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Abstract

To accurately capture the variability in human001
judgments for subjective NLP tasks, incorpo-002
rating a wide range of perspectives in the anno-003
tation process is crucial. Active Learning (AL)004
addresses the high costs of collecting human an-005
notations by strategically annotating the most006
informative samples. We introduce Annotator-007
Centric Active Learning (ACAL), which incor-008
porates an annotator selection strategy follow-009
ing data sampling. Our objective is two-fold:010
(1) to efficiently approximate the full diversity011
of human judgments, and (2) to assess model012
performance using annotator-centric metrics,013
which emphasize minority perspectives over014
a majority. We experiment with multiple an-015
notator selection strategies across seven sub-016
jective NLP tasks, employing both traditional017
and novel, human-centered evaluation metrics.018
Our findings indicate that ACAL improves data019
efficiency and excels in annotator-centric per-020
formance evaluations. However, its success de-021
pends on the availability of a sufficiently large022
and diverse pool of annotators to sample from.023

1 Introduction024

A challenging aspect of natural language under-025

standing (NLU) is the variability of human judg-026

ment and interpretation in subjective tasks (e.g.,027

hate speech detection) (Plank, 2022). While hu-028

mans can navigate subjectivity naturally, most ma-029

chine learning methods are insensitive to individual030

differences (Sandri et al., 2023) and underrepre-031

sented perspectives (van der Meer et al., 2024).032

Modern NLU approaches are commonly trained033

and tested on annotated datasets. In a subjective034

task, each data sample is typically labeled by a035

set of annotators, and differences in annotation are036

reconciled through aggregation techniques (e.g.,037

majority voting), resulting in a single “gold label”038

(Uma et al., 2021). This approach, though effective039

for training ML algorithms, neglects the labels of040

minorities, which becomes problematic, especially,041
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Figure 1: Active Learning (AL) approaches (left) use
a sample selection strategy to pick samples to be an-
notated by an oracle. The Annotator-Centric Active
Learning (ACAL) approach (right) extends AL by in-
troducing an annotator selection strategy to choose the
annotators who annotate the selected samples.

in the case of sensitive subjective tasks. 042

Subjectivity has been addressed by modeling the 043

full distribution of annotations for each data sam- 044

ple as opposed to aggregating them (Plank, 2022). 045

However, resources for such approaches are scarce, 046

as most datasets do not (yet) make fine-grained an- 047

notation details available (Cabitza et al., 2023), and 048

representing a full range of perspectives is contin- 049

gent on obtaining annotations from a diverse crowd 050

(Bakker et al., 2022). 051

One way of accounting for a limited annotation 052

budget is to use Active Learning (Settles, 2012, 053

AL). Given a pool of unannotated data samples, 054

AL employs a sample selection strategy to select 055

maximally informative samples for training, retriev- 056

ing the corresponding annotations from a ground 057

truth oracle (e.g., a single human expert). How- 058

ever, in subjective tasks there is no such oracle, 059

instead we rely on a set of available annotators. 060

Given this practical constraint, we argue that infor- 061

mativeness for AL manifests in both samples and 062

annotations, as the model should also be guided 063

to reflect the distribution of annotations. Demand- 064

ing all available annotators to annotate all selected 065

samples would provide a truthful representation of 066

the annotation distribution, but is often unfeasible, 067

especially if the pool of annotators is large. Thus, 068
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deciding which annotator(s) should annotate the069

selected samples is as critical as selecting which070

samples to annotate.071

We introduce Annotator-Centric Active Learn-072

ing (ACAL) to account for annotation diversity in073

subjective tasks. In ACAL, the sample selection074

strategy of traditional AL is followed by an annota-075

tor selection strategy as Figure 1 shows. For each076

data sample selected through the sample selection077

strategy, the annotator selection strategy selects an078

annotator from the available annotators. We make079

the following contributions: (1) We create ACAL,080

extending the AL approach to optimize for diver-081

sity among annotators when learning soft labels in082

subjective tasks. (2) We introduce a suite of an-083

notator-centric evaluation metrics to measure both084

representativeness and diversity. (3) We demon-085

strate our approach’s effectiveness on three diverse086

datasets with subjective tasks—hate speech detec-087

tion, moral value classification, and safety judg-088

ments.089

Our experiments show that ACAL works to bet-090

ter approximate the distribution of human judg-091

ments with a lower annotation budget. However,092

this effectiveness requires a large pool of diverse093

annotators, as is the case for one of our datasets.094

In other cases, the differences between ACAL095

and traditional AL become smaller. Through our096

annotator-centric evaluation, we show that task097

agreement and the number of available annotations098

both influence the effectiveness of ACAL, hinting099

at a direct trade-off between learning from a major-100

ity versus being sensitive to minority annotations.101

2 Related work102

We review related works on annotator disagree-103

ment and active learning. Our work is novel in104

combining these fields to (1) represent annotation105

distributions through soft labels, (2) incorporate106

annotator selection strategies in the active learn-107

ing loop, and (3) evaluate with annotator-centric108

metrics next to traditional evaluation.109

2.1 Learning with annotator disagreement110

Modeling annotator disagreement is garnering in-111

creasing attention (Aroyo and Welty, 2015; Uma112

et al., 2021; Plank, 2022; Cabitza et al., 2023). For113

instance, some aggregation methods can lead to a114

fairer representation than simple majority (Hovy115

et al., 2013; Tao et al., 2018). Alternatively, the116

full annotation distribution can be modeled using117

soft labels (e.g., Peterson et al., 2019; Müller et al., 118

2019; Fornaciari et al., 2021; Collins et al., 2022). 119

Other approaches leverage annotator-specific in- 120

formation, e.g., by including individual classifica- 121

tion heads per annotator (Davani et al., 2022), em- 122

bedding annotator-specific behavior (Mokhberian 123

et al., 2023), or encoding the annotator’s socio- 124

demographic information (Beck et al., 2023). 125

Yet, representing annotator diversity remains 126

challenging. Standard calibration metrics under 127

human label variation may be unsuitable, espe- 128

cially when the variation is high (Baan et al., 129

2022). Trade-offs ought to be made between col- 130

lecting more samples or more annotations (Gruber 131

et al., 2024). Further, solely measuring differences 132

among sociodemographic traits is not sufficient to 133

fully capture opinion diversity (Orlikowski et al., 134

2023). To this end, we represent diversity based 135

on which annotators have annotated, what they an- 136

notated, and how they have annotated. We experi- 137

ment with different annotator selection strategies to 138

reveal what aspects impact task performance and 139

annotation budget. 140

2.2 Active Learning 141

AL enables a supervised learning model to achieve 142

high performance with a few training examples 143

if chosen judiciously (Settles, 2012). In a typical 144

AL scenario, a vast collection of unlabeled data 145

is available, and an oracle (e.g., a human expert) 146

can be asked to annotate this unlabeled data. A 147

sampling strategy is employed to iteratively (and 148

smartly) select the next batch of unlabeled data for 149

annotation by the oracle (Ren et al., 2021). 150

AL has found widespread application in the field 151

of NLP (Zhang et al., 2022). Two main strategies 152

are employed, either by selecting the unlabeled 153

samples on which the model prediction is most 154

uncertain (Zhang et al., 2017), or by selecting sam- 155

ples that are most representative of the unlabeled 156

dataset (Erdmann et al., 2019; Zhao et al., 2020). 157

The combination of AL and annotator diversity 158

is a novel direction that has not garnered much at- 159

tention yet. Existing work proposes to align model 160

uncertainty with annotator uncertainty (Baumler 161

et al., 2023), whereas others adapt annotator- 162

specific classification heads in AL settings (Wang 163

and Plank, 2023), or select texts to annotate based 164

on annotator preferences (Kanclerz et al., 2023). 165

Existing methods ignore a crucial part of learn- 166

ing with human variation: the diversity among an- 167
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notators. We focus on which annotators should168

annotate, such that it best informs us about the169

underlying label diversity.170

3 Method171

First, we define the soft-label prediction task we172

use to train a supervised model. Then, we introduce173

the traditional AL and the novel ACAL approaches.174

3.1 Soft-Label prediction175

Consider a dataset composed of triples (xi, aj , yij),176

where xi is a data sample (i.e., a piece of text) and177

yij ∈ C is the class label assigned by annotator178

aj . The multiple labels assigned to a sample xi179

by the different annotators are usually combined180

into an aggregated label ŷi. For training with soft181

labels, the aggregation typically takes the form of182

maximum likelihood estimation (Uma et al., 2021):183

ŷi(x) =

∑N
i=1[xi = x][yij = c]∑N

i=1[xi = x]
(1)184

In our experiments, We use a passive learning185

approach that uses all available {xi, ŷi} to train a186

model fθ with cross-entropy loss as a baseline.187

3.2 Active Learning188

AL imposes a sampling technique for inputs xi,189

such that the most informative sample(s) are picked190

for learning. In a typical AL approach, a set of191

unlabelled data points U is available. At every iter-192

ation, a sample selection strategy S selects samples193

xi ∈ U to be annotated by an oracle O that pro-194

vides the ground truth label distribution ŷi. The195

selected samples and annotations are added to the196

labeled data D, with which the model fθ is trained.197

Alg. 1 provides an overview of the procedure. In198

our sample selection strategies, a batch of data of199

a given size B is queried at each iteration. In our200

experiments, we compare the following strategies:201

Algorithm 1: AL approach.
input :Unlabeled data U , Data sampling

strategy S, Oracle O
D0 ← {}
for n = 1..N do

sample data points xi from U using S
obtain annotation ŷi for xi from O
Dn+1 = Dn + {xi, ŷi}

train fθ on Dn+1

end

Random (SR) selects a B samples uniformly at 202

random from U . 203

Uncertainty (SU ) predicts a distribution over 204

class labels with fθ(xi) for each xi ∈ U . Select the 205

B samples with the highest prediction entropy (i.e., 206

the samples on which the model is most uncertain). 207

3.3 Annotator-Centric Active Learning 208

The ACAL approach builds on the AL approach. 209

In contrast to AL, which retrieves an aggregated 210

annotation ŷi, ACAL employs an annotator selec- 211

tion strategy T to select one annotator and their 212

annotation for each selected data point xi. Alg. 2 213

describes the ACAL approach. 214

Algorithm 2: ACAL approach.
input :Unlabeled data U , Data sampling

strategy S, Annotator sampling
strategy T

D0 ← {}
for n = 1..N do

sample data points xi from U using S
sample annotators aj for xi using T
obtain annotation yij from aj for xi
Dn+1 = Dn + {xi, yij}
train fθ on Dn+1

end

We propose annotator selection strategies that 215

include annotations from diverse annotators. The 216

strategies vary in the type of information used to 217

represent differences between annotators, and in- 218

clude what or how the annotators have annotated 219

thus far. We test the following strategies: 220

Random (TR) selects one random annotator aj . 221

Label Minority (TL) considers only the labels 222

that annotators have assigned. Given a new sample 223

xi, TL selects the available annotator that has the 224

largest bias toward the minority label compared 225

to the other available annotators, i.e., who has an- 226

notated other samples with the minority label the 227

most. The minority label is selected as the class 228

with the smallest annotation count in the available 229

dataset Dn thus far. 230

Semantic Diversity (TS) considers only informa- 231

tion on what each annotator has annotated so far 232

(i.e., the samples that they have annotated). Given 233

a new sample xi selected through S , TS selects the 234

available annotator for whom xi is semantically the 235

most different from what the annotator has labeled 236

so far. To measure this difference for an annotator 237
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Dataset Task (dimension) Num.
Samples

Num.
Annotators

Num.
Annotations

Avg. Annotations
per item

DICES Safety Judgment 990 172 72,103 72.83
MFTC Morality (care) 8434 23 31310 3.71
MFTC Morality (loyalty) 3288 23 12803 3.89
MFTC Morality (betrayal) 12546 23 47002 3.75

MHS
Hate Speech (dehumanize,
genocide, respect)

17282 7807 57980 3.35

Table 1: Overview of the datasets and tasks employed in our work.

aj , we employ a sentence embedding model to mea-238

sure the cosine distance between the embeddings239

of xi and embeddings of all the samples annotated240

by aj . We then take the average of all semantic241

similarities. The annotator with the lowest average242

similarity score is selected.243

Representation Diversity (TD) selects the anno-244

tator that has the lowest similarity with the other245

annotators available for that item. We create a sim-246

ple representation for each annotator based on the247

items together with the respective label that they248

have annotated, followed by computing the pair-249

wise cosine similarity between all annotators.250

4 Experimental Setup251

We describe the experimental setup for the compar-252

isons between ACAL strategies. In all our experi-253

ments, we employ a TinyBERT model (Jiao et al.,254

2019) to reduce the number of trainable parameters.255

Appendix A includes a detailed overview of the256

computational setup and hyperparameters. We will257

provide our codebase upon publication.258

4.1 Datasets259

Table 1 introduces the three datasets that we use,260

with variation in domain, annotation task (in ital-261

ics), annotator count, and annotations per instance.262

The DICES Corpus (Aroyo et al., 2023) is com-263

posed of 990 conversations with an LLM where264

172 annotators provided judgments on whether a265

generated response can be deemed safe (3-way266

judgments: yes, no, unsure). We perform a multi-267

class classification with the scores.268

The MFTC Corpus (Hoover et al., 2020) is269

composed of 35K tweets that 23 annotators anno-270

tated with any of the 10 moral elements from the271

Moral Foundation Theory (Graham et al., 2013).272

We select the elements of loyalty (lowest annotation273

count), care (medium count), and betrayal (high-274

est count) and perform three binary classifications 275

to predict the presence of the respective elements. 276

As most tweets were labeled non-moral (i.e., with 277

no moral element), we balanced the datasets by 278

subsampling the non-moral class. 279

The MHS Corpus (Sachdeva et al., 2022) 280

consists of 50K social media comments on 281

which 8K annotators judged three hate speech 282

aspects—dehumanize (low inter-rater agreement), 283

respect (medium agreement), and genocide (high 284

agreement)—on a 5-point Likert scale. We per- 285

form a multi-class classification with the annotated 286

Likert scores for each task. 287

The datasets and tasks differ in the entropy 288

scores over annotations (Appendix A.5). DICES 289

and MHS generally have medium normalized en- 290

tropy scores (most lie between 0.15 < H < 0.85), 291

whereas the MFTC entropy scores are highly polar- 292

ized. 293

4.2 Training procedure 294

We test the annotator selection strategies proposed 295

in Section 3.3 by comparing all possible combina- 296

tions of the two different sample selection strategies 297

(SR and SU ) with the annotator selection strategies 298

(TR, TL, TS , and TD). At each round, we use S to 299

select B unique samples from the unlabeled data 300

pool U . We empirically select B to be the smallest 301

between 5% of the number of available annotations 302

and the number of unique samples in the training 303

set. For each selected sample xi, we use T to select 304

one annotator and retrieve their annotation yij . 305

To populate the annotation history for the an- 306

notation selection strategies, we perform a single 307

warmup round with B randomly selected annota- 308

tions before starting the ACAL iterations (Zhang 309

et al., 2022). We report our training progress results 310

on a validation set with 3-fold cross-validation, 311

showing the average to account for stability across 312

4



random data splits (into 80% train, 10% validation,313

and 10% test) and initialization. Then, we select314

the model iteration that led to the best performance315

(according to JS) on the validation set and evaluate316

it using a separate test set.317

We compare our work with traditional Oracle-318

based AL approaches (SRO and SUO), which use319

the data sampling strategies but obtain all possi-320

ble annotations for each sample (following Alg. 1).321

Moreover, we employ a passive learning (PL) ap-322

proach as an upper bound by training the model on323

the full dataset, thus observing all available sam-324

ples and annotations. Our baselines follow the325

analogous cross-validation setup.326

4.3 Evaluation metrics327

The ACAL strategies aim to guide the algorithm to328

model a representative distribution of the annota-329

tor’s perspectives while reducing human annotation330

effort. To this end, we evaluate the model both with331

a traditional evaluation metric and a metric aimed332

at comparing predicted and annotated distributions:333

Macro F1-score (F1) For each sample in the test334

set, we select the label predicted by the model with335

the highest confidence, determine the golden la-336

bel through a majority agreement aggregation, and337

compute the resulting macro F1-score.338

Jensen-Shannon Divergence (JS) The JS mea-339

sures the divergence between the distribution of340

label annotation and prediction (Nie et al., 2020).341

We report the average JS for the samples in the test342

set to measure how well the algorithm can model343

the annotation distribution.344

Next, since our proposed annotator selection strate-345

gies aim to promote diversity, we introduce novel346

annotator-centric evaluation metrics. First, we re-347

port the average among annotators. Second, in line348

with Rawls’ principle of maximum fairness (Rawls,349

1973), the result for the worst-off annotators:350

Per-annotator F1 (F a
1 ) We compute the F1 for351

each annotator in the test set using their annota-352

tions as golden labels, and average it.353

Per-annotator JS (JSa) We compute the JS for354

each annotator in the test set using their annotations355

as target distribution, and average it.356

Worst per-annotator F1 (Fw
1 ) We compute the357

F1 for each annotator in the test set using their358

annotations as golden labels, and report the aver-359

age of the lowest 10% (to mitigate noise).360

Worst per-annotator JS (JSw) We compute the361

JS for each annotator in the test set using their362

annotations as target distribution, and report the 363

average of the lowest 10% (to mitigate noise). 364

These evaluation metrics allow us to measure the 365

trade-offs between modeling the majority agree- 366

ment, a representative distribution of annotations, 367

and accounting for minority voices. We report 368

these metrics on the validation set (as progress 369

over the AL iterations) and test set (by using the 370

best-performing model on the validation set), as 371

described in Section 4.2. 372

5 Results 373

5.1 Test sets results 374

See Figure 2 for the performance of the DICES, 375

MFTC, and MHS, respectively. For MFTC, we 376

initially focus on care, since it is the task with 377

neither the most nor least amount of data. For 378

MHS, we start with dehumanize, since it saw the 379

most medium-level disagreement. The rest of the 380

results can be observed in Appendix B. 381

Combining our results across datasets, we see 382

that data characteristics influence whether ACAL 383

can learn performant models efficiently. In particu- 384

lar, we see that for DICES and MHS, ACAL may 385

learn models that perform well using less data (38% 386

and 62% reduction at best, respectively). Con- 387

versely, for MFTC, there is little impact of using 388

ACAL over PL (5.6% less data used). A similar pat- 389

tern holds when comparing ACAL to AL, though 390

AL seems to be a strong baseline for MHS, where 391

random sample selection leads to more efficient 392

data usage (60%). AL with uncertainty sampling is 393

more efficient for MFTC (13%). 394

When we compare the performance metrics, we 395

see that the distributions obtained through ACAL 396

are consistently closer to the ground truth distribu- 397

tion in DICES, as measured by JS than PL and AL. 398

However, this pattern is not visible for MFTC and 399

MHS. In terms of majority-voted F1, ACAL again 400

leads to better scores in both DICES and MHS. 401

Since DICES and MHS are datasets with moderate 402

disagreement, we may benefit from using ACAL 403

in such scenarios. Further, if the dataset contains 404

a large number of annotators per sample, annota- 405

tor selection strategies are shown to pick a more 406

informative set of annotators to learn from. 407

We highlight some further dataset-specific find- 408

ings that shed light on the differences between the 409

annotator selection strategies in ACAL. First, in 410

DICES, we see that for three out of four annota- 411

tor sampling strategies (TR, TD, TL), the choice of 412
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Figure 2: Test set evaluation of the ACAL, AL, and passive approaches across the three dataset/task combinations.
For JS, strategies further to the bottom left are more data efficient (x-axis) and perform better (y-axis). For F1, the
top left contains well-performing, data-efficient approaches.

data sampling strategy has no impact on the per-413

formance of the model due to the low number of414

samples to choose from. Furthermore, only TD per-415

forms worse in terms of JS, overrepresenting out-416

lier annotators. This hints that selecting annotators417

based on the average embedding of the annotated418

content strongly emphasizes diverging label behav-419

ior. Second, MFTC was annotated by a limited420

fixed set of annotators for whom we can construct421

a rich annotation history. However, since there are422

few annotators per sample to pick from, ACAL423

cannot leverage this information effectively. Again,424

we see that strategies perform relatively similarly425

to one another, except for the F1 scores. Third, in426

MHS we observe that all strategies using random427

sample selection require less data. Since the task428

has low inter-rater agreement scores, uncertainty-429

based sampling wrongly attempts to sample anno-430

tations for correct high-entropy predictions, while431

this is an accurate distribution.432

Our findings highlight that with many labels per433

sample, ACAL is more data-efficient than tradi-434

tional AL and passive learning in terms of overall435

evaluation. However, when data characteristics dif-436

fer and few annotations are available per sample,437

ACAL has less of an impact. Polarized agreement438

scores (either high agreement or no agreement)439

make the use of ACAL and AL cause little to no440

improvements over passive learning. This corrob-441

orates that (AC)AL leads to improvements in spe-442

cific cases (Dor et al., 2020). Furthermore, we 443

found conflicting results depending on the metric 444

used (JS and F1). We closely examine the relation- 445

ship between the evaluation metrics by turning to 446

annotator-centric evaluation, observing how ACAL 447

impacted predictions for individual annotators. 448

5.2 Annotator-centric evaluation 449

We show the annotator-centric evaluation metrics 450

in Tables 2, 3, and 4 for DICES, MFTC (care) and 451

MHS (dehumanize), respectively. We again de- 452

scribe per-dataset results. Again, for DICES and 453

MHS, we observe a positive effect of using ACAL 454

over PL, both in terms of data efficiency and fi- 455

nal annotator-centric behavior. For these datasets, 456

ACAL leads to a better representation of annotators 457

on average (JSa,F a
1 ), as well as a better represen- 458

tation of the 10% most different annotators (JSw, 459

Fw
1 ). Compared ACAL to AL, we mainly observe 460

improvements in the DICES dataset, showing less 461

data used and a better annotator-centric F1 score. 462

We observe a strong JSw for the TD strategy and 463

worse JSa, corroborating our earlier finding that 464

emphasizing diverging label behavior trades off 465

with the averaged evaluation scores. Interestingly, 466

this is not apparent in the F1 scores. For MHS, 467

all approaches using random data sampling (SR) 468

require considerably less data than passive learn- 469

ing. Further, since the pool of annotators for MHS 470

is large (7K+), there will always be some annota- 471
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Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.432 0.186 0.167 0.453 -36.8
SRTL 0.424 0.187 0.155 0.450 -32.7
SRTS 0.442 0.186 0.164 0.447 -35.5
SRTD 0.431 0.203 0.169 0.370 -30.0
SUTR 0.432 0.186 0.167 0.453 -36.8
SUTL 0.424 0.187 0.155 0.450 -32.7
SUTS 0.439 0.187 0.184 0.447 -38.2
SUTD 0.431 0.203 0.169 0.370 -30.0

SRO 0.414 0.191 0.133 0.425 -0.1
SUO 0.384 0.192 0.117 0.427 -0.1
Passive 0.371 0.211 0.123 0.479 –

Table 2: DICES annotator-centric evaluation scores.
∆% denotes the relative change in the annotation budget
with respect to passive learning.

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.611 0.141 0.377 0.247 -1.6
SRTL 0.616 0.142 0.392 0.249 -0.4
SRTS 0.600 0.145 0.351 0.248 -1.7
SRTD 0.604 0.144 0.357 0.243 -1.7
SUTR 0.612 0.143 0.377 0.252 -5.6
SUTL 0.589 0.142 0.423 0.248 -2.5
SUTS 0.608 0.143 0.399 0.258 -1.1
SUTD 0.586 0.145 0.357 0.253 -2.5

SRO 0.586 0.141 0.392 0.255 -0.2
SUO 0.583 0.144 0.357 0.253 -12.7
Passive 0.512 0.179 0.377 0.251 –

Table 3: MFTC (care) annotator-centric evaluation
scores. ∆% denotes the relative change in the anno-
tation budget with respect to passive learning.

tors in disagreement with the output of our models,472

leading to a zero score on Fw
1 .473

5.3 Training plots474

While the evaluation shows a pattern of efficient475

data use with ACAL under certain data conditions,476

it reveals little about how the metrics behave during477

training or how individual annotator strategies be-478

have. To this end, we provide a complete overview479

of all metrics (as computed on the validation set)480

during training in App. B.3. Here we describe the481

major patterns reoccurring across our experiments482

using examples and show six of particular interest483

(Figure 3). Since the strategies only differ in what484

annotations are included during training, we only485

show plots related to the annotator-centric metrics.486

We can see that there is an influence of both487

the data sampling and annotator strategies on the488

performance of the models. Only on DICES is489

the choice of S irrelevant, probably due to the low490

number of samples. Specifically TD deteriorates491

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.315 0.394 0.000 0.489 -50.0
SRTL 0.322 0.397 0.000 0.478 -62.5
SRTS 0.313 0.397 0.000 0.480 -62.5
SRTD 0.318 0.398 0.000 0.479 -62.5
SUTR 0.322 0.389 0.000 0.508 -7.8
SUTL 0.328 0.388 0.000 0.507 -7.8
SUTS 0.326 0.388 0.000 0.506 -7.8
SUTD 0.326 0.384 0.000 0.513 -3.0

SRO 0.339 0.387 0.000 0.496 -60.1
SUO 0.331 0.390 0.000 0.497 -24.7
Passive 0.202 0.424 0.000 0.547 –

Table 4: MHS (dehumanize) annotator-centric evalu-
ation scores. ∆% denotes the relative change in the
annotation budget with respect to passive learning.

slower for the worst-off annotators than the other 492

strategies but does so without being able to uphold 493

a competitive F a
1 score. In MFTC, we see that 494

when using SU , performance on F a
1 dips at the 495

start of training. Selecting annotators for samples 496

with high predicted entropy initially leads to a de- 497

crease in average performance. The strategy seeks 498

to first lower the entropy for the labels already en- 499

countered, though some of the variation in labels is 500

irreconcilable. A similar reasoning holds for MHS, 501

where the differences between strategies are even 502

less impacted by the choice of T . These two plots 503

further underline our main finding that for ACAL 504

to be impactful in representing diverse annotation 505

perspectives, we need to ensure a (1) heterogeneous 506

pool of annotators, and (2) a task that facilitates 507

human label variation. 508

5.4 Change in task 509

In Fig. 4, we present a comparative analysis of two 510

annotator-centric metrics across the three distinct 511

tasks of MFTC and MHS,for which we have seen 512

the least impact of ACAL over AL and PL. We 513

cannot conclude that the chosen ACAL approach 514

(SRTS) offers a consistent improvement over sam- 515

pling all annotations (SRO), particularly given that 516

the models using ACAL occasionally require more 517

data to converge (Tables 8 to 11). 518

Initially, we hypothesized that tasks with a high 519

degree of subjectivity would benefit from ACAL 520

strategies, especially on metrics focused on the 521

most marginalized (worst-off) annotators. These 522

strategies typically involve selecting an annotator 523

whose patterns of annotation diverge from the ma- 524

jority, either in terms of their annotation behavior 525

or in the semantic content of their past annotations. 526
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Figure 3: Selected validation set performance plots.
We show progress for DICES, MFTC (care), and MHS
(dehumanize) for F a

1 and JSw.

However, as depicted in Figure 4, when ex-527

amining the task of dehumanize (high entropy), it528

becomes apparent that ACAL does not consistently529

outperform AL. ACAL demonstrates a lower F a
1 -530

score than AL for this task, and on the other hand,531

a higher F a
1 -score for a task that is less subjective,532

such as genocide. Similarly, when evaluating loy-533

alty, which involves the moral dimension with the534

highest disagreement among annotators, the lower535

10% of annotators are more accurately approxi-536

mated with PL. This suggests that the effectiveness537

of annotation strategies varies depending on the538

task’s degree of subjectivity and available pool of539

annotators. The more heterogeneous the annotation540

behavior, indicative of a highly subjective task, the541

larger the pool of annotators required for each item542

selection. However, due to the limited annotations543

available per item in both datasets MFTC and MHS,544

even carefully selecting specific annotators may not545

adequately represent divergent annotation behavior546

in general, which challenges the generalization to547

unseen data. Finally, we can observe that there is548

a trade-off between modeling the majority of an-549

notators equally, as reflected in the F a
1 -score and550

prioritizing the minority viewpoint (JSw). A bet-551

ter performance in one aspect does not necessarily552

guarantee superiority in the other.553

6 Conclusion554

We introduce Annotator-Centric Active Learning555

(ACAL), an active learning approach that incorpo-556

SRTS SRO PL
0

0.2

0.4

0.6

F
a 1
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Figure 4: Relative performance across MFTC and MHS
tasks, comparing one ACAL and AL approach to PL.

rates annotator selection strategies aimed at captur- 557

ing label variation among annotators. We experi- 558

ment with tasks across three different datasets, each 559

leading to different ACAL behaviors. One of these 560

datasets, DICES, is the most realistic application of 561

ACAL since the pool of possible annotators is the 562

largest. Here, ACAL leads to more diverse label 563

distributions using fewer annotations. However, we 564

find that the effectiveness of the ACAL paradigm 565

is contingent on data characteristics. These char- 566

acteristics include the number of annotations per 567

sample, the number of annotations per annotator, 568

and the nature of disagreement in the task annota- 569

tions. Our analysis shows that we can use these 570

conditions to help explain the often disappointing 571

results for AL in NLP applications. 572

Including annotator-centric evaluation reveals 573

how methods with similar averaged performance 574

deal with different levels of disagreement among 575

annotators. We show that evaluation can be en- 576

hanced by focusing on individual annotators, as 577

there is a large gap between conventional, averaged, 578

and worst-off performance. Furthermore, many as- 579

pects of our ACAL approach can be experimented 580

with, e.g. by swapping the order in which sam- 581

ples are selected (in our case first) and annotators 582

(second), or investigating the impact of including 583

annotator-specific demographic information, as it 584

is inconsistently predictive of annotation behavior 585

(Orlikowski et al., 2023; Beck et al., 2024). 586
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Limitations587

The main limitation of this work is that the ex-588

periments are based on simulated active learning589

which is known to bear potential issues (Margatina590

and Aletras, 2023). In our study, a primary chal-591

lenge arises with two of the datasets (MFTC, MHS),592

which, despite having a large pool of annotators,593

lack annotations from every annotator for each item.594

Consequently, in real-world scenarios, the annota-595

tor selection strategies for these datasets would596

benefit from access to a more extensive pool of597

annotators. This limitation likely contributes to the598

underperformance of ACAL on these datasets com-599

pared to DICES. We emphasize the need for more600

datasets that feature a greater number of annota-601

tions per item, as this would significantly enhance602

research efforts aimed at modeling human disagree-603

ment.604

Since we evaluate four different annotator selec-605

tion strategies and two sample selection strategies606

across three datasets and seven tasks, the amount607

of experiments is high. This did not allow for fur-608

ther investigation of the difference using different609

classification models, the extensive turning of hy-610

perparameters, or even different training paradigms.611

Lastly, a limitation of our annotator selection strate-612

gies is that they rely on a small annotation history.613

This is why we require a warmup phase for some614

of the strategies, for which we decided to take615

a random sample of annotations. Incorporating616

more informed warmup strategies or incorporat-617

ing ACAL strategies that do not rely on annotator618

history may positively impact its performance and619

data efficiency.620

Ethical Considerations621

Our goal is to approximate a good representation of622

human judgments over subjective tasks. We want to623

highlight the fact that the performance of the mod-624

els differs a lot depending on which metric is used.625

We tried to account for a less majority-focussed626

view when evaluating the models which is very627

important, especially for more human-centered ap-628

plications, such as hate-speech detection. However,629

the evaluation metrics we use do not fully capture630

the diversity of human judgments. The selection of631

metrics should align with the specific goals and mo-632

tivations of the application, and there is a pressing633

need to develop more metrics to accurately reflect634

human variability in these tasks.635

Our experiments are conducted on English636

datasets due to the scarcity of unaggregated 637

datasets in other languages. In principle, ACAL 638

can be applied to other languages (given the avail- 639

ability of multilingual models to semantically em- 640

bed textual items for some particular strategies used 641

in this work). We encourage the community to en- 642

rich the dataset landscape by incorporating more 643

perspective-oriented datasets in various languages, 644

ACAL potentially offers a more efficient method 645

for creating such datasets in real-world scenarios. 646
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A Detailed Experimental Setup 868

A.1 Cross validation details 869

We split the data on samples, meaning that all an- 870

notations for any given sample are completely con- 871

tained in each separate split. 872

A.2 Hyperparameters 873

We report the hyperparameters for training passive, 874

AL, and ACAL in Tables 5, 6, and 7, respectively. 875

For turning the learning rate for passive learning, 876

on each dataset, we started with a learning rate of 877

1e-06 and increased it by a factor of 3 in steps until 878

the model showed a tendency to overfit quickly 879

(within a single epoch). All other parameters are 880

kept on their default setting. 881

Parameter Value

learning rate 1e-04 (constant)
max epochs 50
early stopping 3
batch size 128
weight decay 0.01

Table 5: Hyperparameters for the passive learning.

A.3 Training details 882

Experiments were largely run between January and 883

April 2024. Obtaining the ACAL results for a sin- 884

gle run takes up to an hour on a Nvidia RTX4070. 885

For large-scale computation, our experiments were 886

run on a cluster with heterogeneous compute in- 887

frastructure, including RTX2080 Ti, A100, and 888

Tesla T4 GPUs. Obtaining the results of all exper- 889

iments required a total of 231 training runs, com- 890

bining: (1) two data sampling strategies, (2) four 891

annotator sampling strategies, plus an additional 892

Oracle-based AL approach, (3) a passive learning 893

approach. Each of the above were run for (1) three 894

folds, each with a different seed, and (2) the seven 895
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Parameter Dataset (task) Value

learning rate all 1e-05
batch size all 128
epochs per
round

all 20

num rounds all 10
sample size DICES 79
sample size MFTC (care) 674
sample size MFTC (betrayal) 1011
sample size MFTC (loyalty) 263

sample size
MHS (dehumanize), MHS
(genocide), MHS (respect)

1728

Table 6: Hyperparameters for the oracle-based active
learning approaches.

Parameter Dataset Value

learning rate all 1e-05
num rounds DICES 50
num rounds MFTC (all), MHS (all) 20
epochs per
round

DICES, MHS (all) 20

epochs per
round

MFTC (all) 30

sample size DICES 792
sample size MFTC (care) 1250
sample size MFTC (betrayal) 1894
sample size MFTC (loyalty) 512

sample size
MHS (dehumanize), MHS
(genocide), MHS (respect)

2899

Table 7: Hyperparameters for the annotator-centric ac-
tive learning approaches.

tasks across three datasets. For training all our mod-896

els, we employ the AdamW optimizer (Loshchilov897

and Hutter, 2018). Our code is based on the Hug-898

gingface library (Wolf et al., 2019), unmodified899

values are taken from their defaults.900

A.4 ACAL Annotator Strategy details901

Some of the strategies used for selecting annotators902

to provide a label to a sample903

TS uses a sentence embedding model to represent904

the content that an annotator has annotated. We905

use all-MiniLM-L6-v21. We select annota-906

tors that have not annotated yet (empty history) be-907

fore picking from those with a history to prioritize908

1https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.578 0.147 0.420 0.199 -1.6
SRTL 0.581 0.149 0.433 0.212 -1.6
SRTS 0.593 0.161 0.430 0.239 -5.0
SRTD 0.583 0.148 0.429 0.199 -1.6
SUTR 0.594 0.150 0.419 0.203 -2.5
SUTL 0.584 0.148 0.434 0.200 -1.3
SUTS 0.588 0.149 0.435 0.204 -1.0
SUTD 0.591 0.149 0.428 0.194 -2.6

SRO 0.589 0.147 0.431 0.195 -48.6
SUO 0.589 0.149 0.430 0.200 -0.0
passive 0.481 0.199 0.360 0.290 0.0

Table 8: MFTC (betrayal) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.

filling the annotation history for each annotator. 909

TL creates an average embedding for the content 910

annotated by each annotator and selects the most 911

different annotator. We use the same sentence em- 912

bedding model as TS . To avoid overfitting, we 913

perform PCA and retain only the top 10 most infor- 914

mative principal components for representing each 915

annotator. 916

A.5 Disagreement rates 917

We report the average disagreement rates per 918

dataset and task in Figure 5, for each of the dataset 919

and task combinations. 920

B Detailed Results Overview 921

B.1 Test set evaluation other MFTC and MHS 922

tasks 923

See Table 6 for the trade-off between data effi- 924

ciency and test-set performance for the two con- 925

ventional metrics (JS and F1). We include copy 926

the earlier mentioned results for MFTC (care) and 927

MHS (dehumanize) for convenience. 928

B.2 Annotator-Centric evaluation for other 929

MFTC and MHS tasks 930

We show the full annotator-centric metrics results 931

for MFTC betrayal (Table 8), MFTC loyalty (Ta- 932

ble 9), MHS genocide (Table 10), and MHS respect 933

(Table 11). 934
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Figure 5: Histogram of entropy score over all annotations per sample for each dataset and task combination.

B.3 Training process935

In our main paper, we report a condensed version936

of all metrics during the training phase of the active937

learning approaches. Below, we provide a complete938

overview of all approaches over all metrics. The939

results can be seen in Figures 7 through 13.940

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.564 0.177 0.222 0.372 -0.4
SRTL 0.563 0.176 0.222 0.374 -0.3
SRTS 0.573 0.176 0.222 0.370 -0.3
SRTD 0.551 0.175 0.222 0.373 -0.3
SUTR 0.557 0.177 0.217 0.357 -1.1
SUTL 0.541 0.177 0.222 0.355 -0.8
SUTS 0.556 0.177 0.222 0.358 -0.9
SUTD 0.558 0.177 0.222 0.358 -1.3

SRO 0.560 0.176 0.222 0.361 -29.1
SUO 0.559 0.177 0.222 0.366 -0.1
passive 0.512 0.183 0.261 0.309 0.0

Table 9: MFTC (loyalty) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.
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Figure 6: Test set evaluation of the ACAL, AL, and passive approaches across the extra two MFTC and MHS tasks.
The leftmost column is repeated from Figure 2. For JS, strategies further to the bottom left are more data efficient
(x-axis) and perform better (y-axis). For F1, the top left contains well-performing, data-efficient approaches.
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Figure 7: Validation set performance across all metrics for DICES during training.
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Figure 8: Validation set performance across all metrics for MFTC (care) during training
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Figure 9: Validation set performance across all metrics for MFTC (loyalty) during training
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Figure 10: Validation set performance across all metrics for MFTC (betrayal) during training
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Figure 11: Validation set performance across all metrics for MHS (dehumanize) during training
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Figure 12: Validation set performance across all metrics for MHS (genocide) during training
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Figure 13: Validation set performance across all metrics for MHS (respect) during training

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.700 0.227 0.000 0.560 -6.3
SRTL 0.698 0.225 0.000 0.565 -1.7
SRTS 0.700 0.224 0.000 0.566 -1.7
SRTD 0.702 0.224 0.000 0.565 -1.7
SUTR 0.711 0.229 0.000 0.549 -12.6
SUTL 0.707 0.231 0.000 0.548 -7.9
SUTS 0.709 0.231 0.000 0.548 -7.9
SUTD 0.712 0.229 0.000 0.547 -12.6

SRO 0.339 0.387 0.000 0.496 -60.1
SUO 0.331 0.390 0.000 0.497 -24.7
passive 0.700 0.245 0.000 0.570 –

Table 10: MHS (genocide) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.

Average Worst-off
App. F a

1 JSa Fw
1 JSw ∆%

SRTR 0.460 0.331 0.000 0.528 -18.8
SRTL 0.456 0.331 0.000 0.530 -18.8
SRTS 0.461 0.331 0.000 0.529 -18.8
SRTD 0.460 0.331 0.000 0.528 -18.8
SUTR 0.466 0.323 0.000 0.533 -4.9
SUTL 0.463 0.323 0.000 0.532 -4.9
SUTS 0.459 0.324 0.000 0.531 -4.9
SUTD 0.462 0.324 0.000 0.532 -4.9

SRO 0.339 0.387 0.000 0.496 -60.1
SUO 0.331 0.390 0.000 0.497 -24.7
passive 0.259 0.405 0.000 0.587 –

Table 11: MHS (respect) annotator-centric evaluation
scores. ∆% denotes the relative change in the annota-
tion budget with respect to passive learning.
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