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Abstract

Recovery of high-frequency components lost
due to bandwidth constraints is critical for
Text-To-Speech and Automatic Speech Recog-
nition applications. We design CIS-BWE, a
novel adversarial Bandwidth Extension (BWE)
framework that introduces two chaos-informed
discriminators - Multi-Resolution Lyapunov
Discriminator (MRLD) and Multi-Scale De-
trended Fractal Analysis Discriminator (MS-
DFA) - for capturing the deterministic chaos
from speech. MRLD exploits Lyapunov expo-
nents to capture nonlinear chaotic fluctuations.
MSDFA exploits detrended fluctuation analy-
sis to quantify fractal-like, long-range temporal
chaotic correlations. To the best of our knowl-
edge, MRLD and MSDFA are included here
for the first time with a complex-valued ad-
versarial network to explore the chaotic study
of speech reconstruction. We also introduce
a novel complex-valued and dual-stream gen-
erator, which uses our newly proposed Con-
formerNeXt as a core block with Lattice inter-
actions, acting as a gating mechanism by en-
abling controlled mixing of information across
streams. We extensively optimize our design
across five resolutions and use depth-wise
separable convolutions to make our model
lightweight yet powerful. Our CIS-BWE re-
quires a 40x reduction in discriminator size,
overall 0.5x fewer parameters, and results in
better performance across a total of eight sub-
jective and objective evaluation metrics, estab-
lishing a new baseline in the BWE task.

1 Introduction and Related Work

Bandwidth Extension (BWE) is important for the
speech enhancement task where we reconstruct
missing high frequencies from low-frequency data
(Li and Lee, 2015). BWE is a critical part of the
wide range of Natural Language Processing (NLP)
applications, such as Text-To-Speech (TTS) (Feng
et al., 2019) and Automatic Speech Recognition
(ASR) (Haws and Cui, 2019). In TTS, BWE gen-

erates more natural prosody and timbral richness,
while the absence of BWE in ASR increases word
error rates. BWE has been shown to preserve criti-
cal spectral cues and thus improve recognition ac-
curacy on low-bandwidth inputs.

Traditional signal processing techniques
(Yoneyama et al., 2023; Biithe and Valin, 2024; Li
and Luo, 2025; Li and Lee, 2015) inherently lack
the ability to model complex and deterministic
chaos present in human speech production,
resulting in unnatural artifacts (Jang et al., 2021).

The advancement of deep learning transforms
the BWE landscape. Specially, Convolutional Neu-
ral Networks (CNN), Multi-Layer Perceptrons
(MLP), Generative Adversarial Networks (GAN),
Transformers, and Diffusion Models have been re-
cently used to learn direct mappings from narrow
band to wide band signals. These early neural meth-
ods focused mainly on magnitude spectrogram en-
hancement (Li and Lee, 2015; Sui et al., 2024,
Abreu and Biscainho, 2024; Hu et al., 2022; Lu
et al., 2025), neglecting the phase due to its noto-
rious noisy patterns and relying on vocoders for
audio reconstruction (Ho et al., 2025; Liu et al.,
2022a; Tamiti and Barua, 2025). However, due to
the work of (Gerkmann et al., 2012; Lu et al., 2025;
Tamiti et al., 2025; Tamiti and Barua, 2025), it is
proven that enhancing phase together with magni-
tude (or real and imaginary) yields higher percep-
tual quality audio (Yin et al., 2020) at the cost of in-
creased computational complexity. However, none
of them considers the chaotic modeling of speech
generation and hence, they miss the opportunity
to improve their performance with less complexity.
We refer to Appendix A.1 to understand the origin
of chaotic presence in human speech.

Speech production is fundamentally non-linear
with the presence of deterministic chaos due to
the complex interaction between airflow and de-
formable vocal tract (Herzel et al., 1994). These
chaotic dynamics are different from the ones



present in phase and sensitively dependent on
initial conditions, irregular oscillations, and slow-
variant features (Michael, 1999). Although the
Multi Period Discriminator (MPD) and Multi
Scale Discriminator (Kong et al., 2020), Multi
Band Discriminator (Yang et al., 2021), and Multi-
Resolution Spectrogram Discriminator (Jang et al.,
2021) are proposed to determine the nonlinear cues
among temporal structures, they lack a chaotic fea-
ture extraction framework. Therefore, they fail to
capture the intricate chaotic features, leading to
residual artifacts and temporal blurring (Kim et al.,
2021). Moreover, they are usually parameter-heavy,
resulting in extra computational overhead.

In this paper, we propose a novel class of chaos-
informed discriminators for capturing the determin-
istic chaos, which State-of-the-Art (SOTA) work
overlooks. We design two chaos-inspired discrimi-
nators - Multi-Resolution Lyapunov Discriminator
(MRLD) and Multi-Scale Detrended Fluctuation
Analysis Discriminator (MSDFA). MRLD uses
Lyapunov exponents (Oseledec, 1968) to capture
rapid and nonlinear chaotic fluctuations. MSDFA
uses detrended fluctuation analysis (Peng et al.,
1994) to capture fractal-like temporal correlations.
This is the first time that MRLD and MSDFA have
been proposed to be included with complex-valued
GANS to explore the chaotic study of audio recon-
struction, to the best of our knowledge. Our ex-
tensive design optimization across five resolutions
and the use of depth-wise separable convolution
make MRLD and MSDFA lightweight yet power-
ful, which requires 0.5x fewer parameters, a 40x
reduction in discriminator size compared to SOTA
(Lu et al., 2024a), with better performance across
a wide range of subjective and objective metrics.

We also introduce a novel complex-valued and
dual-stream generator, which uses ConformerNeXt
as a core block with Lattice interactions, act-
ing as a gating mechanism by enabling con-
trolled mixing of information across streams. Con-
formerNeXt is a combination of Transformer-
based Conformer (Gulati et al., 2020) for captur-
ing global context and CNN-based ConvNeXt (Liu
et al., 2022b) for capturing local context efficiently
present in speech. This optimized generator archi-
tecture simultaneously enhances magnitude and
phase stream within a compact yet efficient archi-
tecture. We name our proposed model CIS-BWE
(Chaos-Informed Speech BWE). Our key technical
contributions are:

(1) For the first time, we introduce chaos-

informed and parameter-efficient non-linear dis-
criminators to capture deterministic chaos.

(2) We introduce dual-stream ConformerNeXt
with Lattice interactions for controlled feature mix-
ing for high-fidelity speech reconstruction.

(3) We extensively evaluate performance using
six objective metrics: LSD, PESQ, STOI, SI-SDR,
SI-SNR, and NISQA-MOS; two subjective metrics:
MOS and Pairwise preference test; three real-time
performance metrics: MAC, FLOP, and RTF. The
full form of all the abbreviations is given in Sec-
tions 3.1, 3.10, and 3.11.

2 Overall Architecture
The proposed architecture is illustrated in Fig. 1.

2.1 Generator Architecture
Due to the necessity of phase along with amplitude
(Yin et al., 2020; Lu et al., 2024b), the generator
of our CIS-BWE parallely receives both the ampli-
tude and phase cues from the two computed syn-
chronized feature maps. The magnitude spectro-
gram is obtained by taking the logarithm of the ab-
solute value of the Short-Time Fourier Transform
(STFT), and the phase spectrogram is obtained by
taking the angle of the STFT. We define the narrow-
band magnitude and phase spectrograms by My,
and ®,;,, respectively, in Eqn. 1.
Mnb G]RBXFXT7 an GRBXFXT (1)

where B is the batch size, F' is the number of
frequency bins (F' = @ + 1), and T is the
number of time frames. The generator’s forward
pass consists of the following three main stages:

a) Dual Stream Processing: The generator ini-
tially processes the narrow-band magnitude and
phase in two separate streams and merges them
into a common latent space at the end, harmoniz-
ing heterogeneous inputs into a unified projection.

b) Lattice Block Interaction: The Lattice block
(Luo et al., 2020) ensures continuous controlled
mixing of magnitude and phase streams that en-
ables explicit exchange of information, reweigh-
ing each stream’s contribution, and faster conver-
gence. Although the model could get faster infer-
ence for the absence of this mixing, however, the
absence of the mixing results in error accumula-
tion in the streams,“muffled” artifacts in the re-
constructed wideband audio signal, and unstable
training. Therefore, we apply two successive one-
dimensional Lattice blocks (LatticelD), each of
which interleaves the magnitude and phase streams
via criss-cross connections by learnable scalars,
denoted by a1, a9, 51, and [ in Fig. 1. These
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Figure 1: Our proposed CIS-BWE, containing Lattice net, ConformerNeXt, and chaos-informed discriminators.

scalars perform as a gating function by control-
ling the strength of cross-stream injection. These
scalars are trained end-to-end and dynamically
learn “where” and “how-much” cross-stream in-
teractions are required.

Within each Lattice block, we insert a new
module named ConformerNeXt. We design Con-
formerNeXt by replacing the standard Conformer’s
(Gulati et al., 2020) convolutional sub-module with
a ConvNeXt (Liu et al., 2022b) block. This replace-
ment significantly enhances the model’s capacity
by combining ConvNeXt’s powerful hierarchical
spatial feature extraction with Conformer’s global
self-attention. Our proposed ConformerNeXt takes
two inputs instead of one, as opposed to (Luo et al.,
2020). Moreover, the pre- and post-processing con-
volutions used in the original Lattice Nets in (Luo
et al., 2020) are omitted. This variation provides
the best choice for the inter-stream connectivity.

As there are two Lattice blocks and each con-
tains one ConformerNeXt per stream, the full gen-
erator employs a total of four ConformerNeXt with
cross-stream residual connections. After trying var-
ious combinations of connections and the number
of ConformerNeXt, we find that this design pro-
vides the best trade-off between performance and a
reduced number of parameters. The granular-level
implementation details, like the number of filter
channels, attention headcounts for ConformerNeXt
are shown in Fig. 1 (see Appendix A.7).

¢) Residual Prediction and Synthesis: After
the final Lattice stage, separate output heads esti-
mate the wideband residuals MY and ¢(4), which
are then passed through Layer Normalization (LN)
and Linear Projection (Proj) blocks implemented
by the Feed Forward Neural Network (FFN) to es-
timate the wide band residuals. The magnitude
branch outputs a log-magnitude residual that is
added to the narrow-band input to isolate and re-
cover only missing high-frequency information,
rather than remodeling the entire spectrum.

Moreover, previous work (Yin et al., 2020)
shows that due to the noisy nature of the phase,
it is very difficult to estimate the phase directly.
To overcome these difficulties in direct phase es-
timation, the phase stream’s output is fed into
two FFNs for predicting “pseudo-real (R)” and
“pseudo-imaginary (I)” residuals, shown in Eqn. 2.
Finally, the wide-band phase is recovered by the
“arctan2” function by stacking the magnitude and
phase branch, and using Inverse STFT, the wide-
band audio is reconstructed (see Eqn. 3).

R = FFN, (LN(®")); I = FFN, (LN(®“))

®, = atan2(/, R)
Cuwb = eMwp (Cos P + 7sin éwb)

2
(3)
2.2 Chaos-Informed Nonlinear Discriminator

Speech production is fundamentally a non-linear
dynamical process characterized by deterministic
chaos (Little et al., 2007). Discriminators used
in traditional GANs (Tian et al., 2020), (Don-
ahue et al., 2018), (Kumar et al., 2019) typically
minimize the distance between reconstructed and
original speech based on raw waveforms or spec-
trogram slices, but fail to detect those nonlinear
chaotic cues. Therefore, generators produce over-
smoothed and dull spectra (Cao et al., 2024). In
this paper, we design two chaos-inspired nonlinear
discriminators - Lyapunov and Detrended Fluctu-
ation. This is the first time that these two discrim-
inators have been proposed to be included with
complex-valued generative models to explore the
chaotic study of audio reconstruction. They ana-
lyze long-range and hidden formant trajectories
and micro-transients across equally spaced win-
dows, output chaos-aware feature maps, and penal-
ize any mismatch in sub-harmonic richness. Our
approach results in a 40x reduction in discrimina-
tor size, 0.5x fewer parameters, and more realistic
acoustics (see Sections 3.6, 3.4, & 3.8) with less
over-smoothed spectra compared to SOTA models.

a) Multi-Resolution Lyapunov Discriminator
(MRLD): We introduce Lyapunov Exponents (LE)



(Oseledec, 1968; Wolf et al., 1985) to capture the
rapid, nonlinear fluctuations and sensitivity to ini-
tial conditions in speech that spectrogram-based
losses overlook. The LE is a measure of nonlin-
ear dynamics used to quantify the rate of separa-
tion of infinitesimally close trajectories. Therefore,
MRLD penalizes the mismatches in the Lyapunov
spectra of real and generated signals and drives
the generator to reproduce authentic deterministic
chaotic behavior, yielding more lifelike speech.

Algorithm 1: Pseudo-code of MRLD

Require: Raw waveform x, window sizes
W = {64, 128,256,512, 1024}

Ensure: Predicted label y € {real, generated }

: F <[] {Initialize feature list}

: forallw € Wdo

for all segment z;” in x with window size w do
Delay-embed z{’ into vectors {y; } using
dimension d, delay
Compute

AP = Avg, [i log (7‘”’“7%/””“)]

lly;—vjll+e
6: Append \{’ to F
7:  end for
8: end for
: Normalize and reshape F for SRD input
10: Y SRDMRLD(.F)
11: return y

PR

e
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A pseudo-code 1 is provided to explain how
MRLD is implemented. MRLD divides each wave-
form into five non-overlapping windows w €
{64, 128,256,512, 1024}, computes local LE via
delay-embedding and nearest-neighbor divergence,
and maps each segment to a single divergence rate
(lines 1-7). Then, MRLD feeds these five exponent
maps into five separate Single Resolution Discrim-
inator (SRD). The detailed structure of the SRD is
shown in Fig. 2. SRD uses a five-layer depthwise-
separable (DSC) 2D Convolution with kernel size 5
(stride 2 for the first four layers, final kernel 3, 235k
parameters) to discriminate real versus generated
dynamics. We refer to Appendix A.6 for details.
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Figure 2: Implementation details of the MRLD, MS-
DFA, and SRD. We refer to Appendix A.6 for details.
b) Multi-Scale Detrended Fluctuation Anal-
ysis Discriminator (MSDFA): We introduce De-
trended Fluctuation Analysis (DFA) (Peng et al.,
1994) to quantify fractal-like, long-range temporal

correlations that conventional spectrogram losses
overlook. Therefore, by computing how root-mean-
square fluctuations F'(n) grow with window size,
MSDFA supervises the generator to ensure natural-
sounding dynamics across syllabic, phonemic, and
sub-phonemic scales. If omitted, the adversarial
framework leads to muffled prosody even when
amplitude and phase discriminators are present.

A pseudo-code 2 is provided to explain how MS-
DFA is implemented. We integrate classical DFA
at five n € {100, 200, 300, 500, 600} samples, tile
each F'(n) into a fixed S x S map, and feed the
resulting tensor into five separate SRD modules.
The SRD (see Appendix A.6) has a five-layer DSC
2D CNN (BN + LeakyReL.U), whose adversarial
loss back-propagates through the tiling, making
MSDFA a light (=247K parameters) yet powerful
plug-in discriminator for BWE problems.

Algorithm 2: Pseudo-code of MSDFA

Require: Input waveform x(t), scales
N = {100, 200, 300, 500, 600}

Ensure: Real/fake score y € R

I: F+

2: foralln € N do

3:  Compute DFA fluctuation F'(n) on z(t)
Tile F(n) into fixed-size map M (™ € R*S and
Append M ™ to F
: end for
. T + stack(F) € R9*5%5
LY — SRDwmspra (T)
: return y

»

0 O\ W

¢) Multi-Resolution Amplitude & Phase Dis-
criminators (MRAD & MRPD): In addition to
MRLD and MSDFA, we also use MRAD and
MRPD in our adversarial framework. MRAD en-
sures that amplitude transients are captured in dif-
ferent granularities. MRPD stabilizes group delay
and explores harmonic-phase relationships. We re-
fer to (Lu et al., 2024b) for the implementation de-
tails of MRAD and MRPD. Similar to (Lu et al.,
2024b), we use three resolutions, such as frequency
bins = [512,128,512], hop sizes = [1024,256,1024],
and window lengths = [2048,512, 2048]. Each res-
olution is fed to a 5-layer 2D CNN (varied ker-
nels/strides, weight-norm) (see Appendix A.6).

2.3 Loss Functions

We use a combination of reconstruction, adversar-
ial, and feature matching losses. We categorize the
losses into generator and discriminator losses.
Generator Losses: We propose a total of six dif-
ferent loss functions for generators that are shown
in Table 1. Magnitude loss encourages accurate
spectral amplitude reconstruction. Phase loss en-



Loss function | Equation (MSE = Mean Square Error)

| Terms

Magnitude Loss ‘ Lunag = Amag - MSE(M, M) ‘IW , M: ground-truth and generated STFT magnitudes. Amag = 45
_ . . ) IP = Instantaneous Phase difference, GD = Group Delay difference, IAF = Instantaneous
Phase Loss Lowa = Apha (L1p + Lap + Liar) ‘Amplitude—Frequency difference. App, = 100.

Complex STFTLoss | Loom = Acom - MSE(C, O)

‘ C and C are the complex-valued STFTs of the target and predicted signals. A¢om = 90.

Self-Consistency Loss ‘leﬂ = Aat - MSE(C, C)

‘ C = STFT of the waveform reconstructed from predicted magnitude and phase. Ay = 90.

Feature Matching Loss ‘L(m = ZdeD Ad - MSE(ffri,ealv fs‘,lke)

‘Feature maps from discriminator d, d € {MRLD, MSDFA, MRAD, MRPD}

Lagy = Yaepra -

tor Hi Loss
Generator Hinge Loss ]Ei'NpG [maz(0,1 — Da(2))]

% ~ Pg: generated samples; D4 (2): discriminator d score; \q4: weight on d’s adversar-
ial term

Discriminator
loss

Hinge | £ = E,p,  [max(0,1 — Da(z))]+

Eznpg [max(0,1+ Da(2))]

T ~ Pgata: real samples; & ~ Pg: generated samples; max(0,1 — Dg(x)): real-
hinge term (D4 (z) > 1); max(0, 1 + Dg4(%)): fake-hinge term (Dg(£) < —1)

Table 1: Generator and discriminator loss functions. Code will be released after the acceptance of the paper.

sures faithful temporal alignment and phase conti-
nuity. Complex STFT loss jointly enforces faithful
amplitude and phase reconstruction. Self consis-
tency loss enforces synthesis consistency. Feature
matching loss is critical as it penalizes subtle nu-
ances enforced by non-linear, amplitude, and phase
discriminators’ feedback. It plays a vital role in
aligning the representation of reconstructed and
ground truth audio to produce intelligible outputs.
Adversarial loss encourages realism in the wave-
form generated across multiple perceptual dimen-
sions. The total Generator Loss is shown as:

L:G - Emag + ['pha + ['com + L"slft + ['fm + L"adv~ (4)

Discriminator Losses: Each discriminator Dy
is trained using a hinge loss objective, which spe-
cializes discriminators to become powerful critics
of unnatural patterns by matching with the percep-
tual distribution of real speech (see Table 1). The
total discriminator loss is shown in Eqn. 5.

LD — ZE%RLD 4 ZE%SDFA 4 Zﬁ%RAD 4 Zﬁ%RPD

" s - " .

where LYIRLD | fMSDEA | MRAD "and LYIRPD are

MRLD, MSDFA, MRAD, and MRPD losses, re-
spectively, for each resolution/scales.

Training Objective: The training involves min-
imizing Lp, and Lg using AdamW optimizers
(Loshchilov and Hutter, 2017) and exponential
learning rate schedulers (Li and Arora, 2019).

3 Comprehensive Analysis

3.1 Evaluation Metrics

We assess intelligibility and perceptual quality of
the reconstructed speech using six metrics: Log-
Spectral Distance (LSD) (Erell and Weintraub,
1990) to quantify fine-grained spectral deviations;
Short-Time Objective Intelligibility (STOI) (Taal
et al., 2011) to evaluate speech intelligibility; Per-
ceptual Evaluation of Speech Quality (PESQ) (Rix
et al., 2001) to predict overall quality in line

with human judgments; Scale-Invariant SDR (SI-
SDR) (Le Roux et al., 2019) as a general distor-
tion metric invariant to amplitude scaling; Scale-
Invariant SNR (SI-SNR) (Luo and Mesgarani,
2018) to specifically gauge noise-related distortion;
and Non-Intrusive Speech Quality Assessment
(NISQA-MOS) (Mittag et al., 2021) for reference-
free estimation of perceptual speech quality.

3.2 Hyperparameter and Configuration

The training of CIS-BWE involves carefully cho-
sen hyperparameters. Learning rate is initialized
with 2 x 10~* with exponential decay after each
epoch with a decay factor of 0.999. AdamW opti-
mizer with 1 = 0.8, and 82 = 0.99, and a weight
decay of 0.01 are used for stable convergence. We
use a batch size of 16 to balance between com-
putational efficiency and memory utilization. All
models are trained for a total of 50 epochs and
per epoch takes around 25 minutes. We list all the
hyperparameters in Appendix A.8. We use four
NVIDIA RTX 4090 GPUs and Intel(R) Xeon(R)
Silver 4310 CPUs (2.10 GHz) for computation.
3.3 Dataset and Preprocessing

We use the CSTR VCTK Corpus (v0.92) (Ya-
magishi et al., 2019), comprising 110 multi-
accent native English speakers. There are in to-
tal 400 utterances for each speaker with a sam-
pling rate of 16 and 48 kHz. Precomputed si-
lence intervals (+/- 0.1s padding) are loaded from
vctk-silences.0.92.txt and each FLAC file is
loaded at 48kHz mono channel, then trimmed to its
annotated silence region plus padding. A custom
Dataset class caches audio for efficiency. The low-
rate input is simulated by downsampling to lower
sampling rates, then upsampling back to the origi-
nal sampling rate by sinc interpolation. We refer to
Appendix A.2, A.3, A.4 for detailed explanation.
3.4 Discriminator Ablation Study

Table 2 represents the ablation results reported
based on five objective evaluation metrics.



Row(@: When we only use MRPD (phase) and
MSDFA (fractal dynamics), the model receives
feedback only on fine-grained periodicity and long-
range temporal self-similarity, resulting in the poor-
est performance (NISQA-MOS = 2.32). However,
a higher SI-SNR indicates that the generator can
generate phase-consistent results without generat-
ing natural-sounding envelopes.

L MPD MRAD MRPD MRLD MSDFA LSD STOI PESQ SNR N-MOS

S

1 X X v X v 1.22 0.89 2.05 9.47 232
2 X X X v v 1.20 0.85 1.55 7.47 3.58
3 X v v X X 1.11 0.86 1.61 7.87 4.07
4 X v X v X 1.09 0.86 1.65 8.42 4.08
5 X v v v X 1.06 085 1.58 7.78 4.14
6 X v v v v 1.10 0.87 1.66 8.11 429

Evaluating MPD with our proposed discriminators

7T/ X X v X 1.23 085 1.53 695 358
8 v X X v v 1.04 085 1.55 7.15 3.65
9 Vv X X X v 1.24 085 1.52 7.08 3.79
10 v v v X X 1.11 0.85 1.56 6.68 4.18

Comparison of parameters among MPD and our proposed discriminators

11 22M 600.2k 600.2k 235.5k 247.7k

Table 2: Ablation study on discriminators with their
sizes for 2—16 kHz range. Here, N-MOS = NISQA-
MOS and SNR = SI-SNR. Our MRLD + MSDFA in row
(9 has in total 40x smaller parameters (22M vs 483.2k)
compared to MPD in row (1) with better performance.

Row() and 3): MRLD (deterministic chaos)
and MSDFA show an improved performance
(NISQA-MOS = 3.58) as MRLD encourages re-
alistic chaos, but without amplitude cues, the per-
formance is lower. Using MRAD and MRPD in
row (3), we obtain NISQA-MOS = 4.07 because
we have both magnitude and phase cues. MRAD
enforces the correct amplitude distributions, and
MRPD aligns the notorious phase relationships.
These combinations also score significantly bet-
ter in LSD (1.11) and PESQ (1.61). These results
show us the efficacy of the MRAD and MRPD and
make them “indispensable” in our design choice.

Row(®@) and (3): We use MRLD instead of
MRPD along with MRAD in row (4). This per-
forms on par with MRAD and MRPD, as both
phase and Lyapunov exponents capture two differ-
ent types of deterministic chaos. Once again, when
we use both MRLD and MRPD along with MRAD,
we get an increase in NISQA-MOS to 4.14 from
4.08, which confirms the necessity of MRLD in
capturing deterministic chaos.

Row(e): We give fractal analysis feedback to the
generator by MSDFA along with MRLD, MRPD,
and MRAD. These combined features provide
strong cues to the generator, which results in sig-
nificant boosts to NISQA-MOS from 4.14 to 4.29.
Therefore, this set of combinations is used in our

proposed CIS-BWE architecture.

3.5 Comparison with MPD

As SOTA models (Lu et al., 2024b,a) use MPD, we
compare the performance of our proposed MRLD
+ MSDFA with MPD in row (7) to @9 of Table 2.
Row(@0): The combination of MPD + MRPD +
MRAD gives NISQA-MOS of 4.18, which is lower
than our proposed combinations of MRLD + MS-
DFA + MRAD + MRPD in Row(s). This statement
also holds for other metrics as well. As MRAD +
MRPD is common in both cases, this shows that
the MRLD + MSDFA performs better than MPD
alone. Moreover, we are getting better performance
with only 483.2k parameters in total for MRLD +
MSDFA, compared to 22M parameters of MPD.
This is a significant finding as our MRLD + MS-
DFA gives better performance compared to MPD
with 40x smaller parameters (22M vs 483.2k). This
will provide a stepping stone for smaller models in
edge devices without sacrificing performance. We
refer to Appendix A.6 for details on discriminator.

3.6 Generator Architecture Ablation Study

To determine the optimal generator configuration,
we performed three systematic ablations on core
block selection, inter-stream connectivity, network
depth, and MLP expansion ratio. The results are
summarized in Table 3 for 2—16 kHz range.

Core Block Selection: We consider two blocks:
ConvNeXt and ConformerNeXt. The reason for
choosing ConvNeXt is that we want to demonstrate
the better performance of our ConformerNeXt over
the SOTA ConvNext (Lu et al., 2024b,a). We sep-
arately use a total of 16 ConvNext (denoted by
ConvNeXt; in row (1)) and ConformerNeXt (de-
noted by ConformerNeXtig in row (2)). The row
(@ achieves the highest NISQA-MOS of 4.44, a
+0.13 gain over ConvNeXt in row (1), along with
improvements in LSD (1.10 vs 1.12), STOI (0.87
vs 0.86), and PESQ (1.70 vs 1.63). In this way,
we find the supremacy of the ConformerNeXt over
ConvNeXt as a core block.

Inter-Stream Connectivity: We compare linear
and Lattice Net for coupling magnitude and phase
streams. Lattice Net in row (4) consistently outper-
forms the linear stream in row (3) in terms of all
the six metrics. Therefore, we use Lattice Net as a
cross-stream interaction for its superior controlled
mixing of amplitude and phase stream via learn-
able scalars’ gating mechanism (see Section 2.1).

Depth and Head Count: After getting the best
core block and cross-connection scheme, we op-



SL Architecture Size Discriminators

H LSD | STOI1 PESQ 1 SI-SDR 1 SI-SNR 1 NISQA-MOS 1

1 ConvNeXti6 106.34M [MRLD + MSDFA + MRA/PD]x3 - 112 086 1.63 7.89 7.88 4.31
2 ConformerNeXt;¢ 223.2M [MRLD + MSDFA + MRA/PD]x3 8§ 1.10 0.87 1.70 7.93 7.90 4.44
3 ConformerNeXty, Linear 64.23M [MRLD + MSDFA + MRA/PD]x3 8 1.12 0.86 1.57 7.66 7.62 3.72
4 ConformerNeXty 32.7M [MRLD + MSDFA + MRA/PD]x3 8 1.09 087 1.71 8.56 8.54 4.03
5 ConformerNeXty 33.5M [DSC(MRLD+MSDFA) + MRA/PD]x5 4 1.10  0.87 1.67 8.24 8.20 4.25
6 ConformerNeXty, MLP /4 16.67M [DSC(MRLD+MSDFA+MRA/PD)]x5 4 112 0.87 1.68 8.01 7.98 3.60
7 ConformerNeXty (Proposed) 33.5M  [DSC(MRLD + MSDFA)]x5 + [MRA/PD]x3 8 1.10  0.87 1.66 8.14 8.11 4.29

Table 3: Generator architecture ablation study for 2— 16 kHz range. SI-SNR and SI-SDR use dB unit. H = number
of attention heads in the multi-head self attention of the ConformerNeXt block.

timize the number of ConformerNeXt and head
count in the generator. Reducing from 16 to 4 Con-
formerNeXt blocks (row (2) vs row (3)) yields a
compact model with a 7x reduction in size with
compromising a small performance but still bet-
ter/similar to SOTA models (Lu et al., 2024b,a)
in Table 4. We further evaluated multi-head self-
attention by reducing from 8 to 4 heads (row (5)),
leading to a minor drop in NISQA-MOS (4.25 vs
4.29) compared to row (2. We also test the hidden
dimension of the linear network with one-fourth
(row (5)), which degrades NISQA-MOS to 3.60.

3.7 Making the Discriminator Efficient

Here, we explain how we make our discriminators
small yet efficient in terms of all six metrics. The
performance of our generator is highly correlated
with the number of scales or resolutions used in
the discriminators. In rows (1) to (3) of Table 3, we
use three windows or scales to calculate features
from three different resolutions. However, when
we increase the number of scales to 5, the feature
maps capture more fine-grained as well as coarse-
grained temporal patterns to provide better perfor-
mance, which is shown in rows (5) to (7) of Ta-
ble 3. Due to the larger scale of 5, though it might
take slightly more train time due to calculate more
features, our discriminators can guide the gener-
ator for more faithful reconstruction without any
increase in the number of parameters.

Moreover, we use DSC in our discriminators to
shrink their sizes. In rows (1) to (4) of Table 3,
we use normal convolution, but in rows (5) to (7),
we try different combinations of DSC with our dis-
criminators. For example, in rows (5) and (7): DSC
in MRLD and MSDFA + normal convolution in
MRAD and MRPD; in row (¢): DSC in all MRLD,
MSDFA, MRAD and MRPD.

We implement DSC by factorizing standard con-
volutions into K x 1 depthwise steps (per chan-
nel), followed by 1 x 1 point-wise convolutions
for cross-channel mixing. This reduces the com-
putational complexity from O(K x Cj, X Coy) to
O(K x Cjp+Cin X Con ). Here, K is kernel size, Cjy,
is input and Cyy is the output channel dimension.

Final Design (row (7)): Based on all these abla-
tions, our final generator employs a total of 4 Con-
formerNeXt blocks (each with 8 heads and linear
projection hidden dimension x4), interconnected
via Lattice Net, resolution of 5 together with DSC
in MRLD and MSDFA, resolution of 3 together
with normal convolution in MRAD and MRPD.
This configuration achieves the best trade-off be-
tween perceptual quality (NISQA-MOS = 4.29),
computational efficiency, and parameter compact-
ness (= 33.5 M parameters). We refer to Appendix
A.7 & A.6 for final parameter count.

8 kHz 8 kHz 8 kHz
6.4 kHz
£
s
f‘g 4.8 kHz
T 3.2kHz
]
2 1.6kHz
0 kHz

0.240.48 0.72 0.9 1.2
¢) Ground Truth speech at
8kHz

0
0 0.240.48 0.72 0.96 1.2

b) Reconstructed by our
model at 16kHz

0 0.240.48 0.72 0.96 1.2

a) Unprocessed 4kHz sinc
interpolated to 16 kHz

Figure 3: 4-16 kHz extended speech by CIS-BWE.

3.8 Comparative Analysis with Baselines

Table 4 compares our CIS-BWE against three base-
lines - EBEN (Hauret et al., 2023), AERO (Mandel
et al., 2023), and AP-BWE (Lu et al., 2024a) - over
three extension ranges (4— 16 kHz, 8—16 kHz and
16—48 kHz). EBEN is a Pseudo Quadrature Mir-
ror Filter-based model, AERO is a complex-valued
model, and AP-BWE is a dual-stream for ampli-
tude and phase prediction model.

Compared to unprocessed speech, CIS-BWE
significantly does a 3.3x reduction in LSD, a 1.72x
increase in STOI, a 2.17x increase in PESQ, and
a 1.51x increase in NISQA-MOS for 4—16 kHz.
Table 4 also indicates that AP-BWE is the best-
performing model in baselines for NISQA-MOS.
Our proposed CIS-BWE exceeds AP-BWE in
NISQA-MOS, LSD, PESQ, and STOI for all three
frequency ranges. However, CIS-BWE gives a sim-
ilar performance for SI-SDR and SI-SNR com-
pared to AP-BWE. Please note that LSD is a mea-
sure for over-smoothing, and NISQA-MOS, PESQ,
and STOI are measures of perceptual audio qual-
ity. Our model outperforms the best-performing
baseline, AP-BWE, for the perceptual and over-
smoothing metrics with almost 2.18x fewer pa-



Method Size NISQA-MOS STOI PESQ SI-SDR SI-SNR LSD

4-16 8-16 16-48 4-16 8-16 16-48 4-16 8-16 16-48 4-16 8-16 16-48 4-16 8-16 16-48 4-16 8-16 16-48
Unprocessed - 2779 3.67 443 055 0.61 0.61 1.15 151 141 -11.03 -8.07 -6.07 -10.53 -7.62 -5.63 3.27 2.27 2.85
EBEN (Hauret et al., 2023) 29.7M 2.59 2.69 2.53 0.89 098 098 2.64 3.69 3.71 11.94 1994 20.82 11.94 19.94 20.83 1.03 0.78 0.92
AERO (Mandel et al., 2023) 36.4M 2.79 2.75 2.88 0.83 094 0.99 2.62 3.65 3.69 13.60 20.70 21.56 13.60 20.70 21.56 1.09 0.97 0.75
AP-BWE (Luetal., 2024a) 72M 386 3.97 449 094 099 0.99 255 3.69 3.72 1342 1826 20.86 13.35 18.07 20.74 0.96 0.74 0.75
CIS-BWE (proposed) 33.5M 4.24 426 453 095 099 099 264 372 3.75 1324 18.13 19.53 13.15 17.98 19.44 095 0.72 0.71

Table 4: Comparative analysis of baseline models over three extension ranges with our proposed CIS-BWE.

rameters (72M vs 33M). Our CIS-BWE benefits
from explicit chaotic feature extraction in the am-
plitude and phase domains, successfully avoiding
the compensation effects between amplitude and
phase. It is also an indication that our approach of
chaotic modeling using chaos-informed discrimi-
nators is outperforming other nonlinear discrimi-
nators, such as MPD, with fewer parameters (see
Section 3.5). This finding is important for adopting
chaos-informed discriminators in existing genera-
tive models to capture both the fine-grained spec-
tral details and the deterministic chaos, resulting in
more perceptually natural sounds.

Freq.range LSD STOI PESQ SI-SDR SI-SNR NISQA-MOS
2-16kHz  1.1068 0.8739 1.66 8.1487 8.118 4.2979
2-48 kHz 1.21  0.8526 1.1836 6.963  6.9662 3.9987
4-48 kHz 1.099 0933 1.4921 12.045 11.99 4.2294
8-48 kHz 1.092 0933 1.506 12.39 12.33 3.975
12-48kHz  0.873 0.9976 3.1253 17.085 16.95 4.4854
24-48kHz 0.6531 0.9989 4.1822 2342 2338 4.5254

Table 5: Performance over different frequency ranges.

3.9 Study for Different Frequency Ranges

Table 5 further investigates performance across dif-
ferent frequency ranges. Overall, expanding the
input frequency band generally leads to improve-
ments across most evaluation metrics. For instance,
the LSD consistently decreases as the lower bound
of the input frequency increases, with the best score
of 0.6531 achieved for the 24-48 kHz range, in-
dicating better spectral reconstruction. Similarly,
perceptual metrics (PESQ and NISQA-MOS) and
temporal fidelity metrics (SI-SDR and SI-SNR)
improve with wider input bands. Moreover, STOI
scores are high (above 0.99) for mid-to-high fre-
quency inputs (e.g., 12-48 kHz and 2448 kHz),
implying strong speech intelligibility preservation
when higher frequency content is available.

Model Fq. Range Params (M) MACs (M) FLOPs (M) RTF (GPU)
AP-BWE 4-16 kHz 72.07 14236.65 28473.31 0.0023x
AP-BWE 16-48 kHz 72.07 14236.65 28473.31 0.0025x
CIS-BWE 4-16 kHz 33.74 6790.86  13581.73  0.0025x
CIS-BWE 16-48 kHz 33.74 6790.86  13581.73  0.0028x

Table 6: Computational complexity of CIS-BWE. The
hardware configuration is provided in Section 3.2.

3.10 Computational Complexity

Table 6 shows the computational complexity and
real-time performance using Multiply Accumu-
late Operations (MACs), Floating Point Operations

per second (FLOPs), and Real-Time Factor (RTF)
across two different frequency ranges. Due to op-
timization of the generator and discriminators (see
Sections 3.6, 3.7, A.6, A.7), CIS-BWE uses 0.5x
fewer parameters, MACs, and FLOPs compared to
AP-BWE, while maintaining superior perceptual
quality as shown by NISQA-MOS scores in Ta-
ble 4. CIS-BWE also has a low RTF (0.0025x), in-
dicating its effectiveness in real-time audio stream-
ing services.

3.11 Subjective Analysis

For a subjective comparison of CIS-BWE against
SOTA AP-BWE and unprocessed audio, we select
a panel of 10 persons. We use 5-point (1=bad to
S5=excellent) Mean Opinion Score (MOS) ratings
and Pairwise preference tests. In Fig. 4, we present
the MOS results separately for male and female
speakers with the overall mean. AP-BWE performs
better for only male speakers, while CIS-BWE out-
performs for female speakers and overall. In the
Pairwise preference test, CIS-BWE outperforms
SOTA AP-BWE by a margin of 11%. The detailed
explanation of subjective evaluation is presented
in Appendix A.9. These results provide strong ev-
idence that our proposed CIS-BWE consistently
generates higher perceptual quality audio, which is
favored by a wide range of listeners.
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Figure 4: Results of MOS and Pairwise preference test.

4 Conclusion

We propose CIS-BWE, an adversarial model for
speech BWE. To the best of our knowledge, for
the first time, we incorporate chaotic dynamics of
speech for improved perceptual quality in a dual-
stream GAN-based framework. The efficacy of
CIS-BWE is shown across a wide range of perfor-
mance metrics. We believe that our chaos-informed
discriminators will be adopted in the future in a
wide range of NLP applications in the domain of
generative speech for TTS and ASR tasks.
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6 Limitations and Future Work

Our current works only focus on one rather than
multiple datasets in noise-free settings. Proposed
CIS-BWE is tested on only the English lan-
guage (VCTK dataset). In multi-lingual and cross-
speaker settings the generalization ability is not
tested. We will handle these in our upcoming work.

7 Potential Risks / Ethical Considerations

While the intention of designing the CIS-BWE
model is for frequency restoration research pur-
poses, it can be misused for potential secret eaves-
dropping, impersonation, or deepfake audio gener-
ation. This model has the potential for severe pri-
vacy and security risks. To avoid these, we have
to be very careful to ensure transparency, protect
consent, and always follow guidelines.
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A Appendix

A.1 Chaotic Properties of Speech Generation

Speech production is fundamentally a non-linear
dynamical process characterized by deterministic
chaos (Jiang et al., 2001), (Fitch, 2025). Its gener-
ation is driven by aerodynamic forces, with visco-
elastic vocal cords forming a self-sustained oscil-
latory system whose glottal pulses produce har-
monic frequencies, pressure waves occurring at in-
teger multiples of the fundamental frequency (f0)
(Titze, 2008). According to the source-filter the-
ory, these harmonics are then shaped by the vocal
tract’s filtering action—resonances in the throat,
mouth, and nasal cavities dynamically amplify or
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attenuate certain harmonics, forming moving spec-
tral peaks known as formants (Zhang, 2023).

Because the vocal cords receive pressure feed-
back from the vocal tract, this coupled system
can undergo period-doubling, create sub-harmonic
frequencies, and intermittently exhibit chaotic be-
havior indicated by positive Lyapunov exponents
(Martinez et al., 2002). Consequently, speech nat-
urally alternates between stable, quasi-periodic
sounds (typical vowels) and chaotic segments, such
as creaky voice and stressed speech, resulting in
subtle jittery fluctuations, turbulence, and irregu-
lar timing that purely linear models cannot capture.
Generally, vowels exhibit quasi-periodicity inter-
spersed with intermittent chaotic episodes (Tao and
Jiang, 2008).

During sound excitation, unstable airflow, vor-
tex shedding, and uneven vocal cord movements
introduce additional turbulence and timing irreg-
ularities. Within the vocal tract, constricted pas-
sages like those forming fricatives produce lo-
cal turbulence, while the reactive characteristics
of supraglottal and subglottal airways feed pres-
sure variations back to the vocal cords, creating
a complex non-linear interaction that can either
stabilize or destabilize cord oscillations (May and
Scherer, 2023). Moderate coupling enriches har-
monic content and clarifies formant structures,
whereas strong coupling can induce chaotic behav-
iors, resulting in rough or harsh vocal qualities as
observed in creaky voices, infant cries, or animal
distress calls (Rendall, 2025).

A purely linear model overlooks critical aspects
such as sub-harmonics, bifurcations, and aperiodic
bursts, making synthetic speech sound unnaturally
smooth (Sheng and Pavlovskiy, 2019). Moreover,
diagnostic methods that rely on detecting chaotic
indicators for early identification of vocal disorders
would lose effectiveness. Contemporary speech
synthesis and enhancement systems predominantly
use linear models or perturbation parameters, fail-
ing to capture these complex, subtle dynamics
of speech (MacCallum et al., 2009). Hence, to
accurately represent these non-linear behaviors,
models must incorporate non-linear glottal-flow
representations or leverage adversarial networks
with discriminators designed to recognize non-
linear characteristics, ensuring both the determin-
istic aspects (such as harmonic and formant struc-
tures) and chaotic elements (including noise bursts
and timing irregularities) are faithfully reproduced
(Bollepalli et al., 2019).
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A.2 Dataset Pre-Processing Pipeline

We use VCTK dataset, which is an established
benchmark extensively use in Speech processing
tasks. We extensively check and ensure that VCTK
dataset does not contain any Personal Identifying
Information (PIN), abusive contents, or any harm-
ful that might be harmful for any individual, group,
or others. We at first index all audio files by reading
each line from training. txt and test. txt files,
by extracting base filenames (without extensions)
and by splitting on the “|” character. Out of 110
English native speakers with different accents read-
ing Herald Newspaper articles, we have used 102
speakers for training the CIS-BWe and 8 speakers
for testing the efficacy of the CIS-BWE. In total
we have used 88,329 audio recordings for train-
ing and testing the CIS-BWE. For reducing disk
I/O overhead, each audio cache in memory for up
to n_cache_reuse accesses (default set to 1). Then
we trim the silent portion of the audio files by delet-
ing portion of audios taking the start and end of
silences from the vctk-silences.0.92. txt. Af-
ter that, audios are loaded by torchaudio. load,
and stereo (dual) channel signals are converted into
mono (single) by averaging across channels. These
mono waveforms are then resampled to the high-
resolution (HR) target of 16/48 KHz by sinc inter-
polation if requires. Furthermore, a low-resolution
(LR) version is created by first downsampling the
audio to 2/4/8/16/24 KHz and then upsampled back
to 16/48 KHz by sinc interpolation which is given
as input to the CIS-BWE model. For using the au-
dios in training mode (split=True), we randomly
crop an 8,000-sample segment, which is approxi-
mately 167 ms from HR and LR signals both. If the
files are shorter than this length, then zero-padding
is applied to ensure similar segment lengths.

A.3 Dataset Class and Datal.oader

Above preprocessing steps are defined in a cus-
tom PyTorch Dataset class. After initializa-
tion, we shuffle audio file lists with a fixed
random seed (random.seed(1234)) for ensuring
reproducibility. The __getitem__ function han-
dles loading of data (or reuse of cache), apply
resampling, apply segmentation, and convert to
mono channel, and return a tuple of 1-D ten-
sors, which contains 8,000 samples. Total length
of the dataset (__len_)) is equal to the num-
ber of files in each split. During training pro-
cess, we initialize a DatalLoader class which uses



four worker processes (num_workers=4) and uses
DistributedSampler to ensure distribution of dis-
tinct partitions of the dataset.

A4 Time-Frequency Feature Extraction and
Reconstruction

We design a feature extraction function,
amp_pha_stft, which calculates the short-
time Fourier transform (STFT) on audio segments
using [win_size, hop_size, fft] = [320, 80, 1024]
and a Hann window parameter. Using generated
complex spectrogram X € CF*7' we derive two
features for giving input to dual stream CIS-BWE.
The is log-amplitude calculate using

M _nb = log(|X|+107%)
and instantaneous phase
& nb = arg(X).

The output of the CIS-BWE are converted back
into audio waveform by amp_pha_istft, which
exponentiates the predicted log-amplitude, recon-
structs the complex spectrogram, and applies an
inverse STFT using the same windowing parame-
ters to obtain the final HR audio.

A.5 Inference Workflow

We load the trained CIS-BWE checkpoint to gen-
erate wide-band audio using narrow-band .wav in-
puts. The script initially loads the trained CIS_BWE
Model checkpoint onto the specified device (GPU
or CPU). It then recursively searches the input di-
rectory for narrowband . wav files. For each discov-
ered file, the script:

1. Applies similar pre-processing and resam-
pling steps for HR and LR creation.

Extracts log-amplitude and phase spectro-
grams as features via amp_pha_stft.

Feeds the two spectrogram features into each
stream of the generator network.

Maps the narrowband audios to wideband by
generating missing high frequency compo-
nents

Applies amp_pha_istft to invert the output
representations to waveforms.

Saves the output audio as 16 bit PCM .wav
files at 16/48 KHz.

. Logs the losses and total processing time for
extensive analysis later.
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A.6 Parameter Breakdown for
Discriminators

A layerwise parameter breakdown for each discrim-
inator and grand total for all four discriminators in
CIS-BWE are shown in Table 7.

A.7 Parameter Breakdown for Generators

A layer-wise parameter breakdown for the CIS-
BWE generator, including LatticeBlock1D param-
eters alongside pre-processing, ConformerNeXt
blocks, and post-processing are shown in Table 8.

A.8 Hyperparameters and Configuration

Software Version: We use an Anaconda vir-
tual environment with Python 3.9.21, PyTorch
2.0.0+cul18, Torchaudio 0.15.0+cull8, Torchvi-
sion 0.15.0+cul18, and CUDA Toolkit 11.8.0.

For distributed training and potential scalability,
we use the NCCL for multi-GPU training and TCP
to initialize communication between processes.

The training and model hyperparameters for the
CIS-BWE setup, with use cases and rationale are
provided in Table 9.

A.9 Subjective evaluation details

To evaluate the performance of the proposed CIS-
BWE, a formal pair-preference listening test was
conducted. A total of ten Bangladeshi under gradu-
ate student who self-reported normal-hearing (NH)
participants—comprising four males and six fe-
males with an average age of 24—participated in
the study. The participants voluntarily join to rate
the audios without any compensation. At first they
are trained on how to assign scores based on per-
ceived perceptual quality of audios. They are also
briefed about the purpose of the experiments, po-
tential risks, and about the outcome of this paper.
All participants were non-native English speakers
and used soundproof headsets to ensure consis-
tent and distraction-free listening conditions. Each
participant evaluated 30 sets of speech samples.
Every set included three randomly presented ver-
sions of the same utterance: (i) the unprocessed
(noisy) signal, (ii) the baseline-enhanced signal us-
ing APBWE processing, and (iii) the speech pro-
cessed by the proposed network. For reference, a
clean version of the speech signal was also avail-
able, though it was not part of the evaluation. Partic-
ipants rated the perceptual quality of each sample
on a 5-point Mean Opinion Score (MOS) scale,
where 1 indicates the lowest and 5 the highest
quality. Additionally, they were asked to select the
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Figure 5: The MATLAB interface used in Subjective Tests.

most preferred version from the three presented
options. The test used 5-7-second speech clips se-
lected from the VCTK dataset, which were pro-
cessed under three different frequency band condi-
tions: 2—16 kHz, 12-48 kHz, and 24-48 kHz. Indi-
vidual pair-preference results were analyzed sepa-
rately for both male and female participants across
all band configurations. In the figure 5, we have
presented the MATLAB interface that we use to
conduct the subjective evaluation.

The findings in figure 4 clearly show that the
speech enhanced by the proposed network was
consistently and significantly preferred over both
the unprocessed and baseline-processed versions.
In particular, the proposed CIS-BWE achieved a
54.5% improvement in user preference compared
to unprocessed speech and a 2% improvement
over the APBWE baseline. These results highlight
the network’s robust ability to enhance perceptual
speech quality under noisy and reverberant condi-

tions.
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Discriminator Stage Layer Type In—Out Kernel Stride Padding Params

Block 1  Depthwise Convld 1—1 5 2 2 6
Pointwise Conv1d 132 1 1 0 64
BatchNormld + LReLU(0.1)  32—32 - - - 64

Block2  Depthwise Convld 3232 5 2 2 192
Pointwise Convld 3264 1 1 0 2112
BatchNorm1d + LReLU(0.1)  64—64 - - - 128

Block3  Depthwise Convld 64—64 5 2 2 384

MRLD (per scale) Pointwise Conv1d 64—128 1 1 0 8320
BatchNorm1d + LReLU(0.1) 128—128 - - - 256

Block4  Depthwise Convld 128—128 5 2 2 768
Pointwise Conv1d 128—256 1 1 0 33024
BatchNorm1d + LReLU(0.1) 256—256 - - - 512

Final Depthwise Conv1d 256—256 3 1 1 1024
Pointwise Conv1d 256—1 1 1 0 257
BatchNorm1d 1—1 - - - 2

MRLD total (per scale) 47113

Block 1  Depthwise Conv2d 1=1 3%3 1 1 10
Pointwise Conv2d 132 1x1 1 0 64
BatchNorm2d + LReLU(0.2)  32—32 - - - 64

Block2  Depthwise Conv2d 3232 3x3 2 1 320
Pointwise Conv2d 3264 1x1 0 2112
BatchNorm2d + LReLU(0.2)  64—64 - - - 128

Block3  Depthwise Conv2d 64—64 3x3 2 1 640

MSDFA (per scale) Pointwise Conv2d 64—128 1x1 1 0 8320
BatchNorm2d + LReLU(0.2) 128—128 - - - 256

Block4  Depthwise Conv2d 128—128 3x3 2 1 1280
Pointwise Conv2d 128—256 1x1 1 0 33024
BatchNorm2d + LReLU(0.2) 256—256 - - - 512

Block5  Depthwise Conv2d 256—256  3x3 1 1 2560
Pointwise Conv2d 256—1 1x1 1 0 257
BatchNorm2d 1—1 - - - 2

MSDFA total (per scale) 49 549

Conv 1 Conv2d, WeightNorm 1—64 Tx5 2%x2 3x2 2304

Conv 2 Conv2d, WeightNorm 64—64 5%x3 2x1 2x1 61504

MRAD (per res) Conv3  Conv2d, WeightNorm 64—64 5%3 2x2 2x1 61504
Conv4  Conv2d WeightNorm 64—64 3x3 2x1 1x1 36928

Conv5  Conv2d, WeightNorm 64—64 3x3 2x2 1x1 36928

Conv_post Conv2d, WeightNorm 64—1 3x3 Ix1 Ix1 577

MRAD total (per res) 199745

Conv 1 Conv2d WeightNorm 1—64 7x5 2x2 3x2 2304

Conv2  Conv2d WeightNorm 64—64 5%3 2x1 2x1 61504

MRPD (per res) Conv3  Conv2d WeightNorm 64—64 5%3 2x2 2x1 61504
Conv4  Conv2d WeightNorm 64—64 3x3 2x1 Ix1 36928

Conv5  Conv2d WeightNorm 64—64 3x3 2x2 Ix1 36928

Conv_post Conv2d WeightNorm 64—1 3%x3 1x1 1x1 577

MRPD total (per res) 199745
Grand total (all discriminators) 1681780

Table 7: Layer-wise parameter breakdown, per-discriminator totals, and grand total for all four discriminators in
CIS-BWE.
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Stage / Component Layer Type In—Out Kernel Stride Padding Heads Params

Pre-processing
Pre-mag convolution Convld 513—512 <7 Ix1 7x1 - 1839104
Pre-pha convolution Convld 513—512 77 Ix1 7x1 - 1839104
Pre-mag LayerNorm LayerNorm 512—512 - - - - 1024
Pre-pha LayerNorm LayerNorm 512—512 - - - - 1024

ConformerNeXtBlock (per block breakdown)
FFN & Norm

Norm; LayerNorm 512—512 - - - - 1024
FFN; - Linear; + GELU + Droput(0.1) Linear 512—2048 - - - - 1050624
FFN; - Lineary + Dropout(0.1) Linear 2048—512 - - - - 1049088
Normsy LayerNorm 512—512 - - - - 1024

Self-Attention
Self-Attention MultiHeadSelfAttention (embed=512) 512—512 - - - 8 1050624

ConvNeXt Components

Depthwise Conv1d Depthwise Conv1d 512—512 7 1 3 - 4096
ConvNeXt—Norm LayerNorm 512—512 - - - - 1024
ConvNeXt—PWConv1 + GELU Linear 512—1536 1 1 0 - 787968
ConvNeXt—PWConv2 Linear 1536—512 1 1 0 - 786944
ConvNeXt—Gamma Learned scale 512—512 - - - - 512
Total per ConformerNeXtBlock 6834688
ConformerNeXtBlock total (4 blocks) 27338752

LatticeBlock1D
LatticeBlock1D (per block) Two-branch fusion using one 512—512 - - - - 4x4

ConformerNeXt Block + 4 scalars

Total LatticeBlock1D (4 blocks) 27338768

Post-processing
Post-mag LayerNorm LayerNorm 512—512 - - - - 1024
Post-mag FFN Linear 512—513 - - - - 263169
Post-pha LayerNorm LayerNorm 512—512 - - - - 1024
FFN_r post-pha (real) Linear 512—513 - - - - 263169
FFN_i post-pha (imag) Linear 512—513 - - - - 263169
Total generator parameters 31808531

Table 8: Layer-wise parameter breakdown for the CIS-BWE generator, including LatticeBlocklD parameters
alongside Pre-processing, ConformerNeXt blocks, and Post-processing.
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Hyperparameter Value Use Case & Rationale

Number of GPUs 1 Ensure faster training and inference by
effectively leveging parallel processing
of CUDA cores

Max epochs 50 Provide enough weight updates for
convergence yet avoid overfitting.

Batch size 16 Balance between gradient stability
with computational resource
constraints.

Initial learning rate 2x107* Find balance between convergence
with training stability.

Adam (3 0.8 Optimizer momentum parameter set to
adapt quickly to adversarial
non-stationarity.

Adam [ 0.99 Optimizer second moment estimate
parameter for stable variance control.

Learning-rate decay 0.999 Decrease LR to subtly fine-tune
weights toward convergence.

Random seed 1234 Ensure to generate same results across
different run

ConvNeXt channels 512 Provide enough capacity to capture
features.

ConformerNeXt blocks 4 Provide enough parameter without
sacrificing performance.

Segment size (samples) 8000 Capture sufficient audio context for
effective BWE.

FFT size (n_fft) 1024 Balance between frequency resolution
against computational load.

Hop length 80 Overlap chosen to smooth ripple
effects without increasing
computational load.

Window length 320 Balance time—frequency resolution in
STFT.

High-rate sampling rate (Hz) 16 K/48 K Define wide-band frequency ranges.

Low-rate sampling rate (Hz)
Subsampling ratio

Number of data-loading workers
Distributed backend

Distributed init URL

Distributed world size

MRLD window sizes

MSDFA scales

MRAD resolutions (n_fft, hop, win)

MRPD resolutions (n_fft, hop, win)

2K/4K/8K/16K/24K
2/4/8/12/24
4
nccl
tcp://localhost: 54321
1

64, 128, 256, 512, 1024

100, 200, 300, 500, 600

(512,128,512), (1024,256,1024),

(2048,512,2048)

(512,128,512), (1024,256,1024),

(2048,512,2048)

Different differncy range to evaluate
the robustness of the model.
Downsampling factors corresponding
to low-rate configurations.

Parallel I/0 to maximize throughput
Efficient GPU-to-GPU communication
Local rendezvous for single-node
distributed setup.

Single-process distributed for clean
scaling.

Multi-scale Lyapunov analysis to
capture deterministic chaotic features
at different resolutions.

Range of DFA scales for fractal
dimension analysis in discriminator.
Multi-resolution STFT settings to
capture amplitude dynamics.
Multi-resolution STFT settings to
capture phase dynamics.

Table 9: Training and model hyperparameters for the CIS-BWE setup, with use cases and rationale

17



	Introduction and Related Work
	Overall Architecture
	Generator Architecture
	Chaos-Informed Nonlinear Discriminator
	Loss Functions

	Comprehensive Analysis
	Evaluation Metrics
	Hyperparameter and Configuration
	Dataset and Preprocessing
	Discriminator Ablation Study
	Comparison with MPD
	Generator Architecture Ablation Study
	Making the Discriminator Efficient
	Comparative Analysis with Baselines
	Study for Different Frequency Ranges
	Computational Complexity
	Subjective Analysis

	Conclusion
	Acknowledgment
	Limitations and Future Work
	Potential Risks / Ethical Considerations
	Appendix
	Chaotic Properties of Speech Generation
	Dataset Pre‐Processing Pipeline
	Dataset Class and DataLoader
	Time–Frequency Feature Extraction and Reconstruction
	Inference Workflow
	Parameter Breakdown for Discriminators
	Parameter Breakdown for Generators
	Hyperparameters and Configuration
	Subjective evaluation details


