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Abstract

We present a detailed study of H-consistency
bounds for score-based ranking. These are upper
bounds on the target loss estimation error of a pre-
dictor in a hypothesis set J{, expressed in terms
of the surrogate loss estimation error of that pre-
dictor. We will show that both in the general pair-
wise ranking scenario and in the bipartite ranking
scenario, there are no meaningful J(-consistency
bounds for most hypothesis sets used in practice
including the family of linear models and that of
the neural networks, which satisfy the equicontin-
uous property with respect to the input. To come
up with ranking surrogate losses with theoretical
guarantees, we show that a natural solution con-
sists of resorting to a pairwise abstention loss in
the general pairwise ranking scenario, and simi-
larly, a bipartite abstention loss in the bipartite
ranking scenario, to abstain from making predic-
tions at some limited cost c. For surrogate losses
of these abstention loss functions, we give a series
of JH-consistency bounds for both the family of
linear functions and that of neural networks with
one hidden-layer. Our experimental results illus-
trate the effectiveness of ranking with abstention.

1. Introduction

In many applications, ranking is a more appropriate formula-
tion of the learning task than classification, given the crucial
significance of the ordering of the items. As an example, for
movie recommendation systems, an ordered list of movies
is preferable to a comprehensive list of recommended titles,
since users are more likely to watch those ranked highest.

The problem of learning to rank has been studied in a large
number of publications. Ailon & Mohri (2008; 2010) distin-
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guish two general formulations of the problem: the score-
based setting and the preference-based setting. In the score-
based setting, a real-valued function over the input space
is learned, whose values determine a total ordering of all
input points. In the preference-based setting, a pairwise
preference function is first learned, typically by training a
classifier over a sample of labeled pairs; next, that function
is used to derive an ordering, potentially randomized, of any
subset of points.

This paper deals with the score-based ranking formulation
both in the general ranking setting, where items are not as-
signed any specific category, and the bipartite setting, where
they are labeled with one of two classes. The evaluation of
a ranking solution in this context is based on the average
pairwise misranking metric. In the bipartite setting, this
metric is directly related to the AUC (Area Under the ROC
Curve), which coincides with the average correct pairwise
ranking (Hanley & McNeil, 1982; Cortes & Mohri, 2003),
also known as the Wilcoxon-Mann-Whitney statistic.

For most hypothesis sets, directly optimizing the pairwise
misranking loss is intractable. Instead, ranking algorithms
resort to a surrogate loss. As an example, the surrogate loss
for RankBoost (Freund et al., 2003; Rudin et al., 2005) is
based on the exponential function and that of SVM ranking
(Joachims, 2002) on the hinge loss. But, what guarantees
can we rely on when minimizing a surrogate loss instead of
the original pairwise misranking loss?

The property often invoked in this context is Bayes consis-
tency, which has been extensively studied for classification
(Zhang, 2004; Bartlett et al., 2006; Tewari & Bartlett, 2007).
The Bayes consistency of ranking surrogate losses has been
studied in the special case of bipartite ranking: in partic-
ular, Uematsu & Lee (2017) proved the inconsistency of
the pairwise ranking loss based on the hinge loss and Gao
& Zhou (2015) gave excess loss bounds for pairwise rank-
ing losses based on the exponential or the logistic loss (see
also (Menon & Williamson, 2014)). A related but distinct
consistency question has been studied in several publica-
tions (Agarwal et al., 2005; Kotlowski et al., 2011; Agarwal,
2014). It is one with respect to binary classification, that
is whether a near minimizer of the surrogate loss of the
binary classification loss is a near minimizer of the bipartite
misranking loss (Cortes & Mohri, 2003).
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However, as recently argued by Awasthi, Mao, Mohri, and
Zhong (2022a), Bayes consistency is not a sufficiently in-
formative notion since it only applies to the entire class of
measurable functions and does not hold for specific subsets,
such as sub-families of linear functions or neural networks.
Furthermore, Bayes consistency is solely an asymptotic con-
cept and does not offer insights into the performance of
predictors trained on finite samples. In response, the au-
thors proposed an alternative concept called J-consistency
bounds, which provide non-asymptotic guarantees tailored
to a given hypothesis set J{. They proceeded to establish
such bounds within the context of classification both in bi-
nary and multi-class classification (Awasthi et al., 2022a;b),
see also (Mao et al., 2023). These are stronger and more
informative guarantees than Bayes consistency.

But, can we derive H-consistency guarantees for ranking?
In other words, can we find surrogate losses for pairwise
misranking whose approximate estimation error minimiza-
tion guarantees approximate minimization of the pairwise
or bipartite misranking loss? We will show that, surpris-
ingly, this is not possible for most hypothesis sets used in
practice, including the family of constrained linear models
or that of the constrained neural networks, or any family
of equicontinuous functions with respect to the input. In
fact, we will give a relatively simple example where the pair-
wise misranking error of the RankBoost algorithm remains
significant, even after training with relatively large sample
sizes. How can we then come up with ranking surrogate
losses with theoretical guarantees?

We will show that a natural solution consists of resorting to
a pairwise abstention loss in the general pairwise ranking
scenario and, similarly, a bipartite abstention loss in the
bipartite ranking scenario, to abstain from making predic-
tions at some limited cost c. For surrogate losses of these
abstention loss functions, we give a series of J{-consistency
bounds for both the family of linear functions and that of
neural networks with one hidden-layer. A key term ap-
pearing in these bounds is the minimizability gap, which
measures the difference between the best-in-class expected
loss and the expected infimum of the pointwise expected
loss. This plays a crucial role in these bounds and we give a
detailed analysis of these terms. We also present the results
of experiments illustrating the effectiveness of ranking with
abstention.

Comparison with previous work. Here, we briefly dis-
cuss the relationship of prior work on JH-consistency bounds
(Awasthi et al., 2022a;b; Mao et al., 2023; Zheng et al., 2023)
with ours. Awasthi et al. (2022a) studied JH-consistency
bounds in the binary classification setting. They provided a
series of positive results for common binary surrogate losses
with the hypothesis sets of linear models and one-hidden-
layer ReLLU networks. Awasthi et al. (2022b); Mao et al.

(2023); Zheng et al. (2023) studied H-consistency bounds
in the context of multi-class classification. Awasthi et al.
(2022b) provided an extensive analysis of J{-consistency
bounds for multi-class max losses such as those of Cram-
mer & Singer (2001), sum losses such as that of Weston
& Watkins (1998), and constrained losses, such as the loss
function adopted by Lee et al. (2004) in the analysis of multi-
class SVM. They further gave the analysis of J{-consistency
bounds for all these multi-class losses in the adversarial
setting. More recently, Mao et al. (2023) presented a theo-
retical analysis of a broad family of loss functions, comp-
sum losses, that includes cross-entropy (or logistic loss)
(Verhulst, 1838; 1845; Berkson, 1944; 1951), generalized
cross-entropy (Zhang & Sabuncu, 2018), the mean abso-
lute error (Ghosh et al., 2017) and other cross-entropy-like
loss functions. They gave tight H-consistency bounds for
these loss functions with any complete hypothesis set. They
also introduced new smooth adversarial comp-sum losses
in the adversarial setting and proved J{-consistency bounds
guarantees for these loss functions. Zheng et al. (2023) also
provided H-consistency bounds for the logistic loss with
the hypothesis set of linear models, under some distribu-
tional assumptions. They used these bounds to compare
multi-class logistic regression and naive Bayes methods.

Our paper primarily concentrates on score-based ranking
with a binary label space, setting it apart from the multi-class
scenario (Awasthi et al., 2022b; Mao et al., 2023; Zheng
et al., 2023). The primary technical differences and chal-
lenges between the ranking and binary classification settings
(Awasthi et al., 2022a) stem from the fundamental distinc-
tion that ranking loss functions take as argument a pair of
samples rather than a single one, as is the case for binary
classification loss functions. This makes it more challeng-
ing to derive J{-consistency bounds, as upper bounding the
calibration gap of the target loss by that of the surrogate loss
becomes technically more difficult.

Additionally, this fundamental difference leads to a nega-
tive result for ranking, as J-consistency bounds cannot be
guaranteed for most commonly used hypothesis sets, in-
cluding the family of constrained linear models and that
of constrained neural networks, both of which satisfy the
equicontinuity property concerning the input. As a result, a
natural alternative involves using ranking with abstention,
for which J{-consistency bounds can be proven. In the
abstention setting, an extra challenge lies in carefully mon-
itoring the effect of a threshold -y to relate the calibration
gap of the target loss to that of the surrogate loss.

Furthermore, the bipartite ranking setting introduces an
added layer of complexity, as each element of a pair of
samples has an independent conditional distribution, which
results in a more intricate calibration gap.

Structure of the paper. The remaining sections of this pa-
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per are organized as follows. In Section 2, we study general
pairwise ranking. We first prove several negative results
in Section 2.2 showing that there exists no meaningful J(-
consistency bound for general surrogate loss functions with
an equicontinuous hypothesis set J{. We then present a se-
ries of positive results by considering a family of piecewise
continuous functions (Section 2.3), which we will simply
refer to as piecewise functions, and the family of all measur-
able functions (Section 2.4). In Section 3, we study general
pairwise ranking with abstention. We provide a series of
explicit H-consistency bounds in the case of the pairwise
abstention loss, with multiple choices of the surrogate loss
and for both the family of linear functions (Section 3.1) and
that of neural networks with one hidden-layer (Section 3.2).
We also study bipartite ranking in Section 4. Here too,
we provide both negative results with general hypothesis
sets (Section 4.2) and positive results with the family of
all measurable functions (Section 4.3). We then present
H-consistency bounds for bipartite ranking with abstention
in Section 5, for linear hypothesis sets (Section 5.1) and
the family of neural networks with one hidden-layer (Sec-
tion 5.2). In Section 6, we report the results of experiments
illustrating the effectiveness of ranking with abstention.

We give a detailed discussion of related work in Appendix A.

2. General Pairwise Ranking

In this section, we analyze the properties of surrogate losses
for the general pairwise misranking loss. We begin by in-
troducing the necessary definitions and concepts. Next, we
present negative results demonstrating the impossibility of
deriving non-trivial J{-consistency bounds for widely used
surrogate losses and hypothesis sets. In contrast, we give
positive results for a family of piecewise functions and that
of all measurable functions.

2.1. Preliminaries

We study the learning scenario of score-based ranking in
the general pairwise ranking scenario (e.g. see (Mohri et al.,
2018)). Let X denote the input space and Y = {-1,+1} the
label space. We denote by JH a hypothesis set of functions
mapping from X to R. The general pairwise misranking
loss Lo_1 is defined for all h in 3, 2,2’ in X and y in Y by

L0_1(h,$,l‘,,y) = ]ly¢sign(h(x’)—h(z))a (1)

where sign(u) = 1,50 — Ly<o. Thus, h incurs a loss of
one on the labeled pair (z,z’,y) when it ranks the pair
(x,x") opposite to the sign of y, where, by convention,
2’ is considered as ranked above x when h(z’) > h(x).
Otherwise, the loss incurred is zero. Optimizing the pairwise
misranking loss Ly_; is intractable for most hypothesis sets.
Thus, general ranking algorithms rely on a surrogate loss
function L instead of Ly_;. We will analyze the properties

of such surrogate loss functions.

Let D denote a distribution over X x X x Y. We denote by
n(z,z") = DY = +1|(X, X") = (z,2")) the conditional
probability of Y = +1 given (X, X") = (z,2"). We also
denote by R (h) the expected L-loss of a hypothesis h and
by R} () its infimum over H:

R(h)= E (L)) R0 = inf Ru(h)

z,z’,y)~D
H-consistency bounds. We will analyze the H-consistency
bounds properties (Awasthi et al., 2022a) of such surrogate
loss functions. An JH{-consistency bound for a surrogate loss
L is a guarantee of the form:

VheH, Rio,(h) =R, (30 < f(RL(h) - RL(FD),

for some non-decreasing function f:R, — R,. This pro-
vides a quantitative relationship between the estimation loss
of Ly—1 and that of the surrogate loss L. The guarantee is
stronger and more informative than Bayes consistency, or
H-consistency, J{-calibration or the excess error bounds
(Zhang, 2004; Bartlett et al., 2006; Steinwart, 2007; Mohri
et al., 2018) discussed in the literature.

A key quantity appearing in J{-consistency bounds is the
minimizability gap, which is the difference between the best-
in-class expected loss and the expected pointwise infimum
of the loss:

ML) = R{O0 - E | inf E[L(ha.o',) | (2.2)]]

By the super-additivity of the infimum, the minimizability
gap is always non-negative.

We will specifically study the hypothesis set of all mea-
surable functions, J(,y;; that of linear hypotheses, 3, =
{zw 2+ |lw], < W,b| < B}; and the hypothesis set
of one-hidden-layer ReLU networks: Hnn = {at —
i ui(ws -z +b5), | July < A Jw;lly < Wbl < BY,
where (-); = max(+,0). A table of notation (Table 7) is pre-
sented in Appendix B. We will say that a hypothesis set is
regular for general pairwise ranking if, for any x + a2’ € X,
we have {sign(h(z') — h(z)):h € H} = {-1,+1}. Hypoth-
esis sets commonly used in practice all admit this property.

2.2. Negative Results

Here, we give a negative result for a broad family of surro-
gate losses and hypothesis sets.

The general pairwise ranking surrogate losses widely used
in practice admit the following form:

L‘?(hvxaxlvy) = (I)(y(h(x,) - h(l‘))), (2

where @ is a non-increasing function that is continuous at
0 and upper bounding v — 1,<9 over R. The following
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result shows that these surrogate losses do not benefit from
a non-trivial J{-consistency bound when the hypothesis set
used is equicontinuous, which includes most hypothesis sets
used in practice, in particular the family of linear hypotheses
and that of neural networks.

Theorem 2.1 (Negative results). Assume that X contains
an interior point xo and that H is regular for general pair-
wise ranking, contains O and is equicontinuous at xo. If
for some function f that is non-decreasing and continu-
ous at 0, the following bound holds for all h € H and any
distribution,

Rig, (h) =R, (F0) < F(Rig (h) = RE, (30)),
then, f(t) > 1 foranyt > 0.

Theorem 2.1 shows that for equicontinuous hypothesis sets,
any H-consistency bound is vacuous, assuming that f is a
non-decreasing function continuous at zero. This is because
for any such bound, a small Lg-estimation loss does not
guarantee a small Ly_;-estimation loss, as the right-hand
side remains lower-bounded by one.

The proof is given in Appendix D, where we give a
simple example on pairs whose distance is relatively
small for which the standard surrogate losses includ-
ing the RankBoost algorithm (Lexp) fail (see also Sec-
tion 6). It is straightforward to see that the assump-
tions of Theorem 2.1 hold for the case H = Hj, or
H = Hyn. Indeed, we can take zg = 0 as the inte-
rior point and thus for any h € Hyy, |h(z) - h(zo)| =
|lw-z| < € for any x € {xex:|\x\|p<%}, which
implies that Jj;;, is equicontinuous at xy. As
with the linear hypothesis set, for any h € Hyn,
[h(x) = h(xo)| = [£foy wj(w; @+ by)e = Ty uj(by)+] =
|Z?:1 w;i[(w;-x+bj)s — (bj)+]| < AWHJIHP < ¢, for any
x € {zeX: x|, < 55} which implies that Hyy is
equicontinuous at x(. In fact, Theorem 2.1 holds for any
family of Lipschitz constrained neural networks, since a
family of functions that share the same Lipschitz constant is
equicontinuous.

Is is straightforward to verify that the proof of Theorem 2.1
also holds in the deterministic case where 7(x, ") equals 0
or 1 for any x # ’, which yields the following corollary.

Corollary 2.2 (Negative results in the deterministic
case). In the deterministic case where n(x,xz") equals 0
or 1 for any x # ', the negative result of Theorem 2.1 still
holds.

2.3. Positive Results: A Family of Piecewise Functions

In this section, we seek alternative positive results. In light
of the negative results just presented, we need to consider
hypothesis sets that are not equicontinuous. A natural choice

is a family of piecewise functions. For any fixed parame-
ter 7 > 0, we consider the family of piecewise functions
How = {u g a(]l1t¢xA\|u\|>T - ]lu:tx/\HuHST) | reX,ae€ R}
Then, we have the following positive result in the determin-
istic setting.

Theorem 2.3 (Positive results for piecewise functions).
Assume that O satisfies lim,, 1. ®(u) = 0. Then, for all
h € Hyw and any deterministic distribution,

:RLO—I (h) - Rig_l (}CPW)
SR, (h) - szp (Hpw) + Miy (FHpw) = Mo,y (Hpw)-

The proof is included in Appendix E. Theorem 2.3 provides
a meaningful H{-consistency bound for the hypothesis set
of piecewise functions: modulo the minimizability gaps,
which are zero when the best-in-class error coincides with
the Bayes error or can be small in some other cases, reducing
the surrogate estimation loss appearing on the right-hand
side guarantees a small target estimation loss (left-hand
side).

One example of the corresponding hypotheses in H,, is
u e Lyysr — Logjujj<r» Where a = 1 and @ = 0. This is a
family of piecewise functions based on the magnitude of
u in two distinct ranges. Note that such a hypothesis set
is not typical and in particular does not admit equicontinu-
ity, a necessary condition according to our negative results.
Nevertheless, it provides an example of a hypothesis set
supported by J{-consistency bounds in the general ranking
setting. We will further show in section 3 that, for a standard
hypothesis set such as an equicontinuous one, we need to
resort to ranking with abstention. This approach will be
the primary focus of the positive results presented in our
paper, as it allows us to leverage hypothesis sets that are
more commonly used in real-world applications.

2.4. Positive Results: J{,;-Consistency Bounds

In this section, we also present a series of positive results in
the case of the family of all measurable functions, J,j;.

We prove J{,j-consistency bounds for the surrogate loss
Ls when using as auxiliary function ® the hinge-loss, the
p-margin loss, the exponential loss, the logistic loss, the
squared hinge-loss, or the sigmoid loss defined in Table 1.
Table 8 (Appendix F) gives the full expression of our H,;-
consistency upper bounds, with detailed proofs given in
Appendix F. Table 1 gives the expression of the correspond-
ing minimizability gaps. As an example, we have

My, (Han)
SR, (Han) ~Eox oo [V ) |

In Appendix G, we show that these minimizability gaps are
in general not null for J{ = 3, in general pairwise ranking,
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Table 1: Auxiliary functions and the minimizability gaps of their pairwise ranking and bipartite ranking surrogates.

Auxiliary Functions ‘ Definitions Mg (Han) Mg, (Han)
Hinge Bpinge(t) = max{0,1 -t} (12) (25)
p-Margin ®,(t) = min{Lmax{o, 1- i}} p>0 (14 Q27)
Exponential Porp(t) =€ (16) (29)
Logistic Prog(t) =logy(1+e7") (18) 31)
Squared hinge Do (t) = (1-1)* 14 (20) (33)
Sigmoid Dy (t) =1 - tanh(kt), k>0 (22) (35)

in contrast with binary classification where the minimizabil-
ity gaps for 3, are zero. This is because the distribution
order for general pairwise ranking cannot always be induced
by a real-valued function. We first introduce the definition
of that order. Next, we characterize the distribution order
that can be induced by a predictor i, which leads to the zero
minimizability gap of pairwise misranking loss.

Definition 2.4. The distribution order is a homogeneous

D
relation < over X, defined as follows for all x,z’ € X,
<1 = n(z,2") 2n( x).

We say that a hypothesis h induces the distribution order if,

D
forall z,2" € X, (h(x) < h(z")) holds iff (z < z"). We say
that a subset X c X is dense countable in X with respect to
the distribution order if X is countable and, for all z,z" € X

e D D PR
satisfying < 2’ and not 2’ < z, there exists T € X such
D_D ,
thatz <= < x'.

The following result characterizes the distribution order
induced by a hypothesis h.

Theorem 2.5 (Characterization of distribution order).
The distribution order is transitive and there exists a dense
countable subset X c X with respect to the distribution order
if and only if there exists h € Hyy inducing the distribution
order.

A special case of Theorem 2.5 is when the distribution order
is a total order and 7)(x, z") is continuous.

Theorem 2.6. Assume that the distribution order is a total
order and n(z,x") is continuous on X x X. Then, there
exists h € Hy inducing the distribution order.

Theorem 2.5 and Theorem 2.6 characterize cases where the
distribution order can be induced by a hypothesis. These re-
sults actually characterize the case where the minimizability
gap of the pairwise misranking loss is null, since we will see
immediately that, when the distribution order is induced by
a hypothesis h € J, the minimizability gaps of the pairwise
misranking loss will be zero.

Theorem 2.7. Assume that for all z,2’ € X, n(x,z') +
n(a’,x) = 1. Then, for any hypothesis set H, if there exists

h € H inducing the distribution order, the minimizability
gap of the pairwise misranking loss is null, M ,_, (3) = 0.

The proofs of Theorems 2.5, 2.6 and 2.7 are presented in
Appendix H. These results provide a detailed analysis of the
distribution order and the minimizability gaps appearing in
the J,j-consistency bounds in general pairwise misrank-
ing. However, learning algorithms are not based on J{,;.
Instead, they rely on a restricted hypothesis set such as Jj;,
or Hnn. To come up with ranking surrogate losses with
theoretical guarantees for such hypothesis sets, a natural
solution consists of resorting to a pairwise abstention loss.

3. General Pairwise Ranking with Abstention

The negative results of the previous section suggest that
general pairwise ranking with theoretical guarantees is dif-
ficult with common hypothesis sets. The inherent issue
for pairwise ranking is that for equicontinuous hypotheses,
when z and x’ are arbitrarily close, the confidence value
|h(x) — h(x")| can be arbitrary close to zero. This motivates
us to study the learning scenario of general pairwise ranking
with abstention.

In this scenario, the learner abstains from making a predic-
tion on input pair (x,z") if the distance between x’ and x
is relatively small, in which case a cost c is incurred. let
| - | denote the norm adopted, which is typically an £,-norm,
p € [1,+00]. The pairwise abstention loss is defined as
follows for any h € H and (z,2',y) e X x X x Y:

L33 (b, 2" y)

= Lyssign(a(e)-h@) Ljo-arj>7 + CLjo-arjsy,  B)
where 1 is a given threshold value. For vy = 0, L3 reduces
to the pairwise misranking loss Ly_; without abstention. Let
p,q € [1,+00] be conjugate numbers, that is % + % = 1.
Without loss of generality, we consider X = Bg(l) and
[-] in (3) to be the ¢, norm. The corresponding conjugate
¢4 norm is adopted in the hypothesis sets Hj;, and Hyw.
In the following, we will prove H-consistency bounds for
Ls when using as an auxiliary function ® the hinge-loss,
the p-margin loss, the exponential loss, the logistic loss,
the squared hinge-loss or the sigmoid loss with respect to
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Table 2: Jj;,-consistency upper bounds for general pairwise abstention.

Loss function  HH);,-consistency upper bound

W

Texp(Ria,., (h) - RE,. (Hin) + M, (Hiin) ) = Mg (Fiin) where D (£) = max{m, 2(W71) t}
Piog(Rea,,, (1) =R{,  (Hin) + Mo, (Hiin)) = Mygey (Hiin) Where Diog (#) = mao{ /2, 2( 54 ) ¢
Taa(Rig,, (h) = RE,  (Hiin) +Mig,, (Fin) ) = Mygor (Hi) where Tuq (£) = max{v/2, it + "2 |

L, (M)=R{, — (Fin)+Mig  (Hiin)
L hinge hinge hinge _ M (9_{ A )
Phinge min{W~,1} LEE; lin
o(Rig, (N-RT, ()4 My (i)
Lq)p min{W-~,p} - ML%E? (g{lin)
Lo,
L<I>1og
Lo
= Rig  (B)=-R[_ (Hin)+Mig  (Hin)
L sig Psig sig -M (j‘f . )
Dig tanh(kW+) Lgbs lin

Table 3: J{nN-consistency upper bounds for general pairwise abstention.

Loss function ~ Hnn-consistency upper bound

Rig,, (-, (Ftan) Mg, (Fnn)
Phinge - q’rlning{AW’y,l} - - MLgﬁ ('-HNN)
Pl Rig (R)=R{, (FINN)+Mig (FHnn)
Lq)p ( = I;(I;I:){AW’Y,p} - ) - MLSEI (:}CNN)
2AW
L Tesxp(Ria,., (h) - Re, (FHaw) + M, (}(NN)) — Myes (Fxx) where Doy () = max{\/ﬂ, 2( St t}
exp AW~
L r,og(ﬂq%g (h) =R, (Foan) + My, (%NN)) — Me (H) where Tiog (1) = max{m, z(ﬁ) t}
log og € 1
L qu(:RLq’sq (h) = :Rt‘bsq (U'CNN) + Ml—‘bsq (j‘fNN)) - MLSET (g'CNN) where qu(t) = max{\/f, ﬁ + %}
Dsq RL‘psig (h)_:RE‘?q (}CNN)+ML‘I)=ig (Hnn)
L‘I’sig te;nl‘;ll(kAW'y) - MLSET (I}CNN)

LS‘E?, in the case of the linear hypothesis set J{j;;, or that of
one-hidden-layer ReLLU networks Hyn.

3.1. Linear Hypotheses

Table 2 supplies the H);,-consistency upper bounds for Lg
when using as ® the auxiliary functions in Table 1. The
bounds of Table 2 depend directly on the threshold value +,
the parameter WV in the linear models and parameters of the
loss function (e.g., k in sigmoid loss).

As an example, when using as ® the exponential loss func-
tion, modulo the minimizability gaps (which are zero when
the best-in-class error coincides with the Bayes error or can
be small in some other cases), the bound implies that if
the surrogate estimation loss Ry, (h) - IRE%XP (Hyin) is
reduced to e, then, the target estimation loss IR'—SEi (h) -
R

0-1
small values of ¢, the dependence of I'ex, on € exhibits a
square root relationship. However, if this is not the case,
the dependence becomes linear, subject to a constant factor
depending on the threshold value «y and the parameter W in
the linear models.

(3in) is upper bounded by I'ex, (€). For sufficiently

The proofs consist of analyzing calibration gaps of the target
loss and that of each surrogate loss and seeking a tight lower
bound of the surrogate calibration gap in terms of the target

one. As an example, for & = &, we have the tight lower
bound AGL%XPJ{“H (h7 x, .’IJ') > AGL(DCXP,Q{HD (ho, x, x') =
WBXP(AGLSE}}C““ (h,z, :z:’)), where hg can be the null hy-
pothesis when ACpabvs g, (h,z,2") # 0 and Wey, is an

increasing and piecewise convex function on [0, 1] defined
2Wey
e -1

1-v1-t2, t< Sweg

by Wexp (t) = ] — bl Wy _ 1=t Wy cew .y - The
gl Tl U aweg

detailed derivation and the expression of the corresponding
minimizability gaps are included in Appendix K.1.

3.2. One-hidden-layer ReLLU Neural Networks

Table 3 gives Hnn-consistency upper bounds for Lg when
using as ® the auxiliary functions in Table 1. Different
from the bounds in the linear case, all the bounds in Table 3
not only depend on W, but also depend on A, which is
a parameter appearing in Hny. The proof is similar to
that of the linear case. The detailed derivation and the
expression of the corresponding minimizability gaps are
given in Appendix K.2.

As with the linear case, taking the exponential loss func-
tion ®¢y, as an example, modulo the minimizability gaps,
the bound implies that if the surrogate estimation loss
Rig,,, (B) - Rf@exp (HnN) is reduced to ¢, then, the target

estimation loss :R.Lgb? (h) - R} abe (Hnn) is upper bounded
- 0-1
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by Texp(€). For sufficiently small values of e, the depen-
dence of I'cxp, on € exhibits a square root relationship. How-
ever, if this is not the case, the dependence becomes linear,
subject to a constant factor depending on the threshold value
v, the parameter W, and an additional parameter A in the
one-hidden-layer ReLU networks.

4. Bipartite Ranking

In this section, we analyze the properties of surrogate loss
functions in the bipartite ranking setting. We first introduce
the relevant definitions and concepts. Next, as in the general
pairwise ranking setting, we present general negative results,
as well as positive results for the family of all measurable
functions.

4.1. Preliminaries

In the bipartite setting, each point = admits a label y €
{-1,+1}. The bipartite misranking loss Lo_1 is defined for
all hin K, and (z,y), (z',y") in (X x Y) by

T—/Ofl (hv &€, xla Y, y,) =
1
L=y (r@)-n@<o + S Ln@=n@nawsy)- @

Optimizing the bipartite misranking loss Lo-; is intractable
for most hypothesis sets and bipartite ranking algorithms
rely instead on a surrogate loss L. We will analyze the
properties of such surrogate losses.

Let D be a distribution over X x Y. We denote by n(x) =
D(Y = +1| X = z) the conditional probability of ¥ =
+1 given X = x. We will use a definition and notation
for the expected L-loss of h ¢ H, its infimum, and the
minimizability gaps similar to what we used in the general
pairwise misranking setting:

Rp(h) = (w’x}?y)JD[L(h,m,w )] REH) = inf Ry(h)
M (3H)
=RHH)- E |inf E [L(hz,2"y,y")|(z,2")]]

(w,2") [ heIC (y,y")

We say that a hypothesis set is regular for bipartite ranking
if, for any = # x’ € X, there exists h, € H such that h, (z) <
hy(z") and h_ € J such that h_(z) > h_(z"). Hypothesis
sets commonly used in practice all admit this property.

4.2. Negative Results

Here, as in general pairwise misranking scenario, we present
a negative result for a broad family of surrogate losses and
hypothesis sets in the bipartite setting.

The bipartite ranking surrogate losses widely used in prac-

tice, admit the following form:

(y —y")(h(x) - h(z"))
2

t@(hvmax,7yay,):@( )]ly¢y’a (5)

where @ is a non-increasing function that is continuous at
0 upper bounding v — 1,9 over R. As with the general
pairwise ranking, we show that these surrogate losses do not
benefit from JH-consistency bounds when H is an equicon-
tinuous family.

Theorem 4.1 (Negative results for bipartite ranking).
Assume that X contains an interior point xy and that H
is regular for bipartite ranking, contains 0 and is equicon-
tinuous at xo. If for some function f that is non-decreasing
and continuous at 0, the following bound holds for all h € H
and any distribution,

Re, (W)= RE (30 < [(Re, (h) - RE,(30)),
then, f(t) > 5 for anyt > 0.

As with Theorem 2.1, Theorem 4.1 shows that in the bi-
partite ranking setting, any J{-consistency bound with an
equicontinuous hypothesis sets is vacuous, assuming a non-
decreasing function f continuous at zero.

The proof is given in Appendix I. It is straightforward to
verify that the proof holds in the deterministic case where
n(x) equals 0 or 1 for any x € X, which yields the following
corollary.

Corollary 4.2 (Negative results in the bipartite deter-
ministic case). In the bipartite deterministic case where
n(x) equals 0 or 1 for any x € X, the same negative result
as in Theorem 4.1 holds.

4.3. Positive Results: J{,;-Consistency Bounds

In this section, we present a series of positive results by
proving J{,j;-consistency bounds for Lo-1 and the surrogate
loss L when using as an auxiliary function ® the hinge-loss,
the p-margin loss, the exponential loss, the logistic loss, the
squared hinge-loss and the sigmoid loss, as summarized
in Table 9 of Appendix J, where the corresponding proofs
are also provided. The expression of the corresponding
minimizability gaps are summarized in Table 1. In bipartite
ranking with J{ = 3{,);, the minimizability gaps are zero
for ®,, Pexp, Prog, Psig, While they are non-zero for Ppinge
and @, in general.

S. Bipartite Ranking with Abstention

As with the general pairwise ranking case, the negative
results shown in Section 4.2 motivate us to study bipartite
ranking with abstention, where the learner can abstain from
making prediction on a pair (z,z") with 2 an 2’ relatively
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Table 4: Jj;,-consistency upper bounds for bipartite abstention loss.

Loss function  Hj;,-consistency upper bound

- Pop(Re,,, () =R, (3m) + Mg, (Hin) ) - Mpys, (Fim) where Doy (1) = max{ VE, (G224 1}
. rlog(m&)] (h)=RE (Huin) + Mg, (%nn)) — M. (Fin) where Tiog (1) = max{ Vi, (;ij} ) t}
og log og 0-1

- rsq(szt%q ()~ e (FHa) + M, (}cﬁn)) - Mg (Hisa) where D (#) = max{V/E, gt + 2}

R (h)-R: (Frin )+ M (Hin)
~ Lo pinge Lo inge “Phinge — M+, (f}( . )
Dhinge min{W~,1} LaPs lin
_ P(R—,:cbp (h)*R%q)p (}Clin)+Mtq,ﬂ (g'flin))
Lo, T 2T - MES‘E*{ (Hiin)
Lo,
L@log Lo
La., . N
B R, (h)—.’R—I:q) (U‘fliu)*'Mtq) ~ (%0in)
sig sig sig M- .
thig tanh(kW~) MLSI—)E (:Hlm)

Table 5: Hnn-consistency upper bounds for bipartite abstention loss.

Loss function  Hyn-consistency upper bound

~ Fexp(th’exp (h) - :R/Eq (g'CNN) + Mtq’exp (j‘fNN)) - M’ESEI (%NN) where Fexp(t) = max{\/i, (%7:3) t}

AW~y

(D‘CNN) + Mt‘ﬁlog (:H:NN)) - MESE? (}CNN) where F]Og(t) = max{\/ﬂ (%) t}

- rsq(ﬂz—t% (h) =R (Hxn) + Mg, (fJ-CNN)) ~ Mg (Fhen) where Tq(1) = max{ v, gty + 207 )

R h)-R* H +M5- H
E L‘i’hinge (h) Lohinge (Fn) L‘ﬁhinge (Fiaow) — M- (ﬂ{ )
Phinge min{AW~,1} Labs NN
_ p(ﬂltq) (h)-R¢ (Fnn)+Mz (j{NN))
C ik = g ()
@, min{AW~,p} LSEI NN
Lo,
- T (% (h) - R
L@log 8 Lq)lOg L(I>1<>8;
Ls,, . sq
_ R, (h)fﬂth% (Hnn)+Mp,  (Hnn)
r o N, (Fon)
Dig tanh(KAW~) [abs \WINN

close. The bipartite abstention loss is defined as follows for
any h € H and (z,v),(z',y') e X x Y:

’I:’(aj}j?(h7 x? xl? y’ y,)

= EO—l(ha Z, xla Y, y/)]lﬂw—z’ﬂyy + C]le—w’HS’ya (6)

where ~ is a given threshold value. When v = 0, L3
reduces to bipartite misranking loss L_; without abstention.

5.1. Linear Hypotheses

Table 4 presents a series of J{j;;,-consistency upper bounds

for Ly when using as ® the auxiliary functions in Table 1.

The bounds of Table 4 depend directly on the threshold value
v, the parameter W in the linear models and parameters of
the loss function (e.g., k in sigmoid loss).

As an example, when adopting the exponential loss function
as ®, modulo the minimizability gaps (which are zero when
the best-in-class error coincides with the Bayes error or can
be small in some other cases), the bound implies that if
the surrogate estimation loss ZRI%XP (h) - fRﬁpexp (Hyin) is

reduced to e, then, the target estimation loss Rpas (h) —
0-1

s
small values of ¢, the dependence of I'ex;, on € exhibits a
square root relationship. However, if this is not the case,
the dependence becomes linear, subject to a constant factor
depending on the threshold value ~y and the parameter W in
the linear models.

(Jin) is upper bounded by I'ex, (€). For sufficiently

As with the general pairwise ranking setting, the proofs con-
sist of analyzing calibration gaps of the target loss and that
of each surrogate loss and seeking a tight lower bound of
the surrogate calibration gap in terms of the target one. Ad-
ditionally, the bipartite ranking setting introduces an added
layer of complexity, as « and z’ in a pair have independent
conditional distributions 7(x) and n(«"), which results in a
more intricate calibration gap that is harder to address.

As an example, for & = ®.,, the exponential loss func-
tion, we have the lower bound ACy ge. (hyx,x’) >
@eoxp > llin

\I/exp(AGLgbiﬁlm(h,:c, 1:’)), where W, is an increas-
ing and piece-wise convex function on [0,2] defined by

. 2 [ e2W i1 . . .
Uerp(t) = mln{t , (62‘%—1 ) t}. The detailed derivation
and the expression of the corresponding minimizability gaps
are included in Appendix L.1.




Pairwise Misranking Loss Surrogates

Table 6: General pairwise abstention loss for the Rankboost loss on CIFAR-10; mean + standard deviation over three runs

for various ~ and cost c.

v 0 0.3 0.5 0.7 0.9

Cost0.1 833%+0.15% 833%+0.15% 8.33% +0.15% 8.25% +0.07%  8.54%= 0.07%
Cost 0.3 833%+0.15% 8.33%+0.15% 8.35% +0.15% 9.73% +0.11%  20.41%=+ 0.06%
Cost0.5 8.33% +0.15% 8.33% +0.15% 8.36% +0.14% 11.20% = 0.14%  32.28% + 0.07%

5.2. One-hidden-layer ReL U Neural Networks.

Table 5 presents the Hyn-consistency upper bounds for t@
when using as ® the auxiliary functions in Table 1. Different
from the bounds in the linear case, all the bounds in Table 5
not only depend on W, but also depend on A, a parameter
in Hn. The proof is similar to that of the linear case. The
detailed derivation and the expression of the corresponding
minimizability gaps are given in Appendix L.2.

As with the linear case, taking the exponential loss func-
tion Py, as an example, modulo the minimizability gaps,
the bound implies that if the surrogate estimation loss

R, (h)- iR»Eq> (HnN) is reduced to ¢, then, the target
exp exp
estimation loss Rpav. (1) = RZ,.,, (Hxw) is upper bounded
0-1 0-1

by I'exp(€). For sufficiently small values of e, the depen-
dence of I'cy;, on € exhibits a square root relationship. How-
ever, if this is not the case, the dependence becomes linear,
subject to a constant factor depending on the threshold value
-, the parameter W, and an additional parameter A in the
one-hidden-layer ReL.U networks.

6. Experiments

In this section, we provide empirical results for general
pairwise ranking with abstention on the CIFAR-10 dataset
(Krizhevsky, 2009).

We used ResNet-34 with ReLLU activations (He et al., 2016).
Here, ResNet-n denotes a residual network with n convolu-
tional layers. Standard data augmentations, 4-pixel padding
with 32 x 32 random crops and random horizontal flips are
applied for CIFAR-10. For training, we used Stochastic Gra-
dient Descent (SGD) with Nesterov momentum (Nesterov,
1983). We set the batch size, weight decay, and initial learn-
ing rate to 1,024, 1 x 10™* and 0.1 respectively. We adopted
the cosine decay learning rate schedule (Loshchilov & Hut-
ter, 2016) for a total of 200 epochs. The pairs (x,z’,y) are
randomly sampled from CIFAR-10 during training, with
y = +1 indicating if x is ranked above or below x’ per the
natural ordering of labels of x and z’.

We evaluated the models based on their averaged
pairwise abstention loss (3) with v selected from
{0.0,0.3,0.5,0.7,0.9} and the cost ¢ selected from
{0.1,0.3,0.5}. We randomly sampled 10,000 pairs (z,z")
from the test data for evaluation. The /., distance is adopted
in the algorithm. We averaged losses over three runs and

report the standard deviation as well.

We used the surrogate loss (2) with ®(¢) = exp(-t) the
exponential loss, |—<I>exp, which coincides with the loss func-
tion of RankBoost. Table 6 shows that when + is as small
as 0.3, no abstention takes place and the abstention loss
coincides with the standard misranking loss (v = 0) for
any cost c. As y increases, there are more samples that are
abstained. When using a minimal cost c of 0.1 (as demon-
strated in the first row of Table 6), abstaining on pairs with
a relatively small distance (y = 0.7) results in a lower target
abstention loss compared to the scenario without absten-
tion (v = 0). Conversely, abstaining on pairs with larger
distances (v = 0.9) led to a higher abstention loss. This can
be attributed to the fact that rejected samples at v = 0.7 had
lower accuracy compared to those at v = 0.9. This empiri-
cally verifies that the surrogate loss Lo, is not favorable on
pairs whose distance is relatively small, for equicontinuous
hypotheses. When the cost c is larger, the abstention loss,
in general, increases with -, since the number of samples
rejected increases with .

Overall, the experiment shows that, in practice, for small ,
abstention actually does not take place. Thus, the abstention
loss coincides with the standard pairwise misranking loss in
those cases, and the surrogate loss is consistent with respect
to both of them. Our results also indicate that the surrogate
loss Lq;.cxp, a commonly used loss function, for example for
RankBoost, is not optimal for pairs with a relatively small
distance. Instead, rejecting these pairs at a minimal cost
proves to be a more effective strategy.

7. Conclusion

We presented a series of theoretical J(-consistency guar-
antees for surrogate losses in pairwise misranking. Our
proposed abstention methods are important when using com-
mon equicontinuous hypothesis sets in practice. It will be
useful to explore alternative non-equicontinuous hypothesis
sets that may be of practical use, and to further study the
choice of the parameter ~ for abstention in practice. We
have also initiated the study of randomized ranking solutions
with theoretical guarantees without resorting to abstention.
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Pairwise Misranking Loss Surrogates

A. Related work

The notions of Bayes consistency (also known as consistency) and calibration have been extensively studied for classification
(Zhang, 2004; Bartlett et al., 2006; Tewari & Bartlett, 2007). The Bayes consistency of ranking surrogate losses has been
studied in the special case of bipartite score-based ranking: in particular, Uematsu & Lee (2017) proved the inconsistency of
the pairwise ranking loss based on the hinge loss and Gao & Zhou (2015) gave excess loss bounds for pairwise ranking
losses based on the exponential or the logistic loss. Later, these results were further generalized by Menon & Williamson
(2014). A related but distinct consistency question has been studied in several publications (Agarwal et al., 2005; Kotlowski
etal., 2011; Agarwal, 2014). It is one with respect to binary classification, that is whether a near minimizer of the surrogate
loss of the binary classification loss is a near minimizer of the bipartite misranking loss (Cortes & Mohri, 2003).

Considerable attention has been devoted to the study of the learning to rank algorithms and their related problems: including
one-pass AUC pairwise optimization (Gao et al., 2013), preference-based ranking (Cohen et al., 1997; Clemencgon et al.,
2008), subset ranking with Discounted Cumulative Gain (DCG) (Cossock & Zhang, 2008; Buffoni et al., 2011), listwise
ranking (Xia et al., 2008), subset ranking based on Pairwise Disagreement (PD) (Duchi et al., 2010; Lan et al., 2012), subset
ranking using Normalized Discounted Cumulative Gain (NDCG) (Ravikumar et al., 2011), subset ranking with Average
Precision (AP) (Calauzenes et al., 2012; Ramaswamy et al., 2013), general multi-class problems (Ramaswamy & Agarwal,
2012; Ramaswamy et al., 2014) and multi-label problems (Gao & Zhou, 2011; Zhang et al., 2020).

Bayes consistency only holds for the full family of measurable functions, which of course is distinct from the more restricted
hypothesis set used by a learning algorithm. Therefore, a hypothesis set-dependent notion of J{-consistency has been
proposed by Long & Servedio (2013) in the realizable setting, which was used by Zhang & Agarwal (2020) for linear
models, and generalized by Kuznetsov et al. (2014) to the structured prediction case. Long & Servedio (2013) showed that
there exists a case where a Bayes-consistent loss is not H-consistent while inconsistent loss functions can be J{-consistent.
Zhang & Agarwal (2020) further investigated the phenomenon in (Long & Servedio, 2013) and showed that the situation
of loss functions that are not J{-consistent with linear models can be remedied by carefully choosing a larger piecewise
linear hypothesis set. Kuznetsov et al. (2014) proved positive results for the H{-consistency of several multi-class ensemble
algorithms, as an extension of J{-consistency results in (Long & Servedio, 2013).

Recently, Awasthi et al. (2022a) presented a series of results providing J{-consistency bounds in binary classification. These
guarantees are significantly stronger than the J{-calibration or J{-consistency properties studied by Awasthi et al. (2021a;b).
Awasthi et al. (2022b) and Mao et al. (2023) (see also (Zheng et al., 2023)) generalized J{-consistency bounds to the scenario
of multi-class classification. Awasthi et al. (2023b) proposed a family of loss functions that benefit from such JH-consistency
bounds guarantees for adversarial robustness (Goodfellow et al., 2014; Madry et al., 2017; Tsipras et al., 2018; Carlini &
Wagner, 2017; Awasthi et al., 2023a). J{-consistency bounds are also more informative than similar excess error bounds
derived in the literature, which correspond to the special case where I is the family of all measurable functions (Zhang,
2004; Bartlett et al., 2006; Mohri et al., 2018). Our work significantly generalizes the results of Awasthi et al. (2022a) to the
score-based ranking setting, including both the general pairwise ranking and bipartite ranking scenarios.

B. Notation

We provide a table of notation in Table 7.

C. General tools

To begin with the proof, we first introduce some notation. In general pairwise ranking scenario, we denote by D a distribution
over X x X x Y and by P a set of such distributions. We further denote by n(z,z') = D(Y =1|(X,X’) = (z,2')) the
conditional probability of Y = 1 given (X, X’) = (z,z"). Without loss of generality, we assume that n(z,z) = 1/2.
The generalization error for a surrogate loss L can be rewritten as Ry (k) = Ex[C(h,z,z")], where C(h,z,z") is the
conditional L-risk, defined by

GL(h7I7‘T,) = n('raz,)l-(hwraz,a +1) + (1 - n(‘rax,))L(haxwr,a _1)

We denote by Cf (3, z,2") = infpesc €L (h,z,z") the minimal conditional L-risk. Then, the minimizability gap can be
rewritten as follows:

ML(H) = RE(H) - Ex[€L(H, z)].
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Table 7: Summary of notation.

X Input space

Y Label space

H A hypothesis set of functions mapping from X to R
D A distribution over X x X x Yor X x Y

Lo-1 General pairwise misranking loss

Rio, Expected general pairwise misranking loss

sign(u) Luzo0 = Lu<o

n(x,x") The conditional probability of Y = +1 given (X, X') = (z,2")
[ Bipartite misranking loss

Rt Expected bipartite misranking loss

n(x) The conditional probability of Y = +1 given X = x
L A surrogate loss for Ly_1

L A surrogate loss for [

RE(H) (RE(FH)) The minimal generalization error

M (H) Mp(F)) The minimizability gap

Han The hypothesis set of all measurable functions
Hiin Linear hypothesis set

FnN The hypothesis set of one-hidden-layer ReLU networks
(')+ maX('v 0)

Hpw The hypothesis set of piecewise functions

2 The distribution order

Labs The pairwise abstention loss

0% A given threshold value

c Cost

Labs The bipartite abstention loss

CL (Cp) The conditional L-risk (L-risk)

Cl(H,z,z") (C%(U{, x,z")) | The minimal conditional L-risk (L-risk)

ACL 3¢ (AGE,:H) The calibration gap

(1), The e-truncation of ¢

We further refer to € (h, z,z") — C (K, z,z") as the calibration gap and denote it by AC ¢ (h,z,z").

In bipartite ranking scenario, we denote by D a distribution over X x Y and by P a set of such distributions. We further
denote by n(x) = D(Y = 1| X = x) the conditional probability of Y = 1 given X = z. The generalization error for a
surrogate loss L can be rewritten as Ry (h) = Ex [Gt(h, x, x')}, where Cp(h,x,x") is the conditional L-risk, defined by

Cr(h,x,2") = n(x)(1 - n(z))L(h,z, 2", +1,-1) + n(z") (1 - n(z))L(h,z,2" —1,+1).

We denote by B»E(f}f, x,2") = infpes¢ Cp(h, z,2") the minimal conditional L-risk. Then, the minimizability gap can be
rewritten as follows:

Mp(H) = RE(H) - Ex [C(H, z)].

We further refer to Cp(h,z,2") — C=(3(, ,2") as the calibration gap and denote it by ACr 5. (h, z,2"). For any € > 0, we
will denote by (), the e-truncation of ¢ € R defined by t1..

We first prove two general results, which provide bounds between any loss functions L; and L, in both general pairwise
ranking scenario and bipartite ranking scenario.

Theorem C.1. Assume that there exists a convex function V: R, — R with U(0) > 0 and € > 0 such that the following holds
forallheH, zeX, 2’ € X and D € P:

W((AGLQJC(h,m,x'))e) <(AC, ¢ (h,x, ")) (7
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Then, the following inequality holds for any h € H and D € P:

(R, (h) = RE(H) + M, (H)) <R, () = RE(H) + ML, (H) +max{P(0), ¥(e)}. (8)

Proof. By the definition of the generalization error and the minimizability gap, for any h € H{ and D € P, we can write the
left hand side of (8) as

(R, (h) = RE(FH) + My, (H)) = T(Re, (B) - Ex xn[C, (3, 2,2")]) = U(E(x x)[ACL, 3¢ (h, 2, 2")]).

Since ¥ is convex, by Jensen’s inequality, it can be upper bounded by E(x x/)[W(ACL, c(h,z,2"))]. Due to the
decomposition

ACL, 5¢(h,z,2") = (ACL, 3¢ (h,z,2"))_+ ACL, 3¢ (h, x, ac')]lAeLzﬂ(,,,,%x,)gs,
and the assumption ¥(0) > 0, we have the following inequality:
Ex,xn [ (ACL, s¢(h, 2,3)] <B(x,xn [V ((ACL, 5¢ (h, z,2)) )| + Ex x/) [ (ACL, s (h, 2" ) ae,, o (hawr)<e) -
By assumption (7), the first term can be bounded as follows:
Ex x)[C((ACL, 5c(h, 2,2")),)] < Bx xn[ACL, gc(hy 2, 2")] = Re, (B) = R (F0) + My, (H).

Since AGLQJ{(h,m,x’)]lA@ngH(h’z}z,)Se € [0,¢], we can bound E(X,X/)[\I’(AGL%}C(}L{E,.T’)]IA@L%H(;L}I@/)SE)] by
SUPyefo,e] ¥ (¢), which equals max{¥(0), ¥'(¢)} due to the convexity of V. O

Theorem C.2. Assume that there exists a non-decreasing concave function I': R, — R and € > 0 such that the following
holds forall h e H, x € X, ' € X and D € P:

(ACL, 3¢ (h,x,2")), <T((ACL, 3¢(h,x,2")),). 9)
Then, the following inequality holds for any h € H and D € P:

R, (h) = RE(H) <D(Re, (h) = RE(F) + M, () - M, (K) +e. (10)

Proof. By the definition of the generalization error and the minimizability gap, for any h € H and D € P, we can write the
left hand side of (10) as

R, (h) = R, (F0)
= ]E(X,X’)[Aeb,}f(hvxa zl)] - MLQ (fH:)
=Ex x)[(ACL 3¢ (h,z,2")), ] + E(x,xn [ ACL, 3¢ (b, CU,SE')]lAeLQ,H(h,x,x')ge] =My, (H)

By assumption (9) and that I' is non-decreasing, the following inequality holds:
Ecx xn[{ACL 3c(h,z,2")) | < E(x,xn [T (ACL, sc(h,z,2"))].
Since I’ is concave, by Jensen’s inequality,
E(x,xn [T(ACL 5¢(h,2,2")] <T(E(x,xn [ACL 3¢ (h,2,2")]) = T(Ry, () = Rf (F) + My, (H)).
We complete the proof by noting that E(x x [AGLQ,%(h, x, J;’)]lAeL“{(h’m’z,)ge] <e. O
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D. Negative results for general pairwise ranking (Proof of Theorem 2.1)

Theorem 2.1 (Negative results). Assume that X contains an interior point xy and that H is regular for general pairwise
ranking, contains 0 and is equicontinuous at xo. If for some function f that is non-decreasing and continuous at 0, the
Jfollowing bound holds for all h € H and any distribution,

:RLO—I (h) - :Rto,l (J-C) < f(fRLq> (h) - RE<1> (%))7
then, f(t) > 1 forany t > 0.

Proof. Assume zy € X is an interior point and hy = 0 € . By the assumption that xq is an interior point and K is
equicontinuous at g, for any € > 0, we are able to take =’ # ;¢ € X such that |h(z") — h(z)]| < € for all h € H. Consider the
distribution that supports on {(xg, ")} with n(zq, ") = 0. Then, for any h € J,

Rigs (h) = Cry, (B0, 2") = Lp(arysn(ay) 20,
where the equality can be achieved for some h € H since I is regular for general pairwise ranking. Therefore,

Ri, (H)=Cf_ (H,xg,2") = l}fﬂfc Cry_, (h,xg,2") = 0.

Note Ry,,_, (ho) = 1. For the surrogate loss Lg, for any h € I,
Ry (h) = €1, (hy20,2") = B(h(z) - h(a')) € [B(e), &(~e)]
since |h(z") — h(xp)| < € and P is non-increasing. Therefore,
R;, (30) = €1, (3, 70,2) 2 B(e).

Note R, (ho) = ®(0). If for some function f that is non-decreasing and continuous at 0, the bound holds, then, we obtain
for any h € H and € > 0,

Rigy (h) =0 < f(Rey (h) = RE, () < F(Rey (h) = @ (e)).
Let h = hg, then f(®(0) — ®(€)) > 1 for any € > 0. Take ¢ — 0, we obtain f(0) > 1 using the fact that ® and f are both
continuous at 0. Since f is non-decreasing, for any ¢ € [0,1], f(¢) > 1. O
E. Positive results for piecewise functions in general pairwise ranking (Proof of Theorem 2.3)

Theorem 2.3 (Positive results for piecewise functions). Assume that ® satisfies lim,,_, yco ®(u) = 0. Then, for all h € Hy,
and any deterministic distribution,

:RLO 1 (h) jQLO 1( pW) < RL(P (h) - RE(I, (j{pw) + ML@(}CPW) - MLO—I (g{pw)'
Proof. Forany z # z’ € X,

Lnaryen@y n(z,2') =1

C (h,z,x
Lo-s )= Th(arysh@) n(z,2")=0

v

0
ooy - [ 2O =R@) (e =1
Cua (b, { o(h(z) - h(z")) n(z,z") =0
0,

vV

where both equities can be achieved by h(u) = ioz(]lu,m”u”>c - llwx/\”uugc) or h(u) = (L yzzrafuse — Luzarajul<c) for
a — +o0. Therefore, we have €/ (3(,z,2") = €/ (I, x,2") =0 and

ACL 5¢(h,z,2") = CLy (hyz,2") > Cy, (hyz,2") = ACL,_, 9c(h,z,z").

By Theorem C.1 or Theorem C.2, we complete the proof. O
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Table 8: J{,1-consistency upper bounds for general pairwise abstention.

Loss function  J(,j-consistency upper bound

Laopinee Rig,,,. (h) - R't@m,,ge (Fan) + Moy, (Han) = M, (Han)
Lo, Rig, (h) =RE, (Han) + Mi,, (Han) - My, , (}fall)

Ly V(R () = RE, (Han) + M, (m))f ~ My, (Fan)
Loy, \/5(:RL<1,10g (h) - Ris, (FHan) + My, (g'flan))§ =My, (Han)
Lo, (CRL@Sq (h) =R, (Han) + Moy, (5'%11))E - M, (Fan)

Lo

sig

Rig, (M) =RE,  (Fan) + Mo (Fan) = Mg, (Han)

F. J(,) - consistency bounds for pairwise misranking losses

We first characterize the minimal conditional Lo-;-risk and the calibration gap of the pairwise misranking loss for a broad
class of hypothesis sets. We let 3(z,z") = {h € H:sign(h(z") — h(z))(2n(z,z") — 1) < 0} for convenience.

Lemma F.1. Assume that H is regular for general pairwise ranking. Then, the minimal conditional Ly_1-risk is
Cl,, (36 z,2") =min{n(z,2"),1 - n(z,2")}.
The calibration gap of Lo_1 can be characterized as

ACL, ,3c(hyz,2") =2n(z,2") - 1|ﬂheﬁ(w,z')'

Proof. By the definition, the conditional Ly_;-risk is

eL071 (ha L, .’L‘,) = 77(37, x,)]lh(r’)<h(z) + (1 - 77(177 ml))]lh(x’)zh(z)~
For any z € X, C,_, (h,z,x) = € (H,z,2) = 1 -n(x,r) = 1/2. For any z # 2’ € X, by the assumption, there
exists h* € H such that sign(h*(z’) — h*(x)) = sign(An(x,x’)). Therefore, the optimal conditional Ly_;-risk can be
characterized as for any z,z’ € X,

el (H,z,2") = C, (h",z,2") = min{n(z,z"),1 - n(z,z")}

which proves the first part of lemma. By the definition,

ACL, , ac(h,x,2") = Cy_, (hyx,2") = € (H,z,z")
= 77(567 x,)]lh(.f()')<h(3?) + (1 - n(max,))]lh(x’)zh(x) - min{n($7x,)7 1- 77(9& {E,)}

_ ‘277(37733,)_”7 hEﬁ(m‘,.’E’),
0, otherwise.

This leads to

<A€L07173{(h,x,x,))6 = <|277(:C,£C’) - 1|>e]lhe§(m,z’)'

By Lemma F.1, the (Lo_1, Han )-minimizability gap is
Mi,_, (Han) = fREOA (Han) - ]E(X,X') [min{n(z, SU'), 1-n(x, J]’)}] (1
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F.1. Derivation for Lo, ...

For the hinge loss function ®pinge(v): = max{0,1 - u}, forall h € Hop, x € X, 2’ € X and x # 2"

/
hinge (h’ z,x )

=10(2, 2" ) Loy (W(2") = 2(2)) + (1= n(2,2") ) Loy, (R(x) = h(2))
=n(x, 2" ) max{0,1 - h(z") + h(x)} + (1 - n(x,2")) max{0,1 + h(z") - h(z)}.

e,

Then,

efq)hmge,}can(%fﬂ') = heigl{fa“ Clay e (1o T, ') =1-2n(z,2") - 1].

The (L%mge, fHaU)-minimizability gap is

Mg, (Han) = R0, (Han) ~Exxn| €L, e (@,0)]

. (12)
= jzl_ﬂ)hingc (j-(:a'll) - E(Xer)[l - |2,'7(x’ x,) - 1|]

Therefore, Vh € Hay (z,2'),

’
AGLfbhmge Han (h,z, ")

> 7inf CL
heXHan(z,27)

=n(z, 2" ) max{0,1 -0} + (1 - n(x,2")) max{0,1 + 0} - G,f(bh_ e, (@,2")
inge’” &

=1-[1-2n(z,2") - 1]

= |277(x7xl) - 1|v

’ ’
Phinge (h’ Z,T ) - eliphingc,ﬂ-fau (Ia x )

which implies that for any h € H,yj, z € X and 2’ € X,
AGLq)hingeyg.fau(h,:r,x') > (|2n(z,2") - 1|)0]lh€§au(w’w,) =ACL, , g, (hyz,2).
Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{(,j;-consistency bound for Lq>hmge, valid for all h € Hy1:
Rigr (h) =R, (Han) < Rey, (R) - Rféhmge (Han) + Moy, (Han) = M, (Han). (13)

F.2. Derivation for L .
For the p-margin loss function ®,(u):= min{l, maX{O, 1- %}}, p>0,forallheHy, xeX,z’ e Xand x + 2":

CLy, (h,x,z")
=n(z,2")Le, (h(z") = h(x)) + (1 - n(z,2"))Ls, (h(z) - h(z"))

= n(m,xl)min{l,max{(), 1- h(m’)p—h(az)}} +(1-n(x,2")) min{l,max{(), 1+ h(:c’)p—h(:z:)}}

>C,, (hx,2").
Then,

elibwﬂall (I, I,) = heigl-fiu eLqpp (hv €, I,) = mln{n(x, I,)a 1- 77(% 'T,)} = eio_l,ﬂ{au(xv I’)'
The (Lo, , Han )-minimizability gap is

My, (3an) = R, (Han) = Egx x| €, 0, (@2

(14)
= Rf% (Han) - E(X,X’) [min{n(a:, !13,)7 1-n(x, m')}]
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Therefore, for any h € H,p, x € X and 2’ € X,

Aeh{sp,?{an(hvxv Qfl) 2 <|277(33,JU,) - 1|>0]1h,gﬁ = AeLo-hg‘fau(hvx’ xl)'

an(z,z’)

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{(,;;-consistency bound for L@p, valid for all h € Hy:

:R’L(J—l (h) - iREo—l (9{&11) < :R'Lq)P (h) - Rlil)p (j{all) + ML@/J (j{all) - ML0-1 (9{311). (15)

F.3. Derivation for Ls, .
For the exponential loss function ®eyp(u):= e, forall h € Han, z € X, 2 eXandz + 2":
Cly,,, (M, z,2") = n(x,2")La., (h(z") = h(2)) + (1 - n(z,2"))La,,, (h(x) - h(z"))
_ n({y7 m/)e—h(m')+h(1) 4 (1 _ n(x’ xl))eh(m')—h(x).

Then,

e, (Han)(x,2") = heigl{f Ca,, (h,z,2") = 2¢/n(z,2) (1 - n(z,2"))
P all
. The (Pexp, Han)-minimizability gap is:

Mg, (3a) = RE, (Han) - Egx xn [Gf%xp a0, (2, m/)]

(16)
=R, (Han) - Eox o [2v/n(@ a) (- n@,a) |

Therefore, Vh € Hay (z,2"),

P . / * ’
Ael—q)exp,i}fan(hvxv € ) 2 heﬁifll(fx,;c’) e'—<bexp (h,x,x ) - eL(PexP»i}fan(x7x )

= 77(1?@,)670 + (1 - 7)(% I,))eo - etcpexp,ﬂ-fau(xvxl)

=1-2v/n(z,2)(1-n(z,2"))

_ ( 2n(x,x’) -1 )
Vi(z,2') +/1-n(z,2)
§ (2n(x,s;’> -1

which implies that for any h € H,y, x € X and 2’ € X,

2
(h xT .’E’) > (AGLO*LHau(hax,I'/))
all y Ly pd 2 .

AGL%XPJ{

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{,);-consistency bound for Lg valid for all h € Hy:

Ry, (h) = Rf, (Han) < V2(Reg,, (B) = RE, (Han) + Mg, (Han)) =My, (Han): (17)
F.4. Derivation for Lg, .
For the logistic loss function ®o5(u):=logy(1+e™), forall h e Hoy, z € X, 2’ € X and z # '

CLy,,, (A, z,2") = n(z,2")Ls,, (h(2") = h(z)) + (1 - n(z,2"))Le,, (h(z) - h(z"))
o1 ) 11 )
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Then,

CE(I)IOg Han (.13’ gj') - hei?-fiu e@log (h, x, 3;’)

= —n(a,a") logy (n(a,2")) - (1 - n(a,2')) logy(1 - n(, ")
<2/n(a, @) (L - n(z,a)) (~alog,(a) - blog,(b) < 2v/ab, a,b € [0,1])

. The (P1og, Han )-minimizability gap is:

Mg, (Han) = Ri, (Han) ~Exxn[ €L, a6, (2.2)]

(18)
= Ri,,, (Fan) = Ex xn [-n(z,2") logy (n(z,2)) = (1 - n(z,2")) logy (1 - n(z,2))].

Therefore, Vh € Hay (z, '),

AeLélogJ’fau(ha :L‘7£C,)

. / * !
> 71nf €L¢10g (ha z,xr ) - eL<1>l s Han (.T, x )
heFHan (z,z") o

=n(x,2") log2(1 + 6—0) +(1-n(z,2")) 1og2(1 + eo) - GE<1>logﬁfa11 (z,2")
>1- 2\/7]('1:’ 3}")(1 - n(xwx,))

_ ( 2n(z,2") -1 )
\/n(x,x’) + \/1 -n(x,x")
| @aa) -1
2

which implies that for any h € H,j, x € X and z’ € X,

(AGLo-hj{an(h’ €L, JU,))2
9 .

Ael—qqogﬂfau(haxvx,) 2

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the H,jj-consistency bound for L, , valid for all h € H,y:
1
Ry (h) = RE,, (Han) € V2(Reg,,, (0) = RE, (Han) + Mg, (Han))” = Mo, (Fan): (19)

E.S. Derivation for Lo__.

For the squared hinge loss function @, (u):= (1 - 1)?1 <1, forall h € Hap, 2 € X, 2’ € X and = # 2

C’L%q(h,m,x')
= n(z,2") Lo, (h(z") = h(2)) + (L - n(z,2"))Le,, (h(x) - h(2"))
= (2, 2" ) (1= h(@") + 2(@)) Tnary-nayss + (1= 12, 2"))(1+ B(&") = () Tn(ar)-n(a)z-1
Then,
.0 (5 = E € () = A, ) (1= n(aa').
The (®gq, Han )-minimizability gap is:

M, (Fa) = R, (Fa) = Ex xn [ €L, 50 (7:27)]

, , (20)
= fqu,Sq (Han) - Ecx,xn[4n(z, ") (1 - n(z,2"))].

22



Pairwise Misranking Loss Surrogates

Therefore, Vh € Hay (z,2'),

AGL(I)Sq,;CaH(h,x, z')> inf C’L%q (h,z,2") - G,’_’% ﬂa”(x,x')
heHan(z,z") <

=z, a’) + (L=n(w,2") - €, s, (@,2")
=1-4n(z,2')(1 - n(x,2))
= (2n(z,2") - 1),

which implies that for any h € H,y, x € X and z’ € X,

Aehﬁsq»f}f (hvxam,)z(AeLo—l,f}f (hvxax,))Q'

all all

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the H,j1-consistency bound for L, valid for all h € Hy:
tl
R, (h) = RE,, (Han) < (Rug,, (h) = RE, (Fan) + Miy (Han))” = Mig, (Fan)- @)

F.6. Derivation for Ly

sig®
For the sigmoid loss function ®gie(u):= 1 - tanh(ku), k>0, forall h € Ho, x € X, 2" € X and z # 2"
GLésig (hv x, xl)

=n(z,2" ) Lo, (h(z") - h(z)) + (1 - n(z,2"))Le,, (h(z) - h(z"))
=n(z,2")(1 - tanh(k[h(z") - h(2)])) + (1 = n(z,2")) (1 + tanh(k[h(z") - h(z)])).

Then,
eiq,sig,:}cau(%x,) = heiglcfan Co,,, (N, z,2')=1-|1-2n(x,2")|.
. The (®gig, Han )-minimizability gap is:

Mg, (Han) = Ri,  (Han) =Ecx,xn[€F, e (@,0)]

) , (22)
=R, (Fan) =Ex xn[1 =1 =2n(z, 27)][].

Therefore, Vh € Hay (z,2"),

AC,  gc,(hyz,2")> inf CLy. (hyx,2") - e, &Ca”(x,x')
e heXan(z,x’) v e
=1-1-2n(z,2")|tanh(0) - e, % H(:E,x')
sig?” va
=1 -2n(x,2"),

which implies that for any i € 3,1, x € X and 2’ € X,

Ael—cb ; Ufau(hvxv ‘T,) 2 Ael—o—l,ﬂau(hv 'Tvx,)'

sig?

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{,j;-consistency bound for L¢ . , valid for all i € H,y;:

sig?

Rigo (h) =Riy, (Han) € Rig, () =RE,  (Fan) + Mig (Fan) = Mi, -, (Han)- (23)

G. Minimizability gaps can be non-zero for J{ = J(,) in the general pairwise misranking case.

Consider the uniform distribution that supports on three pairs {(z, '), (', z"), (z,2")}. Let n(x,2") = n(2’,2") = 1 and
n(x,z") = 0. Note for any h € H,j, at least one of three difference h(z') — h(x), h(x") - h(z"), h(x) — h(z") is less than
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or equal to O since the sum of all the difference is 0. Therefore,

1 1 1
:RLO—l(h’) = geLoq(haval) + geLoq (haxlvxﬂ) + gGLo-l (h,x,x”)

1
= —Tp(a)<h(z) + g]lh(z")<h(w’) + gﬂh(w”)zh(x)

>

e Rk

1 1
Rig, () = geL% (h,z,z") + geLO—l (h,z',2") + ge'-%;nge (h,x,z")

= 2@, ((a) = h()) + 3B (")~ h(a")) + @, (h(z) - (")

1
>3 (®,(u) =1, u<0)
1 / 1 1o 1 "
Jq’l“l’convex (h) = § L‘I’convex (h7 T, T ) + gel‘o—l (h’ T,z ) + gel—q’convex (h7 L,T )
1 1 1
= gq)convex(h(x,) - h(x)) + g(pconvex(h(x”) - h(I,)) + gq)convex(h(x) - h(lL‘”))
1
> Deonven (5 10(&") = ) + B(a") = (') + hz) = "] ) (convexity)
= (I’convex(o)
>1

where all equality can be achieved by h = 0. Thus, using the fact that n(z, 2") = n(2’,2”) = 1 and n(x, 2"") = 0, we obtain

. 1
Mo, (Fan) = R, , (Han) = 5 #0

. 1
My, (Han) = jQL% (Han) = 3 #0
ML%ODVQX (j‘fan) = th)convex (Han) =21#0.

H. Characterization of distribution order and minimizability gap (Proof of Theorem 2.5,
Theorem 2.6 and Theorem 2.7)

Theorem 2.5 (Characterization of distribution order). The distribution order is transitive and there exists a dense
countable subset X c X with respect to the distribution order if and only if there exists h € H,y inducing the distribution
order:

D D
Proof. <—=: Assume there exists h € 3, inducing the distribution order. For all z, ', 2" € X such that x < 2’ and 2’ < 2/,
by definition, we have h(z) < h(z') and h(z") < h(z'"), which implies that h(x) < h(z"). Then, by definition, we obtain
D _
x < " and conclude the distribution is transitive. Furthermore, we can construct the countable set X using the following
procedure: for any open interval (h(x),h(z")),z,2’ € X such that h=*((h(x),h(2"))) = @, we pick z,2" in X. Those
intervals are countable since any of them contain a rational number and any two of them are disjoint. For any open interval
with rational endpoints m, n such that b~ ((m,n)) # @, pick any 2 € h™'((m,n)) in X. Again, those open intervals are
also countable since rational numbers are countable. Thus, X is countable. Next, we verity that X is dense. Indeed, for any
D D
x,x’ € X that satisfy z < 2’ and not 2’ < z, we have h(z) < h(z'). If ™' ((h(x), h(2"))) = @, by the procedure, we know

- D_D
there exists Z € X such that 2 < Z < 2’3 if k™' ((h(x),h(z"))) # @ and assume z* € h™' ((h(x), h(z"))), then, we can take

rational numbers m, n such that h(z) < m < h(z*) < n < h(z'), by the procedure, we know there exists T € X such that

DD . ~ .
x < 7 < z'. In conclusion, X is dense countable.

—: Let X = {Z,%2,%3,...}. For any 2 ¢ X, we use the following notation for convenience: L(z) =
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D D D D
{n eN: 7, < zand not x < :fn} and R(z) = {n eN:2 < z,and not 7,, < x} Then, take

@)= Y e Y o

nel(z) neR(x)

D
Next, we verify that h* induces the distribution order. Indeed, for any x < x’, by the transitivity of distribution order, we
have

L(z) cL(2"), R(z")cR(x).

D D D
which implies that h(x) < h(z'). Also, for any 2’ < z and = < 2’, we have h(z) = h(z"). Moerever, for any ' < x and not

D - D D
x < ', there exists T € X such that ' < Z < x. Therefore, T belongs to at least one of L(x) and R(z"). Since T ¢ L(a")
and T ¢ R(z), we obtain

either L(z") c L(z)or R(z) c R(z"),
which implies that h(x) > h(z"). Therefore, h* induces the distribution order. O

Theorem 2.6. Assume that the distribution order is a total order and n(x,x") is continuous on X x X. Then, there exists
h € Hay inducing the distribution order.

D . . .. D D . D
Proof. Define < to be the relation associated with < that defined as « < ' if x < 2’ and © # a'. Let f(z,2’) =
n(x,2") —n(z', z). By the assumption, for all =, 2" € X,

cr20 e flz,z")>0
e f(x,2") is continuous on both x and 2/ —> {jeDC|f(x,§3)>0}:{§:GDC|xj<33?} is open in X.

e f(z,2") =—f(2',x). In particular, f(x,z) = 0.

D . . . . .
Now let’s assume = < 2, i.e., f(z,2") > 0so f(z',z) < 0. Consider the following continuous functions on [0, 1],

9o (t) = f(z,tx + (1 -t)z")
gor(t) = f(&' tox + (1 - t)x").

We know that
* 9:(0)>0,9,(1)=0 = g.(t) >0 whent e (0,1) (because ¢ = 1 is the only zero point of g, (¢))
* g.(0)=0, g»(1) <0 = g,(t) <O whent e (0,1) (because ¢ = 0 is the only zero point of g, (t)).

D_D D_D D D . :
Therefore, {3’3696 |z <z < x’} # . Note {g’ce X|z=<z< x’} = {jﬁ eX|Z< x’}U{g?e X|x< :E},the intersection of

two open subsets, which is also open. Any nonempty open set includes at least one rational point, pick such point in X
and we obtain that X is dense countable. By Theorem 2.5, we conclude that there exists i € 3, inducing the distribution
order. O

Theorem 2.7. Assume that for all z,2' € X, n(x,x") + n(z', 2) = 1. Then, for any hypothesis set H, if there exists h € H
inducing the distribution order, the minimizability gap of the pairwise misranking loss is null, M,_, (3() = 0.
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Proof. Assume that h* € J induces the distribution order. Then,

Ry ()= ﬂgN (Lot (h.,2",9)]

(x S [U(x 2 ) Ly (e (o) + (L= 12, 2) ) Lpe (o) () |
= (X{E)(,)[” Lo wyon(aay + (L =02, ")) L2y sn (2 w)] (h* € H induces the distribution order.)
= (XIE{,)[U 2,2 ) U1y a0y (a,ary + (1= 1002, 2)) Ly o,2ny51-n(207) ] (n(z,2") +n(2’,z) = 1)
= (le%(,)[mm{n(x @), 1=n(z,2")}]
= (XEX')[GLO (3w, )]
Therefore, M, , () = R{_ (H) - Ecx,x»[Cf,_, (¥, 2,2")] = 0. O

I. Negative results for bipartite ranking (Proof of Theorem 4.1)

Theorem 4.1 (Negative results for bipartite ranking). Assume that X contains an interior point xy and that H is regular
for bipartite ranking, contains 0 and is equicontinuous at xq. If for some function f that is non-decreasing and continuous
at 0, the following bound holds for all h € H and any distribution,

R, , (h) - RE () < f(Re, (h) - R (30)),

then, f(t) > = foranyt > 0.

Proof. Assume zy € X is an interior point and hy = 0 € JH. By the assumption that xg is an interior point and K is
equicontinuous at g, for any € > 0, we are able to take =’ # ;¢ € X such that |h(z") — h(zg)| < € for all h € H. Consider the
distribution that supports on {xq,z’} with () = 1 and n(z") = 0. Then, for any h € H,

1
Re, (h) =Cr,_ (h,20,2") = Tp(ag)<n(ar) + 5 Lntao)=h(a) 2 0,
where the equality can be achieved for some h € I since J{ is regular for bipartite ranking. Therefore,

Ri, (H)=Cf  (H,xg,2") = }gljf{ CLy_, (h,xg,2") = 0.

Note Ry,_, (ho) = % For the surrogate loss Lg, for any h € K,
Riy (h) = CLy (R, w0, 3") = @(h(20) = h(a")) € [D(e), D(=¢)]
since |h(z") — h(zp)| < € and @ is non-increasing. Therefore,
Ri,(FH) = Cf (H,xo,2") 2 P(e).

Note Ry, (ho) = ®(0). If for some function f that is non-decreasing and continuous at 0, the bound holds, then, we obtain
for any h € H and € > 0,

Rioy (h) =0 < f(Rey (h) = RE, (30) < f(Re (h) = 2(€)).

Let h = h, then f(®(0) - ®(€)) > & for any € > 0. Take € — 0, we obtain f(0) > 1 using the fact that ® and f are both
continuous at 0. Since f is non-decreasing, for any ¢ € [0,1], f(¢) > % O
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J. H.y - consistency bounds for bipartite misranking losses

We first characterize the minimal conditional Lo_1-risk and the calibration gap of the bipartite misranking loss for a broad class
of hypothesis sets. We let H(x,z") = {h € H: (h(z) — h(z"))(n(x) —n(z")) <0} and H(z,2") = {h € H:h(z) = h(a')}
for convenience.

Lemma J.1. Assume that 3 is regular for bipartite ranking. Then, the minimal conditional Lo_1-risk is
e, (3G x,2") =min{n(z)(1 - n(z")),n(z")(1 - n(z))}.

The calibration gap of Lo_1 can be characterized as
1
Az, (o) = 1) =1 5ty * 51) =1 ey
Proof. By the definition, the conditional Lo_q-risk is

Cr, , (hyz,2") = n(x)(1 - n(x,))[]lh(z)—h(m’)<0 + %]lh(a:)=h(z’):| +n(z")(1 - n(x))[ﬂh(z)—h(z’)>0 + %h@):h(ﬂ)]-
For any z # 2’ € X, by the assumption, there exists h* € H such that
(h* (@) = h* (")) (n(@) = (")) Ly (o)2n(ary > O-
Therefore, the optimal conditional Eo_l-risk can be characterized as for any x + 2’ € X,
e, (Fa,a") =Cp  (h* 2,2") =min{n(z)(L - n(z")),n(=")(1 -n(x))}
which proves the first part of lemma. By the definition,

A(fto_h}c(h,x,x') =Cro, (hyz,a") - Cf | (H,x,z")

1
=n(z)(1- n(m,))[ﬂh(m)—h(m’ko + §1h(z)=h(m’):|

1
+n(x")(1 - n(x))[]lh(m)—h(x’)>0 + E]lh(m):h(m’)]

-min{n(z)(1 -n(z")),n(=")(1-n(z))}
n(2)(1=n(x") = ()1 =n())|,  heTt(z,a),
sn(@)(L=n(2") =n(z" )1 -n(2))l, heH(z,a"),
0, otherwise.
n(x) = n(a)l,  hedi(a,a),

sin(@) =n(@")l, hedH(z,a"),

0, otherwise.

Table 9: J(,;-consistency upper bounds for bipartite abstention losses.

Loss function  J,j-consistency upper bound

Dhinge :Rt‘l’hingc (h) - R{‘q)hiuge (g{all) + Mt‘l’hingc (j{a]l)
L<I>P :th)p (h) - :RE(P (g{all)
? 1
g 2
Co.., R, (1) =%, O < (%, () =%, (9w)
1
~ 2
Lq)log (th)log (h’) - R’E"f’]og (J{all))
1
T 2
L@Sq (fR’E{)Sq (h) - R—E‘Psq (g'fall) + ML(I)sq (g'fal]))
Lo, R, (h) - iRE%g (Han)
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O
Bayes L
Note that for h’Eo_l,}f.du (z) :=n(z),
Bayes _ . / ’
R, , (25 ) = Ex xn[mindn(z,2), 1 = n(z,2')}]
Therefore, by Lemma J.1, the (Eo_l , H{all)-minimizability gap is
Mg, (Han) = fR~ 3 (Han) - E(x xn[min{n(z,z"),1 -n(x,z")}] = 0. (24)
J.1. Derivation for t@hingc.
For the hinge loss function ®pinge(v): = max{0,1 - u}, forall h € Hoy, x € X, 2’ € X and x # 2"
Topn, (P05 7)
=1(2)(1 = 1(2")) Phinge (h(x) = h(2")) + n(2") (1 - 1(2)) Pringe (h(2") - h(z))
=n(2)(1-n(2")) max{0,1 - h(z) + h(z")} + n(2") (1 - n(z)) max{0,1 + h(z) - h(z")}.
Then,
€, e @)= it €, (haa’) = 2min{n() (1= n(@)). () (1 - ().
The (t@kli[‘gc, fHaH)-minimizability gap is
M, Flan) =Rg, - (Han) _]E(X’X')[G%«»hmge7 0 (017 )] (25)

=Rg,  (Han) ~ Eox xn [2min{n(z) (1 -n(2")), n(z") (1 - n(z))}].

Lq)hinge

Therefore, Vh € ﬂffau(% '),
AC~

Lq)hinge ’

Han (ha z, xl)

> _inf Cp (h,z,z") - CL (z,2")

heﬁall(x,z’) Phinge L‘IhmgC’ all
() (1~ n(a')) max(0.1-0) + 9@’ (1 - (@) max{0.1+0} - €, . ()

=n(z)(1=n(2")) +n(z")(1 - n(z)) - 2min{n(x)(1 - n(z")),n(z") (1 - n(x))}
= [n(2)(X = n(z")) = n(=") (1 - n(2))].

Similarly, Vh € ff:fau(% x'),

A(\?‘Ecphinge’g{all(h’1;7'/5,)
Z hgﬁ(ilrll(fm,z/) e~¢hinge (h,x,z ) eLq’hmge’ Fan (ZU X )
= n(@)(1 - n(a")) max{0,1 - 0} + n(@)(1 - (a)) max{0.1+ 0} - €, (w,a')

=n(x)(1-n(z")) +n(z")(1 - n(z)) - 2min{n(z) (1 - n(z")),n(=")(1 - n(x))}
=[n(x)(1 -n(2")) - n(") (1 -n(2))|,
which implies that for any h € H,j, x € X and z’ € X,

ACr g (o, x’) 2 AC | gc(h,2,2").

Lq)h]ngc
Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{,j;-consistency bound for Eéh;nge’ valid for all h € Hy:
(h) fR~ (g'fan) < :Rt‘i’hmge (h) - fR{-@hinge (g{all) + Mtq)hinge (g'fan). (26)

|-01
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J.2. Derivation for Eq>p.

For the p-margin loss function ®,(u): = min{l, max{O, 1- %}}, p>0,forallheHy,xeX, 2’ e Xand x + 2":

Gt% (h,z,z")
=n(2)(1-n(z)®,(h(z) - h(2")) +n(z") (1 - n(2)) @, (h(z") - h(x))

=n(x)(1- 77(x’))min{l,rnaux{()7 1- W}}

() - h(z") }}

+n(z")(1 —n(x))min{17max{071+ p

Then,
(z,2") = 1nf @ (h,x,x')
= mlﬂ{??(l‘)(l =n(@")),n(@") (1 -n(z))}

% ’
B Gto—lyg{all(m7x )

La,,Han

Note that for h‘E‘p g0 (@) = an(z), a> 0, by the Lebesgue’s dominated convergence theorem,
@, Itan

a—>+00

lim inf Ry (hﬁbp %du) Ex, X’)[GLI , 11(a: x )] > fR~ ( an) 2 Ecx x/ [ d“(m )|

Therefore, the (t@p, U{an)-minimizability gap is

Mf_’(bp (j'fall) = R (:}Call) E(X X I:eLq) Ty (,1; €T )] =
Furthermore, for any h € H,pj, z € X and 2’ € X,

Aef¢p,ﬂ{all (ha €z, ZC,) 2 Aeto_l,f}f(h” x, CC,).

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{(,j;-consistency bound for tq>p, valid for all h € H:

(h) fR* (j‘fau) < fqu}p (h) - fRqu)p (9{&11).

L01

J.3. Derivation for Lo

exp *

For the exponential loss function ®eyp(u):= e, forall h € Han, z € X, 2 eXandz + 2":
Cr, (h,z,2")

- 77(1’)(1 - U(x’))@exp(h(x) - h(gg’)) + 77(96’)(1 _ U(I))‘I)exp(h(l") _ h(x))
= () (1= n(a")e M OE 4 (a) (1= ()t DT,

Then,

€, oo @) = it €, (b’ = 2/n(@)n() (T - n(@) (- n()).

Le exp’

Note that for ]52':5 - (z) = Llog % with fixed z* € X,

R, (P2 40, ) = Ecxon [V = n@) (- )],

Laeyxp Han

29
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Therefore, the (E<pex1), fHan)—minimizability gap is

Mtiexp (Han) = :RAE?CXP (Han) - ]E(X,X’) [GE@CXP S (z, x’):l =0. (29)
Furthermore, Vh ¢ JTCall(x, x'),
Aetq)exp,ﬂfau (h,z,2")

> _inf € (hwa2)-C . (x,2)
heFan (z,x") Fexp Pexprhall

= (@) (1-n(@))e ()L -n(@)e’ - €, 0 (@)
= n(x)(1=n(@")) +n(=")(1-n(@)) = 2v/n@)n(") (1 -n(x)) (1 -n(a'))
( n(@)(1 - (")) = n(a") (1 - () )
V(@) (1 =n(z) +/n(a) (1 -n(x))
> (n(z)(1 - (")) - n(z") (1 - n(x)))’

Similarly, VA € Fan (2, 2'),

AG—E%XP o (h,z,z")
> inf G (hz,2")-CF (z,2")

heﬂifa“ (z,z") Pex Loexp Fan
=n(@)(L-n(a")e® +n(a)(L-n(@)e® - €, o (r.a")
= (@) (1-n(a) + n(z") (1 -n(x)) - 2v/n(x)n(") (1 - n(z)) (1 - n(z’))
> (n(x)(1-n(2")) =0 ) (1 -n(zx)))*,

which implies that for any h € H,j;, x € X and z’ € X,

Al Hall(h’x’m,) 2 (Aef_'o_h}f(h,.’lj,l‘,))2.

Laexp s

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{,;;-consistency bound for FLV(I,eXp, valid for all h € Hyy:

Re, ()R (O < (%, () -%, (Oa) . (30)

J.4. Derivation for Eq>log.
For the logistic loss function ®jog(u):=logy (1 +e™™), forall h € Hap, 2 € X, 2’ € X and x # 2"
Cr.  (h,z,z")
Plog
=n(x)(1 = n(z"))Prog(h(x) = h(z")) + (") (1 - n(2)) Prog (h(z") = h(x))
= n(@)(1 - (@) logy(1+ e D) 4 n(a') (1 = y(x)) logy (1 + €MD),

Then,
chblogﬂfan(x’z,)
- 5 b, (1)
=-n(x)(1 -n(2"))logy (n(x)(1 = n(z"))) = n(2") (1 - n(z))logy(n(z") (1 - n(x)))
<2y/n(a)n(z")(1-n(z))(1-n(a")) (~alogy(a) ~blogy(b) < 2v/ab, a,b e [0,1])
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Bayes — n(z)(1-n(z)) 1 *
Note that for h}log’%au (x) :=log NG (o (o)) With fixed 27 X,

Bayes * /
R h2>® =E x z,2')|.
Lq’log |—<I>1Og yHan (X, X7) eL@log sHan ( ’ )

Therefore, the (E@log, ﬂ{all)-minimizability gap is

M, () =5, ()~ B [€6,, e, (5:49)] =0. 61
Furthermore, Vh € Fay (z, 2'),
Aetqnog»f}fau (h,z,z")
> heﬁilrll(fx,x') ef@log (h,z,2") - Giblogﬂfan (z,2")

= () (L= n(a")) logy(1+€°) + (@) (1= n(a))loga(1+¢°) - €7, 0 (2,2)

> n(z)(1-n(a")) +n(z") (1 -n(x)) - 2¢/n@)n(@) (1 -n(z))(1-nz))
( n(@)(1-n(a")) - n(a') (1 - n(=)) )

V(@) (1 -n(a’)) +/n() (1 -n(z))
> (n(x)(1-n(z")) 0" ) (1 -n(z)))*

Similarly, Vh € Ho (2, 2'),

Aef¢log7%a11 (h,x,z")
(h7xazl)_ei (I,I,)
g

> inf G
= Lo, Loy, Han

heFan (z,a")

o,

= (@) (L= n()e™ +n(a) (1 =n(@)e =€, o (ra')
> n(z)(1-n(2')) +n(z") (1 - n(z)) - 2¢/n(@)n(z") (1 - n(z)) (1 - n(z'))
> (n(z)(1-n(z")) - n(a") (1 -n(x)))?,

which implies that for any h € H,y1, x € X and 2’ € X,

2
Aetq)log,g{an(h,x,x') > (A(ftoihg{(h,x,x')) )

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{,;;-consistency bound for t@log, valid for all h € H i
%
Re, () -R, () < (Re, (W)=, () (32)

J.5. Derivation for E@Sq.
For the squared hinge loss function ®4,(u):= (1 - u)? 1<y, forall h e Hap, 2 € X, 2’ € X and z # 2

etq>5q (h,x,z")

=n(z)(1=n(2"))Dsq(h(x) = h(2")) + n(z") (1 = 7(2)) Dsq (h(z") = h())

= () (1= (")) (1= h(x) + h(2")) Loy-niener + (2" (1= 0()) (L +A(x) = h(2) Day-nas-1-
Then,

4 @) () (1 - n(2)) (1 -n(2’))
n(z)(1-n(z")) +n(a)(1-n(x))

* n oo % " o_
eipb,q,ﬂfau (z,2") = helglea“ GL%q(h,x,x ) = .
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The (t@sq , H{au)-minimizability gap is

Mg, (Han) :Rf¢sq(“all)—E<X7X'>[@E¢ 5 (w’)]- (33)

sq o vall

Therefore, Vh € fﬁan(x, x'),
A(?tq)sq,}ca“ (hyz,2")

> _inf €, (hxa’)-CF (z,2")
- = L s Ly R
heFan (z,27) 054 Loy, Han

@) (L) 40 ) n@) - €, e (@)

n(@)(1=n(z")) +n(z) (1 -n(z))
_ (@) (1 =n(x)) = n(a") (1 - n()))*

n(z)(1-n(z’)) +n(z)(1-n(x))
> (n(z)(1-n(2") - n(=")(1-n(x)))" (a+b-2ab<1,a,be[0,1])

Similarly, Vh € ff{au(:z:, z'),

Aef¢sq,?€a11(h’z’x,)

§ he}qcilIll(fz,z’) €f¢sq (. SC,) - eE@squ{a“ (@, SC,)

= n(@)(L=n(a")) +n(a") (1= n(2) = CF, . (x.2")

V(1 (! L)) - 2 1@ (A = n(@) (1= ()
=n(@)(1=n(@)) +n() (1 -n(@) ~ 4o E e e s T A
> (n(z)(1-n(z")) —n(z") (1 - n(z)))%,

which implies that for any h € H,pj, z € X and 2’ € X,

/ N2
AGE¢SQ,3{a11(h1x7x ) 2 (Ae’[_’g_l,j{(h,l',x )) .

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{,j;-consistency bound for tcpsq, valid for all h € H1:

1
2

Re, () -RE (Har) < (Rt(bsq (h) - Rz, (Ha) + M, (J{all)) (34)

J.6. Derivation for E%g.
For the sigmoid loss function ®g;,(u):= 1 - tanh(ku), k>0, forall h e Hyy, x € X, 2" e X and x # 2
et(bsig (h,l‘7x’)
=n(2)(1 = n(z")Psig(h(z) = h(z")) + n(z") (1 = n(2)) Psig (h(2") - h(z))
=n(x)(1 -n(z"))(1 - tanh(k[h(z) - h(2")])) + n(z") (1 - n(x))(1 + tanh(k[h(z) - h(z")]))
Then,

Ly e (@) = omf Cp, (b, z,2") = 2min{n(z)(1 - n(2")),n(z")(1 - n(x))}.

Lq’sig

Note that for h* (z) = an(x), a >0, by the Lebesgue’s dominated convergence theorem,
@S

i Fan

lim inf :th)sig (h/ﬁbsig 7}Cau) = E(X,X’) [G’E({)Sig o (.’17’ g;,):| > :R’E‘i’sgg (j{all) > E(X,X’) I:G’E‘bsig Han (.’137 .’L"):| .

a—>+00
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Therefore, the (tésig , ﬂfan)-minimizability gap is

Mf¢ ) (j‘fau) = R{-@ ) (f}{an) - E(X,X’) I:GL H(l’ T ):| =0. (35)
sig sig Ha
Furthermore, Yh ¢ J”:Can(x, x'),

Aet%g Han (h, x, .”L")

. ! * !
> _inf G (h,,2")- Cr, H(x,a: )
heHan (z,z") sig sig?” @

= n@)(1= @) + 9@ -0 - €, 4 (0.0

=n(@)(1-n(2")) +n(z")(1-n(z)) -2 mm{n(x)(l -n(@")),n(=")(1-n(z))}
= [n(2)(1-n(z")) - n(a")(1-n(z))l.

Similarly, Vh € Ho (2, 2'),
Aet%gﬂfau (h,z,2")

. A * 4
> inf G (hz,2) - €L, s n(x,ac )
th‘fdu(l' .'L") sig sig?” @

= n(@) (1= n(@)) @)L -n(@) - €, o (@)

=n(z)(1-n(z")) +n(z")(1-n(z)) -2 mm{n(x)(l =n(z")),n(z") (1 -n(x))}
=n(x)(1-n(z")) =n(z") (1 -n(x))l,

which implies that for any h € H,pj, z € X and 2’ € X,

Aetfb i »}Call(h’x’x,) 2 Aeto_l,%(hvxvzl)'

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{,;;-consistency bound for t@sig, valid for all h € H,y;:

RT:O—I (h) - ZREO_I (j‘fau) < :Rt‘f’ﬁig (h) — :RE(;, . (g{all)' (36)

K. J{ - consistency bounds for pairwise abstention loss

We first characterize the minimal conditional L& -risk and the calibration gap of L35 for a broad class of hypothesis sets.
We let H(z,2") = {h € H:sign(h(z") - h(x))(Zn(:c z") = 1) < 0} for convenience.

Lemma K.1. Assume that 3 is regular for general pairwise ranking. Then, the minimal conditional LSEﬁ—risk is
@ESE? (H,z,2") =min{n(z,z"),1 - n(z,2")} 1 |sepr oy + C Ljgmsrjcy-
The calibration gap of Lab1 can be characterized as
AeLgEq,ﬂ{(hy ,2") = 2n(z,2") - 1|]lhe§(w@f)]1|\x—x'|\>y-
Proof. By the definition, the conditional Lg}fsl -risk is
Cavs (B, 2,2") = (2, 2" ) Ln(aryen(ay + (1 =002, 2")) Ungerysn(e) ) Lja—ar oy + € Lpmaricy-

Forany (z,2") such that |z — 2| <yand h € 3, Cavs (h, z, @) = G,_dbb (K, x,x) = c. Forany (z,z") such that |z — | > 7,

by the assumption, there exists h* € H such that Slgn(h*(ac’) h*(x)) = sign(2n(z,z') —1). Therefore, the optimal
conditional L35 -risk can be characterized as for any z, 2" € X,

GESEi (}Ca Z‘,l',) = eLgEj (h*a JJ,J?,) = min{n($7$’)> 1- n(xaxl)}]lﬂmfx’ﬂyy + C]l\x—x’\S’y'
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which proves the first part of lemma. By the definition, for any (z,z’) such that |z —2'| < v and h € T,
ACLavs gc(h, 2, 2") = Cpave (b, x,2") = € (3, @,2) = 0. . For any (z,2") such that |z - 2’| >y and h € ),
-1 - 0-1
AQLSE?,}C(}% €z, ,I,) = eLSEi (h7 €z, ‘T,) - GESE; (3{7 €z, I’)
=12, 2" ) L @nyen) + (1=1(2,2")) Lngaryzn(z) - min{n(z,2'),1-n(z,2")}

_ ‘277((571'1)_“7 heg(%x,)y
- 0, otherwise.

This leads to
AC s gc(hya,2") = 20(2, ) = 11, 4 oy Lfo-at>y-

K.1. Linear Hypotheses

Since Hj;,, satisfies the condition of Lemma K.1, by Lemma K.1 the (LSESD thn)—minimizability gap can be expressed as
follows:
MLS‘_)T (g{lin) = Rtglﬁ (:}(lin) - IE(X,X’) [min{n(ﬂf, :13,), 1- 77(% xl)}ﬂHm—m’Hyy +c ]l\gc—z’|§'y]- (37)

By the definition of Hyy, for any (z,2) € X x X, {h(2') = h(z) | h € Hyn } = [-W ]z — /|, W[z -2/ ,].

K.1.1. DERIVATION FOR Lg,, ...
For the hinge loss function ®pinge(u): = max{0,1 - u}, for all h € Hy;, and (z, ") such that |z - z’Hp >,

Lq)hinge (h’ x, x/)

= (2,2 )Lay,. (M(2") = h(2)) + (1= n(2,2")) Lo, (h(z) = h(z"))
=n(x, 2" ) max{0,1 - h(z") + h(x)} + (1 - n(x,2")) max{0,1 + h(z") - h(z)}.
Then,

san (@)= i e, (') = 1= 2n(e,a") - Hmin{W ]z - '], 1},

*
Lg, .
L‘I’hingo lin Phinge

The (La,,,., Hiin )-minimizability gap is

ML‘I’hmge (j{hn) = :RE‘I’hinge (g{lin) - E(X’X,) [ezq)hinge sFiin (I’ :l:’)]
=R} (Hin) — Ecx.xn [1 - 20(2,2") = min{W |z - 2’|, 1}].

Lq)hinge

(38)

Therefore, Yh € ﬁhn(z’ ),
AeLq)hinge7j{1in (h, z, xl)

. / * /
> inf G'—%;nge (h,z,2") - GL(»]- g0, (T,7)
heg{lin(xwz,) nnee

=n(z, 2" ) max{0,1 -0} + (1 - n(x,2")) max{0,1 +0} - €E¢}. 3¢, (T, z')
nnge ’

=1-[1-2n(z,2") - 1| min{ W |z - ', 1}]

= 2n(x,2") - 1] min{WHx - o:'Hp, 1}

2 |2’I’]($, LIJ,) - 1| mln{W’ya 1}
which implies that for any & € H;, and (z,2") such that [z - 2/[ , > v,

Aechhinge,iHlm (hv xz, :E,) 2 min{W’% 1}<|271(T/a wl) - 1|>0]1heﬁ1;n(z,z’) = AGLSEE{,J’CHH (h, z, xl)~
Thus, by Theorem C.1 or Theorem C.2, setting ¢ = 0 yields the J{;;;,-consistency bound for L(Dhinge’ valid for all h € H;y,:
RL(I)hinge (h) - j{* ge (g{lin) + MLq)hinge (j{lin)

Loyin

min{W-,1}

:RLSI_)i (h) - RESE? (j{lin) S - MLSI_):i (}Clin). (39)
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K.1.2. DERIVATION FOR Lq:.p.

For the p-margin loss function ®,(u): = min{l7 max{O7 1- %}}, p >0, forall h € Hyiy and (z,2") such that |2 - 2’|, > 7,
ech,, (h,x,x')
=n(z,2")Le, (h(z") - h(z)) + (1 - n(z,2"))Le, (h(z) - h(z"))

=n(z,2") min{l,max{o, 1- h(:z:’)p—h(:z:)}} +(1-n(x,2")) min{l, max{O, 1+ h(:c')p—h(x)}}

Then,

N ,
et%ﬁnn (z,27) = eH?lelm Cy, (b, z,2")

! / ’ ’ min{WHx_x,szp}
= mln{??(x,x )a 1- 7](%37 )} + max{n('rax )a 1- 7](%33 )} 1-
p
The (Lq,p,f}flin)-minimizability gap is
My, (Hiin)
=R, (Hin) ~Exxn[ € 50, (2:2)]
B min{ W |z - x'Hp,p}
P .

= REq)p (j{lin) - JE(X,X’) min{n(xvx,)a 1- 77(55, {E,)} + maX{n(% IL‘I), 1- 77(957 (E,)}(l
o (40)
Therefore, Vh € Hy, (z,2'),
Aehbp,?flm(h:xvx,)

> _inf G, (h,x,z") - Cf 30, (T, x')
heHin (2,2") ?

min{IW |z - /], p}
p

= maX{U(x7$’)7 1- 77(33750,)} + min{n(xwr,); 1- T](.T,l")}(l - ) - GE(])‘)75—C“"($7I,)

min{ Wz - 21}

= 2n(z,2") - 1

> |277($7x’) _ 1|M

which implies that for any h € i, and (2, 2") such that |z —2”||, > 7,

min{W~, p}

AeLd)pv}Clix](h?‘r’ x,) 2 <|277(£L', :C,) - 1|)0]lhe§“n(gj’x’) = AeLgEi,ﬂ-{un(ha {E,:L'/).

Thus, by Theorem C.1 or Theorem C.2, setting ¢ = 0 yields the Hy;,-consistency bound for Lo ,, valid for all & € Fj,:

p(Rea, (R) = RE, (Fin) + My, (Hiin))
min{W+, p}

fRngi (h) - RESE;' (j'flin) < - MLgE; (:H:lin)' (4D

K.1.3. DERIVATION FOR Lg,,, -

For the exponential loss function ®ex, (u):= €™, for all h € Hy, and (2, 2”) such that [z - 2’|, > 7,

CLy,,, (M 2,2") = n(w,2")La., (h(2") = h(2)) + (1 - n(2,2"))La,,, (h(z) - h(z"))
_ n(x’ x/)e—h(x')ﬂz(:c) " (1 _ ,'7(.137 m/))eh(w')—h(x).
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Then,

Gt@cxp )}Clin (x’ :C,)

= ifr}lcf Cle.,, (hyz,2")

heFiin
_ 2\/77(37733')(1 - 7](% Qfl)) ) , %|10g 11’5;2;1733) < W“Z‘ - $,||p
max{n(z, '), 1z, 2"}l s minfn(e,a).1 - (e, o))" Llog IO S W o,

The (Lq,cxp,J—Chn)-minimizability gap is:

Mg, (Hin) = Rf, (Him) = Eox x| €1, s, (2,21)]

= Ri,,. (Fin) - E(X,X')[2\/77(ffa z’)(1-n(z, $'))]1%|10g _nGeat) gwuz-w'up]

1-n(x,z")

’ ’ -W|z—2'| (42)
- E(X,X’) max{n(xa z )7 1- 77(% z )}6 p]llllog n(z,z’) SW|z-a/|
2 1-n(x,z’) P
. W z—2"
—E(X’X,)[mm{n(z,:c'),l —n(z,z")}e H ”p]11|1og 1) || ]
2 T-n(a,2’) P
Therefore, Vh € Hyy (z,2),
AeL(I’exp7:}(1in(h7x’ Z‘,)
> _inf  Cu,  (ha,2") =€, g, (z,27)
heFiin (z,x") P
= 'r](x, gj’)e—o + (1 - ﬁ(l‘, .73’))60 _ eipexpﬂflin(x?x,)
1-2y/n(z, ") (1= n(z,a")) Liog 2e) | < W - 27,
L= max(n(z,2), 1= (o) eI minfy(a,2), 1= 0,2} Hog 2GS s Wi -0,
S 1- 2\/7](3:7 33,)(1 - 77(95795')) % IOg 1?_7571(:,;@)/) < W7
# |1 - max{n(z, ), 1 - (. ') bW —minfn(z, 2'),1 - n(z, )} Hiog 2E 5wy

= Wexp([2n(2, 2") - 1),

where Wy, is the increasing and convex function on [0, 1] defined by

2W ey
_\J1_+2 e -1
1 1-1t2, U< Swag
_tHl Wy _ 1t W W
1-re 7€ > o

Ve [0,1], Uexp(t) = {

which implies that for any h € 3y and (z,2") such that |2 - 2’|, > 7,
ACLy,.., 96 (B2, 7") 2 Wesep ( ACLws 5, (hy,2))-

To simplify the expression, using the fact that

2
1-V1-t2>—,
2
1 t+1 oy 11y 1 eV e‘W7+eW7—e_W7t
- e - e’ ’=1- - ;
2 2 2 2 2
Yexp can be lower bounded by

2 W1

~ 5 t< Sweg

Wexp () =4 2wy g%lf}

5(62W7+1)t’ t> e2Wv 41
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Thus, we adopt an upper bound of U~ as follows:

/o7 1( W1 2
Teyp(t) = W21 (1) = 2, t< 2(e2W~+1)
exp €xp (62W7+1)t t> l(e

e2Wnv_1

- | Va2 S )1}

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{};;,-consistency bound for Lg valid for all h € H;y,:

exp?

Riavs (h) = fR,_abs (Hin) < Fexp(fRLq,exp (h) - fqu,exp (FHin) + Mg, (U'flin)) = Mavs (Hiin)- 43)

where Loy, (1) = max{\/_ Z(szzﬂ)t}.

K.1.4. DERIVATION FOR Lg,, .

For the logistic loss function ®1og(u): = logy (1 +e7*), for all h € Hii, and (2, 2") such that |z - 2’|, >,

CLy,, (h,z,2") =n(z,2")Le,, (h(2) - h(z)) + (1 -n(z,2"))Le,, (h(z) - h(z'))
=n(x,z") log2(1 + e‘h(””,)m(”’)) +(1=n(x,2")) log2(1 + eh(””)‘h(‘”)).

Then,

eliq)log’g{“n (x7 xl)

= inf GLq,log(h,x,z')

heXiin
-n(z,z")logy(n(z,2")) = (1 = n(z,z")) logy (1 - n(z,z"))
if ‘log 2et) N < Ww -], , ,
max{n(z,z'),1-n(x,2')} 10g2(1 +e Wz Hp) +min{n(z,2'),1-n(z,2")} 10g2(1 + Wz Hp)
if \1og% > Wla -2/,

The (L‘I’log , J—Clin)-minimizability gap is:

M, (Hiin)
= qu’log (J{lin) - E(X’X,) [efélog Hin (x’ x,)]

“ R}, () ~ x| -0 ) ogy (n(.a')) = (1= ) oga (11 DLy sty Lo |

-n(z,z’)

Wz’
-Ex,x1 [maX{n(x, z'),1=n(z,z")} 10g2(1 +e | ||p)]]'|10g 1:’(”(”’””'),) SW|z—a'], ]
. W |x—2"
- E(X,X')I:mln{n(xv Sﬂ,), 1- 77(%96/)} 10g2(1 +e ||r ¢ Hp)]l|log 17,(3(5,1’),) SW|z—a'|| ]
“n(z,x P
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Therefore, Vh € Hyy (z,2),

Ael—qqogag{lin (h7$7x,)
> inf

’ % ,
RS Cay,, (h,z,z") - @L%og’%“n(x,x )

=n(z,2") logy(1 + e’o) +(1-n(z,2"))logy(1+ eo) - @fq)l
og

L+n(z,2")logy (n(x, 2")) + (1 = n(z,2")) logy (1 - n(z, z"))

i if ‘log 11(;;63,) <Wlz-a'|,
1 - max{y(z,2'), 1 - n(z,2")} log,
if ‘log L) s W - o],

if ‘1og 177(757‘%’),) <Woy

1 - max{n(z,z’),1-n(z,2")}logy(1 +e"

n(z,z")
1-n(z,2’) > Wy

= Wiog(|2n(z, ") - 1))

v

if ‘log

W) —min{n(z,2"),1-n(z,2")}logy(1 +e"

,Hlin (‘r’ {E,)

L+n(z,2")logy (n(x, 2")) + (1 - n(z,2"))logy (1 - n(z,2"))

where Uy, is the increasing and convex function on [0, 1] defined by

vte[0,1], T(t) :{

1 1og, (¢ +1) + S log, (1 - 1), t< gt
1-21logy(1+e” W’Y) Ellogy(1+e™7), t> E‘V}VV%

which implies that for any h € 3y, and (2, 2") such that |2 - 2’|, > 7,

Ael‘q’log’j{“r‘ (h’ Z .%',) 2 \IIIOg(AeLSlﬁ,ﬂ'C]m (h? Zz, LIZ‘,))

To simplify the expression, using the fact that

rel t+1 t+1 1-t 1-1¢
—1 t+1 +—1 =1- 1 - .
og,(t+1) ogy(1-1) ( 5 ng( 2) > °g2( 2
51- 41—tt+1
2 2
=1-V1-1¢2
t2
277
2
fil w 1-¢ Wey 1 4 1 1+
1= logy(1+e ™) — ——logy(1+e™) = 510g2(m)+510g2m

U10g can be lower bounded by

qleg(t) {

Thus, we adopt an upper bound of \Ill’olg as follows:

Tlog (1) = Wiog(t) =

_max{f 2(

(1+eW=0) “mmingn(a, '), 1 - n(e,a)y logy(1+ e 1710)

")

t? e
20 w t< eg’7+1
1fe™7-1 e -1
§(GW"’+1)t7 t> eWr+1
2
171
vt 1< 3(Ewst)
2
W W
e +1 e -1
2(eW’Y—l)t’ t> 7(eW’Y+1)

eV 1

)}

eWvr 1
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Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{(};;,-consistency bound for L<plog, valid for all h € H;iy,:

Ry () = Riavs (Hrin) < Tiog(Reg, (M) =R, (Hin) + Mig, (Hiin)) = Myges (Hin)- 45)

where I'og(t) = max{\/Z_t, 2( zx:j ) t}.

K.1.5. DERIVATION FOR Lg_,.
For the squared hinge loss function ®¢,(u):= (1 —u)*1 .1, for all h € Hy;, and (x,2”) such that |z — 2’ I, >
Clq,, (hy2,2")
=n(z, 2" )Le,, (h(z") = h(x)) + (1 - n(z,2"))Le,, (h(z) - h(z"))
= (. 2") (1= h(a') + (@) Ln(ery-neoyer + (L= n(@,2")) (1 + ') = 1)) Ly-ngos-1-
Then,

efq,ﬁq,j{lin (337 x’)

= inf @€, (h,z,2")

heFHiin Psq
An(z,2")(1-n(z,2"))
if [2n(z,2") - 1| < W]z -2,
max{n(z,z’),1 - n(m,x')}(l -Wzx- x’Hp)2 +min{n(x,2),1 - n(;v,x')}(l + Wz - x’Hp)Z
if [2n(z,2") - 1| > Wz -2’ .

The (Lo, , Hiin )-minimizability gap is:

M, (Fin) = R, (Him) = Egx.xn[ €L, s, (2:2)]
= fRE@Sq (j{lin) - E’(X,X’) [4U(l‘, .Z‘,)(l - 77(1‘7 x,))]l|2n(m,:c’)71|£W\|x—x’Hp]

! ! ! 2 (46)
- E(x,x')[maX{n(w, 2'), 1 =n(z, 2" )} (1- Wz -2],) ]1|2n(x,x')—1\>wuz—x'up]

. 2
-Ex,x [mm{n(m, '), 1-n(z,a")}(1+ Wz -2'],) ]1|2n(w,w'>—1|>wum—w'up]-
Therefore, Vh € Hyy (z,2"),

Ael—ésq,f}flm(h’ x7x/)

. ! * /
> 71nf eLq,sq(haz7x ) - GL<1>S 77{1in(l”‘r )
heXin (z,2") !

= n(z,x’) +(1- U(I,x')) - Gll,sq,i}fuu (z, :17’)
1_477(1”7$’)(1_77($a$,))
if 2n(z,2") - 1| < W]z -2,
! ! ! 2 : ! ! ! 2
1-max{n(z,z),1-n(z,2")}(1 - W]z -2'],)” - min{n(z,2'),1 - n(z,2")}(1+ W]z -2'| )

if 2n(z,2") - 1| > Wz -2,

1 =An(z, ") (1= n(z,2")) 2n(z,2") - 1| < Wy
* 1= mas{n(e, 2°), 1 -0, 2} (1~ Wa)? - min{n(z,27), 1 - 5z, 2)}(1+ W) 20(z,27) ~ 1] > Wy
= \Ilsq(|2n(x,x') - 1|)7

where U, is the increasing and convex function on [0, 1] defined by

t? t< Wy

Vi e [0, 1]7 l:[}S(Zl(t) = {QW'}/t — (W’}/)Q t> W’Y
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which implies that for any h € 3y, and (2, 2") such that [z - 2’|, > 7,

Aehbﬁqﬂ’fun (h7 T, 33‘,) 2 \PSQ(AGL;}E}J{“I, (h’ €z, l‘,))

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the H);,-consistency bound for Lq,sq, valid for all h € Hip:

Rigos (h) = R (Fiin) < rsq(ﬂqu,Sq (h) =R, (Hain) + M, (ann)) = Myavs (Hiin) (47)
_ Vi, t< (Wn)? W
where Faa(f) = 2 (1) = {2v€/ c W s (Wy)2 T max{\/g’ s + TW}
Y

K.1.6. DERIVATION FOR Lg_, .
For the sigmoid loss function ®gig(u): =1 - tanh(ku), k> 0, for all h € Hyi, and (z,2”) such that |z - 2’|, > 7,
CLy,, (h,x,2")

=n(z,2")La,, (h(2") = h(z)) + (1 - n(z,2"))Le,, (h(z) - h(z"))
=n(z,z")(1 - tanh(k[h(z") - h(2)])) + (1 = n(z,z")) (1 + tanh(k[h(z") - h(z)])).

Then,

qu)sig (Hain) (z,2") = heigcflm GLq’sig (hyz, 2"y =1-1]1-2n(x,2")| tanh(kWHas - Jc'Hp).
The (Lo, , Hiin )-minimizability gap is:

M, (Hin) = qu,sig (Hin) — E¢x, x1 [@Eq)sig,g{“n (z, xl)]

* A ! (48)
= fRL%g (Hoin) - IE(X’X,)[I =1 -2n(z,2")| tanh(kWH;z: - Hp)]

Therefore, Vh € Hy (x,2"),
Ael—qx- ,J‘fnn(hv x,m') 2 finf equ- (h7 x,x') - eli; - Hiin (LC, xl)
sie heHpin (z,z’)  OF sig’
=1-1-2n(z,2")|tanh(0) - € 4¢. (z,2")
=[1-2n(x,")| tanh (kW |z - 2'] )
> 1 -2n(x,z")|tanh (KW )
which implies that for any h € 3y and (2, 2) such that |2 - 2’|, > 7,
ACL, 30, (h, 7, z') > tanh(kW7y)ACLave g¢, (R, x').
Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hy;,-consistency bound for Lo, , valid for all /1 € Hyjy:
Rig,, (h) =R(,  (Fhin) + Mig (Fin)
tanh(kW~)

Rigos () = Rane (Hiin) < = Myavs (Hiin)- (49)

K.2. One-Hidden-Layer ReLU Neural Networks

Since Hny satisfies the condition of Lemma K.1, by Lemma K.1 the (LS‘E?, J—CNN)-minimizability gap can be expressed as
follows:

MLSE? (HNN) = :RESE:T (}CNN) - IE(X,X’) [mln{n(xv .’13,), 1- 77(337 x,)}]lﬂa:fx’Hyy + C]l\x—a:’\sv']' (50)

By the definition of Hyn;, for any (z,z") € X x X, {h(w') —h(z)|he ﬂ-CNN} = [—AWHSC —a'|,, AW |z - :I:'Hp].
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K.2.1. DERIVATION FOR Lg,, .. -

For the hinge loss function ®hinge(u): = max{0, 1 - u}, for all h € Hyn and (x,2") such that [z - 2'[, > 7,

eLq>hmge (h’a xZ, xl)

=1(2,2") Ly, (h(2") = h(2)) + (1 - 0(z,2") Loy, (A(z) - h(z"))
=n(z, ") max{0,1 - h(z") + h(z)} + (1 - n(z,2")) max{0, 1 + h(z") - h(z)}.

Then,

* no_ o N o_ / . ’
C Foan (T, 77) = helgr%iN Cla,,, . (how,2") = 1= [2n(2,2") - L min{AW |z -z s 1}.

Li’hingc ’
The (L‘I’mngcv J—CNN)-minimizability gap is

Mg, (Haw) = RE,  (Hw) ~Egxxn[ €L, sen (#:7)]

- C}Q,’:%mge (HnN) — E(X,X/)[l —12n(z,2") - 1] min{AWHx - ac'Hp7 1}]

g

61y

Therefore, Vh € Hyn (2, 2'),

Ael‘“’hinge 7 HNN (h’ z, 1‘,)

. ! * !
> inf Cly,.  (hyw,2) - C‘TL%. Foan (T, T7)
heHnn(z,z") € inge

=n(x,2")max{0,1 -0} + (1 - n(z,2")) max{0,1 +0} - Gf@l. T (z,2")
=1-[1-2n(z,2") = 1 min{AW |z - 2| ,, 1}]
=2n(z,2") -1 min{AWHa: - lep, 1}
> 2n(x,2") = 1 min{AW~,1}
which implies that for any h € H{xx and (x,2") such that |z - 2|, > v,
AG'—%;ngev}fNN(h’ z,2") > min{AW~, 1}{|2n(z,2") - 1|)0]1h€§NN(I7w,) = ACLabs gy (h,z,2").
Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hyn-consistency bound for Lg,,, .., valid for all & € Hyn:

R (W) = RE (FN) + My, ()

min{AW~,1}

Phinge

Rigos (h) = Rians (Hnn) < = Mias (Hnn). (52)

K.2.2. DERIVATION FOR Lg,,.

For the p-margin loss function ®,(u): = min{l, max{O, 1- %}}, p >0, forall h € Hyy and (z, ") such that |2 - 2'| , > 7,
eL<1>p (h’7 x, x,)
=n(z,2")Le, (M(z") - h(z)) + (1 = n(z,2"))Le, (h(z) - h(z"))

= n(x,x')min{l,max{Q 1- h(;zc’)p—h(m)}} +(1=-n(x,2") min{l,max{o, 1+ h(w')—h(m)}}

P
Then,

er;pp 7g‘fNN (l‘, CC,) = hEi%f\]N eLch (h’ x? x/)

min{AW |z - ', P} )

= min{n(xv 1',)7 1- 7](937 z’)} + max{n(xa zl)a 1- 77(%95’)}(1 - p
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The (Lq>p , fHNN)-minimizability gap is
M, (FHnx)
- fRE@’P (}CNN) B E(XvX') [GE¢>P7J{NN ('T7 m,):I

min{ AW |z - ', p})
p

= Ry, (Hw) - Eoxoen| min{n(e, '), 1 - n(a,2')} + max{y(e,a’), 1 - n(m')}(l -

B (53)
Therefore, Vh € Hnyn(z, '),

ACL,, gtnn (hya,2")

p

> _inf @, (h,x,a")-Cf, g0 (x,2")
heFHnn(z,x") ° P’
’ ’ : ’ ’ min{AW“‘r_‘T,Hp’p} * ’
= max{n(xax )a 1- 77(&'73j )} + mln{W(UCNU )7 1- 77(%95 )} 1- - eL@,J,}CNN(‘TVT )

min{ AW |z - ', p}

= [2n(z,2") - 1

in{A
> 2n(z,2') - 1|M

which implies that for any 1 € Hx and (z,2") such that |2 -2, >,

min{ AW+, p
AGL<1>979{NN(h7$7x,) 2 {p}(|27]($,$,) - 1|>0]1h6ﬁNN(I7$’) = AGLSI—)Sivg{NN(h’m’x,)'

Thus, by Theorem C.1 or Theorem C.2, setting ¢ = 0 yields the Hnn-consistency bound for L, valid for all h € Hyn:

p(Rea, () = RE, (Fn) + My, (Fo))
min{AW+, p}

Rigos (h) = Riane (Hnn) < = Myavs (Hnn)- (54)

K.2.3. DERIVATION FOR Lg

exp *

For the exponential loss function ®exp,(u):=e™", for all h € Hnn and (z,2") such that ||z — 2|, > v,
Cla,,, (h,@,2") =n(z,2")Le,,, (M(z") = h(2)) + (1 - n(z,2")) L., ((z) - h(z"))
_ n(x’ x/)e—h(x')+h(:c) + (1 _ 77('77’ x/))eh(x')—h(x).
Then,

Gl)iq)exp 7g‘fNN (1:7 ‘T’)

= inf Cg,_ (h,z,2")
hGg’CNN

exp

) {Nn(x,x')(l “(, ) los 20

< AW [z -a'],

max{n(z,z’),1 - n(z,a’)}e AW el el S AW - 2],

» + min{n(x,z'),1-n(x,z")}e %‘log TG

The (Pexp, Hnn )-minimizability gap is:

Mg, (Hn) = RE,  (Fn) =B xn[ €L, sean (@:2)]

= :Rz@cxp (J{NN) N E(X,X’) [2\/7’](.’17, LL")(l N 77(5(5, x,))]l%|log 713?:6;),) SAWHz—x'”p:I
' ' (55)
—-AW ||z—z
- E(X,XO[maX{n(x, 2'),1 - n(a,a')ye ”p]léllog ) s AW oo ]

AW”x—x'Hp]l

-E(x,x [min{n(m, '), 1-n(z,z")}e >AWHIfm’Hp]

1 n(z,z")
[ios 7500
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Therefore, Vh € Hyn (z, '),

Ae'—@exp ,HNN (hv €, SC,)

. ! * !
> _inf  Cu (hoz,a") = CL, g (2,2)
heHnn (z,z") P

“n(a,a)e 0+ (L=, a)e - €, gy (2,2")

1= 2/ (1= 0 )

_ if %‘log Ty | S AWz -a'|, , ,
1- max{n(% {E,), 1- 77(957 xl)}e*AW”$*$ Hp - mm{n(% iC’), 1- 77(307 x/)}eAW"x*Z Hp
if 1[log X5 > AW |2 - 2],
1=2y/n(z,2")(1 - n(x,2")) ;IOgM <AW
> ’ ’ 2 L-n(z,a’) | = v
B 1- maX{U(l"a JJ’), 1- 7](% xl)}e—AW’y - mm{’l(l"a Z‘,), 1- 77(% x,)}eAW’Y % IOg 1?5,?2?2/) > AW’Y
= Yesp (12n(,2") - 1),
where U, is the increasing and convex function on [0, 1] defined by
2W~y
1-V1-¢2 t< Sy
Vte [O’ 1]’ leCXP(t) = t+1 —AV;/'y 1-t AW~y 23313
=5 =500, 1> vy
which implies that for any & € Hxn and (z,2") such that |z - 2|, > 7,
ACL,,,., 90 (0, 7) 2 W (AL s (hy,27)).
To simplify the expression, using the fact that
V1- t2 > i
L t+ 16*AW’>’ ~ 1- teAW’Y L eAW'y ~ e~ AWy . AW _ o~ AWy ;

2 2 2 2 2 ’

Wxp can be lower bounded by

2 pe W
U exp () :{f( 2w 1)t ~ Swo 'l
2

2Wy ]
Thus, we adopt an upper bound of U~ as follows:
1(e2Wr_1\2
V2L, t<3 ( izwﬁ)

2W'y+1 2W 1

oGt )t 1> 3(Swert)’
_max{\/_ 2( QWWii)t}.

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hnn-consistency bound for Lg

Texp(t) = Uity (t) =

valid for all h € Hyn:

exp?

Rigoe (h) = Riane (FNN) < Dep(Rig,, (B) = R, (Fon) + Mig,, (Fan)) = Mgos (Hn): (56)

where Texp (t) = max{\/_ 2( 233*})75}
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K.2.4. DERIVATION FOR Lg,, .

For the logistic loss function ®jog(u): = logy (1 +e™"), for all h € Hyn and (z,2") such that ||z - 2'[, > v,

Cly,, (hoz,a’) = n(z,2")Lay,, (h(a) = h(x)) + (1= n(z,2"))Lay,, (h(z) - h(z))
= n(w,2") logy(1+e "D ) 4 (1 - (a2, 27)) logy (1 + ")),

Then,

et@log ,f}CNN (aj? -'L',)

inf Cs, (h,z,2
inf €y, (ha.2)

_77(‘1779:,) 10g2(77(,x1 l‘,)) - (1 - U(va')) 10g2(1 - 77(% ‘T,))
if ‘log n(z.2) ‘ <SAW |z - 2",

1-n(z,z’)
max{n(x,z'),1-n(z,z2")} 10g2(1 + e MW lz—z Hv) +min{n(z,z'),1-n(z,z")} log2(1 + Wl ”p)
if ‘log eS| > AW |z - 2,

The (®10g, Hnn )-minimizability gap is:
M, (Hxn)
= Ri,, () =B xn €, st (@,2)]

* ’ / ’ ’
= fRL‘Iﬁog (}CNN) - E(X,X’) [_77(1.7 x ) 10g2 (77(% x )) - (]— - 77(957 z )) 10g2(1 - 77(5”» x ))]l|10g 1:15;2:;),) |5AW”1_95’”;,:| (57)

—AW |z—a’
- E(X,X') [max{ﬂ(% lL’l), 1- ﬂ(ﬂfa (ﬂ,)} 10g2(]- +e ”x ‘ Hp)]l|log n(ﬂ(ﬂm’)) SAW |z—z'|| ]
1-n(z,z’ P
. AW ||z—2’
-Ex,x [mm{n(L z'),1=n(z,2")} logz(l vl H’))]lpog ) >Awnz—z'np]'
Therefore, Vh € Hyxn (z, 2'),
Ael-qqog-,i}fNN(hv x,x')
> _inf @, (h,x,2")-Cf g (x.2")
heH NN (z,x") los log’
=n(z,2")logy(1+e7%) + (1 -n(z,2"))logy(1 +¢°) - €f¢log7%NN($,x')
1+ 77(177 SC,) 10%2(77(% l’,)) + (1 - 77(% I,)) 10g2(1 - T](I, xl))
if ‘log 1?7(73(3;5”;,) <SAW |z -2'|,
|1 - max{n(z,2'),1-n(x,2')} 10g2(1 + e_AW”x_x,Hv) -min{n(z,z'),1-n(z,z")} log2(1 + eAW”x_"”’Hp)
if [log 28205 | > AW |z - 2,
1+n(z,2")logy(n(z,2")) + (1 - n(z,2")) logy (1 - n(z,z"))
if ‘log 1?573(”3’;%),) < AWy
> :
T |1 - max{n(z,2’),1-n(z,2")} logy (1 + e ") —min{n(z,2’),1 - n(z,2")} logy (1 + e*"7)
; n(z,z")
if ‘log | > AW~
= Wiog ([2n(z,2") - 1))
where Uy, is the increasing and convex function on [0, 1] defined by
AW~ _
() < Hllogy(t+1) + LStlogy(1- 1), t < St
vt e [0,1], (1) = t+1 AWy _ 1=t AW~ AW
1- 57 logy(1+e ) — 5 logy(1+e ), t> Sy
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which implies that for any & € Hxn and (z,2") such that |z - 2|, > 7,
AGLQIOg’}(NN (hyz,2") > \Plog(AGngi,:}cNN (h, z, x'))

To simplify the expression, using the fact that

t+1 1-¢ t+1 t+1 1-1¢ 1-¢
TlogQ(t+1)+Tlog2(1—t):1—( 5 10g2( 5 )— 5 10g2( 5 ))
1-tt+1
>1-\[/4——
2 2
—1-V1-12
t2
2=,
2
t+1 AW Lt A 1 4 1 1+eA
1= S5 o1 M) = S o1 M) = G5 s )+ g ol 1 )

U10g can be lower bounded by

t? AW
o = AW

\Iflog(t) {12( AW 1)t ‘s zAW:+1
2\ eAW 41 eAW 11

Thus, we adopt an upper bound of ‘Illog as follows:
2
~ V2, t< (el
Tiog () = Upop (t) = (i)
(&

AW~
Q(ZAWwfi)t t> %(éKW?:I
AT 41
—max{\/_ 2( l)t}.

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hnn-consistency bound for Lq)log, valid for all h € Hyn:

Ryaws () - RLabb(J{NN)<Plog(IRL¢l (h) =R, (Han) + Mg, (30an)) = Moy (Fan). (58)
where o (t) = max{\/_ 2(6,\:;7?’})@

K.2.5. DERIVATION FOR Lg_, .

For the squared hinge loss function ®¢,(u):= (1 —u)*1 .1, for all h € Hyy and (z,2") such that |z - ', >,

Cr,,, (hy2,2")
= n(z,2")La,, (h(z") ~ h(z)) + (1 - n(z,2"))La,, (h(z) - h(z"))
=z, ") (1 - h(@") + h(@))  Daeoryneeye + (L =0, 2" )1+ (") = h(2) Lnary-nays1-

Then,

ei I}CNN (xﬂxl)

= mf €¢, J(hyz,a")
heHn

4n<x,x'><1 —n(a,a'))
if 2n(z,2") - 1| < AW |z -2’

max{n(z,2),1 - n(z,2')}(1 - AW |z - 2'| )* + min{n(z,2'), 1 - n(z,a")}(1 + AW |z - 2’| ,)’
if 2n(x,2") = 1| > AW ||z - 2| ,.
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The (®q, Hnn )-minimizability gap is:

Mo, (Fx) = RE, (90n) = Ecxoxen | €. s (@:2")]
= CRE%{ (Fnn) — Eox,x7) [477(13 ") (1 -n(z, m’))]1|271(0079L”)*1|SAWHOHE'HP] 59
~E(x.x7) [max{n(x7 z'),1-n(z,2")}(1- AW |z - x,Hp)2]l|2n(x,;c’)—1|>AWHm—;c’Hp:I >
- Egxxo[min{n(z,a'), 1 =02 )}(1+ AW |2 = 2'],) Liazg(ean-1paw oo, |
Therefore, Vh € Hyn (2, '),

AGL%Q’{}(NN (h,m,x')

. ! * !
> _inf G, (hz,2") -C[, g0 (2,27)
: -
heHnn (z,x")

77(% x,) + (1 - n(xa {E,)) - GE¢SQ,?€NN ((E,l”)

1 - dp(a,a")(1-n(z,2"))
if 2n(x,2") - 1| < AW |z - 2|,

1-max{n(z,a’), 1 - y(z,2")} (1 - AW |z - 2’| )" - min{n(z,2), 1 - n(z,2')} (1 + AW |z - '] ))*
if 2n(x,2") - 1| > AW |z - 2|,

S 1-4n(z,2")(1 -n(x,x")) [2n(z,2") - 1| < AW~
"1 - max{n(z,2'),1-n(z,2")}(1 - AW~)? —min{n(z,2'),1 - n(z,2)}(1+ AW~)?  |2n(z,2') - 1| > AW~

= \I'sq(|277($755,) - 1)),

where W, is the increasing and convex function on [0, 1] defined by

VEe[0,1], Wy (t) = r t< AWy
Y ST 2AWA - (AWA)2 t> AW

which implies that for any 1 € Hx and (z,2") such that |z - 2’|, > 7,

Ael—ésq ,HNN (hv Z, :L',) 2 \I’SQ(AGLSE’}U{NN (h’ T, .CE,))

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hnn-consistency bound for L¢,Sq, valid for all h € Hyn:

Rigos (h) = Rian (Hnn) < qu(iRL%q (h) = Ri,,, (Han) + Mo, (J{NN)) = Mpavs (Hnn) (60)

t 2 ) IAW 2
savs e t>(AW~) ¥

t t < (AW~)?
where T’y (¢) = @;(}(t) = {\/_’ AW~ < (A7) = max{\/i o M}

K.2.6. DERIVATION FOR L%g.
For the sigmoid loss function ®g;g(u): =1 - tanh(ku), k >0, for all h € Hyn and (z,2”) such that |z —z'[, > v,
el—(bsig (h7 T, .18/)

=n(z,2")La,, (h(z") - h(z)) + (1 - n(z,2"))Le,, (h(z) - h(z"))
=n(z,2")(1 - tanh(k[h(z") - h(2)])) + (1 = n(z,2")) (1 + tanh(k[h(z") - h(z)])).

Then,

elipsig,}cNN (z,2") = heigrgw Ca.,, (h,z,2") = 1= |1 = 2n(x, ") tanh (kAW |z - /[ ).
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. The (®Dgiq, Hnn )-minimizability gap is:

Mg, (Foun) = RE,  (Hoaw) = Ecxe xn[ €L, st (2,2)]

, , (61)
= fR,’:@Sig (FHan) - Ex xn[1 - |1 - 2n(z, 2") [ tanh (kAW |2 - 2 ||p)]

Therefore, Vh € Hyn (2, 2'),

AGL¢§ig»}CNN(h7x’ SL',) 2 7inf GL<1>§i (ha wvxl) - etq) - LHNN (:L',iL’/)
) heH NN (z,2") e e

=1-[1-2n(z,2")[tanh(0) - € o (z,2")
=1 -2n(x,2")|tanh (kAW |z - x'||p)
> |1 -2n(x,z")| tanh (kAW )

which implies that for any i € Hyn and (z,2”) such that |z - 2’|, >,
AGL@S@,:}CNN (hyz,2") > tanh(KAW~)AC ave (Hnn) (B, 2, x').

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{nn-consistency bound for Lg_, , valid for all h € Hnn:

sig?

2 2 Rig,, (B) =R, (Han) + My, (Haw)
abs h _ *_L . J‘C S g sig g
ey () = Riges (Hiww) tanh (kAW )

= Mgvs (Hun)- (62)

L. J - consistency bounds for bipartite abstention losses

We first characterize the minimal conditional L3 -risk and the calibration gap of L3 for a broad class of hypothesis sets.

We let F(z,2') = {h € 5: (h(x) - h(z"))(n(z) = n(z")) < 0} and H(x,2’) = {h € H:h(z) = h(z")} for convenience.

Lemma L.1. Assume that 3 is regular for bipartite ranking. Then, the minimal conditional Egljsl-risk is
Crans (3, 2,2") = min{n(2) (1= n(2")),n(2") (1= n(2))} L jamzrjoy + € jparicy

The calibration gap of tglﬁ can be characterized as
1
Aetgkbl"j{(hvxa x,) = |77(x) - 77(53,)“1}165'((@@')]1Hx—x’Hw + §|77(x) - 77(55,)“1;165{(9;@/)]1Hx—x'H>fy~

Proof. By the definition, the conditional T:SE“I -risk is
ef'g‘ii (h,z,z")
1 1
= (n(x)(l - n(x,))[]lh(x)—h(x')w + illh(:c):h(x’)] +n(z")(1 - U(ff))[ﬂh(x)—h(x')>o + illh(x):h(w’):l)]le—;c’H>fy+C]l\a:—x'\£'y'

For any (x,z") such that | — 2| <~y and h € 3, Cpans (h, x, ) = CX,, (H, 2, x) = c. Forany (x,2") such that |z — 2’| > 7,
0-1

Tabs
LO—l

by the assumption, there exists A* € J such that
(h*(z) = h*(2")) (n(x) = (")) Ly(ayen(ary > 0-
Therefore, the optimal conditional Egljsl -risk can be characterized as for any z, 2" € X,

Cans (3, 2,2") = Crgne (B*, 2, 2") = min{n(2) (1 = n(2")), n(a") (1= n(2))H o> + € Ljz-ar|zy-

47



Pairwise Misranking Loss Surrogates

which proves the first part of lemma. By the definition, for any (z,z’) such that |z —2'| < v and h € T,
ACpune 4c(h,z,2") = Crans (h,z,2") = €%, (H,x,2") = 0. . For any (z,2") such that |z — | >y and h € 3,
0-17 0-1

Tabs
LU—l

AGESE?’W(h,x,:E') = Gtgﬁ(h,m,x') - € (K, 2

ab;
LO—l

1
=n(z)(1- 77(=T’))[]1h(m)—h(z')<o + §]1h(z):h(zf)]

+n(z")(1 - n(x))[]lh(x)—h(x’)>0 + %]lh(z)=h(x’):|
~min{n(z)(1-n(z")),n(=")(1-n(x))}
In(z)(1-n(z")) -n(z") (X -n(z))l, he 9?(% '),
sin(@)(1=n(a")) -n(") (A -n(x))], heH(z,a'),
0, otherwise.
n(x) -n(z")l,  heFH(x,a"),

sin(@) =n(@")l, heH(z,a"),
0, otherwise.

This leads to

1
(Aerus sy a)) = {In(@) =)D et ooy Lo + <§|77($) - 77(~’B')|> Lyese(a,en Lia-arl>v-

L.1. Linear Hypotheses

Since Hy;y, satisfies the condition of Lemma L.1, by Lemma L.1 the (tgljsl , J{Iin)-minimizability gap can be expressed as
follows:

Migo (Fiin) = R (Fain) = B on [min{n(@) (1 = n(2")), 0@ ) (1= (@) ooty + € Lpaen]- - (63)
By the definition of H;y,, for any (z,z") € X x X, {h(m’) —h(x)|he f}flin} = [—WH:z: -2, Wz - x'Hp].

L.1.1. DERIVATION FOR Lg,, ..

For the hinge loss function ®pinge(u): = max{0,1 - u}, for all h € Hyi, and (z,2”) such that |z - 2’|, >,

€, (e, ')

=1(2) (1 =1(2")) Phinge () = h(2")) + n(a") (1 = 1(x)) Lhinge (h(z) = h(x))
=n(z)(1 - n(z")) max{0,1 - h(x) + h(z)} + n(a") (1 - n(z)) max{0, 1 + h(z) - h(z")}.

Then,

* no_ s »
:}Clin(x7x )= ;Léir}lcfi]] eLd’hn

L () = (@) (1 =n(2")) +n(2") (L= n(z)) = |n(z) =n(z")] min{W |z - 2’| ,, 1}.

Lq)hinge’

The (La,;,,.. Hiin )-minimizability gap is

Mt‘?hinge (fH:lin)
= RE@hinge (}Clin) B ]E(X7X,) I:G’Ebhinge vg‘clin (J:, x,):l (64)
=RE, (Fin) = Eoxxn [n(2) (1= (")) +n(a) (1= n(2)) = () = 0" min{W |z - 2], 1}].
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Therefore, Vh € ﬁlin(x, z') Uﬂifhn (z,2"),

!
Aetd’hinge 79{“1‘ (h’ x, z )
. ! * A
> inf Cr, (hz,2")- ¢, 5, (z,z")
heHim (z,0) U FHin (z,27)  hinee hinge 77 in

=n(z)(1-n(2")) max{0,1 -0} +n(z")(1 - n(z)) max{0,1+ 0} - €£

= In(x) = n(")| min{W|z - 2’| ,, 1}
> [n(z) = n(z")|min{W~, 1}

’
PhingerJlin (x’ r )

which implies that for any % € 3, and (z,2") such that |z — 2’|, >,

ACr

Lq)hinge ?

Hiin (h’ Z I,) 2 min{W’Yv 1}AGESE§JC(}L7 xZ, I,).

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J(};;,-consistency bound for t@hinge, valid for all h € Hy;p,:

R, (W) =R,

Phinge

(Hin) + Mg, (Hiin)

hinge inge

min{W-,1}

RISE? (h) - RX (:’Hlin) <

abs
LO—l

- Mfgl_ﬁ (%lin)~ (65)

L.1.2. DERIVATION FOR Lg, .

For the p-margin loss function ®,(u): = min{l, max{O, 1- %}}7 p >0, forall h € Hiy and (z,2") such that |2 - 2’|, > 7,

e, (h,z,z")

=n(z)(1=n(2")) @, (h(x) = h(2")) + n(z") (1 = n(x)) 2, (h(z") - h(x))

=n(x)(1 - n(x’))min{Lmax{Q 1- h(”)‘ph(z')}}

h(z) - h(z') }}

+n(z") (1 -n(z)) min{l, maX{O, 1+
p

Then,

* ’
etpp,f}flm(m’x )

— 3 __ /
N helil}lffin GL‘I’p (h7 Rk )

min{ Wiz -2'| _,
=[min{n(w)m(x’)}—n(w)n(w')]+[maX{n(w)m(w’)}—n(w)n(w')](l_ : lp : p})'

The (Lo, , Hyin )-minimizability gap is
Mg, (Fhin)

= :RAEPP (Fiin) - E(X,X’) [GE¢p Hiin (z, :E,):I

= R, (Fin) = Eexxn [[min{”@)v n(a")} - (@) (66)
min{ Wz - 2’|,
+ [max{n(z),n(z")} —77(:v)77(90')](1 S p . p})].
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Therefore, Vh € ﬁlin(x, z') Uﬂifhn (z,2"),

AGI%’}CMH (h,z,z")

> inf @tq)p (h,z,z") - e%<pp,}flin(x7 )

g{lin(mvm’)

- [max{n(e), n(2")} - n(2)(z)] + [mingn(e), (")} - n(m)n(m')}(l ) ()
min{WHx - x'Hp,p}

p
min{W~, p}

B min{WHx —$'|pap}) _er

= In(z) = n(z")|

> [n(z) - n(a")]
which implies that for any % € 3y, and (z,2") such that |z - 2'[, >,

min{W+, p}

ACr, g, (hyw,2’) > ACpve gc(h,x,2").

Thus, by Theorem C.1 or Theorem C.2, setting ¢ = 0 yields the J{(};;,-consistency bound for t@p, valid for lin h € Hj;y:

p(j{t@p (h) - fR,Eq (j‘f]in) + Mt@p (j{lin))

°p

min{W+, p}

RESI_J;' (h) - :RESIE (g{lin) < - MESEE' (j{lin)~ (67)

L.1.3. DERIVATION FOR Lg__ .

For the exponential loss function ®ex,(u):=e™*, for all h € Hy, and (2, 2”) such that [z — 2’|, > 7,

Ct%xp (hyz,2")
= (@) (1= 1(2") Pexp (h(x) = h(2)) + 72 ) (1 = 1(2)) Pexp (h(z") = h(x))
= (@) (1 -n(a")e " OhED L) (1 - () rED,
Then,
eE@cxpvj{Iin (I,CC,)
=i Cr,
2v/n(@)n(@") (1 - n(z)) (1 -n(a"))

o1 n(z)(1-n(z"))
if 5‘10g W < W”l’ - I,”p

max{n(z)(1 - n(2")),n(2") (1= () e Vb e minfn(@) (1= n(a)),n@) (1 - nee)) e 1=l

el (z)(A-n(z"))
if i‘logm > Wiz —a'|,.

()

e

The (Lo, Hiin )-minimizability gap is:

Mt%xp (g'flin) = RE‘I)exp (g'fhn) - E(X7XI) I:GE‘I’exp Hoin (:E, x/):l

= fR’Eq,exp (Hiin) — E(X,X')[Q\/W(l")n(w')(l -n(z))(1- 77(95'))]1%“08; (@) (A=n (")

n @ T=n(@)) Sw”w‘l'”p]

, (68)
~E e x| max{n@). n@)) = n(@dn)le ™0

2198 1 G a—n() >W”“5‘$'”p]

. W |z—z"
~Egxe| [min{n(@). n(2)} = (@b o

—p! N
z[log e aniy W I Hp]
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Therefore, Vh € ﬁlin(x, z') Uﬂifhn (z,2"),

Aet@cx;, , Hlin (h’ z, .17,)

> inf ey, (hza)y-c . (z,2)
heHin (z,2") U Hiin (z,2") P Fexp i

= (@) (1 - (@))e + (@) (1 -n(@)e” - € o (,a)

Lo oxp

n(z)(L-n(a")) +n(=")(L-n(z)) - 2y/n(@)n(z’) (1 - n(x)) (1 -n(z'))

el (z)(A-n(z"))
if §‘logm SWlz -2'],

[max{n(2),n(x")} - n(@)n(@))(1 - )+ fmingn(a), (")} - n(@yma))(1 - 0)

el n(z)(1-n(z"))
if §‘log W > W“.’E - I,Hp

(@)1 =n(z")) +n(z")(1 -n(z)) - 2v/n(x)n(z")(1-n(x))(1-n(z))
if %‘log% < Wy

[max{n(x),n(z")} —n(@)n@)](1-e7) + [min{n(x),n(z")} - n(=)n)](1-"7)

1y (@) (1-n(a)
if 3 ‘log @] > W

( n(@)(A=n('))=n() (1=n(x)) )2 1@ 0G0 |y

\2

\%

e 1

V@ A-n(@))+/n(@) (1-n(z)) if 5|10g (@) (I-n(z))
x -n(z’ z")(1-n(z — _ . ) (1-n(z’

n(z)(1-n( ));"’]( )(A-n(z)) (2 —e W~ _ eW’y) + %|n(x) _ 77(1‘,)|(€W’y —_e W’y) if %|10g ng'))(u_nn((x;g > W’Y

e + 1
-1

) 2
> mm{(n(:v) -n(z")7, (62‘/‘/) In(x) - 77($’)|}
which implies that for any h € Hi;y, and (x,z") such that |z - 2'[, > 7,

ACy

Laeyxp s Hiin

(h, €T, xl) 2 \IJeXP(AGESE;S}C(h? Z, x'))

where Wy, is the increasing function on [0, 2] defined by
2W~
. e +1
Vit e [O, 1]7 \I’exp(t) = mln{tz, (eQVV'Y_]_) t}

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J};;,-consistency bound for E@ valid for all h € Hjiy,:

Repy (1) = R (960) < TR, (1) =R, () + Mg, (3n) ) = Mgy, (). (69)

2Wey _
where ey, (¢) = max{\/f, (Z?Wiwi) t}.
L.1.4. DERIVATION FOR Lg,, .

For the logistic loss function @4 (u):=log,(1 +e™), for all h € Hy;, and (x,2") such that |z — 2|, > v,

th)log (h,z,2")
= () (1 - n(z")) Prog (h(z) = h(z")) +n(z") (1 = n(z))Piog (h(z") - h(x))
= n(@)(1 - n(a"))logy(1+e P 4 n(a') (1 - y(x)) logy (1 + €MD),
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Then,
G *

tq}log
= inf (:’t
hej{lin ®

_T](Jj)(l - 77(3;’){) 10%2(77(33)(1 - 77(3}’))) - 77(14)(1 - 77(3})) ]ogQ(n(xl)(l _ 77($)))
i flog N < W - |

,Hlin (z,x')

(h,z,2")
log

p

[max{n(z),n(x")} - n(x)n(z")]logy(1+ eI ) + [min{n(z), n(a")} - n(@)n()]og, (1 + " 1#1h)
: (z)(A=n(z"))

if |].Og m > WHQL' - m'Hp

The (t@log , J—Clin)-minimizability gap is

qu,log (j{lin )

= fREI,log (Hiin) = IE(X,X')[@i g73{““(:& z)

o,

=R, (i) - E<X,Xf>[ (@) (1= n(x")) logs (n(x) (1 - n(x')))
(70)

=) 08 (=N st |

n(z’)(1-n(x))

-W|z-z’
- By | [max(n(z). (@)} = n(@)n(a)logs (1 + ¢! )1 tegmaen ——

n(z")(1-n(x))

. Wlz—z’
~Eqx oo lmingn(a),n(a")} = (@)t logs (1 Ve st iy, o |

& 0N =n(2))

Therefore, Vh € Fin (2, 2") U Hiin (2, 27),
!
Aetq)logy%“n(h,x,m )

. ! * !
N inf €, (hyz,2’)- €L 5 (z,z")
heFiin (2,2) U Fiin (,2’) 108 log = "m

= (@) (1= (@) logy(1+¢) n(a) (1= (@) logy (1+€°) ~€F, 4 (w.a')

n(z)(1- W(I’))[l =logy(n(z)(1 = n(2")))] +n(x")(1-n(z))[1 -logy(n(z)(1 -n(z)))]
if ‘log % < Wry

[max{n(z), (")} ~n(z)n(z')](1 ~logy(1 + 7)) + [min{n(z),n(z")} - n(z)n(a")](1 - logy(1 +7))

: n(z)(1-n(z"))
if [log HENILEN| > Wy

o (e +1
2 minf () )" g o) -t}

which implies that for any / € 3y, and (z,2") such that |z - 2'[, >,

[\

ACy

Lq)log

, Hiin (hv T, I,) 2 \IIIOg(AGESEE{,ﬂ-C(h’ x, :c'))

where Uy, is the increasing function on [0, 2] defined by
Wr
. 5 (€ +1
Vte[0,1], Wie(t) = mm{t , (eW’Y — ) t}.

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the H;,,-consistency bound for E@lug, valid for all h € Hjiy,:

Repey (1) = R (96) < Tuog(Re, ()= RE, (Fn) + M, (3| = Mgy (I, 1)

Lo,

where ' (1) = max{\/f, (23:1 ) t}.
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L.1.5. DERIVATION FOR Lg,, .
For the squared hinge loss function ®q(u):= (1 —u)?1,<1, for all h € Hy;, and (z,2") such that |z — 2’ I, >,
Ct%q (h,z,2")
=n(2) (1= n(z"))Dsq(h(x) = h(z")) + n(z") (1 = n(2)) sq(h(2") - h())
@) (1= (") (1= h(&) + A Ly e + ()1 =01+ h() = B Dy nganer
Then,

*

’
t¢sq Hiin (aj’ x )

= 1nf Cr,, (h,x,x')
1€H1in
4n@)n@)(1-n(z))(1-n(z’))
77(30)(1 na z’))+n(z’)(1-n(z))

. n(z)-n(z") ’
_ i smamenme amay < Wiz -2,

[max{n(x) (')} =n(@)n(@)](1- Wiz -a'1,)" + [min{n(z),n(x")} - n(z)n()](1+ Wl -a'],)"

[n(z)-n(z")] o
if e mE a@) > Wle =21,

The (Lq>sq7J{Hn)-mlmmlzablhty gap is

Mg, (Hin)
=R, (Im) - Egx x [eLb ,%m(x,x')]

. n(x)n(a)(d -n(2))(1 -n(2))
= fRL%q (f}f]in) - E(X7X’) [4 1 f N = [n(z)-n(z")| W z—a'|,

(x)(L=n(2")) +n(z’)( 77(33)) @A)+ A=n(@) < (72)
2
By [} =m0 =Wl 1) s |
A@ =@y @) A=) »

. 2
- E<X,X,>[[mm{n<x>,n<x'>} n(@nEE Wl =2 1) e ]
@ -0 )+ @) T-n(2)) p

Therefore, Vh € f(lin(x, x') Uiﬁ[lin (x,2"),
!
A@t%q,}clm(h,x,x )

B inf ¢, (hza)-ex . (z,2)
hé}clm(x $’)U}C1111(z z,) s PoqTHin

= (@)1= n() + 0 ) (A= (@) - €, 0 (@.0)

=) (o)1)~ SR,

n(z)(1- n(m'))m(m’)(l @) < ) )
[max{n(x) n(2")} = n(@)n()[1 = (1= W) | + [min{n(@), n(2")} - n(@)n()][1- 1+ W)?*]

[n(x)-n(z")|
o aenm@ aa@y > W

> min{ (n(x) = n(x"))", 2W 5 In() = n(z")| = (W~)*}

which implies that for any h € 3y and (2, 2") such that |2 - 2'| , > 7,

[\

v

ACE,. s, (') > Wig(AC: oo (hya,2")).

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the J{};;,-consistency bound for t@ valid for all h € H;y,:

sq?

Reype (h) = Ry, (Hi) < rsq(azt@ (h)~RE. (Huin) + Mg, (:th)) Mg (Fiin)- (73)
sq Dsq sq 0-1
where I'y, = max{\/f, s + %}
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L.1.6. DERIVATION FOR Lg

sig *
For the sigmoid loss function ®g;g(u): =1 - tanh(ku), k >0, for all h € Hy;n and (z,2") such that [z — 2’|, > 7,
/
¢, (b2, 2)

=n(z) (1 =n(2")) Psig () = h(2")) + n(2") (1 = n(2)) Psig(h(2") - h(x))
= n(x)(1 - n(2"))(1 - tanh(k[A(2) - h(z")])) + (") (1 - n(2)) (1 + tanh(k[A(z) - h(z")]))

Then,
€, s (@a) = inf €r, (haa!) =n(@)(1-n(@)) + n(@)(1 - 1(2)) - () - (e tanh (KW - 2'] ).
The (tésig,ﬂ{lin)-minimizability gap is
Mg, () = %Eq)sig (Hiin) —Ecx,xn [n(2) (1= n(2")) + n(a") (1 - n(x)) - [n(x) - n(z")| tanh (kW |z - 2] ,)].
_ ) (74)

Therefore, Vh € Hyi, (2, 2") U Hiin (2, 27),

AG,:(I)Sigﬂhn (h,z,2")

> inf G (h,z,2)-C* z,x

heﬁ:clin(rvm,)Uj:clin(rvz’) L(I)Sig( ) L‘DS;ng{lin( )

= (@)@ 41 0@) -, ()
= [n(2) = n(2")| tanh (kW |z - 2| )
> [n(z) - n(2")| tanh (kW)

which implies that for any h € Jyi, and (2, 2") such that |z - 2'|, > 7,

AG’I‘_’@Sig Hlin (h, x, :17,) > tanh(kW’y)A@thi’fH(h, x, x,).

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the H;,-consistency bound for tb
Re, (h)=RE - (Fin) + Mg, (Fiin)
sig <I>Sig sig

valid for all h € Hy;y,:

sig?

T
tanh(kW+~)

:RESE? (h) - ESE? (Hlin) < - M’I‘:Snﬁ (}Clin)~ (75)

L.2. One-Hidden-Layer ReLLU Neural Networks

Since Hn satisfies the condition of Lemma L.1, by Lemma L.1 the (ESESD fHNN)-minimizability gap can be expressed as
follows:

M’[_‘gb (j{NN) = fREgt_); (}CNN) - IE(X,X') [mlﬂ{ﬁ(m)(l - 77(93,))»77(35,)(1 - n(m))}]le—x’Hyy + C]l|x—:c’|s'y]' (76)

By the definition of Hnn;, for any (z,z") € X x X, {h(x') —h(x)|he ﬁ]—CNN} = [—AWHJ: -2, AW |z - a:'Hp].

L.2.1. DERIVATION FOR Lg, ..
For the hinge loss function ®pinge(u):= max{0,1 - u}, for all h € Hyxn and (z,2") such that |z - 2'[ , >,
Cr,,,.,. (a2’

=n(2)(1 = (")) Phinge (h(z) = h(2")) + n(z")(1 = (@) Phinge ((z") = h(z))
=n(z)(1 - n(2")) max{0,1 - h(z) + h(z")} + n(z")(1 - n(z)) max{0,1 + h(z) - h(z)}.
Then,

CL e (@) =n(@) (1 -n(z")) +n(a")(1-n(2)) - In(x) - n(z") min{ AW |z - 2] ,, 1}.

L‘i’hinge’
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The (T_’@hmge , H{NN)-minimizability gap is

Mg, (Faw)
- R%q)hingc (g_CNN) - E(X7X’) I:e%(phingc ’:}CNN (x’ l./):l (77)
=RE,  (Ftw) = Ecxxn [n(2) (1 =n(2") + (") (1= n(2)) = [n(2) - n(2")| min{AW |z - 2] ,, 1}].

(I)hinge

Therefore, Vh € j-VCNN(x, 2 )U JiCNN(x, x'),
Aetq’hingeJ{NN (h’ L:C,)
inf Cr (hyz,2") - Gt

= ~ o La, .
heHnn (z,2") U Hnn (z,2") Phinge Lq}hin%é’

= p(a)(1 - na’)) max{0,1 - 0} + n(a) (1 - n()) max{0,1+ 0} - €

\2

s (@.2)

ninge NN (x, 1")
= [n(z) = n(a")|min{AW |z -2/, 1}
2 n(z) = n(2")| min{AW~, 1}

which implies that for any h € Hxx and (x,2") such that |z — 2|, > v,

A€ Hnn (h’ z ‘T’) 2 min{AW’Ya 1}AGISE§’}((}1, x, I',).

Eq}hinge

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hnx-consistency bound for tq)hinge’ valid for all h € Hnn:

R e (M =R, (Fln) + Mg, (Fww)
min{AW~,1}

Phinge

Rtg‘ji (h) - R’E&; (}CNN) < - Mtglﬁ (}CNN)- (78)

L.2.2. DERIVATION FOR Lg, .

For the p-margin loss function ®,(u): = min{l, max{(), 1- %}}, p >0, forall h e Hyy and (z,2”) such that |z — 2’|, >,

Cr, (h,z,z")

= n(x)(1 = n(2) @y (h(x) - h(2")) + n(z") (1 - n(2))2p(h(z") - h())

=n(z)(1 - n(z’))min{l,max{Q 1- ’Wi);h(l")}}

+n(z") (1 -n(z)) min{l,max{(), 14 h(:r);)h(x’)}}

Then,

* ’
etcbp ,HNN (35, r )

= inf G (h,x,2
heHnn L@p( ] )

min{ AW|z - 2’|,
=min{77(x)(1—77(96'))777(x’)(1—n(rv))}+maX{n(x)(1—n(w')),n(x’)(l—n(x))}(l_ A p})'

p

The (Lo, , Hnn )-minimizability gap is

M, (3w

- R, (Ho) = B[ €F, e, (0],

=%, (9tx) "
_ , , , , min{AWHx—x'Hp,p}

=B | lmin{n(a), n(@')} = n()n(a)] + [max{n(a), n(a')} = n(n()]{ 1 - ; -
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Therefore, Vh € UA%NN(x, " )U ﬂifNN(as, z'),

AGt(ﬁp,}CNN(h,x, x')

N - N _ e* ’
- ﬁN;Igi,x’) eLq)/’ (h, T ) eL‘I’p’g—CNN (1.7 v )

g (55 T)

~ min{AW |z - CU,Hp,p} e
p Lo,,

= [max{n(z),n(z")} - n(z)n(z")] + [min{n(z), n(=")} - ﬁ(x)ﬁ(ml)](l
min{AWH:c - x'Hp,p}

p
min{AW+~, p}

p

= n(x) - n(z")
> |n(z) - n(z")|

which implies that for any i € Hxn and (z,2”) such that |z - 2’|, > 7,

ACy

La,,HnN

(h,z,z") >

in{A
min{AW~, p} A (2,2,
) b,

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the H{nn-consistency bound for t.:pp, valid for NN A € Hyn:

p(th% (h) ~Re (Fnn) + M, (TJ{NN))
min{AW~, p}

Reos (1) - szg,ﬁ (Hnn) < = Mvs (Fn)- (80)

L.2.3. DERIVATION FOR Lg

exp *

For the exponential loss function ®ex, (u):= e, for all h € Hnn and (z,2") such that ||z — 27|, > v,

Cr, (h,z,2")

= () (1= 0(3") Py (h() = (a")) + 12") (1 = 7(2)) Pesp ((2') = h(x))
=n(x)(1- n(x/))e—h(m)m(z') 4 7](1,/)(1 _ U(I))eh(z)—h(z’).

Then,

Cl,  ge (@ x")

Lo oxp
= inf G (h,z,2)

heHun Pex
2v/n(x)n(") (1 -n(x)) (1 -n(a"))

£ 11og 16)(-n(") o
if 3[log TN | < AW e - ',

max{n(x)(1 - (")), n(") (1 = n(x)) e 7=l 4 minfn(a) (1 - n(e’)),n(@) (1 -n()) eVl

el (z)(1-n(z"))
if §|logm > AW |z - 2",

The (Ls,.,, Hxn )-minimizability gap is:

e

Locy

(Gt =%, (3ux) - B € (2,2)

Laoexp s HNN

= RE%XP (M) = E(x, x7) [2\/7](37)77(55')(1 -n(z))(1- 77(33'))]1%|10g n(@)(1-n(2")) gAWHx—x'Hp]

n(2")(1-n(x))

(81)

AW ||z—2"
- ]E(X,X’)[[max{ﬂ(if)»ﬁ(xl)} = n(z)n(z")]e | ”p]l%|log 1@ A=) | A7 || - | ]

n(z")(1-n(x))

. AW |z-2'
- (min{n@). a2} ~n(@n@)Ie™ b, o

—p! N
3108 Gty PAW le-2 Hp]
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Therefore, Vh € UA%NN(x, " )U ﬂifNN(as, z'),

AGEPCXP JHNN (h’ Z, l‘,)

> inf ey, (hxa)-C . (x,2)
heFHnn (z,2") U Hnn (z,2") P FexprTINN

= (@)L= n()e + @) (L-n@)e -6,y (@)

n(z)(L-n(z")) +n(@")(1-n(z)) - 2y/n(@)n(") (1 -n(z)) (1 -n(a’))

el (z)(A-n(z"))
if §‘logm < AW |z —2'],

[max{n(x).n(a")} ~n(@n(@)](1 - e 1) + fmingn(@),n(@)} - n@ym(a))(1- )

el (z)(1=n(z"))
lfi‘logm >AWH.'L'—I,H

(@) (1 =n(x") +n(a") (1 -n(2)) = 2¢/n(@)n) (1 -n(z))(1-n(a"))

1l @)
if §[log HENEN] < AWy

[max{n(x),n(z")} —n(x)n(@)](1-e W) + [min{y(a),n(z")} - n(=)n)](1- ")

1]y () (1-n(2)
if 3 ‘log @G| > AW

\4

p

\%

2
(@) (1=n()-n(z) (1-n(x) i 1 flog 241G < Ay

wv(x)(l—n(zf)>+¢n(x'><1—n<z)>) 2[198 n@) (A=) | = A
2@ UGN @A) (9 - =AW - AWY 4 Lin() - p(a)|(eAV7 - e AWT) i %|1Og AACMC D > AWy

e2AW’y

) 2 +1
> mln{(n(m) -n(z"))7, (eQAW“Y—l) In(z) - 77(53,)|}
which implies that for any h € Hyy and (z, x") such that ||z — w'Hp >,

ACE, i (o2, ') > \I/exp(AG—ESE?H(h, x, z’))

where Wy, is the increasing function on [0, 2] defined by
2AW~
. e +1
Vte [O7 1], \I/exp(t) = mln{tQ, (eQAVV’Y_]_) t}

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the H{nn-consistency bound for Lo, valid for all h € Hyn:

exp?

Regps (h) = R, (Foxx) < rexp(az~ ()-B, () + Mg, (}(NN)) - M (Faen)- (82)

Laocxp

2AW
where ey, (¢) = max{\/f, (%) t}.
L.2.4. DERIVATION FOR Lg,, .

For the logistic loss function @14 (u):=log,(1 +e™), for all h € Hyy and (z,2") such that |2 - 2’|, > 7,

th)log (h,z,2")
= () (1 - n(z")) Prog (h(z) = h(z")) +n(z") (1 = n(z))Piog (h(z") - h(x))
= n(@)(1 - n(a"))logy(1+e P 4 n(a') (1 - y(x)) logy (1 + €MD),
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Then,
* /
GL<1>1 T (x,2")
= inf €, (hx, z')
hGJ’CNN og

“()(1 - (")) gy (n(@) (1 = n(x"))) = (@) (1 = () loga(n(a")(1 = n(x))
i log 2ENGEER | < AW o -1,
[max{n(x),n(z")} - n(x)n(z')logy (1 +e ")+ fmin{y (), n(a")} - n(z)n(a")logy (1 + M 1=lk)

: (z)(1-n(z"))
if |10g m > AW”x - Jf,”p

The (tq:.log , HNN)—minimizability gap is
Mg, (Fax)

= :R~ (j‘fNN) E(X X7 [GL(I) T (a?,x’):l

=5, (0w - E<x,x'>[ ()1 - n(a")) logy (n()(1 - (')

(83)

=n(2")(1 = n(x))logy (n(=")(1 - @)) gy n2)anGr

—p!
TEEeTEy <AW|z-z p]

- B | [max(n(z). (@)} = n(@)n(a)logs (1 + e M (LI

8 GH 1)) >AW”“””@]

B | [min (). (o)} = n(@)n(a) oy (1 + M1 )1 st

w0 () >AW””C‘£'HP]'

Therefore, Vh € 9~{NN(x, " )U jifNN(x, x'),
Aetq)log’%NN(h,:c, x')

> inf h,x,z') - C= z,x
hGJTCNN(LI') Uj:CNN(I#E,) I“I>log ( ) L'1>1 }CNN( )
=n(x)(1-n(2")) logy(1+€™%) +n(a") (1 - n(x))logy(1 +e”) - €F (z,2")

Loy HnN

() (1= n(z"))[1 -logy(n(z)(1=n(z")))] +n(z")(1 - n(2))[1 -logy (n(z") (1 - n(x)))]

O n() (n()
if log 2y | < AWy

[max{n(z),n(z')} - n(z)n(z")](1-logy(1+e™*W7)) + [min{n(x),n(z")} - n(z)n(z")](1 - logy(1 + "))

@) (on(a'))
if [log ZENEES | > AWy

AT 41 ,
> ming (n(x) - n(a"))?, Wi [n(z) = n(z")|
which implies that for any h € Hxn and (z,2”) such that |z — 2’|, > v,

ACr, g (hoza’) > qflog(Aetgkw(hw’x,)).

Loy,

where Uy, is the increasing function on [0, 2] defined by
AW~
. e +1
Vt € [0, 1], \Ijlog(t) = mln{tz, (eAVV'Y_l) t}
Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hnn-consistency bound for E¢log, valid for all h € Hnn:
Rego: (7) = R (Fnn) < Flog(Rt(pl (h) - Rﬁ@l (Fn) + M, (HNN)) = Mizav: (). (84)
og og og -
AW
where ' (1) = max{\/f, (%) t}.
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L.2.5. DERIVATION FOR Lg,, .

For the squared hinge loss function ®q(u):= (1 —u)*1,<1, for all h € Hyn and (z,2’) such that |z - ', >
(‘ft%q (h,z,2")
=n(2) (1 - n(z"))Dsq(h(x) = h(z")) + n(z") (1 = n(2)) sq(h(z") - h(x))

2 2

=n(@)(1-n(2"))(1 = h(z) + M(z")) Lngay-nns< +n(@) (1 =n(z))(1+h(z) = L(@")) Dngay-nans-1-

Then,

* 4
etq,sq7ﬂ‘CNN (x7 x )

= inf G (h,z,2’
heHnn L¢Sq( PRl )

4 n@)n(z") (A-n(z))(A-n(z"))
77(1')(1—77(|w’())+77(w’)(1—77(7«'))

. n(z)-n(z")| ,
_Jif @ A=n(@)) (@) A=n(@) AW |z - Hp

[max{n(x),n(z")} - n(@)n(z)] (1 - AW |z - a'],,)” + [min{n(x), (")} = n(@)n(z)] (1 + AW |z - 2'],)°

[n(2)-n(z")] o
if SoaEnmE amey > AWz -2,

The (Lo, Hnn )-minimizability gap is
Mg, (Han)

=R, (%NN) Ex,x7 [GE(DSQ,HNN(CU@')]

. n(@n(a) (1 -n(@) (1 -n(") |
=R (Hnn) -Ex.xr [4 n(a)-n(a’)

X @ A=) + (@) (A1) s s AW o], (85)

—E<X,X,>[[max{n<x>7n<x'>}—n(m)n(x')](l—AW||x—x'|,,) I homo)l ]
n(x)(1-n(z"))+n(=z")(1-n(x)) P

. 2
—E(X,Xq[[mln{n(x),n(x')}—n(m)n(w')](1+AW|x—x'|p) I el ]

n(z)(1-n(z")+n(z")(1-n(=z)) P

Therefore, Vh € CITCNN(x, YU Cf-CNN(x, x'),
Aetésqvg{NN(h’ z, ")

B inf Cr, (ha,a)-Cf 4. (
heHnN (z,2) U Hnx (z,27) s sa’

=n(@)(1=n(@") + 0@ ) (1= (@) - €, 50 (@2)

n(z)(1-n(z")) +n(z")(1-n(x)) - 4,777((;)(’1(2()»5,1))71(,:”()2,()1(1"5;8)))
i [n(z)-n(=")| < AW~

n(z)(1-n(z"))+n(z)(1-n(z)) =~ ) 2
[max{n(@),n(z")} = n(@)n()][1- (1= AWH)?]+ [min{n(@), n(2")} = n(@)n(z)][1 - (1+ AW7)?]

In(2)-n(z)]
i Smameym@ am@ > A7

> min{ (n(x) - (")), 2007 [ (x) = n(a")] - (AW~)}

which implies that for any h € Hxx and (x,2") such that |z - 2|, > v,

[\

x,z")

>

Aetq)sq,g'CNN (h’ €, .'L',) 2 \Ilbq(Aethi’g_f(f% Z, x,))
Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hnn-consistency bound for Epsq, valid for all h € Hnn:

Ry (1) - RLabi(J{NN)<FSq( b, () - R, (fHNN)+Mt¢)sq(J{NN))—MtSEi(G{NN). (86)

where Ty, = max{\/f, 2A€/V7 + %}
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L.2.6. DERIVATION FOR Lg

sig

For the sigmoid loss function ®g;g(u): =1 - tanh(ku), k >0, for all h € Hyn and (z,2”) such that [z — 2’|, > v,

ey, (hx,a")

= n(x)(1 = n(2") sig (h(x) = h(2")) + n(a") (1 = n(2)) Psig (h(2") - h())
=n(z)(1-n(2"))(1 - tanh(k[h(z) - h(2")])) +n(z") (1 = n(x)) (1 + tanh(k[A(z) - h(2)]))

Then,

Lo, o (@0 = I Cp, (@, a”) =n(2)(1=n(a)) +n(2") (1 -n(2)) - n(z) - n(2")] tanh(kAW |z -] ).

tq’sig
The (Lo, , Hxn )-minimizability gap is

Mg, Otew) =Rp,  (Ftaw) ~Ecxx [n(2)(1=n(2")) +n(2")(1 - n(z)) - In(x) - n(a")| tanh (kAW |z - 2", ) ].
_ ) &7
Therefore, Vh € Hyn(z,2") U Hnn (2, 2"),
ACr, ey By, ')

Psig?

Vv

> inf ey, (hza)y-¢e . (x,2)
heHnn (z,2") U Hnn (z,2) sig Psig )Y 'NN

= (@)L 01 0@) -, e (@)
= () = n(2")| tanh (kAW |z - 2] ,)
> n(x) - n(2")[tanh(kAWr)

which implies that for any h € Hx and (x,2") such that |z - 2|, > v,

ACr

Lq)sig

o (o2, 2") 2 tanh(EAW ) ACrue ¢ (h, 2, z').

Thus, by Theorem C.1 or Theorem C.2, setting € = 0 yields the Hnn-consistency bound for Eq; valid for all h € Hyn:

sig?

Ry, (W) =Rg (Fhaw) + Mg, (Fw)

Reavs (h) = RE,, . (FH < = — Mans (H . 88
Lo‘il() LO71( NN) tanh(RATV ) LH( NN) (88)
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