.

Dual-use: jailbreaks & misuse. Methodological details about jailbreak stress tests could be repurposed to increase harm. We report aggregate metrics and robustness deltas, but do not release attack payloads or automation scripts that would materially increase misuse without corresponding defenses. Our evaluation protocol co-optimizes calibrated abstention alongside accuracy.

Measurement integrity. Selective budgeting, fragile judge pipelines, or metric switching can misrepresent results. To reduce this risk, we use matched decoding budgets, fixed verifier/prompt families, multi-seed averaging, and release configurations (decoding parameters, seeds, templates) sufficient to reproduce our reported numbers.

REPRODUCIBILITY STATEMENT

We make our results reproducible by fixing verifiers and a shared prompt family (section 4), matching decoding budgets and reporting decoding parameters, and averaging over three seeds (Table 4, Table 2; Figure 2). Datasets and methodology for contamination screens and judge-robustness probes referenced in section 5 are provided with instructions to re-run the audits. Hardware details and aggregate compute ($128 \times H100$ (96 GB) cluster and $\approx 3,500$ GPU-hours) are included to support cost and throughput replication.

REFERENCES

Christopher M. Ackerman and Nina Panickssery. Mitigating many-shot jailbreaking. *arXiv preprint arXiv:2504.09604*, 2025.

Bradley Brown et al. Large language monkeys: Scaling inference compute with repeated sampling. *arXiv preprint arXiv:2407.21787*, 2024.

Nikhil Chandak, Shashwat Goel, and Ameya Prabhu. Incorrect baseline evaluations call into question recent llm-rl claims, 2025. Notion Blog.

Huayu Chen, Kaiwen Zheng, Qinsheng Zhang, Ganqu Cui, Yin Cui, Haotian Ye, Tsung-Yi Lin, Ming-Yu Liu, Jun Zhu, and Haoxiang Wang. Bridging supervised learning and reinforcement learning in math reasoning. *arXiv preprint arXiv:2505.18116*, 2025a.

Xilun Chen, Ilia Kulikov, Vincent-Pierre Berges, Barlas Oğuz, Rulin Shao, Gargi Ghosh, Jason Weston, and Wen tau Yih. Learning to reason for factuality, 2025b. URL <https://arxiv.org/abs/2508.05618>.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi Soman, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don't always say what they think. *arXiv preprint arXiv:2505.05410*, 2025c.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning from a cross-domain perspective. *arXiv preprint arXiv:2506.14965*, 2025.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and what doesn't. *arXiv preprint arXiv:2503.16219*, 2025.

Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, and Yu Cheng. Scaling reasoning, losing control: Evaluating instruction following in large reasoning models. *arXiv preprint arXiv:2505.14810*, 2025.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv preprint arXiv:2503.01307*, 2025.

Tommaso Green, Martin Gubri, Haritz Puerto, Sangdoo Yun, and Seong Joon Oh. Leaky thoughts: Large reasoning models are not private thinkers, 2025. URL <https://arxiv.org/abs/2506.15674>.

Daya Guo, Dejian Yang, Haowei Zhang, and Junxiao Song. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.07570*, 2025. URL <https://arxiv.org/abs/2501.07570>.

Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting gpo beyond distribution sharpening. *arXiv preprint arXiv:2506.02355*, 2025a.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-contaminated, and verifiable mathematical dataset for advancing reasoning. *arXiv preprint arXiv:2504.11456*, 2025b.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to reproducibility. *arXiv preprint arXiv:2504.07086*, 2025.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, Zachary Yahn, Yichang Xu, and Ling Liu. Safety tax: Safety alignment makes your large reasoning models less reasonable. *arXiv preprint arXiv:2503.00555*, 2025.

Fengqing Jiang, Zhangchen Xu, Yuetai Li, Luyao Niu, Zhen Xiang, Bo Li, Bill Yuchen Lin, and Radha Poovendran. Safechain: Safety of language models with long chain-of-thought reasoning capabilities. *arXiv preprint arXiv:2502.12025*, 2025.

Paul Kassianik and Amin Karbasi. Evaluating security risk in deepseek and other frontier reasoning models, jan 2025. Accessed: 2025-02-26.

Polina Kirichenko, Shauli Ravfogel, Roee Aharoni, and Yonatan Belinkov. Abstentionbench: Reasoning LLMs fail on unanswerable questions. *arXiv preprint arXiv:2506.09038*, 2025.

Yuxin Leng, Yuchen Jiang, Abhijit Sinha, Ivan Evtimov, Oskar Krásný, Chongli Zhang, and Tat-sunori B. Hashimoto. Taming overconfidence in llms: Reward calibration in rlhf. *arXiv preprint arXiv:2410.09724*, 2024.

Junyi Li and Hwee Tou Ng. The hallucination dilemma: Factuality-aware reinforcement learning for large reasoning models. *arXiv preprint arXiv:2505.24630*, 2025.

Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen, Ziji Zhang, Yingying Zhuang, Narayanan Sadagopan, and Anurag Beniwal. When thinking fails: The pitfalls of reasoning for instruction-following in llms. *arXiv preprint arXiv:2505.11423*, 2025.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Colin Raffel, et al. HELM: Holistic evaluation of language models. In *NeurIPS Datasets and Benchmarks*, 2023.

Jiehang Liu and contributors. Open-rs3 (reasoning) — hugging face model card. <https://huggingface.co/TIGER-Lab/Open-RS3-Llama-3.1-8B>, 2025. Accessed 2025-09-09.

Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang, Songyang Zhang, and Kai Chen. Are your llms capable of stable reasoning? *arXiv preprint arXiv:2412.13147*, 2024a.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong. Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models. *arXiv preprint arXiv:2505.24864*, 2025a.

Ruirui Liu, Angus Matteson, Zexuan Jiang, Jiawei Zhu, Yanxiong Gu, Xuan Gu, Yuchen Shi, Ruoxi Xu, Suhang Sun, Jian Pei, et al. Livecodebench: Holistic and contamination-free evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024b.

Siyuan Liu, Yuji Wang, Siyu Xu, Shizhe Diao, and Yixuan Su. Distribution-aware reward shaping improves reasoning in large language models. *arXiv preprint arXiv:2508.13755*, 2025b.

Yihao Liu, Shuocheng Li, Lang Cao, Yuhang Xie, Mengyu Zhou, Haoyu Dong, Xiaojun Ma, Shi Han, and Dongmei Zhang. Superrl: Reinforcement learning with supervision to boost language model reasoning. *arXiv preprint arXiv:2506.01096*, 2025c.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning with reinforced fine-tuning. *arXiv preprint arXiv:2401.08967*, 3, 2024.

Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu, Chengyu Shen, Runming He, Bin Cui, et al. Learning what reinforcement learning can't: Interleaved online fine-tuning for hardest questions. *arXiv preprint arXiv:2506.07527*, 2025.

Zhitong Mei, Christina Zhang, Tenny Yin, Justin Lidard, Ola Shorinwa, and Anirudha Majumdar. Reasoning about uncertainty: Do reasoning models know when they don't know? *arXiv preprint arXiv:2506.18183*, 2025.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Huatong Song, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen. An empirical study on eliciting and improving r1-like reasoning: A third technical report on slow thinking with llms. *arXiv preprint arXiv:2503.04548*, 2025.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models. *arXiv preprint arXiv:2410.05229*, 2024.

Yongyu Mu, Jiali Zeng, Bei Li, Xinyan Guan, Fandong Meng, Jie Zhou, Tong Xiao, and Jingbo Zhu. Dissecting long reasoning models: An empirical study. *arXiv preprint arXiv:2506.04913*, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.

Vaskar Nath, Elaine Lau, Anisha Gunjal, Manasi Sharma, Nikhil Baharte, and Sean Hendryx. Adaptive guidance accelerates reinforcement learning of reasoning models, 2025. URL <https://arxiv.org/abs/2506.13923>.

HKU NLP and collaborators. Polaris-7b-preview — hugging face model card. <https://huggingface.co/HKUNLP/polaris-7b-preview>, 2025. Accessed 2025-09-09.

C Opus and A Lawsen. The illusion of the illusion of thinking: A comment on shojaee et al.(2025). *arXiv preprint arXiv:2506.09250*, 2025.

Long Ouyang et al. Training language models to follow instructions with human feedback. In *Advances in Neural Information Processing Systems*, volume 35, pp. 27730–27744, 2022.

Valentina Pyatkin, Saumya Malik, Victoria Graf, Hamish Ivison, Shengyi Huang, Pradeep Dasigi, Nathan Lambert, and Hannaneh Hajishirzi. Generalizing verifiable instruction following. *arXiv preprint arXiv:2507.02833*, 2025. URL <https://arxiv.org/abs/2507.02833>.

Darsh J. Shah et al. Rethinking reflection in pre-training. *arXiv preprint arXiv:2504.04022*, 2025.

Xiaoyu Shen, Zenan Liu, Xuhui Cao, Jingjing Cao, Xu Fei, Fang Zheng, Yiqun Weng, and Chen Liang. Restoring calibration for aligned large language models. *arXiv preprint arXiv:2502.13018*, 2025.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning models via the lens of problem complexity. *arXiv preprint arXiv:2506.06941*, 2025.

Lixin Song, Taiwei Shi, and Jieyu Zhao. The hallucination tax of reinforcement finetuning. *arXiv preprint arXiv:2505.13988*, 2025.

Lin Sun, Weihong Lin, Jinzhu Wu, Yongfu Zhu, Xiaoqi Jian, Guangxiang Zhao, Linglin Zhang, Sai-er Hu, Yuhan Wu, and Xiangzheng Zhang. Evaluation is all you need: Strategic overclaiming of llm reasoning capabilities through evaluation design. *arXiv preprint arXiv:2506.04734*, 2025a.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional, and transformative generalization, 2025b. URL <https://arxiv.org/abs/2506.18880>.

Zhongwei Wan, Zhihao Dou, Che Liu, Yu Zhang, Dongfei Cui, Qinjian Zhao, Hui Shen, Jing Xiong, Yi Xin, Yifan Jiang, et al. Srpo: Enhancing multimodal llm reasoning via reflection-aware reinforcement learning. *arXiv preprint arXiv:2506.01713*, 2025.

Di Wang, Shiwei Zhou, Haichao Zhan, Ming Zhu, Chongyang Zhang, Zhiyuan Zhang, Ming Sun, Li Xu, and Yisen Wang. Judgebench: A benchmark for evaluating LLM-as-a-judge. *arXiv preprint arXiv:2407.11969*, 2024a.

Shuaichen Wang, Yutao Hou, Xuan Ye, Haichao Zhan, et al. Are LLMs truly good judges? a survey on LLM-as-a-judge. *arXiv preprint arXiv:2412.11520*, 2024b.

Zeming Wang, Zirui Wang, Bo Li, Kaiyu Yao, Yuyan Wei, Yuxin Wen, Ranak Roy Chowdhury, Lu Chen, Qiushi Sun, Jindong Wang, Min Lin, Shun Ma, Shizhe Diao, Yang Liu, Shaohan Huang, Furu Wei, Zhen Dong, and Yixuan Su. Pass@k training for adaptively balancing exploration and exploitation. *arXiv preprint arXiv:2508.10751*, 2025.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond. *arXiv preprint arXiv:2503.10460*, 2025a.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang Wang, Junjie Li, Ziming Miao, Jiang Bian, and Mao Yang. Reinforcement learning with verifiable rewards implicitly incentivizes correct reasoning in base llms, 2025b. URL <https://arxiv.org/abs/2506.14245>.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr may not escape its origin. *arXiv preprint arXiv:2507.14843*, 2025a.

Mingqi Wu et al. Reasoning or memorization? unreliable results of reinforcement learning due to data contamination. *arXiv preprint arXiv:2507.10532*, 2025b. doi: 10.48550/arXiv.2507.10532. URL <https://arxiv.org/abs/2507.10532>. 26 pages.

Ziyi Yang, Yichi Zhang, and Ming et al. Li. Slow thinking with llms 3: Acereason. *arXiv preprint arXiv:2502.01820*, 2025.

Zijun Yao, Yantao Liu, Yanxu Chen, Jianhui Chen, Junfeng Fang, Lei Hou, Juanzi Li, and Tat-Seng Chua. Are reasoning models more prone to hallucination? *arXiv preprint arXiv:2505.23646*, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv preprint arXiv:2504.13837*, 2025. URL <https://arxiv.org/abs/2504.13837>.

Qingcheng Zeng, Weihao Xuan, Leyang Cui, and Rob Voigt. Thinking out loud: Do reasoning models know when they're right? *arXiv preprint arXiv:2504.06564*, 2025.

Yue Zhang, Longhui Wei, Zihui Wu, Guangtao Zeng, Juncheng Li, Weigu Gong, Ziying Dai, Guodong Long, Daniel Gu, Moses Charikar, Siyuan Qi, Chi Jin, and Zhao Song. Self-play with variational problem synthesis improves llm reasoning. *arXiv preprint arXiv:2508.14029*, 2025a.

Zhexin Zhang, Xian Qi Loyer, Victor Shea-Jay Huang, Junxiao Yang, Qi Zhu, Shiyao Cui, Fei Mi, Lifeng Shang, Yingkang Wang, Hongning Wang, et al. How should we enhance the safety of large reasoning models: An empirical study. *arXiv preprint arXiv:2505.15404*, 2025b.

Rosie Zhao et al. Echo chamber: RL post-training amplifies behaviors learned in pretraining. *arXiv preprint arXiv:2504.07912*, 2025a.

Yulai Zhao, Haolin Liu, Dian Yu, S. Y. Kung, Haitao Mi, and Dong Yu. One token to fool llm-as-a-judge. *arXiv preprint arXiv:2507.08794*, 2025b.

Kaiwen Zhou, Chengzhi Liu, Xuandong Zhao, Shreedhar Jangam, Jayanth Srinivasa, Gaowen Liu, Dawn Song, and Xin Eric Wang. The hidden risks of large reasoning models: A safety assessment of rl. *arXiv preprint arXiv:2502.12659*, 2025.

A APPENDIX

Conventions and metrics. $pass@k$ = probability at least one of k samples is correct; $avg@k$ = mean $pass@1$ across k draws; $maj@k$ = majority vote over k ; ECE = expected calibration error. Arrows (\uparrow/\downarrow) indicate whether higher or lower is better.

Usage of Large Language Models. We used an LLM assistant as a productivity tool for light editing and formatting: smoothing wording the authors had already written, polishing captions, refactoring L^AT_EX tables/macros, and drafting small utility snippets (e.g., plotting and CSV loaders) that we then modified and verified. All research ideas, evaluation designs, hyperparameters, and analysis decisions are by the authors, and every experiment and number reported was run and checked by us.

B POTENTIAL CRITICISMS AND RESPONSES

On capability expansion. RLVR can expand capability under specific regimes (e.g., prolonged RL with resets and KL control; unlikeliness-based shaping; domain-targeted RLVR with sparse pretraining) (Liu et al., 2025a; He et al., 2025a; Cheng et al., 2025). Our claim is not negation but *measurement*: without tax-aware training and parity-controlled evaluation, expansion is often overstated. The protocol in §6 is compatible with these positive regimes while curbing overclaiming.

On “it’s just data.” Data quality and curricula matter (Chen et al., 2025a; Wen et al., 2025a), but reward/metric design independently shapes failure modes (determinacy/overconfidence under judge rewards; terse/off-topic outputs under naive factuality; calibration drift) (Chen et al., 2025b; Leng et al., 2024; Hochlehnert et al., 2025). We treat *both* data and objectives as first-class knobs (see §6).

On budgeted $pass@k$. We use $pass@k$ for practical relevance, but ask for *matched budgets* and *saturation curves*. Under these controls, headline gaps often shrink or flip (Hochlehnert et al., 2025). Reporting AUC alongside $pass@k$ keeps comparisons fair (§4).

On safety/privacy risk. Jailbreak success scales with attempts/context; many-shot tuning can reduce measured rates in controlled settings (Zhou et al., 2025; Jiang et al., 2025; Ackerman & Panickssery, 2025). Longer CoT increases leakage surfaces (Green et al., 2025). Our protocol caps Best-of- N /CoT length at eval and co-optimizes abstention/privacy with accuracy (§6).

On reliance on LLM judges. When verifiers are unavailable or partial, we use LLM judges with robustness probes (prompt/format perturbations, adversarial tests) and publish templates/configs; judges are manipulable, so robustness deltas are reported (Zhao et al., 2025b; Sun et al., 2025a). Prefer verifiers when possible (§4).

Scope. Our synthesis centers on verifiable math/code/QA with open-weight models. Agen-tic/multimodal settings introduce additional privacy/safety channels and may need tailored verifiers and audits; we expect core principles (budget parity, calibration, abstention, contamination screens) to transfer with domain-specific adaptations.

C STANDARDIZED EVALUATIONS

We report full results under matched budgets, fixed verifiers, and a shared prompt family. These tables extend Section 4 and underlie the saturation-curve argument: once k , templates, and dataset versions are controlled, several headline gaps narrow. All results in this section use the same verifier and prompt template family; we specify k , number of seeds, and dataset versions below.

Key observations. Thinking-mode (test-time compute) delivers large gains across sizes: for 4B models, Qwen3-4B→Qwen3-4B (Thinking) yields +50.5/+44.7 on AIME-24/25 and \approx +28 on the averaged score; Polaris-4B-Preview→Thinking shows +52.6/+54.7 and \approx +29 on Avg; for 8B, Qwen3-8B→Thinking adds +51.9/+46.3 and \approx +28 on Avg. Small RLVR-tuned models can exceed

larger non-thinking baselines: the 1.5B Nemotron-Research-Reasoning v2 averages **61.70**, outscoring non-thinking 4–8B baselines (Qwen3-4B **46.98**, Qwen3-8B **48.96**) and leading them by ~ 24 –30 points on AIME-24. Within size families, leaders are consistent across benchmarks (7B AceReason-1.1 Avg **74.44**; 14B AceReason Avg **77.33**; 32B DeepSeek-R1-Distill Avg **72.53**), while the frontier DeepSeek-R1-0528 tops overall (AIME-24 **90.00**, AIME-25 **78.33**, Avg **81.72**). Several columns (AMC/MATH) cluster in the mid-90s, indicating saturation under our $k=32$ /verifier setup. Together, these patterns support (i) test-time compute as an effective lever for reasoning; (ii) RLVR’s disproportionate lift at smaller scales; and (iii) the need for matched budgets, response-length controls, and saturation curves to interpret small nominal deltas fairly.

Table 4: Standardized evaluation across math benchmarks (higher is better). *Styling*: within each size family, the best score for a given benchmark is **bold** and the second-best is underlined. *Context*: Parity-controlled scores used in Section 4. *Setup*: *pass@1* estimated by averaging over $k=32$ independent single-sample decodes (*avg@32*), same verifier and prompt family, 3 seeds. *Compute*: evaluations ran on a 128×H100 (96 GB) cluster and consumed $\approx 3,500$ GPU-hours.

Model	AIME-24↑	AIME-25↑	AMC-23↑	MATH↑	Minerva↑	Olympiad↑	Avg↑
Qwen2.5-Math-1.5B	8.33	6.35	44.06	66.67	18.42	30.74	29.10
Qwen2.5-Math-1.5B-Instruct	10.10	8.85	55.08	74.83	29.32	40.00	36.37
DeepSeek-R1-Distill-Qwen-1.5B	31.15	24.06	72.81	85.01	32.18	51.55	49.46
STILL-3-1.5B	31.46	25.00	75.08	86.24	32.77	53.84	50.73
DeepScaleR-1.5B	38.54	30.52	80.86	88.79	36.19	58.95	55.64
Qwen2.5-Math-1.5B-Oat-Zero	20.00	10.00	52.50	74.20	26.84	37.78	36.89
Open-RS1	30.94	22.60	73.05	84.90	29.92	52.82	49.04
Open-RS2	28.96	24.37	73.52	85.06	29.74	52.63	49.05
Open-RS3	30.94	24.79	72.50	84.47	29.11	52.25	49.01
Nemotron-Research-Reasoning-Qwen-1.5B v1	<u>45.62</u>	33.85	<u>85.70</u>	<u>92.01</u>	<u>39.27</u>	64.56	<u>60.17</u>
Nemotron-Research-Reasoning-Qwen-1.5B v2	51.77	<u>32.92</u>	88.83	92.24	39.75	64.69	61.70
Qwen2.5-Math-7B	15.62	6.56	52.81	67.72	15.64	32.44	31.80
Qwen2.5-Math-7B-Instruct	12.19	9.17	58.36	83.21	35.56	41.60	40.01
DeepSeek-R1-Distill-Qwen-7B	53.23	38.96	89.30	93.95	43.07	66.67	64.20
Qwen2.5-Math-7B-Oat-Zero	26.67	6.67	67.50	79.20	32.72	41.78	42.42
Skywork-OR1-7B	<u>66.88</u>	51.15	92.73	<u>96.04</u>	44.03	73.61	70.74
LEAD-7B	51.67	37.19	89.06	93.73	43.11	66.34	63.52
AceReason-Nemotron-7B	65.83	47.19	95.08	95.81	45.35	<u>73.92</u>	70.53
AceReason-Nemotron-1.1-7B	71.56	64.58	93.36	96.73	44.05	76.37	74.44
Polaris-7B-Preview	66.46	<u>51.56</u>	<u>93.59</u>	95.68	<u>44.47</u>	73.65	70.90
Qwen2.5-14B	11.04	7.92	47.19	73.19	22.51	37.01	33.14
Qwen2.5-14B-Instruct	13.65	12.40	58.13	80.28	38.63	43.23	41.05
DeepSeek-R1-Distill-Qwen-14B	<u>67.81</u>	48.33	<u>95.39</u>	<u>95.28</u>	46.43	72.06	<u>70.88</u>
LEAD-14B	64.06	<u>52.29</u>	92.81	95.23	<u>47.52</u>	<u>72.25</u>	70.69
AceReason-Nemotron-14B	77.29	66.04	98.67	96.90	47.73	77.34	77.33
Qwen2.5-32B	15.62	9.17	59.30	76.51	26.42	41.45	38.08
Qwen2.5-32B-Instruct	17.19	14.17	67.66	83.17	40.96	47.85	45.17
DeepSeek-R1-Distill-Qwen-32B	69.06	55.52	95.62	95.74	46.50	72.76	72.53
DAPO-Qwen-32B	51.56	36.98	<u>92.73</u>	80.74	33.07	48.97	57.34
Enigmata-Qwen2.5-32B	<u>61.67</u>	<u>46.88</u>	91.25	<u>93.69</u>	<u>46.32</u>	<u>69.14</u>	<u>68.16</u>
DeepSeek-V3-0324	<u>55.83</u>	<u>43.33</u>	<u>92.50</u>	<u>95.12</u>	48.58	<u>66.91</u>	<u>67.05</u>
DeepSeek-R1-0528	90.00	78.33	99.38	97.80	<u>48.35</u>	76.44	81.72
Qwen3-4B	21.88	17.92	66.95	84.27	38.50	52.38	46.98
Qwen3-4B (Thinking)	<u>72.40</u>	<u>62.60</u>	<u>95.78</u>	<u>96.31</u>	<u>46.44</u>	<u>76.40</u>	<u>74.99</u>
Polaris-4B-Preview	27.29	23.02	71.56	85.89	39.20	59.13	51.02
Polaris-4B-Preview (Thinking)	79.90	77.71	99.45	97.38	47.21	80.38	80.34
Qwen3-8B	25.42	20.21	69.61	84.54	39.81	54.15	48.96
Qwen3-8B (Thinking)	77.29	<u>66.46</u>	<u>95.00</u>	96.86	49.06	77.56	77.04
DeepSeek-R1-0528-Qwen3-8B	<u>75.73</u>	67.29	97.19	<u>96.32</u>	<u>45.85</u>	74.19	76.10

D SEQUENCE LENGTH AND COMPUTE FOOTPRINT

We summarize generated token lengths by benchmark as a proxy for compute footprint and exposure surface. Longer chains increase latency and may worsen calibration and safety/privacy risks (Section 3), so we report typical generation lengths under the same decoding budgets used in Appx. C.

Table 5: Median generated output length (tokens per problem; answer + reasoning) under the standardized decoding setup. **Context:** Compute/privacy footprint complementing accuracy. **Setup:** Same prompts/verifier as Appx. C; decoding budget $k=32$; lengths aggregated across all samples per problem (correct and incorrect). **Takeaway:** Reasoning-tuned models often produce much longer traces (e.g., 2–8× vs. instruct baselines), which impacts evaluation cost and safety/privacy exposure.

Model	AIME-24	AIME-25	AMC-23	Math	Minerva	Olympiad	Avg
Qwen2.5-Math-1.5B	1114	1033	828	648	959	904	914
Qwen2.5-Math-1.5B-Instruct	990	891	801	566	640	810	783
DeepSeek-R1-Distill-Qwen-1.5B	16363	16252	9979	5700	8194	11873	11394
STILL-3-1.5B	13350	13000	7716	4314	5921	9345	8941
DeepScaleR-1.5B	9780	8978	5003	3139	5270	5807	6330
Qwen2.5-Math-1.5B-Oat-Zero	1166	1155	848	626	689	892	896
Open-RS1	13578	13698	7495	4170	5935	8995	8978
Open-RS2	14215	13618	7612	4174	5805	9059	9081
Open-RS3	14394	13606	7884	4233	5688	9047	9142
Nemotron-Research-Reasoning-Qwen-1.5B	7786	7713	6294	5070	6569	6678	6685
Qwen2.5-Math-7B	1201	1152	946	720	1136	950	1018
Qwen2.5-Math-7B-Instruct	1465	1418	983	670	748	1051	1056
DeepSeek-R1-Distill-Qwen-7B	13613	14543	6402	4125	5595	8988	8878
Qwen2.5-Math-7B-Oat-Zero	1032	1178	884	673	696	870	889
Skywork-OR1-7B	15366	17845	8361	5541	8566	11818	11250
LEAD-7B	10838	11573	4863	3111	3692	7054	6855
AceReason-Nemotron-1.1-7B	14331	16502	6672	3835	6676	9060	9513
Polaris-7B-Preview	12564	14389	6538	4313	6125	8681	8768
Qwen2.5-14B	1076	1088	847	591	1209	815	938
Qwen2.5-14B-Instruct	1079	994	850	607	632	844	834
DeepSeek-R1-Distill-Qwen-14B	11295	13389	5735	3781	4919	8042	7860
LEAD-14B	8364	9019	4469	3031	4675	5713	5879
AceReason-Nemotron-14B	13871	16334	7239	4609	7677	10030	9960
Qwen2.5-32B	1165	1055	782	556	1186	800	924
DeepSeek-R1-Distill-Qwen-32B	10979	13012	5826	3652	4663	7924	7676
DAPO-Qwen-32B	6627	6074	3086	2812	3887	5122	4601
Enigmata-Qwen2.5-32B	13204	15417	10195	6358	13770	12098	11840
DeepSeek-V3-0324	3601	3474	2134	1281	705	2386	2264
DeepSeek-R1-0528	16276	18416	10285	6041	7085	13750	11976
MiMo-7B-Base	21716	18842	15734	6390	13809	13299	14965
MiMo-7B-SFT	13012	14250	7030	4177	6152	8421	8841
MiMo-7B-RL-Zero	18105	18575	9950	6564	6546	12152	11982
Qwen3-4B	8909	6079	2369	1289	812	3217	3779
Qwen3-4B (Thinking)	14750	17813	8290	5076	6682	10606	10536
Polaris-4B-Preview	5582	6148	2637	1293	804	4632	3516
Polaris-4B-Preview (Thinking)	28369	33109	15125	9333	13307	21832	20179
Qwen3-8B	8375	6151	2863	1479	662	3624	3859
Qwen3-8B (Thinking)	14764	18296	8756	5391	7105	11384	10949
DeepSeek-R1-0528-Qwen3-8B	20970	22742	12895	7640	9329	16108	14947

E DATA CONTAMINATION PROBES: MATH

We use partial-prompt completion to detect tail reconstruction: reveal the first $x\%$ of the problem ($x \in \{80, 60, 40\}$), greedily decode the remainder, and score ACC/EM/ROUGE-L at that prefix. High scores at large prefixes indicate memorization of legacy sets rather than reasoning. Tables here expand Section 5.

Table 6: Accuracy of QWEN3 checkpoints on five mathematics benchmarks when each model receives only the first $x\%$ of the question ($x = 80, 60, 40$) and must greedily complete the remainder. Columns “ACC (X%)” report the average accuracy at that prefix length. **Takeaway:** QWEN3 variants achieve high ACC@80 on legacy MATH-500/AMC-23 but collapse on AIME-2025, consistent with contamination in older sets.

Model	Dataset	ACC (80%)	ACC (60%)	ACC (40%)
Qwen3-0.6B-Base	MATH-500	26.40	14.40	5.40
	AMC-23	20.00	5.00	0.00
	AIME 2024	3.33	0.00	0.00
	AIME 2025	0.00	0.00	0.00
	Minerva-Math	1.10	0.00	0.00
Qwen3-1.7B-Base	MATH-500	33.80	18.40	9.00
	AMC-23	20.00	15.00	0.00
	AIME 2024	0.00	0.00	0.00
	AIME 2025	3.33	3.33	0.00
	Minerva-Math	2.94	2.21	0.74
Qwen3-4B-Base	MATH-500	43.20	28.20	15.00
	AMC-23	37.50	37.50	17.50
	AIME 2024	10.00	6.67	10.00
	AIME 2025	3.33	0.00	0.00
	Minerva-Math	4.78	2.31	0.74
Qwen3-8B-Base	MATH-500	52.00	35.60	24.80
	AMC-23	35.00	25.00	27.50
	AIME 2024	13.33	6.67	10.00
	AIME 2025	3.33	3.33	0.00
	Minerva-Math	5.88	3.31	1.84
Qwen3-14B-Base	MATH-500	58.20	44.80	30.20
	AMC-23	47.50	37.50	32.50
	AIME 2024	10.00	16.67	16.67
	AIME 2025	0.00	0.00	0.00
	Minerva-Math	5.88	2.21	2.94
Qwen3-30B-A3B	MATH-500	62.40	51.40	37.80
	AMC-23	40.00	25.00	25.00
	AIME 2024	13.33	23.33	13.33
	AIME 2025	3.33	0.00	0.00
	Minerva-Math	4.78	3.21	1.84

Table 7: Accuracy of QWEN2.5 and LLAMA-3 checkpoints on five mathematics benchmarks when each model receives only the first $x\%$ of the question ($x = 80, 60, 40$) and must greedily complete the remainder. **Takeaway:** QWEN2.5 shows strong tail reconstruction on legacy math; LLAMA-3-1.8B remains near zero across sets, reinforcing the contamination interpretation.

Model	Dataset	ACC (80%)	ACC (60%)	ACC (40%)
Qwen2.5-Math-7B	MATH-500	58.00	44.40	29.20
	AMC-23	52.50	42.50	32.50
	AIME 2024	16.67	20.00	16.67
	AIME 2025	0.00	0.00	0.00
	Minerva-Math	7.72	4.41	2.94
Qwen2.5-7B	MATH-500	44.80	27.80	15.00
	AMC-23	27.50	27.50	22.50
	AIME 2024	6.67	0.00	3.33
	AIME 2025	3.33	3.33	0.00
	Minerva-Math	6.62	4.78	1.47
Qwen2.5-7B-Instruct	MATH-500	44.80	28.60	14.00
	AMC-23	40.00	15.00	12.50
	AIME 2024	3.33	0.00	0.00
	AIME 2025	3.33	0.00	0.00
	Minerva-Math	10.29	5.51	3.31
Qwen2.5-14B	MATH-500	50.60	35.80	21.00
	AMC-23	40.00	27.50	27.50
	AIME 2024	10.00	3.33	6.67
	AIME 2025	3.33	0.00	0.00
	Minerva-Math	8.46	6.25	2.21
Qwen2.5-32B	MATH-500	60.00	47.80	32.00
	AMC-23	52.50	45.00	42.50
	AIME 2024	16.67	13.33	10.00
	AIME 2025	3.33	0.00	6.67
	Minerva-Math	9.93	4.41	2.94
Llama-3-1.8B	MATH-500	2.80	2.40	2.00
	AMC-23	0.00	0.00	0.00
	AIME 2024	0.00	0.00	0.00
	AIME 2025	0.00	0.00	0.00
	Minerva-Math	1.84	0.37	0.00

Table 8: RougeL and exact-match (EM) scores for QWEN3.0 checkpoints on five mathematics benchmarks when each model receives only the first $x\%$ of the question ($x = 80, 60, 40$) and must greedily complete the remainder. Columns “R@ x ” and “EM@ x ” report the average ROUGE-L and EM for that prefix length. **Takeaway:** Elevated ROUGE-L/EM at large prefixes on legacy sets (but not on AIME-2025) indicates suffix reconstruction rather than emergent reasoning.

Model	Dataset	R@80	EM@80	R@60	EM@60	R@40	EM@40
Qwen3-0.6B-Base	MATH-500	53.31	20.80	45.90	6.40	39.33	1.00
	AMC-23	52.26	7.50	40.39	0.00	33.92	0.00
	AIME 2024	54.85	20.00	27.79	0.00	24.76	0.00
	AIME 2025	54.69	10.00	33.47	0.00	29.16	0.00
	Minerva-Math	31.41	1.47	29.17	0.00	24.86	0.00
Qwen3-1.7B-Base	MATH-500	55.86	24.60	49.05	10.20	41.91	2.40
	AMC-23	64.35	30.00	52.57	20.00	44.95	12.50
	AIME 2024	56.55	26.67	36.48	6.67	36.56	6.67
	AIME 2025	53.90	16.67	39.40	6.00	31.09	0.00
	Minerva-Math	33.99	3.31	30.32	0.00	27.28	0.00
Qwen3-4B-Base	MATH-500	65.04	37.40	55.98	18.80	46.44	7.00
	AMC-23	73.24	52.50	68.56	45.00	63.89	35.00
	AIME 2024	68.98	43.33	53.22	30.00	53.22	26.67
	AIME 2025	55.34	10.00	39.29	0.00	27.72	0.00
	Minerva-Math	34.13	2.94	32.19	0.37	28.18	0.00
Qwen3-8B-Base	MATH-500	70.98	47.20	63.69	29.60	53.84	15.20
	AMC-23	78.23	57.50	69.09	52.50	69.73	47.50
	AIME 2024	77.28	60.00	55.76	33.33	57.85	30.00
	AIME 2025	51.97	10.00	38.60	0.00	32.21	0.00
	Minerva-Math	35.87	2.57	33.41	0.00	28.52	0.00
Qwen3-14B-Base	MATH-500	74.93	55.80	70.08	39.80	60.23	23.80
	AMC-23	75.32	55.00	73.20	60.00	75.52	52.50
	AIME 2024	72.31	50.00	61.48	40.00	60.54	40.00
	AIME 2025	56.07	10.00	36.41	0.00	32.46	0.00
	Minerva-Math	38.12	4.41	34.11	0.74	29.72	0.00
Qwen3-30B-A3B	MATH-500	80.12	62.40	75.03	45.60	64.93	33.00
	AMC-23	80.40	60.00	73.24	55.00	77.21	55.00
	AIME 2024	74.26	53.33	66.53	40.00	62.90	33.33
	AIME 2025	51.57	6.67	43.18	0.00	30.55	0.00
	Minerva-Math	37.01	3.68	34.96	1.10	29.22	0.00

Table 9: RougeL and exact-match (EM) scores for QWEN2.5 and LLAMA-3 on five mathematics benchmarks when each model receives only the first $x\%$ of the question ($x = 80, 60, 40$) and must greedily complete the remainder. **Takeaway:** QWEN2.5 shows strong reconstruction on legacy math; LLAMA-3 remains low.

Model	Dataset	R@80	EM@80	R@60	EM@60	R@40	EM@40
Qwen2.5-Math-7B	MATH-500	79.63	61.60	70.30	41.20	60.81	25.40
	AMC-23	77.35	57.50	71.47	50.00	66.29	42.50
	AIME 2024	69.35	53.33	55.90	30.00	56.53	30.00
	AIME 2025	48.20	10.00	36.31	0.00	27.23	0.00
	Minerva-Math	33.42	2.94	30.41	0.37	26.88	0.00
Qwen2.5-7B	MATH-500	66.09	38.20	58.15	18.00	48.34	6.00
	AMC-23	69.47	47.50	67.70	45.00	61.08	35.00
	AIME 2024	61.28	30.00	46.19	16.67	46.14	16.67
	AIME 2025	54.62	10.00	42.41	0.00	30.56	0.00
	Minerva-Math	33.88	2.94	31.13	0.00	27.06	0.00
Qwen2.5-7B-Instr	MATH-500	60.05	28.60	51.10	10.40	43.41	2.60
	AMC-23	61.38	30.00	51.22	17.50	42.90	10.00
	AIME 2024	55.41	20.00	36.28	0.00	30.64	0.00
	AIME 2025	58.12	10.00	37.96	0.00	29.81	0.00
	Minerva-Math	34.37	2.94	28.50	0.00	25.99	0.00
Qwen2.5-14B	MATH-500	69.50	45.00	61.20	27.00	51.24	12.80
	AMC-23	74.58	47.50	68.20	42.50	67.82	37.50
	AIME 2024	65.42	40.00	49.76	23.33	48.97	23.33
	AIME 2025	52.56	6.67	38.02	0.00	32.92	0.00
	Minerva-Math	35.64	3.68	31.30	0.00	27.93	0.00
Qwen2.5-32B	MATH-500	76.98	56.60	71.14	41.20	58.32	25.20
	AMC-23	79.18	62.50	74.59	60.00	75.78	55.00
	AIME 2024	73.25	56.67	60.92	40.00	60.47	33.33
	AIME 2025	53.67	6.67	40.91	0.00	31.90	0.00
	Minerva-Math	34.88	2.94	32.92	0.00	28.32	0.00
Llama-3-1.8B	MATH-500	46.49	14.00	38.75	3.00	32.19	0.60
	AMC-23	40.46	0.00	29.87	0.00	25.28	0.00
	AIME 2024	49.70	16.67	31.45	0.00	27.13	0.00
	AIME 2025	50.16	6.67	32.97	0.00	27.18	0.00
	Minerva-Math	35.32	1.47	29.17	0.00	26.95	0.00

F DATA CONTAMINATION PROBES: SIMPLEQA (CONTROL)

To test whether partial-prompt reconstruction reflects a general suffix-completion ability, we repeat the probe on SIMPLEQA. If math-set effects were general, we would expect similarly high ROUGE-L/EM at large prefixes here. They are not: scores cluster modestly across families.

Table 10: Rouge-L and exact-match (EM) scores on SIMPLEQA when each model receives only the first $x\%$ of the question ($x = 80, 60, 40$) and must greedily complete the remainder. **Takeaway:** No consistent QWEN advantage; effects seen on legacy math do not generalize, supporting the contamination interpretation.

Model	Dataset	R@80	EM@80	R@60	EM@60	R@40	EM@40
Qwen2.5-Math-7B	SimpleQA	29.34	12.47	16.19	0.69	13.28	0.00
Qwen2.5-7B	SimpleQA	37.61	19.63	19.88	1.85	14.64	0.23
Qwen2.5-7B-Instruct	SimpleQA	36.06	17.78	19.76	1.62	15.87	0.46
Qwen2.5-14B	SimpleQA	39.97	21.94	21.69	3.23	15.98	0.23
Qwen2.5-32B	SimpleQA	41.06	23.09	21.87	3.23	14.78	0.00
Llama-3-1.8B	SimpleQA	37.11	19.86	20.24	2.08	14.22	0.00
Qwen3-0.6B-Base	SimpleQA	26.45	10.39	16.35	0.46	14.42	0.00
Qwen3-1.7B-Base	SimpleQA	27.55	12.47	16.50	0.92	14.97	0.23
Qwen3-4B-Base	SimpleQA	33.52	16.40	17.87	1.85	14.93	0.00
Qwen3-8B-Base	SimpleQA	33.99	16.40	19.23	1.39	15.39	0.00
Qwen3-14B-Base	SimpleQA	37.24	19.40	21.44	2.31	16.65	0.23
Qwen3-30B-A3B-Base	SimpleQA	38.80	19.63	22.07	3.00	16.55	0.00
Qwen3-23B-A22B-Instr-2507	SimpleQA	53.88	38.34	34.58	10.39	22.74	1.39