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ABSTRACT

General intelligence requires quick adaptation across tasks. While existing re-
inforcement learning (RL) methods have made progress in generalization, they
typically assume only distribution changes between source and target domains. In
this paper, we explore a wider range of scenarios where not only the distribution
but also the environment spaces may change. For example, in the CoinRun envi-
ronment, we train agents from easy levels and generalize them to difficulty levels
where there could be new enemies that have never occurred before. To address
this challenging setting, we introduce a causality-guided self-adaptive represen-
tation-based approach, called CSR, that equips the agent to generalize effectively
across tasks with evolving dynamics. Specifically, we employ causal represen-
tation learning to characterize the latent causal variables within the RL system.
Such compact causal representations uncover the structural relationships among
variables, enabling the agent to autonomously determine whether changes in the
environment stem from distribution shifts or variations in space, and to precisely
locate these changes. We then devise a three-step strategy to fine-tune the causal
model under different scenarios accordingly. Empirical experiments show that
CSR efficiently adapts to the target domains with only a few samples and out-
performs state-of-the-art baselines on a wide range of scenarios, including our
simulated environments, CartPole, CoinRun and Atari games.

1 INTRODUCTION

In recent years, deep reinforcement learning (DRL, (Arulkumaran et al., 2017)) has made incred-
ible progress in various domains (Silver et al., 2016; Mirowski et al., 2016). Most of these works
involve learning policies separately for fixed tasks. However, many practical scenarios often have
a sequence of tasks with evolving dynamics. Instead of learning each task from scratch, humans
possess the ability to discover the similarity between tasks and quickly generalize learned skills to
new environments (Pearl & Mackenzie, 2018; Legg & Hutter, 2007). Therefore, it is essential to
build a system where agents can also perform reliable and interpretable generalizations to advance
toward general artificial intelligence (Kirk et al., 2023).

A straightforward solution is policy adaptation, i.e., leveraging the strategies developed in source
tasks and adapting them to the target task as effective as possible (Zhu et al., 2023). Approaches
along this line include, but are not limited to, fine-tuning (Mesnil et al., 2012), reward shaping
(Harutyunyan et al., 2015), importance reweighting (Tirinzoni et al., 2019), learning robust policies
(Taylor et al., 2007; Zhang et al., 2020), sim2real (Peng et al., 2020), adaptive RL (Huang et al.,
2021), and subspace building (Gaya et al., 2022). However, these algorithms often rely on an as-
sumption that all the source and target domains have the same state and action space while ignoring
the out-of-distribution scenarios which are more common in practice (Taylor & Stone, 2009; Zhou
et al., 2023).

In this paper, we expand the application of RL beyond its traditional confines by exploring its adapt-
ability in broader contexts. Specifically, our investigation focuses on policy adaptation in two distinct
scenarios:
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(a) (b) (c)

Figure 1: Different levels in CoinRun: (a) Level 1: Traverse obstacles to collect coins; (b) Level 2:
The number and shapes of obstacles change; (c) Level 3: Enemies emerge and attack the agents.

1. Distribution shifts: the source and target data originate from the same environment space but ex-
hibit differences in their distributions, e.g. changes in transition, observation or reward functions;

2. State/Action space expansions: the source and target data are collected from different environ-
ment spaces, e.g. they differ in the latent state or action spaces.

These scenarios frequently occur in practical settings. To illustrate, we reference the popular Coin-
Run environment (Cobbe et al., 2019). As shown in Fig. 1, the goal of CoinRun is to overcome
various obstacles and collect the coin located at the end of the level. The game environment is
highly dynamic, with variations in elements such as background colors and the number and shape
of obstacles (see Fig. 1(a) and Fig. 1(b)) — this exemplifies distribution shifts. Additionally, Coin-
Run offers multiple difficulty levels. In lower difficulty settings, only a few stationary obstacles are
present, while at higher levels, a variety of enemies emerge and attack the agents (see Fig. 1(c)).
To prevail, agents must learn to adapt to these new enemies — this scenario illustrates state/action
space expansions.

We propose a Causality-guided Self-adaptive Representation-based approach, termed CSR, to ad-
dress this problem for partially observable Markov decision processes (POMDPs). Considering that
the raw observations are often reflections of the underlying state variables, we employ causal rep-
resentation learning (Schölkopf et al., 2021; Huang et al., 2022; Wang et al., 2022) to identify the
latent causal variables in the RL system, as well as the structural relationships among them. By
leveraging such representations, we can automatically determine what and where the changes are.
To be specific, we first augment the world models (Ha & Schmidhuber, 2018; Hafner et al., 2020)
by including a task-specific change factor θ to capture distribution shifts, e.g., θ can characterize
the changes in observations due to varying background colors in CoinRun. If the introduction of
θ can well explain the current observation, it is enough to keep previously learned causal variables
and merely update a few parameters in the causal model. Otherwise, it implies that the current task
differs from previously seen ones in the environment spaces, we then expand the causal graph by
adding new causal variables and re-estimate the causal model. Finally, we remove some irrelevant
causal variables that are redundant for policy learning according to the identified causal structures.
This three-step strategy enables us to capture the changes in the environments for both scenarios in
a self-adaptive manner and make the most of learned causal knowledge for low-cost policy transfer.
Our key contributions are summarized below:

• We investigate a broader scenario towards generalizable reinforcement learning, where changes
occur not only in the distributions but also in the environment spaces of latent variables, and
propose a causality-guided self-adaptive representation-based approach to tackle this challenge.

• To characterize both the causal representations and environmental changes, we construct a world
model that explicitly uncovers the structural relationships among latent variables in the RL sys-
tem.

• By leveraging the compact causal representations, we devise a three-step strategy that can identify
where the changes of the environment take place and add new causal variables autonomously if
necessary. With this self-adaptive strategy, we achieve low-cost policy transfer by updating only
a few parameters in the causal model.
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Figure 2: The overall CSR framework. For each target task, we first use the prediction error, Lpred,
to determine whether it involves distribution shifts or space shifts. We then adjust the model accord-
ingly by updating the task-specific change factor θi, or by adding new variables. Finally, we conduct
causal graph pruning that removes variables unnecessary for the current task. Based on such compact
causal representations, we can efficiently implement policy adaptation in a self-adaptive manner.

2 WORLD MODEL WITH CAUSALITY-GUIDED SELF-ADAPTIVE
REPRESENTATIONS

We consider generalizable RL that aims to effectively transfer knowledge across tasks, allowing
the model to leverage patterns learned from a set of source tasks while adapting to the dynamics
of a target task. Each task Mi is characterized by ⟨Si,Ai,Oi, Ri, Ti, ϕi, γi⟩, where Si represents
the latent state space, Ai is the action space, Oi is the observation space, Ri : Si × Ai → R is
the reward function, Ti : Si × Ai → P (Si) is the transition function, ϕi : Si × Ai → P (Oi) is
the observation function, and γi is the discount factor. By leveraging experiences from previously
encountered tasks {Mj}i−1

j=1, the objective is to adapt the optimal policy π⋆ that maximizes cumu-
lative rewards to the target task Mi. Here, we consider tasks arriving incrementally in the sequence
⟨M1, . . . ,MN ⟩ over time periods ⟨T1, . . . , TN ⟩. In each period Ti, only a replay buffer containing
sequences {⟨ot, at, rt⟩}Ti

t=1 from the current task Mi is available, representing an online setting.
While tasks can also be presented offline with predefined source and target tasks, the online frame-
work more closely mirrors human learning, making it a crucial step towards general intelligence.

In this section, we first construct a world model that explicitly embeds the structural relationships
among variables in the RL system, and then we show how to encode the changes in the environment
by introducing a domain-specific embedding into the model and leveraging it for policy adaptation.

2.1 AUGMENTING WORLD MODELS WITH STRUCTURAL RELATIONSHIPS

In POMDPs, extracting latent state representations from high-dimensional observations is crucial
for enhancing the efficiency of the decision-making process. World models address this challenge
by learning a generative model, which enables agents to predict future states through imagination.
These methods typically consider all extracted representations of state variables equally important
for policy learning, thereby utilizing all available information regardless of its relevance to the cur-
rent task. However, real-world tasks often require a focus on specific information. For instance,
in the Olympics, swimming speed is crucial in competitive swimming events, but it is less impor-
tant in synchronized swimming, where grace and precision are prioritized. Hence, it is essential for
agents to understand and focus on task-specific aspects to facilitate effective knowledge transfer by
selectively using minimal sufficient information.

To this end, we adopt a causal state representation learning approach that not only enables us to
extract state representations, but also to discover structural relationships over the variables. Suppose
we observe sequences {⟨ot, at, rt⟩}t∈Ti for task Mi, and denote the underlying causal latent states
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by st ∈ Si, we formulate the world model into:
observation model: pϕ(ot | Ds→o ⊙ st)
reward model: pϕ(rt | Ds→r ⊙ st)
transition model: pβ(sk,t | Ds→s

k ⊙ st−1, D
a→s
k ⊙ at−1), for k = 1, . . . , d

representation model: qα(st | st−1, at−1, ot),

(1)

where st = (s1,t, · · · , sd,t), ⊙ is the element-wise product, and D·→· denote binary masks indicat-
ing structural relationships over variables. For instance, if the j-th element of Ds→o ∈ {0, 1}d×1

in Eq. (1) is 1, it indicates a causal edge from the state variable sj,t to the current observation
signal ot, i.e., sj,t is one of the parents of ot. Consequently, we are supposed to retain sj,t for the
observation model. Otherwise, if Ds→o

j = 0, then sj,t should be removed from the causal model.
Section 3.3 further discusses the estimation procedures for the structural matrices D, as well as the
corresponding pruning process of the causal model. By learning such causal representations, we
can explicitly characterize the decisive factors within each task. However, given that the underlying
dynamics often vary across tasks, merely identifying which variables are useful is insufficient. We
must also determine how these variables change with the environment for better generalization.

2.2 CHARACTERIZATION OF ENVIRONMENTAL CHANGES IN A COMPACT WAY

To address the above need, we now shift our focus to demonstrating how the world model can be
modified to ensure robust generalization across the two challenging scenarios, respectively.

Characterization of Distribution Shifts. It is widely recognized that changes in the environmental
distribution are often caused by modifications in a few specific factors within the data generation
process (Ghassami et al., 2018; Schölkopf et al., 2021). In the CoinRun example, such shifts might
be due to alterations in background colors (ϱ), while other elements remain constant. Therefore,
to better characterize these shifts, we introduce a domain-specific change factor, θi, that captures
the variations across different domains. Concurrently, we leverage st to identify the domain-shared
latent variables of the environments. This leads us to reformulate Eq. (1) as follows:

observation model: pϕ(ot | Ds→o ⊙ st, D
θi→o ⊙ θoi )

reward model: pϕ(rt | Ds→r ⊙ st, D
θi→r ⊙ θri )

transition model: pβ(sk,t | Ds→s
k ⊙ st−1, D

θi→s
k ⊙ θsi , D

a→s
k ⊙ at−1), for k = 1, . . . , d

representation model: qα(st | st−1,θi, at−1, ot),
(2)

where θi = {θoi , θri , θsi } captures essential changes in the observation model, reward model, and
transition model, respectively. In CoinRun, this enables us to make quick adaptations by re-
estimating θoi = ϱ in the target task. We assume that the value of θi, as well as the structural
matrices D, remains constant within the same task, but may differ across tasks.

Characterization of State/Action Space Expansions. In scenarios where the state or action space
expands, we are supposed to add new variables to the existing causal model. The key challenge here
is to determine whether the changes stem from distribution shifts or space variations. This dilemma
can be addressed using θi: If the introduction of θi can well capture the changes in the current
observations, it implies that previous tasks {Mj}i−1

j=1 and Mi share the same causal variables but
exhibit sparse changes in some certain parameters (i.e., distribution shifts). So we only need to store
the specific part θi of the causal model for Mi. If it is not the case, then the causal graph must be
expanded by adding new causal variables to explain the features unique to Mi.

Benefits of Explicit Causal Structure. Upon detecting changes in the environment, we can further
leverage the structural constraintsD to prune the causal graph. Essentially, we temporarily disregard
variables that are irrelevant to the current task. However, for subsequent tasks, we reassess the
structural relationships among the variables, enabling potential reuse. This approach allows us to not
only preserve previously acquired information but also maintain the flexibility needed to customize
the minimal sufficient state variables for each task. Details of this strategy are given in Section 3.

2.3 IDENTIFIABLITY OF UNDERLYING WORLD MODELS

In this section, we provide the identifiability theory under different scenarios in this paper: (1) For
source task M1, Theorem 1 establishes the conditions under which the latent variable st and the
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structural matrices D can be identified; (2) For the target task with distribution shifts, Theorem 2
outlines the identifiability of the domain-specific factor θi in linear cases; (3) For the target task with
state space shifts, Theorem 3 specifies the identifiability of the newly added state variables sadd

t ; (4)
For the target task that includes both distribution shifts and state space shifts, Corollary 1 demon-
strates the identifiability of both θi and sadd

t . The proofs are presented in Appendix A. We also
discuss the possibility and challenges of establishing the identifiability of θsi in nonlinear cases in
Appendix A.4, followed by empirical results where the learned θ̂si demonstrates a monotonic corre-
lation with the true values. Below we first introduce the definition of component-wise identifiability,
related to Yao et al. (2021), and then we present the theoretical results.
Definition 1. (Component-wise identifiability). Let ŝt be the estimator of the latent variable st.
Suppose there exists a mapping h such that st = h(ŝt). We say st is component-wise identifiable if
h is an invertible, component-wise function.
Theorem 1. (Identifiablity of world model in Eq. (1)). Assume the data generation process in
Eq. (3). If the following conditions are satisfied, then st is component-wise identifiable: (1) for
any k1, k2 ∈ {1, . . . , d} and k1 ̸= k2, ŝk1,t and ŝk2,t are conditionally independent given ŝt−1;
(2) for every possible value of st, the vector functions defined in Eq. (8) are linearly independent.
Furthermore, if the Markov condition and faithfulness assumption hold, then the structural matrices
D are also identifiable: {

[ot, rt+1] = g(st, ϵt)
st = gs(st−1, at−1, ϵ

s
t ),

(3)

where {
ot = go(st, ϵ

o
t )

rt+1 = gr(st, ϵ
r
t+1).

(4)

The ϵt, ϵst , ϵ
o
t , ϵ

r
t+1 terms are corresponding independent and identically distributed (i.i.d.) random

noises. Following Kong et al. (2023), here we only assume that the global mapping g is invertible.
Theorem 2. (Identifiability of θi in Eq. (2)). Assume the data generation process in Eq. (5), where
the state transitions are linear and additive. If the process encounters distribution shifts and st has
been identified according to Theorem 1, then θi are component-wise identifiable:{

[ot, rt+1] = g(st, θ
o
i , θ

r
i , ϵt)

st = Ast−1 +Bat−1 +Cθsi + ϵst ,
(5)

where {
ot = go(st, θ

o
i , ϵ

o
t )

rt+1 = gr(st, θ
r
i , ϵ

r
t+1).

(6)

Following Yao et al. (2021), here we assume that A is full rank, and C is full column rank. We
further assume that s0 = ŝ0. Moreover, if the Markov condition and faithfulness assumption hold,
the structural matrices Dθi→· are also identifiable.
Theorem 3. (Identifiability of Expanded State Space). Assume the data generation process in Eq.
(3). Consider the expansion of the state space S by incorporating additional dimensions. Suppose
st has already been identified according to Theorem 1, then the component-wise identifiability of the
newly added variables sadd

t and the additional structural matrices, i.e., Dsadd→· and D·→sadd
, can be

established if sadd
t (1) represents a differentiable function of [ot, rt+1], i.e., sadd

t = f(ot, rt+1), and
(2) fulfills conditions (1) and (2) specified in Theorem 1.
Corollary 1. (Identifiability under Multiple Shifts). Assume the data generation process in Eq. (5)
involves both distribution shifts and state space shifts that comply with Theorem 2 and Theorem 3,
respectively. In this case, both the domain-specific factor θi and the newly added state variable sadd

t
are component-wise identifiable.

3 A THREE-STEP SELF-ADAPTIVE STRATEGY FOR MODEL ADAPTATION

In this section, we provide a detailed description of CSR, a strategy aimed at addressing the envi-
ronmental changes between source and target tasks, thereby ensuring that models can effectively
respond to evolving dynamics. Specifically, we proceed with a three-step strategy: (1) Distribution
Shifts Detection and Characterization, (2) State/Action Space Expansions, and (3) Causal Graph
Pruning. The overall process of our three-step strategy are described in Fig. 2 and Algorithm 1.
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Before this, we first give the estimation procedures for the world models defined in Eq. (2), which
follows the state-of-the-art work Dreamer (Hafner et al., 2020; 2023). Given the observations in
period Ti, we maximize the objective function J 1, defined as J = Jrec − JKL + Jreg, for model
optimization. The reconstruction part Jrec is commonly used to minimize the reconstruction error
for the perceived observation ot and the reward rt, which is defined as

Jrec = Eqα

( ∑
t∈Ti

{log pϕ(ot | Ds→o ⊙ st, D
θi→o ⊙ θoi ) + logpϕ(rt | Ds→r ⊙ st, D

θi→r ⊙ θri )}
)
.

We also consider the KL-divergence constraints JKL that helps to ensure that the latent representa-
tions attain optimal compression of the high-dimensional observations, which is formulated as:

JKL = Eqα

( ∑
t∈Ti

{λKL · KL(qα(sk,t | st−1,θi, at−1, ot)∥pβ(sk,t | Ds→s
k ⊙ st−1, D

θi→s
k ⊙ θsi , D

a→s
k ⊙ at−1)}

)
,

where λKL is the regularization term. Moreover, as explained below in the Section 3.3, we further
use Jreg as sparsity constraints that help to identify the binary masks D better. Upon implementa-
tion, these three components are jointly optimized for model estimation. During the first task M1,
we focus on developing the world models from scratch to capture the compact causal representa-
tions effectively. Then, for any subsequent target task Mi (where i ≥ 2), our objective shifts to
continuously refining the world model to accommodate new tasks according to the following steps.

3.1 DISTRIBUTION SHIFTS DETECTION AND CHARACTERIZATION

For each task Mi, our first goal is to determine if it exhibits any distribution shifts. Therefore, in
this step, we exclusively updates the domain-specific part θi, while keeping all other parameters un-
changed from the previous task Mi−1, to detect whether the distributions have changed. Recall that
the effect of each edge in the structural matrices D can differ from one task to another. By adjusting
the values of θi, we can also easily characterize the task-specific influence of these connections.
Particularly, when θi is set to zero, we temporarily switch the related edges off in task Mi.

Here we adopt forward prediction error (Guo et al., 2020) as the criteria to determine whether the
re-estimated model well explains the observations in current task, defined as

Lpred = Eôt+1∼pϕ∥ôt+1 − ot+1∥22. (7)

A corresponding threshold, τ⋆, is established. Upon implementation, we use the final prediction loss
of the model on the source task M1 as the threshold value, thereby avoiding the need for manual
setting. If the model’s performance τ is below this expected threshold, it means that the current
task Mi shares the same causal variables with previous tasks, requiring only sparse changes of
some parameters in the world model, and then we only need to re-estimate the specific part θi to
effectively manages these distribution changes. Otherwise, we proceed to the next step.

3.2 STATE/ACTION SPACE EXPANSIONS

When the involved domain-specific features θi fail to accurately represent the target task Mi, it
becomes essential to incorporate additional causal variables into the existing causal graph to account
for the features encountered in the new task. Given that the action variables are observable, we can
directly obtain the relevant information when the action space expands. Thus, in this step, we
focus on developing strategies to effectively manage state expansions. Let d′ denote the number of
causal variables to be added. We first determine the value of d′ and introduce new causal features.
Following this decision stage, we extend the causal representations from st to s′t = (st, s

add
t ),

where sadd
t = (sd+1,t, . . . , sd+d′,t), by incorporating the additional d′ causal variables. This is

implemented by increasing the dimensions of input/output layers of the world models. For instance,
the state input of the transition model will increase from d to d + d′. Accordingly, we focus on
learning the newly incorporated components with only a few samples, as the previous model has
already captured the existing relationships between variables. This approach allows us to leverage
prior knowledge effectively and achieve low-cost knowledge transfer. Specifically, we propose the
following three implementations for state space expansion:

1Formally written as J (ϕ, β, α,θi, D); arguments are omitted for brevity.
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1. Random (Rnd): d′ is randomly sampled from a uniform distribution.
2. Deterministic (Det): It sets a constant value for d′. However, this approach may overlook task-

specific differences, potentially leading to either insufficient or redundant expansions. To address
this, we employ group sparsity regularization (Yoon et al., 2017) on the added parameters after
deterministic expansion, which allows for expansion while retaining the capability of shrinking.

3. Self-Adaptive (SA): It searches for the value of d′ that best fits the current task. To achieve this,
we transform expansion into a decision-making process by considering the number of causal
variables added to the graph as actions. Inspired by Xu & Zhu (2018), we define the state variable
to reflect the current causal graph and derive the reward based on changes in predictive accuracy,
which is calculated as the differences of the model’s prediction errors before and after expansion.
Details are given in Appendix B.

It is noteworthy that our method allows for flexibility in the choice of expansion strategies. Intu-
itively, in our case, the Self-Adaptive approach is most likely to outperform others, and the experi-
mental results in Section 4 further verify this point.

3.3 CAUSAL GRAPH PRUNING

As discussed in Section 2.1, not all variables contribute significantly to policy learning, and the nec-
essary subset also differs between tasks. Therefore, during the generalization process, it is essential
to identify the minimal sufficient state variables for each task. Fortunately, with the estimated causal
model that explicitly encodes the structural relationships between variables, we can categorize these
state variables st into the following two classes:

1. Compact state representation sck,t: A variable that either affects the observation ot, or the reward
rt+1, or influences other state variables sj,t+1 (k ̸= j) at the next time step (i.e., Ds→o = 1, or
Ds→r = 1, or Ds→s

j,k = 1, e.g., s1,t in Fig. 2).

2. Non-compact state representation sc̄k,t: A variable that does not meet the criteria for a compact
state representation (e.g., s2,t in Fig. 2).

Similarly, the change factors θi can be classified in the same manner. These definitions allow us
to selectively remove non-compact ones, thereby pruning the causal graph. That is, a variable is
retained only when its corresponding structural constraints D are non-zero. Hence, to better charac-
terize the binary masks D and the sparsity of θi, we define a regularization term Jreg by leveraging
the edge-minimality property (Zhang & Spirtes, 2011), formulated as

Jreg = −λreg
[
∥Ds→o∥1 + ∥Ds→r∥1 + ∥Ds→s∥1 + ∥Da→s∥1 + ∥Dθi→s∥1 + ∥θi∥1

]
,

where λreg represents the regularization term. Incorporating the regularization term Jreg directly
into the objective function J confers a notable advantage: it enables concurrent pruning and model
training. Specifically, the presence of Jreg induces certain entries of D to transition from 1 to 0
during model estimation, thereby promoting sparsity naturally without additional training phases.

3.4 LOW-COST POLICY GENERALIZATION UNDER DIFFERENT SCENARIOS

After identifying what and where the changes occur, we are now prepared to perform policy general-
ization to the target task Mi. Given that the number of state variables varies between the distribution
shifts and state space expansion scenarios, the strategy for policy transfer also differs.

According to above definitions, in all these tasks, we incorporate both the domain-shared state rep-
resentation sct and the domain-specific change factor θci as inputs to the policy π⋆, represented as:
at = π⋆(sct ,θ

c
i ). This approach enables the agent to accommodate potentially variable aspects of

the environment during policy learning. Consequently, given the re-estimated value of the compact
state representation sct and the compact change factor θci for task Mi, if the model’s prediction error
in the Distribution Shifts Detection and Characterization step meets expectations, we can directly
transfer the learned policy Mi by applying at = π⋆(sct ,θ

c
i ).

Otherwise, if the state variables expand from sct to sct
′, along with the updated change factor θci

′, we
then relearn the policy π⋆′ basing on π⋆. Similarly, we train the newly added structures in the policy
network while finetuning the original parameters, thereby updating the policy to at = π⋆′(sct

′,θci
′).
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Figure 3: (a) Simulation results; (b) CoinRun results; (c) Averaged training curves of CSR
with/without structural embeddings D in Atari games; (d) Normalized average training episodic
return of CSR with different expansion strategies in our experiments.

4 EXPERIMENTS

We evaluate the generalization capability of CSR on a number of simulated and well-established
datasets, including the CartPole, CoinRun and Atari environments, with detailed descriptions pro-
vided in Appendix D.3. For all these benchmarks, we evaluate the POMDP case, where the inputs
are high-dimensional observations. Specifically, the evaluation focuses on answering the following
key questions:

• Q1: Can CSR effectively detect and adapt to the two types of environmental changes?
• Q2: Does the incorporation of causal knowledge enhance the generalization performance?
• Q3: Is searching for the optimal expansion structure necessary?

We compare our approach against several baselines: Dreamer (Hafner et al., 2023), which handles
fixed tasks without integrating causal knowledge; AdaRL (Huang et al., 2021), which employs sim-
ple scenario-based policy adaptation without space expansion considerations; and the traditional
model-free DQN (Mnih et al., 2015) and SPR (Schwarzer et al., 2020). Additionally, for the Atari
games, we benchmark against the state-of-the-art method, EfficientZero (Ye et al., 2021). All results
are averaged over 5 runs, more implementation details can be found in Appendix D.

CSR consistently exhibits the best adaptation capability across all these environments (Q1).
Simulated Experiments. In our simulated experiments, we conducted a sequence of four tasks
following the procedures outlined in Appendix D.3.1. To evaluate the performance of different
methods across varying scenarios, Task 2 focuses exclusively on distribution shifts, Task 3 addresses
changes solely within the environment space, and Task 4 combines both distribution and space
changes. As shown in Fig. 3(a), CSR consistently outperforms the baselines in adapting to new
tasks, particularly excelling in scenarios with space variations. This demonstrates CSR’s ability to
accurately detect and adjust to the changes in the environment. Moreover, CSR tends to converge
faster toward higher rewards, underscoring its efficiency in data utilization during generalization.

CartPole Experiments. CartPole is a classic control task where players move a cart left or right to
balance a pendulum attached on it. In our experiments, we consider four consecutive tasks. Task

8
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Model Scores Minimum Adaptation Steps

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

DQN 102.8 (± 7.8) 65.6 (± 15.6) 107.4 (± 17.0) 104.0 (± 12.0) % % % %

Dreamer 500.0 (± 0.0) 397.6 (± 7.2) 311.6 (± 23.3) 356.3 (± 59.9) 50k % % %

AdaRL 500.0 (± 0.0) 468.0 (± 2.3) 410.0 (± 3.4) 407.5 (± 34.5) 50k 4k % %
CSR (ours) 500.0 (± 0.0) 500.0 (± 0.0) 500.0 (± 0.0) 500.0 (± 0.0) 50k 2k 4k 10k

Table 1: Evaluation results of different approaches in CartPole, with a maximum episode length
of 500. The term ’Minimum Adaptation Steps’ refers to the minimal amount of data required for
models to generalize to new tasks, as illustrated in Fig. 8. %denotes that a method fails to adapt
under limited training steps due to non-convergence or suboptimal performance.

Task Random SPR Dreamer AdaRL EfficientZero CSR (ours)

Alien 291.9 970.3 1010.1 1147.5 557.4 1586.9
(± 83.5) (± 311.1) (± 339.0) (± 125.7) (± 185.9) (± 127.0)

Bank Heist 18.4 110.1 1313.7 1285.4 181.0 1454.1
(± 2.5) (± 128.2) (± 341.5) (± 131.8) (± 90.6) (± 178.8)

Crazy Climber 9668.0 32723.5 68026.5 62565.3 56408.3 88306.5
(± 2286.0) (± 12125.2) (± 15628.6) (± 15162.2) (± 13388.0) (± 18029.6)

Gopher 235.6 294.0 5607.3 5359.6 1083.2 6718.6
(± 42.5) (± 312.1) (± 1982.9) (± 1736.2) (± 784.8) (± 1703.1)

Pong -20.2 -6.8 18.0 17.6 6.8 19.6
(± 0.1) (± 14.3) (± 3.1) (± 2.7) (± 7.3) (± 1.1)

Table 2: Average final scores on the listed Atari games.

2 focuses exclusively on distribution shifts by randomly selecting the cart mass and the gravity
from {0.5, 1, 2.5, 3.5, 4.5} and {5, 9.8, 20, 30, 40}, respectively. In Tasks 1 and 2, we disregard the
influence of the friction force between the cart and the track. In Task 3, however, we introduce
this friction into the environment, and vary it over time, which simulates a game scenario where
the cart moves on different surfaces, such as ice or grass (see Fig. 6 and Fig. 7). We reflect these
changes in the observations by visualizing the track with different colored segments. To explore the
generalization capabilities of the proposed method in scenarios with action expansion, we further
designed Task 4, in which we expand the action space by incorporating additional possible force
values that can be applied to the cart. The evaluation outcomes for these models are summarized in
Table 1. We find that CSR consistently achieves the highest scores across all tasks, demonstrating
its capability to promptly detect and adapt to environmental changes. In contrast, other baseline
methods struggle to adjust to the introduction of the new friction variable and actions.

CoinRun Experiments. The learning curves in Fig. 3(b) depict our method’s consistent superiority
over the baselines during knowledge transferring from low to high difficulty levels in CoinRun. We
also observe that model-based methods tend to generalize more quickly than model-free ones in our
experiments. This finding suggests that the forward-planning capabilities of world models confer
significant advantages in adaptation. Visualizations of the reconstructed observations from various
methods are presented in Appendix D.3.3.

Atari Experiments. We also conduct a series of interesting experiments on the Atari 100K games,
which includes 26 games with a budget of 400K environment steps (Kaiser et al., 2019). Specifically,
we select five representative games for evaluation: Alien, Bank Heist, Carzy Climber, Gopher, and
Pong. The modes and difficulties available in each game are summarized in Table 6. For each of
these games, we perform experiments among a sequence of four tasks, where each task randomly
assigns a (mode, difficulty) pair. We then train these models on the source task and generalize them
to downstream target tasks. Table 2 summarizes the average final scores across these tasks. We see
that CSR achieves the highest mean scores in all the five games. Moreover, Fig. 16 illustrates the
average generalization performance of various methods on downstream target tasks, while Fig. 17
to Fig. 21 present the training curves for each game, respectively. The reconstructions, as well as
the estimated structural matrices, are provided in Appendix D.3.4.
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Integrating causal knowledge by explicitly embedding structural matrices D into the world
model improves the generalization ability (Q2). Figure 3(c) illustrates the average performance
of CSR with and without D in Atari games. We observe a significantly faster and higher increase
in the cumulative reward when taking structural relationships into consideration. This demonstrates
the efficiency enhancement in policy learning through the removal of redundant causal variables,
which accelerates the extraction and utilization of knowledge during the generalization process.

Searching for the optimal expansion structure brings notable performance gains but involves a
trade-off (Q3). We conduct comparative experiments using the three methods described in Section
3.2 for all the environments and average them into Fig. 3(d). The results demonstrate that seeking
for the optimal structure significantly improves expansion performance, leading us to apply the
Self-Adaptive approach. However, we also observe that each search step requires extensive training
time for models with different expansion scales, making the search process highly time-consuming.
Therefore, it is crucial to consider this trade-off in practical applications.

5 RELATED WORK

Recently, extensive research efforts have been invested in learning abstract representations in RL,
employing methodologies such as image reconstruction (Watter et al., 2015), contrastive learning
(Sermanet et al., 2018; Mazoure et al., 2020), and the development of world models (Sekar et al.,
2020). A prominent research avenue within this domain is causal representation learning, which
aims to identify high-level causal variables from low-level observations, thereby enhancing the ac-
curacy of information available for decision-making processes (Schölkopf et al., 2021). Approaches
such as ASRs (Huang et al., 2022) and IFactor (Liu et al., 2023) leverage causal factorization and
structural constraints within causal variables to develop more accurate world models. Moreover,
CDL (Wang et al., 2022), GRADER (Ding et al., 2022) and Causal Exploration (Yang et al., 2024)
seek to boost exploration efficiency by learning causal models. Despite these advancements, many
of these studies are tailored to specific tasks and struggle to achieve the level of generalization across
tasks where human performance is notably superior (Taylor & Stone, 2009; Zhou et al., 2023).

To overcome these limitations, Harutyunyan et al. (2015) develop a reward-shaping function that
captures the target task’s information to guide policy learning. Taylor et al. (2007) and Zhang et al.
(2020) aim to map tasks to invariant state variables, thereby learning policies robust to environmen-
tal changes. AdaRL (Huang et al., 2021) is dedicated to learning domain-shared and domain-specific
representations to facilitate policy transfer. Distinct from these works, CSP (Gaya et al., 2022) ap-
proaches from the perspective of policy learning directly, by incrementally constructing a subspace
of policies to train agents. However, most of these works assume a constant environment space,
which is often not the case in practical applications. Therefore, in this paper, we investigate the
feasibility of knowledge transfer when the state space can also change. Furthermore, the approach
we propose is also related to the area of dynamic neural networks, where various methods have been
developed to address sequences of tasks that require dynamical modifications to the network archi-
tecture, such as DEN (Yoon et al., 2017), PackNet (Mallya & Lazebnik, 2018), APD (Yoon et al.,
2019), CPG (Hung et al., 2019), and Learn-to-Grow (Li et al., 2019).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we explore a broader range of scenarios for generalizable reinforcement learning,
where changes across domains arise not only from distribution shifts but also space expansions.
To investigate the adaptability of RL methods in these challenging scenarios, we introduce CSR,
an approach that uses a three-step strategy to enable agents to detect environmental changes and
autonomously adjust as needed. Empirical results from various complex environments, such as
CartPole, CoinRun and Atari games, demonstrate the effectiveness of CSR in generalizing across
evolving tasks. The primary limitation of this work is that it only considers generalization across
domains and does not account for nonstationary changes over time. Therefore, a future research
direction is to develop methods to automatically detect and characterize nonstationary changes both
over time and across tasks.
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A PROOFS OF IDENTIFIABLITY THEORY

Before presenting the proofs, we first introduce the relevant notations and assumptions.

Notations. We denote the underlying state variable by st = {s1,t, . . . , sd,t} and denote ot as the
observation. Also, we denote the mapping from state estimator ŝt to state st by st = h(ŝt), and
denote the Jacobian matrix of h as Jht . Let ζk,t ≜ log p(sk,t | st−1), we further denote

ωk,t ≜
(

∂2ζk,t

∂sk,t∂s1,t−1
,

∂2ζk,t

∂sk,t∂s2,t−1
, . . . ,

∂2ζk,t

∂sk,t∂sd,t−1

)⊤
,
◦
ωk,t≜

(
∂3ζk,t

∂s2k,t∂s1,t−1
,

∂3ζk,t

∂s2k,t∂s2,t−1
, . . . ,

∂3ζk,t

∂s2k,t∂sd,t−1

)⊤
.

(8)
Assumption 1. ζk,t is twice differentiable with respect to sk,t and differentiable with respect to
sl,t−1, for all l ∈ {1, . . . , d}.
Assumption 2 (Faithfulness assumption). For a causal graph G and the associated probability
distribution P , every true conditional independence relation in P is entailed by the Causal Markov
Condition applied to G (Spirtes et al., 2001).

A.1 PROOF OF THEOREM 1

Based on aforementioned assumptions and definitions, Theorem 1 establishes the conditions for the
component-wise identifiablity of the state variable st and the structural matrices D in Eq. (1).
Theorem 1. (Identifiablity of world model in Eq. (1)). Assume the data generation process in
Eq. (9). If the following conditions are satisfied, then st is component-wise identifiable: (1) for
any k1, k2 ∈ {1, . . . , d} and k1 ̸= k2, ŝk1,t and ŝk2,t are conditionally independent given ŝt−1;
(2) for every possible value of st, the vector functions defined in Eq. (8) are linearly independent.
Furthermore, if the Markov condition and faithfulness assumption hold, then the structural matrices
D are also identifiable: {

[ot, rt+1] = g(st, ϵt)
st = gs(st−1, at−1, ϵ

s
t ),

(9)

where {
ot = go(st, ϵ

o
t )

rt+1 = gr(st, ϵ
r
t+1).

(10)

The ϵt, ϵst , ϵ
o
t , ϵ

r
t+1 terms are corresponding independent and identically distributed (i.i.d.) random

noises. Following Kong et al. (2023), here we only assume that the global mapping g is invertible.

Proof. The proof proceeds in two steps. First, we demonstrate that the data generation process in
Eq. (9) is equivalent to the noiseless data distribution. Second, we summarize the proof steps of
the identifiablity of the state variables st under the noiseless distribution, which has already been
provided in Yao et al. (2022).

Step 1: transform into noise-free distributions.

Let yt = [ot, rt+1]. We denote p(yt) =
∫
pg(yt|st)pκ(st)dst where g, κ are the parameters of the

probability functions. Suppose pg,κ(yt) = pĝ,κ̂(yt) holds for all yt, where (g, κ) and (ĝ, κ̂) are two
sets of parameters. We complete the proof primarily by following Khemakhem et al. (2020).

By applying the law of total probability, we have∫
S
pκ(st) · pg(yt|st)dst =

∫
S
pκ̂(st) · pĝ(yt|st)dst. (11)

Further define pg(yt|st) = pϵt(yt − g(st)), we get∫
S
pκ(st) · pϵt(yt − g(st))dst =

∫
S
pκ̂(st) · pϵt(yt − ĝ(st))dst. (12)

Replacing yt = g(st) on the left hand side, and similarly on the right hand side, we obtain∫
O
pκ(g

−1(yt)) vol Jg
−1

t (yt) · pϵt(yt − yt)dyt =

∫
O
pκ̂(ĝ

−1(yt)) vol Jĝ
−1

t (yt) · pϵt(yt − yt)dyt,

(13)
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where vol J =
√
detJ⊤J.

By introducing p̃g,κ(yt) = pκ(g
−1(yt)) vol Jg

−1

t (yt)1(yt) on both sides, we can rewrite Eq. (13)
as ∫

Rυ

p̃g,κ(yt) · pϵt(yt − yt)dyt =

∫
Rυ

p̃ĝ,κ̂(yt) · pϵt(yt − yt)dyt, (14)

where υ = dimO + dimR. By the definition of convolution, Eq. (14) is equivalent to

(p̃g,κ ∗ pϵ)(yt) = (p̃ĝ,κ̂ ∗ pϵ)(yt), (15)

where ∗ denote the convolution operator. Denote F [.] the Fourier transform and φϵ = F [pϵ], we
have

F [p̃g,κ](Ω)φϵ(Ω) = F [p̃ĝ,κ̂](Ω)φϵ(Ω). (16)

Assume set {x ∈ X |φϵ(x) = 0} has measure zero, we can drop φϵ(Ω) from both sides, which
obtains

F [p̃g,κ](Ω) = F [p̃ĝ,κ̂](Ω). (17)

Therefore, for all yt ∈ O ×R, we have

p̃g,κ(yt) = p̃ĝ,κ̂(yt). (18)

This indicates that the noise-free distributions must coincide for the overall distributions to remain
identical after adding noise, effectively reducing the noisy case in Eq. (9) into the noiseless case.

Step 2: establish identifiability of state variables.

After transforming the problem into the noise-free case, we proceed by summarizing the key proof
steps of the identifiability of the state variables st, following Yao et al. (2022), which are:

• First, by making use of the conditional independence of the components of ŝt given ŝt−1, it is
shown that:

∂2 log p(ŝt | ŝt−1)

∂ŝi,t∂ŝj,t
= 0. (19)

• Second, by utilizing the Jacobian matrix Jht to calculate Eq. (19), it is derived that

∂3 log p (ŝt | ŝt−1)

∂ŝi,t∂ŝj,t∂sl,t−1
=

d∑
k=1

(
∂3ζk,t

∂s2k,t∂sl,t−1
· Jhk,i,tJhk,j,t +

∂2ζk,t
∂sk,t∂sl,t−1

·
∂Jhk,i,t
∂ŝj,t

)
≡ 0. (20)

• Finally, it is established that st is identifiable, up to an invertible, component-wise nonlinear
transformation of a permuted version of ŝt, if the linear independence of vector funtions defined
in Eq. (8) holds and the the Jacobian matrix Jht satisfies Eq. (20).

Moreover, the proofs for the identifiablity of the structural matrices D are presented in Huang et al.
(2021). Based on these steps, we next provide the proofs of Theorem 2-3, and Corollary 1.

A.2 PROOF OF THEOREM 2

Different from existing methods, to capture the changing dynamics in the environment, we have
introduced a task-specific change factor, θi, into the world model as defined in Eq. (2). Accordingly,
Theorem 2 presents the identifiability of θi and the corresponding structural matrices Dθi→· for
scenarios involving only distribution shifts in linear cases.
Theorem 2. (Identifiability of θi in Eq. (2)). Assume the data generation process in Eq. (21), where
the state transitions are linear and additive. If the process encounters distribution shifts and st has
been identified according to Theorem 1, then θi are component-wise identifiable:{

[ot, rt+1] = g(st, θ
o
i , θ

r
i , ϵt)

st = Ast−1 +Bat−1 +Cθsi + ϵst ,
(21)

where {
ot = go(st, θ

o
i , ϵ

o
t )

rt+1 = gr(st, θ
r
i , ϵ

r
t+1).

(22)
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Following Yao et al. (2021), here we assume that A is full rank, and C is full column rank. We
further assume that s0 = ŝ0. Moreover, if the Markov condition and faithfulness assumption hold,
the structural matrices Dθi→· are also identifiable.

Proof. The proofs for the identifiablity of Dθi→· are given in Huang et al. (2021). Here, we provide
the proof for the identifiablity of θi, which is done in the following four steps:

• In step 1, we prove that θoi can be identified up to component-wise transformation when only the
observation function exhibits distribution shifts.

• In step 2, we demonstrate that θri is component-wise identifiable when only the reward function
experiences distribution shifts.

• In step 3, we show that θsi can be identified component-wisely when only the transition function
undergoes distribution shifts.

• In step 4, we establish that in the general case, where the observation, reward, and transition
functions may undergo distribution shifts simultaneously, θi = {θoi , θri , θsi } is identifiable.

Step 1: prove the identifiability of θoi .

According to Eq. (22), we have
yt = g(st, θ

o
i , ϵt). (23)

Denote xt = (st, θ
o
i ). There exists

xt = h′(x̂t), (24)
where h′ = g−1 ◦ ĝ, and x̂t is the estimator of xt. Since both g and ĝ are invertible, h′ is invertible.
Therefore, we have

Jh
′

t =

 ∂st

∂ŝt

∂st

∂θ̂oi
∂θoi
∂ŝt

∂θoi
∂θ̂oi

 , (25)

where Jh
′

t is full rank. Note that ∂st

∂θ̂oi
= 0 and ∂θoi

∂ŝt
= 0. Further recall that we assume the identifia-

bility of st, which means that Jht = ∂st

∂ŝt
is full rank. We can derive that ∂θ

o
i

∂θ̂oi
must be full rank. That

is, θoi is component-wise identifiable.

Step 2: prove the identifiability of θri .

If only the reward function gr exhibits distribution shifts, we have

yt = g(st, θ
r
i , ϵt). (26)

It is straightforward to see that θri is blockwise identifiable using the same technique in Step 1.

Step 3: prove the identifiability of θsi .

Recall that we have
st = Ast−1 +Bat−1 +Cθsi + ϵst . (27)

By leveraging the recursive property of the state transition process, we can derive that

st = Ats0 +

(
t−1∑
k=0

AkB

)
at−1−k +

(
t−1∑
k=0

Ak

)
Cθsi +

(
t−1∑
k=0

Ak

)
ϵt−k. (28)

Similarly for ŝt, we have

ŝt = Âtŝ0 +

(
t−1∑
k=0

ÂkB̂

)
at−1−k +

(
t−1∑
k=0

Âk

)
Ĉθsi +

(
t−1∑
k=0

Âk

)
ϵt−k. (29)

Note that s0 = ŝ0. Therefore, combining Eq. (28) and Eq. (29) gives(
t−1∑
k=0

Ak

)
Cθsi = st −AtÂ−t

[
ŝt −

(
t−1∑
k=0

Âk

)
Ĉθsi

]
+Θ, (30)
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where Θ is a constant term. Taking the derivative w.r.t θ̂si on both sides, we obtain

M
∂θsi

∂θ̂si
=
∂st
∂ŝt

∂ŝt

∂θ̂si
−AtÂ−t

[
∂ŝt

∂θ̂si
− M̂

]
, (31)

where M =
(∑t−1

k=0 A
k
)
C and M̂ =

(∑t−1
k=0 Â

k
)
Ĉ. Note that we further have ∂ŝt

∂θ̂si
= M̂

according to Eq. (29). That is,

M
∂θsi

∂θ̂si
=
∂st
∂ŝt

M̂ . (32)

Recall that ∂st

∂ŝt
= Jht is full rank. Moreover, the full column rank of M and M̂ is guaranteed by

the full rank of A and the full column rank of C (see Proposition 1). Therefore, we can derive

rank(M
∂θsi

∂θ̂si
) = rank(

∂st
∂ŝt

M̂) = dim θsi . (33)

Due to the rank inequality property of matrix products, we have

rank(M
∂θsi

∂θ̂si
) ≤ min

(
M , rank(

∂θsi

∂θ̂si
)

)
= min

(
dim θsi , rank(

∂θsi

∂θ̂si
)

)
≤ dim θsi . (34)

Eq. (33) and Eq. (34) show that

dim θsi ≤ min

(
dim θsi , rank(

∂θsi

∂θ̂si
)

)
≤ dim θsi . (35)

To make the above equation hold true, it must have rank(∂θ
s
i

∂θ̂si
) = dim θsi . That is, ∂θ

s
i

∂θ̂si
must be full

rank, then θsi must be component-wise identifiable.

Step 4: prove the identifiability of θi in the general case.

This step can be easily demonstrated by directly combining the proofs above.

Proposition 1. Suppose A is a matrix with full rank, and C is a matrix with full column rank.
Define M =

(∑t−1
k=0 A

k
)
C. Then M is full column rank.

Proof. To establish that M is full column rank, it suffices to show that N =
∑t−1
k=0 A

k is of full
rank. Assume the eigenvalues of A are denoted by Λ. Given that A is of full rank, the eigenvalues
of Ak are Λk. Let ΛN represent the eigenvalues of N , then we have

ΛN =

t−1∑
k=0

Λk. (36)

It is evident that there exists at least one t such that for any non-zero Λ, Eq. (36) is non-zero, thereby
confirming that N has no zero eigenvalues. This verification ensures that N is full rank. Hence, M
maintains full column rank.

A.3 PROOF OF THEOREM 3

In Theorem 3, we foucus on the identifiablity of the newly added variables sadd
t and their correspond-

ing structural matrices, when the state space is expanded by incorporating additional dimensions.
Theorem 3. (Identifiability of Expanded State Space). Assume the data generation process in Eq.
(9). Consider the expansion of the state space S by incorporating additional dimensions. Suppose
st has already been identified according to Theorem 1, then the component-wise identifiability of the
newly added variables sadd

t and the additional structural matrices, i.e., Dsadd→· and D·→sadd
, can be

established if sadd
t (1) represents a differentiable function of [ot, rt+1], i.e., sadd

t = f(ot, rt+1), and
(2) fulfills conditions (1) and (2) specified in Theorem 1.
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Proof. For the newly added variables, since they also satisfy the conditional independence con-
dition, we can derive the same properties as described in Eq. (19) and Eq. (20) using the same
technique in the proof steps of Theorem 1. Additionally, since the vector functions corresponding
to sadd

t also satisfies linear independence condition, it is straightforward that sadd
t can also be identi-

fied component-wisely. As for the additional structural matrices introduced, the Markov condition
and faithfulness assumptions required for their identifiability have already been demanded in the
identifiability properties of the existing structural matrices, thus no additional proof is needed.

Corollary 1. (Identifiability under Multiple Shifts). Assume the data generation process in Eq. (21)
involves both distribution shifts and state space shifts that comply with Theorem 2 and Theorem 3,
respectively. In this case, both the domain-specific factor θi and the newly added state variable sadd

t
are component-wise identifiable.

Proof. This corollary can be directly derived by leveraging the conclusions from Theorems 1-3.

A.4 EXTENSION TO NONLINEAR CASES: CHALLENGES AND EMPIRICAL VALIDATION

The main challenge in extending the identifiability of θsi to nonlinear scenarios lies in the fact that
gs, in this context, represents a general nonparametric transition dynamic. This makes it difficult
to disentangle θsi from (st−1, θ

s
i ), as we do in the proofs of Theorem 2. Although recent works

have made significant progress in establishing the identifiability of causal processes in nonparamet-
ric settings (Yao et al., 2021; 2022; Kong et al., 2023), they typically rely on the assumption of
invertibility. However, as noted in Liu et al. (2023), while assuming the invertibility of the mixing
function g is reasonable, we cannot make the same assumption for gs, as this often does not hold in
practice. But this does not imply that θsi is unidentifiable. On the contrary, the empirical results in
Fig. 4 demonstrate that even in nonlinear settings, the learned θ̂si remains a monotonic function of
the actual change factors θsi , corroborated by findings from Huang et al. (2021). This motivates us
to extend Theorem 2 to broader nonlinear scenarios in our future research, a task that is challenging
yet promising.
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Figure 4: Correlation between the ground-truth θs
i and the estimated values in our simulations.

B SELF-ADAPTIVE EXPANSION STRATEGY

We design three different approaches for state space expansion: Random, Deterministic, and Self-
Adaptive. In Random, the number of causal variables expanded is randomly chosen. For Determin-
istic, we follow the approach used in DEN (Yoon et al., 2017), first adding a predefined number
of variables to the causal graph and then applying group sparsity regularization to the network pa-
rameters corresponding to the newly added variables. Table 3 provides the final expansion results
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Experiments Random Deterministic Self-Adaptive Expansion Scope
Simulated 4.0 5.0 4.2 (0, 8]
CartPole 6.2 6.0 4.0 (0, 8]
CoinRun 9.4 8.0 6.8 (0, 10]
Atari 7.8 8.0 6.4 (0, 10]

Table 3: The expansion results of different methods in our experiments.

of various methods across these tasks, as well as the scope of expansion. Next, we introduce the
Self-Adaptive method.

Different from prior methods, Self-Adaptive integrates state space expansion into the reinforcement
learning framework. To achieve this, the first thing that needs to be done is to transform the ex-
pansion concept into a decision-making process. Since our goal is to determine how many causal
variables should be incorporated into the causal graph, the action ut can be intuitively represented
as the number of variables to add. Regarding the state variable vt, it is designed to reflect the cur-
rent state of the system. Given that the model’s expansion is inseparable from its original structure
and adaptability to the target task Mi, we formulate the state variable as a reflection of both the
original network size and its predictive capability on Mi, denoted as vt = (xt,∆τ ). To be spe-
cific, xt = (xot , x

r
t , x

s
t ), where xot , xrt , and xst represent the combination of the number of nodes for

each layer in the models defined in Eq. (2), respectively. If the transition model is an m-layer net-
work, then xst is an m-dimensional vector, with the l-th element representing the number of nodes
in the l-th layer. Moreover, ∆τ = τ − τ⋆ represents the difference between the model’s predictive
performance τ and the threshold τ⋆.

Whenever the controller takes an action ut, we correspondingly extend the model by augmenting
it with additional components, and train the newly added parts from scratch with a few amount of
data. For instance, if ut = d′, it implies that d′ causal state variables will be incorporated. Then for
the observation model, we only need to focus on learning the mapping from sadd

t to ot, together with
the structural constraints Dsadd

t →o. A similar principle applies to the reward and transition model.
Finally, we re-estimate the performance of the expanded model, denoted as τ ′t , and derive the reward
as:

rt = (τ − τ ′t)− λrut, (37)

where τ − τ ′t reflects the change in the model’s representational capacity before and after expansion,
the term −λrut acts as a regularization penalty that imposes a cost on model expansion, and λr is
the corresponding scaling factor, which is set to 0.01 in our experiments.

Building upon the above foundation, it becomes feasible to develop and train a policy aimed at dy-
namically enhancing the causal model in adaptation to current task Mi through strategic expansion.

C DISTRIBUTION SHIFTS VS. SPACE EXPANSIONS IN A MDP SCENARIO

We further present a simple MDP scenario to illustrate the two types of environmental changes
that CSR addresses: distribution shifts and space expansions. Specifically, Fig. 5(a) provides a
graphical representation of the generative environment model for the source task, where s1,t denotes
the latent causal variable, and θ = {θo,θr} represents task-specific change factors.

For distribution shift scenarios (Fig. 5(b)), the target task shares the same causal variable as the
source task but differs in the value of θ. For example, in CartPole, the gravity (θr) might shift from
9.8 to 5. Notably, this implies that the causal diagram remains unchanged, an assumption commonly
adopted in prior works (Huang et al., 2021; 2022; Gaya et al., 2022).

In contrast, space expansion involves the emergence of new variables (e.g., s2,t in Fig. 5(c)),
which inevitably leads to changes in the causal diagram. Consequently, world models must expand
their state and action spaces to accommodate these new variables. This necessity motivates the
development of CSR. Algorithm 1 presents the pseudocode for CSR, where the model estimation
and policy learning processes are implemented using the Dreamer framework. Notably, CSR is not
restricted to Dreamer and can can also be implemented with a variety of policy-learning algorithms,
such as Q-learning (Mnih et al., 2015) and DDPG (Lillicrap, 2015).
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ot−1 ot ot+1

s1,t−1 s1,t s1,t+1
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θo θo θo

θr θr
Rt

(a) Source task

ot−1 ot ot+1

s1,t−1 s1,t s1,t+1

at−1 at

rt rt+1

θo θo θo

θr
′

θr
′

Rt

(b) Distribution shifts

ot−1 ot ot+1

s1,t−1 s1,t s1,t+1

s2,t−1 s2,t s2,t+1

at−1 at

rt rt+1

θo θo θo

θr θrRt

(c) Space expansions

Figure 5: A graphical illustration of the generative environment model and the two types of changes
addressed by CSR. (a) Source task; (b) Distribution shift scenario where the causal diagram remains
unchanged but the value of θr differs; (c) Space expansion scenario involving the emergence of new
variable s2,t. Grey nodes denote observed variables, white nodes represent unobserved variables,
and red nodes highlight the changing components in the target task compared to the source task.

Algorithm 1: Towards Generalizable RL through CSR
Input: Maximum distribution shifts detection step Tc.
Initialize World Model W with parameters ϕ, β, α randomly.
Initialize D as an all-ones matrix.
Record multiple rollouts from source task M1 and estimate the model in Eq. (2).
Obtain the optimal policy π⋆ in M1 and calculate threshold τ⋆ using W .
for target tasks Mi(i = 2, 3, . . .) do

Collect multiple rollouts B from Mi.
while generalization do

// Model re-estimation
for training steps c = 1, . . . , Tc do

Draw data sequences {⟨ot, at, rt⟩}t∈Ti
from B.

Compute model states st ∼ qα(st | st−1,θi, at−1, ot).
Update θi using J , with all other parameters fixed.

Calculate Lpred using W .
// Distribution Shifts Detection and Characterization
if Lpred < τ⋆ then

return Latest model W and policy π⋆ for task Mi.
else

// State/Action Space Expansions
Search to introduce new causal variables into the graph.
while not converged do

for training steps c = 1, . . . , C do
// Model estimation (Causal Graph Pruning is concurrently implemented)
Draw data sequences from B and compute model states using qα.
Update ϕ, β, α,θi, D using J .
// Policy Learning
Imagine trajectories from each st.
Update policy π⋆ from the imagined trajectories via REINFORCE gradients.

// Environment interaction
for time step t = 1, . . . , T do

Select action at with probability ϵ; otherwise calculate at using π⋆.
Execute action at and receive reward rt+1 and observation ot+1.

Store transition {⟨ot, at, rt⟩}Tt=1 into replay buffer B.

return Latest model W and policy π⋆ for task Mi.
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D COMPLETE EXPERIMENTAL DETAILS

Below, we provide detailed implementation specifics for the experiments, including model architec-
tures and training details, the selection of hyperparameters, a thorough description of the environ-
ments, and additional experimental results.

D.1 MODEL ARCHITECTURES AND TRAINING DETAILS

Model components. Following Dreamer (Hafner et al., 2020; 2023), we implement the world
model as a Recurrent State-Space Model (RSSM, (Cobbe et al., 2019)), the encoder and decoder
in the representation model and observation model as convolutional neural networks (LeCun et al.,
1989), and all other functions as multi-layer perceptrons with ELU activations (Clevert, 2015).

The implementation of D. We adopt the Gumbel-Softmax (Ng et al., 2022) and Sigmoid methods
to approximate the binary masks D in our experiments, which is a commonly used approach in
causal representation learning.

Training details. During the generalization process, we use epsilon-greedy to balance the
exploration-exploitation trade-off, and take straight-through gradients through the sampled repre-
sentations for model estimation. Since the actions are always discrete, we adopt the REINFORCE
gradients (Williams, 1992) with Adam optimizer (Kingma, 2014) for policy learning.

Steps for distribution shifts detection. Empirically, we set the maximum training steps for distri-
bution shift detection as: 1k in Simulation, 2k in CartPole, 100k in Atari, and 250k in CoinRun.

Training cost. All experiments are conducted using an Nvidia A100 GPU. Training from scratch
on the simulated and CartPole environments take less than 4 hours, training on Atari required ap-
proximately one day, and training on CoinRun takes about 4 days.

D.2 HYPERPARAMETERS

Simulated Environment Architecture Hyper Parameters
Change factor θs - Uniform, [-1, 1]
Random noise ϵst - Gaussian, N (0, 0.2I)

Reward function gr
Dense 128, he uniform, relu
Dense 64, he uniform, relu
Dense 1, glorot uniform

Transition function gs Dense 4, glorot uniform, tanh
Observation function go Dense 128, glorot uniform

Table 4: Architecture and hyperparameters for the simulated environment.

Hyper Parameters Values in CartPole Values in CoinRun and Atari
Action repeat 1 4
Batch size 20 16
Imagination horizon 8 15
Sequence length 30 64
Size of θ 2 20
Size of ht 30 512
Size of zt 4 32
Size of hidden nodes 100 512
Size of hidden layers 2 2
Regularization terms λKL, λreg 0.02 0.1

Table 5: Hyperparameters of CSR for CartPole, CoinRun and Atari games.
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Game Modes Difficulties
Alien [0, 1, 2, 3] [0, 1, 2, 3]
Bank Heist [0, 4, 8, 12, 16, 20, 24, 28] [0, 1, 2, 3]
Crazy Climber [0, 1, 2, 3] [0, 1]
Gopher [0, 2] [0, 1]
Pong [0, 1] [0, 1]

Table 6: Available modes and difficulties in each game of our Atari experiments.

D.3 DETAILED DESCRIPTIONS OF THE ENVIRONMENTS

In this section, we provide detailed descriptions of the construction of these environments and
present additional experimental results. For simulated experiments, we generate synthetic datasets
that satisfy the two scenarios with different types of environmental changes. For CartPole, we con-
sider distribution shifts in the task domains with different gravity or cart mass, and space variations
by adding cart friction as the new state variable and additional force values for action expansion. For
Atari games, we design the experiments by generating tasks with different game mode and difficulty
levels. Such mode and difficulty switches lead to different consequences that changes the latent
game dynamics or introduces new actions into the environment (Machado et al., 2018; Farebrother
et al., 2018). For CoinRun, we train agents from easy levels and generalize them to difficulty levels
where there could be new enemies that have never occurred before.

D.3.1 SIMULATED ENVIRONMENT

We construct the simulated environment based on the following POMDP framework:

s1 ∼ N (0, I0),

ot = go(st−1),

st = gs(θs, st−1, at−1) + ϵst , ϵst ∼ N (0, Iϵ)

rt = gr(st−1),

(38)

where s1 and ϵst are sampled from Gaussian distributions, and functions go, gs, and gr are imple-
mented using MLPs. To simulate scenarios of distribution shifts, we generate random values for
θs in different tasks. To model changes in the state space S, we randomly augment it with n di-
mensions, where n is uniformly sampled from the range [3, 7]. Moreover, to introduce structural
constraints into the data generation process, we initialize the network parameters for go, gs, and gr,
by randomly dropping them out with a probability of 0.5. The network weights then remain constant
throughout the learning process. For each task, agents are allowed to collect data over 100 episodes,
each consisting of 256 time steps. Table 4 provides the corresponding network architecture and
hyperparameters.

D.3.2 CARTPOLE ENVIRONMENT

Based on the conclusions in Florian (2007), we modify the CartPole game to introduce changes in
the distribution and state space. Specifically, for Task 1 and Task 2, the transition processes adhere
to the following formulas:

ψ̈ =
g sinψ + cosψ

(
−F−mplψ̇

2 sinψ
mc+mp

)
− µpψ̇

mpl

l
(

4
3 − mp cos2 ψ

mc+mp

)
ẍ =

F +mpl
(
ψ̇2 sinψ − ψ̈ cosψ

)
mc +mp

,

(39)

where the parameters used are the same as those defined in Section 2 of Florian (2007), except that
ψ is used in place of θ. By altering the values of mc and g, we can simulate distribution shifts. For
Task 3, we introduce the friction between tha cart and the track into the game, denoted as µc, thus
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Figure 6: An illustration of the CartPole environment.

Figure 7: An illustration of the CartPole game under different friction coefficients.

altering Eq. (39) to Eq. (21) and Eq. (22) in Florian (2007), which is:

ψ̈ =
g sinψ + cosψ

{
−F−mplψ̇

2[sinψ+µc sgn(Ncẋ) cosψ]
mc+mp

+ µcg sgn (Ncẋ)
}
− µpψ̇

mpl

l
{

4
3 − mp cosψ

mc+mp
[cosψ − µc sgn (Ncẋ)]

}
ẍ =

F +mpl
(
ψ̇2 sinψ − ψ̈ cosψ

)
− µcNc sgn (Ncẋ)

mc +mp
.

(40)

Note that µc varies cyclically every 5 steps among {3e-4, 5e-4, 7e-4}, so that the agent must con-
tinually monitor it throughout the process to achieve higher and stable rewards, This helps us assess
whether the agent has detected the newly introduced variable. Additionally, we also visualize these
changes in the image inputs; Fig. 7 presents examples under different friction coefficients. In the
typical CartPole setup, the action values represent the direction of the force F . Specifically, 0 de-
notes a leftward force, while 1 indicates a rightward force, with a default magnitude of Fmag = 10.
In Task 4, we have expanded the possible values of F to include {0.5 × Fmag, Fmag, 1.5 × Fmag},
thereby extending the action dimension to 6. Our implementation is built upon Dreamer (Hafner
et al., 2020), Table 5 lists the hyperparameters that are specifically set in our experiments. Fig. 8
illustrates the corresponding training results. Moreover, Fig. 9 shows a comparison of the recon-
struction effects of different world models across the three tasks. Note that the transition model is an
RSSM in our implementation. Consequently, we divide the state st into a deterministic state ht and
a stochastic state zt. With this setup, the identified structural matrices in our experiment is shown in
Fig. 10(a).
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Figure 8: Training results of our CartPole experiments.
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Figure 9: The reconstructed observations of different world models in CartPole.

D.3.3 COINRUN ENVIRONMENT

CoinRun serves as an apt benchmark for studying generalization, owing to its simplicity and suffi-
cient level diversity. Each level features a difficulty coefficient ranging from 1 to 3. Following Cobbe
et al. (2019), we utilize a set of 500 levels as source tasks and generalize the agents to target tasks
with higher difficulty levels outside these 500 levels. We maintain all environmental parameters
consistent with those reported in Cobbe et al. (2019). For the world models of CoinRun and Atari
games, we employ the same hyperparameters, which are listed in Table 5. Fig. 12 visualizes the
reconstructions generated by various methods when generalizing to high-difficulty CoinRun games,
where the first row displays the ground truth observations, the second row illustrates the model-
generated reconstructions, and the third row highlights the differences between the ground truth and
the reconstructions. We find that our proposed CSR method effectively captures newly emerged en-
emies, which the baseline methods fail to do. Moreover, Fig. 10(b) presents the estimated structural
matrices.

D.3.4 ATARI ENVIRONMENT

Atari serves as a classic benchmark in reinforcement learning, with most studies using it to evaluate
the performance of proposed methods on fixed tasks. However, as mentioned in Machado et al.
(2018), many Atari tasks are quite similar, also allowing for the assessment of a reinforcement
learning method’s generalization capabilities. Specifically, within the same game, we can adjust
its modes and difficulty levels to alter the game dynamics. Although the goals of the game remain
unchanged, increasing the complexity of modes and difficulty necessitates consideration of more
variables, thus posing challenges for knowledge generalization.

According to Table 10 in Machado et al. (2018), we select five games that feature different modes
and levels of difficulty, and set the task sequence as four in our experiments. The corresponding
modes and difficulties available in these five games are given in Table 6. Fig. 11 gives an example
in Crazy Climber. For Task 1, the agent is trained from scratch. For Tasks 2 to 4, different methods
are employed to maximize the generalization of acquired knowledge to new tasks. Fig. 17 to Fig.
21 illustrates the training returns in these five games with different methods, Fig. 16 are the average
generalization performances, and Fig. 15 are the corresponding reconstructions. Besides, we also
illustrate how the structural matrices evolve during model adaptation in Fig. 10(c).

Note that changes in the latent state space in Atari games are not as straightforward as previous
tasks, because variations in mode and difficulty typically influence latent state transitions rather than
introducing new entities which are directly observable in the game environment. Hence, to fur-
ther explore what the newly added variables represent, we first deactivate them and deduce their
representations within the model, and then generate the reconstructions. Fig. 13 displays the re-
constructed observations using the full state representations and after removing the newly added
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Figure 10: Estimated causal structural matrices in the experiments: (a) CartPole Task 1; (b) High
difficulty CoinRun games; (c) An illustration of the state space in Atari and how Dz→h

k evolves
across tasks. Here, d represents the size of the state space, with d′ = 0 indicating distribution shifts,
and non-zero d′ signifying state space expansion.
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Figure 11: Different modes of the game Crazy Climber.

(a) (b) (c)

Figure 12: Visualization of reconstructions when
generalizing to high-difficulty CoinRun games us-
ing various methods: (a) Dreamer; (b) AdaRL; (c)
CSR (ours).

(a) (b)

Figure 13: Visualized reconstructions in
Atari target games using CSR with: (a)
Full state representations; (b) Original
state representations before expansion.
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Figure 14: Visualization of (a) Evolution of prediction error Lpred at the distribution shift detection
step of CSR and (b) The ratio between the two modes of CSR across experimental environments.

variables. By comparing the observations before and after removal, it is evident that although the
model can still reconstruct most of the buildings, it loses the precise information about the climber
(the colorful person in the lower left corner of the image). Such disappearance in the reconstructions
demonstrates the success of introducing the newly added variables in capturing the changing aspects
in the latent state transitions. This further illustrates that CSR is also capable of handling general
generalization tasks, even when the target domains do not exhibit significant space variations.

D.4 ADDITIONAL EXPERIMENTAL RESULTS

To investigate the correlation between a task and the mechanism selected during adaptation, we
further visualize the evolution of Lpred and the ratio between the two modes of CSR (distribution
shift detection and space expansion) across all experimental environments in Fig. 14. Note that
for Atari games, averaging across environments does not yield meaningful insights. Therefore,
we use Pong as a representative example, and set (mode, difficulty) sequentially across four tasks
as (0,0), (0,1), (1,1), and (1,0). As seen in Task 2 of the simulated environment and CartPole,
when only distribution shifts occur, Lpred typically remains low. In contrast, the emergence of new
variables, for example in Task 3 of Pong, consistently causes a substantial increase in prediction
error—often by an order of magnitude or more. Besides, we also observe that the agent always opts
to expand its causal world model to effectively address the added complexity and variability arising
from the transition from simple to high-difficulty tasks in CoinRun. These observations collectively
demonstrate that Lpred serves as a reliable indicator of adaptation in our experiments.

E A DISCUSSION ON FUTURE DIRECTIONS

While CSR presents a promising direction for extending RL to broader scenarios and has achieved
meaningful progress, the pursuit of generalizable and interpretable RL still faces enduring chal-
lenges. In this section, we outline several potential research directions to inspire further innovative
studies toward general artificial intelligence.

Dynamic Graphs. CSR focuses on domain generalization but has yet to address the challenges
posed by nonstationary changes both over time and across tasks (Feng et al., 2022). It remains an
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important direction for future research to develop methods that can automatically detect and model
such changes to improve adaptability and robustness.

Misalignment Problems. The goal misalignment problem, also known as shortcut behavior, refers
to a situation where an agent’s performance appears aligned with the target goal but is actually driven
by a side goal (Di Langosco et al., 2022; Delfosse et al., 2024). This often occurs because the target
goal and the side goal share a common causal variable, defined as Forks in causal learning (Spirtes
et al., 2001; Pearl & Mackenzie, 2018). Consequently, learning a causal world model defined in Eq.
(2) that captures causal relationships rather than correlations could help mitigate this misalignment
issue.

Beyond Sequential Settings. While our current focus is on task adaptation in sequential settings,
CSR presents promising applications in continual reinforcement learning (CRL, (Khetarpal et al.,
2022)), where the agent needs to utilize a replay buffer containing samples from both the current
and previous tasks to identify the most similar task for policy transfer, or to address domain-agnostic
settings by integrating domain shift detection techniques.

Generalization across different games. Another interesting direction for future research is the
investigation of RL methods’ ability to generalize across very different games, such as Space In-
vaders and Demon Attack. These games feature distinct visuals but share similar gameplay and
rules. While humans can easily transfer knowledge between these tasks, this remains a challenging
feat for artificial intelligence.
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(a) Dreamer

(b) AdaRL

(c) CSR (ours)

Figure 15: Visualization of reconstructions of various methods in the Atari games.
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Figure 16: Average generalization performance of different methods in Atari games.
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Figure 17: Training results of various methods in game Alien.
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Figure 18: Training results of various methods in game Bank Heist.
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Figure 19: Training results of various methods in game Crazy Climber.
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Figure 20: Training results of various methods in game Gopher.
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Figure 21: Training results of various methods in game Pong.
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