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Abstract

Modern NLP research is firmly predicated on001
two assumptions: that very large corpora are002
available, and that the word, rather than the003
morpheme, is the primary meaning-bearing004
unit of language. For the vast majority of the005
world’s languages, these assumptions fail to006
hold, and as a result existing state-of-the-art007
neural representations such as BERT fail to008
meet the needs of thousands of languages. In009
this paper, we present a novel general-purpose010
neural representation using Tensor Product011
Representations that is designed from the be-012
ginning to be both linguistically interpretable013
and fully capable of handling the broad vari-014
ety found in the world’s diverse set of 7000015
languages, regardless of corpus size or mor-016
phological characteristics. We demonstrate the017
applicability of our representation through ex-018
amples drawn from a typologically diverse set019
of languages whose morphology includes pre-020
fixes, suffixes, infixes, circumfixes, templatic021
morphemes, derivational morphemes, inflec-022
tional morphemes, and reduplication.023

1 Introduction024

Modern NLP research is firmly predicated on two025

assumptions: that very large corpora are available,026

and that the word, rather than the morpheme, is027

the primary meaning-bearing unit of language. En-028

glish1 and Standard Mandarin Chinese2 are the029

prime examples where both of these conditions030

hold, and for which existing neural representations031

such as BERT work very well (Peters et al., 2018;032

Devlin et al., 2019; Zhang et al., 2019).033

1ISO 639-3: eng, an analytic language in the Germanic
branch of the Indo-European language family

2ISO 639-3: cmn, an analytic language in the Sinitic
branch of the Sino-Tibetan language family

1.1 Complex morphology is the norm 034

The vast majority of NLP research is predicated on 035

the assumption that the word, rather than the mor- 036

pheme, is the primary meaning-bearing unit of lan- 037

guage. This assumption likely stem from the dom- 038

inance of English as the language of study in NLP 039

(Bender, 2011; Joshi et al., 2020), and the fact that 040

in English, many words do in fact consist of only 041

a single morpheme. Yet for the vast majority of 042

the world’s approximately 7000 languages, the av- 043

erage number of morphemes per word is medium 044

or high (see World Atlas of Language Structures, 045

including Bickel and Nichols, 2013; Dryer, 2013). 046

1.2 Unlabelled data is a rare luxury 047

Somewhere between 100–200 languages (most in 048

the Indo-European language family) have enough 049

unlabelled data (Joshi et al., 2020; Conneau et al., 050

2020) for BERT embeddings of reasonable qual- 051

ity to be trained using a combination of tech- 052

niques including unsupervised sub-word segmen- 053

tation methods, multilingual bootstrapping, and 054

transfer learning. Quality of word embeddings is 055

substantially lower when corpus sizes are insuffi- 056

ciently large; Alabi et al. (2020), for example, con- 057

struct word embeddings using approximately 10 058

million tokens for Yorùbá3 and Twi,4 and find that 059

the resulting embeddings are substantially poorer 060

in quality those for high-resource languages. 061

In total, fewer than 300–400 languages have 062

have more than a trivial amount of digitized un- 063

labelled data, thus rendering data-driven NLP ap- 064

proaches including BERT futile for 96% of the 065

world’s languages (representing over 1.2 billion 066

people; Vannini and Crosnier, 2012; Joshi et al., 067

3ISO 639-3: yor, an analytic language in the Yoruboid
branch of the Niger-Congo language family

4ISO 639-3: twi, an analytic language in the Tano branch
of the Niger-Congo language family
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2020), even with aggressive multilingual mod-068

els, transfer learning, bilingual anchoring, and069

typologically-aware modelling (Ponti et al., 2019;070

Michel et al., 2020; Eder et al., 2021; Hedderich071

et al., 2021).072

1.3 Better representations are needed073

The current state-of-the-art in neural word repre-074

sentation is insufficient to represent 96% of the075

world’s languages (§1–§2). In this paper, we076

present a novel general-purpose neural represen-077

tation (§3) using Tensor Product Representations078

(TPRs, Smolensky, 1990) that is designed from079

the beginning to be both linguistically interpretable080

(§4) and fully capable of handling the broad vari-081

ety found in the world’s diverse set of 7000 lan-082

guages, regardless of corpus size or morphologi-083

cal characteristics. We demonstrate the applicabil-084

ity of our representation5 through examples (§4.4)085

drawn from a typologically diverse set of lan-086

guages whose morphology includes prefixes, suf-087

fixes, infixes, circumfixes, templatic morphemes,088

derivational morphemes, inflectional morphemes,089

and reduplication.090

2 Existing Word Representations are091

Insufficient for Most Languages092

Computational processing of natural language re-093

quires practical digital representations of the words094

of a language. We survey existing methods for rep-095

resenting words, arguing that while existing word096

representations work well for high resource ana-097

lytic languages like English, existing representa-098

tions are insufficient for effectively representing099

morphologically complex words in thousands of100

languages for which large corpora do not exist.101

2.1 Representing characters as integers102

Oettinger (1954, ch. 2, p. 11), in the very first Ph.D.103

granted in the field of NLP, defined a word as “any104

string of letters preceded and followed by a space105

or a punctuation mark,” and stored each word in an106

electronic dictionary as a sequence of characters,107

with each character represented digitally as a 5-bit108

integer. Nearly seventy years later, with relatively109

minor variations, this definition is still widely used110

in the NLP research community. Most digital word111

representations incorporate this technique, storing112

each character in a word as a multi-bit integer.113

5Our open source code constructs interpretable word rep-
resentations from morphologically analyzed examples and
trains dense word vectors from the resulting tensors.

2.2 Representing words as feature bundles 114

During the 1960s through the early 1990s, most 115

NLP systems utilized a knowledge-based paradigm 116

in which words were represented as complex bun- 117

dles of linguistic features, which were subse- 118

quently processed using linguistically-motivated 119

rules (Hutchins, 1986). Finite-state morphological 120

analyzers (Beesley and Karttunen, 2003) can be 121

used to segment words into sequences of compo- 122

nent morphemes; such segmentations can include 123

explicit linguistic features such as case, number, 124

and mood in addition to morpheme identity. An- 125

other modern example of this type of linguistically 126

feature-rich word representation can be seen in the 127

attribute-value matrices (AVMs) of Head-driven 128

Phrase Structure Grammars (HPSG; Pollard and 129

Sag, 1994). Such linguistically-based feature bun- 130

dle representations can in principle work with any 131

language, regardless of corpus size or morpholog- 132

ical characteristics, but must be constructed by an 133

expert linguist for each language, and do not natu- 134

rally fit with existing neural techniques. 135

2.3 Representing words as integers 136

The development of large digital corpora (primar- 137

ily in English) and the rise of empirical approaches 138

to NLP in the late 1980s and early 1990s, led to 139

widespread use of statistical language models and 140

translation models (see Church and Mercer, 1993; 141

Manning and Schütze, 1999; Koehn, 2010). When 142

implementing these statistical models, it is often 143

convenient to map each word type to an integer, 144

allowing these integer word representations to di- 145

rectly serve as indices into probability tables (see 146

for example §5 of Brown et al., 1993). A special 147

integer value (often zero) is typically reserved to 148

represent all words not seen during training. 149

While representing words as integers is efficient 150

in its use of RAM, it suffers from a serious short- 151

coming first observed by Bull et al. (1955), namely 152

that no semantic, syntactic, or morphological in- 153

formation is encoded in the word representation 154

(for example, dog and dogs are treated as com- 155

pletely unrelated word types). This problem is seri- 156

ously exacerbated in languages with rich morphol- 157

ogy, as productive derivational and inflectional 158

morphology may result in extremely large num- 159

bers of closely-related word types, few of which are 160

likely to appear in corpora. Schwartz et al. (2020), 161

for example, found that in one polysynthetic lan- 162

guage, approximately every other word in running 163
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text will have never been previously seen.164

2.4 Representing subwords as integers165

Unsupervised techniques can be used to automati-166

cally segment words into sequences of shorter sub-167

word tokens generally longer than the character but168

shorter than the word. These techniques include169

approaches such as Morfessor (Creutz and La-170

gus, 2002; Smit et al., 2014) designed to segment171

words into units approximating morphemes, and172

compression-based subword segmentation tech-173

niques such as BPE (Sennrich et al., 2016; Wu174

et al., 2016; Kudo and Richardson, 2018). Most175

neural NLP systems in broad use today utilize in-176

teger representations of unsupervised subword to-177

kens for both input and output.178

This approach is more successful at represent-179

ing words in languages with highly productive mor-180

phology than the integer word representations de-181

scribed in §2.3. When corpus sizes are small or182

nonexistent, however, as is the case for most of the183

world’s languages, insufficient training signal ex-184

ists to reliably train high-quality unsupervised sub-185

word segmentation. This problem can be mitigated186

through the use of a linguistically-based finite-state187

morphological analyzer (§2.2) for word segmenta-188

tion instead of unsupervised segmentation meth-189

ods (Park et al., 2021).190

2.5 Representing words as embeddings191

Distributed representations (Hinton et al., 1986),192

also called continuous representations and word193

embeddings, represent each word as a point em-194

bedded in a high-dimensional vector space. When195

feed-forward or recurrent neural networks are196

trained as language models with the task of pre-197

dicting the next word in a sequence, a side effect of198

the training process is a table of word embeddings199

which can be indexed by the integer word represen-200

tations from §2.3. Other techniques for learning201

context-independent word vector representations202

for each word type include word2vec (Mikolov203

et al., 2013a) and GloVe (Pennington et al., 2014).204

More recent neural techniques such as ELMo205

(Peters et al., 2018) and BERT (Devlin et al., 2019)206

can be used to obtain a context-dependent word207

vector representation for each word token. ELMo208

uses convolutional techniques to generalize over209

character sequences within the word in conjunc-210

tion with deep bidirectional recurrent neural net-211

works, while BERT utilizes unsupervised subword212

tokenization techniques (§2.4) in conjunction with 213

a transformer architecture (Vaswani et al., 2017). 214

Learned context-free word embeddings empiri- 215

cally appear to implicitly encode at least some syn- 216

tactic and semantic information (Mikolov et al., 217

2013b). Substantial recent work, summarized by 218

Rogers et al. (2020) indicates that contextualized 219

word embeddings learned by BERT are even more 220

successful at implicitly encoding syntactic, seman- 221

tic, and possibly morphological information. In- 222

terpretability of these embeddings is a challenging 223

problem which is far from solved. 224

While multilingual training, transfer, and an- 225

choring methods have been shown in some cases 226

to somewhat improve the quality of very low- 227

resource word embeddings over monolingually- 228

trained low-resource word embeddings (see, for ex- 229

ample, Eder et al., 2021), such methods rely on dig- 230

itized monolingual and bilingual resources that ex- 231

ist for only a few hundred languages. It remains the 232

case that at present, training high quality word em- 233

beddings is dependent on the availability of large 234

corpora (Alabi et al., 2020; Joshi et al., 2020; Wu 235

and Dredze, 2020; Budur et al., 2020; Michel et al., 236

2020) consisting of tens or hundreds of millions of 237

tokens, which are available for at most a few hun- 238

dred languages (see §1.2). 239

2.6 Linguistically-informed word embeddings 240

No existing word representation is capable of ro- 241

bustly representing words in all of the world’s lan- 242

guages regardless of corpus size and morphologi- 243

cal characteristics. The existing representation that 244

comes closest to meeting these needs is Linguis- 245

tically Informed Multi-Task BERT (LIMIT-BERT 246

Zhou et al., 2020b), a semi-supervised approach 247

in which a trained parser (Zhou et al., 2020a) is 248

used to annotate large unlabelled corpora. During 249

LIMIT-BERT training, these silver linguistic an- 250

notations (part-of-speech tags, constituency trees, 251

and dependency trees) are used along with the 252

words themselves to train contextualized embed- 253

dings on five parsing-related tasks. 254

Unlike the embeddings learned by LIMIT- 255

BERT, the representations we propose are explic- 256

itly interpretable by design, allowing for direct re- 257

covery of any linguistic features encoded in our 258

word embeddings. Unlike LIMIT-BERT, our ap- 259

proach can produce high-quality word embeddings 260

in the presence of arbitrarily complex morphology 261

and in the absence of large training corpora. 262
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3 Feature-rich Open-vocabulary263

Interpretable Representations264

We propose a feature-rich open-vocabulary inter-265

pretable representation (FOIR) designed to model266

words from all of the world’s languages, even in267

the absence of a digitized corpus.268

3.1 Word Representation Desiderata269

Our representation is designed to model words270

from polysynthetic languages, agglutinative lan-271

guages, fusional languages, and isolating lan-272

guages equally well, naturally incorporating any273

and all linguistic features which may be available274

from external resources. Our representation is de-275

signed to model words in ultra-low-resource set-276

tings where corpus sizes are very small or even non-277

existent just as well as words in high-resource set-278

tings with very large corpora. Our representation279

is designed to be open-vocabulary, robustly provid-280

ing word embeddings for novel word types never281

previously encountered. Finally, our representa-282

tion is interpretable; all linguistic features encoded283

in our word embeddings are easily retrievable from284

the word embeddings.285

3.2 Tensor Product Representation286

To satisfy the word representation desiderata spec-287

ified in §3.1, we utilize the Tensor Product Rep-288

resentation (TPR) proposed by Smolensky (1990).289

The use of TPRs provides a principled way of rep-290

resenting hierarchical symbolic information from291

external resources such as interlinear glosses or292

morphological analyzers into vector spaces, such293

as those used as the input and output domains of294

neural networks.295

Constructing a TPR for a linguistic unit (such as296

a morpheme or a word) begins by decomposing the297

symbolic structure of that unit into roles and fillers.298

Each role represents a linguistic feature (such as299

noun case or verb mood), while each filler repre-300

sents the actual value of that feature (such as as-301

sociative case or indicative mood). The symbolic302

structure of a word is then represented as the bind-303

ings of fillers to roles for all feature-value pairs as-304

sociated with that unit. Once decomposed, both305

roles and fillers are embedded into a vector space306

such that all roles are linearly independent from307

one another. Let b be a list of ordered pairs (i, j)308

representing filler i (with embedding vector f̂i) be-309

ing bound to role j (with embedding vector r̂j).310

The tensor product representation T of the infor-311

mation is then given by 312

T =
∑

(i,j)∈b

f̂i ⊗ r̂j ∈ Rd ⊗ Rn. (1) 313

The resulting TPR may itself be used as a filler (for 314

example, the associative case morpheme) and sub- 315

sequently be bound to another role vector (for ex- 316

ample, the noun case of the word). This process re- 317

sults in a TPR that represents the hierarchical com- 318

positional structure of a word. 319

3.3 Robust support for full linguistic diversity 320

We demonstrate the broad applicability of our 321

feature-rich open-vocabulary interpretable repre- 322

sentations (FOIR) using examples drawn from a 323

typologically diverse set of polysynthetic, aggluti- 324

native, fusional, and analytic languages. Our exam- 325

ples include prefixes, suffixes, infixes, circumfixes, 326

templatic morphemes, derivational morphemes, in- 327

flectional morphemes, and reduplication. 328

While we expect FOIRs to primarily be con- 329

structed using the results of finite-state morpho- 330

logical analyzers and (to a lesser extent) part-of- 331

speech taggers and parsers, in principle FOIRs can 332

be constructed directly from interlinear glosses cre- 333

ated by hand by a linguist, even for languages with 334

absolutely no digitized resources or corpora. 335

3.3.1 Circumfixes in Chukchi 336

The Chukchi6 word гаԓявтыма is composed of a 337

noun root morpheme ławət and an inflectional cir- 338

cumfix ɣa…ma. The tensor Tгаԓявтыма is a TPR that 339

represents this word, explicitly including all infor- 340

mation shown in Example (1): 341

г
ɣ
f̂г

r̂0

а
а
f̂а

r̂1

ԓ
ł
f̂ԓ

r̂2

я
a
f̂я

r̂3

в
w
f̂в

r̂4

т
t
f̂т

r̂5

ы
ə
f̂ы

r̂6

м
m
f̂м

r̂7

а
a
f̂а

r̂8

r̂m0 f̂Noun=ławət

r̂m1 f̂Case=Assoc

Tгаԓявтыма

(1) ɣa- łewət -ma
ASSOC- head -ASSOC
“with the head” (Chukchi)

342

6ISO 639-3: ckt, a polysynthetic language in the
Chukotkan branch of the Chukotko–Kamchatkan language
family
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m
m
f̂m

r̂0

a
ɑ
f̂ɑ

r̂1

ng
ŋ
f̂ŋ

r̂2

t
t
f̂t

r̂3

e
ə
f̂ə

r̂4

gh
ʁ
f̂ʁ

r̂5

a
ɑ
f̂ɑ

r̂6

gh
ʁ
f̂ʁ

r̂7

r
ɻ
f̂ɻ

r̂8

u
u
f̂u

r̂9

g
x
f̂x

r̂10

ll
ɬ
f̂ɬ

r̂11

a
ɑ
f̂ɑ

r̂12

ng
ŋ̊
f̂ŋ̊

r̂13

ll
ɬ
f̂ɬ

r̂14

a
ɑː
f̂ɑː

r̂15

gh
ʁ
f̂ʁ

r̂16

y
j
f̂j

r̂17

u
u
f̂u

r̂18

n
n
f̂n

r̂19

gh
ʁ
f̂ʁ

r̂20

i
iː
f̂iː

r̂21

t
t
f̂t

r̂22

u
u
f̂u

r̂23

ng
ŋ
f̂ŋ

r̂24

a
a
f̂a

r̂25

r̂m0f̂Noun=mɑŋtəʁɑʁ r̂m1

f̂N→N=AUG

r̂m2

f̂N→V=ŋɬ̊ɑʁ

r̂m3

f̂V→V=juɣ

r̂m4

f̂V→V=NEG

r̂m5

f̂MOOD=IND

r̂m6

f̂PERNUM=1SG

Tmangteghaghrugllangllaghyunghitunga

(2) mɑŋtəʁɑʁ -ʁɻuxɬɑɣ -ŋɬ̊ɑʁ -juɣ -nʁitə -tu -ŋɑ
house AUG build want NEG IND 1SG
‘I didn’t want to make a huge house’ (Akuzipik)

The individual characters positions in the word343

comprise roles r̂0 through r̂8, while the characters344

(and respective phonemes) at those respective po-345

sitions comprise fillers f̂г, f̂а, f̂ԓ, f̂я, f̂в, f̂т, f̂ы, and f̂м346

that encode character and phoneme identity. Roles347

r̂m0 and r̂m1 represent morpheme positions within348

the word, and are respectively filled by f̂Noun=ławət349

(denoting the identity of the root morpheme) and350

f̂Case=Assoc (denoting the identity of the circumfix351

morpheme marking associative case).352

3.3.2 Polysynthesis with derivational and353

inflectional suffixes in Akuzipik354

Productive derivational and inflectional suffixes355

are pervasive in the polysynthetic languages of356

the Inuit-Yupik language family. Words with 2-357

5 derivational morphemes are very common, of-358

ten representing in a single word what in English359

would be represented by an entire clause or sen-360

tence.361

The Akuzipik7 word mangteghaghruglla-362

ngllaghyunghitunga shown in Example (2) can be363

translated into English as the sentence ‘I didn’t364

want to make a huge house’ (Jacobson, 2001, pg.365

43). The tensor Tmangteghaghrugllangllaghyunghitunga encodes366

the hierarchical structure of this word. Each367

grapheme position within the word is assigned368

a role (r̂0 . . . r̂25). For each of these grapheme369

7ISO 639-3: ess, a polysynthetic language in the Yupik
branch of the Inuit-Yupik-Unangan language family

position roles, a filler vector encodes the identity 370

of the grapheme and corresponding phoneme at 371

that position in the word (̂f0 . . . f̂25). The binding 372

of grapheme position roles to grapheme filler 373

vectors represents the first level of hierarchy in the 374

TPR. The word is composed of 7 morphemes: a 375

noun root mɑŋtəʁɑʁ, four derivational morphemes 376

(-ʁɻuxɬɑɣ, -ŋɬ̊ɑʁ, -juɣ, -nʁitə) and two inflectional 377

morphemes (-tu and -ŋɑ). The subsequent levels 378

of the TPR encode the identity, underlying form, 379

surface form, and hierarchical scope of each 380

morpheme. The resulting word representation is 381

compositional and easily interpretable. 382

By inspecting the resulting tensor, the following 383

structure of the word can be clearly observed: 384

• The noun root for ‘house’ mɑŋtəʁɑʁ is mod- 385

ified by the augmentatitive derivational mor- 386

pheme -ʁɻuxɬɑɣ, resulting in an extended 387

noun stem meaning ‘big house’ spanning 388

grapheme positions 0 through 12. 389

• The resulting extended noun stem (mɑŋtəʁɑ- 390

ʁɻuxɬɑɣ) is verbalized by the derivational 391

morpheme -ŋɬ̊ɑʁ, resulting in an extended 392

verb stem meaning ‘to build a big house’ span- 393

ning grapheme positions 0 through 16. 394

• The resulting extended verb stem (mɑŋtəʁɑ- 395

ʁɻuxɬɑŋɬ̊ɑʁ) is modified by the derivational 396

morpheme -juɣ, resulting in an extended verb 397
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stem meaning ‘to want to build a big house’398

spanning grapheme positions 0 through 18.399

• The resulting extended verb stem (mɑŋtəʁɑ-400

ʁɻuxɬɑŋɬ̊ɑʁjuɣ) is modified by the negating401

derivational morpheme -nʁitə), resulting in402

an extended verb stem meaning ‘to not want403

to build a big house’ spanning grapheme po-404

sitions 0 through 21.405

• The resulting extended verb stem (mɑŋtəʁɑ-406

ʁɻuxɬɑŋɬ̊ɑʁjunʁitə) is marked as being in the407

indicative mood by the inflectional morpheme408

-tu and as having a first person singular sub-409

ject by the inflectional morpheme -ŋɑ, re-410

sulting in the fully inflected word spanning411

grapheme positions 0 through 25.412

3.3.3 Agglutination in Guaraní413

In the Guaraní8 word aikosente shown in Example414

(3), the verb root ko ‘to live’ is modified in ag-415

glutinative manner by two suffixes (-se and -nte)416

and one inflectional prefix (ai-) which indicates a417

first person singular subject. Note that unlike the418

preceding example, which also encoded phoneme419

identity, in this example character fillers encode420

only character identity.421

a
f̂a

r̂0

i
f̂i

r̂1

k
f̂k

r̂2

o
f̂o

r̂3

r̂m3 f̂PerNum=1Sg

r̂
m

0
f̂Verb=live

s
f̂s

r̂4

e
f̂e

r̂5

r̂
m

1
f̂VOL n

f̂n

r̂6

t
f̂t

r̂7

e
f̂e

r̂8

r̂
m

2
f̂JUST

Taikosente

(3) aikosente
ai- ko -se -nte
SG1- live -VOL -JUST
‘I would just like to live’ (Guaraní)

422

3.3.4 Fusional suffixes in Catalan423

Our representation works equally well for simpler424

examples, such as the Catalan9 word tinc in Exam-425

ple (4), which is comprised only of only a verb426

root ten- ‘to have’ and a single inflectional suffix427

marking person, number, tense, and mood.428

8ISO 639-3: gug, an agglutinative language in the Tupian
language family

9ISO 639-3: cat, a fusional language in the Romance
branch of the Indo-European language family

t
f̂t

r̂0

i
f̂i

r̂1

n
f̂n

r̂2 r̂m0

f̂V
=ten-

c
f̂c

r̂3 r̂m1

f̂PERNUM=1SG
TENSE=PRES
MOOD=IND

Ttinc

(4) tinc
ten -c
to.have -1SG.PRES.IND

“I have” (Catalan)
429

3.3.5 Zero inflection & infixation in English 430

Our representation can encode linguistic features 431

of a word even when those features are not explic- 432

itly marked in the surface form of the word. In 433

Example (11), the tensor Tdog explicitly encodes 434

the null singular morpheme -∅marking number as 435

singular in the word ‘dog,’ just as the morpheme 436

-s marks number as plural in the word ‘dogs in 437

Example (12).’ Unlike existing representations 438

discussed in §2, Tdog and Tdogs are clearly distin- 439

guishable as variant inflections of the same root 440

word. 441

d
f̂d

r̂0

o
f̂o

r̂1

g
f̂g

r̂2

r̂
m

0
f̂N

oun=dɑg r̂
m

1
f̂N

um
=Sg

Tdog

(5) dog -∅
dog -SG
“dog” (English)

d
f̂d

r̂0

o
f̂o

r̂1

g
f̂g

r̂2

r̂
m

0
f̂N

oun=dɑg

s
f̂s

r̂3

r̂
m

1
f̂N

um
=Pl

Tdogs

(6) dog -s
dog -PL
“dogs” (English)

442

Linguistic features such as infixes that are at- 443

tested but relatively rare can also be included with 444

no difficulty. Infixes are morphemes that break a 445

given stem and appear inside it. 446

a
f̂a

r̂0

b
f̂b

r̂1

s
f̂s

r̂2

o
f̂o

r̂3

f
f̂f

r̂4

u
f̂u

r̂5

c
f̂c

r̂6

k
f̂k

r̂7

i
f̂i

r̂8

n
f̂n

r̂9

l
f̂l

r̂10

u
f̂u

r̂11

t
f̂t

r̂12

e
f̂e

r̂13

l
f̂l

r̂14

y
f̂y

r̂15

r̂m1 f̂Intensifier

r̂m0 f̂Adv=absolutely

Tabsofuckinlutely

(7) abso- fuckin -lutely
abso- INTENSIFIER -lutely
“absofuckinlutely” (English)

447

In Seri10, for example, infixation after the first 448

10ISO 639-3: sei a language isolate in north-west Mexico
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vowel in the root is used to mark number agree-449

ment. In Example (7), we observe an example of450

expletive infixation in English (McCarthy, 1982)451

with the infix fuckin serving to intensify the ad-452

verb absolutely.453

3.3.6 Reduplication in Malaysian454

The Malaysian11 word orang-orang ‘people’, is455

formed through reduplication of the noun root456

orang ‘person’. Unlike in previous examples, in457

which morpheme fillers encoded underlying lex-458

ical form in addition to morpheme surface form459

and identity, in Example (8), the plural morpheme460

has no underlying lexical form other than the mor-461

pheme identity (NUM=PL), as the surface form of462

the plural morpheme (here, orang) is formed by du-463

plicating the form of the noun to which it attaches.464

o
f̂o

r̂0

r
f̂r

r̂1

a
f̂a

r̂2

n
f̂n

r̂3

g
f̂g

r̂4

o
f̂o

r̂5

r
f̂r

r̂6

a
f̂a

r̂7

n
f̂n

r̂8

g
f̂g

r̂9

r̂m1 f̂NUM=PLr̂m0 f̂Noun=orang

Torang-orang

(8) orang -orang
orang -PL
“people” (Malaysian)

465

3.3.7 Templatic morphology in Maltese466

Our representation can easily encode non-467

concatenative morphology such as that seen in the468

Maltese12, words ktieb ‘book’ and kotba ‘books.’469

k
f̂k

r̂0

∅
f̂∅

r̂1

t
f̂t

r̂2

ie
f̂ie

r̂3

b
f̂b

r̂4

r̂m0 f̂Noun=k_t_b

r̂m1 f̂Num=Sg

Tktieb

(9) ktieb
k_t_b ∅_ie
book SG

“book” (Maltese)

k
f̂k

r̂0

o
f̂o

r̂1

t
f̂t

r̂2

∅
f̂∅

r̂3

b
f̂b

r̂4

a
f̂a

r̂5

r̂m0 f̂Noun=k_t_b

r̂m1 f̂Num=Pl

Tkotba

(10) kotba
k_t_b o_∅_a
book PL

“books” (Maltese)
470

11ISO 639-3: zsm, a language in the Malayo-Polynesian
branch of the Austronesian language family

12ISO 639-3: mlt, a templatic language in the Semitic lan-
guage family

The noun root k_t_b acts as a template whose slots 471

are filled by the vowels in the inflectional singu- 472

lar morpheme ∅_ie (in Example (9)) or plural mor- 473

pheme o_∅_a (in Example (10)). 474

4 Embedding and retrieving linguistic 475

information from word vectors 476

TPRs are useful because they embed arbitrary sym- 477

bolic structure in a vector space in such a way that 478

simple linear algebra operations may be used to re- 479

trieve the form of the symbolic structure, including 480

its compositional structure. 481

4.1 Learning vectors using an autoencoder 482

Depending on how much linguistic information is 483

encoded, each of our TPRs may consist of approx- 484

imately 103 to 109 floating point values per ten- 485

sor. Tensors of this size are far too large to be di- 486

rectly usable as neural word representations. To 487

learn lower-dimensional vectors, we make use of 488

an autoencoder. The autoencoder is trained us- 489

ing a dictionary of word or morpheme TPRs. The 490

trained autoencoder can be used to encode a low- 491

dimensional vector from a high-dimensional tensor 492

by running the tensor through the first half of the 493

autoencoder, and can be used to reconstitute the 494

high-dimensional tensor from a vector by running 495

the vector though the latter half of the autoencoder. 496

4.2 Unbinding 497

The core operation in retrieving structure from a 498

TPR is called unbinding. Exact unbinding requires 499

linear independence of the roles; however, Haley 500

and Smolensky (2020) present an accurate approx- 501

imate unbinding strategy for even densely packed 502

TPRs. In this work, we use self-addressing un- 503

binding, as it is quick to compute and proved suffi- 504

ciently accurate for our purposes. Self-addressing 505

unbinding retrieves the filler f̃i for the role r̂i by 506

simply computing the inner product between the 507

role vector and the TPR: 508

f̃i = T · r̂i (2) 509

This unbinding is exact if the role vectors are or- 510

thogonal to one another. In our case, since we have 511

a fixed filler vocabulary, we were able to snap our 512

unbindings to the filler with the highest cosine sim- 513

ilarity to the unbound vector with sufficient accu- 514

racy to render this intrusion irrelevant. Other un- 515

binding strategies involve computing an inverse or 516

pseudoinverse of a matrix of role vectors to per- 517

form a change of basis and decrease the intrusion. 518

7



4.3 Unbinding loss519

In order to effectively train the autoencoder in §4.1,520

gold standard TPRs must be compared against pre-521

dicted tensors reconstituted by the autoencoder.522

However, these tensors are very high dimensional.523

In initial experiments, we used mean squared error524

as a loss function, but we found this was unable to525

converge for auto-encoding sparse TPRs.526

To enable effective training of the autoencoder,527

we therefore define a novel loss function that makes528

use of the information encoded in the TPR. We529

define a loss function called unbinding loss that530

examines the unbinding properties of a predicted531

morpheme tensor to answer the question, “What532

filler is closest to the unbinding of each role in the533

TPR?”534

Given a predicted tensor, the unbinding loss is535

computed by recursively unbinding roles until the536

leaves of the structure are reached – that is, unbind537

each role until the result of unbinding is a single538

vector (rather than a higher-order tensor). When539

this point is reached, we compute the cosine sim-540

ilarity between the result of unbinding and all the541

fillers in the vocabulary.542

This similarity vector can be used to define543

a probability distribution over possible fillers544

through the use of a softmax. We take the loga-545

rithm of the result of this computation to obtain546

log-probabilities. We call this distribution P . We547

then treat each filler (in this case, each character)548

as a class, and compute the negative log-likelihood549

loss over this probability distribution.550

As we consider tree-structured representations,551

the number of fillers needing to be checked is expo-552

nential with the depth of our representation. This553

difficulty could be overcome by parallelizing the554

independent matrix computations for the loss of all555

the position roles for a given morpheme, trading556

space for time. For more complex TPRs, a poten-557

tial avenue would be to exploit the fact that most558

roles will be empty (and their unbindings thus a559

matrix of zeros) by replacing the loss computations560

for unbound roles with mean squared error (which561

need only push that part of the representation to 0).562

See Appendix A for more details on unbinding563

loss.564

4.4 Successfully recovering surface forms565

from vectors566

The Akuzipik data contains 6372 unique mor-567

pheme surface forms. Using TPRs constructed568

from these morphemes, we trained a 3-layer au- 569

toencoder with vector sizes of 64, 128, 256, and 570

512 using unbinding loss (§4.3) as the loss func- 571

tion. We then reconstructed the morpheme surface 572

forms from the trained morpheme vectors. For vec- 573

tor size of 64, the reconstructed morpheme surface 574

form exactly matched the original morpheme sur- 575

face form for 97.8% of the morphemes. For vector 576

sizes of 128, 256, and 512, the morpheme surface 577

form reconstruction accuracy was 100%. 578

5 Novel Contributions 579

In this work, we have defined and implemented13a 580

novel general-purpose linguistic representation 581

(§3), taking up the challenge of Church (2011) 582

that “it is better to address the core scientific chal- 583

lenges than to continue to look for easy pickings 584

that are no longer there.” Our model is capa- 585

ble of gracefully handling the immense morpho- 586

logical variety and complex hierarchical linguistic 587

structures found across the world’s 7000 languages, 588

even in the complete absence of any unlabelled 589

corpora (§1–§2). We have demonstrated our rep- 590

resentation using complex examples that include 591

circumfixation (§3.3.1), polysynthesis (§3.3.2), ag- 592

glutination (§3.3.3), zero inflection (§3.3.5), in- 593

fixation (§3.3.5), reduplication (§3.3.6), and tem- 594

platic morphology (§3.3.7). We have defined and 595

implemented13 a novel loss function that enables 596

successful training of bidirectional mappings be- 597

tween our interpretable sparse tensor representa- 598

tions and equivalent dense vector representations 599

(§4.1–§4.3), and have demonstrated that linguistic 600

information encoded in these vectors can be suc- 601

cessfully recovered (§4.4). 602
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854

Given a predicted tensor, the first step to com-855

puting the unbinding loss is recursively unbinding856

roles until the leaves of the structure are reached –857

that is, unbind each role until the result of unbind-858

ing is a single vector (rather than a higher-order859

tensor). When this point is reached, we compute860

the cosine similarity between the result of unbind-861

ing and all the fillers in the vocabulary. For ex-862

ample, assume a depth-4 structure is encoded in a863

morpheme TPR T, where the fillers are character864

embeddings, the second level is left-to-right posi-865

tional roles, the third level is morpheme identity,866

and the fourth level is left-to-right morpheme posi-867

tion in the word. If we want to see what is bound868

to the first position of the English dog morpheme869

in T, we would first unbind from T as follows (as-870

suming self-addressing unbinding):871

fdog,1 = T · r̂m0 · f̂Noun=dog · r̂1 (3)872

We then get the vector of similarities ŝdog,1 be-873

tween this filler and the each of character embed-874

ding vectors in the vocabulary matrix V as follows:875

876

ŝdog,1 =
fdog,1 · V

||fdog,1||ViVi
(4)877

where ViVi denotes the column-wise vector878

norm of the vocabulary matrix (using Einstein879

summation notation).880

This similarity vector can be used to define881

a probability distribution over possible fillers882

through the use of a softmax. We take the loga- 883

rithm of the result of this computation to obtain 884

log-probabilities. We call this distribution P . 885

P = log
( eŝdog,1∑

eŝdog,1

)
(5) 886

We then treat each filler (in this case, each char- 887

acter) as a class, and compute the negative log- 888

likelihood loss over this probability distribution. 889

The resulting loss for the first character of dog be- 890

ing “d” is then 891

loss(ŝdog,1, d) = −ŝdog,1,d + log(
∑
j

eŝdog,1,j ).

(6) 892

If the Tensor this loss is computed over is exactly 893

Tdog or Tdogs, then this loss term would be 0. If we 894

instead considered the loss for the fourth character 895

of the word being “s” in the Num=Pl morpheme, 896

This would be 0 only for Tdogs. 897
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