Under review as a conference paper at ICLR 2025

MIXLINEAR: EXTREME LOW RESOURCE MULTIVARI-
ATE TIME SERIES FORECASTING WITH 0.1 /K PARAME-
TERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, there has been a growing interest in Long-term Time Series Forecasting
(LTSF), which involves predicting long-term future values by analyzing a large
amount of historical time-series data to identify patterns and trends. There exist
significant challenges in LTSF due to its complex temporal dependencies and high
computational demands. Although Transformer-based models offer high forecast-
ing accuracy, they are often too compute-intensive to be deployed on devices with
hardware constraints. On the other hand, linear models aim to reduce the com-
putational overhead by employing decomposition methods in the time domain or
compact representations in the frequency domain. In this paper, we propose Mix-
Linear, an ultra-lightweight multivariate time series forecasting model specifically
designed for resource-constrained devices. MixLinear effectively captures both
temporal and frequency domain features by modeling intra-segment and inter-
segment variations in the time domain and extracting frequency variations from a
low-dimensional latent space in the frequency domain. By reducing the param-
eter scale of a downsampled n-length input/output one-layer linear model from
O(n?) to O(n), MixLinear achieves efficient computation without sacrificing ac-
curacy. Extensive evaluations with four benchmark datasets show that MixLin-
ear attains forecasting performance comparable to, or surpassing, state-of-the-art
models with significantly fewer parameters (0.1/), which makes it well-suited
for deployment on devices with limited computational capacity.

1 INTRODUCTION

Time-series modeling is crucial for various fields, including climate science (Moon & Wettlaufer,
2017), biological research (Watson et al.| 2021)), medicine (Kim et al., 2014), retail (Nunnari &
Nunnari, 2017), and finance (Sezer et al., [2020). Accurate time series forecasting is essential for
informed decision-making and strategic planning in these domains. Traditional approaches, such
as Autoregressive (AR) models (Nassar et al.l 2004)), exponential smoothing (Gardner Jr |1985)),
and structural time-series models (Harvey, [1990), have established a strong foundation for time-
series forecasting. In recent years, there has been a growing interest in Long-term Time Series
Forecasting (LTSF), which aims to predict long-term future values by identifying patterns and trends
in large amounts of historical time-series data. Recent research has demonstrated that leveraging
advanced machine learning techniques, such as Gradient Boosted Regression Trees (GBRT) (Mohan
et al.| [2011), and deep learning models, including Recurrent Neural Networks (RNN) (Salehinejad
et al., 2017) and Temporal Convolutional Networks (TCN) (He & Zhaol 2019), yields significant
performance improvements over traditional methods.

Over the last few years, significant efforts have been made to explore the use of Transformers for
LTSF and produced many good models, such as LogTrans (Nie et al., 2022), Informer (Zhou et al.,
2021)), Autoformer (Wu et al.| 2021)), Pyraformer (Liu et al.,|2021)), Triformer (Cirstea et al.,|2022),
FEDformer (Zhou et al.,[2022b), and PatchTST (Nie et al.,[2023)). Those models achieve good fore-
casting performance at the cost of introducing significant computation overhead due to the use of
the self-attention mechanism, which scales quadratically with sequence length L. The high compu-
tational demands and large memory requirements of these models hinder their deployment for LTSF
tasks on resource-constrained devices. To address this limitation and facilitate low-resource usage,

Under review as a conference paper at ICLR 2025

03751 o Informer (2021) ®
leJ Autoformer (2021)
0.350
> + FEDformer (2022)
: * FiLM (2022)
e 0.325 # PatchTST (2023)
— & DlLinear (2023)
_u; 0.300 FITS (2024)
[0)] SparseTSF
E 0.275 A MixLinear (ours)
-]
L?')-O'250 . *
S 0.225
(V]
= g200{ * . .
10~2 10~3 10~4 10~5 10°6 10~7 10~8
Parameters

Figure 1: Comparison of MSE and parameters between MixLinear and other mainstream models of
the Electricity dataset with a forecast horizon of 720.

researchers have proposed refined linear models based on decomposition techniques that achieve
comparable performance with significantly fewer parameters. For instance, FITS (Xu et al., [2024)
attains superior performance using interpolation in the complex frequency domain with only 10K
parameters, while SparseTSF (Lin et al.l 2024)) further reduces the parameter count to 1K while
maintaining robust performance.

However, current research in LTSF focuses on efficiently decomposing and capturing dependencies
from either the time domain or frequency domain. For instance, Informer employs an attention-
distilling method to reduce complexity (Zhou et al.| 2021)) in the time domain, PatchTST utilizes a
patching technique to transform time series into subseries-level patches for increased efficiency (Nie
et al.,[2023)), and SparseTSF simplifies forecasting by decoupling periodicity and trend (Lin et al.,
2024). In the frequency domain, FEDformer decomposes sequences into multiple frequency do-
main modes using frequency transforms to extract features (Zhou et al., [2022b)). TimesNet (Wu
et al., 2022)) employs a frequency-based method to separate intraperiod and interperiod variations.
FITS utilizes a complex-valued neural network to capture both amplitude and phase information
simultaneously, providing a more comprehensive and efficient approach to processing time series
data (Xu et al., [2024)).

In this paper, we introduce MixLinear a highly lightweight multivariate time series forecasting
model, which efficiently captures the temporal and frequency features from both time and frequency
domains. It captures intra-segment and inter-segment variations in the time domain by decoupling
channel and periodic information from the trend components, breaking the trend information into
smaller segments. In the frequency domain, it captures frequency domain variations by mapping
the decoupled time series subsequences (trend) into a latent frequency space and reconstructing the
trend spectrum. MixLinear reduces the parameter requirement from O(n?) to O(n) for L-length
inputs/outputs with a known period w and subsequence length n = [%W Our comprehensive
evaluation of LTSF with benchmark datasets shows that MixLinear provides comparable or bet-
ter forecasting accuracy with much fewer parameters (0.1K) compared to state-of-the-art models.
For instance, as Fig. [1| shows, MixLinear achieves a Mean Squared Error (MSE) of 0.208 on the
Electricity dataset|'|with a forecast horizon of 720 with 195 parameters.

In summary, our contributions in the paper are as follows:

* We introduce an extremely lightweight model MixLinear that can achieve state-of-the-art
comparable or better forecasting accuracy with only 0.1/ parameters.

!"The Electricity dataset contains the hourly electricity consumption of 321 customers, spanning the period
from 2012 to 2014.

Under review as a conference paper at ICLR 2025

* To our knowledge, Mixlinear is the first lightweight LTSF model that captures temporal
and frequency features from both time and frequency domains. MixLinear applies the trend
segmentation in the time domain to capture the intra-segment and inter-segment variations.
MixLinear captures amplitude and phase information by reconstructing the trend spectrum
from low dimensional latent space in the frequency domain.

* To evaluate our model, we conduct experiments on several widely used LTSF benchmark
datasets. MixLinear consistently delivers top-tier performance across a variety of time
series tasks and achieves up to a 5.3% reduction in MSE on these benchmarks.

2 PRELIMINARIES

Long-term Time Series Forecasting. The task of LTSF involves predicting future values over
an extended horizon using previously observed multivariate time series data. It is formalized as
Fipreem = f(@_rpy1.4), where 2, _p 1. € REXC and #4114 € REXC. In this formulation,
L denotes the length of the historical observation window, C' represents the number of distinct
features or channels, and H denotes the length of the forecast horizon. The main goal of LTSF is to
extend the forecast horizon H as it provides rich and advanced guidance in practical applications.
However, an extended forecast horizon H often requires more parameters and significantly increases
the parameter scale of the forecasting model.

Lightweight Time Series Forecasting. Recently, there has been a growing interest in developing
lightweight models for LTSF. DLinear (Zeng et al., 2023) demonstrates that simple linear models
can effectively capture temporal dependency and outperform transformer-based models. DLinear
shares the weights across different variates, does not model spatial correlations, and transforms the
multivariate input ;1.4 € RLXC to the output Tyy1.444 € RHE*C by reformulating it into
a univariate mapping ;_7+1.+ € R” to Z441...7 € R¥. On the other hand, FITS (Xu et al.,
2024) employs a harmonic content-based cutoff frequency selection method that reformulates the
univariate input 7, 1.; € R” to output &4 1.1z € R¥ by mapping it to the frequency domain
and reduces the input length from L to n®©F, where n“©¥ is the cutoff frequency and n“°F << L.
FITS significantly reduces the parameter scale (from 140K to 10K). SparseTSF takes a different
approach by decoupling periodicity and trend components in time series data through aggregation
and downsampling and reformulates the univariate input z;_ 1 1.; € R” to output #1445 € RY
by mapping the trend component @y (1.4 t0 &41:¢4m,» Where n = [£],m = [£], and w is the
period. SparseTSF reduces the parameter scale to as low as 1K.

3 MIXLINEAR

3.1 OVERVIEW

Current research in LTSF focuses on efficiently decomposing and capturing temporal dependencies
from the time or frequency domain. The key innovation of MixLinear lies in its ability to extract
features from both domains while minimizing the number of neural network parameters. However,
combining time and frequency domain models can significantly increase the parameter scale. Mix-
Linear addresses such an issue by substantially reducing the parameter count without compromising
prediction performance. Figure [2]illustrates the overall architecture of MixLinear, which consists of
two key processes: Time Domain Transformation and Frequency Domain Transformation. Unlike
the existing linear models that apply pointwise transformations, our Time Domain Transformation
captures inter-segment and intra-segment dependencies by splitting the decoupled time series (trend)
into segments. Such a method significantly reduces the model parameter scale and enhances the lo-
cality, which is unavailable in the pointwise methods. In contrast to the existing frequency-based
models that perform transformation on the entire series, our Frequency Domain Transformation fo-
cuses on transforming more compact trend components in a lower-dimensional latent space, which
reduces the model complexity by learning frequency variations more effectively. The overview
workflow of MixLinear can be found in Appendix

Under review as a conference paper at ICLR 2025

Time Domain Transformation

Trend Segmentation Segment Transformation
Xrrend €R™ Xgpg €RVT — Xintra.segER™ Xinter seg€RT_ Xpp, €RV™ XrER™
2 o
>
@ AN > Jooooo
7 BB@B - _.H:.:.::.:M. EEHEH_, S N\ 0oooo o

=l 5 88888 — o000 | 5 [T 0oooo

o5 [[z EEEEE =.jooog §| [Jgoooo

5 [[£ 0000 £ X

© e
~ . S5 g
FFT Filter g =g = .
i 1 £ =8 3 $ iFFT
ey aim ‘
- { |e g |
§- S
XER XseC™ XLPF gcnt?r ZsECM Xsp€C™ Xp€R™ Xy ER™ YERM
Trend Spectrum Compression Trend Spectrum Transformation

Frequency Domain Transformation

Figure 2: Architecture of MixLinear. MixLinear first extracts the trend information by downsam-
pling the time series with a period of w. In the time domain, it divides the trend into segments and
applies two linear transformations: one to capture intra-segment dependencies and the other to cap-
ture inter-segment dependencies. In the frequency domain, it performs the Fast Fourier Transform
(FFT) to project the data into the frequency domain, followed by a low pass filter and two complex-
valued linear layers for spectral compression and reconstruction. The inverse FFT (iFFT) is then
used to revert the data back to the time domain. Finally, the outputs from both time and frequency
domains are merged and the data is upsampled by the same period w.

3.2 TIME DOMAIN TRANSFORMATION

The existing lightweight linear models, such as SparseTSF (Lin et al.l 2024), decouple the peri-
odic and trend components and apply a pointwise linear transformation to the trend components.
In contrast, Time Domain Transformation in MixLinear divides the trend components into smaller
segments and applies two linear transformations to capture intra-segment and inter-segment depen-
dencies. Such an approach significantly reduces the model complexity while enhancing the locality
of the model which is not available at the point level (Nie et al.,[2023)). Time Domain Transformation
includes two main subprocesses: Trend Segmentation and Segment Transformation.

Trend Segmentation. Given the time series data X € R” with the period w, we perform aggrega-
tion and downsampling to extract the trend components (Lin et al.,2024). For aggregation, we apply
a 1D convolution with a kernel size of w, which allows us to aggregate all the information within
each period at every time step. We then downsample the aggregated series by the period w, resulting
in the trend component X, € R, where n = (5] This method effectively decouples the peri-
odic and trend components, providing a more compact representation in which each trend time point
encapsulates all the information from one period in the original series. Also, we do zero padding
t0 XTreng to make /7 to be an integer. And then we split the trend components Xtreng € R™ into
smaller trend segments Xgee € RV™. We select the segment length as \/n to minimize the parameter
size.

Segment Transformation. Segment Transformation begins by applying a linear layer to trend
segments X, to capture intra-segment dependencies. This produces the intra-segment prediction

Xntra_Seg € R\/ﬁ, where m = [g] and H is the forecast horizon. Xy seg 1s then upsampled by

\/n, transposed, and downsampled by /m to obtain the inter-segment series Xipyer e € RV™,
Another linear layer is applied to the inter-segment series Xiyerseg to obtain the inter-segment
prediction X, € RV™. Finally, Xtp is upsampled by /m to produce the time-domain output
Xt € R™. Leveraging Segment Transformation, MixLinear reduces the model complexity from

Under review as a conference paper at ICLR 2025

n X mto 2 x y/n x y/m. When m = n, this method offers a significant reduction in complexity
(from O(n?) to O(n)). In addition, both inter-segment and intra-segment variations are captured.

3.3 FREQUENCY DOMAIN TRANSFORMATION

The frequency domain representation of time series data promises a more compact and efficient
portrayal of inherent patterns (Xu et al.,2024). Unlike FITS, MixLinear applies frequency domain
transformation to downsampled time series subsequences (trend) and learns the frequency feature
from latent space which focuses on the important bits of the data and trains in a lower dimensional,
computationally much more efficient space (Rombach et al., 2022). It has two subprocesses: Trend
Spectrum Compression and Trend Spectrum Transformation.

Trend Spectrum Compression. Given the time series data X € R’ with the period w, we first
decompose the trend components to get Xryena € R™, where n = [£]. Then we apply FFT to
the trend components X7,..,q and convert it into the frequency domain. The FFT computation for a
discrete sequence {z)}}_, is given by:

n—1
Xs[k] =) g - eI EE (1)
m=0

where j is the imaginary unit, k is the frequency index, and m is the time index (Xu et al., [2024).
Xg € C™ is a complex-valued representation that concisely encapsulates the amplitude and phase
of each frequency component in the Fourier domain. This transformation effectively converts the
time-domain sequence into its frequency-domain representation, which captures key amplitude and
phase features.

Next, we apply a Low-Pass Filter (LPF) to X g to remove the high-frequency components typically
associated with noise and preserve the lower-frequency components that are more relevant for fore-
casting (Xu et al.,2024). A specified cutoff threshold is used to discard high-frequency components.

LPF converts the complex-valued spectral Xg € C" to X:FF € C"LPF, where nZ P is the cutoff
frequency threshold, which is smaller than n.

Finally, MixLinear compresses the filtered spectral representation, X %', into a lower-dimensional

latent space. Specifically, a complex-valued linear layer is applied to the filtered spectral data to
obtain the latent frequency space representation, Zg € C"=.

Trend Spectrum Transformation. Trend Spectrum Transformation reconstructs the trend spec-
trum from the latent space, and transforms it back to its original form by upsampling. The process
applies a complex-valued linear layer to the latent space representation Zg € C"=, transforms it into
the spectrum Xg, € C™. Such a transformation is achieved through the operation X5, = W-Zg+10,
where W is a complex-valued weight matrix and b is a bias term.

Once the spectrum Xg,, is obtained, the iFFT is applied to convert the spectrum back to the time
domain. The iFFT is mathematically defined as:

[

m—

Z XSp(k)eiQWk‘n/m’ (2)
k=0

XF(TL) = %

where m is the length of the spectrum, X, (k) represents the frequency domain values for each
frequency k, and e?27*"/™ is the complex exponential term used to translate frequency components
back into the time domain. This operation results in the time-domain signal Xr € R™, which
represents the trend prediction in the frequency domain.

The total parameter size used in the frequency domain is (m + n) * n,. When m = n. the total
parameter required becomes 2n x n,. As n, < n, those two linear transformations reduces the pa-
rameter scale from O(n?) to O(n). We set n, to 2 in the experiment section to reduce the parameter
scale as much as possible.

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

In this section, we first outline our experimental setup. We then compare MixLinear with the base-
line models and assess its effectiveness in achieving high forecasting accuracy with minimal param-
eters by integrating both time and frequency domain features. Lastly, we evaluate the generalization
capability of MixLinear. Detailed analyses of MixLinear’s performance in ultra-long period scenar-
ios, as well as the impact of the low-pass filter cutoff frequency, are provided in the appendix.

4.1 EXPERIMENT SETUP

Datasets. We perform experiments with four benchmark LTSF datasets (i.e., ETThl, ETTh2,
Electricity, and Traffic) that exhibit daily periodicity. The ETTh1 and ETTh2 datasets contain hourly
data collected from Informer (Zhou et al.l [2021). The Electricity dataset contains the hourly elec-
tricity consumption of 321 customers from the University of California, Irvine Machine Learning
Repository website. The Traffic dataset is a collection of hourly data from the California Department
of Transportation. The Solar dataset records the solar power production from 137 PV plants in Al-
abama State in 2016. The Exchange dataset collects the daily exchange rates of 8 foreign countries.
More details about those datasets can be found in Appendix [A.2]

Baselines. We conduct a comparative analysis of MixLinear against state-of-the-art baselines in
the field, including FEDformer (Zhou et al.,2022b)), TimesNet (Wu et al.,[2022)), SCINet (Liu et al.,
2022)), ITransformer (Liu et al.l [2023)), and PatchTST (Nie et al., [2023). In addition, we compare
MixLinear against three lightweight models: DLinear (Zeng et al.| [2023), FITS (Xu et al. [2024),
and SparseTSF (Lin et al.,2024). More details about those baselines can be found in Appendix @

Environment. MixLinear and our baselines are implemented using PyTorch (Paszke et al.|[2019).
All experiments are performed on a single NVIDIA A100 GPU with 80G B of memory. More details
on our experimental setup are presented in Appendix [A.4]

4.2 PREDICTION PERFORMANCE

Table 1: MSE results of multivariate long-term time series forecasting comparing MixLinear against
baselines. The top three results are highlighted in bold. The best results are in bold and underlined.
“Diff.” represents the difference in MSE prediction performance between MixLinear and the second-
best/best result baseline, with positive values indicating performance improvement.

Models MixLinear SparseTSF FITS DLinear PatchTST iTransformer SCINet TimesNet FEDformer Diff
Data Horizon (ours) (2024) (2024) (2023) (2023) (2023) (2022) (2022) (2022)

- 96 0.351 0.362 0.382 0.384 0.385 0.386 0.375 0.384 0.375 +0.011
= 192 0.395 0.403 0.417 0.443 0.413 0.441 0.429 0.436 0.427 +0.008
E 336 0.411 0.434 0.436 0.446 0.440 0.487 0.504 0.491 0.459 +0.023
720 0.423 0.426 0.433 0.504 0.456 0.503 0.544 0.521 0.484 +0.003

« 96 0.283 0.294 0.272 0.282 0.274 0.297 0.289 0.340 0.340 -0.011
=) 192 0.336 0.339 0.333 0.340 0.338 0.380 0.372 0.402 0.433 -0.003
E 336 0.355 0.359 0.355 0.414 0.367 0.428 0.365 0.452 0.508 +0.004
720 0.380 0.383 0.378 0.588 0.391 0.427 0.475 0.462 0.480 -0.002

z 96 0.138 0.138 0.145 0.140 0.129 0.148 0.168 0.168 0.188 -0.009
2 192 0.154 0.151 0.159 0.153 0.149 0.162 0.175 0.184 0.197 -0.005
3 336 0.170 0.166 0.175 0.169 0.166 0.178 0.189 0.198 0.212 -0.004
5 720 0.209 0.205 0.212 0.204 0.210 0.225 0.231 0.220 0.244 -0.005
° 96 0.389 0.389 0.398 0.413 0.366 0.395 0.613 0.593 0.573 -0.023
% 192 0.403 0.398 0.409 0.423 0.388 0.417 0.535 0.617 0.611 -0.015
= 336 0.416 0.411 0.421 0.437 0.398 0.433 0.540 0.629 0.621 -0.018
720 0.452 0.448 0.457 0.466 0.457 0.467 0.620 0.640 0.630 -0.004

96 0.211 0.211 0.195 0.290 0.265 0.203 0.237 0.373 0.286 -0.017

5 192 0.227 0.225 0.216 0.320 0.288 0.233 0.280 0.397 0.291 -0.011
& 336 0.240 0.241 0.232 0.353 0.301 0.248 0.304 0.420 0.354 -0.008
720 0.240 0.241 0.242 0.357 0.295 0.249 0.308 0.420 0.380 +0.001

% 96 0.088 0.105 0.086 0.087 0.087 0.086 0.267 0.107 0.148 -0.002
g 192 0.175 0.196 0.180 0.251 0.183 0.177 0.351 0.226 0.271 +0.002
S 336 0.318 0.358 0.333 0.403 0.390 0.331 0.424 0.367 0.460 +0.013
o 720 0.923 0.954 0.941 1.364 1.038 0.970 1.058 0.964 1.195 +0.018

Under review as a conference paper at ICLR 2025

We first evaluate MixLinear with four benchmark LTSF datasets. Table [Tl lists the MSE values of
prediction accuracy under MixLinear and our baseline models at the forecast horizons of 96, 192,
336, and 720.

Performance in Low-Channel Scenarios. As Table [I| shows, MixLinear demonstrates strong
performance in scenarios with fewer channels (7 channels), such as the ETTh1 and ETTh2 datasets.
For instance, on ETThl1, MixLinear outperforms the baseline models, achieving the lowest MSE
values of 0.351, 0.395, 0.411, and 0.423 at forecast horizons of 96, 192, 336, and 720, respectively.
Specifically, MixLinear achieves an MSE reduction of 5.3% (40.023) on ETThl at the forecast
horizon of 336. On ETTh2, MixLinear ranks within the top two models across all horizons, except
at the horizon of 96. These results highlight that our linear time-domain and frequency-domain
decomposition method is well-suited for datasets with fewer channels.

Performance in High-Channel Scenarios. Table[I]further shows that MixLinear consistently de-
livers strong performance on datasets with a higher number of channels, such as Electricity (321
channels) and Traffic (862 channels). MixLinear ranks within the top two across most cases when
compared with lightweight models like DLinear, FITS, and SparseTSF. Even when compared with
parameter-heavy models, MixLinear still ranks within the top three in the majority of cases. No-
tably, MixLinear achieves this performance with only 0.1 K parameters, significantly fewer than the
baseline models, which require 6/ parameters for PatchTST, 10K parameters for FITS, and 1K
parameters for SparseTSF.

Performance at Extended Horizons. At the extended forecast horizon of 720, MixLinear con-
sistently ranks within the top two models across all datasets, with the exception of the Electricity
dataset (see Table . On ETThl, MixLinear reduces the MSE by 0.003 at the 720 forecast horizon.
On other datasets, the MSE increase at this horizon remains under 0.005. These findings highlight
the robustness of MixLinear in handling long-term forecasting tasks effectively.

The experimental results with the dataset with ultra-long periods can be found in Appendix
4.3 EFFICIENCY

Table 2: Static and runtime metrics of MixLinear and the baselines on the Electricity dataset with a
forecast horizon 720. The look-back length for each model is set to the default value used in those
papers.

Model \ Parameters MACs Training Time(s) Inference Time(ms) \ MSE
Informer (2021) 12.53M 3.97G 70.1 10.2 | 0.373
Autoformer (2021) 12.92M 441G 107.7 42.3 | 0.254
FEDformer (2022) 17.98M 441G 238.7 514 | 0.244
FiLM (2022) 12.22M 4.41G 78.3 36.1 | 0.236
PatchTST (2023) 6.31IM 11.21G 290.4 108.1 | 0.210
DLinear (2023) 485.3K 156M 36.2 1.1 | 0.204
FITS (2024) 10.5K 79.9M 25.7 0.8 | 0.212
SparseTSF (2024) 0.92K 12.71IM 33 0.9 | 0.205
MixLinear (Ours) 0.195K 9.86M 23.9 0.6 | 0.209

To examine the efficiency of MixLinear, we measure three static and runtime metrics including:
* Parameters: The number of parameters in the model. This is a measure of the model’s
complexity.

* MACs: The number of multiply-accumulate operations required per prediction. This is a
measure of the model’s computational cost.

¢ Training Time(s): The amount of time (in seconds) it takes to train the model for one
epoch. An epoch is one pass through the entire training dataset.

¢ Inference Time(ms): Inference Time (ms): The amount of time (in milliseconds) it takes
for the model to process input data and generate predictions during a forward pass.

Under review as a conference paper at ICLR 2025

Table2]lists the measurements when we apply MixLinear and our baselines on the Electricity dataset
with a forecast horizon of 720. As Table |2 lists, MixLinear is the most computationally efficient
model among all solutions. To achieve a good prediction accuracy (MSE = 0.209), it only needs
0.195K parameters and 9.86M MACs, and provides the shortest training time of 23.9s per epoch.
As a comparison, DLinear requires 485.3 K parameters, 156 M/ MACs, and a training time of 36.2s
per epoch to achieve the best prediction accuracy (M SE = 0.204). The slight decreases in pre-
diction accuracy are in exchange for a proportionally much larger enhancement in efficiency. We
observe similar results in other datasets. The results show that MixLinear is well-suited for the
scenarios where the computational resources are limited.

4.4 EFFECTIVENESS OF MIXING THE TIME AND FREQUENCY DOMAIN

Table 3: MSE results of multivariate LTSF with MixLinear when disabling part of the modules.

Dataset ETThl ETTh2 Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
TLinear 0376 0.398 0.412 0425 0317 0366 0369 0389 0.181 0.192 0209 0245 0485 0483 0.520 0.528
FLinear 0434 0438 0473 0474 0364 0381 0383 0411 0.171 0.179 0.191 0248 0.397 0436 0442 0478

MixLinear 0.351 0395 0.411 0423 0.283 0337 0356 0.380 0.138 0.154 0.170 0.209 0.384 0.398 0.416 0.451

To evaluate the effectiveness of mixing time and frequency domain features, we compare MixLinear
against two altered versions: TLinear and FLinear. TLinear is created by disabling the transforma-
tion in the frequency domain in MixLinear, while FLinear is implemented by disabling the transfor-
mation in the time domain. As Table lists, TLinear achieves better performance on the ETTh1 and
ETTh2 datasets compared to FLinear in the low-channel scenario. In the high-channel scenario, in-
cluding the Electricity dataset with 321 channels and the Traffic dataset with 862 channels, FLinear
tends to perform better. The reason behind is that the trend components of the time series data in the
time domain are relatively easy to capture when there are a small number of channels because the
model can focus on the long-term patterns in the individual time series. On the other hand, capturing
the trend components becomes more effective in the frequency domain when facing a large number
of variates, because the decomposition into different frequency bands benefits from the diversity of
the channels. MixLinear outperforms both TLinear and FLinear in all cases because both Time Do-
main Transformation and Frequency Domain Transformation contribute significantly to the model’s
high forecasting accuracy.

4.5 GENERALIZATION ABILITY OF THE MIXLINEAR MODEL

Table 4: Comparison of generalization capabilities between MixLinear and other mainstream mod-
els. “Dataset A — Dataset B” denotes the training and validation on the training and validation sets
of Dataset A, followed by testing on the test set of Dataset B.

Dataset \ ETTh2 — ETThl \ Electricity — ETTh1 Exchange — ETTh2 Solar — ETTh2
Horizon | 96 192 33 720 | 96 192 33 720 | 96 192 33 720 | 96 192 336 720
Informer (2021) | 0.844 0.921 0.898 0.829 \ \ \ \ \ \ \ \ \ \ \ \
Autoformer (2021) | 0.978 1.058 0944 0.921 \ \ \ \ \ \ \ \ \ \ \ \
FEDformer (2022) | 0.878 0.927 0929 0976 | \ \ \ \ \ \ \ \ \ \ \ \
FiLM (2022) 0.876 0.904 0919 0.925 \ \ \ \ \ \ \ \

PatchTST (2023) | 0.449 0.478 0.426 0.400 | 0424 0475 0472 0470 | 0459 0573 0.617 0.556 | 0.503 0.537 0.446 0.536
DLinear (2023) 0.430 0478 0458 0506 | 0.397 0.424 0477 0470 | 0478 0475 0.768 1.825 | 0.433 0901 0.818 0976
FiTs (2024) 0.419 0427 0428 0445 | 0380 0414 0440 0448 | 0444 0.532 0.581 0.600 | 0.371 0.374 0398 0.419
SparseTSF (2024) | 0.370 0.401 0412 0419 | 0.373 0409 0433 0439 | 0413 0515 0.607 0582 | 0.369 0.384 0.398 0.423
MixLinear (Ours) | 0.361 0.388 0.406 0.427 | 0.373 0410 0.428 0.434 | 0.406 0.507 0.542 0.600 | 0.369 0.388 0.397 0.422

MixLinear enhances forecasting ability by combining time and frequency domain features, improv-
ing generalization across datasets with similar periodicities. To explore this, we examined the cross-
domain generalization performance of the MixLinear model by training on one dataset and testing
on another. We compare MixLinear with several other mainstream models for multivariate LTSF in
two scenarios: training and validation on ETTh2 with testing on ETTh1, and training and validation
on Electricity with testing on ETTh1. As Table [4]lists, MixLinear has the best generalization abil-
ity and consistently achieves the lowest MSE values on different datasets and prediction horizons.
When we train the model on ETTh2 and validate it on ETTh1, MixLinear achieves the lowest MSE

Under review as a conference paper at ICLR 2025

at forecast horizons of 96, 192, and 336. Similarly, when we train the model on Electricity and val-
idate it on ETTh1, it achieves the lowest MSE at horizons of 96, 336, and 720, and offers an MSE
of 0.410 at the 192 horizon which is just 0.001 higher than the best-performing model, SparseTSF
(0.409). By combining features from both time and frequency domains, MixLinear can avoid the
shortcut learning (Geirhos et al., |2020) problem, which occurs when the model focuses on time-
space features while overlooking crucial underlying concepts in the frequency-space domain or vice
versa, leading to limited poor performance on data unseen during training (He et al., 2023). The
results highlight the effectiveness of MixLinear in transferring knowledge learned from one dataset
to another by combining both time domain and frequency domain features, which demonstrates its
robustness and adaptability in various forecasting scenarios.

5 RELATED WORK

5.1 LONG-TERM TIME SERIES FORECASTING

LTSF aims to predict future values over extended horizons, which is challenging because the time
series data is complex and high-dimensional |[Zheng et al.| (2024; |2023). The traditional statistical
methods, such as ARIMA (Contreras et al., [2003) and Holt-Winters (Chatfield & Yar, |1988), are
effective for short-term forecasting but often fall short for long-term predictions. Machine learning
models, such as SVM (Wang & Hu, 2005), Random Forests Breiman|(2001)), and Gradient Boosting
Machines (Natekin & Knoll, 2013), have improved performance by capturing non-linear relation-
ships but require extensive feature engineering. Recently, deep learning models, such as RNNs,
LSTMs, GRUs, and Transformer-based models including Informer and Autoformer have excelled
in efficiently modeling long-term dependencies. The hybrid models that combine statistical and
machine learning or deep learning techniques have also shown enhanced accuracy. State-of-the-
art models like FEDformer (Zhou et al., 2022b)), FiLM (Zhou et al., [2022a), PatchTST [Nie et al.
(2023), and SparseTSF incorporate advanced mechanisms like frequency domain transformations
and efficient self-attention to achieve remarkable performance.

Recently, there has been a notable trend towards designing lightweight LTSF models. DLinear (Zeng
et al.| 2023)) shows that even simple models can capture significant temporal periodic dependencies
effectively. LightTS (Campos et al.| 2023), TiDE (Das et al., 2023), and TSMixer (Chen et al.,
2023)) show similar conclusions. FITS (Xu et al.||2024) has emerged as a significant advancement in
the field and achieved a milestone by scaling LTSF models to around 10/ parameters while main-
taining high predictive accuracy. FITS accomplishes this by transforming time-domain forecasting
tasks into frequency-domain equivalents and employing low-pass filters to minimize parameter re-
quirements. SparseTSF (Lin et al., 2024)) pushes the boundaries even further by leveraging the
Cross-Period Sparse Forecasting technique.

5.2 TIME SERIES DATA DECOMPOSITION

Several decomposition methods in the time domain have been introduced in the literature to handle
such a task, including STL (Robert, |1990), TBATS (De Livera et al., [2011}), and STR (Dokumentov
et al., 2015) for periodic series, as well as ¢; trend filtering (Moghtaderi et al.| [2011) and mixed
trend filtering (Tibshirani, 2014) for non-periodic data. Although these techniques have gained
popularity and proven effective in various applications, they exhibit limitations due to three reasons:
the inefficiency in handling time series with long seasonal periods, the frequent seasonal shifts and
fluctuations in real-world data, and the lack of robustness to outliers and noise (Gao et al.| |2020).

Decomposing time series data in the frequency domain provides compressed representations that
capture rich underlying patterns (Xu et al.| 2020). These representations offer a more compact and
efficient depiction of the inherent characteristics within the data (Xu et al., 2024)). FEDformer de-
composes sequences into multiple frequency domain modes using frequency transforms to extract
features (Zhou et al.l 2022b). TimesNet (Wu et al., [2022) employs a frequency-based method to
separate intraperiod and interperiod variations. FITS (Xu et al.l 2024)) leverages this property by
transforming the time series into the frequency domain, treating the data as a signal that can be
expressed as a linear combination of sinusoidal components, a process that ensures no information
loss. Each sinusoidal component is defined by its own frequency, amplitude, and initial phase, allow-
ing for a precise representation of different oscillatory patterns present in the data. Although there

Under review as a conference paper at ICLR 2025

are many ways of frequency domain decomposition method, extracting features from the frequency
domain requires suitable techniques. There will be many interferences in the signal, and suitable
schemes for temporal features must be considered when combining deep learning methods.

6 CONCLUSION

There has been a growing interest in LTSF, which aims to predict long-term future values by iden-
tifying patterns and trends in large amounts of historical time-series data. A key challenge in LTSF
is to manage long sequence inputs and outputs without incurring excessive computational or mem-
ory overhead, particularly in resource-constrained scenarios. In this paper, we introduce MixLinear,
the first lightweight LTSF model that captures temporal and frequency features from both time and
frequency domains. MixLinear applies the trend segmentation in the time domain to capture the
intra-segment and inter-segment variations and captures the amplitude and phase information by
reconstructing the trend spectrum from a low dimensional frequency domain latent space. Experi-
mental results show that MixLinear can achieve comparable or better forecasting accuracy with only
0.1K parameters. Besides, MixLinear exhibits strong generalization capability and is well-suited
for scenarios where the training data are limited.

REFERENCES

Robert J Baxley and G Tong Zhou. Computational complexity analysis of fft pruning a markov
modeling approach. In 2006 IEEE 12th Digital Signal Processing (DSP) Workshop 4th IEEE
Signal Processing Education (SPE) Workshop, pp. 535-539. IEEE, 2006.

Leo Breiman. Random forests. Machine Learning, 45:5-32, 2001.

David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S Jensen. Lightts:
Lightweight time series classification with adaptive ensemble distillation. Proceedings of the
ACM on Management of Data, 1(2):1-27, 2023.

Chris Chatfield and Mohammad Yar. Holt-winters forecasting: some practical issues. Journal of the
Royal Statistical Society Series D: The Statistician, 37(2):129-140, 1988.

Si An Chen, Chun Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. Transactions on Machine Learning Research, 2023.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan.
Triformer: Triangular, variable-specific attentions for long sequence multivariate time series
forecasting—full version. In International Joint Conference on Artificial Intelligence (1JCAI),
2022.

Javier Contreras, Rosario Espinola, Francisco J Nogales, and Antonio J Conejo. Arima models to
predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3):1014-1020, 2003.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. Transactions on Machine Learning Research,
2023.

Alysha M De Livera, Rob J Hyndman, and Ralph D Snyder. Forecasting time series with complex
seasonal patterns using exponential smoothing. Journal of the American Statistical Association,
106(496):1513-1527, 2011.

P Kingma Diederik. Adam: A method for stochastic optimization. International Conference on
Learning Representations (ICLR), 2015.

Alexander Dokumentov, Rob J Hyndman, et al. Str: A seasonal-trend decomposition procedure
based on regression. INFORMS Journal on Data Science, 13(15):2015-13, 2015.

Jingkun Gao, Xiaomin Song, Qingsong Wen, Pichao Wang, Liang Sun, and Huan Xu. Robusttad:
Robust time series anomaly detection via decomposition and convolutional neural networks. In
ACM SIGKDD Workshop on Mining and Learning from Time Series (KDD-MiLeTS), 2020.

10

Under review as a conference paper at ICLR 2025

Everette S Gardner Jr. Exponential smoothing: The state of the art. Journal of Forecasting, 4(1):
1-28, 1985.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673, 2020.

Andrew C Harvey. Forecasting, structural time series models and the Kalman filter. Cambridge
university press, 1990.

Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka Zit-
nik. Domain adaptation for time series under feature and label shifts. In International Conference
on Machine Learning (ICML), 2023.

Yangdong He and Jiabao Zhao. Temporal convolutional networks for anomaly detection in time
series. Journal of Physics: Conference Series, 1213(4):042050, 2019.

Kibaek Kim, Changhyeok Lee, Kevin O’Leary, Shannon Rosenauer, and Sanjay Mehrotra. Predict-
ing patient volumes in hospital medicine: A comparative study of different time series forecasting
methods. Scientific Report, 2014.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsetsf: Modeling
long-term time series forecasting with 1k parameters. In International Conference on Machine
Learning (ICML), 2024.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International Conference on Learning Representations (ICLR), 2021.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In International
Conference on Learning Representations (ICLR), 2023.

Azadeh Moghtaderi, Pierre Borgnat, and Patrick Flandrin. Trend filtering: empirical mode decom-
positions versus 11 and hodrick—prescott. Advances in Adaptive Data Analysis, 3(01n02):41-61,
2011.

Ananth Mohan, Zheng Chen, and Kilian Weinberger. Web-search ranking with initialized gradient
boosted regression trees. In Proceedings of Machine Learning Research(PMLR), 2011.

Woosok Moon and John S Wettlaufer. A unified nonlinear stochastic time series analysis for climate
science. Scientific Reports, 7(1):44228, 2017.

Sameh Nassar, Klaus-Peter Schwarz, Naser Elsheimy, and Aboelmagd Noureldin. Modeling inertial
sensor errors using autoregressive (ar) models. Navigation, 51(4):259-268, 2004.

Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics,
7:21, 2013.

Xingqing Nie, Xiaogen Zhou, Zhiqiang Li, Luoyan Wang, Xingtao Lin, and Tong Tong. Logtrans:
Providing efficient local-global fusion with transformer and cnn parallel network for biomedical
image segmentation. In High Performance Computing and Communications (HPCC), 2022.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations (ICLR), 2023.

Giuseppe Nunnari and Valeria Nunnari. Forecasting monthly sales retail time series: a case study.
In 2017 IEEE 19th Conference on Business Informatics (CBI), volume 1, pp. 1-6. IEEE, 2017.

11

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems
(NeurlPS), 32, 2019.

Ceveland Robert, B. Stl: A seasonal-trend decomposition procedure based on loess. Journal of
Official Statistics, 6:3=73, 1990.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Computer Vision and
Pattern Recognition Conference (CVPR), 2022.

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee. Recent ad-
vances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time series fore-
casting with deep learning: A systematic literature review: 2005-2019. Applied Soft Computing,
90:106181, 2020.

Ryan J Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. The Annals of
Statistics, 42(1):285-3, 2014.

Haifeng Wang and Dejin Hu. Comparison of svm and Is-svm for regression. In International
Conference on Neural Networks and Brain (ICNNB), 2005.

Gregory L Watson, Di Xiong, Lu Zhang, Joseph A Zoller, John Shamshoian, Phillip Sundin, Teresa
Bufford, Anne W Rimoin, Marc A Suchard, and Christina M Ramirez. Pandemic velocity: Fore-
casting covid-19 in the us with a machine learning & bayesian time series compartmental model.
PLoS Computational Biology, 17(3):e1008837, 2021.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. International Conference on
Learning Representations (ICLR), 2022.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
frequency domain. In IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR),
2020.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. In
International Conference on Learning Representations (ICLR), 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Association for the Advancement of Artificial Intelligence (AAAI), 2023.

Xu Zheng, Tianchun Wang, Wei Cheng, Aitian Ma, Haifeng Chen, Mo Sha, and Dongsheng Luo.
Auto tcl: Automated time series contrastive learning with adaptive augmentations. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2023.

Xu Zheng, Tianchun Wang, Wei Cheng, Aitian Ma, Haifeng Chen, Mo Sha, and Dongsheng Luo.
Parametric augmentation for time series contrastive learning. In International Conference on
Learning Representations (ICLR), 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Association
for the Advancement of Artificial Intelligence (AAAI), 2021.

Tian Zhou, Ziging Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:

Frequency improved legendre memory model for long-term time series forecasting. In Advances
in Neural Information Processing Systems (NeurlPS), 2022a.

12

Under review as a conference paper at ICLR 2025

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency

A

A.

enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning (ICML), 2022b.

MORE DETAILS OF MIXLINEAR

1 OVERVIEW WORKFLOW

Algorithm 1: Overall Pseudocode of MixLinear

In

put : Historical look-back window x;_1 1.4 € RE and its period w

Output: Forecasted output Z;11.4+4 € R

14:
15:
16:
17:

18:

Tmean % Zf:t_ L1 T > Compute the mean value of the historical look-back window
Tnorm ¢ Ti—L+1:t — Tmean > Normalize the input by subtracting the mean
ZTnorm — Conv1d(Zporm, W) + Tnorm > Apply a 1D convolution over the normalized input
sequence

n <+ [L/w] > Determine the downsampled sequence length n.
Zirend < Reshape(z, (n,w)) > Reshape the input into an n X w matrix for further processing
f < [v/n]? > Adjust the sequence length 71 to ensure /7 is an integer
Zirend < Pad(Tirend, (N —n)) > Apply zero-padding to extend the length n to 72
Xgeg < Reshape(zirend, (\/ﬁ, \/?1)) > Reshape the trend data into a v/ x /7 matrix
X7, < Linear(Linear(Xs4)7)7 > Apply two linear transformations
m <+ [H/w] > Compute the downsampled length of the forecast horizon m
: xp < Reshape(Xp,, m) > Reshape X7, into a sequence of length m for the forecast
: xs < FFT(Ztrend) > Apply the FFT on the trend data with Equation

T « LPF(zs,n"PT) > Apply a low-pass filter to the frequency-domain representation to
reduce noise
zs < Linear
linear transformation

xsp < Linear(zs) > Apply a linear transformation to the latent frequency representation
xf < iFFT(xsp,) > Apply the iFFT to reconstruct the frequency domain signal with Equation
T ¢ 7 + TP + Crean > Combine the time-domain and frequency-domain components and
add back the mean

Z4+1.4+ 1 < Reshape(zps, H) > Reshape the combined signal back into a sequence of length
H for the forecast output

(xSLP L) > Project the filtered frequency components into a latent space using a

The complete workflow of MixLinear is outlined in Algorithm |1} which takes a univariate histori-
cal look-back window x;_r 1., as input and outputs the corresponding forecast results T¢y1.¢4z7-
Multivariate time series forecasting can be effectively achieved by integrating the CI strategy, i.e.,
modeling multiple channels using a model with shared parameters.

A.2 DETAILED DATASET DESCRIPTION

Table 5: Statistics of the datasets.

Dataset \ Traffic Electricity Solar ~ Weather Exchange ETThl ETTh2 ETTml ETTm2
Channels 862 321 137 21 8 7 7 7 7
Sampling Rate | 1 hour 1 hour 10 min 10 min 1 day lhour lhour 15min 15 min

Total Timesteps | 17,544 26,304 52,560 52,696 7,588 17,420 17,420 69,680 69,680

The seven benchmark datasets used in our experiments are as follows:

(1) The ETTE] dataset, sourced from Informer (Zhou et al., 2021, consists of data collected every
15 minutes between July 2016 and July 2018, including load and oil temperature readings. The

“https://github.com/zhouhaoyi/ETDataset

13

Under review as a conference paper at ICLR 2025

ETTh1 and ETTh2 subsets are sampled at 1-hour intervals, while ETTm1 and ETTm2 are sampled
at 15-minute intervals.

(2) The Electricit dataset contains the hourly electricity consumption of 321 customers, spanning
the period from 2012 to 2014.

(3) The Trafﬁ(ﬂ dataset comprises hourly road occupancy rates, recorded by sensors placed on free-
ways in the San Francisco Bay Area. The data is provided by the California Department of Trans-
portation.

(4) The WeatheIE] dataset includes local climatological data collected from approximately 1,600
locations across the United States, spanning a period of four years (2010 to 2013). Data points are
recorded at 1-hour intervals.

(5) The Solar-EnergyE] dataset records the solar power production from 137 PV plants in Alabama
State, which are sampled every 10 minutes in 2016.

(6) The Exchange-RateE] dataset collects the daily exchange rates of 8 foreign countries from 1990
to 2016.

A.3 DETAILED BASELINE MODEL DESCRIPTION

We briefly describe the baseline models we used in this paper:

(1) Informer (Zhou et al. [2021) is a Transformer-based model that employs self-attention
distillation to highlight dominant attention by halving the input to cascading layers, en-
abling efficient handling of extremely long input sequences. The source code is available at
https://github.com/zhouhaoyi/Informer2020.

(2) Autoformer (Wu et all [2021) is a Transformer-based model that introduces the Auto-
Correlation mechanism, leveraging the periodicity of time series to discover dependencies
and aggregate representations at the sub-series level. = The source code is available at
https://github.com/thuml/Autoformer.

(3) Pyraformer (Liu et al.| [2021) is a Transformer-based model that captures temporal dependen-
cies of different ranges in a compact multi-resolution fashion. The source code is available at
https://github.com/ant-research/Pyraformer.

(4) FEDformer (Zhou et al.,[2022b) is a Transformer-based model proposing seasonal-trend decom-
position and exploiting the sparsity of time series in the frequency domain. The source code is
available at https://github.com/DAMO-DI-ML/ICML2022-FEDformer.

(5) TimesNet (Liu et al.,|2023)) is a CNN-based model with TimesBlock as a task-general backbone.
It transforms 1D time series into 2D tensors to capture intraperiod and interperiod variations. The
source code is available at https://github.com/thuml/TimesNet.

(6) SCINet (Liu et al.,[2022) is a recursive downsample-convolve-interact architecture that uses mul-
tiple convolutional filters to extract distinct yet valuable temporal features from the downsampled
sub-sequences or features. The source code is available at https://github.com/cure-lab/SCINet.

(7) iTransformer (Wu et al.l 2022) is a Transformer based architecture that applies the atten-
tion and feed-forward network on the inverted dimensions. The source code is available at
https://github.com/thuml/iTransformer.

(8) PatchTST (Nie et al.,[2023)) is a transformer-based model utilizing patching and CI technique. It
also enables effective pre-training and transfer learning across datasets. The source code is available
at https://github.com/yuqinie98/PatchTST.

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
*http://pems.dot.ca.gov

Shttps://www.bgc-jena.mpg.de/wetter/
Shttp://www.nrel.gov/grid/solar-power-data.html
"https://github.com/laiguokun/multivariate-time-series-data

14

Under review as a conference paper at ICLR 2025

(9) DLinear (Zeng et al.,2023)) is an MLP-based model with just one linear layer, which outperforms
Transformer-based models in LTSF tasks. The source code is available at https://github.com/cure-
lab/LTSF-Linear.

(10) FITS (Xu et al.;,|2024) is a linear model that manipulates time series data through interpolation in
the complex frequency domain. The source code is available at https://github.com/VEWOXIC/FITS.

(11) SparseTSF (Lin et all [2024) a novel, extremely lightweight model for LTSF, designed
to address the challenges of modeling complex temporal dependencies over extended horizons
with minimal computational resources. The source code is available at https://github.com/lIss-
1138/SparseTSE.

A.4 DETAILED EXPERIMENTAL SETUP

We implement MixLinear in PyTorch (Paszke et al. 2019) and train it using the Adam opti-
mizer (Diederik, [2015) for 30 epochs with early stopping based on a patience of 10 epochs. We
follow the procedures outlined in FITS and Autoformer to split the dataset (Wu et al.,[2021). Specif-
ically, the ETT datasets are divided into training, validation, and test sets with a 6 : 2 : 2 ratio.
The other datasets are split with a 7 : 1 : 2 ratio. Both our model and baselines use the same
normalization method (i.e., StandardScaler).

MixLinear has minimal hyperparameters due to its simple design. The period w is chosen based
on the inherent cycle of the data (e.g., w = 24 for the ETTh1 dataset) or reduced when the dataset
exhibits a longer cycle. The batch size is determined by the number of channels in each dataset. The
batch size is set to 256 for the datasets with fewer than 100 channels (e.g., ETTh1). The batch size
is set to 128 for the datasets with fewer than 300 channels (e.g., Electricity). Such a configuration
maximizes the GPU parallelism while preventing any out-of-memory issues. In addition, given the
small number of learnable parameters in MixLinear, we use a relatively large learning rate of 0.02
to accelerate training.

The baseline results reported in this paper come from the first version of the FITS paper, where
FITS uses a uniform input length of 720. To ensure a fair comparison, we also use an input length of
720. The input lengths of other baseline models are set according to the values used in their original
implementations.

B MORE RESULTS AND ANALYSIS

In this section, we evaluate MixLinear with the ultra-long period datasets and examine the effect of
the low-pass filter cutoff frequency thresholds on its performance.

B.1 ULTRA-LONG PERIOD SCENARIO

Table 6: MSE results on the datasets with ultra-long periods.

Dataset \ ETTml \ ETTm?2 \ Weather
Horizon ‘ 96 192 336 720 ‘ 96 192 336 720 ‘ 96 192 336 720

Informer (2021) 0.672 0.795 1.212 1.166 | 0.365 0.533 1.363 3.379 | 0.300 0.598 0.578 1.059
Autoformer (2021) | 0.505 0.553 0.621 0.671 | 0.255 0281 0.339 0433 | 0.266 0.307 0.359 0.419
Pyraformer (2022b) | 0.543 0.557 0.754 0.908 | 0435 0.730 2.308 3.625 | 0.389 0.622 0.739 1.004
FEDformer (2022b) | 0.379 0.426 0.445 0.543 | 0.203 0269 0.325 0421 | 0.217 0276 0.339 0.403

TimesNet (2023) | 0.338 0.374 0410 0478 | 0.187 0.249 0.321 0408 | 0.172 0.219 0.280 0.365

PatchTST (2023) | 0293 0.333 0.369 0.416 | 0.166 0.223 0.274 0362 | 0.149 0.194 0.245 0314

DLinear (2023) 0299 0335 0369 0425 | 0.167 0.221 0274 0368 | 0.176 0.218 0.262 0.323

FITS (2024) 0305 0.339 0367 0418 | 0.164 0217 0.269 0.347 | 0.145 0.188 0.236 0.308
SparseTSF (2024) | 0.314 0.343 0.369 0418 | 0.165 0.218 0.272 0.350 | 0.172 0.215 0.260 0.318

MixLinear (ours) | 0.332 0.353 0.385 0437 | 0.170 0223 0.275 0360 | 0.172 0.212 0257 0.324

To evaluate the prediction performance of MixLinear in ultra-long period forecasting scenarios, we
conduct additional experiments using the ETTm1, ETTm2, and Weather datasets. Table @ presents
the MSE values achieved by MixLinear and the baseline models when applied to ultra-long period

15

Under review as a conference paper at ICLR 2025

forecasting tasks. As Table[6]shows, MixLinear demonstrates competitive performance across these
datasets, with only 0.1K parameters, and even surpasses several transformer-based models that
employ millions of parameters, including Informer, Autoformer, PyraFormer, and FEDFormer.

B.2 EFFECT OF LOW PASS FILTER CUTOFF FREQUENCY ON PERFORMANCE

Table 7: MSE results of multivariate LTSF using MixLinear with different LPF.

Dataset ETThl ETTh2 Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
MixLinear (n’"¥'=1) 0351 0.399 0412 0440 0.289 0353 0373 0386 0.170 0.184 0202 0.238 0.449 0450 0469 0.510
MixLinear (n’"F'=5) 0356 0.395 0412 0426 0.290 0349 0360 0.389 0.151 0.163 0.179 0.243 0.407 0.422 0430 0473
MixLinear (n“""F'=10) 0376 0397 0413 0425 0.294 0341 0357 0387 0.171 0.155 0.171 0.210 0.396 0411 0417 0.454
MixLinear (n“"F=14) 0358 0396 0.414 0426 0.284 0.338 0361 0381 0.140 0.154 0.171 0.209 0.391 0408 0417 0455

MixLinear (n?"'F=15) 0358 0.398 0413 0427 0284 0.343 0356 0383 0.139 0.154 0.171 0209 0392 0404 0421 0454
MixLinear (n“"'F'=16) 0361 0.398 0413 0423 0284 0339 0356 0381 0.140 0.154 0.171 0209 0.392 0404 0417 0451
MixLinear (n“"F'=17) 0362 0.397 0413 0428 0.289 0.362 0.357 0380 0.139 0.154 0.171 0210 0390 0.408 0.417 0.453
MixLinear (n“"F'=18) 0357 0397 0414 0424 0285 0340 0.357 0388 0.139 0.154 0.171 0209 0390 0403 0416 0.452
MixLinear (n?"F'=19) 0360 0.396 0413 0423 0283 0.337 0359 0380 0.139 0.154 0.171 0209 0390 0406 0416 0.452

To evaluate the effect of the cutoff frequency used by the low-pass filter, we vary the LPF cutoff
frequency threshold from 1 to 19 across the forecast horizons of 96, 192, 336, and 720 and measure
MixLinear’s prediction performance. As Table [/] lists, the prediction performance of MixLinear
decreases significantly as the LPF threshold decreases from 5 to 1. To achieve a balance between
performance and computational efﬁciencyﬂ a cutoff frequency of 5 is generally optimal for resource-
constrained environments. However, the performance on the ETTh2 dataset is less sensitive to
variations in the LPF cutoff frequency. The results indicate that while the LPF can help reduce the
model complexity, a more adaptive filtering strategy may be required for LTSF tasks to maintain
optimal performance.

Table 8: MSE results of MixLinear with varied hyperparameter w

Dataset | Horizon | w=2 w=4 w=8 w=16 w=24 w=36

- 96 0433 0374 0425 0.392 0.351 0.388
= 192 0450 0.402 0409 0421 0.395 0411
E 336 0488 0.417 0454 0.449 0.411 0.438
720 0466 0436 0437 0432 0.423 0.437

~ 96 0287 0.286 0.284 0.289 0.282 0.305
= 192 0351 0358 0.341 0.360 0.336 0.348
E 336 0366 0364 0365 0.364 0.356 0.370
720 0.390 0383 0383 0.389 0.380 0.391

f 96 0.172 0.258 0.158 0.159 0.138 0.177
2 192 0.197 0268 0.174 0.179 0.154 0.184
9 336 0213 0.206 0.187 0.204 0.170 0.200
o 720 0242 0216 0230 0.230 0.209 0.235
o 96 0.548 0.739 0.468 0452 0.389 0.475

85“ 192 0.568 0.700 0.496 0.513 0.403 0.432
= 336 0575 0.646 0.500 0.542 0.416 0.489
720 0.583 0.481 0559 0.524 0.452 0.527

96 0207 0205 0.215 0.209 0.211 0.218

= 192 0231 0233 0.238 0.238 0.227 0.230
& 336 0250 0.254 0.258 0.251 0.240 0.242
720 0252 0250 0259 0.252 0.240 0.243

& 96 0.087 0.088 0.091 0.095 0.101 0.101

§ 192 0.184 0.179 0.181 0.186 0.194 0.194
) 336 0320 0327 0328 0.333 0.342 0.342

aa) 720 0922 0923 0930 0942 0.950 0.950

8 A higher LPF threshold corresponds to a larger model size.

16

Under review as a conference paper at ICLR 2025

B.3 EFFECT OF DOWNSAMPLING PERIOD w

To evaluate the effect of the period w used for downsampling, we vary the hyperparameter w from
2 to 36 across the forecast horizons of 96, 192, 336, and 720 and measure MixLinear’s prediction
performance.

Table [§] presents the MSE results of MixLinear for different values of the hyperparameter w across
six datasets (ETThl, ETTh2, Electricity, Traffic, Solar, and Exchange). The hyperparameter w
represents the period used during downsampling, and the results are evaluated across forecasting
horizons of 96, 192, 336, and 720.

For most datasets, w = 24 achieves the best performance, as shown by the bolded values, indicating
its effectiveness in capturing periodicity. However, on the Exchange dataset, smaller values of w
(e.g., w = 2) yield better results, suggesting a different temporal structure where shorter periods are
more suitable.

Shorter horizons (e.g., 96 and 192) generally lead to lower MSE scores, reflecting the relative ease
of short-term predictions compared to longer horizons (e.g., 720). These results highlight the im-
portance of selecting an appropriate w value for optimal model performance.

B.4 GENERALIZATION

Table 9: Comparison of generalization capabilities between MixLinear and other mainstream mod-
els. “Dataset A — Dataset B” denotes the training and validation on the training and validation sets
of Dataset A, followed by testing on the test set of Dataset B.

Dataset | Horizon | Metrics | MixLinear SparseTSF FiTS DLinear PatchTST
% MSE | 0.361 0370 0419 0430 0449
192 | MSE | 0.388 0401 0427 0478 0478
ETTh2 — ETThl 336 | MSE | 0.406 0412 0428 0458 0426
720 | MSE | 0427 0.419 0445 0506 0400
9% MSE | 0373 0373 0380 0397 0424
. 192 | MSE | 0410 0.409 0414 0424 0475
Electricity — ETThT | 336 | MsE | 0.428 0433 0440 0477 0472
720 | MSE | 0434 0439 0448 0470 0470
% MSE | 0.406 0413 0444 0478 0459
192 | MSE | 0.507 0515 0532 0475 0573
Exchange = ETTh2 | 330 | Mop | 0542 0607 0581 0768 0617
720 | MSE | 0600 0582 0600 1825 0.556
% MSE | 0.369 0369 0371 0433 0503
Solar ETTH 192 | MSE | 0388 0384 0374 0901 0537
336 | MSE | 0397 0398 0398 0818 0446
720 | MSE | 0422 0423 0419 0976 0536
% MSE | 0290 0293 0282 029 0389
192 | MSE | 0352 0353 0349 0378 0365
ETThI — ETTh2 336 | MSE | 0374 0373 0376 0436 0494
720 | MSE | 0388 0390 0390 0.627 0444
% MSE | 0326 0326 0309 0325 0.560
. 192 | MSE | 0377 0374 0363 0371 0554
ETThl = Electricity | 336 | Mg | 0390 0392 0383 0427 0711
720 | MSE | 0404 0404 0401 0570 0812

Table [9] compares the generalization capabilities of MixLinear with several mainstream models for
long-term time series forecasting. The evaluation involves training and validating models on one
dataset and testing them on another, with MSE as the performance metric. Lower MSE values
indicate better performance.

MixLinear consistently achieves better performance across most dataset combinations and forecast-
ing horizons. It performs particularly well for shorter horizons, such as 96 and 192, where it often
records the lowest MSE. SparseTSF, while competitive in some cases, is generally outperformed by

17

Under review as a conference paper at ICLR 2025

MixLinear, especially on tasks involving significant domain shifts, such as Exchange — ETTh2 and
Solar — ETTh2.

FiTS and DLinear show moderate performance but consistently fall behind MixLinear, particularly
for longer horizons like 336 and 720. PatchTST demonstrates strong results in a few cases but fails
to match MixLinear’s overall robustness.

A trend observed is the increase in MSE as the forecasting horizon lengthens, reflecting the growing
difficulty of long-term predictions. Despite this, MixLinear maintains its advantage, showcasing
its ability to generalize across datasets and handle challenging tasks effectively. The table under-
scores MixLinear’s robustness and reliability, making it a standout model for long-term time series
forecasting.

B.5 ERROR BARS EVALUATION

Table 10: The error bars of MixLinear with 5 runs.

Dataset | Horizon | Metrics | Seed 1 Seed2 Seed3 Seed4 Seed5 | Mean | Std.

— 96 MSE 0.351 0377 0390 0358 0.375 | 0.370 | 0.016
= 192 MSE 0395 0399 039 0410 0.396 | 0.399 | 0.006
E 336 MSE 0411 0416 0412 0412 0426 | 0.415 | 0.006

720 MSE 0423 0426 0424 0428 0423 | 0.425 | 0.002
« 96 MSE 0283 0283 0285 0.293 0.283 | 0.285 | 0.004
== 192 MSE 0.337 0341 0336 0339 0.340 | 0.339 | 0.002
E 336 MSE 0.356 0360 0355 0357 0.359 | 0.357 | 0.002

720 MSE 0.380 0381 0385 0380 0.380 | 0.381 | 0.002
2 96 MSE 0.138 0.138 0.139 0.169 0.139 | 0.145 | 0.014
-2 192 MSE 0.154 0.154 0.154 0.154 0.154 | 0.154 | 0.000
9 336 MSE 0.170 0.171 0.170 0.172 0.171 | 0.171 | 0.001
m 720 MSE 0.209 0209 0.210 0.210 0.209 | 0.209 | 0.001
o 96 MSE 0.390 0390 0389 0390 0.390 | 0.390 | 0.000
% 192 MSE 0403 0.404 0409 0408 0.409 | 0.407 | 0.003
= 336 MSE 0416 0421 0418 0.420 0.423 | 0.420 | 0.003

720 MSE 0452 0452 0453 0454 0453 | 0.453 | 0.001

96 MSE 0212 0211 0210 0210 0211 | 0.211 | 0.001
k= 192 MSE 0.227 0227 0.233 0.228 0.226 | 0.228 | 0.003
& 336 MSE 0240 0242 0241 0240 0.242 | 0.241 | 0.001

720 MSE 0240 0.241 0244 0.241 0.241 | 0.241 | 0.002
& 96 MSE 0.088 0.092 0.088 0.088 0.088 | 0.089 | 0.002
S_:% 192 MSE 0.179 0.179 0.179 0179 0.175 | 0.178 | 0.002
S 336 MSE 0.327 0318 0327 0329 0.324 | 0.325 | 0.004
83| 720 MSE 0923 0932 0925 0928 0.925 | 0.927 | 0.004

To evaluate the stability, robustness, and predictive performance of the MixLinear model across
various datasets and forecasting horizons, we conducted five independent runs with different random
seeds. The table highlights the model’s sensitivity to random initialization and its ability to deliver
consistent performance by reporting the corresponding mean and standard deviation.

Table presents the MSE results of MixLinear across six datasets (ETTh1, ETTh2, Electricity,
Traffic, Solar, and Exchange) for four forecasting horizons (96, 192, 336, and 720 time steps). For
each dataset and horizon, the table includes the MSE values obtained from the five runs, along with
the mean and standard deviation (Std.). The mean represents the model’s average performance,
while the Std. quantifies the variability in predictions due to random initialization.

The results demonstrate that MixLinear consistently achieves low standard deviations across most
datasets and horizons, indicating high stability and robustness. The model performs reliably across
different random seeds, with only minor variations in specific cases. Predictive errors tend to in-
crease slightly for longer forecasting horizons, reflecting the added complexity of long-term pre-
dictions. Datasets such as Electricity and Traffic exhibit particularly low variability, showcasing

18

Under review as a conference paper at ICLR 2025

the reliability of MixLinear on these datasets. Overall, the table underscores MixLinear’s ability to
deliver robust and stable predictions under diverse conditions.

B.6 MORE DETAILED COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of MixLinear, a lightweight model that
combines both time-domain and frequency-domain transformations to enhance efficiency in multi-
variate time series forecasting.

MixLinear captures both intra-segment and inter-segment variations by isolating channel-specific

and periodic information from trend components in the time domain. This approach segments the

trend data into smaller parts, allowing efficient handling of multivariate dependencies and reducing

parameter complexity from O(n?) to O(n) for input and output sequences of length L, with a known
L

period w and a subsequence length n = (E]

To model long-term dependencies in the frequency domain, MixLinear maps the decoupled time
series subsequences (trends) into a latent frequency space, where it reconstructs the trend spectrum.
This process allows for effective frequency representation across segments, capturing critical peri-
odic variations.

To further enhance efficiency, MixLinear applies an aggregation downsampling step using a 1D
CNN with a kernel size of w, resulting in a computational complexity of O(w). Following this,
in the frequency domain transformation, FFT and iFFT operations are applied to the downsampled
trend segments of length n, introducing an additional time complexity of O(nlogn) and space
complexity of O(n) (Baxley & Zhou, 2006).

In summary, the total time complexity of MixLinear is O(w) + O(nlogn)+O(n), which simplifies
to O(nlogn), the total space complexity of MixLinear is O(w) + O(n) 4+ O(n), which simplifies
to O(n).

B.7 L0SS CONVERGENCE VISUALIZATION

To showcase the loss convergence of MixLinear and compare it with other models, we analyze
their performance on the Exchange dataset under the input-720-predict-720 settings. Figure [3]illus-
trates how the training loss evolves across epochs for each model. This comparison highlights the
efficiency and stability of MixLinear relative to other state-of-the-art models.

MixLinear and PatchTST demonstrate smooth and consistent loss convergence, indicating robust
training dynamics and effective optimization. FITS converges rapidly within the initial epochs,
achieving stable loss values quickly, which is advantageous for scenarios requiring faster training.
In contrast, SparseTSF and DLinear exhibit noticeable oscillations during training, suggesting po-
tential instability or sensitivity to hyperparameter settings. Meanwhile, iTransformer shows steady
loss reduction but converges more slowly compared to MixLinear and PatchTST. These results em-
phasize the strengths of MixLinear in achieving stable and efficient training while also revealing
differences in convergence behavior among various models.

B.8 PREDICTION VISUALIZATION

To showcase the prediction performance of MixLinear and compare it with other models, we present
visualizations of their prediction results. Figures] and Figures [3 display the prediction results on
the Exchange dataset for different models under two settings: input-720-predict-96 (Figure {) and
input-720-predict-192 (Figure[5). In these figures, the blue lines represent the ground truth values,
while the orange lines denote the model predictions.

In Figure[d] the models predict 96 future time steps based on 720 past time steps. MixLinear shows
strong alignment with the ground truth, capturing short-term patterns effectively. SparseTSF per-
forms reasonably well, though slight deviations are observed. FITS and PatchTST closely follow the
ground truth, demonstrating robust short-term forecasting capabilities. DLinear and iTransformer,
however, exhibit larger deviations, indicating less accuracy for short-term predictions.

In Figure 5} the models are tasked with predicting 192 future time steps using 720 past time steps.
MixLinear continues to perform accurately with minimal deviations, proving its effectiveness for

19

Under review as a conference paper at ICLR 2025

2.0 2.0
MixLinear Loss SparseTSF Loss
1.8 1.8
1.6 1.6
(] wn
S14 S14
| |
1.2 1.2
1.0 1.0
OB 5 3 4 5 6 7 & 5§ 10 0855 4 5 6 7 & 8§ 10
Epoch Epoch
(a) MixLinear (b) SparseTSF
2.0 2.0
FITS Loss DLinear Loss
1.8 1.8
1.6 1.6
wn 7))
814 D14
1.2 1.2
1.0 1.0
0.8 1 2 3 4 5 6 7 8 9 10 0.8 1 2 3 4 5 6 7 8 9 10
Epoch Epoch
(c) FITS (d) DLinear
2.0 2.0
PatchTST Loss iTransformer Loss
1.8 1.8
1.6 1.6
(] wn
814 814
3 3
1.2 1.2
1.0 1.0
0.8 1 2 3 4 5 6 7 8 9 10 0.8 1 2 3 4 5 6 7 8 9 10
Epoch Epoch
(e) PatchTST (f) iTransformer

Figure 3: Loss Convergence on Dataset Exchange by different models under the input-720-predict-
720 settings on Exchange dataset.

longer prediction horizons. SparseTSF and FITS display moderate accuracy but show occasional
mismatches in trends. PatchTST maintains strong performance, similar to the 96-step setting, while
DLinear and iTransformer show greater discrepancies and instability, struggling with the extended
horizon.

Overall, these figures highlight the strengths and weaknesses of the models. MixLinear and
PatchTST consistently deliver accurate predictions across both settings, whereas DLinear and
iTransformer face challenges in capturing longer-term temporal patterns. This comparison under-
scores the importance of robust model design for both short-term and long-term forecasting.

20

Under review as a conference paper at ICLR 2025

3.754 3.754

—— GroundTruth | —— GroundTruth |
~—— Prediction ! ~—— Prediction !
3:5079 -~ Prediction Start 3:5079 —-- Prediction Start
3.251 3.251
3.001 3.001
2.751 2.751
2.50 2.50 1
2.251 2.251
2.001 2.001
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
(a) MixLinear (b) SparseTSF
3751 GroundTruth | 3751 GroundTruth |
~—— Prediction ! ~—— Prediction !
3:5079 —-- prediction Start 3:509 —-- prediction Start
3.251 3.251
3.001 3.00 1
2.751 2.751
2.50 1 2.50 1
2.251 2.251
2.00 2.00
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
(c) FITS (d) DLinear
3759 GroundTruth | 3759 GroundTruth |
~—— Prediction ! ~—— Prediction !
3.501 ——- Pprediction Start 3.501 ——- Pprediction Start
3.251 3.251
3.00 3.00
2.751 2.751
i
2.50 1 2.50 1 :
i
2.251 2.251 :
1
1
2.00 { 2.00 { !
i i
T T T T T T T L T T T T T T T T L T
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
(e) PatchTST (f) iTransformer

Figure 4: Prediction cases from Exchange by different models under the input-720-predict-96 set-
tings. Blue lines are the ground truths and orange lines are the model predictions.

21

Under review as a conference paper at ICLR 2025

3.754 3.754
3.50 3.50
3.251 3.251
3.001 3.001
2.751 2.751
2.50 2.50 1
2.251 2.251
—— GroundTruth —— GroundTruth
2.007 ~—— Prediction 2.007 —— Prediction
—=—~- Prediction Start H —=—~- Prediction Start H
1 1
0 200 400 600 800 200 400 600 800
(a) MixLinear (b) SparseTSF
3.754 3.754
3.501 3.501
3.251 3.251
3.001 3.00 1
2.751 2.751
2.501 2.501
2.251 2.251
—— GroundTruth —— GroundTruth
2.004 ~—— Prediction 2.001 ~—— Prediction
==~ Prediction Start H ==~ Prediction Start H
1 1
0 200 400 600 800 200 400 600 800
(c) FITS (d) DLinear
3.754 3.754
3.501 3.501
3.251 3.251
3.00 3.00
2.751 2.751 '
i
2.50 1 2.50 1 :
i
2.251 2.251 :
—— GroundTruth —— GroundTruth 1
2.004 —— Prediction 2.004 —— Prediction |
——~- Prediction Start H ==~ Prediction Start :
1 1

0 200 400 600 800

(e) PatchTST

200 400 600 800

(f) iTransformer

Figure 5: Prediction cases from Exchange by different models under the input-720-predict-192
settings. Blue lines are the ground truths and orange lines are the model predictions.

22

Under review as a conference paper at ICLR 2025

B.9 PERFORMANCE COMPARISON BETWEEN MIXLINEAR AND NAIVE COMBINING FITS
AND SPARSETSF

Table 11: MSE results of multivariate LTSF with MixLinear Compared with Simply Combining
SparseTSF and FITS.

Dataset ETThl ETTh2 Electricity Traffic
FITS+SparseTSF | 10k 0384 0419 0448 0440 0271 0332 0360 0388 0133 0.158 0.174 0203 0402 0413 0428 0449
MixLinear [0.1k 0351 0395 0411 0423 0283 0337 0356 0380 0.138 0.154 0170 0209 0.384 0.398 0416 0.451

To compare MixLinear with the naive combination of FITS and SparseTSF, we present the MSE
results for multivariate LTSF in Table[TT] As Table[TT|presents, the results are reported across four
datasets (ETTh1, ETTh2, Electricity, Traffic) for various input-output horizons.

The comparison reveals that MixLinear consistently outperforms the naive combination of
SparseTSF and FITS in terms of lower MSE values across all datasets. For instance, in the ETTh1
dataset, MixLinear achieves a significantly lower MSE (0.351, 0.395, 0.411, and 0.423 for differ-
ent horizons) compared to the combination model (0.384, 0.419, 0.448, and 0.440). Similar trends
are observed in other datasets such as ETTh2 and Electricity, where MixLinear demonstrates better
predictive accuracy.

The results highlight the superior design of MixLinear, which balances temporal and frequency
information effectively. In contrast, the naive combination of SparseTSF and FITS struggles due to
alignment and redundancy issues, leading to suboptimal performance. This table underscores the
robustness and accuracy of MixLinear in multivariate LTSF tasks.

23

Under review as a conference paper at ICLR 2025

10

100 ’
200
300

400

500 \
\ : \
\ / B .3
\ !
\
600 S ’ 0.5 .

700

——— \ g N

04 (1F] |)

0 100 200 300 400 500 600 700 !
~ -

Dlinear(10k) SparseTSF(1K) MixLinear(0.1K)

Figure 6: Model Weights Comparison in the Time Domain

[-0.13

-0.14

lue
o
°
Value

-015 2

4 —-0.16

-0.17

(a) MixLinear Intra-segment Weights (b) MixLinear Inter-segment Weights

Figure 7: MixLinear Time Domain Weights

C TIME AND FREQUENCY DOMAIN VISUALIZATION

To showcase the patterns learned by the Time Domain Transformation and Frequency Domain
Transformation, we visualize the weights learned by the MixLinear model. These visualizations
offer valuable insights into how the model balances local and global feature extraction in the time
domain while effectively managing compression and reconstruction in the frequency domain.

C.1 MODEL WEIGHT COMPARISON IN THE TIME DOMAIN

Figure 6 showcase the time domain weights across three models trained on ETTh1 720-to-720 pre-
diction scenarion: DLinear, SparseTSF, and MixLinear. The progression showcases how the model’s
parameters are compressed while retaining significant temporal information.

DLinear (10k) is shown as the first panel, representing a model with 10,000 parameters. The heatmap
displays the weight matrix, which covers the entire input sequence (over 720 steps). The evenly
ditributed stripe on the right, highlighted with a dashed ellipse, indicates areas where significant

weights are concentrated.

24

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140

FITS(10k) MixLinear(0.1K)

Figure 8: Model Weights Comparison in the Frequency Domain

SparseTSF (1K) is shown as the second panel, representing a more compact model with 1k param-
eters. Compared to DLinear, the weight matrix is significantly reduced in size. The key weight
regions remain focused on a narrow band, suggesting targeted compression of influential features.

MixLinear (0.1K) is the final panel, representing an ultra-lightweight model with just 0.1k param-
eters. The weight matrix is further compressed, focusing on only a few crucial regions. The high-
lighted areas demonstrate how MixLinear preserves essential temporal patterns despite the extreme
reduction in parameters.

This figure effectively illustrates the transition from large weight matrices (DLinear) to highly com-
pressed, focused representations (MixLinear), emphasizing the efficiency and scalability of the pro-
posed compression techniques for time-series forecasting models.

Time Domain Weights Figure [/] illustrates the time domain weights of the MixLinear model,
highlighting its two distinct components: intra-segment and inter-segment weights. Figure[7a]shows
the intra-segment weights, which capture the relationships and dependencies within individual seg-
ments of the input time series. The intensity of the colors reflects the magnitude of the weights,
with darker regions indicating higher values. These weights focus on localized patterns, enabling
the model to emphasize short-term relationships and trends effectively. Figure [7b] depicts the inter-
segment weights, which model the relationships and dependencies across different segments of the
input time series. These weights help the model capture long-term patterns and interactions across
segments, offering a holistic understanding of the temporal structure. Together, the intra- and inter-
segment weights demonstrate the MixLinear model’s ability to balance local and global feature
extraction in the time domain. This visualization underscores the distinct yet complementary roles
these components play in the model’s architecture, enabling it to process both short-term and long-
term temporal relationships effectively.

C.2 MODEL WEIGHT COMPARISON IN THE FREQUENCY DOMAIN

Figure [8 presents a Model Weights Comparison in the Frequency Domain between FITS and
MixLinear. This comparison emphasizes how MixLinear achieves an efficient representation of
model weights in the frequency domain while significantly reducing the number of parameters.

The left panel depicts FITS, a model with 10k parameters. The heatmap illustrates a dense represen-
tation of weights across the frequency domain, with the most significant weights concentrated in the
upper-left region (highlighted by the dashed ellipse). This dense matrix reflects the high parameter
count and resource-intensive nature of FITS.

25

Under review as a conference paper at ICLR 2025

o

[
1

0.0 2.5 5.0 7.5 10.0 1255 15.0 17.5

Real Value
Imaginary Value

00 25 50 75 100 125 150 175 0.0

|
=4
o
|

-

(a) Compression Weights Real Part (b) Compression Weights Imaginary Part
0.0 0.0
0.8
2
25 25
0.6
5.0 5.0
1 0.4
7.5 7.5 o
02 =2
o 3
2 >
10.0 0o 2 10.0 2
= 00 2
e 2
125 125 £
-0.2
-1
15.0 15.0 _04
17.5 = 17.5 _06
20.0 20.0 o8
01 01
(c) Inversion Weights Real Part (d) Inversion Weights Imaginary Part

Figure 9: MixLinear Frequency Domain Weights

The right panel shows MixLinear, a model with only 100 parameters. In contrast to FITS, MixLinear
exhibits a highly targeted weight distribution in the frequency domain. The dashed ellipse highlights
how MixLinear focuses on a select few essential frequency components while discarding redundant
or less significant weights. This approach enables MixLinear to achieve substantial compression
and computational efficiency without compromising on capturing critical spectral features.

This figure highlights the effectiveness of MixLinear’s lightweight design, demonstrating its ability
to retain essential frequency-domain characteristics while operating with a fraction of the parameters
required by FITS.

Frequency Domain Weights Figure Q]illustrates the frequency domain weights of the MixLinear
model, which are divided into compression and inversion weights, each further split into real and
imaginary components. Figure [9a] presents the real part of the compression weights, which reflect
how the model processes and compresses information in the frequency domain. Figure [9b| shows
the imaginary part of the compression weights, complementing the real part by encoding additional
frequency-related patterns, such as phase and magnitude interactions. Figure 0| visualizes the real
part of the inversion weights, which are responsible for reconstructing the data from the compressed
frequency representation back into the time domain. Figure Od|illustrates the imaginary part of the
inversion weights, which supports the reconstruction process by accounting for complex interactions
in the frequency domain. These visualizations provide insight into how MixLinear handles trans-

26

Under review as a conference paper at ICLR 2025

-0.81 —0.81

~1.01 -1.01
-124 ~1.21

~161 ~1.6 1

f
|
1
!
1
-1.84 —— GroundTruth 1
1
1
1
1
I

|
1
1
-1.84 —— GroundTruth 1
~—— Prediction : ~—— Prediction
=== Prediction Start : === Prediction Start
=2.01— T T T T T T L T =2.0+— T T T T T T T T
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
(a) Time Domain Prediction (b) Frequency Domain Prediction

Figure 10: Comparison of MixLinear’s Time Domain and Frequency Domain Modules on ETTh1
Fragment 1

-1.01

~1.24

~1.4

-1.6

-1.84

—2.04

—— GroundTruth

—— GroundTruth

_2.24 — Prediction _2.24 — Prediction
—=-- Prediction Start —=-- Prediction Start
6 160 260 360 460 560 660 760 860 6 160 260 360 460 560 660 760 860
(a) me Domain Prediction (b) Frequency Domain Prediction

Figure 11: Comparison of MixLinear’s Time Domain and Frequency Domain Modules on ETTh1
Fragment 2

formations in the frequency domain. By effectively balancing compression and reconstruction and
leveraging both real and imaginary components, the model ensures the integrity of the time series
data while capturing critical patterns and features. This design highlights MixLinear’s strength in
processing complex temporal data and its adaptability to diverse time series structures.

C.3 PREDICTION COMPARISON ACROSS TWO DOMAINS

Figure [T0] and Figure [T] present a comparison of MixLinear’s Time Domain and Frequency Do-
main modules on two fragments of data from ETTh1. As illustrated in these figures, the frequency
domain predictions appear smoother due to the application of a low-pass filter, which eliminates
high-frequency noise and allows the model to focus more on global trends. In contrast, the time
domain predictions capture finer details, emphasizing localized variations in the data.

We have mathematically proven that combining time domain and frequency domain models reduces
the uncertainty of future predictions more effectively than using either model alone. From an infor-
mation theory standpoint, the combined model minimizes the conditional entropy and maximizes
the mutual information with future observations. This superiority arises from the model’s ability
to capture a broader range of data structures, including trends, cycles, and other complex patterns
inherent in time series data.

27

	Introduction
	Preliminaries
	MixLinear
	Overview
	Time Domain Transformation
	Frequency Domain Transformation

	Experiment
	Experiment Setup
	Prediction Performance
	Efficiency
	Effectiveness of Mixing the Time and Frequency Domain
	Generalization Ability of the MixLinear Model

	Related Work
	Long-term Time Series Forecasting
	Time Series Data Decomposition

	Conclusion
	More Details of MixLinear
	Overview Workflow
	Detailed Dataset Description
	Detailed Baseline Model Description
	Detailed Experimental Setup

	More results and analysis
	Ultra-long Period Scenario
	Effect of low pass filter cutoff frequency on performance
	Effect of Downsampling Period w
	Generalization
	Error Bars Evaluation
	More Detailed Computational Complexity Analysis
	Loss Convergence Visualization
	Prediction Visualization
	Performance Comparison between MixLinear and naive combining FITS and SparseTSF

	Time and Frequency Domain Visualization
	Model Weight Comparison in the Time Domain
	Model Weight Comparison in the Frequency Domain
	Prediction Comparison across Two Domains

