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Abstract

Modern NLP research is firmly predicated on
two assumptions: that very large corpora are
available, and that the word, rather than the
morpheme, is the primary meaning-bearing
unit of language. For the vast majority of the
world’s languages, these assumptions fail to
hold, and as a result existing state-of-the-art
neural representations such as BERT fail to
meet the needs of thousands of languages. In
this paper, we present a novel general-purpose
neural representation using Tensor Product
Representations that is designed from the be-
ginning to be both linguistically interpretable
and fully capable of handling the broad vari-
ety found in the world’s diverse set of 7000
languages, regardless of corpus size or mor-
phological characteristics. We demonstrate the
applicability of our representation through ex-
amples drawn from a typologically diverse set
of languages whose morphology includes pre-
fixes, suffixes, infixes, circumfixes, templatic
morphemes, derivational morphemes, inflec-
tional morphemes, and reduplication.

1 Introduction

Modern NLP research is firmly predicated on two
assumptions: that very large corpora are available,
and that the word, rather than the morpheme, is
the primary meaning-bearing unit of language. En-
glish! and Standard Mandarin Chinese® are the
prime examples where both of these conditions
hold, and for which existing neural representations
such as BERT work very well (Peters et al., 2018;
Devlin et al., 2019; Zhang et al., 2019).

'ISO 639-3: eng, an analytic language in the Germanic
branch of the Indo-European language family

ISO 639-3: c¢mn, an analytic language in the Sinitic
branch of the Sino-Tibetan language family

1.1 Complex morphology is the norm

The vast majority of NLP research is predicated on
the assumption that the word, rather than the mor-
pheme, is the primary meaning-bearing unit of lan-
guage. This assumption likely stem from the dom-
inance of English as the language of study in NLP
(Bender, 2011; Joshi et al., 2020), and the fact that
in English, many words do in fact consist of only
a single morpheme. Yet for the vast majority of
the world’s approximately 7000 languages, the av-
erage number of morphemes per word is medium
or high (see World Atlas of Language Structures,
including Bickel and Nichols, 2013; Dryer, 2013).

1.2 Unlabelled data is a rare luxury

Somewhere between 100-200 languages (most in
the Indo-European language family) have enough
unlabelled data (Joshi et al., 2020; Conneau et al.,
2020) for BERT embeddings of reasonable qual-
ity to be trained using a combination of tech-
niques including unsupervised sub-word segmen-
tation methods, multilingual bootstrapping, and
transfer learning. Quality of word embeddings is
substantially lower when corpus sizes are insuffi-
ciently large; Alabi et al. (2020), for example, con-
struct word embeddings using approximately 10
million tokens for Yoruba® and Twi,* and find that
the resulting embeddings are substantially poorer
in quality those for high-resource languages.

In total, fewer than 300400 languages have
have more than a trivial amount of digitized un-
labelled data, thus rendering data-driven NLP ap-
proaches including BERT futile for 96% of the
world’s languages (representing over 1.2 billion
people; Vannini and Crosnier, 2012; Joshi et al.,

31SO 639-3: yor, an analytic language in the Yoruboid
branch of the Niger-Congo language family

*ISO 639-3: twi, an analytic language in the Tano branch
of the Niger-Congo language family



2020), even with aggressive multilingual mod-
els, transfer learning, bilingual anchoring, and
typologically-aware modelling (Ponti et al., 2019;
Michel et al., 2020; Eder et al., 2021; Hedderich
et al., 2021).

1.3 Better representations are needed

The current state-of-the-art in neural word repre-
sentation is insufficient to represent 96% of the
world’s languages (§1-§2). In this paper, we
present a novel general-purpose neural represen-
tation (§3) using Tensor Product Representations
(TPRs, Smolensky, 1990) that is designed from
the beginning to be both linguistically interpretable
(§4) and fully capable of handling the broad vari-
ety found in the world’s diverse set of 7000 lan-
guages, regardless of corpus size or morphologi-
cal characteristics. We demonstrate the applicabil-
ity of our representation® through examples (§4.4)
drawn from a typologically diverse set of lan-
guages whose morphology includes prefixes, suf-
fixes, infixes, circumfixes, templatic morphemes,
derivational morphemes, inflectional morphemes,
and reduplication.

2 Existing Word Representations are
Insufficient for Most Languages

Computational processing of natural language re-
quires practical digital representations of the words
of a language. We survey existing methods for rep-
resenting words, arguing that while existing word
representations work well for high resource ana-
lytic languages like English, existing representa-
tions are insufficient for effectively representing
morphologically complex words in thousands of
languages for which large corpora do not exist.

2.1 Representing characters as integers

Oettinger (1954, ch. 2, p. 11), in the very first Ph.D.
granted in the field of NLP, defined a word as “any
string of letters preceded and followed by a space
or a punctuation mark,” and stored each word in an
electronic dictionary as a sequence of characters,
with each character represented digitally as a 5-bit
integer. Nearly seventy years later, with relatively
minor variations, this definition is still widely used
in the NLP research community. Most digital word
representations incorporate this technique, storing
each character in a word as a multi-bit integer.
3Our open source code constructs interpretable word rep-

resentations from morphologically analyzed examples and
trains dense word vectors from the resulting tensors.

2.2 Representing words as feature bundles

During the 1960s through the early 1990s, most
NLP systems utilized a knowledge-based paradigm
in which words were represented as complex bun-
dles of linguistic features, which were subse-
quently processed using linguistically-motivated
rules (Hutchins, 1986). Finite-state morphological
analyzers (Beesley and Karttunen, 2003) can be
used to segment words into sequences of compo-
nent morphemes; such segmentations can include
explicit linguistic features such as case, number,
and mood in addition to morpheme identity. An-
other modern example of this type of linguistically
feature-rich word representation can be seen in the
attribute-value matrices (AVMs) of Head-driven
Phrase Structure Grammars (HPSG; Pollard and
Sag, 1994). Such linguistically-based feature bun-
dle representations can in principle work with any
language, regardless of corpus size or morpholog-
ical characteristics, but must be constructed by an
expert linguist for each language, and do not natu-
rally fit with existing neural techniques.

2.3 Representing words as integers

The development of large digital corpora (primar-
ily in English) and the rise of empirical approaches
to NLP in the late 1980s and early 1990s, led to
widespread use of statistical language models and
translation models (see Church and Mercer, 1993;
Manning and Schiitze, 1999; Koehn, 2010). When
implementing these statistical models, it is often
convenient to map each word type to an integer,
allowing these integer word representations to di-
rectly serve as indices into probability tables (see
for example §5 of Brown et al., 1993). A special
integer value (often zero) is typically reserved to
represent all words not seen during training.
While representing words as integers is efficient
in its use of RAM, it suffers from a serious short-
coming first observed by Bull et al. (1955), namely
that no semantic, syntactic, or morphological in-
formation is encoded in the word representation
(for example, dog and dogs are treated as com-
pletely unrelated word types). This problem is seri-
ously exacerbated in languages with rich morphol-
ogy, as productive derivational and inflectional
morphology may result in extremely large num-
bers of closely-related word types, few of which are
likely to appear in corpora. Schwartz et al. (2020),
for example, found that in one polysynthetic lan-
guage, approximately every other word in running



text will have never been previously seen.

2.4 Representing subwords as integers

Unsupervised techniques can be used to automati-
cally segment words into sequences of shorter sub-
word tokens generally longer than the character but
shorter than the word. These techniques include
approaches such as Morfessor (Creutz and La-
gus, 2002; Smit et al., 2014) designed to segment
words into units approximating morphemes, and
compression-based subword segmentation tech-
niques such as BPE (Sennrich et al., 2016; Wu
et al., 2016; Kudo and Richardson, 2018). Most
neural NLP systems in broad use today utilize in-
teger representations of unsupervised subword to-
kens for both input and output.

This approach is more successful at represent-
ing words in languages with highly productive mor-
phology than the integer word representations de-
scribed in §2.3. When corpus sizes are small or
nonexistent, however, as is the case for most of the
world’s languages, insufficient training signal ex-
ists to reliably train high-quality unsupervised sub-
word segmentation. This problem can be mitigated
through the use of a linguistically-based finite-state
morphological analyzer (§2.2) for word segmenta-
tion instead of unsupervised segmentation meth-
ods (Park et al., 2021).

2.5 Representing words as embeddings

Distributed representations (Hinton et al., 1986),
also called continuous representations and word
embeddings, represent each word as a point em-
bedded in a high-dimensional vector space. When
feed-forward or recurrent neural networks are
trained as language models with the task of pre-
dicting the next word in a sequence, a side effect of
the training process is a table of word embeddings
which can be indexed by the integer word represen-
tations from §2.3. Other techniques for learning
context-independent word vector representations
for each word type include word2vec (Mikolov
et al., 2013a) and GloVe (Pennington et al., 2014).

More recent neural techniques such as ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019)
can be used to obtain a context-dependent word
vector representation for each word token. ELMo
uses convolutional techniques to generalize over
character sequences within the word in conjunc-
tion with deep bidirectional recurrent neural net-
works, while BERT utilizes unsupervised subword

tokenization techniques (§2.4) in conjunction with
a transformer architecture (Vaswani et al., 2017).

Learned context-free word embeddings empiri-
cally appear to implicitly encode at least some syn-
tactic and semantic information (Mikolov et al.,
2013b). Substantial recent work, summarized by
Rogers et al. (2020) indicates that contextualized
word embeddings learned by BERT are even more
successful at implicitly encoding syntactic, seman-
tic, and possibly morphological information. In-
terpretability of these embeddings is a challenging
problem which is far from solved.

While multilingual training, transfer, and an-
choring methods have been shown in some cases
to somewhat improve the quality of very low-
resource word embeddings over monolingually-
trained low-resource word embeddings (see, for ex-
ample, Eder et al., 2021), such methods rely on dig-
itized monolingual and bilingual resources that ex-
ist for only a few hundred languages. It remains the
case that at present, training high quality word em-
beddings is dependent on the availability of large
corpora (Alabi et al., 2020; Joshi et al., 2020; Wu
and Dredze, 2020; Budur et al., 2020; Michel et al.,
2020) consisting of tens or hundreds of millions of
tokens, which are available for at most a few hun-
dred languages (see §1.2).

2.6 Linguistically-informed word embeddings

No existing word representation is capable of ro-
bustly representing words in all of the world’s lan-
guages regardless of corpus size and morphologi-
cal characteristics. The existing representation that
comes closest to meeting these needs is Linguis-
tically Informed Multi-Task BERT (LIMIT-BERT
Zhou et al., 2020b), a semi-supervised approach
in which a trained parser (Zhou et al., 2020a) is
used to annotate large unlabelled corpora. During
LIMIT-BERT training, these silver linguistic an-
notations (part-of-speech tags, constituency trees,
and dependency trees) are used along with the
words themselves to train contextualized embed-
dings on five parsing-related tasks.

Unlike the embeddings learned by LIMIT-
BERT, the representations we propose are explic-
itly interpretable by design, allowing for direct re-
covery of any linguistic features encoded in our
word embeddings. Unlike LIMIT-BERT, our ap-
proach can produce high-quality word embeddings
in the presence of arbitrarily complex morphology
and in the absence of large training corpora.



3 Feature-rich Open-vocabulary
Interpretable Representations

We propose a feature-rich open-vocabulary inter-
pretable representation (FOIR) designed to model
words from all of the world’s languages, even in
the absence of a digitized corpus.

3.1 Word Representation Desiderata

Our representation is designed to model words
from polysynthetic languages, agglutinative lan-
guages, fusional languages, and isolating lan-
guages equally well, naturally incorporating any
and all linguistic features which may be available
from external resources. Our representation is de-
signed to model words in ultra-low-resource set-
tings where corpus sizes are very small or even non-
existent just as well as words in high-resource set-
tings with very large corpora. Our representation
is designed to be open-vocabulary, robustly provid-
ing word embeddings for novel word types never
previously encountered. Finally, our representa-
tion is interpretable; all linguistic features encoded
in our word embeddings are easily retrievable from
the word embeddings.

3.2 Tensor Product Representation

To satisfy the word representation desiderata spec-
ified in §3.1, we utilize the Tensor Product Rep-
resentation (TPR) proposed by Smolensky (1990).
The use of TPRs provides a principled way of rep-
resenting hierarchical symbolic information from
external resources such as interlinear glosses or
morphological analyzers into vector spaces, such
as those used as the input and output domains of
neural networks.

Constructing a TPR for a linguistic unit (such as
a morpheme or a word) begins by decomposing the
symbolic structure of that unit into roles and fillers.
Each role represents a linguistic feature (such as
noun case or verb mood), while each filler repre-
sents the actual value of that feature (such as as-
sociative case or indicative mood). The symbolic
structure of a word is then represented as the bind-
ings of fillers to roles for all feature-value pairs as-
sociated with that unit. Once decomposed, both
roles and fillers are embedded into a vector space
such that all roles are linearly independent from
one another. Let b be a list of ordered pairs (3, j)
representing filler ¢ (with embedding vector f;) be-
ing bound to role j (with embedding vector ;).
The tensor product representation T of the infor-

mation is then given by

T= ) hotecRiaRrR 1)
(i.5)€b

The resulting TPR may itself be used as a filler (for
example, the associative case morpheme) and sub-
sequently be bound to another role vector (for ex-
ample, the noun case of the word). This process re-
sults in a TPR that represents the hierarchical com-
positional structure of a word.

3.3 Robust support for full linguistic diversity

We demonstrate the broad applicability of our
feature-rich open-vocabulary interpretable repre-
sentations (FOIR) using examples drawn from a
typologically diverse set of polysynthetic, aggluti-
native, fusional, and analytic languages. Our exam-
ples include prefixes, suffixes, infixes, circumfixes,
templatic morphemes, derivational morphemes, in-
flectional morphemes, and reduplication.

While we expect FOIRs to primarily be con-
structed using the results of finite-state morpho-
logical analyzers and (to a lesser extent) part-of-
speech taggers and parsers, in principle FOIRs can
be constructed directly from interlinear glosses cre-
ated by hand by a linguist, even for languages with
absolutely no digitized resources or corpora.

3.3.1 Circumfixes in Chukchi

The Chukchi® word rajgssreiva is composed of a
noun root morpheme fawat and an inflectional cir-
cumfix ya...ma. The tensor T, . is @ TPR that
represents this word, explicitly including all infor-
mation shown in Example (1):

f Tl aJJsIBThIMA \

(1) va- fewat  -ma
Assoc-  head -Assoc
\ “with the head” (Chukchi) J
8ISO 639-3: ckt, a polysynthetic language in the

Chukotkan branch of the Chukotko—Kamchatkan language
family
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The individual characters positions in the word
comprise roles ry through rg, while the characters
(and respective phonemes) at those respective po-
sitions comprise fillers fr, fa, fn’ f,I, fB, fT, fH, and f
that encode character and phoneme identity. Roles
'y, and I, represent morpheme positions within
the word, and are respectively filled by E'Noun=1awat
(denoting the identity of the root morpheme) and
fCase:Assoc (denoting the identity of the circumfix
morpheme marking associative case).

3.3.2 Polysynthesis with derivational and
inflectional suffixes in Akuzipik

Productive derivational and inflectional suffixes
are pervasive in the polysynthetic languages of
the Inuit-Yupik language family. Words with 2-
5 derivational morphemes are very common, of-
ten representing in a single word what in English
would be represented by an entire clause or sen-
tence.

The Akuzipik’ word mangteghaghruglla-
ngllaghyunghitunga shown in Example (2) can be
translated into English as the sentence ‘I didn’t

to make a huge house’ (Jacobson, 2001, pg.
43). The tensor T,geehachrugiionsiiooh imghitne: €DCOAES
the hierarchical structure of this word. Each
grapheme position within the word is assigned
a role (fg...ro5). For each of these grapheme

"ISO 639-3: ess, a polysynthetic language in the Yupik
branch of the Inuit-Yupik-Unangan language family

position roles, a filler vector encodes the identity
of the grapheme and corresponding phoneme at
that position in the word (fo f25) The binding
of grapheme position roles to grapheme filler
vectors represents the first level of hierarchy in the
TPR. The word is composed of 7 morphemes: a
noun root mantoxas, four derivational morphemes
(-suxtay, -jtax, , -nKito) and two inflectional
morphemes (-tu and -na). The subsequent levels
of the TPR encode the identity, underlying form,
surface form, and hierarchical scope of each
morpheme. The resulting word representation is
compositional and easily interpretable.

By inspecting the resulting tensor, the following
structure of the word can be clearly observed:

* The noun root for ‘house’ mantosay is mod-
ified by the augmentatitive derivational mor-
pheme -yjuxtay, resulting in an extended
noun stem meaning ‘big house’ spanning
grapheme positions 0 through 12.

The resulting extended noun stem (mantora-
sjuxtay) is verbalized by the derivational
morpheme -ijlak, resulting in an extended
verb stem meaning ‘to build a big house’ span-
ning grapheme positions 0 through 16.

The resulting extended verb stem (mantora-
rruxtantar) is modified by the derivational
morpheme , resulting in an extended verb



stem meaning ‘to want to build a big house’
spanning grapheme positions 0 through 18.

* The resulting extended verb stem (mantoxa-
gJuxta ) is modified by the negating
derivational morpheme -nxits), resulting in
an extended verb stem meaning ‘to not want
to build a big house’ spanning grapheme po-
sitions O through 21.

* The resulting extended verb stem (mantoxa-
guxta nkito) is marked as being in the
indicative mood by the inflectional morpheme
-tu and as having a first person singular sub-
ject by the inflectional morpheme , re-
sulting in the fully inflected word spanning
grapheme positions 0 through 25.

3.3.3 Agglutination in Guarani

In the Guarani® word 2 kosente shown in Example
(3), the verb root ko ‘to live’ is modified in ag-
glutinative manner by two suffixes (-se and )
and one inflectional prefix (2i-) which indicates a
first person singular subject. Note that unlike the
preceding example, which also encoded phoneme
identity, in this example character fillers encode
only character identity.

a T N

ko -se
- live -voL

like to live’ (Guarani) J

\ ‘I would

3.3.4 Fusional suffixes in Catalan

Our representation works equally well for simpler
examples, such as the Catalan® word tinc in Exam-
ple (4), which is comprised only of only a verb
root ten- ‘to have’ and a single inflectional suffix
marking person, number, tense, and mood.

8IS0 639-3: gug, an agglutinative language in the Tupian
language family

ISO 639-3: cat, a fusional language in the Romance
branch of the Indo-European language family

(4) tinc
ten -C

to.have  -1SG.Pres.InD

\ “l have” (Catalan) J

3.3.5 Zero inflection & infixation in English

Our representation can encode linguistic features
of a word even when those features are not explic-
itly marked in the surface form of the word. In
Example (11), the tensor Tgog explicitly encodes
the null singular morpheme -() marking number as
singular in the word ‘dog,” just as the morpheme
-s marks number as plural in the word ‘dogs in
Example (12).” Unlike existing representations
discussed in §2, Tgog and Tyogs are clearly distin-
guishable as variant inflections of the same root

word.
f Tdog f Tdogs \

(5) dog -0 (6) dog -s
dog -Sc dog -Pr

\ “dog” (Englisy \ “dogs” (English)J

Linguistic features such as infixes that are at-
tested but relatively rare can also be included with
no difficulty. Infixes are morphemes that break a
given stem and appear inside it.

f Tabsulllckinlutely \

fAdv=absolutely
. Il o

II!!!I

(7) abso- fuckin -lutely
abso-  INTENsIFIER  -lutely
\ “absofuckinlutely” (English) J

In Seri'®, for example, infixation after the first

19ISO 639-3: sei a language isolate in north-west Mexico



vowel in the root is used to mark number agree-
ment. In Example (7), we observe an example of
expletive infixation in English (McCarthy, 1982)
with the infix fuckin serving to intensify the ad-
verb absolutely.

3.3.6 Reduplication in Malaysian

The Malaysian!' word orang-orang ‘people’, is
formed through reduplication of the noun root
orang ‘person’. Unlike in previous examples, in
which morpheme fillers encoded underlying lex-
ical form in addition to morpheme surface form
and identity, in Example (8), the plural morpheme
has no underlying lexical form other than the mor-
pheme identity (Num=Pr), as the surface form of
the plural morpheme (here, orang) is formed by du-
plicating the form of the noun to which it attaches.

f T()rang—m‘.’lng \
fNoun:orang

olr|aln|g|o|r g
(SIATATATATAL: f,
o i

9

(8) orang -orang
orang -PL

\ “people” (Malaysian) J

3.3.7 Templatic morphology in Maltese

Our representation can easily encode non-
concatenative morphology such as that seen in the
Maltese!?, words ktieb ‘book” and kotba ‘books.’

( Thtico \ f Tiotba \

kBEOWtNiclib kol tBVMbY 2
A AR thE WE N e Nt
pAEAm

o fi fra R g s
fNoun=k7t7b fNoun=k7t7b

(9) kticb (10)  kotba
ktb 0ie ktb ola
book  Sc book  PL

\ “book” (Maltese) ) \ “books” (Maltese)J

"ISO 639-3: zsm, a language in the Malayo-Polynesian
branch of the Austronesian language family

12ISO 639-3: mir, a templatic language in the Semitic lan-
guage family

The noun root k_t_b acts as a template whose slots
are filled by the vowels in the inflectional singu-
lar morpheme () ie (in Example (9)) or plural mor-
pheme o_() a (in Example (10)).

4 Embedding and retrieving linguistic
information from word vectors

TPRs are useful because they embed arbitrary sym-
bolic structure in a vector space in such a way that
simple linear algebra operations may be used to re-
trieve the form of the symbolic structure, including
its compositional structure.

4.1 Learning vectors using an autoencoder

Depending on how much linguistic information is
encoded, each of our TPRs may consist of approx-
imately 102 to 10° floating point values per ten-
sor. Tensors of this size are far too large to be di-
rectly usable as neural word representations. To
learn lower-dimensional vectors, we make use of
an autoencoder. The autoencoder is trained us-
ing a dictionary of word or morpheme TPRs. The
trained autoencoder can be used to encode a low-
dimensional vector from a high-dimensional tensor
by running the tensor through the first half of the
autoencoder, and can be used to reconstitute the
high-dimensional tensor from a vector by running
the vector though the latter half of the autoencoder.

4.2 Unbinding

The core operation in retrieving structure from a
TPR is called unbinding. Exact unbinding requires
linear independence of the roles; however, Haley
and Smolensky (2020) present an accurate approx-
imate unbinding strategy for even densely packed
TPRs. In this work, we use self-addressing un-
binding, as it is quick to compute and proved suffi-
ciently accurate for our purposes. Self-addressing
unbinding retrieves the filler f; for the role F; by
simply computing the inner product between the
role vector and the TPR:

fi=T- & 2)
This unbinding is exact if the role vectors are or-
thogonal to one another. In our case, since we have
a fixed filler vocabulary, we were able to snap our
unbindings to the filler with the highest cosine sim-
ilarity to the unbound vector with sufficient accu-
racy to render this intrusion irrelevant. Other un-
binding strategies involve computing an inverse or
pseudoinverse of a matrix of role vectors to per-
form a change of basis and decrease the intrusion.



4.3 Unbinding loss

In order to effectively train the autoencoder in §4.1,
gold standard TPRs must be compared against pre-
dicted tensors reconstituted by the autoencoder.
However, these tensors are very high dimensional.
In initial experiments, we used mean squared error
as a loss function, but we found this was unable to
converge for auto-encoding sparse TPRs.

To enable effective training of the autoencoder,
we therefore define a novel loss function that makes
use of the information encoded in the TPR. We
define a loss function called unbinding loss that
examines the unbinding properties of a predicted
morpheme tensor to answer the question, “What
filler is closest to the unbinding of each role in the
TPR?”

Given a predicted tensor, the unbinding loss is
computed by recursively unbinding roles until the
leaves of the structure are reached — that is, unbind
each role until the result of unbinding is a single
vector (rather than a higher-order tensor). When
this point is reached, we compute the cosine sim-
ilarity between the result of unbinding and all the
fillers in the vocabulary.

This similarity vector can be used to define
a probability distribution over possible fillers
through the use of a softmax. We take the loga-
rithm of the result of this computation to obtain
log-probabilities. We call this distribution P. We
then treat each filler (in this case, each character)
as a class, and compute the negative log-likelihood
loss over this probability distribution.

As we consider tree-structured representations,
the number of fillers needing to be checked is expo-
nential with the depth of our representation. This
difficulty could be overcome by parallelizing the
independent matrix computations for the loss of all
the position roles for a given morpheme, trading
space for time. For more complex TPRs, a poten-
tial avenue would be to exploit the fact that most
roles will be empty (and their unbindings thus a
matrix of zeros) by replacing the loss computations
for unbound roles with mean squared error (which
need only push that part of the representation to 0).

See Appendix A for more details on unbinding
loss.

4.4 Successfully recovering surface forms
from vectors

The Akuzipik data contains 6372 unique mor-
pheme surface forms. Using TPRs constructed

from these morphemes, we trained a 3-layer au-
toencoder with vector sizes of 64, 128, 256, and
512 using unbinding loss (§4.3) as the loss func-
tion. We then reconstructed the morpheme surface
forms from the trained morpheme vectors. For vec-
tor size of 64, the reconstructed morpheme surface
form exactly matched the original morpheme sur-
face form for 97.8% of the morphemes. For vector
sizes of 128, 256, and 512, the morpheme surface
form reconstruction accuracy was 100%.

5 Novel Contributions

In this work, we have defined and implemented!a
novel general-purpose linguistic representation
(§3), taking up the challenge of Church (2011)
that “it is better to address the core scientific chal-
lenges than to continue to look for easy pickings
that are no longer there.” Our model is capa-
ble of gracefully handling the immense morpho-
logical variety and complex hierarchical linguistic
structures found across the world’s 7000 languages,
even in the complete absence of any unlabelled
corpora (§1-§2). We have demonstrated our rep-
resentation using complex examples that include
circumfixation (§3.3.1), polysynthesis (§3.3.2), ag-
glutination (§3.3.3), zero inflection (§3.3.5), in-
fixation (§3.3.5), reduplication (§3.3.6), and tem-
platic morphology (§3.3.7). We have defined and
implemented!? a novel loss function that enables
successful training of bidirectional mappings be-
tween our interpretable sparse tensor representa-
tions and equivalent dense vector representations
(§4.1-§4.3), and have demonstrated that linguistic
information encoded in these vectors can be suc-
cessfully recovered (§4.4).
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A Unbinding loss example

/ Tdogs

-

Tdog

-0
-SG

(11) (12)

N N

Given a predicted tensor, the first step to com-
puting the unbinding loss is recursively unbinding
roles until the leaves of the structure are reached —
that is, unbind each role until the result of unbind-
ing is a single vector (rather than a higher-order
tensor). When this point is reached, we compute
the cosine similarity between the result of unbind-
ing and all the fillers in the vocabulary. For ex-
ample, assume a depth-4 structure is encoded in a
morpheme TPR T, where the fillers are character
embeddings, the second level is left-to-right posi-
tional roles, the third level is morpheme identity,
and the fourth level is left-to-right morpheme posi-
tion in the word. If we want to see what is bound
to the first position of the English dog morpheme
in T, we would first unbind from T as follows (as-
suming self-addressing unbinding):

dog -s
dog -PL

“dogs” (Englishy

dog
dog

“dog” (Englisw

3)

We then get the vector of similarities S4,4,1 be-
tween this filler and the each of character embed-
ding vectors in the vocabulary matrix V" as follows:

fdog,l =T- IA'mO : fNoun:dog : IA'l

“4)

§ _ fdog,l -V
W9 [ fog 1 VIV

where V'V’ denotes the column-wise vector
norm of the vocabulary matrix (using Einstein
summation notation).

This similarity vector can be used to define
a probability distribution over possible fillers

11

through the use of a softmax. We take the loga-
rithm of the result of this computation to obtain
log-probabilities. We call this distribution P.

esdog,l

Sro ®)

P:10g<

We then treat each filler (in this case, each char-
acter) as a class, and compute the negative log-
likelihood loss over this probability distribution.
The resulting loss for the first character of dog be-
ing “d” is then

1055(84d0g,1,d) = —Sdog,1,d + log(z egdogvlﬁf).

J
(6)
If the Tensor this loss is computed over is exactly
Tyog or Tyogs, then this loss term would be 0. If we
instead considered the loss for the fourth character
of the word being “s” in the Num=Pl morpheme,
This would be 0 only for Tqgs.
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