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Abstract

In this paper, we define a new clustering framework
for FL based on the (optimal) local models of the
users: two users belong to the same cluster if their
local models are close. We propose an algorithm,
Successive Refine Federated Clustering Algorithm
(SR-FCA), that treats each user as a singleton
cluster as an initialization, and then successively
refine the cluster estimation via exploiting
similarity with other users. In any intermediate
step, SR-FCA uses an error-tolerant federated
learning algorithm within each cluster to exploit
simultaneous training and to correct clustering
errors. Unlike some prominent prior works, such
as (Ghosh et al., 2022), SR-FCA does not require
any good initialization (or warm start), both in
theory and practice. We show that with proper
choice of learning rate, SR-FCA incurs arbitrarily
small clustering error. Additionally, SR-FCA
does not require the knowledge of the number
of clusters apriori like some prior works. We
also validate the performance of our algorithm on
real-world FL datasets including FEMNIST and
Shakespeare in non-convex problems and show
the benefits of SR-FCA over several baselines.

1. Introduction
The issue of heterogeneity is crucial for FL, since the data re-
sides in users’ own devices, and naturally no two devices have
identical data distribution. There has been a rich body of liter-
ature in FL to address this problem of non-iid data. We direct
the readers to two survey papers (and the references therein),
(Li et al., 2020; Kairouz et al., 2019) for a comprehensive
list of papers on heterogeneity in FL. A line of research
assumes the degree of dissimilarity across users is small, and
hence focuses on learning a single global model (Zhao et al.,
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2018; Sahu et al., 2018a; Li et al., 2018; Sattler et al., 2019b;
Mohri et al., 2019; Karimireddy et al., 2020). Another line
of research in FL focuses on obtaining models personalized
to individual users. For example (Sahu et al., 2018b; Li et al.,
2021) uses a regularization to obtaining individual models
for users and the regularization ensures that the local models
stay close to the global model. Another set of work poses the
heterogeneous FL as a meta learning problem (Chen et al.,
2018; Jiang et al., 2019; Fallah et al., 2020b;a). Here, the
objective is to first obtain a single global model, and then each
device run some local iterations (fine tune) the global model
to obtain their local models. Furthermore (Collins et al.,
2021) exploits shared representation across users by running
an alternating minimization algorithm and personalization.
Note that all these personalization algorithms, including
meta learning, work only when the local models of the users’
are close to one another (see bounded heterogeneity terms
γH and γG terms in Assumption 5 of (Fallah et al., 2020b)).

On the other spectrum, when the local models of the users
may not be close to one another, (Sattler et al., 2019a; Man-
sour et al., 2020; Ghosh et al., 2022) propose a framework
of Clustered Federated Learning. Here users with dissimilar
data are put into different clusters, and the objective is to
obtain individual models for each cluster; i.e., a joint training
is performed within each cluster. Among these, (Sattler et al.,
2019a) uses a top-down approach using cosine similarity
metric between gradient norm as optimization objective.
However, it uses a centralized clustering scheme, where
the center has a significant amount of compute load, which
is not desirable for FL. Also, the theoretical guarantees of
(Sattler et al., 2019a) are limited. Further, in (Duan et al.,
2020), a data-driven similarity metric is used extending the
cosine similarity and the framework of (Sattler et al., 2019a).
Moreover, in (Mansour et al., 2020), the authors propose
algorithms for both clustering and personalization. However,
they provide guarantees only on generalization, not iterate
convergence. In (Smith et al., 2017) the job of multi-task
learning is framed as clustering where a regularizer in the
optimization problem defines clustering objective.

Very recently, in (Ghosh et al., 2022), an iterative method in
the clustered federated learning framework called Iterative
Federated Clustering Algorithm, or IFCA, was proposed
and a local convergence guarantee was obtained. The prob-
lem setup for IFCA is somewhat restrictive—it requires the
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model (or data distribution) of all the users in the same clus-
ter to be (exactly) identical. IFCA alternately estimates the
cluster identities of the users and optimizes model param-
eters for the user clusters via gradient descent. In order to
converge, IFCA necessarily requires suitable initialization
in clustering, which can be impractical. Furthermore, in
(Ghosh et al., 2022), all the users are partitioned into a fixed
and known number of clusters, and it is discussed in the same
paper that the knowledge about the number of clusters is quite
non-trivial to obtain (see Section 6.3 in (Ghosh et al., 2022)).

Following IFCA, a number of papers attempt to extend the
federated clustering framework (Ruan & Joe-Wong, 2021;
Xie et al., 2020), however, the crucial shortcomings of IFCA,
namely the requirements on good initialization and identical
local models still remain unaddressed to the best of our
knowledge.

In this paper, we address the above-mentioned shortcomings.
We introduce a new clustering algorithm, Successive Refine-
ment Federated Clustering Algorithm or SR-FCA, which
leverages pairwise distance based clustering and refines the
estimates over multiple rounds. We show that SR-FCA does
not require any specific initialization. Moreover, we can
allow the same users in a cluster to have non-identical models
(or data distributions); only certain degree of similarity is
sufficient. In Section 2 we define a novel clustering structure
(see Definition 2.1), which allows the the local models
of the users to be different (we denote this discrepancy by
parameter ϵ1(≥ 0), and for IFCA, ϵ1 = 0). Furthermore,
SR-FCA works with a different set of hyper-parameters
which does not include the number of clusters and SR-FCA
iteratively estimates this hyper-parameter.

Clustering Framework and Distance Metric: Classically,
clustering is defined in terms of distribution from which the
users sample data. However, in a federated framework, it is
common to define a heterogeneous framework such as clus-
tering in terms of other discrepancy metric; for example in
(Mansour et al., 2020), a metric that depends on the local loss
is used. In this paper, we use a distance metric across users’
local model as a discrepancy measure and define a clustering
setup based on this. Our distance metric may in general in-
clude non-trivial metric like Wasserstein distance, ℓq norm
(with q≥1) that captures desired practical properties like per-
mutation invariance and sparsity for (deep) neural-net train-
ing. For our theoretical results, we focus on strongly convex
and smooth loss for which ℓ2 norm of iterates turns out to be
the natural choice. However, for non-convex neural networks
on which we run most of our experiments, we use a cross-
cluster loss metric. For two clients i,j, we define their cross-
cluster loss metric as the average of the loss of one client on
the other’s model, i.e., client i’s loss on the model of j and the
other way round. If this metric is low, we can use the model
of client i for client j and vice-versa, implying that the clients

are similar. We explain this in detail in Appendix C. With the
above discrepancy metric, we put the users in same cluster if
their local models are close – otherwise they are in different
clusters. Under suitable assumptions, we provide theoretical
guarantees onSR-FCA in Section 4. Further, using the cross-
cluster loss metric in experiments, we show that SR-FCA
outperforms all baselines (including IFCA) for real datasets.

2. Federated Clustering and Our Setup
In this section, we formally define the clustering problem.
Let, [n]≡{1,2,...,n}. We havem users (or machines) that are
partitioned into disjoint clusters, denoted by the clustering
map C⋆ : [m] → [C], where C is the (unknown) number
of clusters. Each user i ∈ [m] contains ni ≥ n data points
{zi,j}ni

j=1 sampled from a distributionDi. We define f(·;z) :
W→R as the loss function for the sample z, whereW⊆Rd.
Here,W is a closed and convex set with diameterD. We now
define the population loss, Fi :W→Rd, and its minimizer,
w⋆

i , for each user i∈ [m]: Fi(w)=Ez∼Di
[f(w,z)], w⋆

i =
minw∈WFi(w). The original clustering C⋆ is based on the
population minimizers of users, w⋆

i . This is defined as:

Definition 2.1 (Clustering Structure). For a distance metric
dist(.,.) with non-negative constants ϵ1,ϵ2 with ϵ2>ϵ1, the
local models satisfy

max
C⋆(i)=C⋆(j)

dist(w⋆
i ,w

⋆
j )≤ϵ1,

min
C⋆(i)̸=C⋆(j)

dist(w⋆
i ,w

⋆
j )≥ϵ2

The above structure is illustrated in Figure 1. This allows
the population minimizers inside clusters to be close, but not
necessarily equal, as opposed to (Ghosh et al., 2022)(i.e.,
IFCA assumes ϵ1 = 0). We emphasize that ϵ1 ̸= 0 is more
practical, as similar users may have close but never identical
local models.

In practice, we have access to neither Fi nor w⋆
i , but only

the sample mean variant of the loss, the empirical risk,
fi(w) = 1

ni

∑ni

j=1 f(w, zi,j) for each user i ∈ [m]. Let
Gc≡{i : i∈ [m],C⋆(i)=c} denote the set of users in cluster c
according to the original clusteringC⋆. We can then define the
population loss and its minimizer, per cluster c∈ [C] asFc

Fc(w)=
1

|Gc|
∑
i∈Gc

Fi(w), ω∗
c =argmin

w∈W
Fc(w) (1)

Our final goal is to find a population loss minimizer for each
cluster c∈ [C], i.e., ω∗

c . To obtain this, we need to find the
correct clustering C⋆ and recover the minimizer of each clus-
ter’s population loss. There are two major difficulties in this
setting: (a) the number of clusters is not known beforehand.
This prevents us from using most clustering algorithms like
k-means, and (b) The clustering depends on w⋆

i which we
do not have access to. We can estimate w⋆

i by minimizing
fi, however when n, the minimum number of data points per
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user, is small, this estimate may be very far from w⋆
i . These

difficulties can be overcome by utilizing clustered federated
learning, which we describe in the next section.

3. Algorithm : SR-FCA
In this section, we formally present our clustering algorithm,
SR-FCA. We first run the subroutine ONE SHOT to obtain
an appropriate initial clustering, which can be further
improved. SR-FCA then successively calls the REFINE()
subroutine to improve this clustering. In each step of
REFINE(), we first estimate the cluster models for each
cluster. Then, based on these models we regroup all the
users using RECLUSTER() and, if required, we merge the
resulting clusters, using MERGE().

Figure 1: The dots represent the population risk minimizers
for two clusters in dist(.,.) space according to C⋆.

Figure 2: The dots represent the ERM in dist(.,.) space and
the corresponding clustering C0 obtained after ONE SHOT

ONE SHOT() For our initial clustering, we create edges
between nodes based on the distance between their locally
trained models if dist(wi,wj) ≤ λ, for a threshold λ and
then obtain clusters from this graph by correlation cluster-
ing (Bansal et al., 2002), which is a graph clustering that
minimizes total number of edges across the clusters, and
non-edges within the clusters (Bansal et al., 2002). We only
keep the clusters which have at least t nodes.

If our locally trained models, wi,T , were close to their
population minimizers, w⋆

i , for all nodes i ∈ [m], then
choosing a threshold λ∈ (ϵ1,ϵ2), we obtain edges between
only clients which were in the same cluster in C⋆. However, if
n, the number of local datapoints is small, then our estimates
of local models wi,T might be far from their corresponding
w⋆

i and we will not be able to recover C⋆.

However, C0 is still a good clustering if it satisfies these
requirements: (a) if every cluster in the range of the
clustering map rg(C⋆)=[C] has a good proxy (in the sense
of Definition 3.1) in rg(C0), and (b) each cluster in rg(C0)
has at most a small fraction (< 1

2 ) of mis-clustered users
in it. E.g., Figure 2 provides an example of one such good
clustering when C⋆ is defined according to Figure 1. We can

see that even though C0 ̸=C⋆, the two green clusters and the
single orange cluster in C0 are mostly “pure” and are proxies
of Cluster 1 and Cluster 2 in Figure 1.

Algorithm 1 SR-FCA

Input: Threshold λ, Size parameter t
Output: Clustering CR

C0← ONE SHOT(λ, t)
for r=1 to R do
Cr← REFINE(Cr−1,λ)

end for
ONE SHOT(λ,t)
for all i clients in parallel do

wi,T← Train local model for client i for T steps
end for
G←Graph with m vertices and no edges
for all pairs of clients i,j∈ [m],i ̸=j do

Add edge (i,j) to the graph G if dist(wi,T ,wj,T )≤λ
end for
C0←Clusters from graph G with size≥ t
by correlation clustering of (Bansal et al., 2002).
REFINE(Cr−1,λ)
for all clusters c∈Cr−1 do
ωc,T← TrimmedMeanGD()

end for
C ′

r←RECLUSTER(Cr−1)
Cr← MERGE(C ′

r,λ,t)

To formally define the notion of “purity” and “proxy”,
we introduce the notion of cluster label for any arbitrary
clustering C′, which relates it to the original clustering C⋆.

Definition 3.1 (Cluster label). We define c ∈ [C], as the
cluster label of cluster c′ ∈ rg(C ′) if the majority (> 1/2
fraction) of nodes in c′ are originally from c.

This definition allows us to map each cluster c′∈ rg(C ′) to
a cluster c in C⋆ and thus define the notion of ”proxy”. In
Figure 2, the cluster label of green clusters is Cluster 1 and
that of orange cluster is Cluster 2. Further, using the cluster
label c, we can define the impurities in cluster c′ as the nodes
which did not come from c′. In Figure 2, the green node
in orange cluster is an impurity. Based on these definitions,
we can see that if clusters in C0 are mostly pure and can
represent all clusters in C⋆, then C0 is a good clustering.

Subroutine TrimmedMeanGD(): The main issue with
ONE SHOT(), namely, small n, can be mitigated if we use
federation. Since, C0 has atleast t nodes per cluster, training
a single model for each cluster will utilize≥ tn datapoints,
making the estimation more accurate.

However, from Figure 2, we can see that the clusters contain
impurities, i.e., users from a different cluster. To handle them,
we use a robust training algorithm, TrimmedMean(Yin et al.,
2018). This subroutine is similar to FedAvg (McMahan et al.,
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2016), but instead of taking the average of local models, we
take the coordinate-wise trimmed mean, where β∈(0,1/2)
defines the trimming level.

The full algorithm for TrimmedMeanGD and the definition
of trimmed mean is provided in Appendix A. Note that
coordinate-wise trimmed mean has been used to handle
Byzantine users, achieving optimal statistical rates (Yin
et al., 2018), when <β fraction of the users are Byzantine.
For our problem setting, users from different clusters are
treated as impurities.

Note the two requirements for good clustering C0 from
ONE SHOT: (a) if every cluster in C⋆ has a proxy in C0, then
the TrimmedMeanGD obtains at least one cluster model
for every cluster in C⋆, (b) if every cluster in C0 has a small
fraction (β < 1

2 ) of impurities, then trimmed mean can
recover the correct cluster model for every cluster.

We end up with a trained model for each cluster as an output
of this subroutine. Since these models are better estimates
of their population risk minimizers than before, we can use
them to improve C0.

Subroutine RECLUSTER(): The full algorithm for this
subroutine is provided in Algorithm 3. This subroutine
reduces the impurity level of each cluster in C0 by assigning
each client i to its nearest cluster c in terms ofdist(ωc,T ,wi,T ).
Sinceωc,T are better estimates, we hope that the each impure
user will go to a cluster with its actual cluster label. For
instance, in Figure 2, the impure green node should go to
one of the green clusters. If some clusters in rg(C⋆) does not
have a good proxy in rg(C0), then the nodes of this cluster
will remain as impurities.

Subroutine MERGE(): We provide the full algorithm for
this subroutine in Algorithm 4. Even after removing all im-
purities from each cluster, we can still end up with clusters in
C⋆ being split, for instance the green clusters in Figure 2. In
C⋆, these form the same cluster, thus they should be merged.
As these were originally from the same cluster in C⋆, their
learned models should be very close should thus be merged.
Similar to ONE SHOT, we create a graph G but instead with
vertex set being the clusters in C′r. Then, we add edges be-
tween clusters based on a threshold λ and find all the clusters
in the resultant graphG by correlation clustering. Then, each
of these clusters in G correspond to a set of clusters in C′r,
so we merge them into a single cluster to obtain the final
clustering Cr+1.

4. Theoretical Guarantees
In this section, we present a brief overview of our theoretical
results. For theoretical tractability, we impose additional
conditions on SR-FCA. First, the dist(.,.) is the euclidean
(ℓ2) norm. Note that for realizable linear regression, ℓ2 norm
is the appropriate choice of distance metric (see Proposi-
tion B.1). Further, the hyperparameters have the following

requirements : λ ∈ (ϵ1,ϵ2) and t≤ cmin, where cmin is the
minimum size of the cluster. Although in Algorithm 1, we
use correlation clustering for finding clusters from a graph, in
theory, we restrict ourselves to finding cliques only. We spec-
ify the exact class of loss functions for which our analysis
holds defined by the following assumptions, with definitions
provided in Appendix I. We specify the exact class of loss
functions for which our analysis holds by the following
assumptions, with definitions provided in Appendix I.
Assumption 4.1 (Strong convexity). The loss per sample
f(w,.) is µ-strongly convex with respect to w.
Assumption 4.2 (Smoothness). The loss per sample f(w,.)
is also L-smooth with respect to w.
Assumption 4.3 (Lipschitz). The loss per sample f(w,.)
is Lk-Lipschitz for every coordinate k ∈ [d]. Define

L̂=
√∑d

k=1L
2
k.

We want to emphasize that the above assumptions are
standard and have appeared in the previous literature. For
example, the strong convexity and smoothness conditions are
often required to obtain theoretical guarantees for clustering
models (see (Ghosh et al., 2022; Lu & Zhou, 2016), which
includes IFCA and the classical k-means which assume
a quadratic objective. The coordinate-wise Lipschitz
assumption is also not new and (equivalent assumptions)
featured in previous works (see (Yin et al., 2018; 2019), with
it being necessary to establish convergence of the trimmed
mean procedure.

Throughout this section, we assume the above assumptions
hold. We provide guarantees on the misclustering error and
the convergence of iterates of SR-FCA.

To measure misclustering error of SR-FCA, we quantify
the probability of not recovering the original clustering, i.e.,
Cr ̸= C⋆. We provide the guarantees for ONE SHOT and a
single-step of REFINE.
Theorem 4.4 (Error after ONE SHOT). After running
ONE SHOT with η ≤ 1

L for T iterations, for the threshold
λ ∈ (ϵ1, ϵ2) and some constant b2 > 0, the probability of
error is Pr[C0 ̸= C⋆] ≤ p ≡md exp(−n b2∆

L̂
√
d
), provided

n2/3∆4/3

D2/3L̂2/3
≲ d, where ∆ = µ

2 (
min{ϵ2−λ,λ−ϵ1}

2 − (1 −
µ
L )

T/2D) and n=mini∈[m]ni.
Theorem 4.5 (One step REFINE()). Let βt = Θ(cmin)
where REFINE() is run with TrimmedMeanGD(β)
with η ≤ 1

L . Provided min{n
2/3∆′4/3

D2/3 , n2∆′2

L̂2log(cmin)
} ≳ d,

with 0 < β < 1
2 , where ∆′ = ∆ − µB

2 > 0 and

B=

√
2L̂ϵ1/µ<< 2∆′

µ , for large m and n, after running 1
step of REFINE, we have, Pr[C1 ̸=C⋆]≤ ρ1

m1−ρ2
p for some

small constants ρ1>0 and ρ2∈(0,1).

We would like to emphasize that the probability of error
is exponential in both n and the separation ∆, yielding a
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reasonable good clustering after the ONE SHOT step. Note
that the best probability of error is obtained when λ= ϵ1+ϵ2

2 .
Further, we require separation ∆ = Ω( logmn ) for p < 1.
Additionally, a single step of REFINE() brings down the
misclustering error by a factor of 1

m . Note that for IFCA,
ϵ1=0, so the condition B<< ∆′

2µ is automatically satisfied.
Assuming that the datapoints on each machine are resampled
at every REFINE step, the improvement in a single REFINE
step can be extrapolated to R REFINE steps. This result is
deferred to Appendix B.

We also obtain an appropriate loss minimizer for each cluster.

Theorem 4.6 (Cluster iterates). Under the conditions
described in Theorem 4.5, after running SR-FCA for
(R+1) steps of REFINE(), where on each machine i∈ [m],
ni datapoints are resampled and wi is recomputed as in
ONE SHOT at everyREFINE step, we haveCR+1=C⋆ and

∥ωc,T−ω⋆
c∥≤(1−κ−1)T/2D+Λ+2B,

where, Λ=O
( L̂d

1−2β
( β√

n
+

1
√
ncmin

)√
log(nmL̂D)

)
∀c ∈ rg(C⋆), with probability 1 −

(
ρ2

m(1−ρ1) p
)R −

m
cmin

4du′′

(1+ncminL̂D)d
, for some constant u′′>0.

The iterates converge exponentially fast to the true cluster
minima ω⋆

c , which matches that of IFCA. Additional
theoretical details are deferred to Appendix B.

5. Experiments
Setup. We compare the empirical performance of SR-FCA
against several baselines on real and simulated datasets. The
results for simulated datasets are deferred to Appendix C.
The real datasets are FEMINST and Shakespeare from leaf
database (Caldas et al., 2018). We compare with standard
FL baselines – Local (every client trains its own local model)
and Global (a single model trained via FedAvg on all clients).
The main baseline we compare to is IFCA. Among clustered
FL baselines, we consider CFL (Sattler et al., 2019a), Local-
KMeans (Ghosh et al., 2019) ( KMeans on the model weights
of each client’s local model), FedSoft (Ruan & Joe-Wong,
2021) (IFCA with soft clustering) and ONE SHOT-IFCA
(initial clustering of IFCA obtained by ONE SHOT), to as-
sess if these variants can fix the issues of initialization in
IFCA. For SR-FCA, we tune the parameters λ and β for
trimmed mean and set t=2 and require at most 2 REFINE
steps. Further, for clustered FL baselines (IFCA, we tune the
number of clusters.

Distance Metric We utilize a novel distance metric based on
cross-cluster loss which is better suited to measure distances
between clients’ models as these are neural networks.

Definition 5.1 (Cross-Cluster distance). For any two clients
i,j ∈ [m], with corresponding local models wi and wj and

Table 1: Test Accuracy and standard deviations across
5 seeds on Real datasets. The highest accuracy is bold.
SR-FCA consistently outperforms all baselines.

BASELINE FEMNIST SHAKESPEARE

SR-FCA 83.83± 1.49 48.54 ± 0.69
LOCAL 66.18 ± 2.14 33.86 ±1.22

GLOBAL 80.00± 3.02 45.28 ± 0.78
CFL 79.48 ± 3.48 44.14 ± 1.03
IFCA 81.93± 1.56 46.12 ± 1.22

FEDSOFT 78.74 ± 2.61 46.98 ± 1.25
ONE SHOT-IFCA 81.62 ± 2.29 45.56 ± 1.15

local empirical losses fi and fj , we define the cross cluster
loss metric as

distcross-cluster(wi,wj)=
1

2
(fi(wj)+fj(wi))

To extend this definition to distances between cluster c and
client j, such as those required by REFINE, we replace the
client modelwi and client loss fi by the cluster modelwc and
empirical cluster loss fc respectively. Similarly, to obtain
distances between clusters c and c′, which are required by
MERGE, we replace the client models and losses by cluster
models and losses respectively.

As the true clustering is not known for real datasets, we
report only the final test accuracy in Table 1.

5.1. Results
Across all datasets, we find that SR-FCA outperforms all
the baselines. The Local algorithm has access to little data,
while the Global model cannot handle the heterogeneity.
Hence, most clustered FL baselines outperform them .
CFL and Local-KMeans use the cosine distance between
gradients and l2 distance between model weights which are
not suitable for NN models. Note that we do not report the
test accuracy for Local-KMeans as it is ≤ 5%. Therefore,
both IFCA and its variants and SR-FCA outperform them.

Comparison with IFCA: On real datasets, ϵ1 ̸= 0 as the
clients inside a cluster may be close but not identical. In
addition to this, forIFCA, we need to find the correct number
of clusters by tuning. For a random sample of clients, the
true number of clusters might not be the same. SR-FCA can
compute both the correct clustering and cluster iterates for
every random sample, allowing it to beat IFCA, which fits
the same number of clusters to every random sample. The
difference is more pronounced for the more difficult Shake-
speare dataset than the easier FEMNIST dataset. Further, the
variants of IFCA – FedSoft and ONE SHOT-IFCA, have
similar test performance to IFCA. For FedSoft, which is a
soft-clustering version of IFCA, the issue of initialization re-
mains unresolved. Running IFCA after ONE SHOT can only
re-cluster the clients thus results in a similar performance.
In short, SR-FCA outperforms IFCA as well as its variants.
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Appendix for “A Convergent Federated
Clustering Algorithm without Initial Condition”

A. Additional Description of SR-FCA
SR-FCA uses a bottom-up approach to construct and refine clusters. The initialization in ONE SHOT is obtained by distance-
based thresholding on local models. These local models are improper estimates of their population minimizers due to small n,
causing C0 ̸=C⋆. However, if C0 is not very bad, i.e., each cluster has< 1

2 impurity fraction and all clusters in C⋆ are represented,
we can refine it. REFINE() is an alternating procedure, where we first estimate cluster centers from impure clusters. Then, we
RECLUSTER() to remove the impurities in each cluster and then MERGE() the clusters which should be merged according
to C⋆. Note that as these steps use cluster estimates which are more accurate, they should have smaller error. This iterative
procedure should recover one cluster for each cluster in C⋆, thus obtaining the number of clusters and every cluster should be
pure, so that C⋆ is exactly recovered. Note that the TrimmedMeanGD procedure also returns trained models, however, these
may not have the best performance. Once we have recovered C⋆, we can run a FL algorithm inside each cluster if we need
better cluster models. The analysis of computation and communication complexity of SR-FCA is deferred to Appendix D.

We provide the full algorithms for TrimmedMeanGD, RECLUSTER and MERGE in Algorithm 2,Algorithm 3 and
Algorithm 4 respectively. Further, we provide the definition of the coordinate-wise trimmed mean operation in Definition A.1.

Algorithm 2 TrimmedMeanGD()

Input: 0≤β< 1
2 , Clustering Cr

Output: Cluster models {ωc,T }c∈rg(Cr)

for all clusters c∈rg(Cr) in parallel do
wc,0←w0

for t=0 to T−1 do
g(wc,t)←TrMeanβ({∇fi(wc,t),Cr(i)=c})
wc,t+1←projW{wc,t−ηgt}

end for
Return {ωc,T }c∈rg(Cr)

end for

Definition A.1 (TrMeanβ). For β ∈ [0, 1
2 ), and a set of vectors xj ∈ Rd, j ∈ [J ], their trimmed mean

g = TrMeanβ({x1, x2, ... , xJ}) is a vector g ∈ Rd, with each coordinate gk = 1
(1−2β)J

∑
x∈Uk

x, for each k ∈ [d],
where Uk is a subset of {x1

k,x
2
k,...,x

J
k} obtained by removing the smallest and largest β fraction of its elements.

Algorithm 3 RECLUSTER()
Input: Cluster models {ωc,T }c∈rg(Cr), User models {wi}mi=1, Clustering Cr
Output: Improved Clustering C′r
for all nodes i∈ [m] do
C′r(i)←argminc∈rg(Cr)dist(wi,ωc,T )

end for
return Clustering C′r.

B. Additional Theoretical Guarantees
In this section, we provide additional theoretical results omitted from Section 4. First, we show an example where ℓ2 norm
comes naturally as the dist(.,.) function, which is the case for our theoretical results.

Proposition B.1. Suppose that there are m clients, each with a local model w⋆
i ∈ Rd and its datapoint

(x, yi) ∈ Rd × R is generated according to yi = ⟨w⋆
i ,x⟩ + ϵi. If x ∼ N (0, Id) and ϵi

i.i.d∼ N (0, σ2), then
KL(p(x,yi)||p(x,yj))=Ex[KL(p(yi|x)||p(yj |x))]= d

2σ2 ∥wi−wj∥2.
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Algorithm 4 MERGE()
Input: Cluster iterates {ωc,T }c∈rg(Cr) , Clustering C′r, Threshold λ, Size parameter t
Output: Merged Clustering Cr+1, Cluster iterates {ωc,T }c∈rg(Cr+1)

G←Graph with vertex set rg(C′r) and no edges
for all pairs of clusters c,c′∈rg(C′r),c ̸=c′ do

Add edge (c,c′) to the graph G if dist(wc,wc′)≤λ
end for
Ctemp←Clusters from graph G of size≥ t by correlation clustering of (Bansal et al., 2002).
For each cluster in Ctemp, merge the nodes of its component clusters to get Cr+1

for c∈rg(Ctemp) do
Gc←{c′∈rg(C′r) which merged into c}
ωc,T← 1

|Gc|
∑

c′∈Gc
ωc′,T

end for
return Cr+1,{ωc,T }c∈rg(Cr+1).

Hence, we see that minimizing a natural measure (KL divergence) between the conditional distributions y|x for different
clients is equivalent to minimizing the ℓ2 distance of the underlying local models. Note that the above example only serves
as a motivation, and our theoretical results hold for a strictly larger class of functions, as defined by our assumptions.

Misclustering Error
Remark B.2 (Improved separation compared with IFCA). Let us now compare the separation with that of IFCA. Note that for
IFCA, ϵ1=0, and the separation is Õ(max{α

−2/5

n1/5 , α−1/3

n1/3m1/6 }), whereα>0 is the initialization factor. In the regime whereα=

O(1),IFCA requires a separation of Õ( 1
n1/5 ), which is much worse compared toSR-FCAwhich requires a separation of Õ( 1n ).

We provide the full restatement of progress made in one REFINE step.
Theorem B.3 (Restatement of Theorem 4.5). Let βt = Θ(cmin), and REFINE() is run with TrimmedMeanGD(β).

Provided min{n
2/3∆′4/3

D2/3 , n2∆′2

L̂2log(cmin)
}≳ d, with 0< β < 1

2 , where ∆′ =∆− µB
2 > 0 and B =

√
2L̂ϵ1/µ. Then, for any

constant γ1∈(1,2) and γ2∈(1,2− µB
2∆ ), such that after running 1 step of REFINE()with η≤ 1

L , we have

Pr[C1 ̸=C⋆]≤ m

cmin
exp(−a1cmin)+

m

t
exp(−a2m)+(1−β)m(

p

m
)γ1+m(

p

m
)γ2+8d

m

t
exp(−a3n

∆′

2L̂
),

where cmin is the minimum size of the cluster. Further for some small constants ρ1> 0,ρ2 ∈ (0,1), we can select β,γ1 and
γ2 such that for large m,n and ∆′, with B<< 2∆′

µ , we have Pr[C1 ̸=C⋆]≤ ρ1

m1−ρ2
p.

Using single step of REFINE, we obtain the improvement in misclustering error after R steps of REFINE.
Theorem B.4. [Multi-step REFINE()] If we run R steps of REFINE(), resampling ni points from Di and recompute
wi as in ONE SHOT for every step of REFINE(), then the probability of error for SR-FCA with R steps of REFINE() is
Pr[CR ̸=C⋆]≤

(
ρ2

m(1−ρ1) p
)R

.
Remark B.5 (Re-sampling). Note that although the theoretical convergence of Multi-step REFINE() requires resampling
of data points in each iteration of REFINE(), we experimentally validate (see Section 5, that this is not required at all.
Remark B.6. In experiments ( Section 5), we observe that it is often sufficient to run 1−2 steps of REFINE(). Since each
step of REFINE() reduces the probability of misclusteing by (almost) a factor of 1/m, very few steps of REFINE() is
often sufficient.

Note that the proofs for Theorem 4.4 and Theorem B.3 are provided in Appendix F and Appendix G respectively.

Convergence of cluster iterates:
Remark B.7 (Comparison with IFCA in statistical error). Note that for IFCA, ϵ1=0 and the statistical error rate of IFCA is
Õ(1/n) (see Theorem 2 in (Ghosh et al., 2022)). Looking at Theorem 4.6, we see that under similar condition (ϵ1=0 and hence
B=0),SR-FCAobtains an error rate of Õ(1/

√
n), which is weaker thanIFCA. This can be thought of the price of initialization.

In fact for IFCA, a good initialization implies that only a very few clients will be mis-clustered, which was crucially required
to obtain the Õ(1/n) rate. But, for SR-FCA, we do not have such guarantees which results in a weaker statistical error.
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Table 2: Test Accuracy and standard deviations across 5 random seeds on simulated datasets. The highest accuracy is bold.
SR-FCA is competitve with IFCA and beats it for Rotated CIFAR10.

BASELINE
MNIST

(INVERTED)
MNIST

(ROTATED)
CIFAR

(ROTATED)

SR-FCA 92.03 ±0.30 91.66 ± 0.13 91.38 ± 0.27
LOCAL 76.52 ±0.54 85.55 ± 0.19 75.87± 0.33

GLOBAL 88.61 ± 0.77 80.88 ±1.55 88.75± 0.52
CFL (SATTLER ET AL., 2019A) 88.30 ± 1.12 80.47 ±0.44 87.59 ± 0.42

LOCAL-KMEANS (GHOSH ET AL., 2019) 10.56 ± 1.31 10.35 ± 0.71 10.00 ±0.20
IFCA (GHOSH ET AL., 2022) 91.55± 0.81 91.80 ± 0.25 86.05 ± 0.43

Remark B.8 (Potential improvement, matching error of IFCA). Our iterates are obtained via TrimmedMeanGD()which
assumes β fraction of clients inside each cluster are corrupted. Instead, if we run any federated optimization algorithm which
can accommodate low heterogeneity, for instance FedProx (Sahu et al., 2018b), inside each cluster CR, then we can shave
off the Λ term from Theorem 4.6, to obtain convergence to a neighborhood of radius 2B of ω⋆

c for each cluster c∈C⋆. We
keep this as a future work.

Note that the proof of Theorem 4.6 is provided in Appendix H.

C. Additional Experiments
We provide a detailed description of our experimental setup.

Simulated Datasets: We generate clustered FL datasets from MNIST (LeCun & Cortes, 2010) and CIFAR10 (Krizhevsky
et al.) by splitting them into disjoint sets, one per client. For MNIST, by inverting pixel value, we create 2 clusters (referred
to as inverted in Table 2) and by rotating the image by 90,180,270 degrees we get 4 clusters. We set m=100,n=600. For
CIFAR10, we create 2 clusters by rotating the images by 180 degrees and set m=32,n=3125. To emulate practical FL
scenarios, we assume that only a fraction of the nodes participate in the learning procedure. For Rotated and Inverted MNIST,
we assume that all the nodes participate, while for Rotated CIFAR10, 50% of the nodes participate. For MNIST, we train
a 2-layer feedforward NN, while for CIFAR10, we train a ResNet9 (Page, 2019). We train Rotated MNIST, Inverted MNIST
and Rotated CIFAR10 for 250, 280 and 2400 iterations respectively with 2 refine steps for SR-FCA.

Real Datasets: We sample m = 50 machines from FEMNIST and Shakespeare. FEMNIST is a Federated version of
EMNIST with data on each client being handwritten symbols from a different person. Shakespeare is a NLP dataset where
the task is next character prediction. For FEMNIST, train a CNN for while for Shakespeare we train a 2-layer stacked LSTM.
For clustered FL baselines, we tune K, the number of clusters, with K ∈{2,3,4,5} for FEMNIST and K ∈{1,2,3,4} . We
run FEMNIST and Shakespeare for 1000 and 2400 iterations respectively and set number of refine steps to be 1 for SR-FCA.

Test Metrics : The test performance of any baseline is obtained by averaging over the clients, the test performance of each
client on its model trained by the baseline. For the local baseline, it is the client’s local model and for the global baseline
it is the single global model. For SR-FCA and clustered FL baselines, it is the cluster model for the client. Note that we do not
present convergence plots as different algorithms run in different number of stages. For simulated datasets, the true clustering
C⋆ is known, therefore we report both the test accuracy and misclustering error in Table 2 and Table 3 respectively.

Note that for simulated datasets, we do not compare with the variants of IFCA (FedSoft and ONE SHOT-IFCA).

Note that the total time to run all experiments including hyperparameter tuning on a single NVIDIA-GeForce-RTX-3090
is 2 weeks.

C.1. Results on Simulated Datasets

Across all datasets, we find that SR-FCA is competitive with or outperforms all other algorithms in terms of both misclustering
error and test accuracy.

Comparison with CFL and Local-KMeans: CFL and Local-KMeans use the cosine distance between gradients and l2
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Table 3: Average Misclustering error of clustered FL algorithms on test set across 5 random seeds for simulated datasets.
The lowest error is bold. SR-FCA is competitive with IFCA for MNIST and beats it for Rotated CIFAR10.

BASELINE
MNIST

(INVERTED)
MNIST

(ROTATED)
CIFAR

(ROTATED)

SR-FCA 0.0 0.0 0.0
CFL (SATTLER ET AL., 2019A) 0.08 0.14 0.18

LOCAL-KMEANS (GHOSH ET AL., 2019) 0.36 0.28 0.38
IFCA (GHOSH ET AL., 2022) 0.0 0.0 0.50

distance between model weights which are not suitable for NN models. Local-KMeans performs the worst with≈10% test
accuracy for simulated datasets. SR-FCA and IFCA use cross-cluster loss and client loss respectively, which are better suited
to NN models, thus outperforming these baselines (see Tables 1 and 2).

Comparison with IFCA: On simulated datasets ( Tables 2 and 3), we find that IFCA recovers C⋆ and outperforms
SR-FCAmarginally for MNIST datasets. This is due to MNIST being a simpler and easier to learn dataset, even after adding
heterogeneity via rotations or inversions. In contrast, for CIFAR10 the learning task is much more difficult, and IFCA, without
proper initialization, ends up with all clients in only a single cluster after a few rounds resulting in a misclustering of 0.5,
as seen in Table 3. Thus it performs slightly worse than the global baseline in terms of test accuracy, as seen in Table 2.
From Table 3, we see that SR-FCA correctly identifies C⋆ and comprehensively beats IFCA in terms of test accuracy.

D. Computational and Communication Complexity
Note that the complexity of theREFINE step is the same as that ofIFCA in terms of both computation time and communication
since in each case, we need to find the loss of every cluster model on every client’s data. The main blowup ofO(m2) is incurred
during ONE SHOT, which is unavoidable if an initial clustering is not known. We use the comparison of KMeans (Lloyd,
1982) v/s DBSCAN (Ester et al., 1996) or Ward’s algorithm where without the initial clustering, we need to perform all
pairwise comparisons to check which clients can be clustered together.

In the next section, we will provide theoretical justification for several of our claims and establish the probability of clustering
error and convergence rates for the cluster models obtained by TrimmedMeanGD.

E. Proof of Proposition B.1
According to the proposition, for two users i and j, the data is generated by first sampling each coordinate of x∈Rd from
N (0,1) iid and then computing y as –

yi=⟨x,w⋆
i ⟩+ϵi

where ϵi
iid∼N (0,σ2). Then, the distribution of yi|x isN (⟨x,w⋆

i ⟩,σ2). Therefore, the KL divergence between yi|x and yj |x
is given by

KL(p(yi|x)||p(yj |x))=
〈
w⋆

i −w⋆
j ,x

〉2
2σ2

Therefore, if we take expectation wrt x, we have

Ex[KL(p(yi|x)||p(yj |x))]=
d
∥∥w⋆

i −w⋆
j

∥∥2
2σ2

F. Proof of Theorem 4.4
In ONE SHOT(), C0=C⋆, if all the edges formed in the graph are correct. This means that if i,j are in the same cluster in
C⋆, then ∥wi,T−wj,T ∥≤λ and if i,j are in different clusters, ∥wi,T−wj,T ∥>λ.
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Note that,

wi,T−wj,T =(w⋆
i −w⋆

j )+(wi,T−w⋆
i )−(wj,T−w⋆

j )

Now, if we apply triangle inequality, we obtain

dist(wi,T ,wj,T )≥dist(w⋆
i ,w

⋆
j )−Ξi,j , dist(wi,T ,wj,T )≤dist(w⋆

i ,w
⋆
j )+Ξi,j

where Ξi,j=
∑

k=i,jdist(wk,T ,w
⋆
k). This decomposition forms the key motivation for our algorithm.

Therefore, if i,j are in the same cluster, then a sufficient condition for edge (i,j) to be incorrect is

λ≤dist(w⋆
i ,w

⋆
j )+Ξi,j =⇒ Ξi,j≥λ−ϵ1

Similarly, if i,j are in different clusters, then a sufficient condition for edge (i,j) to be incorrect is

λ≥dist(w⋆
i ,w

⋆
j )−Ξi,j =⇒ Ξi,j≥ϵ2−λ

Therefore, we can set∆λ=min{ϵ2−λ,λ−ϵ1}, and then a sufficient condition for any edge to be incorrect ismaxi,jΞi,j≥∆λ.

Thus,

Pr[C⋆ ̸=C0]≤Pr[at least 1 edge is incorrect]
≤Pr[max

i,j
Ξi,j≥∆λ]

≤Pr[max
i,j

∑
k=i,j

∥wk,T−w⋆
k∥≥∆λ]

≤Pr[max
i,j

max
k=i,j

(∥wk,T−w⋆
k∥≥

∆λ

2
]

≤Pr[max
i∈[m]
∥wi,T−w⋆

i ∥≥
∆λ

2
] (2)

The second and third inequalities are obtained by expanding the terms. The fourth inequality is obtained by
Pr[a+b≥ c]≤Pr[max{a,b}≥ c/2]. For the fifth inequality, we merge maxi,jmaxk=i,j into maxi∈[m]. As we can see in
Equation (2), we need to bound ∥wi,T−w⋆

i ∥ for each node i. The subsequent Lemma allow us to bound this quantities.

Lemma F.1 (Convergence of wi,T ). Let n2/3∆4/3

D2/3L̂2/3
≲b1d, for some constant b1>0. Then, after running ONE SHOT()with

η≤ 1
L , for some constant b2>0, under Assumptions 4.1-4.3, we have

Pr[∥wi,T−w⋆
i ∥≥

ϵ2−ϵ1
4

]≤d exp(−n b2∆

L̂
√
d
),

where ∆= µ
2 (

∆λ

2 −(1−
µ
L )

T/2D) and n=mini∈[m]ni.

This lemma follows from (Yin et al., 2018). The complete proof of this Lemma is present in Appendix F.1.

Now, we can apply Lemma F.1 in Eq (2).

Pr[C0 ̸=C⋆]≤Pr[max
i∈[m]
∥wi,T−w⋆

i ∥≥
∆λ

2
]

≤mmax
i∈[m]

Pr[∥wi,T−w⋆
i ∥≥

∆λ

2
]

≤md exp(−n b2∆

L̂
√
d
)

For the second inequality, we use Pr[maxi∈[m]ai ≥ c]≤
∑

i∈[m]Pr[ai ≥ c]≤mmaxi∈[m]Pr[ai ≥ c], which follows from
union bound.

Note that for p<1, we need the separation to be order of Θ(
√

logm
n ).
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F.1. Proof of Lemma F.1

We utilize results from (Yin et al., 2018), which hold for TrimmedMeanGD to analyze convergence for a single node as
they yield stronger guarantees under the given assumptions.

Lemma F.2 (Convergence of wi,T ). If Assumptions 4.1-4.3 hold, and η≤ 1
L , then

∥wi,T−w⋆
i ∥≤(1−κ−1)T/2D+

2

µ
Λi ∀i∈ [m] (3)

where κ= L
µ and Λi is a positive random variable with

Pr[Λi≥
√
2dr+2

√
2δL̂]≤2d(1+

D

δ
)dexp(−nmin{ r

2L̂
,
r2

2L̂2
}) (4)

for some r,δ>0.

We provide the proof of this lemma in Appendix G.8.

Using the above Lemma, we can bound the probability Pr[∥wi,T−w⋆
i ∥≥ ∆λ

2 ]

Pr[∥wi,T−w⋆
i ∥≥

∆λ

2
]≤Pr[2(1−κ−1)T/2D+

2

µ
Λi+≥

∆λ

2
]

≤Pr[Λi≥∆], where ∆=
µ

2
(
∆λ

2
−(1−κ−1)T/2D)

≤Pr[
√
2dr+2

√
2δL̂≥∆]

≤dexp(−nb2
∆

L̂
√
d
)

for some constants b1,b2,b3,b4>0, where we set r=b3L̂max{ ∆
L̂
√
d
,
√

∆
L̂
√
d
} and δ=b4

∆
L̂

, and for b1d≤ n2/3∆4/3

D2/3L̂4/3
, such that

√
2dr+2

√
2δL̂≥∆ and nmin{ r

2L̂
, r2

2L̂2
}> Dd

δ in Lemma F.2.

G. Proof of Theorem B.3
G.1. Preliminaries

First, we define certain random variables and their respective probabilities which we will use throughout this proof. Since
the edge based analysis and corresponding clique identification involves a lot of dependent events, we try to decompose
the absence/presence of edge into a combination of independent events.

Define,

Xij=

{
1 If the edge (i,j) in C0 is incorrect in C⋆

0 Otherwise
(5)

An edge (i,j) in C0 is incorrect in C⋆ if either it is present in C⋆ and absent in C0 or vice versa. We analyze the probability
of this event for the case when C⋆ contains the edge (i,j). The case when C⋆ doesn’t contain edge (i,j) and it is present in
C0 has exaclty same probability. When

∥∥w⋆
i −w⋆

j

∥∥≤ϵ1, then edge is present is C⋆. If it is absent in C0, then

Pr[Xij=1]≤Pr[Ξi,j≥∆λ]

≤Pr[Λi+Λj≥2∆]

The analysis is similar to the proof of ONE SHOT() in Appendix F.

Note that the random variables {Xij} are not independent. We now define independent random variables Xi such that

Xi=

{
1 If Λi≥∆

0 Otherwise
(6)

13
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Thus, we can see that Xij≤Xi+Xj . Additionally,

Pr[Xi=1]≤Pr[Λi≥∆]≤ p

m
(7)

This follows from analysis of ONE SHOT() in Appendix F.

We can further generalize this notion to the random variables defined as Yi,γ .

Yi,γ=

{
1 If Λi≥γ∆,γ∈(0,2)
0 Otherwise

(8)

Then,

Pr[Yi,γ=1]≤Pr[Λi≥γ∆]≤dexp(−nb2
γ∆

L̂
√
d
)=(

p

m
)γ

Note that the set of random variables {Yi,γ}mi=1 are mutually independent random variables.

Further, we define the ω⋆
c for every cluster c∈rg(C0). Let c′∈C⋆ be the cluster label of node c. If Gc={i : i∈ [m],C⋆(i)=c′},

which is the set of nodes in c which were from c′ in the original clustering, then we can define ω⋆
c and Fc(w) as

ω⋆
c =argmin

w∈W
E[

1

|Gc′ |
∑
i∈Gc′

fi(w)] (9)

=argmin
w∈W

1

|Gc′ |
∑
i∈Gc′

Fi(w)=argmin
w∈W

Fc(w) (10)

We use this definition of ω⋆
c in the Appendices G.5 and G.6.

G.2. Analysis of REFINE()

Our goal is to compute total probability of error for REFINE() to fail. If we define this error as C1 ̸=C⋆, then we can define
the main sources of error for this event.

1. ∃c∈ rg(C⋆) such that no cluster in C0 has cluster label c : If the a cluster c∈ rg(C⋆) is absent in C0, then subsequent
steps of REFINE()will never be able to recover it, as they only involve node reclustering and merging existing clusters.
The lemma presented below gives an upper bound on the probability of this event.

Lemma G.1. Under the conditions of Theorem 4.4 and if t=Θ(cmin), then there exists constant a1>0 such that

Pr[∃c∈rg(C⋆) such that no cluster in C0 has cluster label c]

≤ m

cmin
exp(−a1cmin)

The proof of this Lemma is presented in Appendix G.3

2. Each cluster c∈ rg(C)0 should have <α fraction of impurities for some 1
2 >β>α: If some cluster has more than

α-fraction of impure nodes, then we cannot expect convergence guarantees for TrimmedMeanGDβ .

The below lemma bounds the probability of this error as

Lemma G.2. . For some constants 0 < α < β < 1
2 ,a2 ≥ 0,γ1 ∈ (1,2) and αt = Θ(m), under the conditions in

Theorem 4.4, we have

Pr[∃c∈rg(C0) which has >α fraction of impurities ]

≤m

t
exp(−a2m)+(1−α)m(

p

m
)γ1

The proof of this Lemma is presented in Appendix G.4.
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3. MERGE() error: We define this as the error for the MERGE() to fail. Even though MERGE() operates after
RECLUSTER(), RECLUSTER() does not change the cluster iterates. The goal of MERGE() is to ensure that all
clusters in C0 with the same cluster labels are merged. Therefore, we define MERGE() error as the event when either
two clusters with same cluster label are not merged or two clusters with different cluster labels are merged. The below
lemma bounds this probability.

Lemma G.3. If min{ n
2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
}≥ u1d for some constants u1 > 0, then for some constant a′3 > 0, where

∆′=∆− µB
2 >0, where B=

√
2L̂ϵ1
µ , we have

Pr[MERGE() Error]≤ 4dm

t
exp(−a′3n

∆′

2L̂
)

The proof of this Lemma is presented in Appendix G.5.

4. RECLUSTER() error: This event is defined as a node going to the wrong cluster after both MERGE() and REFINE()
operations. After MERGE(), each cluster in C0 corresponds to a single cluster in C1. Therefore, we incur an error due
to the RECLUSTER() operation if any node i does not go to the cluster c∈C1 which has cluster label C⋆(i). The below
lemma provides an upper bound on the probability of this error.

Lemma G.4. If min{ n
2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
} ≥ u2d for some constants u2 > 0, then for some constants a′′3 > 0 and

γ2∈(1,2− µB
2∆ ), we have

Pr[RECLUSTER()error]≤4d
m

t
exp(−a′′3n

∆′

2L̂
)+m(

p

m
)γ2 (11)

The proof of this Lemma is presented in Appendix G.6.

The total probability of error after for a single step of REFINE() is the sum of probability of errors for these 4 events by
the union bound. Therefore,

Pr[C1 ̸=C⋆]≤ m

cmin
exp(−a1cmin)+

m

t
exp(−a2m)

+(1−β)m(
p

m
)γ1+8d

m

t
exp(−a3n

∆′

2L̂
)+m(

p

m
)γ2

where we set a3=min{a′3,a′′3} .

For some small constants ρ1 > 0, ρ2 ∈ (0, 1), we can choose γ1 ∈ (1, 2), β ∈ (0, 12 ) and γ2 ∈ (1, 2 − µB
2∆ ) such that

(1 − β)( p
m )γ1−1 + ( p

m )γ2−1 ≤ ρ1

2m1−ρ2
and for large enough m,∆′ and n, m

cmin
exp(−a1cmin) +

m
t exp(−a2m) +

8dm
t exp(−a3n

∆′

2L̂
)≤ ρ1

2m1−ρ2
p. This happens because we have terms of exp(−m),exp(−cmin) and exp(−n∆′), which

decrease much faster than p
m which has terms ofO(mexp(−n∆)), where ∆ and ∆′ are of the same order. Therefore, the

total probability of error can be bounded by

Pr[C1 ̸=C⋆]≤
ρ1

m1−ρ2
p (12)

G.3. Proof of Lemma G.1

Pr[∃c∈rg(C⋆) such that no cluster in C0 has cluster label c]

≤
∑
c∈C⋆

Pr[No cluster in C0 has cluster label c] (13)

Here, we use union bound over the clusters for the second inequality. Now, we analyze the probability that no cluster in rg(C0)
has cluster label c for some c∈rg(C⋆). Consider a cluster in rg(C0). This cluster has cluster label c if a majority of its nodes
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are from cluster c∈rg(C⋆). Since the size of each cluster in rg(C0) is atleast t and there are C clusters in rg(C⋆), if all clusters
in rg(C0) have≤ t

C nodes from cluster c, then no cluster will have cluster label c.

Assume that the clique formed by nodes from cluster c has r nodes. Then, every node i in cluster c, must have Sc−r edges
absent, which correspond to the edges between a node of the clique and those outside it. Thus, we obtain,

Pr[No cluster in C0 has cluster label c]≤Pr[ ∩
C⋆(i)=c

{
∑

j ̸=i,C⋆(i)=c

Xij>Sc−
t

C
}]

≤Pr[
∑∑

C⋆(i)=C⋆(j)=c

Xij>Sc(Sc−
t

C
)]

≤Pr[
∑∑

C⋆(i)=C⋆(j)=c

(Xi+Xj)>Sc(Sc−
t

C
)]

≤Pr[ 1
Sc

∑
C⋆(i)=c

Xi>1− t

CSc
)]

≤exp(−
(
1− t

CSc
− p

m

)2

Sc)

≤exp(−a1cmin)

In the first step, we require each node i to have Sc− t
C wrong edges. For the second inequality, we remove the intersection

and thus, the total number of incorrect edges has to be Sc(Sc− t
C ), since each node has Sc− t

C incorrect edges. For the third
inequality, we use Xij ≤Xi+Xj and collect the terms of Xi for the fourth inequality. In the fifth inequality, we obtain a
condition on the sum of independent Bernoulli random variables each with mean p

m . Therefore, we can apply Chernoff bound
for their sum to obtain the fifth inequality.

A necessary condition for us is 1− t
CSc
− p

m >0 which translates to t<CSc(1− p
m ). If we select t≤cmin−1, this inequality

is always satisfied. Note that we want the term
(
1− t

CSc
− p

m

)2

>a1, for some positive constant a1. If we choose t=Θ(m),

which is possible if t=Θ(cmin) as we assume cmin=Θ(m), then this is satisfied. We use the lower bound a1 and Sc≥cmin

to obtain the final inequality. Plugging this in Eq (13), we obtain our result.

G.4. Proof of Lemma G.2

Pr[∃c∈rg(C0) which has≥α fraction of impurities]

≤
∑

c∈rg(C0)

Pr[cluster c has≥α fraction of wrong nodes] (14)

We use a simple union bound on clusters in C0 for the above inequality. Let the set of nodes in the cluster c which are from
same cluster of C⋆ as the cluster label of c, i.e., which are not impurities, be Rc. Then let Qc= |Rc|. Let Q′

c denote the number
of impurities in cluster c.

Pr[cluster c has≥α fraction of wrong nodes]≤Pr[Q′
c≥

α

1−α
Qc]

Pr[Q′
c≥αt]

We use the fact that Qc+Q′
c≥ t, which is the minimum size of any cluster, for the second inequality.

Now, we analyze the probability of a single node to be incorrect. A node is an impurity in cluster c if it has an edge to each
of nodes in Rc.

Pr[Node i is an impurity in cluster c]≤Pr[min
j∈Rc

∥wi,T−wj,T ∥≤λ] (15)

≤Pr[min
j∈Rc

(
∥∥w⋆

i −w⋆
j

∥∥−Ξi,j)≤λ]

≤Pr[Λi+max
j∈Rc

Λj≥2∆]
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Now, if maxj∈Rc
Λj≤γ1∆, for γ1∈(1,2), then we need Λi≥(2−γ1)∆ for error.

Using the definition of random variables in Appendix G.1

Pr[Q′
c≥αt]≤Pr[Q′

c≥αt|max
j∈Rc

Λj≤γ1∆]+Pr[max
j∈Rc

Λj≥γ1∆]

≤Pr[
m∑
i=1

Yi,2−γ1
≥αt]+Pr[max

j∈Rc

Λj≥γ1∆]

For the first inequality, we use union bound over the value of maxj∈Rc
Λj and for the second inequality, we need atleast αt

impurities, so atleast αt of all Yi,2−γ1
should be 1.

We now bound the two terms in the final inequality separately.

For the second term, if maxj∈RcΛj≥γ1∆.

Pr[max
j∈Rc

Λj≥γ1∆]≤QcPr[Yj,γ1
=1]≤Qc(

p

m
)γ1

Here, we use union bound over all elements in Rc for the first inequality and the second inequality is plugging in the value of
Pr[Yj,γ1

=1], which we have already computed.

Now, we need to provide a bound on Qc. Note that if Qc denotes the correct number of nodes, which corresponds to the
majority of nodes, then Qc≤(1−α)Sc, where Sc is the size of the cluster c.

For the first term, we can use Chernoff bound as Yi,2−γ1
are independent random variables with expectation p

m

Pr[
1

m

m∑
i=1

Yi,2−γ1≥α
t

m
]≤exp(−(α t

m
−E[Yi,2−γ1 ])

2m)≤exp(−a2m)

We need α t
m≥E[Yi,2−γ1 ],which implies αt≥1, since Yi,2−γ1 is a bernoulli random variable. Further, we require αt=Θ(m),

so that we can bound the probability using a constant a2≥0. If we choose γ1 as a constant independent of m, then we are done.

Now, plugging all these inequalities into Eq (14), we get

Pr[∃c∈rg(C0) which has≥α fraction of wrong nodes]

≤rg(C0)exp(−a2m)+
∑

c∈rg(C0)

(1−α)Sc(
p

m
)γ1

≤|rg(C0)|exp(−a2m)+(1−α)m(
p

m
)γ1

≤m

t
exp(−a2m)+(1−α)m(

p

m
)γ1

For the second inequality, we use
∑

c∈C0
Sc=m and for the third inequality, we use |rg(C0)|t≤m.

G.5. Proof of Lemma G.3

First, let i,j ∈ [m] be a node in cluster c,c′∈ rg(C0) respectively such that C⋆(j) and C⋆(i) are the cluster labels of clusters
c and c′ respectively. Then, if we repeat our thresholding analysis for MERGE() operation, we obtain

dist(w⋆
i ,w

⋆
j )−Ψc,c′≤dist(ωc,T ,ωc′,T )≤dist(w⋆

i ,w
⋆
j )+Ψc,c′

where Ψc,c′ =dist(ω⋆
c ,w

⋆
i )+dist(ω⋆

c′ ,w
⋆
j )+

∑
k=c,c′

dist(wk,T ,w
⋆
k)

We obtain the above equations by a simple application of triangle inequality. Here, ω⋆
c is as defined in Appendix G.1.

To analyze the above quantities, we need to bound ∥ω⋆
c−ωc,T ∥ and

∥∥ω⋆
c−w⋆

j

∥∥ for some j ∈Gc. The following Lemmas
provide these bounds.
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Lemma G.5 (Convergence of ωc,T ). If Assumptions 4.1-4.3 hold, and η≤ 1
L , then

∥ωc,T−ω⋆
c∥≤(1−κ−1)T/2D+

2

µ
Λc ∀c∈rg(C0) (16)

where κ= L
µ and Λc is a positive random variable with

Pr[Λc≥
√
2d

r+3βs

1−2β
+
√
2
2(1+3β)

1−2β
δL̂]

≤2d(1+
D

δ
)d(exp(−(1−α)Scnmin{ r

2L̂
,
r2

2L̂2
})

+(1−α)Scexp(−nmin{ s

2L̂
,
s2

2L̂2
}))

(17)

for some r,s,δ>0 where Sc is the size of cluster c.

Proof is presented in Appendix G.7

Lemma G.6 (Distance between cluster minima and node minima). If Assumptions 4.1-4.3 holds, for all j ∈ [m], where j
is a node in cluster c∈C0 where C⋆(j) is the cluster label of node c, we have

∥∥ω⋆
c−w⋆

j

∥∥≤
√

2L̂ϵ1
µ

:=B (18)

Proof is presented in Appendix G.9.

Now, that we have our required quantities, we are ready to analyze the probability of error after the merge and reclustering
operations.

First, we analyze the probabilty of MERGE() operation. Note that if correct nodes of c and c′ were from the same
cluster C⋆ then,

∥∥w⋆
i −w⋆

j

∥∥ ≤ ϵ1,∀i ∈ Gc,j ∈ Gc′ . If correct nodes of c′ and c were from different clusters in C⋆, then,∥∥w⋆
i −w⋆

j

∥∥≥ϵ2,∀i∈Gc,j∈Gc′ . Therefore, the probability of MERGE() error is upper bounded by

Pr[MERGE() Error]≤Pr[at least 1 edge is incorrect]
≤Pr[max

c,c′
Ψc,c′≥∆λ]

≤Pr[max
c,c′

∑
k=c,c′

2Λk

µ
≥∆λ−2(1−κ−1)T/2D−2B]

≤ max
c∈rg(C0)

Pr[Λc≥
µ

2
(
∆λ

2
−(1−κ−1)T/2D−B)]

≤ max
c∈rg(C0)

Pr[Λc≥∆′] (19)

≤ max
c∈rg(C0)

4dexp(−a′3n
∆′

2L̂
)

≤
∑

c∈rg(C0)

4dexp(−a′3n
∆′

2L̂
)≤ 4dm

t
exp(−a′3n

∆′

2L̂
) (20)

For the second inequality, we expand all the terms of Φc,c′ . We set ∆′ = µ
2 (

∆λ

2 − (1− κ−1)T/2D−B). Then, we set

r=Θ(L̂max{ ∆′

Sc

√
dL̂

,
√

∆′

Sc

√
dL̂
}),s=Θ(L̂max{ ∆′

Sc

√
dL̂

+ 2log(Sc)
n ,

√
∆′

Sc

√
dL̂

+ 2log(Sc)
n }) and δ=Θ(Dd3/2L̂

n∆′ ). Now, if

d=Ω(min{ n
2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
}), such that

√
2d r+3βs

1−2β +
√
2 2(1+3β)

1−2β δL̂≥∆′, then there exist some constant a′3>0 such
that the second inequality is satisfied by Lemma G.5. We then use the union bound, followed by |rg(C0)|≤ m

t .
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G.6. Proof of Lemma G.4

We can apply our thresholding analysis to

∥ωc,T−wi,T ∥ for c∈rg(C0). First, let j be a node in cluster c such that C⋆(j) is the cluster label of c.

dist(w⋆
j ,w

⋆
i )+Φc,i≤dist(ωc,T ,wi,T )≤dist(w⋆

j ,w
⋆
i )+Φc,i

where Φc,i=dist(ωc,T ,ω
⋆
c )+dist(ω⋆

c ,w
⋆
j )+dist(wi,T ,w

⋆
i )

From Appendix F and Appendix G.5, we have bounds for all the terms involved. Note that after merging, each cluster in
C⋆ should have only 1 cluster in C1. Therefore, after we recluster according to ∥ωc,T−wi,T ∥, we incur an error if i goes to
the wrong cluster. Suppose that the c corresponds to the correct cluster for i and c′ is the cluster to which it is assigned , with
c,c′∈rg(C1),c ̸=c′. Then,

Pr[Reclustering Error]≤Pr[max
i∈[m]

max
c′ ̸=c
∥ωc′,T−wi,T ∥≤∥ωc,T−wi,T ∥]

≤Pr[max
i∈[m]

max
c′ ̸=c

ϵ2−Φc′,i≤ϵ1+Φc,i]

≤Pr[max
i∈[m]

max
c′∈C′

0

Φc,i≥
ϵ2−ϵ1

2
]

≤Pr[max
i∈[m]

max
c′∈C′

0

(Λc+Λi)≥∆+∆′] (21)

≤Pr[max
c∈C′

0

Λc≥∆′−(γ2−1)∆]+Pr[max
i∈[m]

Λi≥γ2∆]

≤ max
c∈rg(C0)′

Pr[Λc≥∆′′]+max
i∈m

Pr[Λi≥γ2∆] (22)

For the second inequality, we use the thresholding analysis on ∥ωc,T−wi,T ∥. For the third inequality, we rearrange the terms
and combine max over c′ ̸=c with c, and use. For the fourth inequality, we expand the terms of Φc,T and substitute the values
of ∆ and ∆′, using the inequality ∆λ≤ ϵ2−ϵ1

2 . For the fifth inequality, we use consider some γ2∈(1,2− µB
2∆ ) and break the

terms using union bound such that ∆′′=∆′−(γ2−1)∆≥0. Finally, we use the union bound on c∈rg(C0)′ and i∈ [m].

Now, we bound the two terms in Eq (22) separately. The second term can be bounded in terms of Yi,γ2
. Thus,

max
i∈[m]

Pr[Λi≥γ2∆]=max
i∈[m]

Pr[Yi,γ2
=1]≤m(

p

m
)γ2 (23)

We use expectation of Yi,γ2 calculated in Appendix G.4 and then bound max by sum.

For the first term, our analysis is similar to that of MERGE() error. Assume that there is some constant u2>1 such that ∆′′≥
u2∆

′. We set δ =Θ(Dd3/2L̂
n∆′ ), r =Θ(L̂max{ ∆′

Sc

√
dL̂

,
√

∆′

Sc

√
dL̂
}), s=Θ(L̂max{ ∆′

Sc

√
dL̂

+ 2log(Sc)
n ,

√
∆′

Sc

√
dL̂

+ 2log(Sc)
n }),

and if d=Ω(min{ n
2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
}), such that

√
2d r+3βs

1−2β +
√
2 2(1+3β)

1−2β δL̂≥∆′, then there exist some constant a′′3 >0

such that the second inequality is satisfied by Lemma G.5. We then use the union bound, followed by |rg(C0)|≤ m
t .

max
c∈rg(C0)′

Pr[Λc≥∆′′]≤ max
c∈rg(C0)′

4dexp(−a′′3n
∆′

2L̂
) (24)

≤
∑

c∈rg(C0)′

4dexp(−a′′3n
∆′

2L̂
) (25)

≤4dm

t
exp(−a′′3n

∆′

2L̂
) (26)

G.7. Proof of Lemma G.5

First, we use an intermediate Lemma from (Yin et al., 2018). This characterizes the behavior of TrimmedMeanβ gradient
estimator.
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Lemma G.7 (TrimmedMean Estimator Variance). Let gc(w) be the output of TrMeanβ estimator for cluster c∈C0 with
size of cluster Sc. If Assumption 4.1,4.2 and 4.3 holds, then

∥gc(w)−∇Fc(w)∥≤Λ

where Pr[Λ≥
√
2d

r+3βs

1−2β
+
√
2
2(1+3β)

1−2β
δL̂]

≤2d(1+
D

δ
)d
(
exp(−(1−α)Scnmin{ r

2L̂
,
r2

2L̂2
})

+(1−α)Scexp(−nmin{ s

2L̂
,
s2

2L̂2
})
)

(27)

for some r,s,δ>0.

Proof. The proof of this Lemma follows from coordinate-wise sub-exponential distribution of∇Fc. Since loss per sample
f(w,z) is Lipschitz in each of its coordinates with Lipschitz constant Lk for k∈ [d]. Thus, Fc(w) is also Lk-Lipschitz for each
coordinate k∈ [d] from Corollary I.6. Now, every subgaussian variable with variance σ2 is σ-sub exponential. Thus, each
coordinate of∇wf(w,z) is L̂-sub-exponential, since L̂>Lk,∀k∈ [d]. The remainder of proof can be found in Appendix E.1
in (Yin et al., 2018).

Now, using the above Lemma, we can bound the iterate error for a cluster c∈C0. Consider ∥ωc,t+1−ω⋆
c∥

2,

∥ωc,t+1−ω⋆
c∥≤∥projW{ωc,t−η∇g(ωc,t)}−ω⋆

c∥
≤∥ωc,t−η∇g(ωc,t)−ω⋆

c∥
≤∥ωc,t−η∇F (ωc,t)−ω⋆

c∥+η∥g(ωc,t)−∇F (ωc,t)∥
≤∥ωc,t−η∇F (ωc,t)−ω⋆

c∥+ηΛ

Now, we bound ∥ωc,t−η∇F (ωc,t)−ω⋆
c∥

2 using µ-strong convexity and L-smoothness of Fc. The analysis is similar to the
convergence analysis in Appendix F.1. Thus, for η≤ 1

L

∥ωc,t−η∇F (ωc,t)−ω⋆
c∥

2≤(1−ηµ)∥ωc,t−ω⋆
c∥

2

Using this bound we can analyze the original term with ∥ωc,t+1−ω⋆
c∥.

∥ωc,t+1−ω⋆
c∥≤

√
1−ηµ∥ωc,t−ω⋆

c∥+ηΛ

∥ωc,T−ω⋆
c∥≤(1−ηµ)T/2∥ωc,0−ω⋆

c∥+ηΛ(

T−1∑
t=0

(1−ηµ)t/2)

≤(1−κ−1)T/2∥ωc,0−ω⋆
c∥+ηΛ(

∞∑
t=0

(1− ηµ

2
)t)

≤(1−κ−1)T/2D+
2

µ
Λ

For the second inequality, we use κ= L
µ and unroll the recursion for T steps. For the third inequality, we use

√
1−x≤1− x

2
and upper bound the finite geometric sum by its infinite counterpart. Finally we use the boundedness ofW and the sum of
the geometric series to get our result.

G.8. Proof of Lemma F.2

We present the proof for this lemma here as it is a corollary of Lemma G.5.

We utilize the intermediate Lemma G.7. Now, if we set α=β=0 and Sc=1, we obtain the generalization guarantee for
GD on a single node i∈ [m]. Further, we do not need the terms of s as they appear with β, and thus, we can choose s very
large, so that we can ignore its contribution to error probability. The remainder of the proof follows that of Lemma G.5.
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G.9. Proof of Lemma G.6

Since Fc is L̂-Lipshchitz and µ-strongly convex with minima ω⋆
c ,

Fc(w
⋆
i )−Fc(ω

⋆
c )=

Fi(w
⋆
i )−Fi(ω

⋆
c )

Qc
+

∑
j ̸=i,C0(j)=c

Fj(w
⋆
i )−Fj(ω

⋆
c )

Qc

≤Fi(w
⋆
i )−Fi(ω

⋆
c )

Qc
+

∑
j ̸=i,C0(j)=c

Fj(w
⋆
i )−Fj(w

⋆
j )

Qc

≤−µ∥w⋆
i −ω⋆

c∥
2

2Qc
+

∑
j ̸=i,C0(j)=c

L̂
∥∥w⋆

i −w⋆
j

∥∥
Qc

µ

2
∥w⋆

i −ω⋆
c∥

2≤−µ∥w⋆
i −ω⋆

c∥
2

2Qc
+
(Qc−1)L̂ϵ1

Qc

µ

2
∥w⋆

i −ω⋆
c∥

2≤−µ∥w⋆
i −ω⋆

c∥
2

2Qc
+
(Qc−1)L̂ϵ1

Qc

∥w⋆
i −ω⋆

c∥
2≤2L̂ϵ1

µ

∥w⋆
i −ω⋆

c∥≤

√
2L̂ϵ1
µ

For the first equation, we expand Fc into its component terms, where Qc denotes the number of correct nodes in cluster c.
For the second inequality, we use the fact that w⋆

j =argminw∈WFj(w). For the third inequality, we use strong-convexity
of Fi and L̂-Lipschitzness for Fj ,j ̸= i. For the fourth inequality, we use a lower bound on Fc(w

⋆
i )−Fc(ω

⋆
c ) using µ-strong

convexity of Fc. Finally, we manipulate the remaining terms to obtain the final bound.

H. Proof of Theorem 4.6
By Theorem B.3, CR ̸=C⋆, with probability

(
ρ2

m(1−ρ1) p
)R

. For the (R+1)th step, we bound probability of error by 1. There-
fore, with probability 1−exp(− 5

8R)p. For the (R+1)th step, we optimize the cluster iterates from TrimmedMeanGD() to
improve convergence instead of clustering error. Since CR+1=CR, each cluster in CR+1 maps to some cluster in C⋆. Without
loss of generality, assume that cluster c∈ rg(CR+1) maps to the same cluster c∈ C. Now, if {c1,c2,...,cl} are the clusters
in CR which merged to form cluster c∈rg(CR+1). Then, we can write

∥ωc,T−ω⋆
c∥=

∥∥∥∥∥∥1l
l∑

j=1

(ωcj ,T−ω⋆
c )

∥∥∥∥∥∥
≤1

l

l∑
j=1

∥∥ωcj ,T−ω⋆
c

∥∥
≤1

l

l∑
j=1

(
∥∥∥ωcj ,T−ω⋆

cj

∥∥∥+∥∥∥ω⋆
cj−ω

⋆
c

∥∥∥)
For the first inequality, we used the definition of ωc,T from MERGE(). For the second inequality, we used the triangle
inequality for the l elements. The third inequality is obtained by using triangle inequality and adding and subtracting ω⋆

cj as
defined in Appendix G.1.

Now, consider the set of nodes {i1,i2,...,il}⊆ [m], such that ij ∈ cj∀j ∈ [l] and C⋆(ij)= c∀j ∈ [l]. Therefore, we can split
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each term of
∥∥∥ω⋆

cj−ω
⋆
c

∥∥∥ as –

∥ωc,T−ω⋆
c∥≤

1

l

l∑
j=1

(
∥∥∥ωcj ,T−ω⋆

cj

∥∥∥+∥∥∥ω⋆
cj−wij

∥∥∥+∥∥wij−ω⋆
c

∥∥)
≤1

l

l∑
j=1

∥∥∥ωcj ,T−ω⋆
cj

∥∥∥+2B

From Lemma G.6, since ij contributes to both clusters cj and c⋆, we can bound the difference from their minima by B.
Further, we can use Lemma G.5 and the Lemma G.7, which is adapted from Theorem 4 in (Yin et al., 2018),to bound the
convergence of

∥∥∥ωcj ,T−ω⋆
cj

∥∥∥. If we set δ= 1
nScj

L̂D
and

r= L̂max{ 8d

nScj

log(1+nScL̂D),

√
8d

nScj

log(1+nScL̂D)}

s= L̂max{4d
n
(dlog(1+nScj L̂D)+logm),

√
4d

n
(dlog(1+nScj L̂D)+logm)}

where Scj is the size of cluster cj , we obtain

∥ωc,T−ω⋆
c∥≤(1−κ−1)T/2D+Λ′+2B

where

Λ′=O
(

L̂d

1−2β

(
β√
n
+

1
√
ncmin

)√
log(nmax

j∈[l]
Scj L̂D)

)
We can further upper bound maxj∈[l]Scj

by m. Now, the probability of error for each cluster c∈ rg(CR) for given values

of r and s is 4d
(1+ncminL̂D)d

, therefore, we can use union bound and multiply this probability of error by rg(CR)≤ m
t . Since

t=Θ(cmin), we can upper bound this by mu′′

cmin
for some positive constant cmin.

I. Additional Definitions and Lemmas
We start with reviewing the standard definitions of strongly convex and smooth functions f :Rd 7→R.

Definition I.1. f is µ-strongly convex if ∀w,w′, f(w′)≥f(w)+⟨∇f(w),w′−w⟩+ µ
2 ∥w

′−w∥2.

Definition I.2. f is L-smooth if ∀w,w′, ∥∇f(w)−∇f(w′)∥≤L∥w−w′∥.
Definition I.3. f is Lk Lipschitz for every coordinate k∈ [d] if, |∂kf(w)|≤Lk, where ∂kf(w) denotes the k-th coordinate
of∇f(w).
Lemma I.4. If f,g :Rd→R are two µ-strongly convex functions on a domainW . Then, f+g

2 is also µ-strongly convex on
the same domain.

Proof. If f and g are µ-strongly convex on a domainW , then for any w1,w0∈W

f(w1)≥f(w0)+⟨∇f(w0),w1−w0⟩+
µ

2
∥w1−w0∥2

g(w1)≥g(w0)+⟨∇g(w0),w1−w0⟩+
µ

2
∥w1−w0∥2

Adding the above equations, we get

f(w1)+g(w1)

2
≥ f(w0)+g(w0)

2
+

〈
∇f(w0)+∇g(w0)

2
,w1−w0

〉
+
µ

2
∥w1−w0∥2

Thus, f+g
2 is also µ-strongly convex.
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Lemma I.5. If f,g :Rd→R are two L-smooth functions on a domainW . Then, f+g
2 is also L-smooth on the same domain.

Corollary I.6. If f,g :Rd→R are two L-Lipschitz functions on a domainW . Then, f+g
2 is also L-Lipschitz on the same

domain.

Proof. Consider the following term for any w1,w0∈W∥∥∥∥∇f(w1)+∇g(w1)

2
−∇f(w0)+∇g(w0)

2

∥∥∥∥
≤ 1

2
∥(∇f(w1)−∇f(w0))+(∇g(w1)−∇g(w0))∥

≤ 1

2
(∥∇f(w1)−∇f(w0)∥+∥∇g(w1)−∇g(w0)∥)

≤ 1

2
(L∥w1−w0∥+L∥w1−w0∥)

≤L∥w1−w0∥

In the second inequality, we use the triangle inequality of norms. For the third inequality, we use the L-smoothness of f
and g. Thus, f+g

2 is also L-smooth The proof of the corollary is same as above, by replacing terms of∇f and∇g by f and
g respectively.

Lemma I.7. If each coordinate of a function f : Rd → R is Lk-Lipschitz for k ∈ [d] on the domain W , then f is

L̂=
√∑d

k=1L
2
k-Lipschitz on the same domainW .

Proof. Consider w1,w0∈W .Define a sequence of variables

{w[k]=((w1)1,(w1)2...,(w1)k,(w0)k+1,...(w0)d)
⊺}dk=0. Then, w1=w[d] and w0=w[0]

|f(w1)−f(w0)|=

∣∣∣∣∣
d∑

k=1

(f(w[k])−f(w[k−1]))

∣∣∣∣∣
=

d∑
k=1

Lk|(w1)k−(w0)k|

The second inequality follows by using triangle rule. Then, f(w[k]) and f(w[k−1]) differ only in the kth coordinate, so
we apply Lk coordinate-wise Lipschitzness. Now, consider a random variable v ∈ Rd such that vk = Lk

|(w1)k−(w0)k|
(w1)k−(w0)k

if
(w1)k−(w0)k ̸=0, else 0. Then,

d∑
k=1

Lk|(w1)k−(w0)k|=⟨v,w1−w0⟩

≤∥v∥∥w1−w0∥

≤

√√√√ d∑
k=1

L2
k∥w1−w0∥

Here, we use the Cauchy-Schwartz inequality for the second step. Then, note that each coordinate of v is bounded by Lk.
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