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Abstract001

Recovery of high-frequency components lost002
due to bandwidth constraints is critical for003
Text-To-Speech and Automatic Speech Recog-004
nition applications. We design CIS-BWE, a005
novel adversarial Bandwidth Extension (BWE)006
framework that introduces two chaos-informed007
discriminators - Multi-Resolution Lyapunov008
Discriminator (MRLD) and Multi-Scale De-009
trended Fractal Analysis Discriminator (MS-010
DFA) - for capturing the deterministic chaos011
from speech. MRLD exploits Lyapunov expo-012
nents to capture nonlinear chaotic fluctuations.013
MSDFA exploits detrended fluctuation analy-014
sis to quantify fractal-like, long-range temporal015
chaotic correlations. To the best of our knowl-016
edge, MRLD and MSDFA are included here017
for the first time with a complex-valued ad-018
versarial network to explore the chaotic study019
of speech reconstruction. We also introduce020
a novel complex-valued and dual-stream gen-021
erator, which uses our newly proposed Con-022
formerNeXt as a core block with Lattice inter-023
actions, acting as a gating mechanism by en-024
abling controlled mixing of information across025
streams. We extensively optimize our design026
across five resolutions and use depth-wise027
separable convolutions to make our model028
lightweight yet powerful. Our CIS-BWE re-029
quires a 40x reduction in discriminator size,030
overall 0.5x fewer parameters, and results in031
better performance across a total of eight sub-032
jective and objective evaluation metrics, estab-033
lishing a new baseline in the BWE task.034

1 Introduction and Related Work035

Bandwidth Extension (BWE) is important for the036

speech enhancement task where we reconstruct037

missing high frequencies from low-frequency data038

(Li and Lee, 2015). BWE is a critical part of the039

wide range of Natural Language Processing (NLP)040

applications, such as Text-To-Speech (TTS) (Feng041

et al., 2019) and Automatic Speech Recognition042

(ASR) (Haws and Cui, 2019). In TTS, BWE gen-043

erates more natural prosody and timbral richness, 044

while the absence of BWE in ASR increases word 045

error rates. BWE has been shown to preserve criti- 046

cal spectral cues and thus improve recognition ac- 047

curacy on low-bandwidth inputs. 048

Traditional signal processing techniques 049

(Yoneyama et al., 2023; Büthe and Valin, 2024; Li 050

and Luo, 2025; Li and Lee, 2015) inherently lack 051

the ability to model complex and deterministic 052

chaos present in human speech production, 053

resulting in unnatural artifacts (Jang et al., 2021). 054

The advancement of deep learning transforms 055

the BWE landscape. Specially, Convolutional Neu- 056

ral Networks (CNN), Multi-Layer Perceptrons 057

(MLP), Generative Adversarial Networks (GAN), 058

Transformers, and Diffusion Models have been re- 059

cently used to learn direct mappings from narrow 060

band to wide band signals. These early neural meth- 061

ods focused mainly on magnitude spectrogram en- 062

hancement (Li and Lee, 2015; Sui et al., 2024; 063

Abreu and Biscainho, 2024; Hu et al., 2022; Lu 064

et al., 2025), neglecting the phase due to its noto- 065

rious noisy patterns and relying on vocoders for 066

audio reconstruction (Ho et al., 2025; Liu et al., 067

2022a; Tamiti and Barua, 2025). However, due to 068

the work of (Gerkmann et al., 2012; Lu et al., 2025; 069

Tamiti et al., 2025; Tamiti and Barua, 2025), it is 070

proven that enhancing phase together with magni- 071

tude (or real and imaginary) yields higher percep- 072

tual quality audio (Yin et al., 2020) at the cost of in- 073

creased computational complexity. However, none 074

of them considers the chaotic modeling of speech 075

generation and hence, they miss the opportunity 076

to improve their performance with less complexity. 077

We refer to Appendix A.1 to understand the origin 078

of chaotic presence in human speech. 079

Speech production is fundamentally non-linear 080

with the presence of deterministic chaos due to 081

the complex interaction between airflow and de- 082

formable vocal tract (Herzel et al., 1994). These 083

chaotic dynamics are different from the ones 084
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present in phase and sensitively dependent on085

initial conditions, irregular oscillations, and slow-086

variant features (Michael, 1999). Although the087

Multi Period Discriminator (MPD) and Multi088

Scale Discriminator (Kong et al., 2020), Multi089

Band Discriminator (Yang et al., 2021), and Multi-090

Resolution Spectrogram Discriminator (Jang et al.,091

2021) are proposed to determine the nonlinear cues092

among temporal structures, they lack a chaotic fea-093

ture extraction framework. Therefore, they fail to094

capture the intricate chaotic features, leading to095

residual artifacts and temporal blurring (Kim et al.,096

2021). Moreover, they are usually parameter-heavy,097

resulting in extra computational overhead.098

In this paper, we propose a novel class of chaos-099

informed discriminators for capturing the determin-100

istic chaos, which State-of-the-Art (SOTA) work101

overlooks. We design two chaos-inspired discrimi-102

nators - Multi-Resolution Lyapunov Discriminator103

(MRLD) and Multi-Scale Detrended Fluctuation104

Analysis Discriminator (MSDFA). MRLD uses105

Lyapunov exponents (Oseledec, 1968) to capture106

rapid and nonlinear chaotic fluctuations. MSDFA107

uses detrended fluctuation analysis (Peng et al.,108

1994) to capture fractal-like temporal correlations.109

This is the first time that MRLD and MSDFA have110

been proposed to be included with complex-valued111

GANs to explore the chaotic study of audio recon-112

struction, to the best of our knowledge. Our ex-113

tensive design optimization across five resolutions114

and the use of depth-wise separable convolution115

make MRLD and MSDFA lightweight yet power-116

ful, which requires 0.5x fewer parameters, a 40x117

reduction in discriminator size compared to SOTA118

(Lu et al., 2024a), with better performance across119

a wide range of subjective and objective metrics.120

We also introduce a novel complex-valued and121

dual-stream generator, which uses ConformerNeXt122

as a core block with Lattice interactions, act-123

ing as a gating mechanism by enabling con-124

trolled mixing of information across streams. Con-125

formerNeXt is a combination of Transformer-126

based Conformer (Gulati et al., 2020) for captur-127

ing global context and CNN-based ConvNeXt (Liu128

et al., 2022b) for capturing local context efficiently129

present in speech. This optimized generator archi-130

tecture simultaneously enhances magnitude and131

phase stream within a compact yet efficient archi-132

tecture. We name our proposed model CIS-BWE133

(Chaos-Informed Speech BWE). Our key technical134

contributions are:135

(1) For the first time, we introduce chaos-136

informed and parameter-efficient non-linear dis- 137

criminators to capture deterministic chaos. 138

(2) We introduce dual-stream ConformerNeXt 139

with Lattice interactions for controlled feature mix- 140

ing for high-fidelity speech reconstruction. 141

(3) We extensively evaluate performance using 142

six objective metrics: LSD, PESQ, STOI, SI-SDR, 143

SI-SNR, and NISQA-MOS; two subjective metrics: 144

MOS and Pairwise preference test; three real-time 145

performance metrics: MAC, FLOP, and RTF. The 146

full form of all the abbreviations is given in Sec- 147

tions 3.1, 3.10, and 3.11. 148

2 Overall Architecture 149

The proposed architecture is illustrated in Fig. 1. 150

2.1 Generator Architecture 151

Due to the necessity of phase along with amplitude 152

(Yin et al., 2020; Lu et al., 2024b), the generator 153

of our CIS-BWE parallely receives both the ampli- 154

tude and phase cues from the two computed syn- 155

chronized feature maps. The magnitude spectro- 156

gram is obtained by taking the logarithm of the ab- 157

solute value of the Short-Time Fourier Transform 158

(STFT), and the phase spectrogram is obtained by 159

taking the angle of the STFT. We define the narrow- 160

band magnitude and phase spectrograms by Mnb 161

and Φnb, respectively, in Eqn. 1. 162

Mnb ∈ RB×F×T , Φnb ∈ RB×F×T (1) 163

164where B is the batch size, F is the number of 165

frequency bins (F = n FFT
2 + 1), and T is the 166

number of time frames. The generator’s forward 167

pass consists of the following three main stages: 168

a) Dual Stream Processing: The generator ini- 169

tially processes the narrow-band magnitude and 170

phase in two separate streams and merges them 171

into a common latent space at the end, harmoniz- 172

ing heterogeneous inputs into a unified projection. 173

b) Lattice Block Interaction: The Lattice block 174

(Luo et al., 2020) ensures continuous controlled 175

mixing of magnitude and phase streams that en- 176

ables explicit exchange of information, reweigh- 177

ing each stream’s contribution, and faster conver- 178

gence. Although the model could get faster infer- 179

ence for the absence of this mixing, however, the 180

absence of the mixing results in error accumula- 181

tion in the streams,“muffled” artifacts in the re- 182

constructed wideband audio signal, and unstable 183

training. Therefore, we apply two successive one- 184

dimensional Lattice blocks (Lattice1D), each of 185

which interleaves the magnitude and phase streams 186

via criss-cross connections by learnable scalars, 187

denoted by α1, α2, β1, and β2 in Fig. 1. These 188
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Figure 1: Our proposed CIS-BWE, containing Lattice net, ConformerNeXt, and chaos-informed discriminators.

scalars perform as a gating function by control-189

ling the strength of cross-stream injection. These190

scalars are trained end-to-end and dynamically191

learn “where” and “how-much” cross-stream in-192

teractions are required.193

Within each Lattice block, we insert a new194

module named ConformerNeXt. We design Con-195

formerNeXt by replacing the standard Conformer’s196

(Gulati et al., 2020) convolutional sub-module with197

a ConvNeXt (Liu et al., 2022b) block. This replace-198

ment significantly enhances the model’s capacity199

by combining ConvNeXt’s powerful hierarchical200

spatial feature extraction with Conformer’s global201

self-attention. Our proposed ConformerNeXt takes202

two inputs instead of one, as opposed to (Luo et al.,203

2020). Moreover, the pre- and post-processing con-204

volutions used in the original Lattice Nets in (Luo205

et al., 2020) are omitted. This variation provides206

the best choice for the inter-stream connectivity.207

As there are two Lattice blocks and each con-208

tains one ConformerNeXt per stream, the full gen-209

erator employs a total of four ConformerNeXt with210

cross-stream residual connections. After trying var-211

ious combinations of connections and the number212

of ConformerNeXt, we find that this design pro-213

vides the best trade-off between performance and a214

reduced number of parameters. The granular-level215

implementation details, like the number of filter216

channels, attention headcounts for ConformerNeXt217

are shown in Fig. 1 (see Appendix A.7).218

c) Residual Prediction and Synthesis: After219

the final Lattice stage, separate output heads esti-220

mate the wideband residuals M(4) and Φ(4), which221

are then passed through Layer Normalization (LN)222

and Linear Projection (Proj) blocks implemented223

by the Feed Forward Neural Network (FFN) to es-224

timate the wide band residuals. The magnitude225

branch outputs a log-magnitude residual that is226

added to the narrow-band input to isolate and re-227

cover only missing high-frequency information,228

rather than remodeling the entire spectrum.229

Moreover, previous work (Yin et al., 2020) 230

shows that due to the noisy nature of the phase, 231

it is very difficult to estimate the phase directly. 232

To overcome these difficulties in direct phase es- 233

timation, the phase stream’s output is fed into 234

two FFNs for predicting “pseudo-real (R)” and 235

“pseudo-imaginary (I)” residuals, shown in Eqn. 2. 236

Finally, the wide-band phase is recovered by the 237

“arctan2” function by stacking the magnitude and 238

phase branch, and using Inverse STFT, the wide- 239

band audio is reconstructed (see Eqn. 3). 240

R = FFNr

(
LN(Φ(4))

)
; I = FFNi

(
LN(Φ(4))

)
Φwb = atan2(I, R)

(2) 241

242Cwb = eMwb
(
cosΦwb + i sinΦwb

)
(3) 243

2442.2 Chaos-Informed Nonlinear Discriminator 245

Speech production is fundamentally a non-linear 246

dynamical process characterized by deterministic 247

chaos (Little et al., 2007). Discriminators used 248

in traditional GANs (Tian et al., 2020), (Don- 249

ahue et al., 2018), (Kumar et al., 2019) typically 250

minimize the distance between reconstructed and 251

original speech based on raw waveforms or spec- 252

trogram slices, but fail to detect those nonlinear 253

chaotic cues. Therefore, generators produce over- 254

smoothed and dull spectra (Cao et al., 2024). In 255

this paper, we design two chaos-inspired nonlinear 256

discriminators - Lyapunov and Detrended Fluctu- 257

ation. This is the first time that these two discrim- 258

inators have been proposed to be included with 259

complex-valued generative models to explore the 260

chaotic study of audio reconstruction. They ana- 261

lyze long-range and hidden formant trajectories 262

and micro-transients across equally spaced win- 263

dows, output chaos-aware feature maps, and penal- 264

ize any mismatch in sub-harmonic richness. Our 265

approach results in a 40x reduction in discrimina- 266

tor size, 0.5x fewer parameters, and more realistic 267

acoustics (see Sections 3.6, 3.4, & 3.8) with less 268

over-smoothed spectra compared to SOTA models. 269

a) Multi-Resolution Lyapunov Discriminator 270

(MRLD): We introduce Lyapunov Exponents (LE) 271
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(Oseledec, 1968; Wolf et al., 1985) to capture the272

rapid, nonlinear fluctuations and sensitivity to ini-273

tial conditions in speech that spectrogram-based274

losses overlook. The LE is a measure of nonlin-275

ear dynamics used to quantify the rate of separa-276

tion of infinitesimally close trajectories. Therefore,277

MRLD penalizes the mismatches in the Lyapunov278

spectra of real and generated signals and drives279

the generator to reproduce authentic deterministic280

chaotic behavior, yielding more lifelike speech.281

Algorithm 1: Pseudo-code of MRLD
Require: Raw waveform x, window sizes
W = {64, 128, 256, 512, 1024}

Ensure: Predicted label y ∈ {real, generated}
1: F ← [] {Initialize feature list}
2: for all w ∈ W do
3: for all segment xw

i in x with window size w do
4: Delay-embed xw

i into vectors {yj} using
dimension d, delay τ

5: Compute
λw
i = Avgj

[
1
∆
log

( ∥yj+∆−yj′+∆∥+ϵ

∥yj−y′
j∥+ϵ

)]
6: Append λw

i to F
7: end for
8: end for
9: Normalize and reshape F for SRD input

10: y ← SRDMRLD(F)
11: return y

A pseudo-code 1 is provided to explain how282

MRLD is implemented. MRLD divides each wave-283

form into five non-overlapping windows w ∈284

{64, 128, 256, 512, 1024}, computes local LE via285

delay-embedding and nearest-neighbor divergence,286

and maps each segment to a single divergence rate287

(lines 1-7). Then, MRLD feeds these five exponent288

maps into five separate Single Resolution Discrim-289

inator (SRD). The detailed structure of the SRD is290

shown in Fig. 2. SRD uses a five-layer depthwise-291

separable (DSC) 2D Convolution with kernel size 5292

(stride 2 for the first four layers, final kernel 3, 235k293

parameters) to discriminate real versus generated294

dynamics. We refer to Appendix A.6 for details.295
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Figure 2: Implementation details of the MRLD, MS-
DFA, and SRD. We refer to Appendix A.6 for details.

b) Multi-Scale Detrended Fluctuation Anal-296

ysis Discriminator (MSDFA): We introduce De-297

trended Fluctuation Analysis (DFA) (Peng et al.,298

1994) to quantify fractal-like, long-range temporal299

correlations that conventional spectrogram losses 300

overlook. Therefore, by computing how root-mean- 301

square fluctuations F (n) grow with window size, 302

MSDFA supervises the generator to ensure natural- 303

sounding dynamics across syllabic, phonemic, and 304

sub-phonemic scales. If omitted, the adversarial 305

framework leads to muffled prosody even when 306

amplitude and phase discriminators are present. 307

A pseudo-code 2 is provided to explain how MS- 308

DFA is implemented. We integrate classical DFA 309

at five n∈{100, 200, 300, 500, 600} samples, tile 310

each F (n) into a fixed S × S map, and feed the 311

resulting tensor into five separate SRD modules. 312

The SRD (see Appendix A.6) has a five-layer DSC 313

2D CNN (BN + LeakyReLU), whose adversarial 314

loss back-propagates through the tiling, making 315

MSDFA a light (≈247K parameters) yet powerful 316

plug-in discriminator for BWE problems. 317

Algorithm 2: Pseudo-code of MSDFA
Require: Input waveform x(t), scales
N = {100, 200, 300, 500, 600}

Ensure: Real/fake score y ∈ R
1: F ← []
2: for all n ∈ N do
3: Compute DFA fluctuation F (n) on x(t)

4: Tile F (n) into fixed-size map M (n) ∈ RS×S and
Append M (n) to F

5: end for
6: T ← stack(F) ∈ RS×S×5

7: y ← SRDMSDFA(T )
8: return y

c) Multi-Resolution Amplitude & Phase Dis- 318

criminators (MRAD & MRPD): In addition to 319

MRLD and MSDFA, we also use MRAD and 320

MRPD in our adversarial framework. MRAD en- 321

sures that amplitude transients are captured in dif- 322

ferent granularities. MRPD stabilizes group delay 323

and explores harmonic-phase relationships. We re- 324

fer to (Lu et al., 2024b) for the implementation de- 325

tails of MRAD and MRPD. Similar to (Lu et al., 326

2024b), we use three resolutions, such as frequency 327

bins = [512,128,512], hop sizes = [1024,256,1024], 328

and window lengths = [2048,512, 2048]. Each res- 329

olution is fed to a 5-layer 2D CNN (varied ker- 330

nels/strides, weight-norm) (see Appendix A.6). 331

2.3 Loss Functions 332

We use a combination of reconstruction, adversar- 333

ial, and feature matching losses. We categorize the 334

losses into generator and discriminator losses. 335

Generator Losses: We propose a total of six dif- 336

ferent loss functions for generators that are shown 337

in Table 1. Magnitude loss encourages accurate 338

spectral amplitude reconstruction. Phase loss en- 339
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Loss function Equation (MSE = Mean Square Error) Terms

Magnitude Loss Lmag = λmag · MSE(M̂,M) M, M̂ : ground-truth and generated STFT magnitudes. λmag = 45

Phase Loss Lpha = λpha · (LIP + LGD + LIAF)
IP = Instantaneous Phase difference, GD = Group Delay difference, IAF = Instantaneous
Amplitude-Frequency difference. λpha = 100.

Complex STFT Loss Lcom = λcom · MSE(Ĉ, C) C and Ĉ are the complex-valued STFTs of the target and predicted signals. λcom = 90.

Self-Consistency Loss Lstft = λstft · MSE(Ĉ, C̃) C̃ = STFT of the waveform reconstructed from predicted magnitude and phase. λstft = 90.

Feature Matching Loss Lfm =
∑

d∈D λd · MSE(f real
d , f fake

d ) Feature maps from discriminator d, d ∈ {MRLD, MSDFA, MRAD, MRPD}

Generator Hinge Loss
Ladv =

∑
d∈D λd ·

Ex̂∼pG
[max(0, 1 − Dd(x̂))]

x̂ ∼ PG: generated samples; Dd(x̂): discriminator d score; λd: weight on d’s adversar-
ial term

Discriminator Hinge
loss

L(d)
D = Ex∼pdata [max(0, 1 − Dd(x))]+

Ex̂∼pG
[max(0, 1 + Dd(x̂))]

x ∼ Pdata: real samples; x̂ ∼ PG: generated samples; max(0, 1 − Dd(x)): real-
hinge term (Dd(x) ≥ 1); max(0, 1 + Dd(x̂)): fake-hinge term (Dd(x̂) ≤ −1)

Table 1: Generator and discriminator loss functions. Code will be released after the acceptance of the paper.

sures faithful temporal alignment and phase conti-340

nuity. Complex STFT loss jointly enforces faithful341

amplitude and phase reconstruction. Self consis-342

tency loss enforces synthesis consistency. Feature343

matching loss is critical as it penalizes subtle nu-344

ances enforced by non-linear, amplitude, and phase345

discriminators’ feedback. It plays a vital role in346

aligning the representation of reconstructed and347

ground truth audio to produce intelligible outputs.348

Adversarial loss encourages realism in the wave-349

form generated across multiple perceptual dimen-350

sions. The total Generator Loss is shown as:351

LG = Lmag + Lpha + Lcom + Lstft + Lfm + Ladv. (4)352

353
Discriminator Losses: Each discriminator Dd354

is trained using a hinge loss objective, which spe-355

cializes discriminators to become powerful critics356

of unnatural patterns by matching with the percep-357

tual distribution of real speech (see Table 1). The358

total discriminator loss is shown in Eqn. 5.359

LD =
∑
r

LMRLD
D +

∑
s

LMSDFA
D +

∑
r

LMRAD
D +

∑
r

LMRPD
D

(5)360

where LMRLD
D , LMSDFA

D , LMRAD
D , and LMRPD

D are361

MRLD, MSDFA, MRAD, and MRPD losses, re-362

spectively, for each resolution/scales.363

Training Objective: The training involves min-364

imizing LD, and LG using AdamW optimizers365

(Loshchilov and Hutter, 2017) and exponential366

learning rate schedulers (Li and Arora, 2019).367

3 Comprehensive Analysis368

3.1 Evaluation Metrics369

We assess intelligibility and perceptual quality of370

the reconstructed speech using six metrics: Log-371

Spectral Distance (LSD) (Erell and Weintraub,372

1990) to quantify fine-grained spectral deviations;373

Short-Time Objective Intelligibility (STOI) (Taal374

et al., 2011) to evaluate speech intelligibility; Per-375

ceptual Evaluation of Speech Quality (PESQ) (Rix376

et al., 2001) to predict overall quality in line377

with human judgments; Scale-Invariant SDR (SI- 378

SDR) (Le Roux et al., 2019) as a general distor- 379

tion metric invariant to amplitude scaling; Scale- 380

Invariant SNR (SI-SNR) (Luo and Mesgarani, 381

2018) to specifically gauge noise-related distortion; 382

and Non-Intrusive Speech Quality Assessment 383

(NISQA-MOS) (Mittag et al., 2021) for reference- 384

free estimation of perceptual speech quality. 385

3.2 Hyperparameter and Configuration 386

The training of CIS-BWE involves carefully cho- 387

sen hyperparameters. Learning rate is initialized 388

with 2 × 10−4 with exponential decay after each 389

epoch with a decay factor of 0.999. AdamW opti- 390

mizer with β1 = 0.8, and β2 = 0.99, and a weight 391

decay of 0.01 are used for stable convergence. We 392

use a batch size of 16 to balance between com- 393

putational efficiency and memory utilization. All 394

models are trained for a total of 50 epochs and 395

per epoch takes around 25 minutes. We list all the 396

hyperparameters in Appendix A.8. We use four 397

NVIDIA RTX 4090 GPUs and Intel(R) Xeon(R) 398

Silver 4310 CPUs (2.10 GHz) for computation. 399

3.3 Dataset and Preprocessing 400

We use the CSTR VCTK Corpus (v0.92) (Ya- 401

magishi et al., 2019), comprising 110 multi- 402

accent native English speakers. There are in to- 403

tal 400 utterances for each speaker with a sam- 404

pling rate of 16 and 48 kHz. Precomputed si- 405

lence intervals (+/- 0.1s padding) are loaded from 406

vctk-silences.0.92.txt and each FLAC file is 407

loaded at 48kHz mono channel, then trimmed to its 408

annotated silence region plus padding. A custom 409

Dataset class caches audio for efficiency. The low- 410

rate input is simulated by downsampling to lower 411

sampling rates, then upsampling back to the origi- 412

nal sampling rate by sinc interpolation. We refer to 413

Appendix A.2, A.3, A.4 for detailed explanation. 414

3.4 Discriminator Ablation Study 415

Table 2 represents the ablation results reported 416

based on five objective evaluation metrics. 417
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Row 1⃝: When we only use MRPD (phase) and418

MSDFA (fractal dynamics), the model receives419

feedback only on fine-grained periodicity and long-420

range temporal self-similarity, resulting in the poor-421

est performance (NISQA-MOS = 2.32). However,422

a higher SI-SNR indicates that the generator can423

generate phase-consistent results without generat-424

ing natural-sounding envelopes.425

SL MPD MRAD MRPD MRLD MSDFA LSD STOI PESQ SNR N-MOS
1 ✗ ✗ ✓ ✗ ✓ 1.22 0.89 2.05 9.47 2.32
2 ✗ ✗ ✗ ✓ ✓ 1.20 0.85 1.55 7.47 3.58
3 ✗ ✓ ✓ ✗ ✗ 1.11 0.86 1.61 7.87 4.07
4 ✗ ✓ ✗ ✓ ✗ 1.09 0.86 1.65 8.42 4.08
5 ✗ ✓ ✓ ✓ ✗ 1.06 0.85 1.58 7.78 4.14
6 ✗ ✓ ✓ ✓ ✓ 1.10 0.87 1.66 8.11 4.29

Evaluating MPD with our proposed discriminators
7 ✓ ✗ ✗ ✓ ✗ 1.23 0.85 1.53 6.95 3.58
8 ✓ ✗ ✗ ✓ ✓ 1.04 0.85 1.55 7.15 3.65
9 ✓ ✗ ✗ ✗ ✓ 1.24 0.85 1.52 7.08 3.79
10 ✓ ✓ ✓ ✗ ✗ 1.11 0.85 1.56 6.68 4.18

Comparison of parameters among MPD and our proposed discriminators

11 22M 600.2k 600.2k 235.5k 247.7k

Table 2: Ablation study on discriminators with their
sizes for 2→16 kHz range. Here, N-MOS = NISQA-
MOS and SNR = SI-SNR. Our MRLD + MSDFA in row

6⃝ has in total 40x smaller parameters (22M vs 483.2k)
compared to MPD in row 10⃝ with better performance.

Row 2⃝ and 3⃝: MRLD (deterministic chaos)426

and MSDFA show an improved performance427

(NISQA-MOS = 3.58) as MRLD encourages re-428

alistic chaos, but without amplitude cues, the per-429

formance is lower. Using MRAD and MRPD in430

row 3⃝, we obtain NISQA-MOS = 4.07 because431

we have both magnitude and phase cues. MRAD432

enforces the correct amplitude distributions, and433

MRPD aligns the notorious phase relationships.434

These combinations also score significantly bet-435

ter in LSD (1.11) and PESQ (1.61). These results436

show us the efficacy of the MRAD and MRPD and437

make them “indispensable” in our design choice.438

Row 4⃝ and 5⃝: We use MRLD instead of439

MRPD along with MRAD in row 4⃝. This per-440

forms on par with MRAD and MRPD, as both441

phase and Lyapunov exponents capture two differ-442

ent types of deterministic chaos. Once again, when443

we use both MRLD and MRPD along with MRAD,444

we get an increase in NISQA-MOS to 4.14 from445

4.08, which confirms the necessity of MRLD in446

capturing deterministic chaos.447

Row 6⃝: We give fractal analysis feedback to the448

generator by MSDFA along with MRLD, MRPD,449

and MRAD. These combined features provide450

strong cues to the generator, which results in sig-451

nificant boosts to NISQA-MOS from 4.14 to 4.29.452

Therefore, this set of combinations is used in our453

proposed CIS-BWE architecture. 454

3.5 Comparison with MPD 455

As SOTA models (Lu et al., 2024b,a) use MPD, we 456

compare the performance of our proposed MRLD 457

+ MSDFA with MPD in row 7⃝ to 10⃝ of Table 2. 458

Row 10⃝: The combination of MPD + MRPD + 459

MRAD gives NISQA-MOS of 4.18, which is lower 460

than our proposed combinations of MRLD + MS- 461

DFA + MRAD + MRPD in Row 6⃝. This statement 462

also holds for other metrics as well. As MRAD + 463

MRPD is common in both cases, this shows that 464

the MRLD + MSDFA performs better than MPD 465

alone. Moreover, we are getting better performance 466

with only 483.2k parameters in total for MRLD + 467

MSDFA, compared to 22M parameters of MPD. 468

This is a significant finding as our MRLD + MS- 469

DFA gives better performance compared to MPD 470

with 40x smaller parameters (22M vs 483.2k). This 471

will provide a stepping stone for smaller models in 472

edge devices without sacrificing performance. We 473

refer to Appendix A.6 for details on discriminator. 474

3.6 Generator Architecture Ablation Study 475

To determine the optimal generator configuration, 476

we performed three systematic ablations on core 477

block selection, inter-stream connectivity, network 478

depth, and MLP expansion ratio. The results are 479

summarized in Table 3 for 2→16 kHz range. 480

Core Block Selection: We consider two blocks: 481

ConvNeXt and ConformerNeXt. The reason for 482

choosing ConvNeXt is that we want to demonstrate 483

the better performance of our ConformerNeXt over 484

the SOTA ConvNext (Lu et al., 2024b,a). We sep- 485

arately use a total of 16 ConvNext (denoted by 486

ConvNeXt16 in row 1⃝) and ConformerNeXt (de- 487

noted by ConformerNeXt16 in row 2⃝). The row 488

2⃝ achieves the highest NISQA-MOS of 4.44, a 489

+0.13 gain over ConvNeXt in row 1⃝, along with 490

improvements in LSD (1.10 vs 1.12), STOI (0.87 491

vs 0.86), and PESQ (1.70 vs 1.63). In this way, 492

we find the supremacy of the ConformerNeXt over 493

ConvNeXt as a core block. 494

Inter-Stream Connectivity: We compare linear 495

and Lattice Net for coupling magnitude and phase 496

streams. Lattice Net in row 4⃝ consistently outper- 497

forms the linear stream in row 3⃝ in terms of all 498

the six metrics. Therefore, we use Lattice Net as a 499

cross-stream interaction for its superior controlled 500

mixing of amplitude and phase stream via learn- 501

able scalars’ gating mechanism (see Section 2.1). 502

Depth and Head Count: After getting the best 503

core block and cross-connection scheme, we op- 504
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SL Architecture Size Discriminators H LSD ↓ STOI ↑ PESQ ↑ SI-SDR ↑ SI-SNR ↑ NISQA-MOS ↑

1 ConvNeXt16 106.34M [MRLD + MSDFA + MRA/PD]x3 - 1.12 0.86 1.63 7.89 7.88 4.31
2 ConformerNeXt16 223.2M [MRLD + MSDFA + MRA/PD]x3 8 1.10 0.87 1.70 7.93 7.90 4.44
3 ConformerNeXt4, Linear 64.23M [MRLD + MSDFA + MRA/PD]x3 8 1.12 0.86 1.57 7.66 7.62 3.72
4 ConformerNeXt4 32.7M [MRLD + MSDFA + MRA/PD]x3 8 1.09 0.87 1.71 8.56 8.54 4.03
5 ConformerNeXt4 33.5M [DSC(MRLD+MSDFA) + MRA/PD]×5 4 1.10 0.87 1.67 8.24 8.20 4.25
6 ConformerNeXt4, MLP /4 16.67M [DSC(MRLD+MSDFA+MRA/PD)]×5 4 1.12 0.87 1.68 8.01 7.98 3.60
7 ConformerNeXt4 (Proposed) 33.5M [DSC(MRLD + MSDFA)]x5 + [MRA/PD]x3 8 1.10 0.87 1.66 8.14 8.11 4.29

Table 3: Generator architecture ablation study for 2→16 kHz range. SI-SNR and SI-SDR use dB unit. H = number
of attention heads in the multi-head self attention of the ConformerNeXt block.

timize the number of ConformerNeXt and head505

count in the generator. Reducing from 16 to 4 Con-506

formerNeXt blocks (row 2⃝ vs row 4⃝) yields a507

compact model with a 7x reduction in size with508

compromising a small performance but still bet-509

ter/similar to SOTA models (Lu et al., 2024b,a)510

in Table 4. We further evaluated multi-head self-511

attention by reducing from 8 to 4 heads (row 5⃝),512

leading to a minor drop in NISQA-MOS (4.25 vs513

4.29) compared to row 12⃝. We also test the hidden514

dimension of the linear network with one-fourth515

(row 6⃝), which degrades NISQA-MOS to 3.60.516

3.7 Making the Discriminator Efficient517

Here, we explain how we make our discriminators518

small yet efficient in terms of all six metrics. The519

performance of our generator is highly correlated520

with the number of scales or resolutions used in521

the discriminators. In rows 1⃝ to 4⃝ of Table 3, we522

use three windows or scales to calculate features523

from three different resolutions. However, when524

we increase the number of scales to 5, the feature525

maps capture more fine-grained as well as coarse-526

grained temporal patterns to provide better perfor-527

mance, which is shown in rows 5⃝ to 7⃝ of Ta-528

ble 3. Due to the larger scale of 5, though it might529

take slightly more train time due to calculate more530

features, our discriminators can guide the gener-531

ator for more faithful reconstruction without any532

increase in the number of parameters.533

Moreover, we use DSC in our discriminators to534

shrink their sizes. In rows 1⃝ to 4⃝ of Table 3,535

we use normal convolution, but in rows 5⃝ to 7⃝,536

we try different combinations of DSC with our dis-537

criminators. For example, in rows 5⃝ and 7⃝: DSC538

in MRLD and MSDFA + normal convolution in539

MRAD and MRPD; in row 6⃝: DSC in all MRLD,540

MSDFA, MRAD and MRPD.541

We implement DSC by factorizing standard con-542

volutions into K × 1 depthwise steps (per chan-543

nel), followed by 1 × 1 point-wise convolutions544

for cross-channel mixing. This reduces the com-545

putational complexity from O(K ×Cin ×Cout) to546

O(K×Cin+Cin×Cout). Here, K is kernel size,Cin547

is input and Cout is the output channel dimension.548

Final Design (row 7⃝): Based on all these abla- 549

tions, our final generator employs a total of 4 Con- 550

formerNeXt blocks (each with 8 heads and linear 551

projection hidden dimension ×4), interconnected 552

via Lattice Net, resolution of 5 together with DSC 553

in MRLD and MSDFA, resolution of 3 together 554

with normal convolution in MRAD and MRPD. 555

This configuration achieves the best trade-off be- 556

tween perceptual quality (NISQA-MOS = 4.29), 557

computational efficiency, and parameter compact- 558

ness (≈ 33.5 M parameters). We refer to Appendix 559

A.7 & A.6 for final parameter count. 560
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Figure 3: 4-16 kHz extended speech by CIS-BWE.

3.8 Comparative Analysis with Baselines 561

Table 4 compares our CIS-BWE against three base- 562

lines - EBEN (Hauret et al., 2023), AERO (Mandel 563

et al., 2023), and AP-BWE (Lu et al., 2024a) - over 564

three extension ranges (4→16 kHz, 8→16 kHz and 565

16→48 kHz). EBEN is a Pseudo Quadrature Mir- 566

ror Filter-based model, AERO is a complex-valued 567

model, and AP-BWE is a dual-stream for ampli- 568

tude and phase prediction model. 569

Compared to unprocessed speech, CIS-BWE 570

significantly does a 3.3x reduction in LSD, a 1.72x 571

increase in STOI, a 2.17x increase in PESQ, and 572

a 1.51x increase in NISQA-MOS for 4→16 kHz. 573

Table 4 also indicates that AP-BWE is the best- 574

performing model in baselines for NISQA-MOS. 575

Our proposed CIS-BWE exceeds AP-BWE in 576

NISQA-MOS, LSD, PESQ, and STOI for all three 577

frequency ranges. However, CIS-BWE gives a sim- 578

ilar performance for SI-SDR and SI-SNR com- 579

pared to AP-BWE. Please note that LSD is a mea- 580

sure for over-smoothing, and NISQA-MOS, PESQ, 581

and STOI are measures of perceptual audio qual- 582

ity. Our model outperforms the best-performing 583

baseline, AP-BWE, for the perceptual and over- 584

smoothing metrics with almost 2.18x fewer pa- 585
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Method Size NISQA-MOS STOI PESQ SI-SDR SI-SNR LSD

4–16 8–16 16–48 4–16 8–16 16–48 4–16 8–16 16–48 4–16 8–16 16–48 4–16 8–16 16–48 4–16 8–16 16–48

Unprocessed - 2.79 3.67 4.43 0.55 0.61 0.61 1.15 1.51 1.41 -11.03 -8.07 -6.07 -10.53 -7.62 -5.63 3.27 2.27 2.85
EBEN (Hauret et al., 2023) 29.7M 2.59 2.69 2.53 0.89 0.98 0.98 2.64 3.69 3.71 11.94 19.94 20.82 11.94 19.94 20.83 1.03 0.78 0.92
AERO (Mandel et al., 2023) 36.4M 2.79 2.75 2.88 0.83 0.94 0.99 2.62 3.65 3.69 13.60 20.70 21.56 13.60 20.70 21.56 1.09 0.97 0.75
AP-BWE (Lu et al., 2024a) 72M 3.86 3.97 4.49 0.94 0.99 0.99 2.55 3.69 3.72 13.42 18.26 20.86 13.35 18.07 20.74 0.96 0.74 0.75
CIS-BWE (proposed) 33.5M 4.24 4.26 4.53 0.95 0.99 0.99 2.64 3.72 3.75 13.24 18.13 19.53 13.15 17.98 19.44 0.95 0.72 0.71

Table 4: Comparative analysis of baseline models over three extension ranges with our proposed CIS-BWE.

rameters (72M vs 33M). Our CIS-BWE benefits586

from explicit chaotic feature extraction in the am-587

plitude and phase domains, successfully avoiding588

the compensation effects between amplitude and589

phase. It is also an indication that our approach of590

chaotic modeling using chaos-informed discrimi-591

nators is outperforming other nonlinear discrimi-592

nators, such as MPD, with fewer parameters (see593

Section 3.5). This finding is important for adopting594

chaos-informed discriminators in existing genera-595

tive models to capture both the fine-grained spec-596

tral details and the deterministic chaos, resulting in597

more perceptually natural sounds.598

Freq. range LSD STOI PESQ SI-SDR SI-SNR NISQA-MOS

2-16 kHz 1.1068 0.8739 1.66 8.1487 8.118 4.2979
2-48 kHz 1.21 0.8526 1.1836 6.963 6.9662 3.9987
4-48 kHz 1.099 0.933 1.4921 12.045 11.99 4.2294
8-48 kHz 1.092 0.933 1.506 12.39 12.33 3.975
12-48 kHz 0.873 0.9976 3.1253 17.085 16.95 4.4854
24-48 kHz 0.6531 0.9989 4.1822 23.42 23.38 4.5254

Table 5: Performance over different frequency ranges.

3.9 Study for Different Frequency Ranges599

Table 5 further investigates performance across dif-600

ferent frequency ranges. Overall, expanding the601

input frequency band generally leads to improve-602

ments across most evaluation metrics. For instance,603

the LSD consistently decreases as the lower bound604

of the input frequency increases, with the best score605

of 0.6531 achieved for the 24–48 kHz range, in-606

dicating better spectral reconstruction. Similarly,607

perceptual metrics (PESQ and NISQA-MOS) and608

temporal fidelity metrics (SI-SDR and SI-SNR)609

improve with wider input bands. Moreover, STOI610

scores are high (above 0.99) for mid-to-high fre-611

quency inputs (e.g., 12–48 kHz and 24–48 kHz),612

implying strong speech intelligibility preservation613

when higher frequency content is available.614

Model Fq. Range Params (M) MACs (M) FLOPs (M) RTF (GPU)

AP-BWE 4-16 kHz 72.07 14236.65 28473.31 0.0023x
AP-BWE 16-48 kHz 72.07 14236.65 28473.31 0.0025x
CIS-BWE 4-16 kHz 33.74 6790.86 13581.73 0.0025x
CIS-BWE 16-48 kHz 33.74 6790.86 13581.73 0.0028x

Table 6: Computational complexity of CIS-BWE. The
hardware configuration is provided in Section 3.2.

3.10 Computational Complexity615

Table 6 shows the computational complexity and616

real-time performance using Multiply Accumu-617

late Operations (MACs), Floating Point Operations618

per second (FLOPs), and Real-Time Factor (RTF) 619

across two different frequency ranges. Due to op- 620

timization of the generator and discriminators (see 621

Sections 3.6, 3.7, A.6, A.7), CIS-BWE uses 0.5x 622

fewer parameters, MACs, and FLOPs compared to 623

AP-BWE, while maintaining superior perceptual 624

quality as shown by NISQA-MOS scores in Ta- 625

ble 4. CIS-BWE also has a low RTF (0.0025x), in- 626

dicating its effectiveness in real-time audio stream- 627

ing services. 628

3.11 Subjective Analysis 629

For a subjective comparison of CIS-BWE against 630

SOTA AP-BWE and unprocessed audio, we select 631

a panel of 10 persons. We use 5-point (1=bad to 632

5=excellent) Mean Opinion Score (MOS) ratings 633

and Pairwise preference tests. In Fig. 4, we present 634

the MOS results separately for male and female 635

speakers with the overall mean. AP-BWE performs 636

better for only male speakers, while CIS-BWE out- 637

performs for female speakers and overall. In the 638

Pairwise preference test, CIS-BWE outperforms 639

SOTA AP-BWE by a margin of 11%. The detailed 640

explanation of subjective evaluation is presented 641

in Appendix A.9. These results provide strong ev- 642

idence that our proposed CIS-BWE consistently 643

generates higher perceptual quality audio, which is 644

favored by a wide range of listeners. 645

Figure 4: Results of MOS and Pairwise preference test.

4 Conclusion 646

We propose CIS-BWE, an adversarial model for 647

speech BWE. To the best of our knowledge, for 648

the first time, we incorporate chaotic dynamics of 649

speech for improved perceptual quality in a dual- 650

stream GAN-based framework. The efficacy of 651

CIS-BWE is shown across a wide range of perfor- 652

mance metrics. We believe that our chaos-informed 653

discriminators will be adopted in the future in a 654

wide range of NLP applications in the domain of 655

generative speech for TTS and ASR tasks. 656
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6 Limitations and Future Work670

Our current works only focus on one rather than671

multiple datasets in noise-free settings. Proposed672

CIS-BWE is tested on only the English lan-673

guage (VCTK dataset). In multi-lingual and cross-674

speaker settings the generalization ability is not675

tested. We will handle these in our upcoming work.676

7 Potential Risks / Ethical Considerations677

While the intention of designing the CIS-BWE678

model is for frequency restoration research pur-679

poses, it can be misused for potential secret eaves-680

dropping, impersonation, or deepfake audio gener-681

ation. This model has the potential for severe pri-682

vacy and security risks. To avoid these, we have683

to be very careful to ensure transparency, protect684

consent, and always follow guidelines.685

References686

Wallace Abreu and Luiz Wagner Pereira Biscainho.687
2024. Aeromamba: An efficient architecture for688
audio super-resolution using generative adversarial689
networks and state space models. arXiv preprint690
arXiv:2411.07364.691

Bajibabu Bollepalli, Lauri Juvela, and Paavo Alku.692
2019. Generative adversarial network-based glot-693
tal waveform model for statistical parametric speech694
synthesis. arXiv preprint arXiv:1903.05955.695

Jan Büthe and Jean-Marc Valin. 2024. A lightweight696
and robust method for blind wideband-to-fullband ex-697
tension of speech. arXiv preprint arXiv:2412.11392.698

Yubing Cao, Yongming Li, Liejun Wang, and Yinfeng699
Yu. 2024. Vnet: A gan-based multi-tier discrimina-700
tor network for speech synthesis vocoders. In 2024701
IEEE International Conference on Systems, Man,702
and Cybernetics (SMC), pages 4384–4389. IEEE.703

Chris Donahue, Julian McAuley, and Miller Puckette. 704
2018. Adversarial audio synthesis. arXiv preprint 705
arXiv:1802.04208. 706

A. Erell and M. Weintraub. 1990. Estimation using log- 707
spectral-distance criterion for noise-robust speech 708
recognition. In International Conference on Acous- 709
tics, Speech, and Signal Processing, pages 853–856 710
vol.2. 711

Berthy Feng, Zeyu Jin, Jiaqi Su, and Adam Finkel- 712
stein. 2019. Learning bandwidth expansion using 713
perceptually-motivated loss. In ICASSP 2019-2019 714
IEEE International Conference on Acoustics, Speech 715
and Signal Processing (ICASSP), pages 606–610. 716
IEEE. 717

W Tecumseh Fitch. 2025. Applying nonlinear dynam- 718
ics to the voice: a historical perspective. Philosophi- 719
cal Transactions B, 380(1923):20240024. 720

Timo Gerkmann, Martin Krawczyk, and Robert Rehr. 721
2012. Phase estimation in speech enhance- 722
ment—unimportant, important, or impossible? In 723
2012 IEEE 27th Convention of Electrical and Elec- 724
tronics Engineers in Israel, pages 1–5. IEEE. 725

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par- 726
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, 727
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. 728
2020. Conformer: Convolution-augmented trans- 729
former for speech recognition. In Interspeech 2020, 730
pages 5036–5040. 731

Julien Hauret, Thomas Joubaud, Véronique Zimpfer, 732
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A Appendix 962

A.1 Chaotic Properties of Speech Generation 963

Speech production is fundamentally a non-linear 964

dynamical process characterized by deterministic 965

chaos (Jiang et al., 2001), (Fitch, 2025). Its gener- 966

ation is driven by aerodynamic forces, with visco- 967

elastic vocal cords forming a self-sustained oscil- 968

latory system whose glottal pulses produce har- 969

monic frequencies, pressure waves occurring at in- 970

teger multiples of the fundamental frequency (f0) 971

(Titze, 2008). According to the source-filter the- 972

ory, these harmonics are then shaped by the vocal 973

tract’s filtering action—resonances in the throat, 974

mouth, and nasal cavities dynamically amplify or 975
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attenuate certain harmonics, forming moving spec-976

tral peaks known as formants (Zhang, 2023).977

Because the vocal cords receive pressure feed-978

back from the vocal tract, this coupled system979

can undergo period-doubling, create sub-harmonic980

frequencies, and intermittently exhibit chaotic be-981

havior indicated by positive Lyapunov exponents982

(Martinez et al., 2002). Consequently, speech nat-983

urally alternates between stable, quasi-periodic984

sounds (typical vowels) and chaotic segments, such985

as creaky voice and stressed speech, resulting in986

subtle jittery fluctuations, turbulence, and irregu-987

lar timing that purely linear models cannot capture.988

Generally, vowels exhibit quasi-periodicity inter-989

spersed with intermittent chaotic episodes (Tao and990

Jiang, 2008).991

During sound excitation, unstable airflow, vor-992

tex shedding, and uneven vocal cord movements993

introduce additional turbulence and timing irreg-994

ularities. Within the vocal tract, constricted pas-995

sages like those forming fricatives produce lo-996

cal turbulence, while the reactive characteristics997

of supraglottal and subglottal airways feed pres-998

sure variations back to the vocal cords, creating999

a complex non-linear interaction that can either1000

stabilize or destabilize cord oscillations (May and1001

Scherer, 2023). Moderate coupling enriches har-1002

monic content and clarifies formant structures,1003

whereas strong coupling can induce chaotic behav-1004

iors, resulting in rough or harsh vocal qualities as1005

observed in creaky voices, infant cries, or animal1006

distress calls (Rendall, 2025).1007

A purely linear model overlooks critical aspects1008

such as sub-harmonics, bifurcations, and aperiodic1009

bursts, making synthetic speech sound unnaturally1010

smooth (Sheng and Pavlovskiy, 2019). Moreover,1011

diagnostic methods that rely on detecting chaotic1012

indicators for early identification of vocal disorders1013

would lose effectiveness. Contemporary speech1014

synthesis and enhancement systems predominantly1015

use linear models or perturbation parameters, fail-1016

ing to capture these complex, subtle dynamics1017

of speech (MacCallum et al., 2009). Hence, to1018

accurately represent these non-linear behaviors,1019

models must incorporate non-linear glottal-flow1020

representations or leverage adversarial networks1021

with discriminators designed to recognize non-1022

linear characteristics, ensuring both the determin-1023

istic aspects (such as harmonic and formant struc-1024

tures) and chaotic elements (including noise bursts1025

and timing irregularities) are faithfully reproduced1026

(Bollepalli et al., 2019).1027

A.2 Dataset Pre-Processing Pipeline 1028

We use VCTK dataset, which is an established 1029

benchmark extensively use in Speech processing 1030

tasks. We extensively check and ensure that VCTK 1031

dataset does not contain any Personal Identifying 1032

Information (PIN), abusive contents, or any harm- 1033

ful that might be harmful for any individual, group, 1034

or others. We at first index all audio files by reading 1035

each line from training.txt and test.txt files, 1036

by extracting base filenames (without extensions) 1037

and by splitting on the “|” character. Out of 110 1038

English native speakers with different accents read- 1039

ing Herald Newspaper articles, we have used 102 1040

speakers for training the CIS-BWe and 8 speakers 1041

for testing the efficacy of the CIS-BWE. In total 1042

we have used 88,329 audio recordings for train- 1043

ing and testing the CIS-BWE. For reducing disk 1044

I/O overhead, each audio cache in memory for up 1045

to n cache reuse accesses (default set to 1). Then 1046

we trim the silent portion of the audio files by delet- 1047

ing portion of audios taking the start and end of 1048

silences from the vctk-silences.0.92.txt. Af- 1049

ter that, audios are loaded by torchaudio.load, 1050

and stereo (dual) channel signals are converted into 1051

mono (single) by averaging across channels. These 1052

mono waveforms are then resampled to the high- 1053

resolution (HR) target of 16/48 KHz by sinc inter- 1054

polation if requires. Furthermore, a low-resolution 1055

(LR) version is created by first downsampling the 1056

audio to 2/4/8/16/24 KHz and then upsampled back 1057

to 16/48 KHz by sinc interpolation which is given 1058

as input to the CIS-BWE model. For using the au- 1059

dios in training mode (split=True), we randomly 1060

crop an 8,000-sample segment, which is approxi- 1061

mately 167 ms from HR and LR signals both. If the 1062

files are shorter than this length, then zero-padding 1063

is applied to ensure similar segment lengths. 1064

A.3 Dataset Class and DataLoader 1065

Above preprocessing steps are defined in a cus- 1066

tom PyTorch Dataset class. After initializa- 1067

tion, we shuffle audio file lists with a fixed 1068

random seed (random.seed(1234)) for ensuring 1069

reproducibility. The getitem function han- 1070

dles loading of data (or reuse of cache), apply 1071

resampling, apply segmentation, and convert to 1072

mono channel, and return a tuple of 1-D ten- 1073

sors, which contains 8,000 samples. Total length 1074

of the dataset ( len ) is equal to the num- 1075

ber of files in each split. During training pro- 1076

cess, we initialize a DataLoader class which uses 1077
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four worker processes (num workers=4) and uses1078

DistributedSampler to ensure distribution of dis-1079

tinct partitions of the dataset.1080

A.4 Time–Frequency Feature Extraction and1081

Reconstruction1082

We design a feature extraction function,1083

amp pha stft, which calculates the short-1084

time Fourier transform (STFT) on audio segments1085

using [win size, hop size, fft] = [320, 80, 1024]1086

and a Hann window parameter. Using generated1087

complex spectrogram X ∈ CF×T , we derive two1088

features for giving input to dual stream CIS-BWE.1089

The is log-amplitude calculate using1090

M nb = log
(
|X|+ 10−4

)
1091

and instantaneous phase1092

Φ nb = arg(X).1093

The output of the CIS-BWE are converted back1094

into audio waveform by amp pha istft, which1095

exponentiates the predicted log-amplitude, recon-1096

structs the complex spectrogram, and applies an1097

inverse STFT using the same windowing parame-1098

ters to obtain the final HR audio.1099

A.5 Inference Workflow1100

We load the trained CIS-BWE checkpoint to gen-1101

erate wide-band audio using narrow-band .wav in-1102

puts. The script initially loads the trained CIS BWE1103

Model checkpoint onto the specified device (GPU1104

or CPU). It then recursively searches the input di-1105

rectory for narrowband .wav files. For each discov-1106

ered file, the script:1107

1. Applies similar pre-processing and resam-1108

pling steps for HR and LR creation.1109

2. Extracts log-amplitude and phase spectro-1110

grams as features via amp pha stft.1111

3. Feeds the two spectrogram features into each1112

stream of the generator network.1113

4. Maps the narrowband audios to wideband by1114

generating missing high frequency compo-1115

nents1116

5. Applies amp pha istft to invert the output1117

representations to waveforms.1118

6. Saves the output audio as 16 bit PCM .wav1119

files at 16/48,KHz.1120

7. Logs the losses and total processing time for1121

extensive analysis later.1122

A.6 Parameter Breakdown for 1123

Discriminators 1124

A layerwise parameter breakdown for each discrim- 1125

inator and grand total for all four discriminators in 1126

CIS-BWE are shown in Table 7. 1127

A.7 Parameter Breakdown for Generators 1128

A layer-wise parameter breakdown for the CIS- 1129

BWE generator, including LatticeBlock1D param- 1130

eters alongside pre-processing, ConformerNeXt 1131

blocks, and post-processing are shown in Table 8. 1132

A.8 Hyperparameters and Configuration 1133

Software Version: We use an Anaconda vir- 1134

tual environment with Python 3.9.21, PyTorch 1135

2.0.0+cu118, Torchaudio 0.15.0+cu118, Torchvi- 1136

sion 0.15.0+cu118, and CUDA Toolkit 11.8.0. 1137

For distributed training and potential scalability, 1138

we use the NCCL for multi-GPU training and TCP 1139

to initialize communication between processes. 1140

The training and model hyperparameters for the 1141

CIS-BWE setup, with use cases and rationale are 1142

provided in Table 9. 1143

A.9 Subjective evaluation details 1144

To evaluate the performance of the proposed CIS- 1145

BWE, a formal pair-preference listening test was 1146

conducted. A total of ten Bangladeshi under gradu- 1147

ate student who self-reported normal-hearing (NH) 1148

participants—comprising four males and six fe- 1149

males with an average age of 24—participated in 1150

the study. The participants voluntarily join to rate 1151

the audios without any compensation. At first they 1152

are trained on how to assign scores based on per- 1153

ceived perceptual quality of audios. They are also 1154

briefed about the purpose of the experiments, po- 1155

tential risks, and about the outcome of this paper. 1156

All participants were non-native English speakers 1157

and used soundproof headsets to ensure consis- 1158

tent and distraction-free listening conditions. Each 1159

participant evaluated 30 sets of speech samples. 1160

Every set included three randomly presented ver- 1161

sions of the same utterance: (i) the unprocessed 1162

(noisy) signal, (ii) the baseline-enhanced signal us- 1163

ing APBWE processing, and (iii) the speech pro- 1164

cessed by the proposed network. For reference, a 1165

clean version of the speech signal was also avail- 1166

able, though it was not part of the evaluation. Partic- 1167

ipants rated the perceptual quality of each sample 1168

on a 5-point Mean Opinion Score (MOS) scale, 1169

where 1 indicates the lowest and 5 the highest 1170

quality. Additionally, they were asked to select the 1171
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Figure 5: The MATLAB interface used in Subjective Tests.

most preferred version from the three presented1172

options. The test used 5–7-second speech clips se-1173

lected from the VCTK dataset, which were pro-1174

cessed under three different frequency band condi-1175

tions: 2–16 kHz, 12–48 kHz, and 24–48 kHz. Indi-1176

vidual pair-preference results were analyzed sepa-1177

rately for both male and female participants across1178

all band configurations. In the figure 5, we have1179

presented the MATLAB interface that we use to1180

conduct the subjective evaluation.1181

The findings in figure 4 clearly show that the1182

speech enhanced by the proposed network was1183

consistently and significantly preferred over both1184

the unprocessed and baseline-processed versions.1185

In particular, the proposed CIS-BWE achieved a1186

54.5% improvement in user preference compared1187

to unprocessed speech and a 2% improvement1188

over the APBWE baseline. These results highlight1189

the network’s robust ability to enhance perceptual1190

speech quality under noisy and reverberant condi-1191

tions. 1192
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Discriminator Stage Layer Type In→Out Kernel Stride Padding Params

MRLD (per scale)

Block 1 Depthwise Conv1d 1→1 5 2 2 6
Pointwise Conv1d 1→32 1 1 0 64
BatchNorm1d + LReLU(0.1) 32→32 – – – 64

Block 2 Depthwise Conv1d 32→32 5 2 2 192
Pointwise Conv1d 32→64 1 1 0 2 112
BatchNorm1d + LReLU(0.1) 64→64 – – – 128

Block 3 Depthwise Conv1d 64→64 5 2 2 384
Pointwise Conv1d 64→128 1 1 0 8 320
BatchNorm1d + LReLU(0.1) 128→128 – – – 256

Block 4 Depthwise Conv1d 128→128 5 2 2 768
Pointwise Conv1d 128→256 1 1 0 33 024
BatchNorm1d + LReLU(0.1) 256→256 – – – 512

Final Depthwise Conv1d 256→256 3 1 1 1 024
Pointwise Conv1d 256→1 1 1 0 257
BatchNorm1d 1→1 – – – 2

MRLD total (per scale) 47 113

MSDFA (per scale)

Block 1 Depthwise Conv2d 1→1 3×3 1 1 10
Pointwise Conv2d 1→32 1×1 1 0 64
BatchNorm2d + LReLU(0.2) 32→32 – – – 64

Block 2 Depthwise Conv2d 32→32 3×3 2 1 320
Pointwise Conv2d 32→64 1×1 1 0 2 112
BatchNorm2d + LReLU(0.2) 64→64 – – – 128

Block 3 Depthwise Conv2d 64→64 3×3 2 1 640
Pointwise Conv2d 64→128 1×1 1 0 8 320
BatchNorm2d + LReLU(0.2) 128→128 – – – 256

Block 4 Depthwise Conv2d 128→128 3×3 2 1 1 280
Pointwise Conv2d 128→256 1×1 1 0 33 024
BatchNorm2d + LReLU(0.2) 256→256 – – – 512

Block 5 Depthwise Conv2d 256→256 3×3 1 1 2 560
Pointwise Conv2d 256→1 1×1 1 0 257
BatchNorm2d 1→1 – – – 2

MSDFA total (per scale) 49 549

MRAD (per res)

Conv 1 Conv2d, WeightNorm 1→64 7×5 2×2 3×2 2 304
Conv 2 Conv2d, WeightNorm 64→64 5×3 2×1 2×1 61 504
Conv 3 Conv2d, WeightNorm 64→64 5×3 2×2 2×1 61 504
Conv 4 Conv2d WeightNorm 64→64 3×3 2×1 1×1 36 928
Conv 5 Conv2d, WeightNorm 64→64 3×3 2×2 1×1 36 928

Conv post Conv2d, WeightNorm 64→1 3×3 1×1 1×1 577
MRAD total (per res) 199 745

MRPD (per res)

Conv 1 Conv2d WeightNorm 1→64 7×5 2×2 3×2 2 304
Conv 2 Conv2d WeightNorm 64→64 5×3 2×1 2×1 61 504
Conv 3 Conv2d WeightNorm 64→64 5×3 2×2 2×1 61 504
Conv 4 Conv2d WeightNorm 64→64 3×3 2×1 1×1 36 928
Conv 5 Conv2d WeightNorm 64→64 3×3 2×2 1×1 36 928

Conv post Conv2d WeightNorm 64→1 3×3 1×1 1×1 577
MRPD total (per res) 199 745

Grand total (all discriminators) 1 681 780

Table 7: Layer-wise parameter breakdown, per-discriminator totals, and grand total for all four discriminators in
CIS-BWE.
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Stage / Component Layer Type In→Out Kernel Stride Padding Heads Params
Pre-processing

Pre-mag convolution Conv1d 513→512 7×7 1×1 7×1 – 1 839 104
Pre-pha convolution Conv1d 513→512 7×7 1×1 7×1 – 1 839 104
Pre-mag LayerNorm LayerNorm 512→512 – – – – 1 024
Pre-pha LayerNorm LayerNorm 512→512 – – – – 1 024

ConformerNeXtBlock (per block breakdown)
FFN & Norm

Norm1 LayerNorm 512→512 – – – – 1 024
FFN1 - Linear1 + GELU + Droput(0.1) Linear 512→2 048 – – – – 1 050 624
FFN1 - Linear2 + Dropout(0.1) Linear 2 048→512 – – – – 1 049 088
Norm2 LayerNorm 512→512 – – – – 1 024

Self-Attention
Self-Attention MultiHeadSelfAttention (embed=512) 512→512 – – – 8 1 050 624

ConvNeXt Components
Depthwise Conv1d Depthwise Conv1d 512→512 7 1 3 – 4 096
ConvNeXt—Norm LayerNorm 512→512 – – – – 1 024
ConvNeXt—PWConv1 + GELU Linear 512→1 536 1 1 0 – 787 968
ConvNeXt—PWConv2 Linear 1 536→512 1 1 0 – 786 944
ConvNeXt—Gamma Learned scale 512→512 – – – – 512

Total per ConformerNeXtBlock 6 834 688
ConformerNeXtBlock total (4 blocks) 27 338 752

LatticeBlock1D
LatticeBlock1D (per block) Two-branch fusion using one 512→512 – – – – 4× 4

ConformerNeXt Block + 4 scalars
Total LatticeBlock1D (4 blocks) 27 338 768

Post-processing
Post-mag LayerNorm LayerNorm 512→512 – – – – 1 024
Post-mag FFN Linear 512→513 – – – – 263 169
Post-pha LayerNorm LayerNorm 512→512 – – – – 1 024
FFN r post-pha (real) Linear 512→513 – – – – 263 169
FFN i post-pha (imag) Linear 512→513 – – – – 263 169

Total generator parameters 31 808 531

Table 8: Layer-wise parameter breakdown for the CIS-BWE generator, including LatticeBlock1D parameters
alongside Pre-processing, ConformerNeXt blocks, and Post-processing.
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Hyperparameter Value Use Case & Rationale

Number of GPUs 1 Ensure faster training and inference by
effectively leveging parallel processing
of CUDA cores

Max epochs 50 Provide enough weight updates for
convergence yet avoid overfitting.

Batch size 16 Balance between gradient stability
with computational resource
constraints.

Initial learning rate 2× 10−4 Find balance between convergence
with training stability.

Adam β1 0.8 Optimizer momentum parameter set to
adapt quickly to adversarial
non-stationarity.

Adam β2 0.99 Optimizer second moment estimate
parameter for stable variance control.

Learning–rate decay 0.999 Decrease LR to subtly fine-tune
weights toward convergence.

Random seed 1234 Ensure to generate same results across
different run

ConvNeXt channels 512 Provide enough capacity to capture
features.

ConformerNeXt blocks 4 Provide enough parameter without
sacrificing performance.

Segment size (samples) 8000 Capture sufficient audio context for
effective BWE.

FFT size (n fft) 1024 Balance between frequency resolution
against computational load.

Hop length 80 Overlap chosen to smooth ripple
effects without increasing
computational load.

Window length 320 Balance time–frequency resolution in
STFT.

High-rate sampling rate (Hz) 16 K / 48 K Define wide-band frequency ranges.
Low-rate sampling rate (Hz) 2 K / 4 K / 8 K / 16 K / 24 K Different differncy range to evaluate

the robustness of the model.
Subsampling ratio 2 / 4 / 8 / 12 / 24 Downsampling factors corresponding

to low-rate configurations.
Number of data-loading workers 4 Parallel I/O to maximize throughput
Distributed backend nccl Efficient GPU-to-GPU communication
Distributed init URL tcp://localhost:54321 Local rendezvous for single-node

distributed setup.
Distributed world size 1 Single-process distributed for clean

scaling.
MRLD window sizes 64, 128, 256, 512, 1024 Multi-scale Lyapunov analysis to

capture deterministic chaotic features
at different resolutions.

MSDFA scales 100, 200, 300, 500, 600 Range of DFA scales for fractal
dimension analysis in discriminator.

MRAD resolutions (n fft, hop, win) (512,128,512), (1024,256,1024),
(2048,512,2048)

Multi-resolution STFT settings to
capture amplitude dynamics.

MRPD resolutions (n fft, hop, win) (512,128,512), (1024,256,1024),
(2048,512,2048)

Multi-resolution STFT settings to
capture phase dynamics.

Table 9: Training and model hyperparameters for the CIS-BWE setup, with use cases and rationale
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