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ABSTRACT

We investigate approaches to regularisation during fine-tuning of deep neural
networks. First we provide a neural network generalisation bound based on
Rademacher complexity that uses the distance the weights have moved from their
initial values. This bound has no direct dependence on the number of weights and
compares favourably to other bounds when applied to convolutional networks. Our
bound is highly relevant for fine-tuning, because providing a network with a good
initialisation based on transfer learning means that learning can modify the weights
less, and hence achieve tighter generalisation. Inspired by this, we develop a simple
yet effective fine-tuning algorithm that constrains the hypothesis class to a small
sphere centred on the initial pre-trained weights, thus obtaining provably better
generalisation performance than conventional transfer learning. Empirical evalu-
ation shows that our algorithm works well, corroborating our theoretical results.
It outperforms both state of the art fine-tuning competitors, and penalty-based
alternatives that we show do not directly constrain the radius of the search space.

1 INTRODUCTION

The ImageNet Large Scale Visual Recognition Challenges have resulted in a number of neural network
architectures that obtain high accuracy when trained on large datasets of labelled examples (He et al.,
2016; Tan and Le, 2019; Russakovsky et al., 2015). Although these models have been shown to achieve
excellent performance in these benchmarks, in many real-world scenarios such volumes of data are
not available and one must resort to fine-tuning an existing model: taking the weights from a model
trained on a large dataset, to initialise the weights for a model that will be trained on a small dataset.
The assumption being that the weights from the pre-trained model provide a better initialisation than
randomly generated weights. Approaches for fine-tuning are typically ad hoc, requiring one to experi-
ment with many problem-dependent tricks, and often a process that will work for one problem will not
work for another. Transforming fine-tuning from an art into a well principled procedure is therefore
an attractive prospect. This paper investigates, from both a theoretical and empirical point of view, the
impact of different regularisation strategies when fine-tuning a pre-trained network for a new task.

Existing fine-tuning regularisers focus on augmenting the cross entropy loss with terms that indirectly
or directly penalise the distance the fine-tuned weights move from the pre-trained values. The intuition
behind this seems sensible—the closer the fine-tuned weights are to the pre-trained weights, the less in-
formation is forgotten about the source dataset—but it is not obvious how this idea should be translated
into an effective algorithm. One should expect that the choice of distance metric is quite important, but
existing methods exclusively make use of Euclidean distance (Li et al., 2019; 2018) without any theo-
retical or empirical justification regarding why that metric was chosen. These methods achieve only a
small improvement in performance over standard fine-tuning, and it is reasonable to expect that using
a metric more suited to the weight space of neural networks would lead to greater performance. More-
over, while the use of penalty terms to regularise neural networks is well established, the impact of
using penalties vs constraints as regularisers has not been well studied in the context of deep learning.

In order to study the generalisation error of fine-tuned models, we derive new bounds on the empirical
Rademacher complexity of neural networks based on the distance the trained weights move from
their initial values. In contrast to existing theory (e.g., Neyshabur et al. (2018); Bartlett et al. (2017);
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Long and Sedghi (2019)), we do not resort to covering numbers or make use of distributions over
models to make these arguments. By deriving two bounds utilising different distance metrics, but
proved with the same techniques, we are able to conduct a controlled theoretical comparison of
which metric one should use as the basis for a fine-tuning regularisation scheme. Our findings show
that a metric based on the maximum absolute row sum (MARS) matrix norm is a more suitable
measure of distance in the parameter space of convolutional neural networks than Euclidean distance.
Additionally, we challenge the notion that using a penalty term to encourage the fine-tuned weights to
lie near the pre-trained values is the best way to restrict the effective hypothesis class. We demonstrate
that the equivalence of penalty methods and constraint methods in the case of linear models (Oneto
et al., 2016) does not translate to the context of deep learning. As a result, using projected stochastic
subgradient methods to constrain the distance the weights in each layer can move from the initial
settings can lead to improved performance.

Several regularisation methods are proposed, with the aim of both corroborating the theoretical
analysis with empirical evidence, and improving the performance of fine-tuned networks. One of
these approaches is a penalty-based method that regularises the distance from initialisation according
to the MARS-based distance metric. The other two techniques make use of efficient projection
functions to enforce constraints on the Euclidean and MARS distance between the pre-trained and
fine-tuned weights throughout training. The experimental results demonstrate that projected subgra-
dient methods improve performance over using penalty terms, and that the widely used Euclidean
metric is typically not the best choice of metric to measure distances in network parameter space.

2 RELATED WORK

The idea of developing an algorithm to restrict the distance of weights from some unbiased set of
reference weights has been explored in various forms to improve the performance of fine-tuned
networks. Li et al. (2018) presented the `2-SP regulariser, which consists of adding a term to the
objective function that penalises the squared `2 distance of the trained weights from the initial weights.
This is based on an idea initially made use of when performing domain adaptation, where it was
applied to linear support vector machines (Yang et al., 2007). The subsequent work of Li et al. (2019)
follows the intuition that the features produced by the fine-tuned network should not differ too much
from the pre-trained features. They also use Euclidean distance, but to measure distance between
feature vectors rather than weights. The idea is extended to incorporate an attention mechanism that
weights the importance of each channel. The method is implemented by adding a penalty term to
the standard objective function. In contrast to these approaches, we solve a constrained optimisation
problem rather than adding a penalty, and we demonstrate that the MARS norm is more effective than
the Euclidean norm when measuring distance in weight space.

Many recent meta-learning algorithms also make use of idea that keeping fine-tuned weights
close to their initial values is desirable. However, these approaches typically focus on developing
methods for learning the initial weights, rather than working with pre-specified initial weights. The
model-agnostic meta-learning approach (Finn et al., 2017) does this by simulating few-shot learning
tasks during the meta-learning phase in order to find a good set of initial weights for a neural network.
Once the learned algorithm is deployed, it adapts to new few-shot learning tasks by fine-tuning the
initial weights for a small number of iterations. Denevi et al. (2018) proposes a modified penalty
term for ridge regression where, instead of penalising the distance of the parameters from zero, they
are regularised towards a bias vector. This bias vector is learned during the course of solving least
squares problems on a collection of related tasks. Denevi et al. (2019) extend this approach to a fully
online setting and a more general family of linear models.

Previous work investigating the generalisation performance of neural network based on the distance
the weights have travelled from their initial values has done so with the aim of explaining why
existing methods for training models work well. Bartlett et al. (2017) present a bound derived
via covering numbers that shows the generalisation performance of fully connected networks is
controlled by the distance the trained weights are from the initial weights. Their bound makes use
of a metric that scales with the number of units in the network, which means if the result is extended
to a class of simple convolutional networks then the generalisation performance will scale with the
resolution of the feature maps. A similar bound can also be proved through the use of PAC-Bayesian
analysis (Neyshabur et al., 2018). One can make use of different metrics and techniques for applying

2



Published as a conference paper at ICLR 2021

covering numbers to bounding generalisation that do not have the same implicit dependence on the
number of units, but they instead depend directly on the number of weights in the network (Long and
Sedghi, 2019). Neyshabur et al. (2019) investigate the performance of two layer neural networks with
ReLU activation functions, demonstrating that as the size of the hidden layer increases, the Frobenius
distance (i.e., the Frobenius norm of the difference between initial and trained weight matrices)
shrinks. Inspired by this observation, they show that one can construct a bound on the Rademacher
complexity of this class by using Euclidean distance between the initial weights and trained weights
of each individual unit. Although they bound the Rademacher complexity directly, they still incur an
explicit dependence on the size of the hidden layer, and their analysis is restricted to fully connected
networks with only a single hidden layer.

In contrast to these previous studies, our focus is on designing an algorithm that will improve
the performance of fine-tuned networks, rather than explaining the performance of the standard
fine-tuning methods that are already widespread. Therefore, we do not aim to infer what properties
of existing methods enable networks to generalise well—we instead derive such properties and then
develop algorithms that enforce them. Moreover, we put a particular emphasis on choosing a metric
that is suitable for contemporary convolutional networks, and thus will not scale with the size of the
feature maps, while also being easy to implement efficiently.

3 DISTANCE-BASED GENERALISATION BOUNDS

Throughout this section we will analyse a loss class consisting of feed-forward neural networks,
f(~x) = (φL ◦ ... ◦ φ1)(~x), where each φj(~x) = ϕ(Wj~x) is a layer with a 1-Lipschitz activation
function, ϕ. Both the norm of the weight matrix of each layer and the distance of the fine-tuned
weights from the pre-trained weights are bounded from above. Formally, we define

F∗ = {(~x, y) 7→ l(y, f(~x)) : ‖Wj‖∗ ≤ B∗j , ‖W 0
j ‖∗ ≤ B∗j , ‖Wj −W 0

j ‖∗ ≤ D∗j },
where j goes from 1 to L, l is a ρ-Lipschitz loss function with a range of [0, 1], and W 0

j is the
pre-trained weight matrix for layer j. Each of the pre-trained weight matrices can be either random
variables drawn from a distribution with support such that the constraints are always fulfilled, or they
can be fixed (i.e., drawn from a Dirac delta distribution). The only other requirement is that they
are independent of the training data used for fine-tuning. From an empirical perspective it is most
useful to consider them non-random quantities. We have used ∗ as a placeholder for the norm used
to measure the magnitude of weight matrices and the distance from the pre-trained weights. The
primary focus is on using the MARS norm,

‖W‖∞ = max
j

∑
i=1

|Wj,i|,

to prove a bound on the empirical Rademacher complexity (Bartlett and Mendelson, 2002) of F∞.
Our main theoretical result, presented below, is obtained by modifying the “peeling”-style arguments
typically used to directly prove bounds on the Rademacher complexity of neural network hypothesis
classes (for examples, see Neyshabur et al. (2015); Golowich et al. (2018)). Our modification of
the argument allows us to rephrase the resulting theorem in terms of the distance the parameters can
move from their initialisation during training.
Theorem 1. For all δ ∈ (0, 1), the expected loss of all models in F∞ is, with probability 1 − δ,
bounded by

E(~x,y)[l(f(~x), y)] ≤
1

m

m∑
i=1

l(f(~xi), yi)+
4
√

log(2d)cρC∞
∑L
j=1

D∞j
B∞j

∏L
j=1 2B

∞
j

√
m

+3

√
log(2/δ)

2m
,

wherem is the number of training examples, c is the number of classes, ~xi ∈ Rd, and ‖~xi‖∞ ≤ C∞.

Crucially, when l is chosen carefully (e.g., the ramp loss), the expectation in Theorem 1 is an upper
bound for the expected classification error rate. The proof for Theorem 1 can be found in the
supplemental material. The two main terms in this theorem are (i) the product of bounds on the
layer norms; and (ii) the summation, which is a bound on the distance the fine-tuned weights can
be from the pre-trained weights. The first of these is primarily dependent on the weights obtained
via pre-training, whereas (ii) can be controlled during the fine-tuning process. Moreover, one would
expect that if better initial weights are selected via pre-training, then the distance the final weights will
be from the initial values will be smaller, thus leading to better generalisation. This is the motivation
behind the regularisers we develop in Section 4.
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An analogous bound is also derived for the Frobenius norm (i.e., FF ) to facilitate a theoretical
comparison between the proposed regularisation method and `2-SP, an existing approach that relies
on penalising Euclidean distance between the pre-trained and fine-tuned parameters. In order to avoid
a direct dependence on the number of parameters (as accomplished in Theorem 1) it is necessary to
restrictFF to use only ReLU activation functions.

Theorem 2. For all δ ∈ (0, 1), the expected loss of all models in FF is, with probability 1 − δ,
bounded by

E
(~x,y)

[l(f(~x), y)] ≤ 1

m

m∑
i=1

l(f(~xi), yi)+

2
√
2cρC2

∑L
j=1

DF
j

2BF
j

∏j
i=1

√
ni

L∏
j=1

2BFj
√
nj

√
m

+3

√
log(2/δ)

2m
,

wherem is the number of training examples, c is the number of classes, ‖~xi‖2 ≤ C2,ϕ(·) = ReLU(·),
and nj is the number of columns inWj .

We can make several observations by comparing our two bounds with each other and previously
published bounds: (i) in contrast to Theorem 1, Theorem 2 incurs a significant dependence on the
resolution of the intermediate feature maps due to the√nj factors; (ii) each term in the summations
in our bounds can be at most one, whereas the corresponding terms in Bartlett et al. (2017) can be
more than one due to the use of multiple types of norms; (iii) our bound from Theorem 1 does not
have a direct dependence on the number of weights, in contrast to the bound provided by Long and
Sedghi (2019). More detailed comparisons can be found in the supplemental material.

4 FINE-TUNING WITH DISTANCE REGULARISATION

The analysis presented in Section 3 suggests that the weights in fine-tuned models should be close
to the pre-trained weights in order to achieve good generalisation performance. More specifically,
the learning process should search only within a set of weights within a predefined distance from the
pre-trained weights. We discuss two strategies for accomplishing this: using projected subgradient
methods to enforce a hard constraint, and augmenting the standard cross entropy objective with a
term that penalises the distance between the pre-trained and fine-tuned weights. The method based on
projection functions is attractive because it guarantees that the constraints will be fulfilled even if one
uses a heuristic optimisation method to train the network parameters. However, the penalty-based ap-
proaches are more common in the literature, and convenient from an implementation point of view due
to the ubiquity of automatic differentiation. Nevertheless, in contrast to the projection-based meth-
ods, the techniques that use penalties have weaker assurances on whether a constraint is actually being
enforced. We discuss the drawbacks of this non-equivalence further in the supplemental material.

4.1 OPTIMISING WITH PROJECTIONS

One way to enforce constraints on the weights of neural networks during training is to use a variant of
the projected stochastic subgradient method. This is similar to typical stochastic subgradient methods
used when training neural networks, but has the additional step of applying a projection operation
after each weight update to ensure that the new weights lie inside the set of feasible parameters that
satisfy the constraints. In the case of classic subgradient descent, in order to guarantee convergence
towards a stationary point the projection function must perform a Euclidean projection,

π(Ŵ ) = arg min
W

1

2
‖W − Ŵ‖22

s.t. g(W ) ≤ 0,

(1)

where Ŵ are the newly updated parameters that may violate the constraint, W are the projected
parameters, and g(·) is a convex function specifying the constraint. Although the Euclidean projection
is required for the classic projected subgradient method, other optimisation algorithms may require
the projection to be performed with respect to a different metric. Looking at different optimisers as
instantiations of mirror descent with different Bregman divergences is one way to determine the type
of projection that should be performed. Unfortunately some of the most common optimisers used
in deep learning, such as Adam (Kingma and Ba, 2015), are not guaranteed to converge even when
there are no constraints on the parameters being optimised (Reddi et al., 2018). This makes extending
it to perform constrained optimisation a purely heuristic endeavour, further compounded by the fact

4



Published as a conference paper at ICLR 2021

that it is also not clear which metric the projection should be performed with respect to. As such, the
projections used in our approaches are performed with respect to the norm that is most convenient
from an efficiency point of view.

Rather than attempting to constrain the distance between the all pre-trained and fine-tuned weights
in the network using a single projection, constraints are applied on a layer-wise basis. This makes
optimisation more manageable and also allows practitioners to favour fine-tuning certain parts of the
network—e.g., if one is fine-tuning a network pre-trained on photos to perform a task on paintings
where the same underlying classes are present, one might wish to allocate more fine-tuning capacity
to earlier layers in the network. The types of constraints that we wish to enforce take the form

‖Wj −W (0)
j ‖∗ ≤ γj ,

where γj is a hyperparameter that corresponds to the maximum allowable distance between the
pre-trained weights and the fine-tuned weights for layer j. With a minor rearrangement, this yields a
constraint specification in the form required for Equation 1,

g∗j (W
(0)
j ,Wj , γj) = ‖Wj −W (0)

j ‖∗ − γj ,
where we have made the dependence on the pre-trained weights and the hyperparameter explicit. The
resulting optimisation problem is

min
W1:L

m∑
i=1

l(yi, (φL ◦ ... ◦ φ1)(~xi))

‖Wj −W (0)
j ‖∗ ≤ γj ∀j ∈ {1 ... L}.

(2)

The remainder of this section presents derivations for the projection functions, πF and π∞, cor-
responding to this constraint specification when it is instantiated with the Frobenius norm and the
MARS norm, respectively. We provide pseudocode in the supplementary material that illustrates
how these projections are integrated to the neural network fine-tuning procedure when using a variant
of the stochastic subgradient method. We refer to the Frobenius norm instantiation as `2-PGM and
the MARS norm version as MARS-PGM, where the PGM indicates the use of projection gradient
methods.

4.1.1 CONSTRAINING FROBENIUS DISTANCE

When using the Frobenius distance, Equation 1 can be rewritten as

πF (W
(0), Ŵ , γ) = arg min

W

1

2
‖W − Ŵ‖2F

s.t. ‖W −W (0)‖F − γ ≤ 0.
To simplify the problem, we can instead work on a translated version of the same parameter space
whereW (0) is the origin. Setting T̂ = Ŵ −W (0) and T =W −W (0), the problem becomes

π2(T̂ , γ) = arg min
T

1

2
‖T − T̂‖2F

s.t.‖T‖F − γ ≤ 0,

which is the Euclidean projection onto the `2 ball with radiusγ, and has the known closed form solution

π2(T̂ , γ) =
1

max
(
1, ‖T̂‖Fγ

) T̂ .
Expanding the definition of T̂ and translating back into the correct parameter space yields the
Frobenius distance projection function,

πF (W
(0), Ŵ , γ) =W (0) +

1

max
(
1, ‖Ŵ−W

(0)‖F
γ

) (Ŵ −W (0)). (3)

4.1.2 CONSTRAINING MARS DISTANCE

The constraint on the MARS distance can be equivalently expressed as a collection of constraints on
the `1 distance of each row in the weight matrix from the corresponding row in the pre-trained weight
matrix. That is,

‖W −W (0)‖∞ ≤ γ ⇐⇒ ‖~wi − ~w
(0)
i ‖1 ≤ γ ∀i,
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where ~wi is the ith row ofW . One can then make use of the same translation trick used to derive the
Frobenius distance projection function to change the `1 distance constraints to `1 norm constraints,

π1(~̂ti, γ) = arg min
~ti

1

2
‖~ti − ~̂ti‖22

s.t. ‖~ti‖1 − γ ≤ 0,

(4)

where ~t = ~wi − ~w
(0)
i . The problem in Equation 4 is a Euclidean projection onto the `1 ball with

radius γ, for which there is no known closed form solution. There exist algorithms to find the `1
projection in time linearly proportional to the dimensionality of the vector (Duchi et al., 2008), but
they are not amenable to implementation on graphics processing units due to the sequential nature of
the computations involved. Instead, we apply a projection that minimises the `1 distance between the
original point and its projection, subject to the projected point lying inside the `1 ball with radius γ,

π1(~̂ti, γ) =
1

max(1, ‖
~̂ti‖1
γ )

~̂ti.

This projection, while not providing the closest feasible point measured in Euclidean distance, still
provides a point that satisfies the constraints, but is trivial to implement efficiently. Finally, the
projection function for the entire weight matrix is given by applying π1 row-wise, and translating
back into the correct parameter space,

π∞(W (0), Ŵ , γ) =

π1( ~̂w1 − ~w
(0)
1 , γ) + ~w

(0)
1

...
π1( ~̂wn − ~w

(0)
n , γ) + ~w

(0)
n

 ,
where Ŵ contains n rows.

4.2 PENALTY METHODS

One popular approach in the literature to encourage a model to not move too far from a set of initial
weights is to augment the loss function with a penalty term. In our case, this would involve taking the
standard objective for the problem at hand (e.g., cross entropy or the hinge loss), and adding penalty
terms corresponding to each layer,

min
W1:L

m∑
i=1

l(yi, f(~xi)) +

L∑
j=1

λj‖Wj −W (0)
j ‖∗, (5)

where λj are hyperparameters used to balance the regularisation terms with the main loss function.
Due to the subdifferentiability of the two norms considered in this paper, instantiations of Equation 5
can be trained via automatic differentiation and a variant of the stochastic subgradient method. For the
Frobenius norm, we actually penalise the squared Frobenius norm, which recovers the `2-SP approach
of Li et al. (2018). We refer to the instantiation that penalises the MARS distance as MARS-SP.

5 EXPERIMENTS

This section provides an empirical investigation into the predictive performance of the proposed
methods relative to existing approaches for regularising fine-tuning, and also conducts experiments to
demonstrate which properties of the novel algorithms are responsible for the change in performance.
Two network architectures are used: ResNet-101 (He et al., 2016), which is representative of a
typical large neural network, and EfficientNetB0 (Tan and Le, 2019), a leading architecture intended
for use on mobile devices. Both networks are pre-trained on the 2012 ImageNet Large Scale
Visual Recognition Challenge dataset (Russakovsky et al., 2015). The Adam optimiser is used for
all experiments (Kingma and Ba, 2015). Information regarding the datasets and hyperparameter
optimisation procedure can be found in the supplemental material.

5.1 PREDICTIVE PERFORMANCE

The first set of experiments are a performance comparison of the proposed methods and existing
regularisation approaches for fine-tuning. The baselines considered are standard fine-tuning with no
specialised regularisation, `2-SP (Li et al., 2018), DELTA (Li et al., 2019), and label smoothing (LS)
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Table 1: Results obtained with different regularisation approaches when fine-tuning ResNet-101
(top) and EfficientNetB0 (bottom) models pre-trained on the ILSVRC-2012 subset of ImageNet. We
report the mean± std. dev. of accuracy measured across five different random seeds.

Regularisation Aircraft Butterfly Flowers Pets PubFig DTD Caltech Avg. Rank

None 51.81±0.87 70.02±0.16 76.68±1.07 84.19±0.34 75.36±0.67 66.15±0.55 75.32±0.61 6.71
DELTA (Li et al., 2019) 60.38±1.26 77.91±0.24 86.57±0.27 88.11±0.52 82.23±2.48 69.38±0.68 78.88±0.27 4.14
LS (Müller et al., 2019) 60.86±0.65 76.52±0.23 86.49±0.38 90.50±0.31 84.38±0.47 68.08±0.81 80.04±0.10 3.14
`2-SP (Li et al., 2018) 60.16±1.33 76.56±0.19 83.11±0.27 86.23±0.41 83.79±3.69 69.87±0.24 79.94±0.17 4.00
MARS-SP 58.52±1.23 69.54±0.36 75.90±1.04 84.22±0.45 79.17±0.73 69.53±0.93 79.19±0.33 5.57

`2-PGM 69.61±0.15 77.97±0.13 86.91±0.66 90.47±0.33 84.14±0.81 70.97±0.71 78.45±0.13 2.57
MARS-PGM 72.04±0.70 79.50±0.36 87.42±0.41 89.23±1.36 88.75±0.28 70.23±0.53 79.11±0.19 1.86

Regularisation Aircraft Butterfly Flowers Pets PubFig DTD Caltech Avg. Rank

None 54.58±0.65 69.43±0.47 77.43±0.14 84.87±0.19 75.51±0.83 64.98±0.43 81.07±0.38 7.00
DELTA (Li et al., 2019) 70.61±0.18 79.61±0.21 84.60±0.23 89.27±0.22 88.62±0.54 71.37±0.35 81.53±0.38 3.57
LS (Müller et al., 2019) 56.14±0.27 71.52±0.14 83.42±0.70 84.95±0.55 77.05±0.31 65.53±0.26 83.12±0.17 5.43
`2-SP (Li et al., 2018) 69.26±0.26 78.88±0.27 86.61±0.48 89.79±0.28 84.04±0.98 71.12±0.52 82.91±0.39 3.71
MARS-SP 66.96±0.49 72.01±0.20 77.79±0.48 89.24±0.40 85.33±0.59 69.41±0.49 82.10±0.24 5.0

`2-PGM 70.87±0.33 81.81±0.22 86.95±0.17 89.33±0.19 88.45±0.36 71.63±0.59 84.30±0.09 2.29
MARS-PGM 75.22±0.34 82.32±0.10 90.36±0.15 91.38±0.24 90.30±0.40 73.57±0.38 84.84±0.17 1.00

as formalised in Müller et al. (2019). Once hyperparameters are obtained, each network architecture
and regulariser combination is fine-tuned on both the training and validation folds of each dataset.
The fine-tuning process is repeated five times with different random seeds to measure the robustness
of each method to the composition of minibatches and initialisation of the final linear layer, which
is trained from scratch. Test set accuracy is reported for the ResNet-101 and EfficientNetB0
architectures in Table 1.

Comparing the average ranks of the methods across different datasets (Demšar, 2006), the most
salient trend is that the projection-based methods exhibit a significant increase in accuracy over their
penalty counterparts that use the same distance metrics. This suggests that, in the case of fine-tuning,
using a projection to enforce a constraint on the weights throughout the training process is a better
regularisation strategy than adding a term to the objective function that penalises the deviations of
weights from their pre-trained values. Additionally, looking further at the relative performance of
the two projection-based regularisers, we can see that the MARS distance variant is more often a
better choice than the Frobenius distance. This observation further supports the conclusions of the
comparison of the bounds in Section 3.

5.2 DISTANCE FROM INITIALISATION

To further investigate the relationship between the penalty and projection strategies for regularisation,
we analyse the distances between the pre-trained and fine-tuned weights at a per-layer basis. Figure 1
provides histograms indicating the distributions of per-layer MARS distances for the models without
any regularisation, regularised with MARS-SP, trained with the MARS-PGM, and also DELTA.
All networks were trained on the Pets dataset with the same hyperparameters used by the models
examined in Section 5.1. We observe three trends from these plots. Firstly, both the penalty and
projection methods reduce the MARS distance between the pre-trained and fine-tuned parameters
relative to the unregularised model. Secondly, a significant number of the constraints enforced by the
projection method are activated—i.e., many of the weight matrices lie on the boundary of the feasible
set. In contrast, the penalty-based regulariser does not enforce similarly activated constraints. Finally,
the results demonstrate that the DELTA method of Li et al. (2019) does not operate by implicitly
regularising the same quantity, as its MARS distance histogram is longer tailed than the others.

5.3 CAPACITY CONTROL

To demonstrate the ability of the distance-based regularisation methods to control model capacity, we
sweep through a range of hyperparameter values and plot the corresponding predictive performance.
Hyperparameters were generated according to λj = cλ̂j and γj = cγ̂j , where c is varied, and λ̂j , γ̂j
are the values found during the hyperparameter optimisation process. Plots of c versus the resulting
accuracy on the pets dataset are given in Figure 2 for both the ResNet101 and EfficientNetB0 architec-
tures. We can see that the PGM methods behave as the theoretical analysis predicts: hyperparameter
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Figure 1: Histograms of MARS distances between pre-trained and pets dataset fine-tuned weights for
the specified regularisation strategies. MARS-PGM successfully constrains weight distances to be
less than γj , indicated by the dashed line. Top: ResNet101, Bottom: EfficientNetB0.
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Figure 2: Sensitivity of the regularisation methods to the choice of hyperparameters. Measurements
are taken on the pets dataset, and c is a factor applied to the hyperparameters found during tuning.

configurations that lead to very small distances between pre-trained and fine-tuned weights result
in underfitting, relaxing the hyperparameters too much leads to overfitting, and using the optimised
hyperparameters (i.e., when c = 1) achieves the best performance.

5.4 EMPIRICAL COMPARISON OF BOUNDS

We perform an empirical comparison of our two bounds, along with a bound based on the spectral
norm (Long and Sedghi, 2019), to demonstrate the relative tightness. This is done by training neural
networks on the MNIST dataset (LeCun et al., 1998). We use the architecture of Scherer et al. (2010),
which consists of a single convolutional layer with 9 × 9 filters and 112 channels, followed by 5 × 5
max pooling, and finally a linear classifier layer. The network is trained for 15 epochs using the Adam
optimiser (Kingma and Ba, 2015), as training any further does not result in any performance increase.
Following similar work that has performed empirical evaluation of neural network bounds, we
evaluate the bounds by computing the relevant norms and distances of the trained network weights.
These quantities are then used in place of the upper bounds (i.e., B∗i and D∗i ) used in the definition
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Figure 3: An empirical comparison of the tightness of our bounds on the Rademacher complexity, and
that of Long and Sedghi (2019). The (a) and (b) plots demonstrate the empirical value of the bounds
as a function of the regularisation parameters: the vertical axes correspond to the model complexities
for each of the three measures considered, and the horizontal axes represents the regularisation
strength for `2-PGM (a) and MARS-PGM (b). The plot in (c) shows how the model complexity
measures change throughout the training of an unregularised model, and (d) shows the training and
test set performance throughout training for the same unregularised model.

of the hypothesis classes considered by Theorems 1 and 2. In keeping with previous work that has
performed this type of empirical comparison, we measure the distance from random initialisation,
rather than fine-tuning from a pre-trained network (Bartlett et al., 2017; Neyshabur et al., 2019).
Figure 3 shows how these three quantities vary for different choices of γ (the same hyperparameter
is used for both layers) when using MARS-PGM and `2-PGM, and also how they differ through the
process of training and unregularised model. We observe several trends: (i) like previous work in this
area, all of the empirically evaluated Rademacher complexity bounds are still too loose to be useful
for model selection and providing performance guarantees on the expected test set performance;
(ii) the bounds based on the MARS norm are consistently tighter (by orders of magnitude) than
the bounds based on the Frobenius and spectral norms; (iii) the empirical measurements of model
complexity plateau even though the hyperparameters governing the worst-case capacity continue
to increase—we suspect this is caused by implicit regularisation from early stopping. This implicit
regularisation from early stopping also provides an explanation for why we observe only a small
degradation in performance in Figure 2 when the hyperparameters are set to very large values.

6 CONCLUSION

This paper investigates different regularisation methods for fine-tuning deep learning networks. To
facilitate this, we provide two new bounds on the generalisation performance of neural networks
based on the distance of the final weights from their initial values. The discussion comparing these
bounds suggests that the MARS distance is a more appropriate metric in the parameter space of
convolutional networks than Frobenius distance. Additionally, several new algorithms are presented
that enable an experimental comparison between different regularisation strategies. The empirical
results corroborate our theoretical investigation, demonstrating that constraining MARS distance is
more effective than constraining Euclidean distance. Crucially, we also show that, in line with our
theoretical results, enforcing a hard constraint throughout the entire training process on the distances
the parameters can move is far more effective than the widely used strategy of adding a penalty term
to the objective function. Implementations of the methods used in this paper are available online.1
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