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Sparse Mixture-of-Experts (SMoE) is a promising paradigm that can be easily
tailored for multi-task learning. Its conditional computing nature allows us to or-
ganically allocate relevant parts of a model for performant and efficient predictions.
However, several under-explored pain points persist, especially when consider-
ing scenarios with both multiple modalities and tasks: ① Modality Forgetting Issue.
Diverse modalities may prefer conflicting optimization directions, resulting in
ineffective learning or knowledge forgetting; ② Modality Fitting Issue. Current
SMoE pipelines select a fixed number of experts for all modalities, which can
end up over-fitting to simpler modalities or under-fitting complex modalities; ③
Heterogeneous Learning Pace. The varied modality attributes, task resources, and ob-
jectives usually lead to distinct optimization difficulties and convergence. Given
these issues, there is a clear need for a systematic approach to harmonizing multi-
modal and multi-task objectives when using SMoE. We aim to address these pain
points and propose a new Sparse MoE for Multi-Modal Multi-task learning, a.k.a.,
SM4, which (1) disentangles model spaces for different modalities to mitigate their
optimization conflicts; (2) automatically determines the modality-specific model
size to improve fitting; and (3) synchronizes the learning paces of disparate modal-
ities and tasks based on training dynamics in SMoE like the entropy of routing
decisions. Comprehensive experiments validate the effectiveness of SM4, which out-
performs previous state-of-the-art across 3 task groups and 11 different modalities
with a clear performance margin (e.g., ≥ 1.37%) and a substantial computation
reduction (46.49% ∼ 98.62%). Codes are in supplement.

1. Introduction
Multi-modal multi-task learning (a.k.a., M3TL) aims to resolve different objectives simultaneously.
Each objective takes various modalities as input, which is a common scenario required in real-
world applications like robotics [1] and auto-driving systems [2]. Many prior works have extended
unimodal transformers [3] to handle multiple multi-modal tasks [4–8]. In their ideal setup, the
information from different modalities and tasks prompts each other for better performance. How-
ever, the optimization complexity of this sophisticated system limits the development of effective
solutions [9, 10]. Recently, the sparsely-gated Mixture-of-Experts (SMoE) method was identified as
a powerful tool for these complex training dynamics of multi-task [11–16] or multi-modal [17–19]
learning. SMoE selects a subset of experts for a specific task or modality per input sample and has
led to state-of-the-art performance [16, 20].
Despite preliminary success in M3TL, when we try to model multiple modalities and multi-
ple tasks through a single network (e.g., SMoE), several under-explored pain points persist:
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① Modality Forgetting Issue. Considering a model trained on multiple modalities, diverse modali-
ties can prefer conflicting optimization directions within shared parameters. For instance, recent
works have shown that there are negative cosine similarities between gradients from different modal-
ities [21–24]. Such gradient disagreement within a network can lead to inferior learning, or, in the
worst case, the multi-modal model can degenerate into a “single-modal" model that only learns the
modality with dominant gradients [10]. It finally behave like some modalities are “forgotten” by the
network after training. Note that, this differs from the "forgetting issue" discussed in [25–27], which
focuses on knowledge forgetting when continuously training a model without previous training
data. In contrast, we address forgetting between modalities during training, where all modalities
are present throughout the training process. ② Modality Fitting Issue. The vanilla SMoE architecture
activates a fixed number of experts to deal with each input. However, some modalities are easier to
learn than others. Using too many experts for a simple modality may cause overfitting, while too few
experts for complex modalities may cause underfitting [24]. As more modalities are introduced, this
weakness likely grows. ③ Heterogeneous Learning Pace. Current SMoE solutions also have yet to adapt
to different objectives between tasks. In reality, the objectives can vary substantially. Consider writing
robots, for example. A writing robot must handle two tasks: object pose prediction and digit number
classification. Pose prediction uses images, force sensors, proprioception sensors, and robotic control
signals as observations to predict the object’s position after the robot executes the control signal.
Digit classification uses images and audio to output the corresponding number. Each objective differs
significantly in terms of modality attributes, task resources, and task objectives, which leads to great
heterogeneity in their optimization convergence [28–30].
In this paper, we upgrade the original SMoE algorithm for Multi-Modal Multi-task learning, herein
termed SM4, tackling the aforementioned barriers. Specifically, SM4 facilitates learning from three
perspectives: ① (Model) SM4 customizes the SMoE layer into both the feed-forward networks (FFN)
and multi-head self-attention modules (MSA) in transformers, which sufficiently disentangles
network parameter space for different modalities and tasks. As shown in Figure 2, the gradient
conflict is then greatly reduced. ② (Routing) An adaptive expert allocation mechanism is proposed to
automatically determine the number of selected experts (or model capacity) for different modalities.
SM4 monitors the modality-specific training dynamics (e.g., validation loss), which serve as a reliable
indicator to activate more or less experts to mitigate possible under-fitting or over-fitting, respectively.
Figure 2 shows an example of how SM4 mitigates over-fitting in a simple modality. ③ (Optimization)
For each modality in one task, SM4 adopts adaptive learning paces based on the convergence status
of modality-specific routing policies to synchronize the optimization of multiple objectives. Our
contributions can be summarized as follows:

⋆ We propose SM4, a framework for multi-modal multi-task learning, which contains tailored
SMoE layers for replacing FFN and sparse mixture-of-attention layers as the alternative for
vanilla MSA modules in transformers. This disentangles network parameters and alleviates
gradient conflicts between different modalities and tasks.

⋆ We identify two essential factors in M3TL, i.e., modality fitting issue and heterogeneous learning
pace, which are unstudied by existing SMoE approaches. We then propose corresponding
adaptive expert allocation and adaptive learning paces.

⋆ Extensive empirical investigations over 3 representative task groups and 11 diverse modal-
ities consistently validate the effectiveness of SM4. Our method surpasses dense models
with similar computational costs, and shows substantial performance improvements; SM4
outperforms existing M3TL SOTA using only 1.38% to 53.51% of their computational cost.

2. Related Work
Multi-modal and Multi-task Learning. There has been a long history of work on multi-modal
learning [31–43] and multi-task learning [11, 16, 44–49]. Recently, more deep learning models
expect integrating different modal and different tasks into one unimodal network [4–8]. They aim
to leverage knowledge or information from the diverse modalities or tasks to help each other. For
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instance, VATT [8] uses a shared model on video, audio, and text data to perform audio-only, video-
only, and image-text retrieval tasks, and HighMMT [50] explores modalities beyond the old-school
studies of language, vision, and audio to other common modalities such as tabular, time-series,
sensors, graphs, and set data, in a multi-task environment. However, there is no free lunch; unimodal
networks introduce more conflicts and complexity during model training. Alamri et al. [21], Goyal
et al. [36], Poliak et al. [51], Thomason et al. [52] show that increasing modalities is not always
beneficial. Specifically, the input of differentmodalities at one optimization object can lead to opposite
gradient updates [22, 53], a situation also noted with identical modalities under distinct learning
tasks [23]. Furthermore, multi-modal networks are often prone to overfitting the easy modalities
and impeding performance [24]. The various modalities, task resources, and objectives result in
unique optimization challenges.
Sparse Mixture-of-Experts (SMoE). SMoE as a special instance of conditional computing net-
works [54–57], has gained increasing popularity in both vision [58–66] and language [67–73] do-
mains. It contains a group of sub-models (i.e., experts) and activates them in an input-dependent
fashion. Pioneering investigations leverage its conditional computing nature to assign different
model pieces to their most relevant task [11, 16, 49, 74–77] or modality [20, 78] in multi-task or
multi-modal learning. To be specific, Ma et al. [74], Aoki et al. [75], Hazimeh et al. [76] introduce
task-dependent routing policies to select important sub-models given a task and its input sample.
Positive results are presented on small-scale uni-modal applications such as classification for medical
signal process [75], digital number recognition (MNIST) [76], and recommendation system [74].
Mustafa et al. [20] explores the opportunity of SMoE in multi-modal contrastive learning. Fan
et al. [11] and Kim et al. [77], Rajbhandari et al. [79], He et al. [80, 81] contribute to efficient SMoE
frameworks from software-hardware co-design and system angles, respectively.

3. Methodolody
The overall procedures of SM4 are described in Figure 1. Our proposal processes the multi-task
multi-modal learning in a two-step framework. (1) Unimodal Encoder. We first process all modalities
from multi-tasks into sequences; the Unimodal Encoder converts each modality into sequences with
the same length and concatenates modalities along the sequence dimension for each task. We refer
the details of Unimodal Encoder to Appendix A.1. (2) SMoE & SMoA layer. Then, these sequential
tokens are fed into the transformer layers with SMoE and SMoA, followed by task-specific heads. In
SMoE and SMoA, routers choose the most relevant experts and aggregate their features for different
modalities. The number of selected experts is dynamically decided according to the in-time training
dynamics via AEA, as detailed below. Each modality’s learning pace in one task is adapted via the
convergence status of the routing policy from the corresponding modality by ALP.

3.1. Sparse Mixture of Experts/Attention in SM4

Sparse Mixture of Experts (SMoE) SMoE [82] has been proposed to enhance model capacity while
maintaining low cost per inference. In this paper, we use SMoE to disentangle network parameter
space for different modalities and tasks. The SMoE layer includes a router networkR and several
experts f1, f2, . . . , fE (a.k.a expert group), where E denotes the number of experts. For each input
embedding x, R activates the top-k expert networks with the largest scores R(x)i, where i is the
expert index. The SMoE can be formally denoted as follows:

y =

k∑
i=1

R(x)i · fi(x),R(x) = TopK(softmax(g(x)), k), (1)

TopK(v, k) =
{
v if v is in the top k
0 otherwise (2)

where fi(x) represents the feature produced by expert fi, which is weighted byR(x)i to form the
final output y. g is the learnable network within a router R, and is commonly is a small FNN with
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Figure 1: The overall procedure of SM4: (a) Unimodal Encoder. SM4 first standardizes each modality into a
sequence, and the unimodal encoder converts each sequence to sequences of the same length. We concatenate
these modality tokens on the sequence dimension within each task. Then, the transformer layers of SM4 are
performed for multi-task learning. (b) SMoE & SMoA Layer. Our SM4 involves replacing FFN and MSA modules
in transformers with SMoE layers and sparse mixture-of-attention (SMoA) layers that duplicate network
parameters as expert group to mitigate gradient conflict.

Routing Distributiona b d

Early Iterations
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c

Figure 2: Encompassing comparison between SM4 with baseline which the dense network with the same Flops.
a. The distribution of cosine distance between training gradients computed from “control” and “proprioception”
modalities in PUSH dataset. The gradient is collected from the last transformer layer. More positive cosine
distances denote less gradient conflict. b. The training loss curves, each method collects the loss curve of the
“image” and “set” modalities in dataset ENRICO. c. The generalization gap [83] of modalities “image” and “set”
in dataset ENRICO. A lower generalization gap (the difference between Losstraining, and Lossvalid) indicates
better generalization performance (i.e., better modality fitting). d. The SMoE routing distribution in dataset
ENRICO. Here, we visualize the routing distribution of modality “image” in early and later iterations.

one to few [58, 82]. TopK sets all vector elements to zero except the elements with the largest k values.
In SM4, we duplicate the feedforward network as SMoE expert group shown in Figure 1 (b).
Sparse Mixture of Attention (SMoA) We denote the Mixture-of-Experts in the multi-head self-
attention (MSA) module as Sparse Mixture-of-Attention (SMoA). As depicted in Figure 1 (b), we
replicate query, key, and value layers to establish expert groups that generate query, key, and value
features separately.
The SMoE and SMoAmodules separate network parameter space sufficiently for different modalities
and tasks. As supported by our experiments in Section 4, this model architecture mitigates gradient
conflicts and enhances performance, which is more suitable for M3TL. More details about SMoE and
SMoA, please refer to Appendix A.7

3.2. Routing Policy Design in SM4

Routing Policy Handling multiple modalities without conflicting gradients by disentangling pa-
rameters intrinsically relies on a successful routing policy. As shown in Figure 1, SM4 comprises
4 expert groups within each sparse transformer block: one for SMoE and three corresponding to
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the SMoE components–value, key, and query expert groups. Each expert group shares a common
policy network across all modalities and tasks. Formally, the routing policy for the modality j is:

Rj(x) = TopK(softmax(g(x)), kj), (3)
where kj is the modality-specific number of activated experts, and the network g of the router is
shared across all modalities and tasks. The routing policy frequently assigns large weights to the
same few experts. To combat this imbalance loading phenomenon [84], we implement the load and
importance balancing loss following [82]. This effective routing policy sends modality embeddings
to compatibility experts, which generate high-quality modality features. This helps to solve tasks and
separate the network parameter space of different modalities and tasks. As supported by Figure 2 a,
the disentangled model parameter space results in effective minimized gradient conflict between
modalities, enjoying an improved performance (Section 4).
While SMoE and SMoA offer some benefits alone, they are not the silver bullet for multi-modal
multi-task learning. Two issues still persist: ❶ Modality Fitting Issue. The fixed model capacity in
classical SMoE design possibly leads to uneven fitting speeds across modalities. ❷ Heterogeneous
Learning Pace. The gigantic discrepancy between tasks and modalities can lead to challenges in
convergence and optimization pace. Targeting these two obstacles, we propose two interconnected
solutions: First, utilizing the optimization dynamic (e.g. the validation loss dynamic) to change
sparse network (e.g. the number of activated experts); and second, a modality-specific learning rate
adaptation indicated by the sparse network training dynamic (e.g. the routing entropy in SMoE or
SMoA) is used improve training optimization. These two solutions link multi-modal optimization
and sparse network training.
Leveraging Optimization Statistics to Guide SMoE learning: Adaptive Expert Allocation (AEA)
The optimal fitting pace for each modality may alter significantly due to the difference in modality
complexities [24]. In SM4, modality-specific kj the number of activated experts determines the
network size of each modality. However, manually computing kj for increasing tasks and modalities
raises training costs and risk errors (inappropriate kj can aggravate overfitting or underfitting for
each modality).
Therefore, we adopt an automatic algorithm AEA to determine an appropriate kj for specificmodalities
in a data-driven manner. As shown in Figure 2 c, we can tune kj according to the modality-specific
validation loss. When the validation loss stops decreasing, we increase the activated model size by
increasing k. After several training iterations, if the validation loss is still larger than the previous best
validation loss, we reduce the selected expert number k for the modality. Ultimately, the modality-
specific k is adopted until the end of training. We show the details of AEA in Algorithm 2. Figure 2 c
shows the AEA effectively addressing the Modality Fitting Issue.
Leveraging SMoE Statistics to Guide Network Training: Adaptive Learning Pace (ALP) The
remaining convergence and optimization pace asynchronization is addressed by our proposed ALP.
As observed in Figure 2 d, the modality-specific routing policy exhibits instability in early training
iterations and stabilizes over time. Therefore, we utilize the sparse network, monitoring the routing
distribution entropy as an indicator of routing policy status and, accordingly, decaying the learning
rate where the modality-specific routing policy entropy is high. As shown in Figure 2 b, ALP lets us
align different learning paces between modalities, which synchronizes the optimization of multiple
objectives. See Algorithm 4 for ALP details.

4. Experiments

4.1. Implementation Details
Datasets and Tasks. To assess our method, we conduct experiments on MultiBench, a large-scale
multi-modalmulti-task benchmark containingmore than 10modalities and 20 prediction tasks across
6 research areas. As shown in Table 4.1, we follow the HighMMT choose 7 tasks in MultiBench and
train 3 multi-modal multi-task models from the combinations of these tasks for the small, medium,
and large settings, respectively. For more details, see Appendix C.
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Setting Dataset Modalities Prediction Task Research Area Size

Small PUSH image,force,proprioception,control object pose Robotics 37, 990
V&T image,force,proprioception,depth contact Robotics 147, 000

Medium
ENRICO image,set design interface HCI 1, 460
PUSH image,force,proprioception,control object pose Robotics 37, 990

AV-MNIST image,audio digit Multimedia 70, 000

Large
UR-FUNNY text,video,audio humor Affective Computing 16, 514

MOSEI text,video,audio sentiment Affective Computing 22, 777
MIMIC time-series,table ICD-9 codes Healthcare 36, 212

AV-MNIST image,audio digit Multimedia 70, 000

Table 1: We follow the setting of HighMMT [50], which uses 3 multi-modal multi-task training to evaluate
the performance of the SM4. These setups include tasks with different modality inputs, predicting objectives,
research areas, and dataset size.

Baselines and Configuration Details. We consider two state-of-the-art (SOTA) baselines in multi-
modal multi-task learning: MultiBench [85] and HighMMT [50]. Particularly, the released code of
HighMMT is implemented to achieve the desired performance with provided hyperparameters (see
Appendix A). MultiBench contains 20 different models for every task; we report the performance
range of these models for each adopted task. We display our model architecture overview in Figure 1.
We conduct all of our experiments on theNVIDIAA30 Tensor Core GPU. Please refer to Appendix A.6
for more details on network configuration and training setup.
Evaluation Metrics. We use the standard evaluation metrics provided by MultiBench [85]. Specif-
ically, following [86], we use metric ∆ to evaluate the performance gap between our model and
baseline averaged over all the tasks in each set: ∆ = 1

T

∑T
i (−1)li(Mm,i −Mb,i)/Mb,i, where Mm,i

andMb,i denote the performances of our SM4 and baseline model, respectively; T is the number of
considered tasks; and li = 1 if a higher metric value means better performance otherwise li = −1.
The results of HighMMT and SM4 are reported by the mean of three independent runs. For the min
and max performances of MultiBench, we reuse the numbers directly from its publication to have a
comprehensive comparison.

4.2. Performance Comparison of SM4 with Existing Multimodel Models

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 (ours) 71.58 0.475 71.86 20.19

Multi-router SM4 71.00 0.684 71.03 7.81
R-Multi-router SM4 64.38 0.995 71.33 -13.48
P-Modality-router SM4 68.72 0.786 70.70 0.54
P-Task-router SM4 68.38 0.833 70.69 -2.25

Table 3: Comparison of routing design. SM4 makes use of the
single router; Multi-router, R-Multi-router, P-Modality-router,
and P-Task-router mean the adoptions of task-specific and/or
modality-specific routing networks in SMoE and SMoA, re-
spectively. Further investigations of the combinations be-
tween the multi-routing networks and the single-routing net-
works are in Appendix B.

We compare ourmodel’s performancewith
SOTA HighMMT [50] as well as 20 multi-
modal models implemented in benchmark
MultiBench [85]. The comparison results
are collected in Table 4.2, from which we
make the following observations. ① Our
SM4 demonstrates great advantages with
a clear performance margin compared to
all baselines. Specifically, compared to the
multi-modal multi-task model HighMMT,
SM4 achieves improvements up to 12.93%,
20.19%, and 2.28% for small, medium, and
large settings, respectively. These empiri-
cal results validate the effectiveness of our
model to address the cross-task conflict and assign expert sub-networks to conduct each prediction
task. ② SM4 adaptively allocates adequate amounts of model parameters and fewer FLOPS to resolve
the different tasks. For example, our method uses fewer parameters compared to HighMMT in the
easy, small setting, e.g., 1.38% ∼ 53.51% parameter saving, while we use larger parameter budgets in
the challenging medium and large settings. The required FLOPS of SM4 is always smaller than that
of HighMMT. In other words, we have more efficient inference per task. ③ SM4 delivers significant
improvements and creates SOTA performances for some tasks. Notably, at the prediction task on EN-
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Setting Method Dataset Performance ∆(%) # Parameters (M) FLOPS (G)

Small

MultiBench Models PUSH ↓ 0.574 ∼ 0.290 - 1.09 ∼ 135 5.20 ∼ 25.11V&T 93.30 ∼ 93.60

HighMMT PUSH ↓ 0.445
0.00

0.89 5.14
V&T 96.10 0.85 32.48

SM4 PUSH ↓ 0.331
12.93

0.27 2.59
V&T 96.33 0.25 17.38

Medium

MultiBench Models
ENRICO 44.40 ∼ 51.00

- 0.14 ∼ 525.70 0.25 ∼ 314.13PUSH ↓ 0.574 ∼ 0.290
AV-MNIST 68.50 ∼ 72.80

HighMMT
ENRICO 53.10

0.00
0.58 79.48

PUSH ↓ 0.600 0.63 21.60
AV-MNIST 68.48 0.52 0.95

SM4
ENRICO 71.58

20.19
1.23 1.10

PUSH ↓ 0.475 1.25 2.33
AV-MNIST 71.86 1.23 0.41

Large

MultiBench Models
UR-FUNNY 60.20 ∼ 66.70

- 0.19 ∼ 31.50 0.15 ∼ 21.60
MOSEI 76.40 ∼ 82.10
MIMIC 67.60 ∼ 68.90

AV-MNIST 65.10 ∼ 72.80

HighMMT
UR-FUNNY 62.00

0.00

0.52 1.51
MOSEI 78.40 0.52 1.65
MIMIC 65.60 0.52 0.67

AV-MNIST 70.60 0.52 0.95

SM4
UR-FUNNY 64.24

2.28

0.76 0.38
MOSEI 79.47 0.76 0.53
MIMIC 67.91 0.76 0.15

AV-MNIST 71.05 0.76 0.43

Table 2: Performance comparison, parameter usage, and FLOPS of our model, HighMMT (SOTA multi-modal
multi-task learning method on MultiBench benchmark), and all the 20 models implemented in MultiBench
(report their performance range) in three settings.

RICO, SM4 obtains 20.58% improvement compared with the best-performing model on MultiBench.
Limited by the space, we report more detailed comparisons in Table 10.

4.3. Detailed Investigations of SM4

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 (ours) 71.58 0.475 71.86 20.19
- w/o SMoA 69.06 1.227 70.26 −23.92
- w/o SMoE 68.84 0.818 70.94 −1.02
Dense Model 65.98 1.342 70.49 −32.14

Table 4: Ablation of SMoE and SMoA.Notably, the “Dense
Model” has the same computation cost with SM4. The
results of the dense model with the same network capacity
are in Appendix B.

Ablation Study: Single-router v.s. Multi-
router. Unlike the routing policy design in
SM4, we notice that earlier works have investi-
gated task-specific or modality-specific rout-
ing networks in learning the routing policy
individually for different modalities or tasks
in MTL [74–77]. Therefore, we ask What kind
of routing policy is suitable for M3TL? Un-
der the medium setting with framework SM4,
we experiment with 4 multi-router designs
to identify the optimal routing policy. We
use modality-specific routers in SMoA and task-specific routers in SMoE, which are named as
Multi-router SM4. Alternatively, in R-Multi-router SM4, we utilize modality-specific routers in SMoE
and task-specific routers in SMoA. In SMoA and SMoE, we employed task-specific routers as
P-Task-router SM4, and modality-specific routers as P-Modality-router SM4, respectively. From our
results in Table 3, ① we observe that the adopted single router consistently outperforms the other
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Figure 3: The distribution of Gradient Positive Sign Purity (left), and the inter-task affinity of the ‘ENRICO’ to
the ‘PUSH’ task (right).

routing policies. ② Specifically, all the task-specific routers perform unpromisingly in PUSH, which
contains four different data modalities. We extend this and draw similar conclusions in Appendix B.
Ablation Study: MoE. To investigate the contribution of MoE, the ablation studies are conducted
with SM4 on the medium setting. In particular, we consider three ablated models: SM4 w/o SMoA:
removing SMoA from theMSAmodule. SM4 w/o SMoE: removing SMoE from FFN layer. Dense model:
using the same computation cost with SM4 but without anyMoE components. From Table 4, we make
the following observations: ① Compared with SM4, the ablation of any MoE component significantly
discounts model performance. Specifically, discarding SMoA has a more acute drop compared to
discarding SMoE. This verifies our motivation for applying SMoA, which improves the model’s
routing capability. ② Compared with the dense model, SM4 achieves a noticeable performance gain
(e.g., ≥ 1.37%), suggesting the benefit from the distanglement of parameter spaces. More MoE
explorations can be found in Table 7.
In-Depth Discussion: Do our proposals address the gradient conflict between modalities and
tasks? Yes, SM4 is specialized to disentangle the task conflict by harmonizing the updating gradient
of different tasks. We examine the following two metrics.
▷ Gradient positive sign purity (GPSP). This metric quantifies the direction consistency of backward
gradients of different tasks [23]. Mathematically, we denote GPSP as P and record the gradient of
task i as∇Wi. Metric GPSP is defined as P =

∑
i ∇Wi/

∑
i |∇Wi|, which is further bounded into range

[0, 1]. Specifically, P with a value closing to 0 or 1 indicates that the gradients from different tasks are
not acutely contradictory to each other. We compare GPSP distributions of SM4, SM4 without MoE on
self-attention, SM4 without MoE on FFN, and the dense model. In Figure 3, we discretize the values of
P into 5 intervals and then count the number of parameters that fall within each interval. Compared
with other models, the GPSP values of SM4 are accumulated more at the intervals of [0.6, 0.8] and
[0.8, 1.0]. This validates the effectiveness of splitting the parameter space, where only a small fraction
of conflicting parameters are running for specific tasks.
▷ Inter-task affinity. We denote inter-task affinity with Zi→j , which is the influence of parameter
update from task i to task j [87]. The higher value of Zi→j means the parameter update is positive for
task j; otherwise, task j suffers from an antagonistic updating. On the medium setting, we compare
the inter-task affinity of task ENRICO to task PUSH for three backbones: SM4, multi-router SM4, and
dense model. As shown in the right part of Figure 3, we observe the inter-task affinities of SM4 and
multi-router SM4 tend to be higher than that of the dense model. This finding shows that MoE can
restrain the gradient conflict of MTL. For more discussions on GPSP and inter-task affinity, please
refer to Appendix C.4 and Appendix C.5.
In-depth Discussion: Whether our proposals address the fitting issue betweenmodalities? Yes, we
examine this question by visualizing the training loss dynamic (second subfigure) and generalization
gap dynamic (third subfigure) in Figure 2. Note that the generalization gap is defined by the
difference between training loss and validation loss, where a higher valuemeans a good generalization
performance on the validation set. ① It is observed baseline HighMMT underfits in specific modality, which
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Figure 4: Analysis on the expert selection visualization produced by the SM4 in the large setting. The first row
shows the expert selection in the “AV-MNIST” dataset, and the second row shows the expert selection in the
“MOSEI” dataset. Please refer to Appendix C.8 for more visualization results.

has the highest training loss accompanied with a lower generalization gap. In contrast, another modality is
gradually overfitted along with the training process in HighMMT. ② SM4 delivers comparably superior
results in all the modalities, which addresses the key challenge of under/over-fitting in multi-modal learning.
SM4 consistently outperforms highMMT by obtaining superior generalization gaps in all modalities.
In-depth Discussion: Is the expert selection specialized to the different modalities and tasks? We
show the routing distributions for different modalities and tasks of the medium setting in Figure 4,
from which we make the following observations. ① There is an overall balanced loading across the
different modalities in SMoA, but it shows an imbalance in some of the experts in SMoE. For example, expert
5 prefers modality audio in the AV-MNIST task and prefers modalities of audio as well as text in the
MOSEI task. ② The expert selection is specialized to the different tasks. Considering the SMoA (Query)
layer, we observe the AV-MNIST task leverages the unique experts 4 and 13while the MOSEI task
activates expert 6. These empirical studies show SM4 can optimize how many (i.e., adaptive network
capacity) and which (i.e., dynamic routing) experts to activate for each task and modality.
Additional in-depth analysis and implementation details can be found in Appendix C.

5. Conclusion and Limitation
This paper introduces SM4, utilizing Sparse Mixture-of-Experts to address the forgetting, fitting, and
learning issues in multi-modal multi-task learning. By ingeniously tailoring the Mixture-of-Experts
into both the self-attention and the feed-forward networks of a transformer backbone, we achieve
the following. First, the Sparse Mixture-of-Attention (SMoA) and the Sparse Mixture-of-Experts
(SMoE) efficiently and sufficiently disentangle the network parameter space to mitigate the gradient
conflict between different modalities and tasks. Second, we ingeniously design an adaptive expert
allocation mechanism to determine the optimal number of selected experts in use for different
modalities, resulting in harmonized and unified fitting speeds between modalities. Third, we adeptly
adapt the learning pace by considering the convergence status of modality-specific routing policies
to effectively synchronize the learning paces of different modalities and tasks. Comprehensive
experiments demonstrate that the proposed SM4 significantly surpasses the SOTA with a fraction
of the computation cost (+12.93%/+20.19%/+2.28%M3TL performance); our computation cost is
only 1.38% ∼ 53.51% of the SOTA model. Our experiments on MoE also provide insightful and
rational perspectives for designing multi-modal multi-task learning neural network architectures.
The limitation of our work is that the proposed SM4 is only evaluated on academic datasets. Moving
forward, we plan to evaluate SM4 onmore practical tasks like in-door robots and autonomous vehicles.
Lastly, we anticipate expanding our model size for larger-scale tasks and incorporating more kinds
of modalities in future work.
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A. Model details

A.1. Process Data into Sequence

Following the process of [43], we first standardize each input into a sequence. For each modality [43],
we define some hyperparameters (such as max_freq, num_freq_bands, and freq_base) for the
Fourier positional encoding. Fourier transformations get this positional information. For modalities
such as text and time-series, they are already sequential data. We apply 1D positional encoding
for these modalities x ∈ Rbm×tm×dm , where bm, tm, dm are the batch size, sequence length, and
input dimension of current modality, respectively. For image and similar modalities, we follow
the processing procedure of [88], which breaks each input into hm × wm patches and flattens it as
a sequence of p2 regions. We use 2D positional encoding for image and similar modalities input
x ∈ Rbm×hm×wm×dm , where hm × wm is the number of patches. For image modality, the dm is the
number of pixels within a patch. For video and similar modalities, we treat each frame data as the
image modality, therefore we apply 3D positional encoding for input x ∈ Rbm×lm×hm×wm×dm , where
lm is the number of the frame. In the other modalities, such as table and graph, we treat each element
in the table/graph as an element in the sequence and use a 1D positional encoding.
After transposing inputs into sequence data, we show the subsequent processing procedure in
Algorithm 1. The ‘max_modality_dim’ equals tomaxm∈M (dm + dpm), where dpm is the dimension
of Fourier positional encoding for the corresponding modality. The one-hot encoding is defined as
em ∈ R|M |, where |M | is the number of all modalities involved.

Algorithm 1 Data Preprocess in Python style
# x : the input tokens of s p e c i f i c modality
def data_preprocess (x , modality , max_modality_dim ) :

# get po s i t i ona l encoding information
# pos_dim : i nd i c a t e s 1D/2D/3D pos i t i ona l encoding
enc_pos = four ier_encode (modality . pos_dim ,

modality . max_freq ,
modality . num_freq_bands ,
modality . f req_base )

# add padding for modal i t i e s with smal ler input dimension
# max_modality_dim : the maximum input dimension ove ra l l modal i t i e s
# input_dim : the input dimension of the current modality
padding=zeros (max_modality_dim−modality . input_dim)
# modality one−hot encoding
# modality_index : the index of current modality
modality_encodings = one_hot (modality . modality_index )
# cons t ruc t f i n a l input
modality_input = concatenate (x , padding , enc_pos , modality_encodings )
return modality_input

A.2. The Unimodal Encoder

The result of Algorithm 1 is then fed into the unimodal encoder layer. We display the details of the
unimodal encoder layer in Figure 5. The sequence length T of different modalities are different, as T
can be tm, hm × wm, or lm × hm × wm. However, the cross-attention between the input sequence
and latent input will convert the sequence length from different modalities into the same value.
For example, the input modality sequence is x ∈ RTm×D and the latent input is z ∈ RN×C . After
these three linear layer, we got K,V ∈ RTm×X and Q ∈ RN×X . Following the scaled-dot product
attention:

Attention(Q,K,V) = softmax(QKT

√
C

)V, (4)
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Figure 5: The details of the unimodal encoder layer. TheD and T are the sequence length and feature
dimension of the modality-specific input sequence. The N and C are the sequence length and the
number of dimensions of latent input. The latent input is the learnable parameters shared across
different modalities and tasks.

fromwhich we can know the dimension after the attention isAttention(Q,K,V) ∈ RN×X . Therefore,
the sequence length of the output depends on the sequence length of the latent input, and the feature
dimension depends on the unimodal encoder’s hidden size, which is independent of the shape of
the input modality sequence. The hidden dimension of the self-attention encoder layer equals the
previous layer’s cross-attention layer.

A.3. Detials of Adaptive Expert Allocation

The python style pseudo code for the Adaptive Expert Allocation (AEA) algorithm 2. The AEA is
executed during the multi-modal multi-task learning.

Algorithm 2 Adaptive Expert Allocation (AEA) in Python style
def adap t ive_exper t _a l l o ca t i on (modali ty_set , model , modality_topk , l o s s ) :

fo r modality in modal i ty_set :
# I f the modality i s signed improved , skip t h i s modality
i f check (modality ) :

continue
n_experts = modality_topk [modality ]
l o s s _va l = lo s s [ va l id ][ modality ]
# i f the expert number of t h i s modality i s increased l a s t time
i f inc rease_exper t (modality ) :

i f lo s s_decrease ( l o s s _va l ) :
improved = True

e l s e :
# i f the va l id l o s s does not decrease
i f lo s s_decrease ( l o s s _va l ) :

i f not improved :
Sign t h i s modality as improved
modality_topk [modality ] = n_experts − 1

e l s e :
modality_topk [modality ] = n_experts + 1
improved = False

re turn modality_topk
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Algorithm 3 An algorithm with caption
Require: Expert networks fi(i ∈ {1, 2, ..., E}).
Require: m ∈ {1, 2, ...,M}) is the modality index, and M the number of modalities
Require: The validation set D.
Require: The objective function for each modality Lm

val on the validation set.
1: Set the indicator for each modality as Improvedm = True;
2: Set the best validation loss for each modality initialize as Lm

val(best) = ∞;
3: Set the number of selected experts for each modality as km = 1;
4: Set the modality align sign alignm = True;
5: for each epoch do
6: 1 epoch multi-modal multi-task training;
7: Calculate the validation loss for each modality Lm

val(best)(m ∈ {1, 2, ...,M});
8: for a given modality m do
9: if alignm then
10: if Lm

val(best) ≤ Lm
val then

11: if not Improvedm then
12: alignm=False;
13: break;
14: else
15: km = km + 1;
16: Improvedm=False;
17: end if
18: else
19: Lm

val(best) = Lm
val;

20: Improvedm=True;
21: end if
22: if not alignm then
23: km = km − 1;
24: end if
25: end if
26: end for
27: end for

A.4. Details of Adaptive Learning Pace

The python style pseudo code for the Adaptive Learning Pace (ALP) algorithm 4. The ALP adjusts
the learning pace of each modality by out modality-specific learning rate weights.

Algorithm 4 Adaptive Learning Pace (ALP) in Python style
def adapt ive_learning_pace ( routing_entropy ) :

re turn 1 − routing_entropy . softmax ()
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A.5. Overall Progress

Algorithm 5 Overall Training in Python style
def ove r a l l _ t r a i n i ng (modali ty_set , model ) :

fo r i in range (max_epochs ) :
# t r a i n ing 1 epoch
# l o s s e s inc lude the average va l id l o s s of a l l
# modal i t i e s in t h i s epoch
# routing_entropy inc ludes the average entropy of
# a l l modal i t i e s in t h i s epoch
va l_ los ses , rout ing_entropy =

t r a i n (model , modality_topk , modality_weights )

# Se t t i ng top−k of a l l modal i t i e s
# I f the monitoring of s p e c i f i c modality i s ended ,
# AEA wi l l skip to tuning the top−k of s p e c i f i c modality
modality_topk =

AEA(modali ty_set , model , modality_topk , va l _ l o s s e s )
modality_weights = ALP( routing_entropy )

A.6. The Model and Training Setups
We list hyperparameters for the training and the model in Table 15, Table 16, and Table 17 for small,
medium and large settings, respectively.

A.7. Expert Group
Our framework comprises four distinct expert groups: one group, situated within SMoE, consists of
experts duplicating feedforward networks. Meanwhile, SMoA includes three expert groups, each
dedicated to duplicating the query, key, and value networks, respectively. Experts are grouped by
the nature of where they are duplicated from.

B. Single-router v.s. Multi-router in SM4

SM4 use SMoE and SMoA to disentangle the network parameter space. Moreover, several works [20,
74–77, 77, 78] investigate single-router ormulti-router formulti-task learning ormulti-modal learning.
Therefore, we also investigate the multi-router SM4 for M3TL. With those in mind, we ask a much
more significant question:

What kind of router design is appropriate for SM4 to M3TL?

For our proposed SM4, we can use Single-router and Multi-router in both the self-attention and FFN
layers, respectively. Meanwhile, the Multi-router can also be divided into the modality-specific
Multi-router and the task-specific Multi-router. Therefore, we explore all possible combinations of
the above settings SMoE and SMoA. Note that, without specifics, the router in SMoE and SMoA is a
single router by default. Herein, the “single router” denotes one router in SMoE and three routers in
SMoA (“single” refers to not using task/modality-specific in SMoE or SMoA). We list all explored
network architectures in Table 5.

Table 5: All possible router design combinations for SM4.

SMoE
Modality-Specific Router Task-Specific Single-Router w/o SMoE

SMoA
Modality-Specific Router P-Modality-router SM4 Multi-router SM4 Modality-SMoA-Single-SMoE SM4 Multi-router SM4 w/o SMoE

Task-Specific Router R-Multi-router SM4 P-Task-router SM4 Task-SMoA-Single-SMoE SM4 R-Multi-router SM4 w/o SMoE
Single-Router Single-SMoA-Modality-SMoE SM4 Single-SMoA-Task-SMoE SM4 SM4 SM4 w/o SMoE

w/oMoA R-Multi-Router SM4 w/o SMoA Multi-Router SM4 w/o SMoA SM4 w/o SMoA Dense Model
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Table 7: The results of different SMoE & SMoA router settings in the medium setting.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19
Multi-router SM4 71.00 0.684 71.03 7.81
R-Multi-router SM4 64.38 0.995 71.33 −13.48

Dense Model 1 65.98 1.342 70.49 −32.14
Dense Model 2 62.56 1.400 71.40 −37.11
SM4 w/o SMoE 68.84 0.818 70.94 −1.02
SM4 w/o SMoA 69.06 1.227 70.26 −23.92
Multi-router SM4 w/o SMoE 67.58 1.166 71.11 −21.06
Multi-router SM4 w/o SMoA 65.41 1.402 70.08 −36.03
R-Multi-router SM4 w/o SMoE 67.35 0.633 71.37 8.54
R-Multi-router SM4 w/o SMoA 66.43 0.969 71.04 −10.89

Task-SMoA-Single-SMoE SM4 63.81 0.952 71.02 −11.62
Modality-SMoA-Single-SMoE SM4 69.52 0.777 71.47 1.94
Single-SMoA-Task-SMoE SM4 67.24 0.764 71.03 1.00
Single-SMoA-Modality-SMoE SM4 65.75 1.088 71.31 −17.77

P-Modality-router SM4 68.38 0.786 70.70 0.54
P-Task-router SM4 68.38 0.833 70.69 −2.25

Equal Capacity Model 64.61 0.878 69.80 −7.59

We run the above network architectures in the medium setting and report the results in Table 7. All
results reported in Table 7 use the same hyperparameters in Table 16, except for the routing network
setting. In particular, the ‘Dense Model’ is an equal computation dense model where we propose
two kinds of equal computation dense model: ‘Dense Model 1’ uses the transformer encoder layer
with double depth, and ‘Dense Model 2’ is 4x wider than the hidden dimension of the transformer
encoder layer. To further illustrate our performance gains mainly come from our SM4 design, we
construct the same capacity model where we ×4 the number of attention heads, ×8 the dimension
of each attention head, and ×32 the hidden dimension of the FFN layer. .
We find out that the single-router is the best architecture for M3TL. The second-best architecture
uses the task-specific router in the SMoE and the dense layer in the FFN layer. Meanwhile, using
the modality-specific router in the SMoA and the task-specific router in SMoE also seems like a
reasonable choice.
For better understanding, we display the architecture of the Multi-Router SM4 and the R-Multi-
Router SM4 in Figure 6 and Figure 7, respectively.

B.1. Ablation Study: Expert counts.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
N = 32 (SM4) 71.58 0.475 71.86 20.19

N = 4 67.92 1.250 71.33 −25.41
N = 8 67.69 0.975 70.93 −10.51
N = 16 69.75 0.771 70.45 1.89

Table 6: Ablation studies. Hyperparameter effects of the total
number of experts (i.e., N) on SM4.

For the SMoE and SMoA layers, the
total number of experts N is one of
themost significant hyper-parameters.
We show the detailed performance in
Table 6 and observe consistent conclu-
sionwith [58, 89] that SM4 still got ben-
efits from more experts.

B.2. Using consecutive SM4

This section is used to illustrate how to use the consecutive SM4 layer (i.e., transformer layer with
SMoE and SMoA design) as transformer backbone and provide more observation about how to use
SM4 while the network is getting deeper.
Our experimental results in Table 8 show:

• The performance may not be improved as the number of SM4 layers increases.
• The location of SM4 matters. Using SM4 in shallow layers helps the most.
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Figure 6: In theMulti-router SM4 encoder layer, We use the modality-specific router in the SMoA
and the task-specific router in the SMoE.
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Figure 7: In theReverseMulti-router SM4 (R-Multi-router SM4) encoder layer,We use the task-specific
router in the SMoA and the modality-specific router in the SMoE.

C. Experiments Details

We show the number of parameters and the computation cost of the current SOTA and SM4 in Figure 9.
The “small”, “medium”, and “large” setting denote the number of tasks.
In Table 10, we displaymore comprehensive performance aboutMultiBench to help readers locate the
position of SM4 in the MultiBench benchmark. For each dataset, we choose multi-modal models with
the best/worst performance and multi-modal models with the largest/smallest parameter numbers,
respectively.

Performance explanation for HighMMT. We using the official implementation from HighMMT’s
repository for reporting of HighMMT performance. We strictly follow the default configurations
reported in their paper, as shown in Tables 8, 9, and 10. For example, we use learning rates of 0.0005,
0.001, and 0.0008 for the small, medium, and large settings, respectively. Additionally, supplementary
materials have included the HighMMT code and reproduction scripts, maintaining exact replication
of their hyper-parameter settings.
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Table 8: Task performances of different models. SM4 2/3/4 layers: 2/3/4 transformer encoder layers
and replacing with SM4 layer every other layer. P-SM4 2/3/4 layers: 2/3/4 consecutive SM4 layers. SM4
early/middle/late-2: 4 transformer encoder layers and replacing the early/middle/late-2 encoder
layers with two SM4 layers.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19

SM4 2 layers 70.55 0.992 70.34 −9.92
SM4 3 layers 69.18 0.551 70.32 13.71
SM4 4 layers 71.46 1.223 70.18 −22.24

P-SM4 2 layers 69.63 0.766 71.57 2.64
P-SM4 3 layers 70.78 0.616 71.12 11.49
P-SM4 4 layers 67.47 0.976 71.68 −10.30

SM4 early two layer 68.15 0.793 71.19 −0.03
SM4 middle two layer 73.17 0.884 69.89 −2.49
SM4 late two layer 72.15 1.374 69.97 −30.33

Table 9: Detailed results of parameter and computation cost.

Small setting PUSH V&T
Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.89 5.14 0.85 32.48
SM4 0.27 2.59 0.25 17.38

Medium setting ENRICO PUSH AV-MNIST
Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.58 79.48 0.63 21.60 0.52 0.95
SM4 1.23 1.10 1.25 2.33 1.23 0.41

Large setting UR-FUNNY MOSEI MIMIC AV-MNIST
Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.52 1.51 0.52 1.65 0.52 0.67 0.52 0.95
SM4 0.76 0.38 0.76 0.53 0.76 0.15 0.76 0.43

C.1. Dataset
PUSH [90], i.e., the MUJOCO PUSH task, is a planar pushing task, in which a 7-DoF Panda Franka
robot is pushing a circular puck with its end-effector in simulation. We estimate the 2D position of
the unknown object on a table surface while the robot intermittently interacts with the object. This
dataset contains 1000 training data, 10 validation data, and 100 testing data, where each data point
is split into 29 sequences, and each sequence includes 16 consecutive steps.
V&T [91], also called ‘VISION&TOUCH’, is a real-world robot manipulation dataset that collects
visual, force, and robot proprioception data for a peg insertion task. The robot is used to insert the
peg into the hole. In this paper, we use this dataset to predict the manipulator whether contacts with
the peg in the next step, which is a binary classification task. We follow the setting of MultiBench
and use 117, 600 data points for training and the remaining 29, 400 data points for validation and
testing.
ENRICO [92] includes 20 Android app design categories. Each data point consists of the app
screenshot and the view hierarchy. The view hierarchy describes the spatial and structural layout
of UI elements of the corresponding screenshot. During training, the view hierarchy is rendered
as “wireframe”, which can be viewed as a form of set data. ENRICO contains 947 data points for
training, 219 data points for validation, and 292 data points for testing.
AV-MNIST [93] is a multimedia dataset that uses audio and image information to predict the digit
into one of 10 classes (0-9). This dataset comprises 55, 000 training data points, 5, 000 validation data
points, and 10, 000 testing data points.
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Table 10: Detailed performance comparison, parameter usage, and FLOPS of our model, HighMMT,
SOTA multi-modal multi-task learning method on MultiBench benchmark in three settings. For the
“FLOPS(G)”, “-” indicates the MultiBench does not provide official implementation. Notably, the
empty FLOPS of the “MultiBench Model (MFAS)” is due to the FLOPS of “MFAS” being dynamic
during training.

Setting Method Dataset Performance ∆(%) # Parameters (M) FLOPS (G)

Single Task

MultiBench Models (TF-LSTM) PUSH ↓ 0.574 − 23.5 25.11
MultiBench Models (LF-LSTM) PUSH ↓ 0.290 − 1.90 14.07
MultiBench Models (MULT) PUSH ↓ 0.402 − 14.6 19.20

MultiBench Models (LRTF) V&T 93.3 − 1.09 5.20
MultiBench Models (LF) V&T 93.6 − 1.20 5.20

MultiBench Models (RefNet) V&T 93.5 − 135 −
MultiBench Models (TF) ENRICO 46.6 − 19.3 314.13

MultiBench Models (GradBlend) ENRICO 51.0 − 19.3 314.13
MultiBench Models (RefNet) ENRICO 44.4 − 25.7 2.67

MultiBench Models (GradBlend) AV-MNIST 68.5 − 0.29 0.50
MultiBench Models (MFAS) AV-MNIST 72.8 − 0.14 −
MultiBench Models (RefNet) AV-MNIST 70.9 − 14.1 0.25

MultiBench Models (EF-GRU) UR-FUNNY 60.2 − 3.58 3.13
MultiBench Models (MULT) UR-FUNNY 66.7 − 2.38 3.37
MultiBench Models (MCTN) UR-FUNNY 63.2 − 0.19 0.17
MultiBench Models (TF) UR-FUNNY 61.2 − 12.2 2.67

MultiBench Models (MCTN) MOSEI 76.4 − 0.19 0.15
MultiBench Models (MULT) MOSEI 82.1 − 4.75 3.35

MultiBench Models (LF-Transformer) MOSEI 80.6 − 31.5 21.60

MultiBench Models (MI-Matrix) MIMIC 67.9 − 0.801 0.005
MultiBench Models (LF) MIMIC 68.9 − 0.034 0.005

MultiBench Models (LRTF) MIMIC 68.5 − 0.008 0.005

Small
HighMMT PUSH ↓ 0.445

0.00
0.89 5.14

V&T 96.10 0.85 32.48

SM4 PUSH ↓ 0.331
12.93

0.27 2.59
V&T 96.33 0.25 17.38

Medium
HighMMT

ENRICO 53.10
0.00

0.58 79.48
PUSH ↓ 0.600 0.63 21.60

AV-MNIST 68.48 0.52 0.95

SM4
ENRICO 71.58

20.19
1.23 1.10

PUSH ↓ 0.475 1.25 2.33
AV-MNIST 71.86 1.23 0.41

Large

HighMMT
UR-FUNNY 62.00

0.00

0.52 1.51
MOSEI 78.40 0.52 1.65
MIMIC 65.60 0.52 0.67

AV-MNIST 70.60 0.52 0.95

SM4
UR-FUNNY 64.24

2.28

0.76 0.38
MOSEI 79.47 0.76 0.53
MIMIC 67.91 0.76 0.15

AV-MNIST 71.05 0.76 0.43

UR-FUNNY is the multi-modal affective computing dataset of humor detection in human speech.
Each data point of UR-FUNNY is a video with text, visual, and acoustic modalities. We train this
dataset to predict whether the current data point makes people feel positive or negative. There are
1, 166, 300, and 400 videos in the train, valid, and test data, respectively.
MOSEI [94] is the largest dataset of sentence-level sentiment analysis and emotion recognition in
real-world online videos. Each video is annotated for 9 discrete emotions (angry, excited, fearful, sad,
surprised, frustrated, happy, disappointed, and neutral) and a continuous emotion value (valence,
arousal, and dominance). We follow the MultiBench, training this dataset as a binary classification
task. We use 16, 265, 1, 869, and 4, 643 train, valid, and test data points, respectively.
MIMIC [95], i.e., theMedical InformationMart for Intensive Care III, is a freely accessible critical care
database, which records ICU patient data, including time-series and other demographic variables
in the form of tabular numerical data. We use this dataset for binary classification on whether the
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Table 11: Concatenate tokens along the batch axis.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19

Concate along batch 64.38 1.174 71.05 −23.57

Table 12: Using a single router to routing tokens for q, k, and v simultaneously.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19

qkv share routers 73.51 0.936 69.28 −5.45

patient fits any ICD-9 code in group 7 (460-519). The dataset is randomly split into 28, 970, 3, 621,
and 3, 621 data points for training, validation, and testing.
For more details of the above datasets, please refer to the [85] and their released website:
https://github.com/pliang279/MultiBench.
Results of HighMMT is running by [50] released code:
https://github.com/pliang279/HighMMT.

C.2. Fusion by Concatenate Tokens on The Sequence Dimension
Before we input tokens into our transformer backbone (several consecutive transformer encoder
layers), we concatenate tokens on the sequence dimension. Therefore, we can fuse differentmodalities
by the attention layer within each transformer encoder layer. To further illustrate that such an
operation is necessary, we additionally train the same model but concatenate tokens along the batch
axis. Our following table shows fuse modalities by concatenating tokens along the sequence axis is
positive for our tasks.
Our results in Table 11 show fuse modalities by concatenating tokens along the sequence axis is
positive for our tasks.

C.3. Independent Routing Policy between q, k, and v
Prior works [89, 96] also apply MoE in the attention layer. However, they all use a single router to
route tokens for q, k, and v simultaneously. We think such a design lacks flexibility. Therefore, in
our MoE attention layer, the router for q, k, and v is separate, which could provide a more flexible
attention mechanism. In order to support the above statement, we conduct additional experiments
in Table 12 to study the advantage of SM4 v.s. Prior MoE attention design style (q, k, v using the same
router in the MoE attention).

C.4. The Gradient Positive Sign Purity of SM4

The Gradient Positive Sign Purity [23] P of a single parameter for T tasks is defined as:

P =
1

2
(1 +

∑T
i ∆Li∑T
i |∆Li|

), (5)

where∆Li is the gradient for the task i. The Gradient Positive Sign Purity is bounded by [0, 1], which
P close to 1 or 0 indicates such parameters suffer less gradient confliction from multi-task training.
We use the trained model to collect the Gradient Positive Sign Purity of such a model. Then, we
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Figure 8: The inter-task affinity of the ‘ENRICO’ to the ‘AV-MNIST’ task (left), and the inter-task
affinity of the ‘ENRICO’ to the ‘PUSH’ task (right). The results reported are the average of three
replicates.

discrete the Gradient Positive Sign Purity value into five intervals of each parameter and count the
ratio of parameters in these five intervals.

C.5. The Task Affinity of SM4

The task affinity [87] is defined as follows:

Zt
i→j = 1−

Lj(X t, θt+1
s|i , θtj)

Lj(X t, θts, θ
t
j)

, (6)

where X t is the training batch at time-step t, θt+1
s|i is the updated shared parameters after a gradient

step with respect to the task i. θtj represents the task j’s specific parameters. For the medium setting,
we collect the task affinity by solitary training the ‘PUSH’ task for a single epoch, and then we
calculate the loss of ‘ENRICO’ and ‘AV-MNIST’ on the corresponding training data. We count the
task affinity from ‘PUSH’ to ‘ENRICO’ and ‘AV-MNIST’ every 10 epoch during training. We display
the task affinity changes with training epochs in Figure 8. The task affinity of SM4 and multi-router
SM4 is usually higher than the one of the dense model, which indicates that the MoE we proposed
alleviates the training conflict of M3TL.

C.6. The Optimal Gradient Blend of SM4

The optimal gradient blend [24] is used to re-weight the feature of each modality during multi-modal
training. The optimal gradient blend will give this modality a small weight for the modality that
is easy to prone to overfitting. The weight of each modality is bounded by [0, 1]within a task, and
the sum of all modalities for this task is 1. Therefore, the gap between different modalities within
a task indicates that the modality with a smaller weight (optimal gradient blend) tends to overfit.
We collect the optimal gradient blend of the corresponding trained model to determine whether
our proposed model can restrain the easy model from overfitting. We use a modified version of the
optimal gradient blend where the unnormalized optimal gradient blend of modality m is defined as:

wm,n
unnorm =

Lm
valid

Lm
valid − Lm

train

, (7)

where Lm
valid is the validation loss after training n epochs only using modalitym, and Lm

train is the
training loss after training n epochs only using modality m. For task i, the final optimal gradient
blend we reported is:

wi,m =
wm,n

unnorm∑M
m wm,n

unnorm

, (8)

whereM is the number of modalities of the task i.
For M3TL, the appropriate combination between modality-specific routers and task-specific routers
(multi-router SM4) helps each other better than purely using one of them (In Figure 8 and Table 13,
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Table 13: The optimal gradient blend for each task under different model architectures.

Model ENRICO PUSH AV-MNIST
image set image force proprioception control image audio

SM4 0.48 0.52 0.00 0.37 0.32 0.31 1.00 0.00
- Dense Model (w/o MoE) 0.61 0.39 0.00 0.36 0.32 0.31 1.00 0.00
- w/o Self-attention MoE 0.63 0.37 0.00 0.37 0.32 0.30 1.00 0.00
- w/o FFN MoE 0.75 0.25 0.00 0.37 0.32 0.32 1.00 0.00

multi-router SM4 0.71 0.29 0.00 0.35 0.32 0.32 1.00 0.00
P-Modality-router SM4 0.73 0.27 0.00 0.37 0.31 0.32 1.00 0.00
P-Task-router SM4 0.80 0.20 0.00 0.36 0.32 0.31 1.00 0.00

Table 14: The robustness comparison between SM4 and highMMT. We show the δ value, which is
defined as the value of performance drop when missing one modality. A smaller δ value indicates
better robustness against the modality missing.

UR-FUNNY Missing Text Missing Video Missing Audio
SM4 1.16 4.77 0.92

HighMMT 8.22 10.30 6.62

MOSEI Missing Image Missing Audio Missing Text
SM4 0.39 0.82 0.92

HighMMT 10.45 17.38 12.23

MIMIC Missing Table Missing Timeseries
SM4 8,71 17.99

HighMMT 9.72 11.67

AV-MNIST Missing Image Missing Audio
SM4 60.6 13.60

HighMMT 55.86 36.27

the Inter-Task Affinity and the optimal gradient blend of multi-router SM4 is better than models which
only use modality-specific routers (P-Modality-router SM4) or task-specific routers (P-Task-router
SM4)).

C.7. Modality Missing Robustness
We conduct experiments to examine the robustness of SM4 to missing modalities in the large setting.
As shown in Table 14, we assess SM4 and HighMMTwith the model UR-FUNNY under three missing
scenarios of missing text, video, and audio, respectively. Our results imply that SM4 has relatively
better robustness towards missing modalities.

C.8. Expert Selection Visualization
This section explores how tokens are distributed across different tasks and modalities by the routing
policy of the SM4. We show the expert selection of each routing policy under the testing distribution
in Figure 9, Figure 10, and Figure 11. In these three settings, our routers work well, and most experts
handle all modalities and tasks. Meanwhile, several experts focus on specific tasks.
For the large setting, we find out that the routing policy tends to route tokens to several specific
experts, which also successfully proves MTL’s MoE separate gradient conflict parameters. Especially
for the ‘MIMIC’ dataset, only 2 to 4 experts are activated for this task.
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Figure 9: The expert selection of the small setting of the last SM4 layer. The first two rows show the
token distribution of different modalities for the ‘PUSH’ dataset and the ‘V&T’ dataset. The last row
shows the token distribution across different tasks within three types of SMoA and SMoE.
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Figure 10: The expert selection of the medium setting of the last SM4 layer. The first three rows show
the token distribution of different modalities for the ‘ENRICO’ dataset, the ‘AV-MNIST’ dataset, and
the ‘PUSH’ dataset. The last row shows the token distribution across different tasks within three
types of SMoA and SMoE.
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Figure 11: The expert selection of the large setting of the last SM4 layer. The first four rows show
the token distribution of different modalities for the ‘AV-MNIST’ dataset, the ‘MOSEI’ dataset, the
‘UR-FUNNY’ dataset, and the ‘MIMIC’ dataset. The last row shows the token distribution across
different tasks within three types of SMoA and SMoE.
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Table 15: Table of the modal and training setups on the small setting tasks: PUSH and V&T.

Model Setup

Name of Hyperparameter Value
PUSH V&T

Perceiver Unimodal
Encoder

Sequence Length of Latent 20

Latent Dimension 64

Cross Attention Head 1

Cross Head Dim 64

Self-Attention Head 8

Self Head Dim 64

MoE&MoA&Dense
Encoder Layer

Depth 1

Self-Attention Head 8

Self Head Dim 8

Experts Number 16

Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 256/32 320/1

Training

Optimizer Adam
Learning rate 0.0005

Learning Scheduler N/A
Weight Decay 0.0

Load&Importance
Balancing Loss Weight 0.1

Pretrain N/A
Max Epoch 100

Training loss weight 100.0 1.0

Evaluation weight 100.0 1.0

Batchsize 28 64

Loss Function MSE CrossEntropy

MultiBench
Input Dimension

Gripper Pos: 16×3
Gripper Sensors: 16× 7
Image: 16× 32× 32
Control: 16× 7

Image: 128× 128× 3
Force: 6× 32
Proprio: 8
Depth: 128× 128
Action: 4

Dataset

Perceiver Input
Channel Size

Gripper Pos: 3
Gripper Sensors: 7
Image: 1
Control: 7

Image: 3
Force: 32
Proprio: 8
Depth: 1
Action: 4

Perceiver Input
Extra Axis

Gripper Pos: 1
Gripper Sensors: 1
Image: 3
Control: 1

Image: 2
Force: 1
Proprio: 1
Depth: 2
Action: 1

Perceiver Input
num_freq_bands

Gripper Pos: 6
Gripper Sensors: 6
Image: 6
Control: 6

Image: 6
Force: 6
Proprio: 6
Depth: 6
Action: 6

Perceiver Input
max_freq

Gripper Pos: 1
Gripper Sensors: 1
Image: 1
Control: 16×7

Image: 1
Force: 1
Proprio: 1
Depth: 1
Action: 1
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Table 16: Table of the modal and training setups on the medium setting tasks: ENRICO, PUSH and
AV-MNIST.

Model Setup

Name of Hyperparameter Value
ENRICO PUSH AV-MNIST

Perceiver Unimodal
Encoder

Sequence Length of Latent 12

Latent Dimension 64

Cross Attention Head 1

Cross Head Dim 64

Self-Attention Head 8

Self Head Dim 64

MoE&MoA&Dense
Encoder Layer

Depth 1

Self-Attention Head 8

Self Head Dim 8

Experts Number 32

Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 128/20 256/32 128/10

Training

Optimizer Adam
Learning rate 0.001

Learning Scheduler CosineAnnealingLR
Weight Decay 0.0

Load&Importance
Balancing Loss Weight 0.05

Pretrain Training PUSH for 100 epochs first
Max Epoch 100

Training loss weight 10.0 10.0 0.8

Evaluation weight 1.0 10.0 1.0

Batchsize 32 32 32

Loss Function CrossEntropy MSE CrossEntropy

MultiBench
Input Dimension

Image: 256× 128× 3
Set: 256× 128× 3

Gripper Pos: 16× 3
Gripper Sensors: 16× 7
Image: 16× 32× 32
Control: 16× 7

Colorless Image: 28× 28
Audio Spectogram:
112× 112

Dataset

Perceiver Input
Channel Size

Image: 384
(cut into 16× 8 rectangles)
Set: 384
(cut into 16× 8 rectangles)

Gripper Pos: 3
Gripper Sensors: 7
Image: 16
(cut into 4× 4 squares)
Control: 7

Colorless Image: 16
(cut into 4× 4 squares)
Audio Spectogram: 256
(cut into 16× 16 squares)

Perceiver Input
Extra Axis

Image: 2
Set: 2

Gripper Pos: 1
Gripper Sensors: 1
Image: 2
Control: 1

Colorless Image: 2
Audio Spectogram: 2

Perceiver Input
num_freq_bands

Image: 6
Set: 6

Gripper Pos 6:
Gripper Sensors: 6
Image: 6
Control: 6

Colorless Image: 6
Audio Spectogram: 6

Perceiver Input
max_freq

Image: 1
Set: 1

Gripper Pos: 1
Gripper Sensors: 1
Image: 1
Control: 1

Colorless Image: 1
Audio Spectogram: 1
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Table 17: Table of the modal and training setups on the large setting include tasks: UR-FUNNY,
MOSEI, MIMIC, and AV-MNIST.

Model Setup

Name of Hyperparameter Value
UR-FUNNY MOSEI MIMIC AV-MNIST

Perceiver Unimodal
Encoder

Sequence Length of Latent 12

Latent Dimension 64

Cross Attention Head 1

Cross Head Dim 64

Self-Attention Head 8

Self Head Dim 64

MoE&MoA&Dense
Encoder Layer

Depth 1

Self-Attention Head 8

Self Head Dim 8

Experts Number 16

Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 192/2 192/2 128/2 128/10

Training

Optimizer Adam
Learning rate 0.0008

Learning Scheduler N/A
Weight Decay 0.001

Load&Importance
Balancing Loss Weight 0.1

Pretrain N/A
Max Epoch 100

Training loss weight 0.2 1.0 1.2 0.9

Evaluation weight 1.0 1.0 1.0 1.0

Batchsize 32 32 20 40

Loss Function CrossEntropy CrossEntropy CrossEntropy CrossEntropy

MultiBench
Input Dimension

Image: 20× 371
Audio: 20× 81
Text: 50× 300

Image: 50× 35
Audio: 50× 74
Text: 50× 300

Static: 5
Time-series: 24× 12

Colorless Image: 28× 28
Audio Spectogram:
112× 112

Dataset

Perceiver Input
Channel Size

Image: 371
Audio: 81
Text: 300

Image: 35
Audio: 74
Text: 300

Static: 1
Time-series: 12

Colorless Image: 16
(cut into 4× 4 squares)
Audio Spectogram: 256
(cut into 16× 16 squares)

Perceiver Input
Extra Axis

Image: 1
Audio: 1
Text: 1

Image: 1
Audio: 1
Text: 1

Static: 1
Time-series: 1

Colorless Image: 2
Audio Spectogram: 2

Perceiver Input
num_freq_bands

Image: 3
Audio: 3
Text: 3

Image: 3
Audio: 3
Text: 3

Static: 6
Time-series: 3

Colorless Image: 6
Audio Spectogram: 6

Perceiver Input
max_freq

Image: 1
Audio: 1
Text: 1

Image: 1
Audio: 1
Text: 1

Static: 1
Time-series: 1

Colorless Image: 1
Audio Spectogram: 1
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