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Abstract

In-context learning allows models like transformers to adapt to new tasks from a few
examples without updating their weights, a desirable trait for reinforcement learning
(RL). However, existing in-context RL methods, such as Algorithm Distillation
(AD), demand large, carefully curated datasets and can be unstable and costly
to train due to the transient nature of in-context learning abilities. In this work
we integrated the n-gram induction heads into transformers for in-context RL.
By incorporating these n-gram attention patterns, we significantly reduced the
data required for generalization — up to 27 times fewer transitions in the Key-
to-Door environment — and eased the training process by making models less
sensitive to hyperparameters. Our approach not only matches but often surpasses
the performance of AD, demonstrating the potential of n-gram induction heads to
enhance the efficiency of in-context RL.

1 Introduction
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Figure 1: Performance comparison for dif-
ferent number of training goals between our
method and Algorithm Distillation (AD), an
in-context reinforcement learning method
(Laskin et al., 2022). Our method demon-
strates similar performance with less training
goals (128 vs. 512) and in general outper-
forms the baseline in Key-to-Door environ-
ment. In such stricter data scenario it is able
to perform on par with AD using 27x less
transitions in total. See Section 5 for details.

In-context learning is a powerful ability of autore-
gressive models, such as transformers (Vaswani et al.,
2023) or state-space models (Gu et al., 2022), allow-
ing them to infer and solve tasks from just a few
examples without updating models weights (Brown
et al., 2020). Such an adaptation ability is useful
in Reinforcement Learning (RL), where after exten-
sive pre-training, the agent can adapt on-the-fly to
unseen tasks or environments (Grigsby et al., 2023;
Ramrakhya et al.).

In-context Reinforcement Learning (ICRL) methods
that learn from offline datasets were first introduced
by Laskin et al. (2022) and Lee et al. (2023). In the
former work, Algorithm Distillation (AD), authors
propose to distill the policy improvement operator
from a collection of learning histories of RL algo-
rithms, after which an agents is able to generalize to
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unseen tasks in-context. In the latter, authors similarly show it is possible to generalize from a dataset
of interactions, provided that the optimal actions are also available.

Both methods require specifically curated data, which is demanding to obtain (Nikulin et al., 2024b).
Several methods were proposed to tackle this problem (Zisman et al., 2024; Kirsch et al., 2023) by
easing the data acquisition process. In addition, the in-context ability itself is transient (Singh et al.,
2024) and hard to predict its emergence from the cross-entropy loss alone (Agarwal et al., 2024),
making the training of such models unstable and expensive in terms of training budget. Our work
aims to solve aforementioned obstacles and presents changes made to transformer’s attention heads,
which can significantly speed up training process and decrease the total amount of data needed for
in-context learning to emerge.

It has been shown that a central mechanism that enables in-context learning in transformers is
induction heads (Olsson et al., 2022). Edelman et al. (2024) studied the emergence of these statistical
induction heads on synthetic data and concluded that transformers obtain a simplicity bias towards
plain uni-grams. Akyürek et al. (2024) take a step forward in this direction, showing that during in-
context learning of transformers, there appear higher-order induction heads in the attention mechanism,
which capture different n-grams in the sequence. They propose to hardcode this mechanism into
a transformer, creating an n-gram layer which is used interchangeably with standard multi-head
attention mechanism. Intuitively, a transformer benefits from it by not learning this complicated
behaviour by itself, rather it straightforwardly receives an inductive bias n-gram heads provide. This
approach significantly boosts perplexity even when applied to recurrent sequential models, indicating
that n-grams are a central mechanism for in-context learning.

We bring up these findings to ICRL setting and show that:

• N-grams heads decrease the amount of data needed for generalization on novel tasks.
By leveraging them, it is possible to reduce the total amount of transitions in training data
by 27x compared to the original method of Laskin et al. (2022). The results are presented in
Figure 3.

• N-grams help to ease training of in-context models. By employing n-gram heads, one
needs considerable less time doing hyperparameters search, thus making a model less
sensitive to hyperparameters and making it cheaper to train. The results are presented in
Figure 2.

2 Related Work

In-context RL. The key feature behind ICRL is the adaptation ability of a pretrained agent . In
general, it relies on the transformer’s ability to infer a task from the history of interactions with
an environment. Müller et al. (2021) show that transformers are capable of performing Bayesian
inference, which is known for its applicability for reasoning under uncertainty (Ghavamzadeh et al.,
2015). Laskin et al. (2022) proposed to pretrain a transformer on learning histories of RL algorithms
which allows it to implicitly learn policy improvement operator. During inference on unseen tasks, a
transformer is able to improve its policy by observing a context and to infer a task from it. However,
such approach requires specific datasets, which may be expensive to collect (Nikulin et al., 2024b).
To tackle this, it has been proposed to generate datasets following noise curriculum instead of training
thousands of agents (Zisman et al., 2024) or make augmentations to existing data (Kirsch et al., 2023).
Our work follows the direction of democratizing data restrictions, but instead of working with data,
we introduce a model-centric approach, making a transformer to perform in-context reinforcement
learning with less data.

N-Gram and Transformers. N-Gram statistical models has been known for decades and used in
the statistical approach to language modelling (Brown et al., 1992; Kneser & Ney, 1995). More
recent approaches (Roy et al., 2022; Liu et al., 2024) study the application of n-grams to transformer
models, finding that they can increase the overall performance. Akyürek et al. (2024) discover that a
transformer implicitly implements 2-gram attention pattern when solving in-context learning task,
which authors denote as a higher order of induction head (Olsson et al., 2022). They explicitly
implement 1-, 2- and 3-gram attention layers and observe a significant reduction in perplexity.
Another work (Edelman et al., 2024) directly investigates the behavior of n-gram induction heads
during training process. Authors find that transformers are biased towards simple solutions, thus
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making it problematic for higher order induction heads to appear. To our knowledge, we are the first
to apply these findings to decision making settings.

3 Method

We build our method on AD (Laskin et al., 2022) as our baseline. In its core, it uses learning histories
of RL algorithms that are trained to solve a single task in an environment. The data with learning
progress of multiple RL agents then passed to a transformer which learns to predict the next action
via cross-entropy loss. This results in a transformer that is able to adapt to unseen tasks on inference
without any weight updates. The details of implementation can be found in Appendix A.

However, AD suffers the same problems as any in-context algorithm does. Learning of the optimal
solution can be delayed by a tendency of transformers to learn simple structures at first (Edelman
et al., 2024). Besides, the nature of in-context ability is unstable and can fade into in-weights regime
as the training progresses, considerably complicating the emergence of adaptation ability (Singh
et al., 2024).

To combat these obstacles, we implement n-gram attention layer (Akyürek et al., 2024) as one of the
layers of a transformer. In essence, it hardcodes computations of n-gram statistics into the transformer
itself, rather than waiting for them to emerge naturally. The attention pattern that is calculated from
the input sentence is defined as:

A(n)ij ∝ 1 [(∧n
k=1xi−k = xj−k−1)]

After which, we apply a projection and add a residual to the output:

NGHn
(
hl
)
= W1h

l +W2A(n)⊤hl

Where n is the n-grams length, W1 and W2 are learnable projection matrices and hl is an embedding
from a previous transformer layer. In simple terms, we look for n-gram occurrences and with the help
of A(n) attention pattern force gradients to flow only through tokens that co-occur in the sequence.

To count n-gram statistics we use raw input sequence. However, since we are working in RL setting,
the input sequence has a form of (s0, a0, r0, ..., sn, an, r0), so in our experiments we tested two
approaches. We either compare the equivalence of full transitions (si, ai, ri) = (sj , aj , rj) or just
states (si = sj).

Throughout the text we use the terms learning histories and tasks. The task is a predefined grid or
a pair of grids an agent must come to upon it receives a reward. The learning history is an ordered
collection of states, actions and rewards an RL algorithm observed (or produced) while learning to
solve a single task. When we say we generated a dataset of n tasks with m learning histories, it
means for each of the task there are at least ⌊m

n ⌋ learning histories per task. Unlike Laskin et al.
(2022), we distinguish between tasks and learning histories, as it is often the case with real data when
many trajectories correspond to only a few tasks (Yu et al., 2019; Gallouédec et al., 2024).

4 Experiment Setup

We test our method on two environments, Dark Room and Dark Key-to-Door, originally presented
by Laskin et al. (2022). Both environments are grid-worlds of size 9x9. In Dark Room, an agent is
spawned at the center and needs to find a goal, after which it receives a reward of 1. The task for
Key-to-Door is similar, but at first an agents seeks for the key which allows it to open the door (both
of these actions lead to getting a reward of 1). For each environment, we access the performance of
ICRL algorithms only on unseen tasks. The total number of goals is 81 and 6561 for Dark Room and
Key-to-Door respectively. The more detailed description can be found in Appendix C.

To show that our method is more stable, we choose to report the results using the Expected Max
Performance protocol (EMP) (Dodge et al., 2019; Kurenkov & Kolesnikov, 2022). By doing so,
we do not report the maximum performance of a single checkpoint, rather we show the expected
performance for a certain computational budget. By using this approach we simultaneously compare
our method with a baseline in terms of easiness of training and maximum achieved performance.
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Figure 2: Results on Dark Room. We search through hyperparameters in random order and report
expected maximum performance (Dodge et al., 2019). We also constrain learning time of tested
algorithms to find the hyperparameters that ensure faster convergence. The top row shows experi-
ments with different number of learning histories, with the total number of training goals fixed. It is
seen that our method needs much less hyperparameter assignments (20 for 1K histories) to find the
optimal model, while the baseline performance increases only asymptotically (full plots are shown in
Appendix E). The bottom row presents experiments with varied number of goals and fixed number
of learning histories. Our method makes it possible to find the optimal hyperparameters with only 15
hyperparameter assignments, while the baseline fails to work in such low data conditions. However,
none of the methods can learn to generalize from only 10 goals.

For each experiment we make 500 and 400 hyperparameter assignments in total for Dark Room and
Key-to-Door respectively. To further demonstrate the effectiveness of our method, we constrain the
optimization by 10K gradient steps to find which algorithm is faster to converge to in-context learning
regime. The exact hyperparameter assignments setups are shown in Appendix D.

5 Results

We start with showing the ability of our method to significantly reduce the hyperparameter sensitivity
of AD. In the top row of Figure 2 we vary the number of learning histories, when the number of
training goals is fixed. It can be seen that for our method to converge to the optimal hyperparameters,
it needs only about 20 hyperparameter assignments. At the same time, for a baseline AD one needs
to search through 400 different hyperparamenter combinations on average to find a model that can
solve this relatively small environment.

In the next set of experiments we investigate an ability of our method to work in low-data regime.
We fix the number of learning histories and vary the number of goals only. Note that in the previous
experiment we had 60 tasks for training, but now we considerably reduce their quantity. In the
bottom row of Figure 2 the experiments with 10, 20, 30 training goals are shown. Neither method
can generalize to unseen task when presented only with 10 training goals. However, it is different
for 20 and 30 goals, where our method finds the optimal model in approximately 15 hyperparameter
assignments. Noticeably, the baseline method completely fails to learn from the constrained data,
which highlights the applicability of our method when no large dataset is available. For transparency
reasons, we show the full-length plots in Appendix E.
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Figure 3: Results on Key-to-Door. We demonstrate the ability of our method to generalize when the
data is extremely low in a more complex environment than Dark Room. We fix the total number of
goals with 100, significantly shrinking the number of learning histories. Keep in mind that for the
baseline method to converge to a model with the same return, it needs 2048 goals and 2048 learning
histories (Laskin et al., 2022). We show that our method needs 27x data. The baseline method can
no longer converge with that few data and its performance plateaus with the increasing number of
hyperparameter assignments.

Next, we further restrict the amount and diversity of data available to train. We set up an experiment
in Key-to-Door, a more comprehensive environment with the total of 6561 tasks, with only 100
training tasks and 500, 750, 1000 learning histories. Comparing to Laskin et al. (2022), we use 27x
less data. The detailed calculations are provided in Appendix B. It can be observed from Figure 3 that
the baseline method cannot find a model that is able to generalize to unseen goals in such a setting.
In turn, out method demonstrates performance on par with what Laskin et al. (2022) report in their
work. To ensure that our implementation of a baseline (AD) can solve the environments, we present
the performance of a baseline that is trained on optimal hyperparameters in Appendix F.

6 Conclusion and Future Work

In our work we show that incorporating n-gram induction heads can significantly ease training of
in-context reinforcement learning algorithms. Our findings are twofold: (i) we show that n-gram
heads can notably decrease a sensitivity to hyperparameters of in-context RL algorithm and (ii) we
demonstrate that our method is able to generalize from much less data than the baseline Algorithm
Distillation (Laskin et al., 2022) approach. We speculate these findings are mainly attributed to
the imperfect nature of in-context learning itself: a tendency of transformers to converge to simple
solutions first (Edelman et al., 2024) and transitivity of in-context ability itself (Singh et al., 2024).

While we believe our findings are promising, there are some limitations of current work. Further
research is needed to make our method compatible with continuous observations, which can greatly
expand the applicability of the method. Also, one might consider scaling to larger models and more
comprehensive environments, e.g. XLand-Minigrid (Nikulin et al., 2024a) or Meta-World (Yu et al.,
2019), which are not yet solved.
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A Model Implementation

We build our model on the base of Decision Transformer (Chen et al., 2021), which implementation
is taken from CORL (Tarasov et al., 2024). We modify it by removing return-to-go completely. Since
in RL we operate with tuples of states, actions and rewards, we concatenate them into one large
"token" to preserve sequence length size as in (Lee et al., 2023; Sinii et al., 2024).

B Calculation of Transitions in Data

In appendix I of Laskin et al. (2022) they mention that AD is more data-effective than source algorithm
and report the size of a dataset. The total number of data needed to achieve an approximate of 1.81
return on Key-to-Door 2 is reported as

(...) on 2048 Dark Key-to-Door tasks for 2000 episodes each.

The estimate of total number of transitions to generate for AD, considering the maximum length of
an episode in Key-to-Door is 50 steps, equals: 2048× 2000× 50 = 204.8M transitions.

We generate 100 unique training tasks and then sample 750 train task with repetition from the original
100. Then we make 200 training episodes for each task. In total, we get 750 × 200 × 50 = 7.5M
transitions, which is more than 27x less data.

C Environments

Dark Room. 2D POMDP with discrete state and action spaces (Laskin et al., 2022). The grid size is
9× 9, where an agent has 5 possible actions: up, down, left, right and do nothing. The goal is to find
a target cell, the location of which is not known to the agent in advance. The episode length is fixed
at 20 time steps, after which the agent is reset to the middle of the grid. The reward r = 1 is given for
every time step the agent is on the goal grid, otherwise r = 0. The agent does not know the position
of the goal, hence it is driven to explore the grid. In total, there are 81 goals.

Key-to-Door. Similar to Dark Room, but it first requires an agent to find an invisible key and then the
door. Without a key, the door will not open. The reward is given when the key is found (r = 1) and
once the door is opened (also r = 1), after which the game terminates. The agent then resets to a
random grid. The maximum episode length is 40, and since we can control the location of the key
and door, there are around 6.5k possible tasks.

2since no accurate data of plots was published, we used free-to-use WebPlotDigitizer for Fig. 6 in AD paper
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D Sweeps Setup

We use weights and biases sweep for running sweeps. All of the sweep setups are available by this
clickable link [will be available for camera-ready version].

We also report the setup of hyperparameter sweep in the table below.

Table 1: Hyperparameter search space

Distribution Values

seq len - [100, 150, 200, 250]
pre norm - [true, false]
normalize qk - [true, false]
label smoothing uniform [0.0, 0.8]
learning rate log uniform [1e-4, 1e-2]
weight decay log uniform [1e-7, 2e-2]
residual dropout uniform [0.0, 0.5]
embedding dropout uniform [0.0, 0.9]
episode subsample - [1, 2, 4, 8, 20]
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Figure 4: Full length plots for Key-to-Door. For 200 learning histories we halted the sweep early,
since it was obvious the performance has stalled.
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Figure 5: Full length plots for Dark Room. Some of the computations halted earlier for the same
reason as in Figure 4
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F Performance of AD on Key-to-Door and Dark Room
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Figure 6: AD performance on Dark Room and Key-to-Door. This plot shows that our implementation
of AD demonstrates optimal performance given the right hyperparameters.
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