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Abstract

Best Arm Identification (BAI) algorithms are deployed in data-sensitive applica-
tions, such as adaptive clinical trials or user studies. Driven by the privacy concerns
of these applications, we study the problem of fixed-confidence BAI under global
Differential Privacy (DP) for Bernoulli distributions. While numerous asymptot-
ically optimal BAI algorithms exist in the non-private setting, a significant gap
remains between the best lower and upper bounds in the global DP setting. This
work reduces this gap to a small multiplicative constant, for any privacy budget ϵ.
First, we provide a tighter lower bound on the expected sample complexity of any
δ-correct and ϵ-global DP strategy. Our lower bound replaces the Kullback–Leibler
(KL) divergence in the transportation cost used by the non-private characteristic
time with a new information-theoretic quantity that optimally trades off between
the KL divergence and the Total Variation distance scaled by ϵ. Second, we intro-
duce a stopping rule based on these transportation costs and a private estimator
of the means computed using an arm-dependent geometric batching. En route to
proving the correctness of our stopping rule, we derive concentration results of
independent interest for the Laplace distribution and for the sum of Bernoulli and
Laplace distributions. Third, we propose a Top Two sampling rule based on these
transportation costs. For any budget ϵ, we show an asymptotic upper bound on
its expected sample complexity that matches our lower bound to a multiplicative
constant smaller than 8. Our algorithm outperforms existing δ-correct and ϵ-global
DP BAI algorithms for different values of ϵ.

1 Introduction

The stochastic Multi-Armed Bandit (MAB) is an interactive sequential decision-making model [18,
59], introduced by William R. Thompson [81]. Thompson’s motivation for studying MABs is to
design clinical trials that adapt treatment allocations on the fly as the medicines appear more or less
effective. Specifically, in MABs, a learner interacts with K ∈ N unknown probability distributions,
referred to as arms. In clinical trials, the arms are the candidate medicines, while the observations
are patient reactions, 1 if the patient is cured and 0 otherwise. The learner aims to identify the arm
with the highest average efficiency, i.e., the medicine that cures most patients in expectation. Given
a fixed error δ ∈ (0, 1), Best Arm Identification (BAI) [5, 47] algorithms in the fixed confidence
setting [34, 36, 38] suggest a candidate answer that coincides with the optimal arm with probability
more than 1− δ, while using as few samples as possible.

BAI algorithms have been increasingly deployed in data-sensitive applications, such as adaptive
clinical trials [81, 72, 8], pandemic mitigation [62], user studies [64], crowdsourcing [90], online
advertisement [22], hyperparameter tuning [61], and communication networks [63], to name a few.
Due to the adaptive nature of these procedures, critical data privacy concerns are raised [83], as
exemplified by the adaptive dose finding trial. For each new patient n, a physician chooses a dose
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level an ∈ [K] := {1, · · · ,K} based on previous observations, and collects a binary observation
measuring the effect of the selected dose on the patient. Crucially, the patients’ reactions might reveal
information regarding their health. Subsequently, these outcomes will guide the physician’s decision
for future patients. Eventually, the physician adaptively decides to stop the trial and recommends a
dose âτδ after collecting τδ samples, referred to as sample complexity. Even if those outcomes are
kept secret, the experimental findings and protocol are detailed thoroughly to the health authorities.
This report contains the sequence of chosen dose levels (an)n≤τδ and the recommended dose level
âτδ , both indirectly leaking information regarding the patients involved in the trial. This example
underscores the need for privacy-preserving fixed-confidence BAI algorithms.

We adopt the Differential Privacy (DP) framework [30], which bounds the influence of any single data
point. Given a privacy budget ϵ, we consider the ϵ-global DP constraint that assumes the existence
of a trusted curator (e.g., the physician running the clinical trial), who observes the outcomes
and ensures privacy when publishing these findings. While ϵ-global DP is well-studied in regret
minimization [68, 9, 13], its impact on fixed-confidence BAI is less understood [74, 54]. A significant
gap remains between the existing lower and upper bounds [11, 12]. This paper reduces this gap to a
small constant for any privacy budget ϵ. Appendix C.1 contains a detailed literature review.

Contributions. Our contributions for fixed-confidence BAI under ϵ-global DP are threefold.

1. Lower bound under global DP. We derive a novel information-theoretic lower bound on the
expected sample complexity of any δ-correct and ϵ-global DP BAI algorithms (Theorem 2). Our lower
bound replaces the Kullback-Leibler (KL) divergence in the transportation cost of the non-private
characteristic time with an information-theoretic quantity dϵ (Eq. (2)) that smoothly interpolates
between the KL divergence and the Total Variation (TV) distance scaled by ϵ.

2. Private estimator and GLR stopping rule. We introduce a private estimator using arm-dependent
geometric batching without forgetting and a GLR stopping rule based on the dϵ refined transportation
costs. Its correctness (Theorem 5) required novel tails concentration results for Laplace distributions
and the sum of Bernoulli and Laplace distributions, which could be of independent interest.

3. Asymptotically optimal algorithm. We propose a new Top Two sampling rule (DP-TT, Al-
gorithm 1) based on the dϵ-transportation costs suggested by our lower bound. We show that the
asymptotic expected sample complexity of DP-TT matches our lower bound for any privacy budget ϵ
up to a constant smaller than 8 (Theorem 6). DP-TT outperforms all the other δ-correct ϵ-global DP
BAI algorithms on all tested instances and all ϵ.

2 Background: Best Arm Identification under Differential Privacy

In this section, we present the Best Arm Identification (BAI) under fixed confidence problem [38],
introduce the Differential Privacy (DP) [31] constraint, and finally extend DP to BAI algorithms.

BAI under Fixed Confidence. A Bernoulli bandit instance ν := (νa)a∈[K] ∈ FK is characterized
by its means µ := (µa)a∈[K] ∈ (0, 1)K . The best (optimal) arm a⋆ is assumed to be unique,
i.e., a⋆(ν) = a⋆(µ) := argmaxa∈[K] µa = {a⋆}. Let δ ∈ (0, 1) be the risk parameter. A
fixed confidence BAI algorithm π specifies three rules that rely on previously observed samples
and some exogenous randomness. The sampling rule determines the next arm to pull an ∈ [K]
for which Xn,an

∼ νan
is observed. The recommendation rule recommends a candidate arm

ã ∈ [K]. The stopping rule decides when to stop collecting additional samples and output the
current candidate arm. The stopping time τϵ,δ is the sample complexity. Let Pνπ and Eνπ denote the
probability and expectation taken over the randomness of the observations from ν and the algorithm
π (e.g., due to its privacy mechanism). A fixed-confidence BAI algorithm π is δ-correct when
Pνπ(τϵ,δ < +∞, ã /∈ a⋆(ν)) ≤ δ for all ν ∈ FK .

Differential Privacy (DP). An algorithm satisfies the Differential Privacy constraint if the algorithm’s
outputs are “essentially” equally likely to occur, for any two input datasets that only differ in one
individual’s data. An adversary only observing the mechanism’s output cannot distinguish whether any
individual’s data was included. A privacy budget ϵ captures the closeness of the output distributions.
Smaller ϵ means stronger privacy.

Definition 1 (ϵ-DP [31]). A mechanismM satisfies ϵ-DP for a given ϵ ≥ 0, if, for all neighboring
datasets D ∼ D′, where D ∼ D′ if and only if dHam(D,D

′) :=
∑T

t=1 1 {Dt ̸= D′
t} ≤ 1, i.e., D
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and D′ differ by at most one record, and for all sets of output O ⊆ Range(M), Pr[M(D) ∈ O] ≤
eϵ Pr [M (D′) ∈ O] where the probability space is over the coin flips of the mechanismM.

To ensure ϵ-DP, the Laplace mechanism [32, 30] adds calibrated Laplacian noise to the algorithm’s
output. Let Lap(b) be the Laplace distribution with mean/variance (0, 2b2).

Theorem 1 (Laplace mechanism, Theorem 3.6 [30]). Let f : X → Rd be an algorithm with
sensitivity s(f) ≜ max

D,D′ s.t dHam(D,D′)=1
∥f(D)− f(D′)∥1, where ∥·∥1 is the ℓ1 norm. Let (Zi)i∈[d] be

i.i.d. from Lap(s(f)/ϵ), then the noisy output f(D) + (Zi)i∈[d] satisfies ϵ-DP.

DP for BAI. In BAI algorithms, the private input is the observation dataset and the output is the
recommended candidate arm ã and the sequence of sampled actions (an)n<τϵ,δ until stopping at τϵ,δ .
Let R = {r1, . . . } be a sequence of private observations. Given a fixed sequence of observations R,
we denote by Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] the probability that the BAI algorithm π stops at
step T + 1, recommending action ã and sampling actions (a1, . . . , aT ) when interacting with R. The
randomisation in this probability comes only from the BAI algorithm’s sampling, recommendation
and stopping rules, whereas the observations are fixed. Then, a BAI algorithm π is said to be ϵ-global
DP if, for every two neighboring sequences of observations R and R′, and for every possible stopping
time, recommendation and sampled actions (T + 1, ã, (a1, . . . , aT )), we have that

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] ≤ eϵ Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))] .

Main Goal: Design ϵ-global DP δ-correct BAI algorithms, with the smallest sample complexity τϵ,δ .

Notation. Let [x]10 := max{0,min{1, x}} be the clipping operator to [0, 1]. Let 1 (·) be the indicator
function. For two probability distributions P and Q on the measurable space (Ω,G), the Total Variation
(TV) distance is TV (P ∥ Q) := supA∈G{P(A)−Q(A)} and the Kullback-Leibler (KL) divergence

is KL (P ∥ Q) :=
∫
log
(

dP
dQ (ω)

)
dP(ω), when P≪ Q, and +∞ otherwise. The KL divergence and

TV distance between two Bernoulli distributions with means (p, q) ∈ (0, 1)2 are the relative entropy
denoted by kl, i.e., KL (Ber(p) ∥ Ber(q)) = kl(p, q) := p log(p/q) + (1− p) log((1− p)/(1− q)),
and the absolute mean difference, i.e., TV (Ber(p) ∥ Ber(q)) = |p − q|. Let △K := {w ∈ RK |
w ≥ 0,

∑
a∈[K] wa = 1} be the probability simplex of dimension K − 1. For all a ∈ [K], let

Nn,a :=
∑

t∈[n−1] 1 (at = a) be the global pulling count of arm a before time n.

3 Lower Bound on the Expected Sample Complexity

In order to be δ-correct, an algorithm has to be able to distinguish ν from alternative instances with
different best arms, i.e., an instance κ ∈ Alt(ν) := {κ ∈ FK | a⋆(κ) ̸= a⋆(ν)}. On the other
hand, being ϵ-global DP forces an algorithm to have similar behaviour on similar instances. The
tension between these two requirements yields the following problem-dependent lower bound on the
expected sample complexity Eνπ[τϵ,δ] for any algorithm π on any instance ν.

Theorem 2. Let (ϵ, δ) ∈ R⋆
+ × (0, 1). For any algorithm π that is δ-correct and ϵ-global DP on FK ,

Eνπ[τϵ,δ] ≥ T ⋆
ϵ (ν) log(1/(3δ))

for all ν ∈ FK with unique best arm. The inverse of the characteristic time T ⋆
ϵ (ν) is defined as

T ⋆
ϵ (ν)

−1 := sup
w∈△K

inf
κ∈Alt(ν)

K∑
a=1

wadϵ(νa, κa) , (1)

dϵ(νa, κa) := inf
φa∈F

{KL (φa ∥ κa) + ϵ · TV (νa ∥ φa)} . (2)

Comments. (a) The characteristic time in the lower bound is the value of a two-player zero-sum
game between a MIN player, who plays instances κ close of ν is order to confuse the MAX player,
who in order plays an arm allocation w ∈ △K to distinguish between ν and κ.

(b) The crucial part in characteristic times similar to Eq. (1) is finding the “right” measure capturing
the “distinguishability” between instances. In the non-private lower bounds, this is captured by the
KL divergence for parametric distributions [38] and by the Kinf (i.e., inf KL under mean constraint)
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for non-parametric distributions [2]. In the DP lower bounds of Azize et al. [11], it is captured by
min{KL, ϵTV}. In Theorem 2, it is captured by dϵ (as in Eq. (2)) that smoothly interpolates between
KL and TV. Azize et al. [13] recently introduced dϵ for ϵ-global DP regret minimization. Our results
show that dϵ also tightly captures the hardness of fixed-confidence BAI under ϵ-global DP. Namely,
our DP-TT algorithm achieves a matching upper bound when δ → 0 (up to a constant smaller than
8), for all instances with distinct means and all values of ϵ.

(c) Azize et al. [11, Theorem 2] provides a lower bound on the sample com-
plexity of any ϵ-global δ-correct algorithm, where the inverse characteristic time is
supw∈△K

infκ∈Alt(ν) min{
∑K

a=1 waKL (νa ∥ κa) , 6ϵ
∑K

a=1 waTV (νa ∥ κa)}. The lower bound
of Theorem 2 is strictly tighter than that of Theorem 2 in [11], for all instances ν and values of ϵ.
The reason is that dϵ(P,Q) ≤ min{KL(P,Q), ϵTV(P,Q)} for any two distributions.

(d) The lower bound of Theorem 2 suggests the existence of two privacy regimes, depending on
the value of ϵ and the instance ν. Specifically, when ϵ is big, dϵ reduces to the KL, and we retrieve
the classic non-private lower bound. On the other hand, as ϵ→ 0, dϵ reduces to ϵ TV, and the char-

acteristic time reduces to 1
ϵT

⋆
TV(ν) := 1

ϵ

(
supw∈△K

infκ∈Alt(ν)

∑K
a=1 waTV (νa ∥ κa)}

)−1

=

1
ϵ

∑k
a=1

1
∆a

, where ∆a = µ⋆ − µa for a ̸= a⋆ and ∆a⋆ = mina̸=a⋆ ∆a . This improves the high
privacy regime lower bound of prior work by a factor 6. Also, the value of ϵ at which the privacy
regimes change can be tightly specified, which we quantify for Bernoulli instances in the following.

Proof Sketch and Techniques. The proof uses the standard reduction to hypothesis testing [38],
using the data-processing inequality. The asymptotic techniques used by [13] for regret cannot be
adapted for our non-asymptotic lower bound. Thus, new techniques are needed. The main technical
novelty of the proof is a tighter quantification of the “similar” behaviour of a DP mechanism when
applied to stochastic datasets. Specifically, letM be an ϵ-DP mechanism. Given two data-generating
distributions P and Q, letting MP,M (resp. MQ,M) be the marginal over outputs of the mechanism
when the input dataset is generated through P (resp. Q), then we show that

KL (MP,M ∥MQ,M) ≤ inf
L

{
ϵ inf
CP,L

{
ED,D′∼CP,L [dHam(D,D

′)]
}
+KL (L ∥ Q)

}
,

where the first infimum is over all distributions L on the input space, and the second infimum is
an optimal transport problem over all couplings between P and L, where the cost is the Hamming
distance (introduced in Definition 1). This bound of general interest could be applied to get tighter
lower bounds in any DP application using stochastic inputs. For product and bandit distributions, we
solve the optimal transport using maximal couplings, where the Total Variation naturally appears,
while keeping the first infimum unchanged, giving rise to the dϵ quantity. Finally, plugging the new
upper bound on the KL in the hypothesis reduction concludes the sample complexity lower bound
proof. A detailed proof and discussion of all these claims is given in Appendix D.

Properties of the Characteristic Time and Optimal Allocation. The set w⋆
ϵ (ν) of optimal alloca-

tions is the maximizer of the outer supremum on△K that defines T ⋆
ϵ (ν)

−1 in Eq. (1). Theorem 3
gathers key properties satisfied by T ⋆

ϵ (ν) and w⋆
ϵ (ν), for Bernoulli distributions. See lemmas proven

in Appendix G, i.e., Lemmas 22, 23, 24, 25, 35, 42 and 46.

Theorem 3. For all x ∈ [0, 1], let us define g−ϵ (x) :=
xeϵ

x(eϵ−1)+1 and g+ϵ (x) := 1 − g−ϵ (1 − x) =
(g−ϵ )

−1(x). For all (λ, µ) ∈ R× [0, 1], the signed divergences are defined as

d+ϵ (λ, µ) := 1
(
µ > [λ]10

)
inf

z∈[[λ]10,µ]

{
kl(z, µ) + ϵ(z − [λ]10)

}
=


0 if µ ∈ [0, [λ]10]

− log (1− µ(1− e−ϵ))− ϵ[λ]10 if µ ∈ (g−ϵ ([λ]
1
0), 1]

kl (λ, µ) if λ ∈ (0, 1) and µ ∈ ([λ]10, g
−
ϵ ([λ]

1
0)]

,

d−ϵ (λ, µ) := 1
(
µ < [λ]10

)
inf

z∈[µ,[λ]10]

{
kl(z, µ) + ϵ([λ]10 − z)

}
= d+ϵ (1− λ, 1− µ) . (3)

For (µ,w) ∈ RK × RK
+ , the transportation cost of the pair of arms (a, b) ∈ [K]2 is defined as

Wϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈[0,1]

{
wad

−
ϵ (µa, u) + wbd

+
ϵ (µb, u)

}
. (4)
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Let ν ∈ FK having means µ ∈ (0, 1)K with unique best arm a⋆. Then, we have

T ⋆
ϵ (ν)

−1 = max
w∈△K

min
a̸=a⋆

Wϵ,a⋆,a(µ,w) and T ⋆
ϵ (ν) ≥

∑
a∈[K]

∆−1
ϵ,a . (5)

where ∆ϵ,a⋆ := mina ̸=a⋆ d−ϵ (µa⋆ , µa) and ∆ϵ,a := d+ϵ (µa, µa⋆) for all a ̸= a⋆. The optimal
allocation is unique, has dense support and ensures the equality of the transportation costs with
T ⋆
ϵ (ν)

−1 (i.e., information balance equation), namely w⋆
ϵ (ν) = {w⋆

ϵ }, mina∈[K] w
⋆
ϵ,a > 0 and

Wϵ,a⋆,a(µ,w
⋆
ϵ ) = T ⋆

ϵ (ν)
−1 for all a ̸= a⋆.

We use the notation d±ϵ to refer to both (d−ϵ , d
+
ϵ ) as in Eq. (3). Using signed divergences d±ϵ

instead of dϵ as in Eq. (2) is a convention borrowed from non-parametric fixed-confidence BAI (i.e.,
K±

inf [50]) that explicits the ordering between the mean parameters. Given (κ, ν) ∈ F2 with means
(λ, µ) ∈ (0, 1)2, we have dϵ(κ, ν) = d+ϵ (λ, µ) when µ > λ, and dϵ(κ, ν) = d−ϵ (λ, µ) otherwise
(Lemma 21). The signed divergences d±ϵ and the transportation costs (Wϵ,a,b)(a,b)∈[K]2 satisfy all
the desired properties required to study BAI algorithms based on the empirical version of Wϵ,a,b (see
Lemmas 22, 23, 24 and 25, as well as Lemmas 34, 35, 36 and 37), e.g., symmetry, explicit formula,
monotonicity, strict convexity, etc. In Garivier and Kaufmann [38], the characteristic time and its
optimal allocation can be computed with a simpler optimisation problem. A simpler optimization
problem can also be solved to compute T ⋆

ϵ (ν) and w⋆
ϵ (ν) explicitly (Lemma 46).

Allocation Dependent Low Privacy Regime. Let (µ,w, a, b) ∈ (0, 1)K × RK
+ × [K]2 such that

µa > µb and min{wa, wb} > 0. The non-private Bernoulli transportation costs [38] are defined as

Wa,b(µ,w) := wakl(µa, µ
w
a,b) + wbkl(µb, µ

w
a,b) with µw

a,b :=
waµa + wbµb

wa + wb
.

We provide an allocation-dependent low-privacy condition that depends on (ϵ, µ, w) (Lemma 44),
i.e., Wϵ,a,b(µ,w) =Wa,b(µ,w) is implied by

µa − µb ≤ (1− e−ϵ)min
{
(1 + wa/wb)µag

−
ϵ (1− µa), (1 + wb/wa) (1− µb)g

−
ϵ (µb)

}
. (6)

Plugging w⋆
ϵ from Theorem 3 in Eq. (6) would give an implicit condition on (ϵ, µ) under which

the non-private characteristic time T ⋆(ν) for Bernoulli distributions is recovered, i.e., T ⋆
ϵ (ν) =

T ⋆(ν). A weaker (yet explicit) allocation-independent sufficient condition for T ⋆
ϵ (ν) = T ⋆(ν) is

ϵ ≥ maxa̸=a⋆ ϵa⋆,a where ϵa,b := log
(

µa(1−µb)
µb(1−µa)

)
.

4 Generalized Likelihood Ratio Stopping Rule

Designing appropriate recommendation and stopping rules for the BAI problem can be framed as a
sequential hypothesis testing task with multiple hypotheses {µa = maxb∈[K] µb}. One of the earliest
approaches to active hypothesis testing—where data collection is also optimized—was introduced
by Chernoff [25], who advocated for the use of Generalized Likelihood Ratio (GLR) tests for stopping
decisions. This methodology is also popular in the context of BAI [38]. Despite its relevance, fewer
works attempted to extend it for private sequential hypothesis testing, see, e.g., Zhang et al. [87]
under Rényi DP and Azize et al. [12] under ϵ-local and ϵ-global DP.

Mean Estimator. Three rules need to be specified to define a BAI algorithm: recommendation,
sampling, and stopping rules. An important remark in designing BAI algorithms is that the dependence
of these rules on the private input observation dataset comes solely through the sequence of mean
estimators. Thus, designing a sequence of mean estimators that satisfy DP is crucial when defining a
ϵ-global DP BAI algorithm. To estimate the sequence of means, defined in Lines 5-8 of Algorithm 1,
we rely on two ingredients: adaptive arm-dependent episodes with a geometric update grid and the
Laplace mechanism. We call this mechanism estimating the sequence of means the Geometric Private
Estimator, i.e., GPEη(ϵ). Most notably, we eliminate “observation forgetting” from GPEη(ϵ), an
important design choice made in all past BAI algorithms [74, 11, 12]. Specifically, for some η > 0
called the geometric grid parameter, GPEη(ϵ) estimates the noisy means in arm-dependent phases: a
phase changes when the counts of an arm has increased multiplicatively by 1 + η (Line 5). Then,
GPEη(ϵ) only updates the mean of the arm that changed phases, by accumulating the observations
collected from its last phase and adding Laplace noise (Line 7). Due to this accumulation step, we
do not forget the observations from past phases. Thus, each estimated noisy mean µ̃n,a in Line 7
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contains Ñn,a i.i.d. observations from νa and kn,a ≈ log1+η Ñn,a i.i.d. observations from Lap(1/ϵ).
In contrast, using forgetting produces a noisy mean that contains fewer i.i.d. observations from
νa (e.g. Ñn,a/2 samples for forgetting with η = 1), but only one Laplace noise. While removing
forgetting allows us to keep more signal, i.e., more i.i.d samples from νa, we need more noise, i.e.,
the cumulative sum of Lap(1/ϵ), which is logarithmic in the number of samples from νa. Tighter
concentration inequalities allow controlling the cumulative sum of Laplace noise. See below for a
detailed discussion about our novel concentration results. As long as the number of samples from
the Lap(1/ϵ) is logarithmic in the number of samples from νa, the effect of noise on the sample
complexity is similar to having only one additional Laplace noise.

Privacy Analysis. By adaptive post-processing, the following lemma is proved naturally.
Lemma 4. Any BAI algorithm using only GPEη(ϵ) to access observations is ϵ-global DP on [0, 1].

Proof Sketch. The proof combines two steps. First, we show that the sequence of mean estimators
produced by GPEη(ϵ) is ϵ-DP. The crucial observation is that a change in one observation only affects
the partial sum collected in just one arm-phase. By the Laplace mechanism, adding one Lap(1/ϵ) to
the partial sum is enough to make it ϵ-DP. Then, by post-processing, the sequence of accumulated
partial sums (S̃kn,a,a) and noisy means (µn,a) (Line 7) are also ϵ-DP. The second step shows how to
use the sequential nature of the process and adaptive post-processing to conclude that BAI algorithms
using only GPEη(ϵ) are ϵ-global DP. The detailed proof is in Appendix E.

Recommendation Rule. The recommendation rule ãn is defined as the arm with the highest clipped
noisy empirical mean, i.e., ãn ∈ argmaxa∈[K][µ̃n,a]

1
0 where ties are broken uniformly at random.

GLR Stopping Rule. The GLR stopping rule runs K sequential GLR tests in parallel, and stops as
soon as one of these tests can reject the null hypothesis. When comparing the recommendation ãn
with an alternative arm a, the GLR statistic is defined as the transportation cost Wϵ,ãn,a evaluated
empirically at (µ̃n, Ñn) (see Eq. (4)). Intuitively,Wϵ,ãn,a(µ̃n, Ñn) represents the amount of empirical
evidence to reject the hypothesis that arm a has a higher mean than ãn. One can stop and recommend
ãn when all these statistics exceed a given stopping threshold. Given a privacy budget and risk
(ϵ, δ) ∈ R⋆

+ × (0, 1) and a stopping threshold c : N× R⋆
+ × (0, 1)→ R+, we define

τϵ,δ = inf{ n | ∀a ̸= ãn, Wϵ,ãn,a(µ̃n, Ñn) > c(Ñn,ãn
, ϵ, δ) + c(Ñn,a, ϵ, δ) } . (7)

Given its proximity to the characteristic time T ⋆
ϵ (ν), see Eq. (5) (Theorem 3), the GLR stopping rule

is a good candidate to match the lower bound, i.e., if one could sample arms according to w⋆
ϵ (ν) and

use the stopping threshold log(1/δ). Unfortunately, this threshold is too good to be δ-correct and
w⋆

ϵ (ν) should be estimated as it is unknown (Section 5).

Calibration of the Stopping Threshold. Regardless of the sampling rule, the stopping threshold
should ensure δ-correctness of the GLR stopping rule (Theorem 5).
Theorem 5. Let (ϵ, δ, η) ∈ R⋆

+ × (0, 1) × R⋆
+. Let s > 1, ζ be the Riemann ζ function and

W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch of the Lambert
W function, satisfying W−1(x) ≈ x + log x (Lemma 51). Given any sampling rule using the
GPEη(ϵ), using the GLR stopping rule as in Eq. (7) with the GPEη(ϵ) and the stopping threshold
c(n, ϵ, δ) := c1(n, δ) + c2(n, ϵ) where

c1(n, δ) =W−1 (log (Kζ(s)/δ) + s log(kη(n)) + 3− log 2)− 3 + log 2 , (8)
c2(n, ϵ) = kη(n) (log (1 + 2ϵn/kη(n)) + 1) with kη(x) := 1 + log1+η x ,

yields a δ-correct and ϵ-global DP algorithm for all Bernoulli instances with a unique best arm.

The proof of Theorem 5 builds on novel concentration results of independent interest (Appendix F.2).
Our explicit instance-independent upper bounds are pivotal to derive the stopping threshold in Eq. (8),
which avoids the large instance-dependent constants used in the regret minimisation literature [13].

Concentration Results. First, we give tail bounds for the cumulative sum of i.i.d. Laplace observa-
tions (Lemma 15). We use Chernoff’s method with the convex conjugate of the moment generating
function of Lap(1/ϵ), hence improving on Azize et al. [13, Lemma 18] that approximates it. Second,
we derive tail bounds for the sum between independent cumulative sums of t i.i.d. Bernoulli and
nt i.i.d. Laplace observations (Lemmas 17 and 18). They involve the modified signed divergences
d̃±ϵ that better capture the non-asymptotic tails behaviour, and are equivalent to d±ϵ to an additive
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term Θ(log(1 + 2ϵrt)/rt) where rt := t/nt (Lemma 29). Whenever rt → +∞, we recover the
same noise effect as adding only one Lap(1/ϵ) observation. For x > 0, the exponential decrease
of the probability of exceeding µ + x (resp. being lower than µ − x) scales as td̃−ϵ (µ + x, µ, rt)

(resp. td̃+ϵ (µ− x, µ, rt)). The proof builds on fine-grained tail bounds of the sum of two independent
random variables, i.e., we bound those probabilities by the maximal product between their respective
survival functions (Lemma 9). While Azize et al. [13, Lemma 19] directly integrates their tail bounds,
Lemma 11 can be used with any tail bounds. Third, we obtain time-uniform upper tail bounds for
Ñn,ad̃

±
ϵ (µ̃n,a, µa, Ñn,a/kn,a) by exploiting the geometric-grid update of (µ̃n, Ñn, kn).

Threshold Scaling. The threshold c1 in Eq. (8) ensures δ-correctness of the modified GLR
stopping rule, defined in Appendix F.1 with the modified transportation costs W̃ϵ,a,b and diver-
gences d̃±ϵ (Appendix F.1). Independent of ϵ, it scales as log(1/δ) + Θ(log log(1/δ)) when
δ → 0 and Θ(log log(n)) when n → +∞. The threshold c2 in Eq. (8) is an upper bound on
Ñn,a(d

±
ϵ (µ̃n,a, µa)− d̃±ϵ (µ̃n,a, µa, Ñn,a/kn,a)) (Lemma 29) that scales as Θ(ϵn) when ϵ→ 0 and

as Θ((log n)2) when n→ +∞. Both c1 and c2 scales as Θ(1/ log(1 + η)) when η → 0.

Limitation. As the threshold in Eq. (7) is the sum of per-arm thresholds, it scales as 2 log(1/δ) when
δ → 0, hence incurs a suboptimal factor 2 asymptotically. Obtaining a threshold in log(1/δ) is left
for future work. It requires controlling the re-weighted sum of modified divergences d̃±ϵ . Azize
et al. [11, Theorem 4] has a suboptimal factor 2 for the same reason and incurs an additive factor
1

nϵ2 log(1/δ)
2 due to the separate control of the Laplace and the Bernoulli observations (based on

sub-Gaussian concentration results). Azize et al. [12, Lemma 18] alleviates this factor 2 in their low
privacy regime, yet it also pays 1

nϵ2 log(1/δ)
2.

5 Top Two Sampling Rule

Equipped with a recommendation and stopping rules, we define a sampling rule using the GPEη(ϵ).
Within the fixed-confidence BAI literature, we adopt the Top Two approach [73, 71, 75, 50] that
recently received increased scrutiny due to its good theoretical guarantees [49, 86, 52, 14], competitive
empirical performance, and low computational cost. The Differentially Private Top Two (DP-TT)
algorithm (Algorithm 1) uses the EB-TCI-β sampling rule [50]. In Appendix I, we introduce the
Track-and-Stop [38] and LUCB [55] sampling rules for fixed-confidence BAI under ϵ-global DP.

After initialization, a Top Two sampling rule specifies four choices [48]: a leader arm Bn ∈ [K],
a challenger arm Cn ∈ [K] \ {Bn}, a target allocation βn(Bn, Cn) ∈ [0, 1] and a mechanism
to choose the next arm to sample from, i.e., an ∈ {Bn, Cn} by using βn(Bn, Cn). The leader
should select a good estimator of the best arm a⋆. We use the empirical best (EB) leader that
coincides with our recommendation rule, i.e., Bn := ãn. The challenger should be a confusing
alternative arm, for which the empirical evidence that the leader has a better mean is low. We
use the TCI challenger [50] that penalizes oversampled challenger to foster implicit exploration,
i.e., Cn ∈ argmina̸=Bn

{Wϵ,Bn,a(µ̃n, Nn) + logNn,a} where ties are broken uniformly at random.
Crucially, we leverage our novel transportation costs (Wϵ,Bn,a)a̸=Bn

featuring the signed divergences
d±ϵ that are evaluated empirically at (µ̃n, Nn), see Eq. (3) and (4). The target should be chosen
to balance the allocation between the leader and the challenger arms. Let β ∈ (0, 1), e.g., β =
1/2. We use a fixed β-design βn(Bn, Cn) := β. The mechanism to choose the next arm to
sample should enforce that this target is reached on average. We use K independent β-tracking
procedures (one per leader), i.e., an = Bn if NBn

n,Bn
≤ βLn+1,Bn

and an = Bn otherwise, where
Na

n,a =
∑

t∈[n−1] 1 ((Bt, at) = (a, a)) and Ln,a =
∑

t∈[n−1] 1 (Bt = a). Using Degenne et al.
[29, Theorem 6] for each tracking procedure yields −1/2 ≤ Na

n,a − βLn,a ≤ 1 for all a ∈ [K].

Computational and Memory Cost. The GPEη(ϵ) sums the observations, and the recommendation
and GLR stopping rules are updated when an arm is updated. Using the closed-form formula for
Wϵ,a,b (Lemma 37), the per-iteration computational and global memory costs of DP-TT are O(K).

Asymptotic Upper Bound on the Expected Sample Complexity. Given a fixed target β, the
empirical allocation of a⋆ converges towards β, that differs from w⋆

ϵ,a⋆ . At best, we can estimate
the β-optimal allocation w⋆

ϵ,β(ν), i.e., maximizer of the inverse β-characteristic time T ⋆
ϵ,β(ν)

−1
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Algorithm 1 Differentially Private Top Two (DP-TT) Algorithm.

1: Input: setting parameters (ϵ, δ) ∈ R⋆
+×(0, 1), algorithmic hyperparameters (η, β) ∈ R⋆

+×(0, 1)
and threshold c, e.g., (η, β) = (1, 1/2) and c as in Eq. (8). (Wϵ,a,b)(a,b)∈[K] as in Eq. (4).

2: Output: Stopping time τϵ,δ , recommendation ãτϵ,δ and pulling history (an)n<τϵ,δ .
3: Initialization: For all a ∈ [K], pull arm a, observe Xa,a ∼ νa and draw Y1,a ∼ Lap(1/ϵ). Set
n = K + 1. For all a ∈ [K], set S̃n,a = Xa,a + Y1,a, kn,a = 1, T1(a) = n, Nn,a = Ñn,a = 1,
µ̃n,a = S̃n,a/Ñn,a, Ln,a = 0 and Na

n,a = 0.
4: for n ≥ K + 1 do
5: if there exists a ∈ [K] such that Nn,a ≥ (1 + η)kn,a then ▷ Per-arm geometric update grid
6: For this arm a, change phase kn,a ← [ kn,a + 1, and (Tkn,a(a), Ñn,a) = (n,NTkn,a (a),a

);

7: Set S̃kn,a,a =
∑Tkn,a (a)−1

t=Tkn,a−1(a)
Xt,a1 (at = a) + Ykn,a,a + S̃kn,a−1,a with Ykn,a,a ∼

Lap(1/ϵ), and update the mean µ̃n,a = S̃kn,a,a/Ñn,a;
8: end if
9: Set ãn ∈ argmaxa∈[K][µ̃n,a]

1
0; ▷ Recommendation rule

10: if Wϵ,ãn,a(µ̃n, Ñn) >
∑

b∈{ãn,a} c(Ñn,b, ϵ, δ) for all a ̸= ân then ▷ GLR stopping rule
11: return (n, ãn, (at)t<n).
12: end if
13: Set Bn = ãn and Cn ∈ argmina̸=Bn

{Wϵ,Bn,a(µ̃n, Nn) + logNn,a}; ▷ EB-TCI
14: Set an = Bn if NBn

n,Bn
≤ βLn+1,Bn

, and an = Cn otherwise; ▷ β-tracking
15: Pull an, observe and store Xn,an

∼ νan
;

16: Update (Nn+1,an
, Ln+1,Bn

, NBn

n+1,Bn
) = (Nn,an

, Ln,Bn
, NBn

n,Bn
) + (1, 1,1 (Bn = an));

17: end for

defined as in Eq. (5) with the constraint wa⋆ = β. While being only nearly asymptotic optimal, i.e.,
T ⋆
ϵ (ν) = minβ∈(0,1) T

⋆
ϵ,β(ν), it satisfies T ⋆

ϵ,1/2(ν) ≤ 2T ⋆
ϵ (ν) (Lemma 43).

DP-TT is ϵ-global DP, δ-correct and matches T ⋆
ϵ (ν) to a small constant, for any privacy budget ϵ.

The proof (Appendix H) builds on the unified analysis of Jourdan et al. [50] and relies heavily on the
derived regularity properties for d±ϵ , (Wϵ,a,b)(a,b), T ⋆

ϵ,β(ν) and w⋆
ϵ,β(ν) (Appendix G).

Theorem 6. Let (ϵ, δ, η, β) ∈ R⋆
+× (0, 1)×R⋆

+× (0, 1) and c as in Eq. (8). The DP-TT algorithm is
ϵ-global DP, δ-correct and satisfies that, for any Bernoulli instance ν with distinct means µ ∈ (0, 1)K ,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ,β(ν) .

For (η, β) = (1, 1/2), the asymptotic upper bound is 4T ⋆
ϵ,1/2(ν) ≤ 8T ⋆

ϵ (ν). For any privacy budget
ϵ, we reduced the gap between known lower and upper bounds for fixed-confidence BAI under
ϵ-global DP to a constant lower than 8, hence closing the open problem in Azize et al. [12]. A
discussion on how to improve this constant is defered to Appendix C.2.

Comparison with Azize et al. [11, 12]. AdaP-TT and AdaP-TT⋆ use the DAF(ϵ) estimator, GLR-
inspired recommendation/stopping rules and the TTUCB [49] sampling rule (i.e., UCB-TC-β [48]),
all based on arm-dependent doubling, forgetting and unclipped estimators. While AdaP-TT relies
on the non-private Gaussian transportation costs, AdaP-TT⋆ accounts for a high privacy regime by
clipping the mean gap, i.e., (µa − µb)+ min{3ϵ, (µa − µb)+} instead of (µa − µb)

2. The AdaP-TT
and AdaP-TT⋆ algorithms are ϵ-global DP and δ-correct. The sample complexity of AdaP-TT only
matches the high privacy lower bound for instances where the means are of similar order. AdaP-TT⋆

improves on AdaP-TT by matching the high privacy lower bound for all instances with distinct means.
However, both AdaP-TT and AdaP-TT⋆ fail to match the lower bound beyond the high-privacy
regime, due to the use of non-adapted transportation costs. In contrast, DP-TT uses the dϵ-inspired
transportation costs, matching the lower bound up to a small constant for all values of ϵ.

Comparison with Sajed and Sheffet [74]. DP-SE [74] is an ϵ-global DP version of the Successive
Elimination algorithm introduced for the regret minimisation setting, modified by Azize et al. [11]
into a ϵ-global and δ-correct BAI algorithm. Compared to DP-TT, DP-SE is less adaptive and
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Figure 1: Empirical stopping time τϵ,δ (mean±2 std) for δ = 10−2 with respect to the privacy budget
ϵ on Bernoulli instances (a) µ1 and (b) µ2. The vertical line separates the two privacy regimes.

not anytime, since it relies on uniform sampling within each phase and the phase length depends
explicitly on the risk δ. The high probability upper bound on the sample complexity scales as
O(
∑

a̸=a⋆(∆a min{ϵ,∆a})−1) with ∆a = µa⋆ − µa. This matches the lower bound when ϵ→ 0
(to a constant), but fails to recover the sample-complexity lower bound beyond this regime.

6 Experiments

The empirical performance of DP-TT with (η, β) = (1, 1/2) is compared to AdaP-TT [11],
AdaP-TT⋆ [12], and DP-SE [74] on different Bernoulli instances for varying privacy budget.
The first instance has means µ1 = (0.95, 0.9, 0.9, 0.9, 0.5) and the second instance has means
µ2 = (0.75, 0.7, 0.7, 0.7, 0.7). As a benchmark, we also compare to the non-private EB-TCI-β
algorithm with β = 1/2. For δ = 10−2, we run each algorithm 1000 times, and plot the averaged
empirical stopping times in Figure 1. Additional experiments are available in Appendix J.

Figure 1 shows that DP-TT outperforms all the other δ-correct and ϵ-global DP BAI algorithms, for
different values of ϵ and in all the instances tested. The empirical performance of DP-TT demonstrates
two regimes. A high-privacy regime, where the stopping time depends on the privacy budget ϵ, and
a low privacy regime, where the performance of DP-TT is independent of ϵ, and requires twice the
number of samples used by the non-private EB-TCI-β.

7 Conclusion

Motivated by the privacy requirements of sensitive applications of BAI, we address the problem of
fixed-confidence BAI under ϵ-global DP. We narrow the gap between the lower and upper bounds on
the expected sample complexity to a multiplicative constant smaller than 8, for all ϵ values. Our novel
lower bound incorporates dϵ an information-theoretic quantity smoothly balancing KL divergence
and TV distance, scaled by ϵ. We design a private, arm-dependent geometric grid estimator without
forgetting and a GLR stopping rule based on the dϵ-transportation costs, whose correctness requires
novel concentration results for Laplace and mixed distributions. Finally, we proposed a Top Two
sampling rule that achieves an asymptotic upper bound matching our lower bound to a small constant.

We detailed research directions to further reduce the constant gap between the lower and upper bounds,
by improving both the calibration of the stopping threshold and the analysis of the sampling rule.
The most exciting direction for future work is to extend our results to other classes of distributions
(e.g., Gaussian or bounded distributions), structured settings (e.g., linear or unimodal), or other
identification problems (e.g., approximate BAI or Good Arm Identification). Another interesting
research direction is to extend the proposed technique to other variants of pure DP (e.g., (ϵ, δ)-DP or
Rényi DP [67]) or other trust models (e.g., shuffle DP [26, 39]).
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A Outline

The appendices are organized as follows:

• Notation are summarized in Appendix B.

• A detailed related work and a discussion on the limitations of Theorem 6 are given in
Appendix C.

• The lower bound on the expected sample complexity under ϵ-global DP (Theorem 2) is
proven in Appendix D.

• The proof of Lemma 4 is given in Appendix E.

• The proof of our concentration results are detailed in Appendix F. In particular, this includes
the proof of Theorem 5.

• Appendix G gathers key properties on the (resp. modified) divergence d±ϵ (resp. d̃±ϵ ), the
(resp. modified) transportation costs Wϵ,a,b (resp. W̃ϵ,a,b) and (resp. β-)characteristic times
T ⋆
ϵ (ν) (resp. T ⋆

ϵ,β(ν)) and their (resp. β-)optimal allocation w⋆
ϵ (ν) (resp. w⋆

ϵ,β(ν)). In
particular, this includes the proof of Theorem 3 based on Lemmas 42 and 46.

• The proof of the upper bound on the asymptotic expected sample complexity of DP-TT
(Theorem 6) is given in Appendix H.

• In Appendix I, we propose variants of algorithms to tackle ϵ-global DP BAI. We aim at
providing several choices for the interested practitioners.

• Implementation details and additional experiments are presented in Appendix J.

Table 1: Notation for the setting.

Notation Type Description

K N Number of arms
F ⊆ P([0, 1]) Class of Bernoulli distributions
νa F Bernoulli distribution of arm a ∈ [K]
ν FK Vector of Bernoulli distributions, ν := (νa)a∈[K]

µa (0, 1) Mean of arm a ∈ [K]
µ (0, 1)K Vector of means, µ := (µa)a∈[K]

a⋆(µ), a⋆(ν) ⊆ [K] Set of best arms, a⋆(ν) = a⋆(µ) := argmaxa∈[K] µa

a⋆ [K] Unique best arm, i.e., a⋆(µ) = {a⋆}
ϵ R⋆

+ Privacy budget for ϵ-global DP
δ (0, 1) Risk for δ-correctness

Alt(ν) ⊆ FK Alternative instances with different best arms

B Notation

We recall some commonly used notation: the set of integers [n] := {1, · · · , n}, the comple-
ment X∁ and interior X̊ of a set X , the indicator function 1 (X) of an event, the probabil-
ity Pνπ and the expectation Eνπ taken over the randomness of the observations from ν and
the algorithm π, Landau’s notation o, O, Ω and Θ, the (K − 1)-dimensional probability sim-
plex △K :=

{
w ∈ RK

+ | w ≥ 0,
∑

i∈[K] wi = 1
}

. The functions [x]10 := max{0,min{1, x}},
kη(x) := 1 + log1+η x, W−1 in Lemma 51, h in Eq. (31), r in Eq. (33), ζ is the Riemann ζ

function. Moreover, we recall the definitions: d±ϵ in Eq. (3), dϵ in Eq. (2), d̃±ϵ in Eq. (32), W±
ϵ,a,b

in Eq. (4), W̃±
ϵ,a,b in Eq. (34), (T ⋆

ϵ (ν), T
⋆
ϵ,β(ν), w

⋆
ϵ (ν), w

⋆
ϵ,β(ν)) in Eq.35. While Table 1 gathers

problem-specific notation, Table 2 groups notation for the algorithms.
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Table 2: Notation for the algorithm.

Notation Type Description

Bn [K] (EB) Leader at time n
Cn [K] (TC) Challenger at time n
an [K] Arm sampled at time n

Xn,an
{0, 1} Sample observed at the end of time n, i.e. Xn,an

∼ νan

Ykn,a,a R Noisy perturbation drawn at the beginning of phase kn,a
for arm a, i.e. Ykn,a,a ∼ Lap(1/ϵ)

Fn History before time n
ãn [K] Arm recommended before time n
τϵ,δ N Sample complexity (stopping time)

c(n, ϵ, δ) N× R⋆
+ × (0, 1)→ R⋆

+ Stopping threshold function
c1(n, δ) N× (0, 1)→ R⋆

+ Stopping threshold function
c2(n, ϵ) N× R⋆

+ → R⋆
+ Approximation threshold function

Nn,a N Number of pulls of arm a before time n
kn,a N Current phase of arm a at time n
Tk(a) N Time n where the arm a changes to phase k
S̃k,a R Private sum of observations for arm a at phase k
Ñn,a N Number of pulls of arm a at the beginning of phase kn,a
µ̃n,a R Private estimator of the empirical mean of arm a

at the beginning of phase kn,a
Ln,a N Counts of Bt = a before time n
Na

n,a N Counts of (Bt, at) = (a, a) before time n
β (0, 1) Fixed proportion

C Related Work and Limitations

We provide a more detailed literature review in Appendix C.1, and discuss limitations of Theorem 6
in Appendix C.2.

C.1 Related Work

Structured Bandits. While we consider unstructured bandits [6], numerous structural assumptions
have been studied: linear bandits [77], generalized linear bandits [35] such as logistic bandits
[53], combinatorial bandits [23], sparse bandits [46], spectral bandits [57], unimodal bandits [28],
Lipschitz [65], partial monitoring [3], etc. Coping for the structural assumption while preserving
ϵ-global DP is an interesting direction for future works.

Pure Exploration Problems. While we consider only BAI [33], other pure exploration problems
have been studied in the literature: ϵ-BAI [66], thresholding bandits [19], Top-k identification [56],
Pareto set identification [7], best partition identification [21], etc. Extending our ϵ-global DP results
to answer these identification problems is an interesting research direction.

Performance Metrics. In pure exploration problems, the two major theoretical frameworks are the
fixed-confidence setting [34, 47, 38], which is the focus of this paper, and the fixed-budget setting [4,
36]. In the fixed-budget setting, the objective is to minimize the probability of misidentifying a correct
answer with a fixed number of samples T . Recent works have also considered the anytime setting,
in which the agent aims at achieving a low probability of error at any deterministic time [88, 52].
Extending our findings to support ϵ-global DP in the fixed-budget or the anytime setting is an
interesting direction for future works, see e.g., Chen et al. [24].

DP in bandits. DP has been studied for multi-armed bandits under different bandit settings: finite-
armed stochastic [68, 74, 89, 44, 9, 43, 10, 85, 45], adversarial [80, 1, 82], linear [41, 60, 10],
contextual linear [76, 69, 89, 10], and kernel bandits [70], among others. Most of these works were
for regret minimisation, but the problem has also been explored for best-arm identification, with fixed
confidence [11, 12] and fixed budget [24]. The problem has also been studied under three different
DP trust models: (a) global DP where the users trust the centralised decision maker [68, 76, 74, 9, 43],
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(b) local DP where each user deploys a local perturbation mechanism to send a “noisy” version of
the rewards to the policy [15, 89, 40], and (c) shuffle DP where users still feed their data to a local
perturbation, but now they trust an intermediary to apply a uniformly random permutation on all
users’ data before sending to the central servers [79, 37, 27].

In the first papers on DP for bandits, the tree-based mechanism [32, 20] was used to compute the
sum of rewards privately. However, this mechanism was proven to be sub-optimal, matching the
lower bounds up to logarithmic factors. Then, forgetting was first proposed by [74] to get rid of
the tree-based mechanism, then adapted to UCB in [44, 9]. Finally, if the KL is the divergence that
controls the complexity of bandits without privacy [58, 38], then Azize and Basu [9] were the first to
show that the TV controls the complexity of private bandits, in the high privacy regime.

In this paper, we focus on ϵ-pure DP, under a global trust model, in stochastic finite-armed bandits,
for best arm identification under fixed confidence.

Gap in the literature. This problem setting is first studied by Azize et al. [11], who proposed
the first problem-dependent sample complexity lower bound, and introduced AdaP-TT, an ϵ-global
DP version of the Top Algorithm. However, the sample complexity upper bound of AdaP-TT only
matches the lower bound in the high privacy regime ϵ→ 0, and for instances where the means have
similar order (see Condition 1 in [11] in the discussion after Theorem 5 in [11]).

Azize et al. [12] proposes AdaP-TT⋆, an improved version of AdaP-TT. The improvement is achieved
by using a transport inspired by the sample complexity lower bound from [11]. Using the new
transport, AdaP-TT⋆ gets rid of Condition 1 needed by AdaP-TT, and achieves the high privacy lower
bound for all instances up to a multiplicative factor 48.

However, both AdaP-TT and AdaP-TT⋆ do not match the lower bound, beyond the high privacy
regime, i.e. for both the low privacy regime and transitional regimes.

C.2 Limitations of Theorem 6

Using adaptive targets βn(Bn, Cn) in DP-TT could replace T ⋆
ϵ,β(ν) by T ⋆

ϵ (ν). While we propose
two adaptive choices of target based on IDS [86] or BOLD [14] (Appendix I), we leave their analysis
for future work. The assumption that the means are distinct is used to prove sufficient exploration; it
can be removed by using forced exploration or a fine-grained analysis [49, 52]. While it improves the
asymptotic upper bound, choosing η too close to 0 negatively impacts the performance of DP-TT,
due to the dependency in O(1/ log(1 + η)) of the stopping threshold. The suboptimal scaling in
2 log(1/δ) of the stopping threshold yields the factor 2.

D Lower Bound

LetM : Xn → O be an ϵ-DP mechanism. For D ∈ Xn an input dataset, we denote byMD the
distribution over outputs, when the input is D, andMD(E) the probability of observing output E
when the input is D.

Let P and Q be two data-generating distributions over Xn. We denote by MP,M the marginal over
outputs of the mechanismM when the input dataset is generated through P, i.e.

MP,M(A) :=

∫
D∈Xn

MD (A) dP (D) , (9)

for any event A in the output space. We define similarly MQ,M the marginal over outputs of the
mechanismM when the input dataset is generated through Q.

The main question is to control the divergence KL (MP,M ∥MQ,M) when the mechanismM satisfies
DP. In general, for any mechanismM, the data-processing inequality provides the following bound

KL (MP,M ∥MQ,M) ≤ KL (P ∥ Q) . (10)

Now, for ϵ-DP mechanisms, we want to translate the DP constraint to a tight bound on the divergence
KL (MP,M ∥MQ,M). To do so, let L be any other distribution on Xn. Let CP,L be a coupling of
(P,L), i.e., the marginals of CP,L are P and L. We can now rewrite our the marginals using the
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definition of couplings. For MP,M, we have

MP,M(A) :=

∫
D∈Xn

MD (A) dP (D) =

∫
D,D′∈Xn

MD (A) dCP,L (D,D
′) ,

and for Q we get

MQ,M(A) :=

∫
D′∈Xn

MD′ (A) dQ (D′) =

∫
D′∈Xn

MD′ (A)
dQ (D′)

dL (D′)
dL (D′)

=

∫
D,D′∈Xn

MD′ (A)
dQ (D′)

dL (D′)
dCP,L (D,D

′) .

Using the data-processing inequality, we get

KL (MP,M ∥MQ,M) ≤
∫
D,D′∈Xn

∫
o∈O

log

 MD (o)

MD′ (o) dQ(D′)
dL(D′)

MD (o) dodCP,L (D,D
′)

=

∫
D,D′∈Xn

(
KL (MD ∥MD′) + log

(
dL (D′)

dQ (D′)

))
dCP,L (D,D

′)

= ED,D′∼CP,L [KL (MD ∥MD′)] + KL (L ∥ Q) .

Since this is true for any coupling CP,L and any distribution L, we get the final bound

KL (MP,M ∥MQ,M) ≤ inf
L∈P(Xn)

{
inf

CP,L∈C(P,L)

{
ED,D′∼CP,L [KL (MD ∥MD′)]

}
+KL (L ∥ Q)

}
where P(Xn) is the set of all distributions over Xn and C (P,L) is the set of all couplings between P
and L. Using that theM is ϵ-DP, we can use the simple bound KL (MD ∥MD′) ≤ ϵdHam(D,D

′)
which gives

KL (MP,M ∥MQ,M) ≤ inf
L∈P(Xn)

{
ϵ inf
CP,L∈C(P,L)

{
ED,D′∼CP,L [dHam(D,D

′)]
}
+KL (L ∥ Q)

}
.

(11)

D.1 Product Distributions

Suppose that P :=
⊗n

i=1 Pi and Q :=
⊗n

i=1 Qi are product distributions. Consider the subset of
product distributions L :=

⊗n
i=1 Li, and the maximal coupling C∞(P,L) :=

∏n
i=1 C∞(Pi,Li).

Plugging these in Equation (11), we get

KL (MP,M ∥MQ,M) ≤ inf
L1,...,Ln

{
ϵ

n∑
i=1

EDi,D′
i∼C∞(Pi,Li) [1 {Di ̸= D′

i}] +
n∑

i=1

KL (Li ∥ Qi)

}

= inf
L1,...,Ln

{
n∑

i=1

(ϵTV (Pi ∥ Li) + KL (Li ∥ Qi))

}

=

n∑
i=1

inf
Li∈P(X )

{ϵTV (Pi ∥ Li) + KL (Li ∥ Qi)} =
n∑

i=1

dϵ(Pi,Qi) ,

where
dϵ(P,Q) := inf

L∈P(X )
{ϵTV (P ∥ L) + KL (L ∥ Q)} . (12)

D.2 Sequential KL decomposition for bandits under DP

In this section, we adapt the techniques from product distributions to bandit marginals.

First, we introduce the bandit canonical model.

The bandit canonical model. A stochastic bandit (or environment) is a collection of distributions ν ≜
(Pa : a ∈ [K]), where [K] is the set of available K actions. The learner and the environment interact
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Algorithm 2 Bandit interaction between a policy and an environment

1: Input: A policy π and an environment ν ≜ (Pa : a ∈ [K])
2: for t = 1, . . . do
3: The policy samples an action at ∼ πt(. | a1, r1, . . . , at−1, rt−1)
4: The policy observes a reward rt ∼ Pat

5: end for
6: if Regret minimisation then
7: The interaction ends after T steps
8: else FC-BAI
9: The policy decides to stop the interaction at step τϵ,δ and recomends the final guess â

10: end if

sequentially over T rounds. In each round t ∈ 1, . . . , T , the learner chooses an action at ∈ [K],
which is fed to the environment. The environment then samples a reward rt ∈ R from distribution
Pat and reveals rt to the learner. The interaction between the learner (or policy) and environment
induces a probability measure on the sequence of outcomes HT ≜ (a1, r1, a2, r2, . . . , aT , rT ). In
the following, we construct the probability space that carries these random variables.

Let T ∈ N⋆ be the horizon. Let ν = (Pa : a ∈ [K]) a bandit instance with K ∈ N⋆ finite arms,
and each Pa is a probability measure on (R,B(R)) with B being the Borel set. For each t ∈ [T ], let
Ωt = ([K]× R)t ⊂ R2t and Ft = B(Ωt). We first formalise the definition of a policy.
Definition 2 (The policy). A policy π is a sequence (πt)

T
t=1 , where πt is a probability kernel from

(Ωt,Ft) to ([K], 2[K]). Since [K] is discrete, we adopt the convention that for a ∈ [K],

πt(a | a1, r1, . . . , at−1, rt−1) = πt({a} | a1, r1, . . . , at−1, rt−1)

We want to define a probability measure on (ΩT ,FT ) that respects our understanding of the sequential
nature of the interaction between the learner and a stationary stochastic bandit. Specifically, the
sequence of outcomes should satisfy the following two assumptions:

(a) The conditional distribution of action at given a1, r1, . . . , at−1, rt−1 is π(at | Ht−1) almost
surely.

(b) The conditional distribution of reward rt given a1, r1, . . . , at−1, rt−1, at is Pat
almost

surely.

The probability measure on (ΩT ,FT ) depends on both the environment ν and the policy π. To
construct this probability, let λ be a σ-finite measure on (R,B(R)) for which Pa is absolutely
continuous with respect to λ for all a ∈ [K]. Let pa = dPa/dλ be the Radon–Nikodym derivative of
Pa with respect to λ. Letting ρ be the counting measure with ρ(B) = |B|, the density pνπ : ΩT → R
can now be defined with respect to the product measure (ρ× λ)T by

pνπ(a1, r1, . . . , aT , rT ) ≜
T∏

t=1

πt(at | a1, r1, . . . , at−1, rt−1)pat
(rt)

and Pνπ is defined as

Pνπ(B) ≜
∫
B

pνπ(ω)(ρ× λ)T ( dω) forallB ∈ FT

Hence (ΩT ,FT ,Pνπ) is a probability space over histories induced by the interaction between π and
ν. We define also a marginal distribution over the sequence of actions by

mνπ(a1, . . . , aT ) ≜
∫
r1,...,rT

pνπ(a1, r1, . . . , aT , rT ) dr1 . . . drT ,

and forallC ∈ P([K]T ),

Mνπ(C) ≜
∑

(a1,...,aT )∈C

mνπ(a1, a2, . . . , aT ).
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Finally, ([K]T ,P([K]T ),Mνπ) is a probability space over sequence of actions produced when π
interacts with ν for T time-steps.

The KL upper bound. Now, we adapt the techniques for the bandit marginals. Let ν = {Pa, a ∈
[K]} and ν′ = {P ′

a, a ∈ [K]} be two bandit instances in FK . We recall that, when the policy π
interacts with the bandit instance ν, it induces a marginal distribution Mνπ over the sequence of
actions. We define Mν′π similarly.

The goal is to upper bound the quantity KL (Mνπ ∥Mν′π). The marginals Mνπ and Mνπ in the
sequential setting "look like" marginals generated by "product distributions". However, the hardness
of the sequential setting lies in the fact that the data-generating distributions depend on the stochastic
sequential actions chosen. Thus, the results of the previous section cannot be directly applied. To
adapt the proof ideas of the previous section to the bandit case, we introduce the idea of a coupled
bandit instance.

Let ν′′ = {P ′′
a : a ∈ [K]} be any “intermediary" bandit instance from FK . Define ca as the maximal

coupling between Pa and P ′′
a , i.e., ca := C∞(Pa, P

′′
a ). Fix a policy π = {πt}Tt=1.

Here, we build a coupled environment γ of ν and ν′′. The policy π interacts with the coupled
environment γ up to a given time horizon T to produce an augmented history {(at, rt, r′′t )}Tt=1. The
iterative steps of this interaction process are:

1. The probability of choosing an action at = a at time t is dictated only by the policy πt and
a1, r1, a2, r2, . . . , at−1, rt−1, i.e.the policy ignores {r′′s }t−1

s=1.
2. The distribution of rewards (rt, r′′t ) is cat

and is conditionally independent of the previous
observed history {(as, rs, r′′s )}t−1

t=1.

This interaction is similar to the interaction process of policy π with the first bandit instance ν, with
the addition of sampling an extra r′′t from the coupling of Pat

and P ′′
at

.

The distribution of the augmented history induced by the interaction of π and the coupled environment
can be defined as

pγπ(a1, r1, r
′′
1 . . . , aT , rT , r

′′
T ) :=

T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)cat(rt, r
′′
t ) .

To simplify the notation, let a := (a1, . . . , aT ), r := (r1, . . . , rT ), r’ := (r′1, . . . , r
′
T ) and

r” := (r′1, . . . , r
′
T ). Also, let ca(r, r”) :=

∏T
t=1 cat(rt, r

′′
t ) and π(a | r) :=

∏T
t=1 πt(at |

a1, r1, . . . , at−1, rt−1). We put h := (a, r, r”). With the new notation

pγπ(a, r, r”) := π(a | r)ca(r, r”) .
By the definition of the couplings, we have that mνπ is the marginal of pγπ when integrated over
(r, r”), i.e.,

mνπ(a) =
∫

r,r”
pγπ(a, r, r”) dr dr” .

Now, we define a new joint distribution qγπ , inspired by the techniques used for product distributions:

qγπ(a, r, r”) := π(a | r”)
p′a(r”)
p′′a (r”)

ca(r, r”) ,

where p′a(r”) :=
∏T

t=1 p
′
at
(r′′t ), and similarly, p′′a (r”) :=

∏T
t=1 p

′′
at
(r′′t ).

First, observe that it is indeed a valid joint distribution, i.e.∑
a

∫
r,r”

qγπ(a, r, r”) dr dr” =
∑

a

∫
r,r”

π(a | r”)
p′a(r”)
p′′a (r”)

ca(r, r”) dr dr”

=
∑

a

∫
r”
π(a | r”)p′a(r”) dr” =

∫
r”
p′a(r”) dr” = 1 ,

and that mν′π is the marginal of qγπ when integrated over (r, r”), i.e.,∫
r,r”

qγπ(a, r, r”) dr dr” =

∫
r,r”

π(a | r”)
p′a(r”)
p′′a (r”)

ca(r, r”) drdr”
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=

∫
r”
π(a | r”)p′a(r”) dr” = mν′π(a) .

Using the data-processing inequality, we get

KL (Mνπ ∥Mν′π) ≤ KL (pγπ ∥ qγπ) . (13)

Now, we compute

KL (pγπ ∥ qγπ)
(a)
= Eh:=(a,r,r”)∼pγπ

log
 π(a | r)ca(r, r”)
π(a | r”) p′

a(r”)
p′′

a (r”)ca(r, r”)


(b)

≤ Eh:=(a,r,r”)∼pγπ

[
ϵdHam(r, r") + log

(
p′′a (r”)
p′a(r”)

)]
(c)
=

T∑
t=1

Eh∼pγπ

[
ϵ1 {rt ̸= r′′t }+ log

(
p′′at

(r′′t )

p′at
(r′′t )

)]
(d)
=

T∑
t=1

Eh∼pγπ

[
Eh∼pγπ

[ϵ1 {rt ̸= r′′t }+ log

(
p′′at

(r′′t )

p′at
(r′′t )

)
| at]

]
(e)
=

T∑
t=1

Eh∼pγπ

[
ϵTV

(
pat

∥∥ p′′at

)
+KL

(
p′′at

∥∥ p′at

)]
(f)
= Eνπ

[
T∑

t=1

ϵTV
(
pat

∥∥ p′′at

)
+KL

(
p′′at

∥∥ p′at

)]
.

where:

(a) by the definition of the KL

(b) the group privacy property, applied to the ϵ-global DP policy, we have

π(a | r) ≤ eϵdHam(r,r"π(a | r")

(c) by the definition of dham

(d) by the towering property of conditional expectations

(e) given at, we have rt ∼ pat , r′t ∼ p′at
and r” ∼ p′′at

(f) by linearity of the expectation, and the fact that the expression inside the expectation only depends
on the actions at
Since this is true for any “intermediary" bandit instance ν′′ ∈ FK , we take ν′′⋆ to be the environment
where the infinimum of the dϵ(Pa, P

′
a) is attained for each arm a ∈ [K]. Specifically, let ν′′⋆ =

(p⋆a, a ∈ [K]) where
p⋆a = argmin

L∈F
{ϵTV (pa ∥ L) + KL (L ∥ p′a)}

Plugging ν′′⋆ gives

KL (Mνπ ∥Mν′π) ≤ Eνπ

[
T∑

t=1

dϵ(pat , p
′
at
)

]
(14)

Let Nt,a =
∑

s<t 1 {as = a} be the counts of arm a before step t. Then, we can rewrite the bound
as

KL (Mνπ ∥Mν′π) ≤
K∑

a=1

Eνπ[NT+1,a]dϵ(pa, p
′
a) , (15)

Stopping time version of the KL decomposition for BAI under DP. Let π be an ϵ-DP BAI strategy.
Let ν and λ be two bandit instances. Denote by Mνπ the marginal distribution of the output of the
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BAI strategy when π interacts with ν. By using Wald’s lemma in the proof technique seen before for
the canonical bandit setting under FC-BAI, we get that

KL (Mνπ ∥Mλπ) ≤ Eνπ

(τϵ,δ∑
t=1

dϵ(νat , λat)

)
=

K∑
a=1

Eνπ[Nτϵ,δ+1,a]dϵ(νa, λa) , (16)

where τ is the stopping time.

D.3 Sample Complexity Lower Bound Proof

Theorem 2 (Sample complexity lower bound for BAI under ϵ-DP). Let (ϵ, δ) ∈ R⋆
+ × (0, 1). For

any algorithm π that is δ-correct and ϵ-global DP on FK ,

Eνπ[τϵ,δ] ≥ T ⋆
ϵ (ν) log(1/(3δ))

for all ν ∈ FK with unique best arm. The inverse of the characteristic time T ⋆
ϵ (ν) is defined as

T ⋆
ϵ (ν)

−1 := sup
w∈△K

inf
κ∈Alt(ν)

K∑
a=1

wadϵ(νa, κa) , (17)

dϵ(νa, κa) := inf
φa∈F

{KL (φa ∥ κa) + ϵ · TV (νa ∥ φa)} . (18)

Proof. Let π be an ϵ-global DP δ-correct BAI strategy. Let ν be a bandit instance and λ ∈ Alt(ν).

Let Mνπ denote the probability distribution of the output when the BAI strategy π interacts with ν.
For any alternative instance λ ∈ Alt(ν), the data-processing inequality gives that

KL (Mνπ ∥Mλ,π) ≥ kl (Mνπ (ã = a⋆(ν)) ,Mλ,π (ã = a⋆(ν))) ≥ kl(1− δ, δ) , (19)

where the second inequality is because π is δ-correct, i.e., Mνπ (ã = a⋆(ν)) ≥ 1 − δ and
Mλ,π (ã = a⋆(ν)) ≤ δ, and the monotonicity of the kl. Now, using the stopping time version
of the KL decomposition for FC-BAI, we get that

kl(1− δ, δ) ≤ KL (Mν,π ∥Mλ,π) ≤
K∑

a=1

Eνπ[Nτϵ,δ+1,a]dϵ(νa, λa) .

Since this is true for all λ ∈ Alt(ν), we get

kl(1− δ, δ) ≤ inf
λ∈Alt(ν)

K∑
a=1

Eνπ[Nτϵ,δ+1,a]dϵ(νa, λa)

(a)
= E[τϵ,δ] inf

λ∈Alt(ν)

K∑
a=1

E
[
Nτϵ,δ+1,a

]
E[τϵ,δ]

dϵ(νa, λa)

(b)

≤ E[τϵ,δ]

(
sup

ω∈△K

inf
λ∈Alt(ν)

K∑
a=1

ωadϵ(νa, λa)

)
.

(a) is due to the fact that E[τϵ,δ] does not depend on λ. (b) is obtained by noting that the vector

(ωa)a∈[K] ≜

(
Eν,π[Nτϵ,δ+1,a]

Eν,π [τϵ,δ]

)
a∈[K]

belongs to the simplex △K . The theorem follows by noting

that for δ ∈ (0, 1), kl(1− δ, δ) ≥ log(1/3δ).

E Privacy Analysis

In this section, we prove Lemma 4. First, we justify using a geometric grid for updating the means
(Lemma 7). Second, we obtain Lemma 4 as a combination of Lemma 7 and the post-processing
property of DP (Proposition 1).
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E.1 Releasing partial sums privately

First, the following lemma justifies the use of geometric grids, and provides that the price of getting
rid of forgetting is summing the Laplace noise from previous phases.
Lemma 7 (Privacy of our grid-based mean estimator). Let T ∈ {1, . . . }, ℓ < T and t1, . . . tℓ, tℓ+1

be in [1, T ] such that 1 = t1 < · · · < tℓ < tℓ+1 − 1 = T .

LetM be the following mechanism:
x1
x2
...
xT

 M→


(x1 + · · ·+ xt2−1) + (Y1)

(x1 + · · ·+ xt3−1) + (Y1 + Y2)
...

(x1 + · · ·+ xT ) + (Y1 + Y2 + · · ·+ Yℓ−1)


where (Y1, . . . , Yℓ) ∼iid Lap(1/ϵ).

Then, for any {x1, . . . , xT } ∈ [0, 1]T ,M is ϵ-DP.

Proof. First, consider the following mechanism, that only computes the partial sums:
x1
x2
...
xT

→


x1 + · · ·+ xt2−1

xt2 + · · ·+ xt3−1

...
xtℓ−1

+ · · ·+ xT

 .

Because xt ∈ [0, 1], the sensitivity of each partial sum is 1. Since each partial sum is computed
over non-overlapping sequences, combining the Laplace mechanism (Theorem 1) with the parallel
composition property of DP (Lemma 3) gives that the following mechanism:


x1
x2
...
xT

 P→


x1 + · · ·+ xt2−1 + Y1
xt2 + · · ·+ xt3−1 + Y2

...
xtℓ−1

+ · · ·+ xT + Yℓ−1


is ϵ-DP, where (Y1, . . . , Yℓ−1) ∼iid Lap(1/ϵ).

Consider the post-processing function f : (x1, . . . xℓ−1)→ (x1, x1+x2, . . . , x1+x2+ · · ·+xℓ−1).
Then, we have that thatM = f ◦ P . So, by the post-processing property of DP,M is ϵ-DP.

Remark 1. Mechanism P , defined in the proof of Lemma 7, is the fundamental mechanism used by
all previous bandit algorithms [74, 9, 43, 12] to justify the use of forgetting. Our mechanismM is
just summing over the partial sums computed on each phase, and thus the price of having sums of
xi that start from the beginning (i.e. do not forget) is that we have to sum now the noise from all
previous phases too.

E.2 Proof of Lemma 4

We are now ready to prove Lemma 4, i.e. that any BAI algorithm based solely on using GPEη(ϵ) to
access observations is ϵ-global DP on [0, 1].

Proof. Let π be a BAI algorithm using only GPEη(ϵ) to access observations. Let R = {x1, . . . }
and R′ = {x′1, . . . } be two neighbouring sequences of private observations, i.e. there exists a
t⋆ ∈ {1, . . . } such that xt = x′t for all t ̸= t⋆, i.e. that R and R′ only differ at t⋆.

Fix a stopping time, recommendation and sampled actions (T +1, ã, (a1, . . . , aT )), we want to show
that

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] ≤ eϵ Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))] .

Step 1: Probability decompositions: First, let us denote by τ , Ã andA1, . . . , Aτ the random variables
of stopping, recommendation and sampled actions, when π interacts with R. Similarly, let τ ′, Ã′
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and A′
1, . . . , A

′
τ the random variables of stopping, recommendation and sampled actions, when π

interacts with R′.

We have

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))] = Pr[τ = T + 1, Ã = ã, A1 = a1, . . . , AT = aT ]

Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))] = Pr[τ ′ = T + 1, Ã′ = ã, A′
1 = a1, . . . , A

′
T = aT ]

Since for all t < t⋆, xt = x′t, the policy samples the same actions, up to step t⋆, i.e.

Pr[A1 = a1, . . . , At⋆ = at⋆ ] = Pr[A′
1 = a1, . . . , A

′
t⋆ = at⋆ ]

And thus

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))]

Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))]

=
Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ ]

Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A′

T = aT | A′
1 = a1, . . . , A′

t⋆ = at⋆ ]

Let us denote by t1, . . . , tℓ the time step corresponding to the beginning of the phases when π interacts
with R, and t′1, . . . , t

′
ℓ′ the the time step corresponding to the beginning of the phases π interacts with

r’.

Also, let tk⋆ be the beginning of the phase for which t⋆ belongs in R phases. Similarly, let t′k′
⋆

be the
beginning of the phase for which t⋆ belongs in R′ phases.

Since the actions a1, . . . , aT are fixed, and rt = r′t for t < t⋆, t⋆ falls in the same phase under both
R and R′. Thus, tk⋆

= t′k′
⋆

and k⋆ = k′⋆.

Step 2: Using the structure of GPEη(ϵ)

Let S̃p
k⋆ =

∑tk⋆+1−1
s=tk⋆ xs + Yk⋆

be the noisy partial sum of observations collected at phase k⋆ for
r, where Yk⋆ ∼ Lap(1/ϵ). Similarly, let S̃′p

k⋆ =
∑tk⋆+1−1

s=tk⋆ x′s + Y ′
k⋆

be the noisy partial sum of
observations collected at phase k⋆ for r’, where Y ′

k⋆ ∼ Lap(1/ϵ). Using the structure of GPEη(ϵ),
we have that:

(a) If the value of the noisy partial sums at phase k⋆ is exactly the same between the neighbouring
R and R′, then the BAI algorithm π will sample the same sequence of actions from step t⋆ onward,
recommend the same final guess and stop at the same time, with the same probability under R and
R′. Thus, for any s ∈ R:

Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ , S̃
p
k⋆ = s]

= Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A

′
T = aT | A′

1 = a1, . . . , A
′
t⋆ = at⋆ , S̃′p

k⋆ = s]
(20)

This is due to the fact that, in GPEη(ϵ), the reward at step t⋆ only affects the statistic S̃p
k⋆ , and nothing

else.

(b) Since rewards are [0, 1], using the Laplace mechanism, we have that

Pr[S̃p
k⋆ = s | A1 = a1, . . . , At⋆ = at⋆ ] ≤ eϵPr(S̃′p

k⋆ = s | A1 = a1, . . . , A
′
t⋆ = at⋆) . (21)

Step 3: Combining Eq. 20 and Eq. 21, aka post-processing:

We have

Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ ]

=

∫
s∈R

Pr[τ = T + 1, Ã = ã, At⋆+1 = at⋆+1, . . . , AT = aT | A1 = a1, . . . , At⋆ = at⋆ , S̃
p
k⋆ = s]

Pr[S̃p
k⋆ = s | A1 = a1, . . . , At⋆ = at⋆ ]
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≤
∫
s∈R

eϵ Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A

′
T = aT

| A1 = a1, . . . , A
′
t⋆ = at⋆ , S̃′p

k⋆ = s]

Pr(S̃′p
k⋆ = s | A1 = a1, . . . , A

′
t⋆ = at⋆)

= eϵ Pr[τ ′ = T + 1, Ã′ = ã, A′
t⋆+1 = at⋆+1, . . . , A

′
T = aT | A′

1 = a1, . . . , A
′
t⋆ = at⋆ ] .

This concludes the proof:

Pr[π(R) = (T + 1, ã, (a1, . . . , aT ))]

Pr[π(R′) = (T + 1, ã, (a1, . . . , aT ))]
≤ eϵ .

E.3 Recalling the post-processing and composition properties of DP

Proposition 1 (Post-processing [30]). LetM be a mechanism and f be an arbitrary randomised
function defined onM’s output. IfM is ϵ-DP, then f ◦M is ϵ-DP.

The post-processing property ensures that any quantity constructed only from a private output is still
private, with the same privacy budget. This is a consequence of the data processing inequality.
Proposition 2 (Simple Composition). LetM1, . . . ,Mk be k mechanisms. We define the mechanism

G : D →
k⊗

i=1

Mi
D

as the k composition of the mechanismsM1, . . . ,Mk.

If eachMi is ϵi-DP, then G is
∑k

i=1 ϵi-DP.

Proposition 3 (Parallel Composition). LetM1, . . . ,Mk be k mechanisms, such that k < n, where
n is the size of the input dataset. Let t1, . . . tk, tk+1 be indexes in [1, n] such that 1 = t1 < · · · <
tk < tk+1 − 1 = n.
Let’s define the following mechanism

G : {x1, . . . , xn} →
k⊗

i=1

Mi
{xti

,...,xti+1−1}

G is the mechanism that we get by applying each Mi to the i-th partition of the input dataset
{x1, . . . , xn} according to the indexes t1 < · · · < tk < tk+1.

If eachMi is ϵ-DP, then G is ϵ-DP.

In parallel composition, the k mechanisms are applied to different “non-overlapping" parts of the
input dataset. If each mechanism is DP, then the parallel composition of the k mechanisms is DP, with
the same privacy budget. This property will be the basis for designing private bandit algorithms.

F Concentration Results

In Appendix F, we detail the proof of all our concentration results. In Appendix F.1, we start by
introducing a variant of GLR-based stopping rule using the modified transportation costs W̃ϵ,a,b

(see Appendix G.2.1 for details) which are defined based on the modified divergences d̃±ϵ (see
Appendix G.1.1 for details). The proof of Theorem 5 is given in Appendix F.2. In Appendix F.3, we
show tail bounds for a sum between independent Bernoulli and Laplace observations that feature the
product of the tail bounds of each process. We prove time-uniform and fixed-time tails concentration
for Laplace distribution in Appendix F.4, and recall existing results for Bernoulli in Appendix F.5.
In Appendix F.6, we provide tail bounds for a sum between independent Bernoulli and Laplace
observations that feature the modified divergence d̃ϵ defined in Eq. (32). In Appendix F.7, we give
geometric grid time uniform tails concentration for the reweighted modified divergence.
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F.1 Modified GLR Stopping Rule

The modified GLR stopping rule is defined as

τMGLR
ϵ,δ = inf

n | ∀a ̸= ãn, W̃ϵ,ãn,a(µ̃n, Ñn) >
∑

b∈{ãn,a}

c̃(kn,b, δ)

 with ãn ∈ argmax
a∈[K]

[µ̃n,a]
1
0 ,

(22)
where (µ̃n, Ñn) are the outputs of GPEη(ϵ). The modified transportation costs (W̃ϵ,a,b)(a,b)∈[K]2 are
defined in Eq. (34), i.e., for all (µ,w) ∈ RK × RK

+ and all (a, b) ∈ [K]2 such that a ̸= b,

W̃ϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈(0,1)

{
wad̃

−
ϵ (µa, u, r(wa)) + wbd̃

+
ϵ (µb, u, r(wb))

}
,

where r(x) := x
1+log1+η x is defined in Eq. (33) for all x ≥ 1. The modified divergence d̃±ϵ are

defined in Eq. (32), i.e., for all (λ, µ, r) ∈ R× (0, 1)× R⋆
+,

d̃−ϵ (λ, µ, r) := 1
(
µ < [λ]10

)
inf

z∈(µ,[λ]10)

{
kl(z, µ) +

1

r
h(rϵ(λ− z))

}
,

d̃+ϵ (λ, µ, r) := 1
(
µ > [λ]10

)
inf

z∈([λ]10,µ)

{
kl(z, µ) +

1

r
h(rϵ(z − λ))

}
,

where h(x) :=
√
1 + x2 − 1 + log

(
2
x2

(√
1 + x2 − 1

))
is defined in Eq. (31) for all x > 0.

Lemma 8 gives a stopping threshold under which the modified GLR stopping rule is δ-correct.
Lemma 8. Let δ ∈ (0, 1) and ϵ > 0. Let η > 0. Let s > 1 and ζ be the Riemann ζ function.
Let W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch of the Lambert
W function. It satisfies W−1(x) ≈ x + log x, see Lemma 51. Given any sampling rule using the
GPEη(ϵ), combining GPEη(ϵ) with the modified GLR stopping rule as in Eq. (22) with the stopping
threshold

c̃(k, δ) =W−1

(
log

(
Kζ(s)

δ

)
+ s log(k) + 3− log 2

)
− 3 + log 2 . (23)

yields a δ-correct and ϵ-global DP algorithm for Bernoulli instances with unique best arm.

Proof. Lemma 4 yields the ϵ-global DP. Let Eδ = Eδ,a⋆,+ ∩
⋂

a ̸=a⋆ Eδ,a,− with

Eδ,a⋆,+ =
{
∀n ∈ N, Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , Ñn,a⋆/kn,a⋆) ≤ c̃(kn,a⋆ , δ)

}
,

∀a ̸= a⋆, Eδ,a,− =
{
∀n ∈ N, Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≤ c̃(kn,a, δ)

}
,

where (µ̃n, Ñn, kn) are given by GPEη(ϵ), c̃ as in Eq. (23) and d̃±ϵ as in Eq. (32).

Using Lemmas 19 and 20, we have Pνπ(E∁δ,a,−) ≤ δ/K for all a ̸= a⋆, and Pνπ(E∁δ,a⋆,+) ≤ δ/K.
By union bound over a ∈ [K], we obtain Pνπ(E∁δ ) ≤ δ.

Let τMGLR
ϵ,δ as in Eq. (22) and ãn ∈ argmaxa∈[K][µ̃n,a]

1
0. Then, we directly have that

Pνπ

(
τMGLR
ϵ,δ < +∞, ãτMGLR

ϵ,δ
̸= a⋆

)
≤ Pνπ

(
E∁δ
)
+ Pνπ

(
Eδ ∩ {τMGLR

ϵ,δ < +∞, ãτMGLR
ϵ,δ
̸= a⋆}

)
≤ δ + Pνπ

(
Eδ ∩ {τMGLR

ϵ,δ < +∞, ãτMGLR
ϵ,δ
̸= a⋆}

)
.

Under Eδ ∩ {τMGLR
ϵ,δ < +∞, ãτMGLR

ϵ,δ
̸= a⋆}, by definition of the stopping rule as in Eq. (7) and the

stopping threshold in Eq. (8), we obtain that there exists a ̸= a⋆ and n ∈ N such that [µ̃n,a]
1
0 >

[µ̃n,a⋆ ]10 and∑
b∈{a,a⋆}

c̃(kn,b, δ) < W̃ϵ,a,a⋆(µ̃n, Ñn)
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= inf
u∈(0,1)

{
Ñn,ad̃

−
ϵ (µ̃n,a, u, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , u, r(Ñn,a⋆))

}
= inf

(ua,ua⋆ )∈(0,1)2, ua≤ua⋆

{Ñn,ad̃
−
ϵ (µ̃n,a, ua, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , ua⋆ , r(Ñn,a⋆))}

≤ Ñn,ad̃
−
ϵ (µ̃n,a, µa, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆))

≤ Ñn,ad̃
−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , Ñn,a⋆/kn,a⋆) ≤

∑
b∈{a,a⋆}

c̃(kn,b, δ) ,

where we used the definition of W̃ϵ,a,a⋆ in Eq. (34) and Lemma 39 in the two equalities and µa⋆ > µa

in the following inequality. The second to last inequality uses that r(Ñn,a) ≤ Ñn,a/kn,a for all
a ∈ [K] by definition of (kn, Ñn), i.e., kn,a ≤ 1+log1+η Ñn,a ≤ kn,a+1, and that r 7→ d̃±ϵ (λ, u, r)
is non-decreasing, see Lemmas 30 and 31. The last inequality is obtained by the concentration event
Eδ. Since this yields a contradiction, we obtain Eδ ∩ {τMGLR

ϵ,δ < +∞, ãτMGLR
ϵ,δ

̸= a⋆} = ∅. This

concludes the proof, i.e., Pνπ

(
τMGLR
ϵ,δ < +∞, ãτMGLR

ϵ,δ
̸= a⋆

)
≤ δ.

F.2 Proof of Theorem 5

Lemma 4 yields the ϵ-global DP. The proof of δ-correctness is the same as the one of Lemma 8
detailed above. In particular, we use the same concentration event Eδ = Eδ,a⋆,+ ∩

⋂
a ̸=a⋆ Eδ,a,− that

satisfies Pνπ(E∁δ ) ≤ δ.

Under Eδ ∩ {τϵ,δ < +∞, ãτϵ,δ ̸= a⋆}, by definition of the GLR stopping rule as in Eq. (7)
and the stopping threshold in Eq. (8), we obtain that there exists a ̸= a⋆ and n ∈ N such that
[µ̃n,a]

1
0 > [µ̃n,a⋆ ]10,∑

b∈{a,a⋆}

(
c1(Ñn,b, δ) + c2(Ñn,b, ϵ)

)
=

∑
b∈{a,a⋆}

c(kn,b, ϵ, δ) < Wϵ,a,a⋆(µ̃n, Ñn) .

Then, we obtain

Wϵ,a,a⋆(µ̃n, Ñn) = inf
u∈[0,1]

{
Ñn,ad

−
ϵ (µ̃n,a, u) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , u)

}
= inf

(ua,ua⋆ )∈[0,1]2, ua≤ua⋆

{Ñn,ad
−
ϵ (µ̃n,a, ua) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , ua⋆)}

≤ Ñn,ad
−
ϵ (µ̃n,a, µa) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , µa⋆) ,

where we used the definition of Wϵ,a,a⋆ in Eq. (4) and Lemma 34 in the two equalities, and
(ua⋆ , ua) = (µa⋆ , µa) ∈ [0, 1]2 that satisfies ua⋆ > ua in the following inequality.

Using Lemma 38 and initialization yields min{r(Ñn,a⋆), r(Ñn,a)} > 0 by . When [µ̃n,a]
1
0 > µa

and µa⋆ > [µ̃n,a⋆ ]10, Lemma 29 yields

Ñn,a⋆(d+ϵ (µ̃n,a⋆ , µa⋆)− d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆))) ≤ kη(Ñn,a⋆)(log(1 + 2ϵ
Ñn,a⋆

kη(Ñn,a⋆)
) + 1)

Ñn,a(d
−
ϵ (µ̃n,a, µa)− d̃−ϵ (µ̃n,a, µa, r(Ñn,a))) ≤ kη(Ñn,a)

(
log

(
1 + 2ϵ

Ñn,a

kη(Ñn,a)

)
+ 1

)
,

where we used that (µa, µa⋆) ∈ (0, 1)2 and x/r(x) = 1+log1+η x = kη(x). When [µ̃n,a]
1
0 ≤ µa, we

have d−ϵ (µ̃n,a, µa) = 0 = d̃−ϵ (µ̃n,a, µa, r(Ñn,a)). When µa⋆ ≤ [µ̃n,a⋆ ]10, we have d+ϵ (µ̃n,a⋆ , µa⋆) =

0 = d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆)). In either case, the above inequalities are still valid since the left hand
side is null and the right hand side is positive. Therefore, we have

Ñn,ad
−
ϵ (µ̃n,a, µa) + Ñn,a⋆d+ϵ (µ̃n,a⋆ , µa⋆)

≤ Ñn,ad̃
−
ϵ (µ̃n,a, µa, r(Ñn,a)) + Ñn,a⋆ d̃+ϵ (µ̃n,a⋆ , µa⋆ , r(Ñn,a⋆)) +

∑
b∈{a,a⋆}

c2(Ñn,b, ϵ)
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≤
∑

b∈{a,a⋆}

c̃(kn,b, δ) +
∑

b∈{a,a⋆}

c2(Ñn,b, ϵ) ≤
∑

b∈{a,a⋆}

(
c1(Ñn,b, δ) + c2(Ñn,b, ϵ)

)
,

where the second inequality uses the proof of Lemma 8, and third leverages that

c̃(kn,a, δ) ≤W−1

(
log

(
Kζ(s)

δ

)
+ s log(kη(Ñn,a)) + 3− log 2

)
− 3 + log 2 ,

by using that W−1 is increasing (Lemma 51) and kn,a ≤ 1 + log1+η Ñn,a = kη(Ñn,a) for all
a ∈ [K], as well as r(x) = x/kη(x). Combining all the above inequalities, we have shown that∑
b∈{a,a⋆}

(c1(Ñn,b, δ) + c2(Ñn,b, ϵ)) < Wϵ,a,a⋆(µ̃n, Ñn) ≤
∑

b∈{a,a⋆}

(c1(Ñn,b, δ) + c2(Ñn,b, ϵ)) .

This yields a contradiction, hence we have Eδ ∩ {τϵ,δ < +∞, ãτϵ,δ ̸= a⋆} = ∅. This concludes the
proof, i.e., Pνπ

(
τϵ,δ < +∞, ãτϵ,δ ̸= a⋆

)
≤ δ.

F.3 Fixed Time Tails Bounds for a Convolution of Probability Distributions

We derive general upper and lower bounds on the upper and lower tails of the convolution (i.e., sum)
between two independent random variables (Lemma 9). We provide upper (Lemma 11) and lower
(Lemma 11) tail bounds for a sum (i.e., convolution) between independent Bernoulli and Laplace
i.i.d. observations for a fixed time. The bounds are expressed as a function of the infimum over a
bounded interval of a − 1

t log(·) transform of the product between the (upper or lower) tail bounds of
each process. Therefore, in Lemmas 11 and 11, we can plug any bounds on the (upper or lower) tail
concentration of each process. While those bounds are standard for Bernoulli distribution (Lemma 16
in Appendix F.5), we propose new bounds for Laplace distribution (Lemma 15 in Appendix F.4).

Sketch of Proof of Lemma 9 The main difficulty when studying the sum of two random variables
lies in the fact that it involves the integral of the convolution of their probability measures. In all
generality, it is difficult to upper bound such a quantity. The main idea behind our proof technique
is to split the event of interest into a partition of carefully chosen events. Then, on each of those
smaller events, we derive a "tight" upper bound on the integral of the convolution of their probability
measures. It is reasonable to wonder how one could choose those events such that the upper bound
is easier to obtain. When the event is defined as the intersection of two independent events, then
we obtain a straightforward upper bound by the product of their respective probablities. When the
event truly mixes the distributions, we need to use a smarter approach to control the integrated
function. First, we upper bound a sub-component of this function by a maximum of the product of
their respective probablities (on a small interval that is defined by the smaller event). Second, after
this upper bound, the integrated function coincides with the hazard function, whose integral is the
cumulative hazard function. To conclude the proof, it only remains to merge together the different
upper bounds.

To the best of our knownledge, the proof technique closest to ours is the one used to prove Lemma 64
in Jourdan et al. [50]. They control the probability that two random variables have an unexpected
empirical ranking as a function of the boundary crossing probabilities of each random variable.
While tackling a distinct problem, they adopt the same proof structure. They decompose the event
into carefully chosen events on which they can upper bound the integral of the convolution of their
probability distributions. The upper bounds are obtained similarly as ours, with fewer events to
consider.

Lemma 9 gives upper and lower bounds on the upper and lower tails of the sum of two independent
random variables. This result is of independent interest.

Lemma 9. Let θ and λ be two independent real random variables such that (i) θ has bounded support
included in [α, β] and mean µ ∈ (α, β) and (ii) λ has zero mean. Let

∀u ∈ [0, 1], ∀v ∈ (0, 1], p(u, v) := u(1− log(u) + log(v)) .

Then, for all x > 0, we have

P(θ + λ ≥ µ+ x) ≤ P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])
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+ p

(
sup

z∈(µ,min{β,µ+x})
{P(θ ∈ [z, β])P(λ ≥ µ+ x− z)} , P(θ ∈ [µ, β])P(λ ≥ 0)

)
,

P(θ + λ ≥ µ+ x) ≥ sup
z∈(µ,min{β,µ+x})

{P(θ ∈ [z, β])P(λ ≥ µ+ x− z)} ,

P(θ + λ ≤ µ− x) ≤ P(λ ≤ −x)P(θ ∈ [µ, β]) + P(λ ≥ 0)P(θ ∈ [α,max{α, µ− x}])

p

(
sup

z∈(max{α,µ−x},µ)
{P(θ ∈ [α, z])P(λ ≤ µ− x− z)} , P(θ ∈ [α, µ])P(λ ≤ 0)

)
,

P(θ + λ ≤ µ− x) ≥ sup
z∈(max{α,µ−x},µ)

{P(θ ∈ [α, z])P(λ ≤ µ− x− z)} .

Proof. I. Upper Bound on Upper Tail. We start by studying P(θ+λ ≥ µ+x) where x > 0. We can
suppose that there exists y1 ∈ (max{x+ µ− β, 0}, x) such that P(θ ≥ x+ µ− y1)P(λ ≥ y1) > 0.
Otherwise, the probability of {θ + λ ≥ µ+ x} is 0, and both bounds are 0 as well. Let y1 be such a
value, and

y3 ∈ [x, x+ µ) and y2 ∈ (min{x+ µ− β, 0}, 0] .
First, we note that − logP(θ ≥ x + µ − y1) and − logP(λ ≥ y1) are finite, since P(θ ≥ x + µ −
y1)P(λ ≥ y1) > 0 implies that min{P(θ ≥ x+ µ− y1),P(λ ≥ y1)} > 0. Second, we note that y2
only exists when x+ µ < β, i.e., (min{x+ µ− β, 0}, 0] ̸= ∅. In order to study the cases x+ µ < β
and x+ µ ≥ β simultaneously, we adopt the convention that the maximum of a positive quantity on
an empty set is defined as zero. Note that the situation x+ µ < β has more subcases.

We partition of the event {θ + λ ≥ µ+ x} into eight sets, namely

{θ + λ ≥ µ+ x, θ ∈ [α, β], λ ∈ R} = {λ ∈ (max{x+ µ− β, 0}, y1), θ ∈ [x+ µ− λ, β]}
∪ {θ ∈ [x+ µ− y1, β], λ ≥ y1}
∪ {θ ∈ (µ, x+ µ− y1), λ ≥ x+ µ− θ}
∪ {θ ∈ [x+ µ− y3, µ], λ ≥ x+ µ− θ}
∪ {θ ∈ [α, x+ µ− y3), λ ≥ x+ µ}
∪ {λ ∈ [y3, x+ µ), θ ∈ [x+ µ− λ, x+ µ− y3)}
∪ {λ ∈ [y2, 0], θ ∈ [x+ µ− λ, β]}
∪ {λ ∈ [x+ µ− θ, y2), θ ∈ [x+ µ− y2, β]} .

First, it is direct to see that

{λ ∈ [y2, 0], θ ∈ [x+ µ− λ, β]} ∪ {λ ∈ [x+ µ− θ, y2), θ ∈ [x+ µ− y2, β]}
⊆ {λ ≤ 0, θ ∈ [min{β, µ+ x}, β]} ,

{θ ∈ [x+ µ− y3, µ], λ ≥ x+ µ− θ} ∪ {θ ∈ [α, x+ µ− y3), λ ≥ x+ µ}
∪ {λ ∈ [y3, x+ µ), θ ∈ [x+ µ− λ, x+ µ− y3)} ⊆ {λ ≥ x, θ ∈ [α, µ]} .

By union bound, the probability of the union of those five events is upper bounded by the sum of the
probability of those two events, i.e., P(λ ≥ x, θ ∈ [α, µ]) + P(λ ≤ 0, θ ∈ [min{β, µ+ x}, β]).
A. Separate Conditions. Those two events and one of the three remaining do not require to control
(θ, λ) simultaneously, as they separate the conditions on (θ, λ). Thanks to the independence of
(θ, λ), the probability of those events can be simply upper bounded by the product of the respective
probability of those conditions. Therefore, we obtain

P(λ ≥ x, θ ∈ [α, µ]) + P(λ ≤ 0, θ ∈ [min{β, µ+ x}, β]) + P (θ ∈ [x+ µ− y1, β], λ ≥ y1)
= P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])
+ P(θ ∈ [x+ µ− y1, β])P(λ ≥ y1) .

B. Mixed Conditions. The two remaining events truly require to control (θ, λ) simultaneously,
i.e., consider their convolution. The proof idea is the following: (1) we integrate one integral to
obtain one survival function, (2) we make appear the other survival function artificially, (3) we upper
bound the product of their survival functions on the whole set and (4) we integrate the remaining
hazard function, whose integral is the cumulative hazard function. Let dG and dF be the probability
measures of θ and λ on R.
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For all s ∈ (max{x+ µ− β, 0}, y1), we have P(λ ≥ s) ≥ P(λ ≥ y1) > 0. Then, we obtain

P (λ ∈ (max{x+ µ− β, 0}, y1), θ ∈ [x+ µ− λ, β])

=

∫
s∈(max{x+µ−β,0},y1)

P(θ ∈ [x+ µ− s, β])dF (s)

=

∫
s∈(max{x+µ−β,0},y1)

P(λ ≥ s)P(θ ∈ [x+ µ− s, β]) 1

P(λ ≥ s)
dF (s)

≤ sup
s∈(max{x+µ−β,0},y1)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}
∫
s∈(max{x+µ−β,0},y1)

1

P(λ ≥ s)
dF (s)

≤ sup
s∈(max{x+µ−β,0},y1)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])} (− log(P(λ ≥ y1)) + log(P(λ ≥ 0))) ,

where we used that P(λ ≥ max{x+ µ− β, 0}) ≤ P(λ ≥ 0).

For all z ∈ (µ, x+ µ− y1), we have P(θ ∈ [z, β]) ≥ P(θ ∈ [x+ µ− y1, β]) > 0. Then, we obtain

P (θ ∈ (µ, x+ µ− y1), λ ≥ x+ µ− θ)

=

∫
z∈(µ,x+µ−y1)

P(λ ≥ x+ µ− z)dG(z)

=

∫
z∈(µ,x+µ−y1)

P(λ ≥ x+ µ− z)P(θ ∈ [z, β])
1

P(θ ∈ [z, β])
dG(z)

≤ sup
z∈(µ,x+µ−y1)

{P(λ ≥ x+ µ− z)P(θ ∈ [z, β])}
∫
z∈(µ,x+µ−y1)

1

P(θ ∈ [z, β])
dG(z)

≤ sup
s∈(y1,x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}

· (− log(P(θ ∈ [x+ µ− y1, β])) + log(P(θ ∈ [µ, β]))) .

C. Combining Results. Putting everything together, we have, for all y1 ∈ (max{x+ µ− β, 0}, x),

P (θ + λ ≥ µ+ x) ≤ P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])
+ P(θ ∈ [x+ µ− y1, β])P(λ ≥ y1)
+ sup

s∈(max{x+µ−β,0},y1)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])} (− log(P(λ ≥ y1)) + log(P(λ ≥ 0)))

+ sup
s∈(y1,x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])} (− log(P(θ ∈ [x+ µ− y1, β])) + log(P(θ ∈ [µ, β])))

≤ P(λ ≥ x)P(θ ∈ [α, µ]) + P(λ ≤ 0)P(θ ∈ [min{β, µ+ x}, β])
+ P(θ ∈ [x+ µ− y1, β])P(λ ≥ y1)
+ sup

s∈(max{x+µ−β,0},x)
{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}

· (− log(P(λ ≥ y1)P(θ ∈ [x+ µ− y1, β])) + log(P(θ ∈ [µ, β])P(λ ≥ 0))) ,

where the second inequality is obtained by extending the two suprema to (max{x+ µ− β, 0}, x),
which is possible since multiplied by a positive value, and factorizing them together. Taking

y⋆1 ∈ argmax
s∈(max{x+µ−β,0},x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}} ,

and the change of variable z = x+ µ− s, i.e.,

sup
s∈(max{x+µ−β,0},x)

{P(λ ≥ s)P(θ ∈ [x+ µ− s, β])}

= sup
z∈(µ,min{β,x+µ})

{P(θ ∈ [z, β])P(λ ≥ x+ µ− z)} ,

concludes the proof of the upper bound on the upper tail.

II. Lower Bound on Upper Tail. Let z ∈ (µ,min{β, µ+ x}). Then, we have directly that

{θ ∈ [z, β], λ ≥ µ+ x− z} ⊆ {θ + λ ≥ µ+ x} .
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Using independence, we obtain

P(θ ∈ [z, β])P(λ ≥ µ+ x− z) = P(θ ∈ [z, β], λ ≥ µ+ x− z) ≤ P (θ + λ ≥ µ+ x) .

Taking the supremum over z ∈ (µ,min{β, µ+ x}) on the left hand side concludes the proof of the
lower bound on the upper tail.

III. Upper/Lower Bound on Lower Tail. The third and forth inequalities are a direct consequence
of the first and second inequalities applied to the two independent real random variables −θ and −λ
since (1) −θ has bounded support included in [−β,−α] and mean −µ ∈ (−β,−α), and (2) −λ has
zero mean. Namely,

P(θ + λ ≤ µ− x) = P(−θ − λ ≥ −µ+ x) ,

P(λ ≤ −x)P(θ ∈ [µ, β]) = P(−λ ≥ x)P(−θ ∈ [−β,−µ]) ,
P(λ ≥ 0)P(θ ∈ [α,max{α, µ− x}]) = P(−λ ≤ 0)P(−θ ∈ [min{−α, x− µ},−α]) ,
P(θ ∈ [α, µ])P(λ ≤ 0) = P(−θ ∈ [−µ,−α])P(−λ ≥ 0) ,

sup
z∈(max{α,µ−x},µ)

{P(θ ∈ [α, z])P(λ ≤ µ− x− z)}

= sup
z̃∈(−µ,min{−α,−µ+x})

{P(−θ ∈ [z̃,−α])P(−λ ≥ −µ+ x− z̃)} ,

where we used the change of variable z̃ = −z.

Properties on the Rate Function Lemma 10 gathers properties on the rate function f in Lemmas 11
and 11.

Lemma 10. Let us define

∀x ≥ 0, f(x) := (x+ 3− log 2) exp(−x) . (24)

On R+, the function f is twice continuously differentiable, positive, decreasing and strictly convex. It
satisfies f(0) > 1, limx→+∞ f(x) = 0 and

f(x) ≤ δ ⇐⇒ x ≥W−1(log (1/δ) + 3− log 2)− 3 + log 2 ,

where W−1 is defined in Lemma 51.

Proof. Direct manipulation yields f(0) = 3− log 2 > 1, limx→+∞ f(x) = 0,

∀x ≥ 0, f ′(x) = −(x+2− log 2) exp(−x) < 0 and f ′′(x) = (x+1− log 2) exp(−x) > 0 .

Using that f(x) = e3−log 2 exp(−h(x+ 3− log 2)) where h(x) = x− log(x), Lemma 51 yields

f(x) ≤ δ ⇐⇒ h(x+ 3− log 2) ≥ log
(
e3−log 2/δ

)
⇐⇒ W−1(log (1/δ) + 3− log 2)− 3 + log 2 ≤ x .

Fixed Time Upper and Lower Tails Concentration Lemma 11 gives an upper and lower tails
bound for a sum between independent Bernoulli and Laplace i.i.d. observations for a fixed time.

Lemma 11. Let µ ∈ (0, 1) and ϵ > 0. Let Zt =
∑

s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d.
observations. Let St =

∑
s∈[nt]

Ys where Ys ∼ Lap(1/ϵ) are i.i.d. observations where (nt)t∈N be a
piece-wise constant increasing function from N to N. Let f as in Eq. (24). Then, for all t ∈ N and all
x > 0,

P(Zt + St ≥ t(x+ µ)) ≤ f
(
t inf
z∈(µ,min{1,x+µ})

{
−1

t
log (P(Zt ≥ tz)P(St ≥ t(x+ µ− z)))

})
P(Zt + St ≤ t(µ− x)) ≤ f

(
t inf
z∈(max{0,µ−x},µ)

{
−1

t
log (P(Zt ≤ tz)P(St ≤ t(µ− x− z)))

})
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Proof. Let t ∈ N and x > 0. Then, Zt and St are two independent real random variables such that
(1) Zt has bounded support included in [0, t] and mean tµ ∈ (0, t) and (ii) St has zero mean. By
symmetry of Lap(1/ϵ) around 0, the cumulative sum of nt observations (i.e., St) is also symmetric
around 0. However, Zt follows Bin(t, µ) which can be skewed. Therefore, we have

P(St ≥ 0) = 1/2 = P(St ≤ 0) and max{P(Zt ∈ [tµ, t]),P(Zt ∈ [0, tµ])} ≤ 1 ,

∀z ∈ [0, 1], P(Zt ∈ [tz, t]) = P(Zt ≥ tz) and P(Zt ∈ [0, tz]) = P(Zt ≤ tz) .

Using that z 7→ P(Zt ≥ tz) is decreasing on (µ,min{1, x+ µ}) and z 7→ P(St ≥ t(µ− x− z) is
increasing on (µ,min{1, x+ µ}), we obtain

max{P(Zt ≥ tmin{1, x+ µ}))P(St ≤ 0),P(St ≥ tx)P(Zt ≤ tµ)}
≤ sup

z∈(µ,min{1,x+µ})
{P(Zt ≥ tz)P(St ≥ t(x+ µ− z))} .

Let us define g(x) := x(3− log(2)− log(x)). Using Lemma 9 for (Zt, St) and considering tx > 0
and z ∈ (µ,min{β, µ+ x}) (i.e., tz ∈ (tµ, tmin{β, µ+ x})), we obtain

P(Zt + St ≥ t(x+ µ)) ≤ g

(
sup

z∈(µ,min{1,x+µ})
{P(Zt ≥ tz)P(St ≥ t(x+ µ− z))}

)
.

Let f as in Eq. (24) of Lemma 10. Then, we have f(x) = g(exp(−x)). This concludes the proof of
the upper bound on the upper tail. The second result is obtained similarly based on Lemma 9 and the
above results.

F.4 Tails Concentration of Cumulative Laplace Distributions

We derive time-uniform (Lemma 14) and fixed-time (Lemma 15) tails concentration for the cumulative
sum of i.i.d. Laplace observations. Our proof technique is based on the Chernoff method and Ville’s
inequality as in Eq. (26). Therefore, we need to derive the convex conjuguate of the moment
generating function of a Laplace distribution (Lemma 12). While the time-uniform result requires
using the peeling method, the proof of the fixed-time concentration is simpler. To use the peeling
method, we need to control the deviation of the process on slices of time (Lemma 13).

Convex Conjuguate of the Moment Generating Function of Laplace Distribution Let ϵ > 0.
The moment generating function of the Laplace distribution Lap(1/ϵ) is defined as

∀λ ∈ (0, ϵ), ψLap,ϵ(λ) = logEX∼Lap(1/ϵ) [exp(λX)] = − log(1− λ2/ϵ2) . (25)

Lemma 12 explicits the convex conjuguate of ψLap,ϵ and its associated maximizer.
Lemma 12. Let ψLap,ϵ as in Eq. (25). Let us define

∀x > 0, ψ⋆
Lap,ϵ(x) := max

λ∈(0,ϵ)
{λx− ψLap,ϵ(λ)} and λ(x) := argmax

λ∈(0,ϵ)

{λx− ψLap,ϵ(λ)} .

Then, for all x > 0, we have

λ(x) =
1

x

(√
1 + (xϵ)2 − 1

)
∈ (0, ϵ) and ψ⋆

Lap,ϵ(x) = h(ϵx) > 0 .

where h is defined in Eq. (31).

Proof. Let f(λ) = λx− ψLap,ϵ(λ) for all λ ∈ (0, ϵ). Direct manipulation yields that

∀λ ∈ (0, ϵ), f ′(λ) = x− 2λ

ϵ2 − λ2
and f ′′(λ) = −2 ϵ2 + λ2

(ϵ2 − λ2)2
< 0 .

Moreover, for all λ ∈ (0, ϵ), we have

f ′(λ) = 0 ⇐⇒ λ2 + 2λ/x− ϵ2 = 0 ⇐⇒ λ =
1

x

(√
1 + (xϵ)2 − 1

)
.

We used that the second solution to the second order polynomial equation is negative, hence not in
(0, ϵ). Moreover, it is direct to see that 1

x

(√
1 + (xϵ)2 − 1

)
∈ (0, ϵ) since

√
1 + x2 − 1 ≤ x, as it
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is equivalent to 1 + x2 ≤ (x+ 1)2 which is true when x > 0. Since f is strictly concave, the above
computation gives its unique maximizer on (0, ϵ), namely we have λ(x) = 1

x

(√
1 + (xϵ)2 − 1

)
.

Moreover, the convex conjuguate of ψLap,ϵ is

ψ⋆
Lap,ϵ(x) = f(λ(x)) =

√
1 + (xϵ)2 − 1 + log

(
1− 1

(xϵ)2

(√
1 + (xϵ)2 − 1

)2)
=
√
1 + (xϵ)2 − 1 + log

(
2

(xϵ)2

(√
1 + (xϵ)2 − 1

))
.

This concludes the proof.

Test Martingale for Cumulative Laplace Observations Let ϵ > 0 and St =
∑

s∈[t] Ys where
Ys ∼ Lap(1/ϵ) are i.i.d. observations. Let us define

∀λ ∈ (0, ϵ), Mt(λ) := exp(λSt − tψLap,ϵ(λ)) .

It is direct to see that M0(λ) = 0 almost surely and

E[Mt(λ) | Ft−1] =Mt−1(λ)EX∼Lap(1/ϵ)[exp(λX − ψLap,ϵ(λ))] =Mt−1(λ) .

Therefore, Mt(λ) is a test martingale. Using Ville’s inequality [84] yields that

∀δ ∈ (0, 1), ∀λ ∈ (0, ϵ), P (∃t ∈ N, λSt − tψLap,ϵ(λ) ≥ log(1/δ)) ≤ δ . (26)

Time Uniform Tails Concentration Lemma 13 controls the deviation of the process on slices of
time.

Lemma 13. Let ϵ > 0 and St =
∑

s∈[t] Ys where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Let N > 0.
For all x > 0, there exists λ(x) such that for all t ≥ N ,

{St ≥ tx} ⊆ {λ(x)St − tψLap,ϵ(λ(x)) ≥ Nh(ϵx)} ,

where λ(x) as in Lemma 12 and h as in Eq. (31).

Proof. Using Lemma 12, we obtain λ(x) ∈ (0, ϵ) and ψ⋆
Lap,ϵ(x) = h(ϵx) > 0, hence tψ⋆

Lap,ϵ(x) ≥
Nψ⋆

Lap,ϵ(x) for t ≥ N . Then, direct computations yield

St ≥ tx =⇒ λ(x)St − tψLap,ϵ(λ(x)) ≥ t (xλ(x)− ψLap,ϵ(λ(x))) = tψ⋆
Lap,ϵ(x)

=⇒ λSt − tψLap,ϵ(λ) ≥ Nψ⋆
Lap,ϵ(x) = Nh(ϵx) .

This concludes the proof.

Lemma 14 gives time-uniform tails concentration for the cumulative sum of i.i.d. Laplace observations.
It is obtained by applying Lemma 13 on slices of time with geometric growth rate.

Lemma 14. Let δ ∈ (0, 1). Let γ > 0, s > 1 and ζ be the Riemann ζ function. Let h−1 be the
inverse of h defined as in Eq. (31), which is well-defined by Lemma 27. Let ϵ > 0 and St =

∑
s∈[t] Ys

where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Then,

P
(
∃t ∈ N, St ≥

t

ϵ
h−1

(
1 + γ

t

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ t

))))
≤ δ ,

P
(
∃t ∈ N, St ≤ −

t

ϵ
h−1

(
1 + γ

t

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ t

))))
≤ δ .

Proof. Let us define the geometric grid Ni = (1 + γ)i−1, hence we have N =
⋃

i∈N[Ni, Ni+1). For
all i ∈ N, let xi(δ) > 0 to be defined later, and λ(xi(δ)) as in Lemma 13. For all t ∈ N, let g(t, δ) to
be defined later such that g(t, δ) ≥ xi(δ) for t ∈ [Ni, Ni+1). Using Lemma 13 with xi(δ) > 0 and
g(t, δ) ≥ xi(δ) for t ∈ [Ni, Ni+1), a union bound yields that

P (∃t ∈ N, St ≥ tg(t, δ))
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≤
∑
i∈N

P (∃t ∈ [Ni, Ni+1) : St ≥ txi(δ))

≤
∑
i∈N

P (∃t ∈ [Ni, Ni+1) : λ(xi(δ))St − tψLap,ϵ(λ(xi(δ))) ≥ Nih(ϵxi(δ)))

≤
∑
i∈N

e−Nih(ϵxi(δ)) ,

where the last inequality uses Ville’s inequality as in Eq. (26) for all i ∈ N. Let us define

g(t, δ) =
1

ϵ
h−1

(
1 + γ

t

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ(t)

)))
,

xi(δ) =
1

ϵ
h−1

(
1

Ni
log

(
isζ(s)

δ

))
.

Using Lemma 27, we obtain that xi(δ) > 0 and that h−1 is increasing on R⋆
+. Using t ∈ [Ni, Ni+1)

and i = 1 + log1+γ Ni, we obtain

g(t, δ) ≥ 1

ϵ
h−1

(
1

Ni

(
log

(
ζ(s)

δ

)
+ s log

(
1 + log1+γ(t)

)))
≥ 1

ϵ
h−1

(
1

Ni
log

(
isζ(s)

δ

))
= xi(δ) .

Therefore, we have

P (∃t ∈ N, St ≥ tg(t, δ)) ≤
∑
i∈N

e−Nih(ϵxi(δ)) ≤ δ

ζ(s)

∑
i∈N

1

is
= δ .

This concludes the proof of the first result.

By symmetry of the Lap(1/ϵ) around zero, the cumulative sum of i.i.d. observations is symmetric
around zero. Combining the first result with the symmetry around zero yields the second result.

Fixed Time Tails Concentration When the time is fixed and not random, there is no need to
consider slices of time and we can directly control the deviation of the process.

Lemma 15. Let ϵ > 0 and St =
∑

s∈[t] Ys where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Let h as in
Eq. (31). Then,

∀t ∈ N,∀x > 0, P(St ≥ tx) ≤ exp(−th(ϵx)) ,
∀t ∈ N,∀x > 0, P(St ≤ −tx) ≤ exp(−th(ϵx)) .

Proof. The first result can be obtained with the same manipulation as in the proof of Lemma 14, i.e.,
combining Ville’s inequality in Eq. (26) with Lemma 13 at N = t.

By symmetry of the Lap(1/ϵ) around zero, the cumulative sum of i.i.d. observations is symmetric
around zero. Combining the first result with the symmetry around zero yields the second result.

F.5 Fixed Time Tails Concentration of Cumulative Bernoulli Distributions

The fixed time upper and lower tail concentration of cumulative Bernoulli distributions are well-
studied. Using the Chernoff method yields Lemma 16, whose proof is omitted since it is a classic
result.

Lemma 16 (Chernoff Tail Bound for Bernoulli Distributions [17]). Let µ ∈ (0, 1) and Zt =∑
s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d. observations. Then,

∀t ∈ N,∀x ∈ (µ, 1), P(Zt ≥ tx) ≤ exp(−tkl(x, µ)) ,
∀t ∈ N,∀x ∈ (0, µ), P(Zt ≤ tx) ≤ exp(−tkl(x, µ)) .

34



F.6 Fixed Time Tails Concentration for a Convolution between Bernoulli and Laplace
Distributions

We provide upper (Lemma 17) and lower (Lemma 18) tail concentrations for a sum (i.e., convolution)
between independent Bernoulli and Laplace i.i.d. observations for a fixed time.

Fixed Time Upper Tail Concentration Lemma 17 shows an upper tail concentration on the sum
(i.e., convolution) between independent Bernoulli and Laplace i.i.d. observations.
Lemma 17. Let µ ∈ (0, 1) and Zt =

∑
s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d. observations. Let

(nt)t∈N be a piece-wise constant increasing function from N to N. Let ϵ > 0 and St =
∑

s∈[nt]
Ys

where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Then,

∀t ∈ N, ∀x > 0, P(Zt + St ≥ t(µ+ x)) ≤ f
(
td̃−ϵ (µ+ x, µ, t/nt)

)
,

where f is defined in Eq. (24) and d̃−ϵ is defined in Eq. (32).

Proof. Let t ∈ N and x > 0. Combining Lemmas 15 and 16, we obtain, for all x > 0 and all
z ∈ (µ,min{1, x+ µ}),

−1

t
log
(
Ḡt(tz)F̄nt

(t(x+ µ− z))
)
≥ kl(z, µ) +

nt
t
h

(
t

nt
ϵ(x+ µ− z)

)
,

where we used that x + µ − z > 0. Taking the infimum on (µ,min{1, x + µ}) on both sides and
using that [x+ µ]10 = min{1, x+ µ} > µ, we obtain

inf
z∈(µ,min{1,x+µ})

{
−1

t
log
(
Ḡt(tz)F̄nt

(t(x+ µ− z))
)}
≥ d̃−ϵ (µ+ x, µ, t/nt) ,

where d̃−ϵ is defined in Eq. (32). Since f is decreasing on R+ (Lemma 10), using Lemma 11 yields

P(Zt + St ≥ t(x+ µ)) ≤ f
(
td̃−ϵ (µ+ x, µ, t/nt)

)
.

which concludes the proof.

Fixed Time Lower Tail Concentration Lemma 18 shows a lower tail concentration on the sum
(i.e., convolution) between independent Bernoulli and Laplace i.i.d. observations.
Lemma 18. Let µ ∈ (0, 1) and Zt =

∑
s∈[t]Xs where Xs ∼ Ber(µ) are i.i.d. observations. Let

(nt)t∈N be a piece-wise constant increasing function from N to N. Let ϵ > 0 and St =
∑

s∈[nt]
Ys

where Ys ∼ Lap(1/ϵ) are i.i.d. observations. Then,

∀t ∈ N, ∀x > 0, P(Zt + St ≤ t(µ− x)) ≤ f
(
td̃+ϵ (µ− x, µ, t/nt)

)
,

where f is defined in Eq. (24) and d̃+ϵ is defined in Eq. (32).

Proof. Let t ∈ N and x > 0. Combining Lemmas 15 and 16, we obtain, for all x > 0 and all
z ∈ (max{0, µ− x}, µ),

−1

t
log (Gt(tz)Fnt

(t(µ− x− z))) ≥ kl(z, µ) +
nt
t
h

(
t

nt
ϵ(z + x− µ)

)
,

where we used that µ− x− z < 0. Taking the infimum on z ∈ (max{0, µ− x}, µ) on both sides
and using that [µ− x]10 = max{0, µ− x} < µ, we obtain

inf
z∈(max{0,µ−x},µ)

{
−1

t
log (Gt(tz)Fnt

(t(µ− x− z)))
}
≥ d̃+ϵ (µ− x, µ, t/nt) ,

where d̃+ϵ is defined in Eq. (32). Since f is decreasing on R+ (Lemma 10), using Lemma 11 yields

P(Zt + St ≥ t(µ− x)) ≤ f
(
td̃+ϵ (µ− x, µ, t/nt)

)
,

which concludes the proof.
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F.7 Geometric Grid Time Uniform Tails Concentration for a Convolution between Bernoulli
and Laplace Distributions

We provide upper (Lemma 19) and lower (Lemma 20) tail concentrations for a sum (i.e., convolution)
between independent Bernoulli and Laplace i.i.d. observations that holds time uniformly on a
geometric grid.

Geometric Grid Time Uniform Upper Tail Concentration Lemma 19 gives a threshold ensuring
that a geometric grid time uniform upper tail concentration holds with probability at least 1− δ.

Lemma 19. Let δ ∈ (0, 1). Let (µ̃n, Ñn, kn) are given by GPEη(ϵ). Let s > 1 and ζ be the Riemann
ζ function. Let W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch of the
Lambert W function. It satisfies W−1(x) ≈ x+ log x, see Lemma 51. Let us define

c(k, δ) =W−1 (log (1/δ) + s log(k) + log(ζ(s)) + 3− 2 log 2)− 3 + 2 log 2 . (27)

For all a ∈ [K], let us define

Eδ,a,− =
{
∀n ∈ N, Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≤ c(kn,a, δ)

}
, (28)

where d̃−ϵ is defined in Eq. (32). Then, we have Pνπ(E∁δ,a,−) ≤ δ for all a ∈ [K].

Proof. Let us define the geometric grid Ni = (1 + η)i−1, hence we have N =
⋃

i∈N[Ni, Ni+1). Let
a ∈ [K]. If Ñn,a ∈ [Ni, Ni+1), then we have Ñn,a = ⌈Ni⌉ and kn,a = i. By union bound, we
obtain

Pνπ(E∁δ,a,−) = Pνπ

(
∃n ∈ N, Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
≤
∑
i∈N

Pνπ

(
∃i ∈ N, (Ñn,a, kn,a) = (⌈Ni⌉, i) ∧ Ñn,ad̃

−
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
=
∑
i∈N

P
(
⌈Ni⌉d̃−ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
,

where Z⌈Ni⌉ is the cumulative sum of ⌈Ni⌉ i.i.d. observations from Ber(µa) and Si is the cumulative
sum of i i.i.d. observations from Lap(1/ϵ).

For all i ∈ N, let xi > 0 be the unique solution of ⌈Ni⌉d̃−ϵ (x + µa, µa, ⌈Ni⌉/i) = c(i, δ), which
exists by Lemma 32. Then, we obtain

P
(
⌈Ni⌉d̃−ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
= P

(
d̃−ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ d̃−ϵ (xi + µa, µa, ⌈Ni⌉/i)

)
≤ P(Z⌈Ni⌉ + Si ≥ ⌈Ni⌉(xi + µa)) ≤ f

(
⌈Ni⌉d̃−ϵ (xi + µa, µa, ⌈Ni⌉/i)

)
= f (c(i, δ)) ,

where f(x) := (x+ 3− log 2) exp(−x) for all x ≥ 0. The first and the last equalities are otained by
definition of xi, i.e., ⌈Ni⌉d̃−ϵ (x+ µa, µa, ⌈Ni⌉/i) = c(i, δ). The first inequality is obtained by using
Lemma 33, and the second inequality is obtained by using Lemma 17. Using Lemma 10 yields

f(x) ≤ δ ⇐⇒ W−1(log (1/δ) + 3− log 2)− 3 + log 2 ≤ x .

Taking
c(i, δ) =W−1(log (i

sζ(s)/δ) + 3− log 2)− 3 + log 2 ,

we can conclude the proof since Pνπ(E∁δ,a,−) ≤
∑

i∈N f (c(i, δ)) ≤
∑

i∈N
δ

ζ(s)is ≤ δ.

Geometric Grid Time Uniform Lower Tail Concentration Lemma 20 gives a threshold ensuring
that a geometric grid time uniform lower tail concentration holds with probability at least 1− δ.
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Lemma 20. Let δ ∈ (0, 1). Let (µ̃n, Ñn, kn) are given by GPEη(ϵ). Let c as in Eq. (27). For all
a ∈ [K], let us define

Eδ,a,+ =
{
∀n ∈ N, Ñn,ad̃

+
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≤ c(kn,a, δ)

}
, (29)

where d̃+ϵ is defined in Eq. (32). Then, we have Pνπ(E∁δ,a,+) ≤ δ for all a ∈ [K].

Proof. Let us define the geometric grid Ni = (1 + η)i−1, hence we have N =
⋃

i∈N[Ni, Ni+1). Let
a ∈ [K]. If Ñn,a ∈ [Ni, Ni+1), then we have Ñn,a = ⌈Ni⌉ and kn,a = i. By union bound, we
obtain

Pνπ(E∁δ,a,+) = Pνπ

(
∃n ∈ N, Ñn,ad̃

+
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
≤
∑
i∈N

Pνπ

(
∃i ∈ N, (Ñn,a, kn,a) = (⌈Ni⌉, i) ∧ Ñn,ad̃

+
ϵ (µ̃n,a, µa, Ñn,a/kn,a) ≥ c(kn,a, δ)

)
=
∑
i∈N

P
(
⌈Ni⌉d̃+ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
,

where Z⌈Ni⌉ is the cumulative sum of ⌈Ni⌉ i.i.d. observations from Ber(µa) and Si is the cumulative
sum of i i.i.d. observations from Lap(1/ϵ).

For all i ∈ N, let xi > 0 be the unique solution of ⌈Ni⌉d̃+ϵ (µa − x, µa, ⌈Ni⌉/i) = c(i, δ), which
exists by Lemma 32. Then, we obtain

P
(
⌈Ni⌉d̃+ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ c(i, δ)

)
= P

(
d̃+ϵ ((Z⌈Ni⌉ + Si)/⌈Ni⌉, µa, ⌈Ni⌉/i) ≥ d̃+ϵ (µa − xi, µa, ⌈Ni⌉/i)

)
≤ P(Z⌈Ni⌉ + Si ≤ ⌈Ni⌉(µa − xi)) ≤ f

(
⌈Ni⌉d̃+ϵ (µa − xi, µa, ⌈Ni⌉/i)

)
= f (c(i, δ)) ≤ δ

ζ(s)is

where f(x) := (x+ 3− log 2) exp(−x) for all x ≥ 0. The first and the last equalities are otained by
definition of xi, i.e., ⌈Ni⌉d̃+ϵ (µa − x, µa, ⌈Ni⌉/i) = c(i, δ). The first inequality is obtained by using
Lemma 33, and the second inequality is obtained by using Lemma 18. The last inequality uses the
same derivations based on Lemma 10 as in the proof of Lemma 19 by taking

c(i, δ) =W−1(log (i
sζ(s)/δ) + 3− log 2)− 3 + log 2 .

This concludes the proof since Pνπ(E∁δ,a,−) ≤
∑

i∈N
δ

ζ(s)is ≤ δ.

G Divergence, Transportation Cost and Characteristic Time

Appendix G is organized as follow. First, we derive regularity properties for the signed (modified)
divergences d±ϵ (Appendix G.1) and d̃±ϵ (Appendix G.1.1). Second, we derive regularity properties
the (modified) transportation costs Wϵ,a,b (Appendix G.2) and W̃ϵ,a,b (Appendix G.2.1) for a pair of
arms (a, b). Third, we study the characteristic time for ϵ-global DP BAI (Appendix G.3).

G.1 Signed Divergence

Recall [x]10 := max{0,min{1, λ}} and

∀(λ, µ) ∈ (0, 1)2, kl(λ, µ) := λ log

(
λ

µ

)
+ (1− λ) log

(
1− λ
1− µ

)
where kl is infinity when {µ, λ} ∩ {0, 1} ≠ ∅. The signed divergences d±ϵ are defined in Eq. (3), i.e.,

∀(λ, µ) ∈ R× [0, 1], d−ϵ (λ, µ) := 1
(
µ < [λ]10

)
inf

z∈[µ,[λ]10]

{
kl(z, µ) + ϵ([λ]10 − z)

}
,

d+ϵ (λ, µ) := 1
(
µ > [λ]10

)
inf

z∈[[λ]10,µ]

{
kl(z, µ) + ϵ(z − [λ]10)

}
.

Lemma 21 relates dϵ and d±ϵ .
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Lemma 21. Let d±ϵ and dϵ as in Eq. (3) and (2). Let (κ, ν) ∈ F2 with means (λ, µ) ∈ (0, 1)2. Then,

dϵ(κ, ν) =


0 if λ = µ

d−ϵ (λ, µ) if µ < λ

d+ϵ (λ, µ) if µ > λ

.

Proof. When λ = µ, we have dϵ(κ, ν) = 0 by taking φ = ν and using the non-negativity of dϵ.

Let φ ∈ F with mean z ∈ (0, 1). When µ < λ, we have
dϵ(κ, ν) = min{ inf

z∈(0,µ)
{kl(z, µ) + ϵ(λ− z)} , inf

z∈[µ,λ]
{kl(z, µ) + ϵ(λ− z)} ,

inf
z∈(λ,1)

{kl(z, µ) + ϵ(z − λ)}}

= inf
z∈[µ,λ]

{kl(z, µ) + ϵ(λ− z)} = d−ϵ (λ, µ) ,

where we partitioned (0, 1) and used that (1) z 7→ kl(z, µ) + ϵ(z − λ) is increasing on (λ, 1), hence
the infimum on this interval is achieved at λ, and (2) z 7→ kl(z, µ)+ ϵ(λ− z), is decreasing on (0, µ),
hence the infimum on this interval is achieved at µ.

When µ > λ, we have
dϵ(κ, ν) = min{ inf

z∈(0,λ)
{kl(z, µ) + ϵ(λ− z)} , inf

z∈[λ,µ]
{kl(z, µ) + ϵ(z − λ)} ,

inf
z∈(µ,1)

{kl(z, µ) + ϵ(z − λ)}}

= inf
z∈[λ,µ]

{kl(z, µ) + ϵ(z − λ)} = d+ϵ (λ, µ) ,

where we partitioned (0, 1) and used that (1) z 7→ kl(z, µ) + ϵ(z − λ) is increasing on (µ, 1), hence
the infimum on this interval is achieved at µ, and (2) z 7→ kl(z, µ)+ ϵ(λ− z), is decreasing on (0, λ),
hence the infimum on this interval is achieved at λ.

Lemma 22 shows a strong link between d±ϵ . This symmetry property can be used to carry regularity
properties from d+ϵ to d−ϵ , and vice versa.
Lemma 22. Let d±ϵ as in Eq. 3. For all µ ∈ [0, 1] and all λ ∈ R,

d+ϵ (1− λ, 1− µ) = d−ϵ (λ, µ) and d−ϵ (1− λ, 1− µ) = d+ϵ (λ, µ) .

Proof. By definitions and change of variable z̃ = 1− z and kl(1− z̃, 1− µ) = kl(z̃, µ), we obtain

d+ϵ (1− λ, 1− µ) = 1
(
µ < [λ]10

)
inf

z∈[1−[λ]10,1−µ]
{kl(z, 1− µ) + ϵ(max{0,min{1, λ} − (1− z))}

= 1
(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]
{kl(1− z̃, 1− µ) + ϵ(max{0,min{1, λ} − z̃)}

= 1
(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]
{kl(z̃, µ) + ϵ(max{0,min{1, λ} − z̃)} = d−ϵ (λ, µ) .

The second equality is a consequence of the first.

Lemma 23 gathers regularity properties on the functions g±ϵ that appear in the explicit solutions of
d±ϵ , as shown below. Intuitively, those functionals govern locally the separation between the low
privacy regime where d±ϵ is equals to the kl and the high privacy regime where the divergence has to
be modified to account for the privacy budget ϵ.
Lemma 23. Let ϵ > 0. Let g±ϵ defined as

∀x ∈ [0, 1], g+ϵ (x) :=
x

x(1− eϵ) + eϵ
and g−ϵ (x) :=

xeϵ

x(eϵ − 1) + 1
. (30)

On [0, 1], the function g+ϵ is twice continuously differentiable, increasing and strictly convex. It
satisfies g+ϵ (0) = 0, g+ϵ (1) = 1 and g+ϵ (x) < x on (0, 1). On [0, 1], the function g−ϵ is twice
continuously differentiable, increasing and strictly concave. It satisfies g−ϵ (0) = 0, g−ϵ (1) = 1 and
g−ϵ (x) > x on (0, 1). For all x ∈ [0, 1], we have g+ϵ (g

−
ϵ (x)) = x and g−ϵ (1 − x) + g+ϵ (x) = 1.

For all x ∈ [0, 1], we have limϵ→0 g
+
ϵ (x) = limϵ→0 g

−
ϵ (x) = x; it satisfies limϵ→+∞ g−ϵ (x) = 1 if

x ̸= 0 and limϵ→+∞ g+ϵ (x) = 0 if x ̸= 1.
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Proof. Using that eϵ > 1, direct computations yield that, for all x ∈ [0, 1],

(g+ϵ )
′(x) =

eϵ

(x(1− eϵ) + eϵ)2
> 0 and (g+ϵ )

′′(x) = −2 eϵ(1− eϵ)
(x(1− eϵ) + eϵ)2

> 0 ,

(g−ϵ )
′(x) =

eϵ

(x(eϵ − 1) + 1)2
> 0 and (g−ϵ )

′′(x) = −2 eϵ(eϵ − 1)

(x(eϵ − 1) + 1)3
< 0 .

Therefore, g+ϵ is twice continuously differentiable, increasing and strictly convex on [0, 1] and g−ϵ
is twice continuously differentiable, increasing and strictly concave on [0, 1]. It is direct to see
that g+ϵ (0) = g−ϵ (0) = 0 and g+ϵ (1) = g−ϵ (1) = 1. Since they are strictly convex and strictly
concave, we obtain g+ϵ (x) < x and g−ϵ (x) > x for all x ∈ (0, 1). It is direct to see that, for
all x ∈ [0, 1], we have g+ϵ (g

−
ϵ (x)) = x and 1 − g+ϵ (x) = g−ϵ (1 − x). It is direct to see that,

limϵ→0 g
+
ϵ (x) = limϵ→0 g

−
ϵ (x) = x for all x ∈ [0, 1], and limϵ→+∞ g+ϵ (x) = 0 if x ̸= 1 and

limϵ→+∞ g−ϵ (x) = 1 if x ̸= 0.

Lemma 24 gathers regularity properties of d+ϵ . In particular, it gives a closed-form solution, which is
a key property used in our implementation to reduce the computational cost.
Lemma 24. Let d+ϵ as in Eq. (3), and g±ϵ as in Eq. (30). For all µ ∈ [0, 1] and λ ∈ R, we have

d+ϵ (λ, µ) =


0 if µ ∈ [0, [λ]10]

− log (1− µ(1− e−ϵ))− ϵ[λ]10 if µ ∈ (g−ϵ ([λ]
1
0), 1]

kl (λ, µ) if λ ∈ (0, 1) ∧ µ ∈ ([λ]10, g
−
ϵ ([λ]

1
0)]

.

The function (λ, µ) 7→ d+ϵ (λ, µ) is jointly continuous on R× [0, 1]. For all µ ∈ [0, 1], the function
λ 7→ d+ϵ (λ, µ) is constant on (−∞, 0] and on [1,+∞). Then,

∀λ ∈ (0, 1),∀µ ∈ [0, 1], d+ϵ (λ, µ) =


0 if µ ∈ [0, λ]

kl (λ, µ) µ ∈ (λ, g−ϵ (λ)]

− log (1− µ(1− e−ϵ))− ϵλ if µ ∈ (g−ϵ (λ), 1]

.

For all µ ∈ [0, 1], the function λ 7→ d+ϵ (λ, µ) is continuously differentiable, positive, decreasing
and convex on (0, µ); it is affine with negative slope −ϵ on (0, g+ϵ (µ)) and twice continuously
differentiable and strictly convex on (g+ϵ (µ), µ).

For all λ ∈ (0, 1), the function µ 7→ d+ϵ (λ, µ) is positive, three times differentiable with continuous
first derivative, increasing and strictly convex on (λ, 1]; its second derivative is discontinuous at

g−ϵ (λ) with gap ∂2d+
ϵ

∂µ2 (λ, g−ϵ (λ))− limµ→g−
ϵ (λ)+

∂2d+
ϵ

∂µ2 (λ, µ) > 0. Moreover, we have

∀µ ∈ (λ, 1],
∂d+ϵ
∂µ

(λ, µ) =

{
1−e−ϵ

1−µ(1−e−ϵ) if µ ∈ (g−ϵ (λ), 1]
µ−λ

µ(1−µ) if µ ∈ (λ, g−ϵ (λ)]
.

The function d+ϵ is jointly convex on (0, 1)× [0, 1].

Proof. Recall that d+ϵ (λ, µ) = 1
(
µ > [λ]10

)
infz∈[[λ]10,µ]

f+ϵ ([λ]10, µ, z) where f+ϵ (λ, µ, z) =

kl(z, µ) + ϵ(z − λ). Direct computations yield that, for all z ∈ ([λ]10, µ),

∂f+ϵ
∂z

(λ, µ, z) = log

(
z(1− µ)
(1− z)µ

)
+ ϵ and

∂f+ϵ
∂z

(λ, µ, z) = 0 ⇐⇒ z = g+ϵ (µ) ,

∂2f+ϵ
∂z2

(λ, µ, z) =
1

z(1− z)
> 0 .

Therefore, z → f+ϵ (λ, µ, z) is twice continuously differentiable, positive and strictly convex on
([λ]10, µ). Moreover, z → f+ϵ (λ, µ, z) is decreasing on ([λ]10,max{g+ϵ (µ), λ}) and increasing on
(max{g+ϵ (µ), λ}, µ). Using Lemma 23, we obtain

f+ϵ (λ, µ, λ) = kl (λ, µ) ,

kl(g+ϵ (µ), µ) = −(g+ϵ (µ) + g−ϵ (1− µ)) log (µ(1− eϵ) + eϵ) + ϵg−ϵ (1− µ)
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= − log
(
1− µ(1− e−ϵ)

)
− ϵg+ϵ (µ) ,

f+ϵ (λ, µ, g+ϵ (µ)) = − log
(
1− µ(1− e−ϵ)

)
− ϵλ .

By definition of the indicator function, we have d+ϵ (λ, µ) = 0 if µ ∈ [0, [λ]10]. When λ ≤ 0, for all
µ ∈ (0, 1), we have

∀µ ∈ (0, 1), d+ϵ (λ, µ) = f+ϵ ([λ]10, µ, g
+
ϵ (µ)) = − log

(
1− µ(1− e−ϵ)

)
− ϵ[λ]10 ,

by using the properties of z → f+ϵ (λ, µ, z) on (0, 1) = (g−ϵ ([λ]
1
0), 1) by Lemma 23. This function

can be extended by continuity to µ = 0 = g−ϵ ([λ]
1
0) with value d+ϵ (λ, 0) = 0. When λ ∈ (0, 1) and

µ ∈ (g−ϵ (λ), 1), we have

∀µ ∈ (0, 1), d+ϵ (λ, µ) = f+ϵ ([λ]10, µ, g
+
ϵ (µ)) = − log

(
1− µ(1− e−ϵ)

)
− ϵ[λ]10 ,

by using the properties of z → f+ϵ (λ, µ, z) on (g−ϵ (λ), 1) = (g−ϵ ([λ]
1
0), 1) by Lemma 23. This

function can be extended by continuity to (λ, µ) = (0, 0) = limλ→0+(λ, g
−
ϵ ([λ]

1
0)) with value

d+ϵ (0, 0) = 0. In both cases, this function can be extended by continuity to µ = 1 with value
d+ϵ (λ, 1) = ϵ(1− [λ]10).

When λ ∈ (0, 1), i.e., [λ]10 = λ, and µ ∈ (λ, g−ϵ (λ)) ⊆ (0, 1) by Lemma 23, we have

d+ϵ (λ, µ) = f+ϵ (λ, µ, λ) = kl (λ, µ) .

This function can be extended by continuity to µ = λ with value d+ϵ (λ, λ) = 0 since kl (λ, λ) = 0.
Using Lemma 23, this function can be extended by continuity to µ = g−ϵ (λ) (i.e., λ = g+ϵ (µ)) with
value

d+ϵ (λ, g
−
ϵ (λ)) = kl

(
λ, g−ϵ (λ)

)
= kl

(
g+ϵ (µ), µ

)
= − log

(
1− µ(1− e−ϵ)

)
− ϵg+ϵ (µ) .

Therefore, we have

∀λ ∈ (0, 1), ∀µ ∈ [λ, g−ϵ (λ)], d+ϵ (λ, µ) = kl (λ, µ) .

Using that limλ→0+ [λ, g
−
ϵ (λ)] = {0}, this function can be extended by continuity to λ = 0 with

value 0. Using that limλ→1− [λ, g
−
ϵ (λ)] = {1}, this function can be extended by continuity to λ = 1

with value 0 = lim(µ,λ)→1− − log (1− µ(1− e−ϵ))− ϵ[λ]10.

Putting all the continuity arguments together, we have shown that (λ, µ) → d+ϵ (λ, µ) is jointly
continuous on R×[0, 1]. Moreover, it is direct to see that, for all µ ∈ [0, 1], the function λ→ d+ϵ (λ, µ)
is constant on (−∞, 0] and on [1,+∞). Then,

∀λ ∈ (0, 1),∀µ ∈ [0, 1], d+ϵ (λ, µ) =


0 if µ ∈ [0, λ]

kl (λ, µ) µ ∈ (λ, g−ϵ (λ)]

− log (1− µ(1− e−ϵ))− ϵλ if µ ∈ (g−ϵ (λ), 1]

.

Let µ ∈ [0, 1] and λ ∈ (0, µ). Using that µ ∈ (g−ϵ (λ), 1] if and only if λ ∈ (0, g+ϵ (µ)). For all
µ ∈ [0, 1], the function λ → d+ϵ (λ, µ) is positive and affine with negative slope −ϵ on (0, g+ϵ (µ)).
Let λ ∈ (g+ϵ (µ), µ). Direct computation yields that

∂d+ϵ
∂λ

(λ, µ) =
∂kl

∂λ
(λ, µ) = log

(
λ(1− µ)
(1− λ)µ

)
< 0 ,

lim
λ→g+

ϵ (µ)+

∂d+ϵ
∂λ

(λ, µ) = −ϵ = lim
λ→g+

ϵ (µ)−

∂d+ϵ
∂λ

(λ, µ) ,

∂2d+ϵ
∂λ2

(λ, µ) =
∂2kl

∂λ2
(λ, µ) =

1

λ(1− λ)
> 0 .

For all µ ∈ [0, 1], the function λ→ d+ϵ (λ, µ) is continuously differentiable, positive, decreasing and
convex on (0, µ). For all µ ∈ [0, 1], the function λ→ d+ϵ (λ, µ) is twice continuously differentiable,
positive and strictly convex on (g+ϵ (µ), µ). Combining the above results concludes the part of
λ 7→ d+ϵ (λ, µ) on (0, µ).

Let λ ∈ (0, 1). Let a > 0 and k ∈ N. The k-th derivative of u(x) = a(1 − ax)−1 on [0, 1] is
u(k)(x) = (k − 1)!ak+1(1− ax)−(k+1). Then,

∀µ ∈ (g−ϵ (λ), 1], ∀k ∈ N,
∂kd+ϵ
∂µk

(λ, µ) =
(1− e−ϵ)k(k − 1)!

(1− µ(1− e−ϵ))k
> 0 ,
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∀µ ∈ (λ, g−ϵ (λ)],
∂d+ϵ
∂µ

(λ, µ) =
µ− λ
µ(1− µ)

> 0 ,

∂2d+ϵ
∂µ2

(λ, µ) =
(µ− λ)2 + λ(1− λ)

µ2(1− µ)2
> 0 ,

∂3d+ϵ
∂µ3

(λ, µ) > 0 .

Direct computation yields

lim
µ→g−

ϵ (λ)

µ− λ
µ(1− µ)

= (1− e−ϵ)(1 + λ(eϵ − 1)) ,

lim
µ→g−

ϵ (λ)

1− e−ϵ

1− µ(1− e−ϵ)
= (1− e−ϵ)(1 + λ(eϵ − 1)) ,

lim
µ→g−

ϵ (λ)

{
(µ− λ)2 + λ(1− λ)

µ2(1− µ)2
− (1− e−ϵ)2

(1− µ(1− e−ϵ))2

}
=

λ(1− λ)
g−ϵ (λ)2(1− g−ϵ (λ))2

> 0 .

For all λ ∈ (0, 1), the function µ→ d+ϵ (λ, µ) is positive, three times differentiable with continuous
first derivative and increasing on (λ, 1]. For all λ ∈ (0, 1), the function µ → d+ϵ (λ, µ) is strictly
convex on (λ, g−ϵ (λ)] and (g−ϵ (λ), 1]. The second derivative is discontinuous at g−ϵ (λ) with gap
∂2d+

ϵ

∂µ2 (λ, g−ϵ (λ))− limµ→g−
ϵ (λ)+

∂2d+
ϵ

∂µ2 (λ, µ) > 0. Thanks to the continuity of the first derivative and
the sign of the second derivative, the function µ→ d+ϵ (λ, µ) is strict convexity on (λ, 1].

Let (µ1, µ2) ∈ [0, 1]2 and (λ1, λ2) ∈ (0, 1)2. On the convex set F0 = {(λ, µ) ∈ (0, 1)× [0, 1] | µ ∈
[0, λ]}, the function d−ϵ is null hence jointly convex. Let ((µ1, λ1), (µ2, λ2)) ∈ (((0, 1)×[0, 1])\F0)

2.
Let (z1, z2) ∈ [λ1, µ1]× [λ2, µ2] be the minimizers realizing d+ϵ (λ1, µ1) and d+ϵ (λ2, µ2). Since it is
a convex set, we have (αλ1 +(1−α)λ2, αµ1 +(1−α)µ2) ∈ ((0, 1)× [0, 1]) \F0 for all α ∈ [0, 1].
Moreover, we have αz1+(1−α)z2 ∈ [αλ1+(1−α)λ2, αµ1+(1−α)µ2] for all α ∈ [0, 1]. Using
the definition of d+ϵ as an infimum, we obtain

d+ϵ (αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

≤ kl(αz1 + (1− α)z2, αµ1 + (1− α)µ2) + ϵ(αz1 + (1− α)z2 − (αλ1 + (1− α)λ2))
≤ α (kl(z1, µ1) + ϵ(z1 − λ1)) + (1− α) (kl(z2, µ2) + ϵ(z2 − λ2))
= αd+ϵ (λ1, µ1) + (1− α)d+ϵ (λ2, µ2)

where the second inequality comes from the joint convexity of the Kullback-Leibler divergence.
Combining both results, we have shown that the function d+ϵ is jointly convex on (0, 1)× [0, 1].

Lemma 25 gather regularity properties of d−ϵ . In particular, it gives a closed-form solution, which is a
key property used in our implementation to reduce the computational cost.

Lemma 25. Let d−ϵ as in Eq. (3), and g±ϵ as in Eq. (30). For all µ ∈ [0, 1] and all λ ∈ R, we have

d−ϵ (λ, µ) =


0 if µ ∈ [[λ]10, 1]

− log (1 + µ(eϵ − 1)) + ϵ[λ]10 if µ ∈ [0, g+ϵ ([λ]
1
0))

kl(λ, µ) if λ ∈ (0, 1) and µ ∈ [g+ϵ ([λ]
1
0), [λ]

1
0)

.

The function (λ, µ) 7→ d−ϵ (λ, µ) is jointly continuous on R× [0, 1]. For all µ ∈ [0, 1], the function
λ 7→ d−ϵ (λ, µ) is constant on (−∞, 0] and on [1,+∞). Then,

∀λ ∈ (0, 1),∀µ ∈ [0, 1], d−ϵ (λ, µ) =


0 if µ ∈ [λ, 1]

kl (λ, µ) if µ ∈ [g+ϵ (λ), λ)

− log (1 + µ(eϵ − 1)) + ϵλ if µ ∈ [0, g+ϵ (λ))

.

For all µ ∈ [0, 1], the function λ 7→ d−ϵ (λ, µ) is continuously differentiable, positive, increasing and
convex on (µ, 1); it is affine with positive slope ϵ on (g−ϵ (µ), 1) and twice continuously differentiable
and strictly convex on (µ, g−ϵ (µ)).
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For all λ ∈ (0, 1), the function µ 7→ d−ϵ (λ, µ) is positive, three times differentiable with continuous
first derivative, decreasing and strictly convex on [0, λ); its second derivative is discontinuous at

g+ϵ (λ) with gap limµ→g+
ϵ (λ)−

∂2d−
ϵ

∂µ2 (λ, µ)− ∂2d−
ϵ

∂µ2 (λ, g+ϵ (λ)) < 0. Moreover, we have

∀µ ∈ [0, λ),
∂d−ϵ
∂µ

(λ, µ) =

{
− eϵ−1

1+µ(eϵ−1) if µ ∈ [0, g+ϵ (λ))

− λ−µ
µ(1−µ) if µ ∈ [g+ϵ (λ), λ)

.

The function d−ϵ is jointly convex on (0, 1)× [0, 1].

Proof. Using Lemmas 22 and 23, we have

d−ϵ (λ, µ) = d+ϵ (1− λ, 1− µ) and g+ϵ (λ) = 1− g−ϵ (1− λ) ,
∂d−ϵ
∂µ

(λ, µ) = −∂d
+
ϵ

∂µ
(1− λ, 1− µ) and

∂2d−ϵ
∂µ2

(λ, µ) =
∂2d+ϵ
∂µ2

(1− λ, 1− µ) .

Moreover, we have kl(λ, µ) = kl(1− λ, 1− µ) and

− log (1 + µ(eϵ − 1)) + ϵ[λ]10 = − log
(
1− (1− µ)(1− e−ϵ)

)
− ϵ[1− λ]10 .

Combining the above with properties of d+ϵ in Lemma 24 concludes the proof.

G.1.1 Modified Divergence

Let us define

∀x > 0, h(x) :=
√
1 + x2 − 1 + log

(
2

x2

(√
1 + x2 − 1

))
. (31)

For all (λ, µ, r) ∈ R× (0, 1)× R⋆
+, we define

d̃−ϵ (λ, µ, r) := 1
(
µ < [λ]10

)
inf

z∈(µ,[λ]10)

{
kl(z, µ) +

1

r
h(rϵ(λ− z))

}
,

d̃+ϵ (λ, µ, r) := 1
(
µ > [λ]10

)
inf

z∈([λ]10,µ)

{
kl(z, µ) +

1

r
h(rϵ(z − λ))

}
. (32)

Lemma 26 shows a strong link between d̃±ϵ . This symmetry property can be used to carry regularity
properties from d̃+ϵ to d̃−ϵ , and vice versa.

Lemma 26. Let d̃±ϵ as in Eq. (32). For all (λ, µ) ∈ R× [0, 1], we have

d̃+ϵ (1− λ, 1− µ, r) = d̃−ϵ (λ, µ, r) and d̃−ϵ (1− λ, 1− µ, r) = d̃+ϵ (λ, µ, r) .

Proof. Using the definitions, the change of variable z̃ = 1− z and kl(1− z̃, 1− µ) = kl(z̃, µ), we
obtain

d̃+ϵ (1− λ, 1− µ, r) = 1
(
µ < [λ]10

)
inf

z∈[1−[λ]10,1−µ]

{
kl(z, 1− µ) + 1

r
h (rϵ(λ− (1− z)))

}
= 1

(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]

{
kl(1− z̃, 1− µ) + 1

r
h (rϵ(λ− z̃))

}
= 1

(
µ < [λ]10

)
inf

z̃∈[µ,[λ]10]

{
kl(z̃, µ) +

1

r
h (rϵ(λ− z̃))

}
= d̃−ϵ (λ, µ, r) .

The second equality is a consequence of the first.

Lemma 27 gathers regularity properties of the function h defined in Eq. (31).
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Lemma 27. Let h as in Eq. (31). Then,

∀x > 0, h′(x) =
x√

x2 + 1 + 1
> 0 and h′′(x) =

1

1 + x2 +
√
1 + x2

> 0 .

On R⋆
+, the function h is twice continuously differentiable, increasing and strictly convex. Moreover,

it satisfies
h(x) =x→0 x

2/4 +O(x4) and h(x) =x→+∞ x−O(log(x)) .

Proof. For all x > 0, h1(x) = x+ log(x), h2(x) =
√
1 + x2 − 1 and h3(x) =

√
1 + x2 − x. Then

h′1(x) = 1 +
1

x
, h′2(x) =

x√
1 + x2

and h′3(x) =
x√

1 + x2
− 1 ,

Then, we have
∀x > 0, h(x) = h1(h2(x))− 2 log(x) + log 2 .

Therefore, we have

h′(x) = h′2(x)h
′
1(h2(x))−

2

x
=

x√
1 + x2

(
1 +

1√
1 + x2 − 1

)
− 2

x

=
x√

1 + x2 − 1
− 2

x
=

√
1 +

1

x2
− 1

x
= h3(1/x) .

Note that √
1 +

1

x2
− 1

x
=

x√
x2 + 1 + 1

.

Moreover, we have w

h′′(x) = − 1

x2
h′3(1/x) = −

1

x2

(
1/x√

1 + (1/x)2
− 1

)
=

1

1 + x2 +
√
1 + x2

.

By taking the limit, we have limx→0+ h(x) = 0. Moreover, we see that limx→0+ h
′(x) = 0 and

limx→0+ h
′′(x) = 1/2. Therefore, one can conclude that h(x) =x→0 x

2/4 + O(x4) by Taylor
expansion. The second result is obtained directly by limit.

Lemma 28 provides upper and lower bound on the function r 7→ h(rx)/r involved in the definition
of d̃±ϵ .
Lemma 28. Let h as in Eq. (31). Let κ(r, x) = h(rx)/r − x for all r > 0 and all x ∈ R⋆

+. Then,
we have

∀r > 0,
∂κ

∂r
(r, x) =

rxh′(rx)− h(rx)
r2

= log

(
1

2
(
√
1 + (rx)2 + 1)

)
> 0 .

On R⋆
+, the function r 7→ κ(r, x) is increasing. Moreover, we have

∀r > 0,∀x ∈ R+, 0 ≤ rκ(r, x) + log(1 + 2xr) + 1 ≤ 1 + log 4 ,

Proof. Using Lemma 27 and the definition in Eq. (31), we obtain that

∀x > 0, xh′(x)− h(x) = − log

(
2

x2

(√
1 + x2 − 1

))
= log

(
1

2
(
√
1 + x2 + 1)

)
> 0 ,

where we used that
√
1 + x2 + 1 > 2 for the last inequality. Let us define

∀x ∈ R+, g1(x) =
2(1 + 2x)√
1 + x2 + 1

.

Then, we obtain g1(0) = 1, limx→+∞ g1(x) = 4 and

g′1(x) = 2
2 + 2

√
1 + x2 − x√

1 + x2(
√
1 + x2 + 1)2

> 2
2 + x√

1 + x2(
√
1 + x2 + 1)2

> 0 .
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Since g1 is strictly increasing on R⋆
+, we obtain log g1(x) ≥ log g1(0) = 0 and log g1(x) ≤ log 4 for

all x ∈ R+.

By definition, we obtain

rκ(r, x) + log(1 + 2xr) + 1 = h(rx)− rx+ 1 + log(1 + 2xr)

=
√

1 + (rx)2 − rx+ log

(
2(1 + 2xr)√
1 + r2x2 + 1

)
.

Using that 0 ≤
√
1 + x2 − x ≤ 1 on R+, we obtain

rκ(r, x) + log(1 + 2xr) + 1 ≥ log

(
2(1 + 2xr)√
1 + r2x2 + 1

)
= log(g1(rx)) ≥ 0 ,

rκ(r, x) + log(1 + 2xr) + 1 ≤ 1 + log(g1(rx)) ≤ 1 + log 4 .

This concludes the proof.

Lemma 29 provides lower and upper bounds on the gap between d̃±ϵ and d±ϵ .

Lemma 29. Let d±ϵ and d̃±ϵ as in Eq. (3) and (32). For all (λ, µ, r) ∈ R × (0, 1) × R⋆
+ such that

[λ]10 < µ. Then,

d+ϵ (λ, µ) ≤ d̃+ϵ (λ, µ, r) +
log(1 + 2ϵr) + 1

r
.

For all (λ, µ, r) ∈ R× (0, 1)× R⋆
+ such that [λ]10 > µ. Then,

d−ϵ (λ, µ) ≤ d̃−ϵ (λ, µ, r) +
log(1 + 2ϵr) + 1

r
.

For all (λ, µ, r) ∈ [0, 1]× (0, 1)× R⋆
+ such that λ < µ. Then,

d+ϵ (λ, µ) ≥ d̃+ϵ (λ, µ, r)−
log 4

r
.

For all (µ, λ, r) ∈ [0, 1]× R⋆
+ such that λ > µ. Then,

d−ϵ (λ, µ) ≥ d̃−ϵ (λ, µ, r)−
log 4

r
.

Proof. Since µ ∈ (0, 1), we have [λ]10 = max{0, λ}. Therefore, we have z − λ ≥ z − [λ]10 and
z − [λ]10 ∈ (0, µ − [λ]10) ⊂ (0, 1) for all z ∈ ([λ]10, µ). Using Lemmas 27 and 28 and ϵ > 0, we
obtain, for all r > 0 and all z ∈ ([λ]10, µ),

ϵ(z − [λ]10) ≤
1

r
h(rϵ(z − [λ]10)) +

log(1 + 2ϵ(z − [λ]10)r) + 1

r

≤ 1

r
h(rϵ(z − λ)) + log(1 + 2ϵr) + 1

r
.

Therefore, for all z ∈ ([λ]10, µ), we obtain that

kl(z, µ) + ϵ(z − [λ]10) ≤ kl(z, µ) +
1

r
h(rϵ(z − λ)) + log(1 + 2ϵr) + 1

r
.

Taking the infimum over z ∈ ([λ]10, µ) on both sides of both inequalities and using that

d+ϵ (λ, µ) = inf
z∈[[λ]10,µ]

{
kl(z, µ) + ϵ(z − [λ]10)

}
= inf

z∈([λ]10,µ)

{
kl(z, µ) + ϵ(z − [λ]10)

}
,

d̃+ϵ (λ, µ, r) = inf
z∈([λ]10,µ)

{
kl(z, µ) +

1

r
h(rϵ(z − λ))

}
,

we obtain

d+ϵ (λ, µ) ≤ d̃+ϵ (λ, µ, r) +
log(1 + 2ϵr) + 1

r
.
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This concludes the proof of the first result. Using Lemmas 22 and 26 yields the second result.

Suppose that λ ∈ [0, 1], hence λ = [λ]10. Using Lemmas 27 and 28 and ϵ > 0, we obtain, for all
r > 0 and all z ∈ ([λ]10, µ),

1

r
h(rϵ(z − λ)) ≤ ϵ(z − λ) + log 4− log(1 + 2ϵ(z − λ)r)

r
≤ ϵ(z − [λ]10) +

log 4

r
.

Adding kl(z, µ) on both sides and taking the infimum over z ∈ ([λ]10, µ) on both sides of both
inequalities yields the proof of third result. Using Lemmas 22 and 26 yields the forth result.

Lemma 30 gathers regularity properties on the modified divergences d̃+ϵ . In particular, it gives a
closed-form solution based on an implicit solution of a fixed-point equation. This is a key property
used in our implementation to reduce the computational cost.

Lemma 30. Let d̃+ϵ as in Eq. (32), and g±ϵ as in Eq. (30). For all µ ∈ (0, 1), λ ∈ R and r > 0, we
have

d̃+ϵ (λ, µ, r)

=

{
0 if µ ∈ (0, [λ]10]

kl(x+ϵ (λ, µ, r) + g+ϵ (µ), µ) +
1
rh(rϵ(x

+
ϵ (λ, µ, r) + g+ϵ (µ)− λ)) if µ ∈ ([λ]10, 1)

,

where x+ϵ (λ, µ, r) ∈ (max{0, λ− g+ϵ (µ)}, µ− g+ϵ (µ)) is the unique solution for x ∈ (max{0, λ−
g+ϵ (µ)}, µ− g+ϵ (µ)) of the equation

log

(
1 +

x

g+ϵ (µ)(1− x− g+ϵ (µ))

)
+ ϵ

 rϵ(x+ g+ϵ (µ)− λ)√
(rϵ(x+ g+ϵ (µ)− λ))2 + 1 + 1

− 1

 = 0 .

For all (µ, r) ∈ (0, 1) × R⋆
+, the function λ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously differ-

entiable, decreasing and strictly convex on (−∞, µ); it satisfies limλ→µ− d̃+ϵ (λ, µ, r) = 0 and
limλ→−∞ d̃+ϵ (λ, µ, r) = +∞.

For all (λ, r) ∈ R× R⋆
+, the function µ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously differentiable,

increasing and strictly convex on ([λ]10, 1). Moreover, we have

∀µ ∈ ([λ]10, 1),
∂d̃+ϵ
∂µ

(λ, µ, r) =
µ− g+ϵ (µ)− x+ϵ (λ, µ, r)

µ(1− µ)
.

For all (λ, µ) ∈ R× (0, 1) such that µ ∈ (0, [λ]10], the function r 7→ d̃+ϵ (λ, µ, r) is the zero function.
For all (λ, µ) ∈ R × (0, 1) such that µ ∈ ([λ]10, 1), the function r 7→ d̃+ϵ (λ, µ, r) is positive,
continuously differentiable and increasing on R+.

Proof. By definition of the indicator function, we have d̃+ϵ (λ, µ, r) = 0 if µ ∈ (0, [λ]10]. Let (λ, µ)
such that µ /∈ (0, [λ]10], i.e., ([λ]10, µ) is non-empty. Since µ ∈ (0, 1), this implies that λ ∈ (−∞, 1)
necessarily, i.e., [λ]10 = max{0, λ}.

Recall that d̃+ϵ (λ, µ, r) = 1
(
µ > [λ]10

)
infz∈([λ]10,µ)

f̃+ϵ (λ, µ, r, z) where f̃+ϵ (λ, µ, r, z) = kl(z, µ)+
1
rh(rϵ(z − λ)). Using Lemma 27, direct computations yield that, for all z ∈ ([λ]10, µ),

∂f̃+ϵ
∂z

(λ, µ, r, z) = log

(
z(1− µ)
(1− z)µ

)
+ ϵh′(rϵ(z − λ))

= log

(
z(1− µ)
(1− z)µ

)
+ ϵ

rϵ(z − λ)√
(rϵ(z − λ))2 + 1 + 1

,

∂2f̃+ϵ
∂z2

(λ, µ, r, z) =
1

z(1− z)
+ rϵ2h′′(rϵ(z − λ)) > 0 .
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Therefore, z → f̃+ϵ (λ, µ, r, z) is twice continuously differentiable, positive and strictly convex on
([λ]10, µ). Moreover, we have

lim
z→µ

∂f̃+ϵ
∂z

(λ, µ, r, z) = ϵh′(rϵ(µ− λ)) > 0 ,

∂f̃+ϵ
∂z

(λ, µ, r, g+ϵ (µ)) = −ϵ

(
1− rϵ(z − λ)√

(rϵ(z − λ))2 + 1 + 1

)
< 0 ,

When [λ]10 > g+ϵ (µ),
∂f̃+ϵ
∂z

(λ, µ, r, λ) = log

(
λ(1− µ)
(1− λ)µ

)
< 0 .

Note that max{[λ]10, g+ϵ (µ)} = max{λ, g+ϵ (µ)} since µ ∈ (0, 1). Using that z → ∂f̃+
ϵ

∂z (λ, µ, r, z)

is continuously differentiable and increasing on ([λ]10, µ), with negative value at max{λ, g+ϵ (µ)}
and finite positive limit at µ, z 7→ f̃+ϵ (λ, µ, r, z) admit a unique minimizer on (max{λ, g+ϵ (µ)}, µ).
Let g̃+ϵ (λ, µ, r) ∈ (max{λ, g+ϵ (µ)}, µ) be defined as this unique minimizer, defined implicitly as
solution for z ∈ (max{λ, g+ϵ (µ)}, µ) of the equation

log

(
z(1− µ)
(1− z)µ

)
+ ϵ

rϵ(z − λ)√
(rϵ(z − λ))2 + 1 + 1

= 0 .

Then, we have ∂f̃+
ϵ

∂z (λ, µ, r, z) = 0 if and only if z = g̃+ϵ (λ, µ, r). Moreover, z 7→ f̃+ϵ (λ, µ, r, z) is
decreasing on ([λ]10, g̃

+
ϵ (λ, µ, r)) and increasing on (g̃+ϵ (λ, µ, r), µ).

Let us define z = g+ϵ (µ) + x where x ∈ (max{0, λ− g+ϵ (µ)}, µ− g+ϵ (µ)). Then, we have

∂f̃+ϵ
∂z

(λ, µ, r, g+ϵ (µ) + x)

= log

(
1 +

x

g+ϵ (µ)(1− x− g+ϵ (µ))

)
+ ϵ

 rϵ(x+ g+ϵ (µ)− λ)√
(rϵ(x+ g+ϵ (µ)− λ))2 + 1 + 1

− 1


Therefore, we have g̃+ϵ (λ, µ, r) = g+ϵ (µ) + x+ϵ (λ, µ, r) where x+ϵ (λ, µ, r) ∈ (max{0, λ −
g+ϵ (µ)}, µ− g+ϵ (µ)) is the solution for x ∈ (max{0, λ− g+ϵ (µ)}, µ− g+ϵ (µ)) of the equation

log

(
1 +

x

g+ϵ (µ)(1− x− g+ϵ (µ))

)
+ ϵ

 rϵ(x+ g+ϵ (µ)− λ)√
(rϵ(x+ g+ϵ (µ)− λ))2 + 1 + 1

− 1

 = 0 .

When λ ∈ (0, 1) and µ→ λ = [λ]10, it is direct to see that g̃+ϵ (λ, µ, r)→ λ. Then, we have

lim
µ→λ+

d̃+ϵ (λ, µ, r) = lim
µ→λ+

{kl(g̃+ϵ (λ, µ, r), µ)}+
1

r
lim

g̃+
ϵ (λ,µ,r)→λ+

{h(rϵ(g̃+ϵ (λ, µ, r)− λ))} = 0 .

Direct computation yields that, for z ∈ ([λ]10, µ) ⊂ (0, 1),

∂f̃+ϵ
∂µ

(λ, µ, r, z) =
µ− z

µ(1− µ)
> 0 ,

∂2f̃+ϵ
∂µ2

(λ, µ, r, z) =
(µ− z)2 + z(1− z)

µ2(1− µ)2
> 0 ,

∂2f̃+ϵ
∂z2

(λ, µ, r, z) =
1

z(1− z)
+ rϵ2h′′(rϵ(z − λ)) > 0 ,

∂2f̃+ϵ
∂µ∂z

(λ, µ, r, z) = − 1

µ(1− µ)
< 0 .

Since ∂f̃+
ϵ

∂z (λ, µ, r, g+ϵ (λ, µ, r)) = 0, the implicit function theorem yields that

∂g̃+ϵ
∂µ

(λ, µ, r) = −
∂2f+

ϵ

∂µ∂z (λ, µ, r, g
+
ϵ (λ, µ, r))

∂2f̃+
ϵ

∂z2 (λ, µ, r, g+ϵ (λ, µ, r))
> 0 .
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Moreover, for µ ∈ ([λ]10, 1),

∂d̃+ϵ
∂µ

(λ, µ, r) =
∂f̃+ϵ
∂µ

(λ, µ, r, g̃+ϵ (λ, µ, r)) +
∂g̃+ϵ
∂µ

(λ, µ, r)
∂f̃+ϵ
∂z

(λ, µ, r, g̃+ϵ (λ, µ, r))

=
∂f̃+ϵ
∂µ

(λ, µ, r, g̃+ϵ (λ, µ, r)) =
µ− g+ϵ (µ)− x+ϵ (λ, µ, r)

µ(1− µ)
> 0 ,

∂2d̃+ϵ
∂µ2

(λ, µ, r) =
∂2f̃+ϵ
∂µ2

(λ, µ, r, g̃+ϵ (λ, µ, r))
∂g̃+ϵ
∂µ

(λ, µ, r) > 0 .

Therefore, for all (λ, r) ∈ R × R⋆
+, the function µ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously

differentiable, increasing and strictly convex on ([λ]10, 1).

Let (µ, r) ∈ (0, 1)× R⋆
+. Direct computation yields that, for z ∈ ([λ]10, µ) ⊂ (0, 1),

∂f̃+ϵ
∂λ

(λ, µ, r, z) = −ϵh′(rϵ(z − λ)) < 0 ,

∂2f̃+ϵ
∂λ∂z

(λ, µ, r, z) = −rϵ2h′′(rϵ(z − λ)) < 0 .

Since ∂f̃+
ϵ

∂z (λ, µ, r, g+ϵ (λ, µ, r)) = 0, the implicit function theorem yields that

∂g̃+ϵ
∂λ

(λ, µ, r) = −
∂2f+

ϵ

∂λ∂z (λ, µ, r, g
+
ϵ (λ, µ, r))

∂2f̃+
ϵ

∂z2 (λ, µ, r, g+ϵ (λ, µ, r))
=

rϵ2h′′(rϵ(g+ϵ (λ, µ, r)− λ))
1

z(1−z) + rϵ2h′′(rϵ(g+ϵ (λ, µ, r)− λ))
< 1 .

Direct computation yields that, for λ ∈ (−∞, µ),

∂d̃+ϵ
∂λ

(λ, µ, r) =
∂f̃+ϵ
∂λ

(λ, µ, r, g̃+ϵ (λ, µ, r)) +
∂g̃+ϵ
∂λ

(λ, µ, r)
∂f̃+ϵ
∂z

(λ, µ, r, g̃+ϵ (λ, µ, r))

=
∂f̃+ϵ
∂λ

(λ, µ, r, g̃+ϵ (λ, µ, r)) = −ϵh′(rϵ(g̃+ϵ (λ, µ, r)− λ)) < 0 ,

∂2d̃+ϵ
∂λ2

(λ, µ, r) = rϵ2
(
1− ∂g̃+ϵ

∂λ
(λ, µ, r)

)
h′′(rϵ(g̃+ϵ (λ, µ, r)− λ)) > 0 .

Therefore, for all (µ, r) ∈ (0, 1)× R⋆
+, the function λ 7→ d̃+ϵ (λ, µ, r) is positive, twice continuously

differentiable, decreasing and strictly convex on (−∞, µ). Similarly as above, it is direct to see that
limλ→µ− d̃+ϵ (λ, µ, r) = 0 and limλ→−∞ d̃+ϵ (λ, µ, r) = +∞.

Let (λ, µ) ∈ R × (0, 1). When µ ∈ (0, [λ]10], we have d̃+ϵ (λ, µ, r) = 0 for all r ∈ [1,+∞), hence
r 7→ d̃+ϵ (λ, µ, r) is non-decreasing. Let κ as in Lemma 28. Using Lemma 28, we have

∀z > λ,
∂f̃+ϵ
∂r

(λ, µ, r, z) =
∂κ

∂r
(r, ϵ(z − λ)) > 0 .

When µ ∈ ([λ]10, 1), we have g̃+ϵ (λ, µ, r) ∈ (max{λ, g+ϵ (µ)}, µ) and, for all r > 0,

∂d̃+ϵ
∂r

(λ, µ, r) =
∂f̃+ϵ
∂r

(λ, µ, r, g̃+ϵ (λ, µ, r)) +
∂g̃+ϵ
∂r

(λ, µ, r)
∂f̃+ϵ
∂z

(λ, µ, r, g̃+ϵ (λ, µ, r))

=
∂f̃+ϵ
∂r

(λ, µ, r, g̃+ϵ (λ, µ, r)) > 0 ,

where we used that g̃+ϵ (λ, µ, r) > λ. This concludes the last part of the proof.

Lemma 31 gathers regularity properties on the modified divergences d̃−ϵ . In particular, it gives a
closed-form solution based on an implicit solution of a fixed-point equation. This is a key property
used in our implementation to reduce the computational cost.
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Lemma 31. Let d̃−ϵ as in Eq. (32), and g±ϵ as in Eq. (30). For all µ ∈ (0, 1), λ ∈ R and r > 0, we
have

d̃−ϵ (λ, µ, r)

=

{
0 if µ ∈ [[λ]10, 1)

kl(g−ϵ (µ)− x−ϵ (λ, µ, r), µ) + 1
rh(rϵ(x

−
ϵ (λ, µ, r) + λ− g−ϵ (µ))) if µ ∈ (0, [λ]10)

,

where x−ϵ (λ, µ, r) := x+ϵ (1 − λ, 1 − µ, r) ∈ (max{g−ϵ (µ) − λ, 0}, g−ϵ (µ) − µ) is the solution for
x ∈ (max{g−ϵ (µ)− λ, 0}, g−ϵ (µ)− µ) of the equation

log

(
1 +

x

(1− g−ϵ (µ))(g−ϵ (µ)− x)

)
+ ϵ

 rϵ(x− g−ϵ (µ) + λ)√
(rϵ(x− g−ϵ (µ) + λ))2 + 1 + 1

− 1

 = 0 .

For all (µ, r) ∈ (0, 1) × R⋆
+, the function λ 7→ d̃−ϵ (λ, µ, r) is positive, twice continuously dif-

ferentiable, increasing and strictly convex on (µ,+∞); it satisfies limλ→µ+ d̃+ϵ (λ, µ, r) = 0 and
limλ→+∞ d̃−ϵ (λ, µ, r) = +∞.

For all (λ, r) ∈ R× R⋆
+, the function µ 7→ d̃−ϵ (λ, µ, r) is positive, twice continuously differentiable,

decreasing and strictly convex on (0, [λ]10). Moreover, we have

∀µ ∈ (0, [λ]10),
∂d̃−ϵ
∂µ

(λ, µ, r) =
µ− g−ϵ (µ) + x−ϵ (λ, µ, r)

µ(1− µ)
.

For all (λ, µ) ∈ R× (0, 1) such that µ ∈ (0, [λ]10], the function r 7→ d̃−ϵ (λ, µ, r) is the zero function.
For all (λ, µ) ∈ R × (0, 1) such that µ ∈ ([λ]10, 1), the function r 7→ d̃−ϵ (λ, µ, r) is positive,
continuously differentiable and increasing on R+.

Proof. Using Lemmas 26 and 23, we have

d̃−ϵ (λ, µ, r) = d̃+ϵ (1− λ, 1− µ, r) and g+ϵ (λ) = 1− g−ϵ (1− λ) ,

∂d̃−ϵ
∂µ

(λ, µ, r) = −∂d̃
+
ϵ

∂µ
(1− λ, 1− µ, r) and

∂2d̃−ϵ
∂µ2

(λ, µ, r) =
∂2d̃+ϵ
∂µ2

(1− λ, 1− µ, r) .

Let x+ϵ (1 − λ, 1 − µ, r) ∈ (max{0, g−ϵ (µ) − λ}, g−ϵ (µ) − µ) be the unique solution for x ∈
(max{0, g−ϵ (µ)− λ}, g−ϵ (µ)− µ) of the equation

log

(
1 +

x

(1− g−ϵ (µ))(g−ϵ (µ)− x)

)
+ ϵ

 rϵ(x− g−ϵ (µ) + λ)√
(rϵ(x− g−ϵ (µ) + λ))2 + 1 + 1

− 1

 = 0 ,

where we used g+ϵ (1− µ) = 1− g−ϵ (µ) to simplify the formula given in Lemma 30. Therefore, we
define x−ϵ (λ, µ, r) = x+ϵ (1− λ, 1− µ, r). Then, we have

kl(g−ϵ (µ)− x−ϵ (λ, µ, r), µ) +
1

r
h(rϵ(x−ϵ (λ, µ, r) + λ− g−ϵ (µ))) =

kl(x+ϵ (1− λ, 1− µ, r) + g+ϵ (1− µ), 1− µ) +
h(rϵ(x+ϵ (1− λ, 1− µ, r) + g+ϵ (1− µ)− 1 + λ))

r

where we used that kl(g−ϵ (µ)− x−ϵ (λ, µ, r), µ) = kl(1− g−ϵ (µ) + x−ϵ (λ, µ, r), 1− µ). Combining
the above with the properties on d̃+ϵ in Lemma 30 concludes the proof.

Lemma 32 shows that we can invert d̃±ϵ with respect to their first argument, which is a key property
used in Appendix F.

Lemma 32. Let d̃±ϵ as in Eq. (32). For all (µ, r, c) ∈ (0, 1) × R⋆
+ × R⋆

+, there exists x > 0 such
that d̃+ϵ (µ − x, µ, r) = c. For all (µ, r, c) ∈ (0, 1) × R⋆

+ × R⋆
+, there exists x > 0 such that

d̃−ϵ (µ+ x, µ, r) = c.
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Proof. Let us define f(x) = d̃+ϵ (µ − x, µ, r) for all x > 0. Using Lemma 30, we know that f is
continuous and increasing on R⋆

+ and it satisfies limx→0+ f(x) = 0 and limx→+∞ f(x) = +∞.
Therefore, there exists a unique x > 0 such that d̃+ϵ (µ − x, µ, r) = c. Using Lemma 31, we can
conclude similarly for d̃−ϵ .

Lemma 32 shows that d̃±ϵ is non-decreasing with respect to their first argument, which is a key
property used in Appendix F.

Lemma 33. Let d̃±ϵ as in Eq. (32). For all (µ, r) ∈ (0, 1)× R⋆
+ and all (λ1, λ2) ∈ R× (−∞, µ),

d̃+ϵ (λ1, µ, r) ≥ d̃+ϵ (λ2, µ, r) =⇒ λ1 ≤ λ2
For all (µ, r) ∈ (0, 1)× R⋆

+ and all (λ1, λ2) ∈ R× (µ,+∞),

d̃−ϵ (λ1, µ, r) ≥ d̃−ϵ (λ2, µ, r) =⇒ λ1 ≥ λ2

Proof. Using Lemma 30, we known that λ 7→ d̃+ϵ (λ, µ, r) is decreasing on (−∞, µ). Let (λ1, λ2) ∈
R× (−∞, µ). Then, we have

λ1 > λ2 =⇒ d̃+ϵ (λ1, µ, r) < d̃+ϵ (λ2, µ, r) ,

which is equivalent to the statement of the lemma by contraposition. Using Lemma 31, we can
conclude similarly for d̃−ϵ .

G.2 Transportation Cost

Recall that Wϵ,a,b is defined in Eq. (50), i.e., for all (µ,w) ∈ RK × RK
+ ,

∀(a, b) ∈ [K]2, Wϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈[0,1]

{
wad

−
ϵ (µa, u) + wbd

+
ϵ (µb, u)

}
,

where d±ϵ are defined in Eq. (3).

Lemma 34 gathers regularity properties on the transportation costs.
Lemma 34. Let d±ϵ as in Eq. (3). For all (λ, µ) ∈ (0, 1)2 such that λ ≥ µ and w ∈ R2

+.

• The function u 7→ w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u) is strictly convex on [µ, λ] when

max{w1, w2} > 0 and on [0, 1] when min{w1, w2} > 0. Then,

inf
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = inf

u∈[µ,λ]
{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} .

• The function (λ, µ,w) 7→ infu∈[0,1]{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is continuous on (0, 1)×

(0, 1)× R2
+.

• If max{w1, w2} > 0, u⋆(λ, µ,w) = argminu∈[0,1]{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is unique

and continuous on (0, 1)× (0, 1)× R2
+.

• If min{w1, w2} > 0 and λ > µ, u⋆(λ, µ,w) ∈ (µ, λ) and
min{d−ϵ (λ, u⋆(λ, µ,w)), d+ϵ (µ, u⋆(λ, µ,w))} > 0.

Moreover,

inf
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = inf

(u1,u2)∈[0,1]2 : u1≤u2

{w1d
−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)} .

Proof. These results are obtained by leveraging Lemmas 24 and 25 at each step.

For u ≤ µ, the function is equal to w1d
−
ϵ (λ, u), which is decreasing and strictly convex on [0, λ)

unless w1 = 0 since u ≤ µ ≤ λ. Therefore, the minimum over that interval is attained at µ. For
u ≥ λ, the function is equal to w2d

+
ϵ (µ, u), which is increasing and strictly convex on (µ, 1] unless

w2 = 0 since u ≥ λ ≥ µ. Therefore, the minimum over that interval is attained at λ. On the interval
(µ, λ), the function is equal to w1d

−
ϵ (λ, u)+w2d

+
ϵ (µ, u), hence it is the sum of two convex functions,
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one of which is strictly convex. Furthermore, the function is continuous at µ and λ. This concludes
the first part of the proof.

As we have just shown, we can restrict the infimum to [µ, λ]. We apply Berge’s Maximum theorem
[16, page 116]. Let

ϕ(u, λ, µ, w) = −w1d
−
ϵ (λ, u)− w2d

+
ϵ (µ, u) ,

Γ(λ, µ,w) = [µ, λ] ,

M(λ, µ,w) = max{ϕ(u, λ, µ, w) | u ∈ Γ(λ, µ,w)} ,
Φ(λ, µ,w) = argmax{ϕ(u, λ, µ, w) | u ∈ Γ(λ, µ,w)} .

We verify the hypotheses of the theorem:

• ϕ is continuous on [µ, λ] × (0, 1) × (0, 1) × R2
+, by using the properties in Lemmas 24

and 25 since (λ, µ) ∈ (0, 1)2.

• Γ is nonempty, compact-valued and continuous (since constant).

We obtain that M is continuous on (0, 1)× (0, 1)× R2
+ and that Φ is upper hemicontinuous. This

concludes the second part of the proof.

When max{w1, w2} > 0, we have just shown that ϕ is a strictly concave function of u. Combining
this with the fact that Γ is convex, we can argue as in [78, Theorem 9.17] to prove that Φ is a
single-valued upper hemicontinuous correspondence, hence a continuous function. This concludes
the third part of the proof.

Suppose that min{w1, w2} > 0 and λ > µ. Using Lemmas 24 and 25, the function u 7→
w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u) is continuously differentiable on (µ, λ) with derivative w1

∂d−
ϵ

∂u (λ, u) +

w2
∂d+

ϵ

∂u (µ, u) where

∀u ∈ (µ, 1],
∂d+ϵ
∂u

(µ, u) =

{
1−e−ϵ

1−u(1−e−ϵ) if u ∈ (g−ϵ (µ), 1]
u−µ

u(1−u) if u ∈ (µ, g−ϵ (µ)]
,

∀u ∈ [0, λ),
∂d−ϵ
∂u

(λ, u) =

{
− eϵ−1

1+u(eϵ−1) if u ∈ [0, g+ϵ (λ))

− λ−u
u(1−u) if u ∈ [g+ϵ (λ), λ)

.

Since ∂d−
ϵ

∂u (λ, u)→u→λ− 0 and ∂d+
ϵ

∂u (µ, u)→u→µ+ 0, we obtain

lim
u→λ−

{
w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u)

}
= w2

∂d+ϵ
∂u

(µ, λ) > 0 ,

lim
u→µ+

{
w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u)

}
= w1

∂d−ϵ
∂u

(λ, µ) < 0 .

Therefore, the infimum is attained inside the open interval. Using Lemmas 24 and 25, we can
conclude the proof of the first part of the fourth property.

Using the strict convexity of u1 7→ w1d
−
ϵ (λ, u1) and u2 7→ w2d

+
ϵ (µ, u2) on (µ, λ), we obtain that

inf
u∈(µ,λ)

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = inf

(u1,u2) : µ<u1≤u2<λ
{w1d

−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)} .

Re-using the same arguments as above, we obtain that

inf
(u1,u2) : µ<u1≤u2<λ

{w1d
−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)}

= inf
(u1,u2)∈[0,1]2 : u1≤u2

{w1d
−
ϵ (λ, u1) + w2d

+
ϵ (µ, u2)} .

This concludes the proof of the second part of the fourth property.

Lemma 35 relates the transportation costs Wϵ,a⋆,a with the transportation costs used in Eq. (1) to
define the characteristic time. Crucially, this shows the equivalence with the definitions in Eq. (35).
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Lemma 35. Let Wϵ,a⋆,a and dϵ as in Eq. (4) and (2). Let µ ∈ (0, 1)K such that a⋆(µ) = {a⋆}. Let
Alt(µ) = {λ ∈ (0, 1)K | a⋆(λ) ̸= {a⋆}}. Then,

∀w ∈ △K , inf
λ∈Alt(µ)

∑
a∈[K]

wadϵ(µa, λa) = min
a ̸=a⋆

Wϵ,a⋆,a(µ,w) .

Proof. It is direct to see that Alt(µ) =
⋃

a̸=a⋆ Ca where Ca = {λ ∈ (0, 1)K | λa ≥ λa⋆}. Then,

∀w ∈ △K , inf
λ∈Alt(µ)

∑
a∈[K]

wadϵ(µa, λa) = min
a̸=a⋆

inf
λ∈Ca

∑
c∈[K]

wcdϵ(µc, λc) .

By non-negativity of dϵ(µa, λa) for all a ∈ [K], we obtain

inf
λ∈Ca

∑
c∈[K]

wcdϵ(µc, λc) = inf
λ∈Ca

∑
c∈{a,a⋆}

wcdϵ(µc, λc)

= inf
(λa,λa⋆ )∈(0,1)2, λa≥λa⋆

∑
c∈{a,a⋆}

wcdϵ(µc, λc) ,

where the two equalities are obtained by choosing λ(a) ∈ (0, 1)K such that λ(a)b = µb for all
b /∈ {a, a⋆} with the two other coordinates choosen freely such that λ(a)a ≥ λ(a)a⋆ . Using that
µa⋆ > µa, we can partition this set as follows

Ca,a⋆ = {(λa, λa⋆) ∈ (0, 1)2 | λa ≥ λa⋆} = {(λa, λa⋆) ∈ (0, µa)
2 | λa ≥ λa⋆}

∪ {(λa, λa⋆) ∈ [µa, µa⋆ ]× (0, µa)}
∪ {(λa, λa⋆) ∈ (µa⋆ , 1)2 | λa ≥ λa⋆}
∪ {(λa, λa⋆) ∈ (µa⋆ , 1)× [µa, µa⋆ ]}
∪ {(λa, λa⋆) ∈ [µa, µa⋆ ]2 | λa ≥ λa⋆} .

Using Lemma 21, µa⋆ > µa and Lemmas 24 and 25, we obtain

inf
(λa,λa⋆ )∈(0,µa)2| λa≥λa⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈(0,µa)2| λa≥λa⋆

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
−
ϵ (µa, λa)} = wa⋆d−ϵ (µa⋆ , µa) ,

inf
(λa,λa⋆ )∈[µa,µa⋆ ]×(0,µa)

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈[µa,µa⋆ ]×(0,µa)

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} = wa⋆d−ϵ (µa⋆ , µa) ,

inf
(λa,λa⋆ )∈(µa⋆ ,1)2| λa≥λa⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈(µa⋆ ,1)2| λa≥λa⋆

{wa⋆d+ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} = wad

+
ϵ (µa, µa⋆) ,

inf
(λa,λa⋆ )∈(µa⋆ ,1)×[µa,µa⋆ ]

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈(µa⋆ ,1)×[µa,µa⋆ ]

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} = wad

+
ϵ (µa, µa⋆) ,

inf
(λa,λa⋆ )∈[µa,µa⋆ ]2| λa≥λa⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈[µa,µa⋆ ]2| λa≥λa⋆

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)} .

Therefore, we obtain

inf
(λa,λa⋆ )∈Ca,a⋆

{wa⋆dϵ(µa⋆ , λa⋆) + wadϵ(µa, λa)}

= inf
(λa,λa⋆ )∈[µa,µa⋆ ]2| λa≥λa⋆

{wa⋆d−ϵ (µa⋆ , λa⋆) + wad
+
ϵ (µa, λa)}

= inf
u∈[µa,µa⋆ ]2

{wa⋆d−ϵ (µa⋆ , u) + wad
+
ϵ (µa, u)}

= inf
u∈[0,1]

{wa⋆d−ϵ (µa⋆ , u) + wad
+
ϵ (µa, u)} =Wϵ,a⋆,a(µ,w) ,
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where the second equality is obtained similarly as in Lemma 34 by leveraging the strict convexity
of d±ϵ in their second argument (see Lemmas 24 and 25). We used Lemma 34 and the definition of
Wϵ,a⋆,a(µ,w) for the last two equalities. This concludes the proof.

Lemma 36 gathers additional properties on the transportation costs.
Lemma 36. Let d±ϵ as in Eq. (3).

• Let (λ, µ) ∈ (0, 1)2 such that λ > µ. When w2 > 0, the function w1 7→
minu∈[0,1]{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is increasing on R+. When w1 > 0, the function

w2 7→ minu∈[0,1]{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is increasing on R+.

• Let (λ, µ) ∈ (0, 1)2 and µ ∈ (0, 1)K . The function w 7→
minu∈[0,1]{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} is concave on R2

+. The function
w 7→ mina∈[K]\{1} minu∈[0,1]{w1d

−
ϵ (µ1, u) + wad

+
ϵ (µa, u)} is concave on RK

+ .

Proof. Let w2 > 0 and w′
1 > w1 ≥ 0. Using Lemma 34, since w′

1 > 0, there exists u′ ∈ [0, 1] with
d−ϵ (λ, u

′) > 0 such that

min
u∈[0,1]

{w′
1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = w′

1d
−
ϵ (λ, u

′) + w2d
+
ϵ (µ, u

′)

> w1d
−
ϵ (λ, u

′) + w2d
+
ϵ (µ, u

′)

≥ min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} .

Let w1 > 0 and w′
2 > w2 ≥ 0. Then, we can show similarly by using Lemma 34 that

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w′

2d
+
ϵ (µ, u)} > min

u∈[0,1]
{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} .

This concludes the first part of the proof. The proof of the second part is direct since those functions
are minimum of linear functions, hence concave.

Lemma 37 gives a closed-form solution for the transportation costs. This is a key property used in
our implementation to reduce the computational cost.
Lemma 37. Let d±ϵ and g±ϵ as in Eq. (3) and (30). For all (a, c) ∈ R2

+ and b ∈ R, let r1,+(a, b, c) :=√
b2+4ac−b

2a . For all (λ, µ) ∈ (0, 1)2 and w ∈ R2
+ such that min{w1, w2} > 0 and λ > µ.

• When (1) g−ϵ (µ) ≥ λ, or (2) g−ϵ (µ) < λ, g+ϵ (λ) ≤ g−ϵ (µ) and w2µ+w1λ
w2+w1

∈ [g+ϵ (λ), g
−
ϵ (µ)], we

have u⋆(λ, µ,w) = w2µ+w1λ
w2+w1

and

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = w1kl(λ, u⋆(λ, µ,w)) + w2kl(µ, u⋆(λ, µ,w)) .

• When (3) g−ϵ (µ) < λ, g+ϵ (λ) > g−ϵ (µ) and u3,⋆(w) ∈ [g−ϵ (µ), g
+
ϵ (λ)] where

u3,⋆(w) :=
w1(e

ϵ − 1)− w2(1− e−ϵ)

(w2 + w1)(1− e−ϵ)(eϵ − 1)
,

we have u⋆(λ, µ,w) = u3,⋆(w) and

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)}

= w1 (− log (1 + u3,⋆(w)(e
ϵ − 1)) + ϵλ) + w2

(
− log

(
1− u3,⋆(w)(1− e−ϵ)

)
− ϵµ

)
.

• When (4) g−ϵ (µ) < λ, g+ϵ (λ) ≤ g−ϵ (µ) and w2µ+w1λ
w2+w1

∈ (µ, g+ϵ (λ)), or (5) g−ϵ (µ) < λ, g+ϵ (λ) >
g−ϵ (µ) and u3,⋆(w) < g−ϵ (µ), we have u⋆(λ, µ,w) = u1,⋆(µ,w) and

u1,⋆(µ,w) := r1,+ ((w2 + w1)(e
ϵ − 1), (w2 − (w2µ+ w1)(e

ϵ − 1)) , w2µ) ,

min
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)}
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= w1 (− log (1 + u1,⋆(µ,w)(e
ϵ − 1)) + ϵλ) + w2kl(µ, u1,⋆(µ,w)) .

• When (6) g−ϵ (µ) < λ, g+ϵ (λ) ≤ g−ϵ (µ) and w2µ+w1λ
w2+w1

∈ (g−ϵ (µ), λ), or (7) g−ϵ (µ) < λ, g+ϵ (λ) >
g−ϵ (µ) and u3,⋆(w) > g+ϵ (λ), we have u⋆(λ, µ,w) = u2,⋆(λ,w) and

u2,⋆(λ,w) := 1− r1,+ ((w2 + w1)(e
ϵ − 1), (w1 − (w1(1− λ) + w2)(e

ϵ − 1)) , w1(1− λ)) ,
min

u∈[0,1]
{w1d

−
ϵ (λ, u) + w2d

+
ϵ (µ, u)}

= w1kl(λ, u2,⋆(λ,w)) + w2

(
− log

(
1− u2,⋆(λ,w)(1− e−ϵ)

)
− ϵµ

)
.

Proof. Suppose that g−ϵ (µ) ≥ λ. Using Lemma 23, we know that g−ϵ (µ) ≥ λ if and only if
µ ≥ g+ϵ (λ). Therefore, for all u ∈ (µ, λ), we have

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
λ− u
u(1− u)

+ w2
u− µ
u(1− u)

=
(w2 + w1)u− (w2µ+ w1λ)

u(1− u)
.

Therefore, we have

u⋆(λ, µ,w) =
w2µ+ w1λ

w2 + w1
∈ (µ, λ) .

Suppose that g−ϵ (µ) < λ. Using Lemma 23, we know that g−ϵ (µ) < λ if and only if µ < g+ϵ (λ).
Using strict convexity of the function on (µ, λ), it is enough to exhibit one local minimum to obtain a
global minimum on (µ, λ).

Suppose that g+ϵ (λ) ≤ g−ϵ (µ). Similarly as above, we obtain, for all u ∈ [g+ϵ (λ), g
−
ϵ (µ)],

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) =
(w2 + w1)u− (w2µ+ w1λ)

u(1− u)
.

Suppose that w2µ+w1λ
w2+w1

∈ [g+ϵ (λ), g
−
ϵ (µ)]. Then, we can conclude as above that

u⋆(λ, µ,w) =
w2µ+ w1λ

w2 + w1
∈ [g+ϵ (λ), g

−
ϵ (µ)] ,

since it is a local minimum of a strictly convex function.

Suppose that w2µ+w1λ
w2+w1

< g+ϵ (λ). Since the gradient is positive on [g+ϵ (λ), g
−
ϵ (µ)], we know that

the minimum on (µ, λ) is achieved on (µ, g+ϵ (λ)), i.e., u⋆(λ, µ,w) ∈ (µ, g+ϵ (λ)). Then, for all
u ∈ (µ, g+ϵ (λ)),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
eϵ − 1

1 + u(eϵ − 1)
+ w2

u− µ
u(1− u)

.

Using Lemma 23, direct computation yields

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) > 0 ⇐⇒ µ < u

(
1 +

w1

w2

(
1− g−ϵ (u)

u

))
,

lim
u→µ+

u

(
1 +

w1

w2

(
1− g−ϵ (u)

u

))
= µ

(
1 +

w1

w2

(
1− g−ϵ (µ)

µ

))
< µ ,

lim
u→g+

ϵ (λ)−
u

(
1 +

w1

w2

(
1− g−ϵ (u)

u

))
= g+ϵ (λ)

(
1 +

w1

w2

(
1− λ

g+ϵ (λ)

))
> µ ,

where the second result uses that u < g−ϵ (u) and the last result is obtained by continuity of the
differentials (Lemmas 24 and 25) and the positivity on [g+ϵ (λ), g

−
ϵ (µ)]. For all (a, c) ∈ R2

+ and
b ∈ R, we define r1,+(a, b, c) =

√
b2+4ac−b

2a . Therefore, we have

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = 0

⇐⇒ (w2 + w1)(e
ϵ − 1)u2 + (w2 − (w2µ+ w1)(e

ϵ − 1))u− w2µ = 0

⇐⇒ u⋆(λ, µ,w) = r1,+ ((w2 + w1)(e
ϵ − 1), (w2 − (w2µ+ w1)(e

ϵ − 1)) , w2µ) ∈ (µ, g+ϵ (λ))
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where we used that u⋆(λ, µ,w) ∈ (µ, g+ϵ (λ)) is unique for the last equivalence, and that the second
root of the second order polynomial equation is negative. Notice that u⋆(λ, µ,w) is independent of λ.

Suppose that w2µ+w1λ
w2+w1

> g−ϵ (µ). Since the gradient is negative on [g+ϵ (λ), g
−
ϵ (µ)], we know that

the minimum on (µ, λ) is achieved on (g−ϵ (µ), λ), i.e., u⋆(λ, µ,w) ∈ (g−ϵ (µ), λ). Then, for all
u ∈ (g−ϵ (µ), λ),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
λ− u
u(1− u)

+ w2
1− e−ϵ

1− u(1− e−ϵ)
.

Using Lemma 23, direct computation yields

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) < 0 ⇐⇒ λ > u

(
1 +

w2

w1

(
1− g+ϵ (u)

u

))
,

lim
u→λ−

u

(
1 +

w2

w1

(
1− g+ϵ (u)

u

))
= λ

(
1 +

w2

w1

(
1− g+ϵ (λ)

λ

))
> λ ,

lim
u→g−

ϵ (µ)+
u

(
1 +

w2

w1

(
1− g+ϵ (u)

u

))
= g−ϵ (µ)

(
1 +

w2

w1

(
1− µ

g−ϵ (µ)

))
< λ ,

where the second result uses that u > g+ϵ (u) and the last result is obtained by continuity of the
differentials (Lemmas 24 and 25) and the negativity on [g+ϵ (λ), g

−
ϵ (µ)].

Using Lemma 22, we obtain

argmin
u∈[0,1]

{w1d
−
ϵ (λ, u) + w2d

+
ϵ (µ, u)} = 1− argmin

u∈[0,1]

{w1d
+
ϵ (1− λ, u) + w2d

−
ϵ (1− µ, u)} .

Using Lemma 23, we obtain

g−ϵ (µ) < λ ⇐⇒ g−ϵ (1− λ) < 1− µ ,
w2µ+ w1λ

w2 + w1
∈ (g−ϵ (µ), λ) ⇐⇒ w2(1− µ) + w1(1− λ)

w2 + w1
∈ (1− λ, g+ϵ (1− µ)) .

Therefore, we can leverage the above case to obtain u⋆(λ, µ,w) = u2,⋆(λ,w) where

u2,⋆(λ,w) = 1− r1,+ ((w2 + w1)(e
ϵ − 1), (w1 − (w1(1− λ) + w2)(e

ϵ − 1)) , w1(1− λ))
Notice that u⋆(λ, µ,w) is independent of µ.

Suppose that g−ϵ (µ) < λ and g+ϵ (λ) > g−ϵ (µ). Similarly as above, we obtain, for all u ∈
[g−ϵ (µ), g

+
ϵ (λ)],

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
eϵ − 1

1 + u(eϵ − 1)
+ w2

1− e−ϵ

1− u(1− e−ϵ)
.

Therefore, we obtain

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) > 0

⇐⇒ w2(1− e−ϵ)(1 + u(eϵ − 1))− w1(e
ϵ − 1)(1− u(1− e−ϵ)) > 0

⇐⇒ u > u3,⋆(w) :=
w1(e

ϵ − 1)− w2(1− e−ϵ)

(w2 + w1)(1− e−ϵ)(eϵ − 1)
.

Suppose that u3,⋆(w) ∈ [g−ϵ (µ), g
+
ϵ (λ)]. Then, we can conclude as above that

u⋆(λ, µ,w) = u3,⋆(w) ∈ [g−ϵ (µ), g
+
ϵ (λ)] ,

since it is a local minimum of a strictly convex function. Notice that u3,⋆(w) is independent of (λ, µ).

Suppose that u3,⋆(w) > g+ϵ (λ). Since the gradient is negative on [g−ϵ (µ), g
+
ϵ (λ)], we know that

the minimum on (µ, λ) is achieved on (g+ϵ (λ), λ), i.e., u⋆(λ, µ,w) ∈ (g+ϵ (λ), λ). Then, for all
u ∈ (g+ϵ (λ), λ),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
λ− u
u(1− u)

+ w2
1− e−ϵ

1− u(1− e−ϵ)
.
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This recovers the condition solved above. As we know that u⋆(λ, µ,w) ∈ (g+ϵ (λ), λ), we obtain
u⋆(λ, µ,w) = u2,⋆(λ,w) where

u2,⋆(λ,w) = 1− r1,+ ((w2 + w1)(e
ϵ − 1), (w1 − (w1(1− λ) + w2)(e

ϵ − 1)) , w1(1− λ))

Suppose that u3,⋆(w) < g−ϵ (µ). Since the gradient is positive on [g−ϵ (µ), g
+
ϵ (λ)], we know that

the minimum on (µ, λ) is achieved on (µ, g−ϵ (µ)), i.e., u⋆(λ, µ,w) ∈ (µ, g−ϵ (µ)). Then, for all
u ∈ (µ, g−ϵ (µ)),

w1
∂d−ϵ
∂u

(λ, u) + w2
∂d+ϵ
∂u

(µ, u) = −w1
eϵ − 1

1 + u(eϵ − 1)
+ w2

u− µ
u(1− u)

.

This recovers the condition solved above. As we know that u⋆(λ, µ,w) ∈ (µ, g−ϵ (µ)), we obtain
u⋆(λ, µ,w) = u1,⋆(µ,w) where

u1,⋆(µ,w) = r1,+ ((w2 + w1)(e
ϵ − 1), (w2 − (w2µ+ w1)(e

ϵ − 1)) , w2µ) .

This concludes the proof.

G.2.1 Modified Transportation Cost

Let η > 0 be the geometric parameter used for the geometric grid update of our private empirical
mean estimator. Let us define

∀x ≥ 1, r(x) :=
x

1 + log1+η x
, (33)

which is increasing if and only if x > e
1+η . For all (µ,w) ∈ RK × RK

+ and all (a, b) ∈ [K]2 such
that a ̸= b, we define

W̃ϵ,a,b(µ,w) := 1
(
[µa]

1
0 > [µb]

1
0

)
inf

u∈(0,1)

{
wad̃

−
ϵ (µa, u, r(wa)) + wbd̃

+
ϵ (µb, u, r(wb))

}
, (34)

where d̃±ϵ are defined in Eq. (32).

Lemma 38 gathers regularity properties of the function r defined in Eq. (33).
Lemma 38. Let r as in Eq. (33). Then,

∀x ≥ 1, r′(x) =
log(x(1 + η)/e)

log(1 + η)(1 + log1+η x)
2
,

r′′(x) = − 1

x(log(1 + η))2
log((1 + η)xe−2)

(1 + log1+η x)
3
.

On [1,+∞), the function r is twice continuously differentiable. It is decreasing on [1, e/(1 + η))
and increasing on (e/(1 + η),+∞); its minium is r(e/(1 + η)) ∈ (0, 1). It is strictly convex on
[1, e2/(1 + η)) and strictly concave on (e2/(1 + η),+∞).

Proof. The proof is obtained by direct differentiation and manipulation. We have

∀η > 0, r(e/(1 + η)) =
e log(1 + η)

1 + η
∈ (0, 1) .

Lemma 39 shows that the modified transportation costs can be rewritten differently, which is a key
property used in Appendix F.

Lemma 39. Let d̃±ϵ as in Eq. (32), and r as in Eq. (33). For all (λ, µ) ∈ R2 such that [λ]10 > [µ]10
and (w1, w2) ∈ [1,+∞)2. Then,

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
(u1,u2)∈(0,1)2: u1≤u2

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} .
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Proof. These results are obtained by leveraging Lemmas 30 and 31.

Note that the condition [λ]10 > [µ]10 implies that µ ∈ (−∞, 1) and λ ∈ (0,+∞), i.e., [µ]10 =
max{0, µ} and [λ]10 = min{1, λ}.
Suppose that µ ≤ 0 and λ ≥ 1. Then, we have [µ]10 = 0 and [λ]10 = 1. Therefore, the first part of the
result holds by definition.

Suppose that µ ≤ 0 and λ ∈ (0, 1). Then, we have [µ]10 = 0 and [λ]10 = λ. For u ∈ [λ, 1), the
function is equal to w2d̃

+
ϵ (µ, u, r(w2)), which is increasing and strictly convex on (0, 1). There-

fore, the minimum over that interval is attained at λ. For u ∈ (0, λ), the function is equal to
w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2)). Since it is the sum of two strictly convex function, the

minimum over that interval is achieved in (0, λ). This concludes the proof of the first part of the
result for this case.

Suppose that µ ∈ (0, 1) and λ ≥ 1. Then, we have [µ]10 = µ and [λ]10 = 1. For u ∈ (0, µ], the
function is equal to w1d̃

−
ϵ (λ, u, r(w2)), which is decreasing and strictly convex on (0, 1). There-

fore, the minimum over that interval is attained at µ. For u ∈ (µ, 1), the function is equal to
w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2)). Since it is the sum of two strictly convex function, the

minimum over that interval is achieved in (µ, 1). This concludes the proof of the first part of the
result for this case.

Suppose that (µ, λ) ∈ (0, 1)2. Then, we have [µ]10 = µ and [λ]10 = λ. For u ∈ [λ, 1), the function
is equal to w2d̃

+
ϵ (µ, u, r(w2)), which is increasing and strictly convex on (0, 1). Therefore, the

minimum over that interval is attained at λ. For u ∈ (0, µ], the function is equal tow1d̃
−
ϵ (λ, u, r(w2)),

which is decreasing and strictly convex on (0, 1). Therefore, the minimum over that interval is attained
at µ. For u ∈ (µ, λ), the function is equal to w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2)). Since it is

the sum of two strictly convex function, the minimum over that interval is achieved in (µ, λ). This
concludes the proof of the first part of the result for this case.

In summary, we have shown that

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))} .

Using the strict convexity of u1 7→ w1d̃
−
ϵ (λ, u1, r(w1)) and u2 7→ w2d̃

+
ϵ (µ, u2, r(w2)) on

([µ]10, [λ]
1
0), we obtain that

inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
(u1,u2) : [µ]10<u1≤u2<[λ]10

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} .

Re-using the same arguments as above, we obtain that

inf
(u1,u2) : [µ]10<u1≤u2<[λ]10

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} =

= inf
(u1,u2)∈(0,1)2: u1≤u2

{w1d̃
−
ϵ (λ, u1, r(w1)) + w2d̃

+
ϵ (µ, u2, r(w2))} .

This concludes the proof.

Lemma 40 gives a closed-form solution for the modified transportation costs based on an implicit
solution of a fixed-point equation. This is a key property used in our implementation to reduce the
computational cost.

Lemma 40. Let d̃±ϵ as in Eq. (32), x±ϵ as in Lemmas 30 and 31, and r as in Eq. (33). For all
(λ, µ) ∈ R2 such that [λ]10 > [µ]10 and w ∈ [1,+∞)2. Then,

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= w1d̃
−
ϵ (λ, u

⋆(λ, µ,w), r(w1)) + w2d̃
+
ϵ (µ, u

⋆(λ, µ,w), r(w2)) ,
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where u⋆(λ, µ,w) ∈ ([µ]10, [λ]
1
0) is the unique solution for u ∈ ([µ]10, [λ]

1
0) of the equation

u(w1 + w2)− w1g
−
ϵ (u)− w2g

+
ϵ (u) + w1x

−
ϵ (λ, u, r(w1))− w2x

+
ϵ (µ, u, r(w2)) = 0 .

Proof. Using Lemma 39, we have

inf
u∈(0,1)

{w1d̃
−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))}

= inf
u∈([µ]10,[λ]

1
0)
{w1d̃

−
ϵ (λ, u, r(w1)) + w2d̃

+
ϵ (µ, u, r(w2))} .

Using Lemmas 31 and 30, we obtain

∀u ∈ (0, [λ]10),
∂d̃−ϵ
∂u

(λ, u, r(w1)) =
u− g−ϵ (u) + x−ϵ (λ, u, r(w1))

u(1− u)
,

∀u ∈ ([µ]10, 1),
∂d̃+ϵ
∂u

(µ, u, r(w2)) =
u− g+ϵ (u)− x+ϵ (µ, u, r(w2))

u(1− u)
.

Therefore, for all u ∈ ([µ]10, [λ]
1
0),

w1
∂d̃−ϵ
∂u

(λ, u, r(w1)) + w2
∂d̃+ϵ
∂u

(µ, u, r(w2))

=
w1(u− g−ϵ (u) + x−ϵ (λ, u, r(w1))) + w2(u− g+ϵ (u)− x+ϵ (µ, u, r(w2)))

u(1− u)

=
u(w1 + w2)− (w1g

−
ϵ (u) + w2g

+
ϵ (u)) + w1x

−
ϵ (λ, u, r(w1))− w2x

+
ϵ (µ, u, r(w2))

u(1− u)
.

For u ∈ ([µ]10, [λ]
1
0), let us define

g1(u) := u(w1 + w2)− w1g
−
ϵ (u)− w2g

+
ϵ (u) + w1x

−
ϵ (λ, u, r(w1))− w2x

+
ϵ (µ, u, r(w2)) .

Using the proof of Lemmas 31 and 30, we know that

lim
u→[µ]10

∂d̃+ϵ
∂u

(µ, u, r(w1)) = 0 and lim
u→[λ]10

∂d̃−ϵ
∂u

(λ, u, r(w1)) = 0 ,

∀u ∈ (0, [λ]10),
∂d̃−ϵ
∂u

(λ, u, r(w1)) < 0 and ∀u ∈ ([µ]10, 1),
∂d̃+ϵ
∂u

(µ, u, r(w1)) > 0 .

Combined with the strict convexity of d̃±ϵ in their second argument, the equation g1(u) = 0 admits
a unique solution on ([µ]10, [λ]

1
0). Since u(1 − u) > 0, we obtain the implicit equation defining

u⋆(λ, µ,w) as above.

G.3 Characteristic Time

Let ν be a Bernoulli instance with means µ ∈ (0, 1)2 and unique best arm a⋆ ∈ [K], i.e.,
argmaxa∈[K] µa = {a⋆}. For all β ∈ (0, 1), we define

T ⋆
ϵ (ν)

−1 = sup
w∈△K

min
a̸=a⋆

Wϵ,a⋆,b(µ,w) and w⋆
ϵ (ν) = argmax

w∈△K

min
a̸=a⋆

Wϵ,a⋆,b(µ,w) , (35)

T ⋆
ϵ,β(ν)

−1 = sup
w∈△K ,wa⋆=β

min
a̸=a⋆

Wϵ,a⋆,b(µ,w) and w⋆
ϵ,β(ν) = argmax

w∈△K ,wa⋆=β
min
a ̸=a⋆

Wϵ,a⋆,b(µ,w)

where Wϵ,a,b are defined in Eq. (4).

Lemma 41 gathers regularity properties on the characteristic times and their optimal allocations.
Lemma 41. Let Wϵ,a,b as in Eq. (4). Let (T ⋆

ϵ , T
⋆
ϵ,β) and (w⋆

ϵ , w
⋆
ϵ,β) as in Eq. (35). The function

(µ,w) 7→ mina ̸=a⋆(µ)Wϵ,a⋆(µ),a(µ,w) is continuous on (0, 1)K×△K . The functions ν 7→ T ⋆
ϵ (ν)

−1

and ν 7→ T ⋆
ϵ,β(ν)

−1 are continuous on FK . The correspondences ν 7→ w⋆
ϵ (ν) and ν 7→ w⋆

ϵ,β(ν)

are upper hemicontinuous on FK with compact convex values.
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Proof. Let FK
a =

{
ν ∈ FK | a ∈ a⋆(ν)

}
. Since

⋃
a∈[K] FK

a = FK , it is enough to show the
property for all FK

a for a ∈ [K]. Let a⋆ ∈ [K].

First, the function (w,ν) 7→ mina̸=a⋆ infu∈[0,1] {wa⋆d−ϵ (µa⋆ , u) + wad
+
ϵ (µa⋆ , u)} is continuous on

△K ×FK by Lemma 34 and the fact that a minimum of continuous functions is continuous. It is
concave in w by Lemma 36.

The correspondence (w,ν) 7→ △K is nonempty compact-valued and continuous (since constant). By
Berge’s maximum theorem, we get that ν 7→ T ⋆

ϵ (ν)
−1 is continuous on FK

a⋆ and that ν 7→ w⋆
ϵ (ν) is

upper hemicontinuous with compact values. By [78, Theorem 9.17], the concavity of the function
being maximized implies that ν 7→ w⋆

ϵ (ν) is convex-valued.

The correspondence (w,ν) 7→ △K ∩{wa⋆ = β} is nonempty compact-valued and continuous (since
constant). By Berge’s maximum theorem, we get that ν 7→ T ⋆

ϵ,β(ν)
−1 is continuous on FK

a⋆ and that
w⋆

β(ν) is upper hemicontinuous with compact values. By [78, Theorem 9.17], the concavity of the
function being maximized implies that ν 7→ w⋆

ϵ,β(ν) is convex-valued.

Lemma 42 provides additional properties on the characteristic times and their optimal allocations.
In particular, this results show that the (β-)optimal allocations is unique, has positive allocation for
each arm and that the transportation costs are equal at equilibrium. Those properties are key in the
analysis of a sampling rule.
Lemma 42. Let Wϵ,a,b as in Eq. (4). Let (T ⋆

ϵ , T
⋆
ϵ,β) and (w⋆

ϵ , w
⋆
ϵ,β) as in Eq. (35). Let β ∈ (0, 1)

and ν ∈ FK such that a⋆(ν) = {a⋆} is a singleton.

• T ⋆
ϵ (ν)

−1 > 0 and T ⋆
ϵ,β(ν)

−1 > 0.

• mina∈[K] w
⋆
a > 0 and mina∈[K] w

⋆
β,a > 0 for all w⋆ ∈ w⋆

ϵ (ν) and w⋆
β ∈ w⋆

ϵ,β(ν).

• the (β-)optimal allocations are unique and the transportation costs are all equals at equilibrium
w⋆

ϵ (ν) = {w⋆
ϵ } and ∀a ̸= a⋆, inf

u∈[0,1]

{
w⋆

ϵ,a⋆d−ϵ (µa⋆ , u) + w⋆
ϵ,ad

+
ϵ (µa, u)

}
= T ⋆

ϵ (ν)
−1 ,

w⋆
ϵ,β(ν) = {w⋆

ϵ,β} and ∀a ̸= a⋆, inf
u∈[0,1]

{
w⋆

ϵ,β,a⋆d−ϵ (µa⋆ , u) + w⋆
ϵ,β,ad

+
ϵ (µa, u)

}
= T ⋆

ϵ,β(ν)
−1

Proof. Using the definition of the supremum with 1K/K ∈ △K and Lemma 34, we obtain

T ⋆
ϵ (ν)

−1 = sup
w∈△K

min
a ̸=a⋆

inf
u∈[0,1]

{
wa⋆d−ϵ (µa⋆ , u) + wad

+
ϵ (µa, u)

}
≥ 1

K
min
a ̸=a⋆

inf
u∈[0,1]

{
d−ϵ (µa⋆ , u) + d+ϵ (µa, u)

}
> 0 ,

where the last inequality strict uses Lemma 34 and µa < µa⋆ for all a ̸= a⋆. Similarly, we can prove
that T ⋆

ϵ,β(ν)
−1 > 0. This concludes the first part of the proof.

We proceed towards contradiction. Suppose that there exists w⋆ ∈ w⋆
ϵ (ν) and b with w⋆

b = 0. Then,
we will show T ⋆

ϵ (ν)
−1 = 0, which is a contradiction with the above result. If b = a⋆ we have

T ⋆
ϵ (ν)

−1 = min
a ̸=a⋆

inf
u∈[0,1]

w⋆
ad

+
ϵ (µa, u) ≤ min

a ̸=a⋆
w⋆

ad
+
ϵ (µa, µa) = 0 .

If b ̸= a⋆, we have
T ⋆
ϵ (ν)

−1 = min
a̸=a⋆

inf
u∈[0,1]

{
w⋆

a⋆d−ϵ (µa⋆ , u) + w⋆
ad

+
ϵ (µa, u)

}
≤ inf

u∈[0,1]

{
w⋆

a⋆d−ϵ (µa⋆ , u) + w⋆
bd

+
ϵ (µb, u)

}
= inf

u∈[0,1]
w⋆

a⋆d−ϵ (µa⋆ , u) = 0 .

A similar proof allows to show the result for w⋆
ϵ,β(ν) by reasoning on T ⋆

ϵ,β(ν)
−1. This concludes the

second part of the proof.

For notational simplicity, we assume without loss of generality that a⋆ = 1 is the best arm. At the
optimal allocations, all wa are positive. Let us define Gb(x) = infu∈[0,1] {d−ϵ (µ1, u) + xd+ϵ (µb, u)}
for all b ̸= 1. Let w⋆ ∈ w⋆

ϵ (ν). Then, we have

T ⋆
ϵ (ν)

−1 = max
w∈△K ,w1>0

w1 min
b ̸=1

Gb

(
wb

w1

)
and w⋆ ∈ argmax

w∈△K

w1 min
b̸=1

Gb

(
wb

w1

)
.
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Introducing x⋆b =
w⋆

b

w⋆
1

for all b ̸= 1, using that
∑

b∈[K] w
⋆
b = 1, one has

w⋆
1 =

1

1 +
∑

c̸=1 x
⋆
c

and ∀b ̸= 1, w⋆
b =

x⋆b
1 +

∑
c̸=1 x

⋆
c

.

If x⋆ is unique, then so is w⋆. Since it is optimal, {x⋆b}Kb=2 ∈ RK−1 belongs to

argmax
{xb}K

b=2∈RK−1

minb ̸=1Gb (xb)

1 +
∑K

c=2 xc
. (36)

Let’s show that all the Gb (x
⋆
b) have to be equal. Let O =

{a ∈ [K] \ {1} | Ga (x
⋆
a) = minb ̸=1Gb (x

⋆
b)} and A = [K] \ ({1} ∪ O). Assume that A ̸= ∅. For

all a ∈ A and b ∈ O, one has Gb (x
⋆
b) > Ga (x

⋆
a). Using the continuity of the Gb functions and the

fact that they are increasing (Lemma 36), there exists ϵ > 0 such that

∀b ∈ A, a ∈ O, Gb (x
⋆
b − ϵ/|A|) > Ga (x

⋆
a + ϵ/|O|) > Ga (x

⋆
a) .

We introduce x̄b = x⋆b − ϵ/|A| for all b ∈ A and x̄a = x⋆a + ϵ/|O| for all a ∈ O, hence
∑K

b=2 x̄b =∑K
b=2 x

⋆
b . There exists a ∈ O such that minb̸=1Gb (x̄b) = Ga (x

⋆
a + ϵ/|O|), hence

minb̸=1Gb (x̄b)

1 + x̄2 + . . . x̄K
=

Ga (x
⋆
a + ϵ/|O|)

1 + x⋆2 + · · ·+ x⋆K
>

Ga (x
⋆
a)

1 + x⋆2 + · · ·+ x⋆K
=

minb ̸=1Gb (x
⋆
b)

1 + x⋆2 + · · ·+ x⋆K
.

This is a contradiction with the fact that x⋆ belongs to (36). Therefore, we have A = ∅.
We have proved that there is a unique value by y⋆ ∈ R+, such that for all b ̸= 1, Gb (x

⋆
b) = y⋆. Now

since Gb is increasing, this defines a unique value for x⋆b , equal to G−1
b (y⋆).

For y in the intersection of the ranges of all Gb, let xb(y) = G−1
b (y). Then, y⋆ belongs to

argmax
y∈[0,minb̸=1 lim+∞ Gb(x))

y

1 +
∑

b ̸=1 xb(y)
. (37)

For β ∈ (0, 1), the same results (and proof) hold for w⋆
ϵ,β(ν) by noting that

T ⋆
ϵ,β(ν)

−1 = max
w∈△K :w1=β

βmin
b̸=1

Gb (wb/β) .

Let w⋆
ϵ,β ∈ w⋆

ϵ,β(ν), since we have equality at the equilibrium, we obtain βGb

(
w⋆

ϵ,β,b/β
)

=

T ⋆
ϵ,β(ν)

−1 for all b ̸= 1. Using the inverse mapping xb, we obtain w⋆
ϵ,β,b = βxb

(
T ⋆
ϵ,β(ν)

−1/β
)

for
all b ̸= 1. This concludes the third part of the proof.

Lemma 43 shows that an asymptotically 1/2-optimal algorithm has an asymptotic expected sample
complexity which is at worse twice the asymptotic expected sample complexity of an asymptotically
optimal algorithm. This result motivates the recommendation to the practitioner of using β = 1/2
when no prior information is available on the true instance ν.

Lemma 43. Let (T ⋆
ϵ , T

⋆
ϵ,β , w

⋆
ϵ ) as in Eq. (35). Let β ∈ (0, 1) and ν ∈ FK such that a⋆(ν) = {a⋆}

is a singleton. Then,

T ⋆
ϵ,1/2(ν) ≤ 2T ⋆

ϵ (ν) and
T ⋆
ϵ (ν)

−1

T ⋆
ϵ,β(ν)

−1
≤ max

{
β⋆

β
,
1− β⋆

1− β

}
with β⋆ = w⋆

ϵ,a⋆ .

Proof. Define for each non-negative vector ψ ∈ RK
+ ,

f(ψ) := min
a ̸=a⋆

inf
u∈[0,1]

{
ψa⋆d−ϵ (µa⋆ , u) + ψad

+
ϵ (µa, u)

}
.

T ⋆
ϵ (ν)

−1 is the maximum of f(ψ) over probability vectors ψ ∈ △K . Here, we instead define f for
all non-negative vectors, and proceed by varying the total budget of measurement effort available
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∑
a∈[K] ψa. Using Lemma 36, f is non-decreasing in ψa for all a. f is homogeneous of degree 1.

That is f(cψ) = cf(ψ) for all c ≥ 1. For each c1, c2 > 0 define

g (c1, c2) = max

f(ψ) | ψ ∈ RK
+ , ψa⋆(ν) = c1,

∑
a̸=a⋆(ν)

ψa ≤ c2,

 .

The function g inherits key properties of f ; it is also non-decreasing and homogeneous of degree 1.
We have

T ⋆
ϵ,β(ν)

−1 = max

f(ψ) | ψ ∈ RK
+ , ψa⋆ = β,

∑
a∈[K]

ψa = 1


= max

f(ψ) | ψ ∈ RK
+ , ψa⋆ = β,

∑
a ̸=a⋆

ψa ≤ 1− β

 = g(β, 1− β) ,

where the second equality uses that f is non-decreasing. Similarly, T ⋆
ϵ (ν)

−1 = g (β⋆, 1− β⋆) where
β⋆ = w⋆

ϵ,a⋆ . Setting r := max
{

β⋆

β ,
1−β⋆

1−β

}
implies rβ ≥ β⋆ and r(1− β) ≥ 1− β⋆. Therefore

rT ⋆
ϵ,β(ν)

−1 = rg(β, 1− β) = g(rβ, r(1− β)) ≥ g (β⋆, 1− β⋆) = T ⋆
ϵ (ν)

−1 .

Taking β = 1
2 , yields that T ⋆

ϵ (ν)
−1 ≤ 2max{β⋆, 1− β⋆}T ⋆

1/2(ν)
−1 ≤ 2T ⋆

1/2(ν)
−1.

Lemma 44 gives sufficient conditions on the means and allocations in order for the transportation
costs to be equals to the non-private transportation costs. Moreover, it gives sufficient conditions on
the means in order for this equality to hold irrespective of the considered allocation. Taken together,
this result allows to have fine and coarse understanding of the separation between the high privacy
regime and the low privacy regime for ϵ-global DP BAI.
Lemma 44. Let Wϵ,a,b as in Eq. (4). Let µ ∈ (0, 1)K such that a⋆ = argmaxa∈[K] µa is unique.

Let w ∈ (R⋆
+)

K . Let ϵ > 0. For all x ∈ (0, 1), we define fϵ(x) := (1 − x)
(
1− 1

1+x(eϵ−1)

)
=

(1 − x)g−ϵ (x)(1 − e−ϵ). Let us define µw
a⋆,a := wa⋆µa⋆+waµa

wa⋆+wa
for all a ̸= a⋆. For all a ̸= a⋆, we

have

µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
=⇒ Wϵ,a⋆,a(µ,w) = wa⋆kl(µa⋆ , µw

a⋆,a) + wakl(µa, µ
w
a⋆,a) .

Moreover, we have

max
a⋆∈[K], µ∈(0,1)K , a⋆(µ)={a⋆}, w∈(R⋆

+)K
min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
≤ ϵ/2

and, for all a ̸= a⋆, we have

ϵ ≥ log

(
µa⋆(1− µa)

µa(1− µa⋆)

)
=
∂kl

∂x1
(µa⋆ , µa) =

∂kl

∂x1
(µa, µa⋆)

=⇒ ∀w ∈ (R⋆
+)

K , Wϵ,a⋆,a(µ,w) = wa⋆kl(µa⋆ , µw
a⋆,a) + wakl(µa, µ

w
a⋆,a) .

Proof. Let us define fϵ(x) = (1− x)
(
1− 1

1+x(eϵ−1)

)
for all x ∈ (0, 1). Then, we have

µa(1− µa)(e
ϵ − 1)

1 + µa(eϵ − 1)
= (1− µa)

(
1− 1

1 + µa(eϵ − 1)

)
= fϵ(µa) ,

µa⋆(1− µa⋆)(eϵ − 1)

eϵ − µa⋆(eϵ − 1)
= µa⋆

(
1− 1

1 + (1− µa⋆)(eϵ − 1)

)
= fϵ(1− µa⋆) .

Using Lemma 23, direct manipulation yields that

fϵ(1− µa⋆) < µa⋆ − µa ⇐⇒ g+ϵ (µa⋆) > µa ⇐⇒ fϵ(µa) < µa⋆ − µa
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g−ϵ (µa) < µw
a⋆,a ⇐⇒ fϵ(µa) <

wa⋆

wa⋆ + wa
(µa⋆ − µa) ,

g+ϵ (µa⋆) > µw
a⋆,a ⇐⇒ fϵ(1− µa⋆) <

wa

wa⋆ + wa
(µa⋆ − µa) .

Using that max
{

wa

wa⋆+wa
, wa⋆

wa⋆+wa

}
≤ 1, we obtain that

(
g−ϵ (µa) < µa⋆ ∧ g−ϵ (µa) < µw

a⋆,a

)
⇐⇒

(
1 +

wa

wa⋆

)
fϵ(µa) < µa⋆ − µa ,(

g−ϵ (µa) < µa⋆ ∧ g+ϵ (µa⋆) > µw
a⋆,a

)
⇐⇒

(
1 +

wa⋆

wa

)
fϵ(1− µa⋆) < µa⋆ − µa ,(

g−ϵ (µa) ≥ µa⋆ ∨
(
g−ϵ (µa) < µa⋆ ∧ µw

a⋆,a ∈ [g+ϵ (µa⋆), g−ϵ (µa)]
))

⇐⇒
(
g−ϵ (µa) ≥ µa⋆ ∨ µw

a⋆,a ∈ [g+ϵ (µa⋆), g−ϵ (µa)]
)

⇐⇒ (min{fϵ(µa), fϵ(1− µa⋆)} ≥ µa⋆ − µa

∨ µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

})
⇐⇒ µa⋆ − µa ≤ max {min{fϵ(µa), fϵ(1− µa⋆)},

min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}}
⇐⇒ µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
.

Combining those conditions with Lemma 37 concludes the first part of the proof.

For all x ∈ (0, 1), we have

f ′ϵ(x) =
(1− x)(eϵ − 1)− x(eϵ − 1)(1 + x(eϵ − 1))

(1 + x(eϵ − 1))2
= −(eϵ − 1)

x2(eϵ − 1) + 2x− 1

(1 + x(eϵ − 1))2
,

f ′ϵ(x) = 0 ⇐⇒ x =
eϵ/2 − 1

eϵ − 1
,

f ′′ϵ (x) = −2(eϵ − 1)
(1 + x(eϵ − 1))2 − (eϵ − 1)

(
x2(eϵ − 1) + 2x− 1

)
(1 + x(eϵ − 1))3

= − 2eϵ(eϵ − 1)

(1 + x(eϵ − 1))3
≤ 0 .

As fϵ is strictly concave, the maximum is achieved at eϵ/2−1
eϵ−1 with value

max
x∈(0,1)

fϵ(x) = fϵ

(
eϵ/2 − 1

eϵ − 1

)
=
eϵ − eϵ/2

eϵ − 1

(
1− e−ϵ/2

)
=

(eϵ/2 − 1)2

eϵ − 1
.

Let κ1(x) = x(ex − 1)− 4(ex/2 − 1)2 for all x > 0. Then, we have

(eϵ/2 − 1)2

eϵ − 1
≤ ϵ/4 ⇐⇒ κ1(ϵ) ≥ 0 .

Then, we have κ1(0) = 0 and

κ′1(x) = 4ex/2 − 3ex − 1 + xex and κ′′1(x) = ex
(
2(e−x/2 − 1) + x

)
.

Using that e−x/2 − 1 ≥ −x/2, we obtain κ′′1(x) ≥ 0. Using that κ′1(0) = 0, we obtain κ′1(x) ≥ 0.
Using that κ1(0) = 0, we obtain κ1(x) ≥ 0. Therefore, we have shown that

∀ϵ > 0, max
x∈(0,1)

fϵ(x) ≤ ϵ/4 .

Direct manipulation yields that

min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
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≤
(
1 + min

{
wa⋆

wa
,
wa

wa⋆

})
max

x∈(0,1)
fϵ(x) ≤ ϵ/2 .

Taking the supremum over w ∈ (R⋆
+)

K , µ ∈ (0, 1)K such that a⋆ = a⋆(µ) and over a⋆ ∈ [K]
concludes the second part of the proof.

Let a ̸= a⋆. Direct manipulations yield that

µa⋆ − µa ≤ min{fϵ(1− µa⋆), fϵ(µa)}

=⇒ ∀w ∈ (R⋆
+)

K , µa⋆ − µa ≤ min

{(
1 +

wa⋆

wa

)
fϵ(1− µa⋆),

(
1 +

wa

wa⋆

)
fϵ(µa)

}
=⇒ ∀w ∈ (R⋆

+)
K , Wϵ,a⋆,a(µ,w) = wa⋆kl(µa⋆ , µw

a⋆,a) + wakl(µa, µ
w
a⋆,a) .

Recall that fϵ(x) = (1− x)
(
1− 1

1+x(eϵ−1)

)
. Then, we have directly that

fϵ(x) ≥ y ⇐⇒ 1− x− y
1− x

≥ 1

1 + x(eϵ − 1)
⇐⇒ (y + x)(1− x)

x(1− x− y)
≤ eϵ .

Plugging this result, we obtain

µa⋆ − µa ≤ min{fϵ(1− µa⋆), fϵ(µa)} ⇐⇒ eϵ ≥ µa⋆(1− µa)

µa(1− µa⋆)

⇐⇒ ϵ ≥ log

(
µa⋆(1− µa)

µa(1− µa⋆)

)
.

Recall that
∂kl

∂x1
(µa⋆ , µa) =

∂kl

∂x1
(µa, µa⋆) = log

(
µa⋆(1− µa)

µa(1− µa⋆)

)
.

This concludes the proof of the last part of the result.

Lemma 45 shows that our lower bound is larger (hence better) than the one derived in Azize et al.
[12].

Lemma 45. Let T ⋆
g (ν, ϵ) as in Theorem 13 in Azize et al. [12], and T ⋆

ϵ (ν) as in Eq. (35). Then, we
have T ⋆

g (ν, ϵ) ≤ T ⋆
ϵ (ν).

Proof. Let T ⋆
g (ν, ϵ) as in Theorem 13 in Azize et al. [12]. A sufficient condition to obtain T ⋆

g (ν, ϵ) ≤
T ⋆
ϵ (ν) is to show that, for all λ ∈ Alt(µ), we have

∑
a∈[K]

wadϵ(µa, λa) ≤ min

 ∑
a∈[K]

wakl(µa, λa), 6ϵ
∑

a∈[K]

wa|µa − λa|

 ,

since we can conclude by taking the infimum over λ ∈ Alt(µ) and the supremum over w ∈ △K on
both sides of the inequalities. By definition of dϵ and evaluation the function at z = µ and z = λ
respectively, we obtain

dϵ(λ, µ) = inf
z∈(0,1)

{kl(z, µ) + ϵ|λ− z|} ≤ min {kl(λ, µ), ϵ|λ− µ|} .

By summing those inequalities over arms a ∈ [K], we obtain∑
a∈[K]

wadϵ(µa, λa) ≤
∑

a∈[K]

wa min {kl(µa, λa), ϵ|µa − λa|}

≤ min

 ∑
a∈[K]

wakl(µa, λa), ϵ
∑

a∈[K]

wa|µa − λa|

 .

Using that
∑

a∈[K] wa|µa − λa| ≥ 0 and 6ϵ ≥ ϵ, this concludes the proof.
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In Garivier and Kaufmann [38], the authors show how to rewrite the optimization problem underlying
the characteristic time and its optimal allocation as a simpler optimization problem. Lemma 46
shows that similar properties holds for ϵ-global DP BAI. In particular, it shows that computing the
characteristic time T ⋆

ϵ (ν) and their optimal allocation w⋆
ϵ (ν) can be done explicitly based on solving

nested fixed-point equations. This result is key to implement computationally tractable Track-and-
Stop algorithms. Additionally, Lemma 46 gives an explicit lower bound on the characteristic time
T ⋆
ϵ (ν).

Lemma 46. Let d±ϵ as in Eq. (3), and (T ⋆
ϵ , w

⋆
ϵ ) as in Eq. (35). Let a ̸= a⋆. For x ∈ [0,+∞), let

Ga(x) := inf
u∈[0,1]

{
d−ϵ (µa⋆ , u) + xd+ϵ (µa, u)

}
andua(x) := argmin

u∈[µa,µa⋆ ]

{d−ϵ (µa⋆ , u)+xd+ϵ (µa, u)} .

• The function Ga is an increasing and strictly concave one-to-one mapping from [0,+∞) to
[0, d−ϵ (µa⋆ , µa)); it satisfies that Ga(0) = 0 and limx→+∞Ga(x) = d−ϵ (µa⋆ , µa).

• The function ua is a decreasing one-to-one mapping from [0,+∞) to (µa, µa⋆ ]; it satisfies
that ua(0) = µa⋆ and limx→+∞ ua(x) = µa.

• Let xa(y) be defined as the unique solution of Ga(x) = y for all y ∈ [0, d−ϵ (µa⋆ , µa)). The
function xa is an increasing and strictly convex one-to-one mapping from [0, d−ϵ (µa⋆ , µa))
to [0,+∞); it satisfies that xa(0) = 0 and limy→d−

ϵ (µa⋆ ,µa)
xa(y) = +∞.

For all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), let us define

G(y) :=
y

1 +
∑

a ̸=a⋆ xa(y)
and F (y) :=

∑
a ̸=a⋆

d−ϵ (µa⋆ , ua(xa(y)))

d+ϵ (µa, ua(xa(y)))
.

• The function F is an increasing one-to-one mapping from [0,mina̸=a⋆ d−ϵ (µa⋆ , µa)) to
[0,+∞); it satisfies that F (0) = 0 and limy→mina̸=a⋆ d−

ϵ (µa⋆ ,µa)
F (y) = +∞.

• On [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), the function G is maximized at the unique y⋆ solution in
[0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)) of the fixed-point equation F (y) = 1. Moreover, we have
w⋆

ϵ (ν)a = w⋆
ϵ (ν)a⋆xa(y

⋆) for all a ̸= a⋆,

w⋆
ϵ (ν)a⋆ =

1

1 +
∑

a ̸=a⋆ xa(y⋆)
and T ⋆

ϵ (ν)
−1 =

y⋆

1 +
∑

a̸=a⋆ xa(y⋆)
.

• Moreover, we have

T ⋆
ϵ (ν) ≥

1

mina̸=a⋆ d−ϵ (µa⋆ , µa)
+
∑
a̸=a⋆

1

d+ϵ (µa, µa⋆)
.

If ϵ < log
(

µa(1−µb)
µb(1−µa)

)
, we have d+ϵ (µa, µa⋆) = − log (1− µa⋆(1− e−ϵ)) − ϵµa and

d−ϵ (µa⋆ , µa) = − log (1 + µa(e
ϵ − 1)) + ϵµa⋆ .

Proof. Using Lemma 36, we know that Ga is concave. Let ua(x) ∈
argminu∈[0,1] {d−ϵ (µa⋆ , u) + xd+ϵ (µa, u)} for all x ∈ [0,+∞), whose explicit formula is
given in Lemma 44. It is direct to see that Ga(0) = 0 and ua(0) = µa⋆ . Using the optimality
condition of ua(x), we obtain, for all x ∈ [0,+∞),

G′
a(x) = u′a(x)

(
∂d−ϵ
∂u

(µa⋆ , ua(x)) + x
∂d+ϵ
∂u

(µa, ua(x))

)
+ d+ϵ (µa, ua(x))

= d+ϵ (µa, ua(x)) > 0 ,

where the last inequality is obtained by Lemma 34 and using that d+ϵ (µa, ua(0)) = d+ϵ (µa, µa⋆) > 0.
Therefore, Ga is an increasing one-to-one mapping from [0,+∞) to [0, limx→+∞Ga(x)).

Let µx
a⋆,a = µa⋆+xµa

1+x for all x ∈ [0,+∞). It is easy to see that Ga(0) = 0, ua(0) = µa⋆ and
limx→+∞ µx

a⋆,a = µa. Using Lemma 44, we obtain that

lim
x→+∞

min {(1 + 1/x) fϵ(1− µa⋆), (1 + x) fϵ(µa)} = fϵ(1− µa⋆) .
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When µa⋆ − µa ≤ fϵ(1− µa⋆), we obtain

lim
x→+∞

Ga(x) = lim
x→+∞

{
kl(µa⋆ , µx

a⋆,a) + xkl(µa, µ
x
a⋆,a)

}
= kl(µa⋆ , µa) + lim

x→+∞

{
xkl(µa, µ

x
a⋆,a)

}
= kl(µa⋆ , µa) ,

where we used that

xkl(µa, µ
x
a⋆,a) = x

(
µa log

(
1− µa⋆ − µa

µa(1− µa)

1
µa⋆

µa
+ x

)
+ log

(
1 +

µa⋆ − µa

1− µa

1
1−µa⋆

1−µa
+ x

))
,

lim
x→+∞

{
xkl(µa, µ

x
a⋆,a)

}
=

(µa⋆ − µa)
2

µa(1− µa)2
lim

x→+∞

 x(
µa⋆

µa
+ x
)(

1−µa⋆

1−µa
+ x
)
 = 0 ,

where we used that log(1 + x) =x→0 x+O(x2). Using Lemma 25 and the proof of Lemma 44, we
know that µa⋆ −µa ≤ fϵ(1−µa⋆) if and only if µa ∈ [g+ϵ (µa⋆), µa⋆), hence we have kl(µa⋆ , µa) =
d−ϵ (µa⋆ , µa). This concludes the proof in the first case.

When µa⋆ − µa > fϵ(1− µa⋆), we obtain

lim
x→+∞

Ga(x) = lim
x→+∞

{− log (1 + u1,⋆(µa, x)(e
ϵ − 1)) + ϵµa⋆ + xkl(µa, u1,⋆(µa, x)} ,

where

u1,⋆(µa, x) =√
(x(1− µa(eϵ − 1))− (eϵ − 1))

2
+ 4(1 + x)(eϵ − 1)xµa − (x(1− µa(e

ϵ − 1))− (eϵ − 1))

2(1 + x)(eϵ − 1)
.

Direct manipulation yields that limx→+∞ u1,⋆(µa, x) = µa, hence

lim
x→+∞

Ga(x) = − log (1 + µa(e
ϵ − 1)) + ϵµa⋆ + lim

x→+∞
{xkl(µa, u1,⋆(µa, x)} .

Let us denote v1,⋆(µa, x) = u1,⋆(µa, x)− µa ≥ 0, i.e., limx→+∞ v1,⋆(µa, x) = 0. Direct manipula-
tion yields that

v1,⋆(µa, x)

=
1 + µa(e

ϵ − 1)

2(eϵ − 1)

(
1− 1

x+ 1

)
(√

1− 2x(1− µa(eϵ + 1))(eϵ − 1)− (eϵ − 1)2

x2(1 + µa(eϵ − 1))2
− 1 +

(eϵ − 1)(1− 2µa)

x(1 + µa(eϵ − 1))

)

=

√
1− 2x(1− µa(eϵ + 1))(eϵ − 1)− (eϵ − 1)2

x2(1 + µa(eϵ − 1))2
− 1 +

(eϵ − 1)(1− 2µa)

x(1 + µa(eϵ − 1))

=x→+∞
(eϵ − 1)(1− 2µa)

x(1 + µa(eϵ − 1))
− 2x(1− µa(e

ϵ + 1))(eϵ − 1)− (eϵ − 1)2

2x2(1 + µa(eϵ − 1))2
+O(1/x2)

=x→+∞
2x(eϵ − 1)2(1− µa)µa(e

ϵ − 1) + (eϵ − 1)2

2x2(1 + µa(eϵ − 1))2
+O(1/x2) ,

hence v1,⋆(µa, x) =x→+∞
2(1− µa)µa(e

ϵ − 1)2

x(1 + µa(eϵ − 1))2
+O(1/x2) .

where we used that
√
1− x− 1 =x→0 −x/2 +O(x2) to obtain the last result. Similarly as before,

we derive

xkl(µa, u1,⋆(µa, x)) = x

(
µa log

(
1− 1

µa(1− µa)

v1,⋆(µa, x)

1 + v1,⋆(µa, x)/µa

)
+ log

(
1 +

1

1− µa

v1,⋆(µa, x)

1− v1,⋆(µa, x)/(1− µa)

))
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lim
x→+∞

{
xkl(µa, µ

x
a⋆,a)

}
=

1

µa(1− µa)2
lim

x→+∞

 xv1,⋆(µa, x)
2(

1− v1,⋆(µa,x)
1−µa

)(
1 +

v1,⋆(µa,x)
µa

)


=
limx→+∞ xv1,⋆(µa, x)

2

µa(1− µa)2
= 0 ,

where we used that v1,⋆(µa, x) =x→+∞ O(1/x) to conclude. Therefore, we have shown that
limx→+∞Ga(x) = − log (1 + µa(e

ϵ − 1)) + ϵµa⋆ . Using Lemma 25 and the proof of Lemma 44,
we know that µa⋆ − µa > fϵ(1 − µa⋆) if and only if µa ∈ [0, g+ϵ (µa⋆)), hence we have
− log (1 + µa(e

ϵ − 1)) + ϵµa⋆ = d−ϵ (µa⋆ , µa). This concludes the proof in the second case.

Therefore, Ga is a strictly increasing one-to-one mapping from [0,+∞) to [0, d−ϵ (µa⋆ , µa)). Using
the implicit function theorem, we obtain

∀x ∈ [0,+∞), u′a(x) = −
∂d+

ϵ

∂u (µa, ua(x))

∂2d−
ϵ

∂u2 (µa⋆ , ua(x)) + x∂2d+
ϵ

∂u2 (µa, ua(x))
< 0 ,

where the strict inequality is obtained by using properties in Lemmas 24 and 25, since ua(x) ∈
(µa, µa⋆) by Lemmas 34 and 24. Similarly, we obtain

∀x ∈ [0,+∞), G′′
a(x) = u′a(x)

∂d+ϵ
∂u

(µa, ua(x)) > 0 ,

Therefore, we have shown that Ga is strictly concave and that ua is decreasing.

Let us define xa(y) as the unique solution of Ga(x) = y, which is well-defined based on our above
computations. Therefore, we have

y = d−ϵ (µa⋆ , ua(xa(y))) + xa(y)d
+
ϵ (µa, ua(xa(y))) .

Using the derivative of the inverse function, we obtain

∀y ∈ [0, d−ϵ (µa⋆ , µa)), x′a(y) =
1

G′
a(xa(y))

=
1

d+ϵ (µa, ua(xa(y)))
> 0 ,

hence xa is increasing on [0, d−ϵ (µa⋆ , µa)). Moreover, we have

∀y ∈ [0, d−ϵ (µa⋆ , µa)), x′′a(y) = −
u′a(xa(y))

d+ϵ (µa, ua(xa(y)))3
∂d+ϵ
∂u

(µa, ua(xa(y)) > 0 ,

hence xa is strictly convex on [0, d−ϵ (µa⋆ , µa)).

For all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), let us define G(y) = y
1+

∑
a ̸=a⋆ xa(y)

and F (y) =∑
a ̸=a⋆

d−
ϵ (µa⋆ ,ua(xa(y)))

d+
ϵ (µa,ua(xa(y)))

. Using the above results, direct manipulations yield that, for all y ∈
[0,mina̸=a⋆ d−ϵ (µa⋆ , µa)),

G′(y) =
1 +

∑
a̸=a⋆ xa(y)− y

∑
a ̸=a⋆ x′a(y)

(1 +
∑

a̸=a⋆ xa(y))2
=

1 +
∑

a ̸=a⋆ xa(y)−
∑

a ̸=a⋆
y

d+
ϵ (µa,ua(xa(y)))

(1 +
∑

a ̸=a⋆ xa(y))2

=
1− F (y)

(1 +
∑

a̸=a⋆ xa(y))2
,

hence we obtain that G′(y) = 0 if and only if F (y) = 1. Using that xa(0) = 0, ua(0) = µa⋆ and
d−ϵ (µa⋆ , µa⋆) = 0, we obtain that F (0) = 0.

Using that limy→d−
ϵ (µa⋆ ,µa)

xa(y) = +∞, limx→+∞ ua(x) = µa, d−ϵ (µa⋆ , µa) > 0 and
d+ϵ (µa, µa) = 0, we obtain that limy→mina ̸=a⋆ d−

ϵ (µa⋆ ,µa)
F (y) = +∞.

Let H(y) =
∑

a̸=a⋆
1

d+
ϵ (µa,ua(xa(y)))

for all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)). Then, we have∑
a ̸=a⋆

xa(y) = yH(y)− F (y) ,
∑
a ̸=a⋆

x′a(y) = H(y) ,
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∂d−ϵ
∂u

(µa⋆ , ua(x)) + x
∂d+ϵ
∂u

(µa, ua(x)) = 0 ,

d−ϵ (µa⋆ , ua(xa(y))) + xa(y)d
+
ϵ (µa, ua(xa(y))) = y .

Then, for all y ∈ [0,mina̸=a⋆ d−ϵ (µa⋆ , µa)), we have

H ′(y) = −
∑
a ̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2
∂d+ϵ
∂u

(µa, ua(xa(y)))

= −
∑
a ̸=a⋆

u′a(xa(y))

(d+ϵ (µa, ua(xa(y))))3
∂d+ϵ
∂u

(µa, ua(xa(y))) ,

F ′(y) =
∑
a̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2(
d+ϵ (µa, ua(xa(y)))

∂d−ϵ
∂u

(µa⋆ , ua(xa(y)))− d−ϵ (µa⋆ , ua(xa(y)))
∂d+ϵ
∂u

(µa, ua(xa(y)))

)
= −

∑
a ̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2
∂d+ϵ
∂u

(µa, ua(xa(y)))(
xa(y)d

+
ϵ (µa, ua(xa(y))) + d−ϵ (µa⋆ , ua(xa(y)))

)
= −y

∑
a ̸=a⋆

u′a(xa(y))x
′
a(y)

(d+ϵ (µa, ua(xa(y))))2
∂d+ϵ
∂u

(µa, ua(xa(y))) = yH ′(y) ,

Therefore, showing that H is increasing is a sufficient condition to show that F is increasing. Using
the above results, we have, for all a ̸= a⋆ and all y ∈ [0,mina ̸=a⋆ d−ϵ (µa⋆ , µa)), we have

1

(d+ϵ (µa, ua(xa(y))))3
∂d+ϵ
∂u

(µa, ua(xa(y))) > 0 and u′a(xa(y)) < 0 .

Therefore, H is increasing as a summation of increasing function, hence F is increasing.

Let y⋆ such that F (y⋆) = 1. Reusing the above manipulation, we obtain

G′′(y) = −
F ′(y)(1 +

∑
a̸=a⋆ xa(y)) + 2(1− F (y))

∑
a ̸=a⋆ x′a(y)

(1 +
∑

a̸=a⋆ xa(y))3

= −yH
′(y)(1 + yH(y)− F (y)) + 2(1− F (y))H(y)

(1 + yH(y)− F (y))3
,

G′′(y⋆) = − H ′(y⋆)

y⋆H(y⋆)2
< 0 ,

Therefore, y⋆ is the unique maximum of G. We conclude this part of the proof by using the
intermediate results in the proof of Lemma 42.

By strict convexity of xa and using its properties proven above, we obtain

xa(y) ≥ xa(0) + yx′a(0) =
y

d+ϵ (µa, µa⋆)
.

Summing those inequalities, we obtain

∀y ∈ [0, min
a ̸=a⋆

d−ϵ (µa⋆ , µa)), G(y) =
y

1 +
∑

a̸=a⋆ xa(y)
≤ 1

1
y +

∑
a ̸=a⋆

1
d+
ϵ (µa,µa⋆ )

.

Using that y 7→ 1/(1/y + α) is increasing for α > 0, we obtain that

T ⋆
ϵ (ν)

−1 = max
y∈[0,mina ̸=a⋆ d−

ϵ (µa⋆ ,µa))
G(y) ≤ 1

1
mina ̸=a⋆ d−

ϵ (µa⋆ ,µa))
+
∑

a ̸=a⋆
1

d+
ϵ (µa,µa⋆ )

.

This concludes the proof of the second to last result. The last result is obtained by combining
Lemmas 25 and 24 and the derivation in the proof of Lemma 44.

66



Lemma 47 is a technical result used in the proof of sufficient exploration of our sampling rule.

Lemma 47. Let d±ϵ as in Eq. (3). Let µ ∈ (0, 1)K . There exists α > 0 such that

Cµ := min
(a,b):µa>µb

inf
λa,λb:

maxc∈{a,b} |µc−λc|≤α

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
> 0 . (38)

Proof. Using Lemma 34 for w1 = w2 = 1, the function µ 7→ infu∈[0,1] {d−ϵ (µa, u) + d+ϵ (µb, u)} is
continuous on FK . Since it has strictly positive values when µa > µb (Lemma 34), there exists α
such that

inf
λa,λb:

maxc∈{a,b} |µc−λc|≤α

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
> 0 .

Further lower bounding by a finite number of strictly positive constants yields the result.

Lemma 47 is a technical result used in the proof of convergence towards the optimal allocation of our
sampling rule.

Lemma 48. Let d±ϵ as in Eq. (3). Let (ϕ1, ϕ2) ∈ (0, 1)2. Let Ia :=
{
µ ∈ (0, 1)K | a ∈ a⋆(µ)

}
for

all a ∈ [K]. For all a⋆ ∈ [K], all µ ∈ Ia⋆ , all (a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b, and all
β ∈ [0, 1], define

Ga,b(µ, β) := inf
u∈[0,1]

{
βd−ϵ (µa⋆ , u) + ϕ1d

+
ϵ (µa, u)

}
− inf

u∈(0,1)

{
βd−ϵ (µa⋆ , u) + ϕ2d

+
ϵ (µb, u)

}
.

The function (µ, β) 7→ Ga,b(µ, β) is continuous on (0, 1)K × [0, 1]. For all ξ > 0, the function
(µ, β) 7→ inf β̃:|β−β̃|≤ξ Ga,b(µ, β) is continuous on (0, 1)K .

Proof. Since
⋃

a∈[K] IKa = (0, 1)K , it is enough to show the property for all a ∈ [K]. Let a⋆ ∈ [K],
µ ∈ Ia⋆ , (a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b. As done in Lemma 41 by using Lemma 34,
we obtain that the function (µ, β) 7→ Ga,b(µ, β) is continuous on Ia⋆ × [0, 1] for all a⋆ ∈ [K],

hence on (0, 1)K × [0, 1]. Let Φ : µ 7→
{
β̃ : |β − β̃| ≤ ξ

}
, it is a continuous (constant), compact

valued and non-empty correspondence. Using the above continuity, Berge’s theorem yields that
µ 7→ inf β̃:|β−β̃|≤ξ Ga,b(µ, β̃) is continuous on (0, 1)K .

H Asymptotic Upper Bound on the Expected Sample complexity

Let ν be a Bernoulli instance with means µ ∈ (0, 1)2 and unique best arm a⋆ ∈ [K], i.e.,
argmaxa∈[K] µa = {a⋆}. Let β ∈ (0, 1). Let w⋆

ϵ,β(ν) = {w⋆
ϵ,β} be the unique β-optimal al-

location defined in Eq. (35), which satisfies mina∈[K] w
⋆
ϵ,β,a > 0 by Lemma 42. At equilibrium, we

have equality of the transportation costs by Lemma 42, namely

∀a ̸= a⋆, Wϵ,a⋆,a(µ,w
⋆
ϵ,β) = T ⋆

ϵ,β(ν)
−1 , (39)

where Wϵ,a,b is defined in Eq. (4) and T ⋆
ϵ,β is defined in Eq. (35).

Let γ > 0. Let ω ∈ △K be any allocation over arms such that mina ωa > 0. We denote by Tγ(ω) the
convergence time towards ω, which is a random variable quantifying the number of samples required
for the global empirical allocations Nn/(n− 1) to be γ-close to ω for any subsequent time, namely

Tγ(ω) := inf

{
T ≥ 1 | ∀n ≥ T,

∥∥∥∥ Nn

n− 1
− ω

∥∥∥∥
∞
≤ γ

}
. (40)

The proof of Theorem 6 follows the same analysis as the unified analysis of Top Two algorithms, see,
e.g., Jourdan et al. [50]. Appendix H is organised as follows. After recalling some technical results
(Appendix H.1), we prove sufficient exploration of our sampling rule (Appendix H.2). Second, we
prove that convergence time towards the β-optimal allocation of our sampling rule (Appendix H.3)
has finite expectation. Finally, we conclude the proof of Theorems 6 (Appendix H.4).
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H.1 Technical Results from the Literature

Lemma 49 relates the global counts (Nn,a)a∈[K] and the local counts (Ñn,a)a∈[K].
Lemma 49. Let η > 0 be the geometric parameter used for the geometric grid update of our private
empirical mean estimator. For all (a, k) ∈ [K] × N s.t. Eνπ[Tk(a)] < +∞, NTk(a),a = Ñk,a =

⌈(1 + η)k−1⌉. For all a ∈ [K] and all n ∈ N, Nn,a ≥ Ñn,a ≥ Nn,a/(1 + η).

Proof. Let a ∈ [K]. After initialisation, we have k = 1, T1(a) = K + 1 and NT1(a),a = 1.
Using the definition of the phase switch, it is direct to see that NT2(a),a = Ñ2,a = ⌈1 + η⌉ when
Eνπ[T2(a)] < +∞. Similarly, we obtainNTk(a),a = Ñk,a = ⌈(1+η)k−1⌉when Eνπ[Tk(a)] < +∞.
The last result is a direct consequence of the definition of the per-arm geometric update grid.

Lemma 50 controls the deviation Na
n,a − βLn,a enforced by the tracking procedure.

Lemma 50 (Lemma 2.2 in [49]). For all n > K and all a ∈ [K], −1/2 ≤ Na
n,a − βLn,a ≤ 1.

Lemma 51 gathers properties on the W−1 function used in the stopping threshold.

Lemma 51 ([51]). Let W−1(x) := −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch
of the Lambert W function. The function W−1 is increasing on (1,+∞) and strictly concave on

(1,+∞). In particular, W
′
−1(x) =

(
1− 1

W−1(x)

)−1

for all x > 1. Then, for all y ≥ 1 and x ≥ 1,

W−1(y) ≤ x ⇐⇒ y ≤ x− log(x) .

Moreover, for all x > 1,

x+ log(x) ≤W−1(x) ≤ x+ log(x) + min

{
1

2
,

1√
x

}
.

Lemma 52 gives an upper bound on a time define implicit as a function of W−1, namely it is an
inversion result.
Lemma 52 (Lemma 32 in [12]). Let W−1 defined in Lemma 51. Let A > 0, B > 0 such that
B/A + logA > 1 and C(A,B) = sup {x | x < A log x+B}. Then, C(A,B) < h1(A,B) with
h1(z, y) = zW−1 (y/z + log z).

Lemma 53 shows that upon correction the supremum of sub-exponential random variables is also a
sub-exponential random variable.
Lemma 53 (Lemma 72 in [50]). Suppose that (Xn)n≥1 are sub-exponential random variables with
constants (Cn), such that c := infn Cn > 0. Then supn(Xn/ log(e+ n)) is sub-exponential.

Lemma 54 gives a coarse convergence rate of the private empirical estimators of the means towards
their true means.
Lemma 54. There exist sub-exponential random variable Wµ such that almost surely, for all a ∈ [K]

and all n such that Ñn,a ≥ 1,

Ñn,a|µ̃n,a − µa| ≤Wµ log(e+ Ñn,a) .

In particular, any random variable which is polynomial in Wµ has a finite expectation.

Proof. Let us define

Wµ = max
a∈[K]

sup
n∈N

Ñn,a|µ̃n,a − µa|
log(e+ Ñn,a)

.

Let a ∈ [K]. Let us define the geometric grid Nk = ⌈(1 + η)k−1⌉ for all k ∈ N, on which we
effectively need to control the concentration. The maximum of a finite number of sub-exponential
random variables is sub-exponential. Therefore, using the geometric update grid, it suffices to show
that

sup
k∈N

Nk|(ZNk
+ Sk)/Nk − µa|

log(e+Nk)
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is sub-exponential, where ZNk
is the cumulative sum of Nk i.i.d. observations from Ber(µa) and Sk

is the cumulative sum of k i.i.d. observations from Lap(1/ϵ).

Using that ZNk
−Nkµa is sub-Gaussian and Sk is sub-exponential, for a fixed k, |ZNk

−Nkµa+Sk|
is sub-exponential. Applying Lemma 53, we obtain that

sup
k∈N

Nk|(ZNk
+ Sk)/Nk − µa|

log(e+Nk)

is sub-exponential. We finally obtain that the maximum over the finitely many arms has the same
property.

H.2 Sufficient Exploration

The first step of in the generic analysis of Top Two algorithms [50] consists in showing sufficient
exploration. The main idea is that, if there are still undersampled arms, either the leader or the
challenger will be among them. Therefore, after a long enough time, no arm can still be undersampled.
We emphasise that there are multiple ways to select the leader/challenger pair in order to ensure
sufficient exploration. Therefore, other choices of leader/challenger pair would yield similar results.

Given an arbitrary phase p ∈ N, we define the sampled enough set, i.e., the arms having reached
phase p, and the arm with highest mean in this set (when not empty) as

Sp
n = {a ∈ [K] | Nn,a ≥ (1 + η)p−1} and a⋆n = argmax

a∈Sp
n

µa . (41)

Since mina̸=b |µa − µb| > 0, a⋆n is unique. Let p ∈ N such that (p− 1)/4 ∈ N. We define the highly
and the mildly under-sampled sets as

Up
n := {a ∈ [K] | Nn,a < (1 + η)(p−1)/2} and V p

n := {a ∈ [K] | Nn,a < (1 + η)3(p−1)/4} .
(42)

Those arms have not reached phase (p− 1)/2 and phase 3(p− 1)/4, respectively.

Lemma 55 shows that, when the leader is sampled enough, it is the arm with highest true mean among
the sampled enough arms.

Lemma 55. Let Sp
n and a⋆n as in (41). There exists p0 with Eνπ[exp(αp0)] < +∞ for all α > 0

such that if p ≥ p0, for all n such that Sp
n ̸= ∅, we have

• For all a ∈ Sp
n, we have µ̃n,a ∈ (0, 1) and a⋆n = argmaxa∈Sp

n
µ̃n,a.

• If Bn ∈ Sp
n, then Bn = a⋆n.

Proof. Let p0 to be specified later. Let p ≥ p0. Let n ∈ N such that Sp
n ̸= ∅, where Sp

n and a⋆n as
in Equation (41). Since Nn,a ≥ (1 + η)p−1 for all a ∈ Sp

n, we have Ñn,a ≥ (1 + η)p−1. Using
Lemma 54 and x→ log(e+ x)/x is decreasing, we obtain that

µ̃n,a⋆
n
≥ µa⋆

n
−Wµ

log(e+ (1 + η)p−1)

(1 + η)p−1
,

∀a ∈ Sp
n \ {a⋆n}, µ̃n,a ≤ µa +Wµ

log(e+ (1 + η)p−1)

(1 + η)p−1
.

Let ∆min = mina ̸=b |µa − µb| and ∆0 = mina∈[K] min{µa, 1 − µa} > 0. By assumption on the
considered instances, we know that ∆min > 0. Let p1 = ⌈log1+η(X1 − e)⌉+ 1 with

X1 = sup
{
x > 1 | x ≤ 4(min{∆min,∆0})−1Wµ log x+ e

}
≤ h1(4(min{∆min,∆0})−1Wµ, e) ,

where we used Lemma 52, and h1 defined therein. Then, for all p ∈ N such that p ≥ p1 + 1 and all
n ∈ N such that Sp

n ̸= ∅, we have

∀a ∈ Sp
n, µa −min{∆min,∆0}/4 ≤ µ̃n,a ≤ µa +min{∆min,∆0}/4 .
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Therefore, we have µ̃n,a ∈ (0, 1) for all a ∈ Sp
n. Since µ̃n,a⋆

n
≥ µa⋆

n
− min{∆min,∆0}/4 and

µ̃n,a ≤ µa + min{∆min,∆0}/4 for all a ∈ Sp
n \ {a⋆n}, we obtain a⋆n = argmaxa∈Sp

n
µ̃n,a since

argmaxa∈Sp
n
µ̃n,a is unique. The leader is defined as Bn = argmaxa∈[K][µ̃n,a]

1
0. If Bn ∈ Sp

n, we
obtain

Bn = argmax
a∈Sp

n

[µ̃n,a]
1
0 = argmax

a∈Sp
n

µ̃n,a = a⋆n .

For all α ∈ R+, we have exp(αp1) ≤ e3α(X1 − e)α/ log 2, hence Eνπ[exp(αp1)] < +∞ by using
Lemma 54 and h1(x, e) ∼x→+∞ x log x to obtain that exp(αp1) is at most polynomial in Wµ.
Taking p0 = p1 concludes the proof.

Lemma 56 shows that the transportation costs between the sampled enough arms with largest true
means and the other sampled enough arms are increasing fast enough.
Lemma 56. Let Sp

n as in Eq. (41). There exists p1 with Eνπ[exp(αp1)] < +∞ for all α > 0 such
that if p ≥ p1, for all n such that Sp

n ̸= ∅, for all (a, b) ∈ (Sp
n)

2 such that µa > µb, we have

Wϵ,a,b(µ̃n, Nn) ≥ (1 + η)p−1Cµ ,

where Cµ > 0 is a problem dependent constant.

Proof. Let p0 as in Lemma 55. Let p ≥ p0. Let n ∈ N such that Sp
n ̸= ∅, where Sp

n as in Eq. (41).
Since Nn,a ≥ (1 + η)p−1 for all a ∈ Sp

n, we have Ñn,a ≥ (1 + η)p−1 by using Lemma 49. Let
(a, b) ∈ (Sp

n)
2 such that µa > µb. Using Lemma 47, there exists αµ > 0 such that

Cµ = min
(a,b):µa>µb

inf
λa,λb:

maxc∈{a,b} |µc−λc|≤αµ

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
> 0 .

Let η > 0 s.t. η < 1
4 min{∆min,∆0, αµ} where ∆min = mina̸=b |µa − µb| and ∆0 =

mina∈[K] min{µa, 1 − µa}. Similarly as in the proof of Lemma 55, we can construct p2 with
Eνπ[exp(αp2)] < +∞ for all α > 0 such that if p ≥ p2, for all n such that Sp

n ̸= ∅, we have
|µ̃n,a − µa| ≤ η for all a ∈ Sp

n. Therefore, we have µ̃n,a = [µ̃n,a]
1
0 and [µ̃n,b]

1
0 = µ̃n,b. Moreover,

we have µ̃n,a ≥ µa − η > µb + η ≥ µ̃n,b. Then, we obtain

Wϵ,a,b(µ̃n, Nn) = inf
u∈[0,1]

{
Nn,ad

−
ϵ (µ̃n,a, u) +Nn,bd

+
ϵ (µ̃n,b, u)

}
≥ (1 + η)p−1 inf

u∈[0,1]

{
d−ϵ (µ̃n,a, u) + d+ϵ (µ̃n,b, u)

}
≥ (1 + η)p−1 inf

λa,λb:
maxc∈{a,b} |µc−λc|≤αµ

inf
u∈[0,1]

{
d−ϵ (λa, u) + d+ϵ (λb, u)

}
≥ (1 + η)p−1Cµ .

This concludes the proof.

Lemma 57 shows that the transportation costs between sampled enough arms and undersampled arms
are not increasing too fast.
Lemma 57. Let Sp

n be as in Eq. (41). There exists p2 with Eνπ[exp(αp2)] < +∞ for all α > 0 such
that if p ≥ p2, for all n such that Sp

n ̸= ∅, For all p ≥ p2 and all n such that Sp
n ̸= ∅, for all a ∈ Sp

n
and b /∈ Sp

n,

Wϵ,a,b(µ̃n, Nn) ≤ (1 + η)p−1Dµ ,

where Dµ ∈ (0,+∞) is a problem dependent constant.

Proof. Let n ∈ N such that Sp
n ̸= ∅, where Sp

n as in Eq. (41). Since Nn,a ≥ (1 + η)p−1 for all
a ∈ Sp

n, we have Ñn,a ≥ (1 + η)p−1 by using Lemma 49. Likewise, Nn,b < (1 + η)p−1 for all
b /∈ Sp

n, we have Ñn,b < (1 + η)p−1. Let a ∈ Sp
n and b /∈ Sp

n. Since the result is direct when
[µ̃n,a]

1
0 ≤ [µ̃n,b]

1
0, we assume [µ̃n,a]

1
0 > [µ̃n,b]

1
0 in the following.

Let η > 0 s.t. η < 1
4 min{∆min,∆0} where ∆min = mina̸=b |µa − µb| and ∆0 =

mina∈[K] min{µa, 1 − µa} > 0. Similarly as in the proof of Lemma 55, we can construct p2
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with Eνπ[exp(αp2)] < +∞ for all α > 0 such that if p ≥ p2, for all n such that Sp
n ̸= ∅, we have

|µ̃n,a − µa| ≤ η for all a ∈ Sp
n. Let g+ϵ (x) =

x
x(1−eϵ)+eϵ as in Lemma 23. Using Lemma 23, for all

a ∈ Sp
n, we have

1 > µa +min{∆min,∆0}/4 ≥ µ̃n,a > g+ϵ (µ̃n,a) ≥ g+ϵ (µa −min{∆min,∆0}/4) > 0 .

Taking u = µ̃n,a ∈ [0, 1] and using that d−ϵ (µ̃n,a, µ̃n,a) = 0, we obtain

Wϵ,a,b(µ̃n, Nn) = inf
u∈[0,1]

{
Nn,ad

−
ϵ (µ̃n,a, u) +Nn,bd

+
ϵ (µ̃n,b, u)

}
≤ Nn,bd

+
ϵ (µ̃n,b, µ̃n,a) ≤ (1 + η)p−1d+ϵ (µ̃n,b, µ̃n,a) ,

where the last term is positive since µ̃n,a > [µ̃n,b]
1
0 and µ̃n,a ∈ (0, 1) by Lemma 24.

When µ̃n,b ≤ 0, Lemma 24 yields that

d+ϵ (µ̃n,b, µ̃n,a) = − log
(
1− µ̃n,a(1− e−ϵ)

)
≤ ϵ ,

where we used that x→ − log (1− x(1− e−ϵ)) is increasing on (0, 1). When µ̃n,b ∈ (0, g+ϵ (µ̃n,a)),
Lemma 24 yields that

d+ϵ (µ̃n,b, µ̃n,a) = − log
(
1− µ̃n,a(1− e−ϵ)

)
− ϵµ̃n,b ≤ ϵ .

When µ̃n,b ∈ [g+ϵ (µ̃n,a), µ̃n,a), Lemma 24 yields that

d+ϵ (µ̃n,b, µ̃n,a) = kl(µ̃n,b, µ̃n,a) ≤ − logmin{µ̃n,a, 1− µ̃n,a}
≤ − logmin{µa −min{∆min,∆0}/4, 1− µa −min{∆min,∆0}/4} ,

where we used the classical result that kl(q, p) ≤ − logmin{p, 1− p}. Let us define

Dµ = ϵ+ max
a∈[K]

{
− logmin{µa −min{∆min,∆0}/4, 1− µa −min{∆min,∆0}/4}

}
.

Then, we have shown that d+ϵ (µ̃n,b, µ̃n,a) ≤ Dµ where Dµ ∈ (0,+∞). This yields the result.

Lemma 58 shows that the challenger is mildly undersampled if the leader is not mildly undersampled.

Lemma 58. Let V p
n be as in Equation (42). There exists p3 with Eνπ[exp(αp3)] < +∞ for all

α > 0 such that if p ≥ p3, for all n such that Up
n ̸= ∅, Bn /∈ V p

n implies Cn ∈ V p
n .

Proof. Let p3 to be specified later. Let p ≥ p3. Let n ∈ N such that Up
n ̸= ∅ and V p

n ̸= [K], where
Up
n ⊆ V p

n are defined in Eq. (42). Since the statement holds when Bn ∈ V p
n , we suppose that

Bn /∈ V p
n in the following.

Let p0 as in Lemma 55, p1 and Cµ as in Lemma 56, and p2 and Dµ as in Lemma 57. Let p4 =
max{2p2 − 1, 43 max{p0, p1} − 1/3}, which satisfied that Eνπ[exp(αp4)] < +∞ for all α > 0 by
using Lemmas 55, 56 and 57. Then, for all p ≥ p4 = max{2p2− 1, 43 max{p0, p1}− 1/3} and all n
such that Bn /∈ V p

n , we have µ̃n,a ∈ (0, 1) for all a /∈ V p
n , Bn = b⋆n := argmaxa/∈V p

n
µa, Bn /∈ Up

n
and

∀b /∈ {b⋆n} ∪ V p
n , Wϵ,b⋆n,b

(µ̃n, Nn) + logNn,b ≥ (1 + η)3(p−1)/4Cµ +
3(p− 1)

4
log(1 + η) ,

∀b ∈ Up
n, Wϵ,b⋆n,b

(µ̃n, Nn) + logNn,b ≤ (1 + η)(p−1)/2Dµ +
p− 1

2
log(1 + η) ,

where we used Lemmas 55, 56 and 57. Direct manipulations yield that

(1 + η)3(p−1)/4Cµ +
3(p− 1)

4
log(1 + η) ≥ (1 + η)(p−1)/2Dµ +

p− 1

2
log(1 + η)

⇐= p ≥ p5 = 4⌈log1+η (Dµ/Cµ)⌉+ 1 ,

where Eνπ[exp(αp5)] < +∞ for all α > 0 since it is a deterministic constant. Let p3 = max{p4, p5}
which satisfies Eνπ[exp(αp3)] < +∞ for all α > 0. Then, we have shown that for all p ≥ p3, for
all n such that Bn /∈ V p

n , we have Bn = b⋆n and
min

b/∈{b⋆n}∪V p
n

{Wϵ,b⋆n,b
(µ̃n, Nn) + logNn,b} > max

b∈Up
n

{Wϵ,b⋆n,b
(µ̃n, Nn) + logNn,b} .

By definition of the TC challenger, i.e., Cn ∈ argminb̸=Bn
{Wϵ,Bn,b(µ̃n, Nn) + logNn,b}, we

obtain that Cn ∈ V p
n . Otherwise, there would be a contradiction since we assumed Up

n ̸= ∅. This
concludes the proof.
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Lemma 59 shows that all the arms are sufficient explored for large enough n.
Lemma 59. There exists N0 with Eνπ[N0] < +∞ such that, for all n ≥ N0 and all a ∈ [K],
Nn,a ≥

√
n/K.

Proof. Let p0 and p3 as in Lemmas 55 and 58. Combining Lemmas 55 and 58 yields that, for all p ≥
p4 = max{p3, 4p0/3− 1/3} and all n such that Up

n ̸= ∅, we have Bn ∈ V p
n or Cn ∈ V p

n . We have
Eνπ[(1+η)

p2 ] < +∞. We have (1+η)p−1 ≥ K(1+η)3(p−1)/4 for all p ≥ p5 = 4⌈log1+ηK⌉+1.
Let p ≥ max{p5, p4}. For notational simplicity, we conduct the proof as if that k(1 + η)p−1 ∈ N for
all k ∈ [K]. It is direct to adapt the proof by using the operator ⌈·⌉.
Suppose towards contradiction that Up

K(1+η)p−1 is not empty. Then, for any 1 ≤ t ≤ K(1 + η)p−1,
Up
t and V p

t are non empty as well. Using the pigeonhole principle, there exists some a ∈ [K] such
that N(1+η)p−1,a ≥ (1 + η)3(p−1)/4. Thus, we have

∣∣∣V p
(1+η)p−1

∣∣∣ ≤ K − 1. Our goal is to show

that
∣∣∣V p

2(1+η)p−1

∣∣∣ ≤ K − 2. A sufficient condition is that one arm in V p
(1+η)p−1 is pulled at least

(1 + η)3(p−1)/4 times between (1 + η)p−1 and 2(1 + η)p−1 − 1.

Case 1. Suppose there exists a ∈ V p
(1+η)p−1 such that L2(1+η)p−1,a − L(1+η)p−1,a ≥

β−1
(
(1 + η)3(p−1)/4 + 3/2

)
. Using Lemma 50, we obtain

Na
2(1+η)p−1,a −N

a
(1+η)p−1,a ≥ β(L2(1+η)p−1,a − L(1+η)p−1,a)− 3/2 ≥ (1 + η)3(p−1)/4 ,

hence a is sampled (1 + η)3(p−1)/4 times between (1 + η)p−1 and 2(1 + η)p−1 − 1.

Case 2. Suppose that for all a ∈ V p
(1+η)p−1 , we have L2(1+η)p−1,a − L(1+η)p−1,a <

β−1
(
(1 + η)3(p−1)/4 + 3/2

)
. Then,∑

a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a) ≥ (1 + η)p−1 −Kβ−1
(
(1 + η)3(p−1)/4 + 3/2

)
.

Using Lemma 50, we obtain∣∣∣∣∣∣∣
∑

a/∈V p

(1+η)p−1

(Na
2(1+η)p−1,a −N

a
(1+η)p−1,a)− β

∑
a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a)

∣∣∣∣∣∣∣
≤ 3(K − 1)/2 .

Combining all the above, we obtain∑
a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a)−
∑

a/∈V p

(1+η)p−1

(Na
2(1+η)p−1,a −N

a
(1+η)p−1,a)

≥ (1− β)
∑

a/∈V p

(1+η)p−1

(L2(1+η)p−1,a − L(1+η)p−1,a)− 3(K − 1)/2

≥ (1− β)
(
(1 + η)p−1 −Kβ−1

(
(1 + η)3(p−1)/4 + 3/2

))
− 3(K − 1)/2 ≥ K(1 + η)3(p−1)/4

where the last inequality is obtained for p ≥ p6 + 1 with

p6 = sup

{
p ∈ N | (1− β)

(
(1 + η)p−1 −Kβ−1

(
(1 + η)3(p−1)/4 + 3/2

))
− 3

2
(K − 1)

< K(1 + η)3(p−1)/4
}
.

The left hand side summation is exactly the number of times where an arm a /∈ V p
(1+η)p−1 was leader

but wasn’t sampled, hence we have shown that

2(1+η)p−1−1∑
t=(1+η)p−1

1
(
Bt /∈ V p

(1+η)p−1 , at = Ct

)
≥ K(1 + η)3(p−1)/4 .
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For any (1+ η)p−1 ≤ t ≤ 2(1+ η)p−1− 1, Up
t is non-empty, hence we have Bt /∈ V p

(1+η)p−1 (hence
Bt /∈ V p

t ) implies Ct ∈ V p
t ⊆ V

p
(1+η)p−1 . Therefore, we have shown that

2(1+η)p−1−1∑
t=(1+η)p−1

1
(
at ∈ V p

(1+η)p−1

)
≥

2(1+η)p−1−1∑
t=(1+η)p−1

1
(
Bt /∈ V p

(1+η)p−1 , at = Ct

)
≥ K(1+η)3(p−1)/4

Therefore, there is at least one arm in V p
(1+η)p−1 that is sampled (1 + η)3(p−1)/4 times between

(1 + η)p−1 and 2(1 + η)p−1 − 1.

In summary, we have shown
∣∣∣V p

2(1+η)p−1

∣∣∣ ≤ K − 2 for all p ≥ p7 = max{p6, p4, p5}. By

induction, for any 1 ≤ k ≤ K, we have
∣∣∣V p

k(1+η)p−1

∣∣∣ ≤ K − k, and finally Up
K(1+η)p−1 = ∅ for all

p ≥ p7. Defining N0 = K(1 + η)p7−1, we have Eνπ[N0] < +∞ by using Lemmas 55 and 58 for
p4 = max{p3, 4p0/3−1/3} and p6 and p5 are deterministic. For all n ≥ N0, we let (1+η)p−1 = n

K .

Then, by applying the above, we have Up
K(1+η)p−1 = U

log1+η(n/K)+1
n is empty, which shows that

Nn,a ≥
√
n/K for all a ∈ [K].

H.3 Convergence Towards β-Optimal Allocation

The second step of in the generic analysis of Top Two algorithms [50] is to show the convergence of
the empirical proportions towards the β-optimal allocation. First, we show that the leader coincides
with the best arm. Hence, the tracking procedure will ensure that the empirical proportion of time we
sample it is exactly β. Second, we show that a sub-optimal arm whose empirical proportion overshoots
its β-optimal allocation will not be sampled next as challenger. Therefore, this “overshoots implies not
sampled” mechanism will ensure the convergence towards the β-optimal allocation. We emphasise
that there are multiple ways to select the leader/challenger pair in order to ensure convergence towards
the β-optimal allocation. Therefore, other choices of leader/challenger pair would yield similar results.
Note that our results heavily rely on having obtained sufficient exploration first.

Lemma 60 shows the leader and the candidate answer are equal to the best arm for large enough n.
Lemma 60. Let N0 be as in Lemma 59. There exists N1 ≥ N0 with Eνπ[N1] < +∞ such that, for
all n ≥ N1, we have µ̃n ∈ (0, 1)K and ãn = Bn = a⋆.

Proof. Let ∆min = mina ̸=a⋆(µa⋆ − µa) and ∆0 = mina∈[K] min{µa, 1 − µa} > 0. Using
Lemma 54, we obtain, for all n ≥ N0,

µ̃n,a⋆ ≥ µa⋆ −Wµ
log(e+

√
n/K/(1 + η))√

n/K/(1 + η)

∀a ̸= a⋆, µ̃n,a ≤ µa +Wµ
log(e+

√
n/K/(1 + η))√

n/K/(1 + η)
,

where we used that x→ log(e+ x)/x is decreasing and Ñn,a ≥ Nn,a/(1 + η) ≥
√
n/K/(1 + η).

Let N1 = max{N0, ⌈K(1 + η)2X2
1⌉} where

X1 = sup
{
x > 1 | x ≤ 4(∆min,∆0)

−1Wµ log x+ e
}
≤ h1(4(∆min,∆0)

−1Wµ, e) ,

where we used Lemma 52, and h1 defined therein. Using Lemmas 54 and 59, we obtain Eνπ[N1] <
+∞. Then, we have 0 < µa −∆0/4 ≤ µ̃n,a ≤ µa +∆0/4 < 1 for all a ∈ [K]. Moreover, for all
n ≥ N1, we have µ̃n,a⋆ ≥ µa⋆ −∆min/4 and µ̃n,a ≤ µa +∆min/4 for all a ̸= a⋆, hence

a⋆ = argmax
a∈[K]

µ̃n,a = argmax
a∈[K]

[µ̃n,a]
1
0 = ãn = Bn .

This concludes the proof.

Lemma 61 shows that that the pulling proportion of the best arm converges towards β. It is a direct
consequence of Lemma 60 by using the same proof as Lemma 39 in Azize et al. [12], hence we omit
the proof.
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Lemma 61 (Lemma 39 in Azize et al. [12]). Let γ > 0, and N1 be as in Lemma 60. There exists a
deterministic constant C0 ≥ 1 such that, for all n ≥ C0N1, we have

∣∣∣Nn,a⋆

n−1 − β
∣∣∣ ≤ γ.

Lemma 62 shows that if a sub-optimal arm overshoots its β-optimal allocation then it cannot be
selected as challenger for large enough n.
Lemma 62. Let γ ∈ (0, γµ) where γµ is a problem dependent constant. Let N1 and C0 be as in
Lemma 60 and 61. There exists N2 ≥ C0N1 with Eνπ[N2] < +∞ such that, for all n ≥ N2,

∃a ̸= a⋆,
Nn,a

n− 1
≥ γ + ω⋆

ϵ,β,a =⇒ Cn ̸= a .

Proof. Let η > 0 and γ > 0 be small enough, which we will specify below. Let γ̃ ∈ (0, γ). Let N1

as in Lemma 60 and C0 as in Lemma 61 for γ̃. Let n ≥ C0N1. Therefore, we have µ̃n ∈ (0, 1)K and
ãn = Bn = a⋆ and

∣∣∣Nn,a⋆

n−1 − β
∣∣∣ ≤ γ̃. Using the same proof as in Lemma 60, there exists N3 with

Eνπ[N3] < +∞ such that, for all n ≥ N3, we have ∥µ̃n − µ∥∞ ≤ η. Let n ≥ max{C0N1, N3}.

Let a ̸= a⋆ such that Nn,a

n−1 ≥ ω⋆
ϵ,β,a + γ. Suppose towards contradiction that Nn,b

n−1 > ω⋆
ϵ,β,b for all

b /∈ {a⋆, a}. Then, for all n ≥ C0N1, we have

1− β + γ̃ ≥ 1− Nn,a⋆

n− 1
=
∑
b ̸=a⋆

Nn,b

n− 1
> γ +

∑
b̸=a⋆

ω⋆
ϵ,β,b = 1− β + γ ,

which yields a contradiction since γ̃ < γ. Therefore, for all n ≥ C0N1, we have

∃a ̸= a⋆,
Nn,a

n− 1
≥ ω⋆

ϵ,β,a + γ =⇒ ∃b /∈ {a⋆, a}, Nn,b

n− 1
≤ ω⋆

ϵ,β,b .

Let b /∈ {a⋆, a} such that Nn,b

n−1 ≤ ω
⋆
ϵ,β,b. By definition of the TC challenger, we obtain

Cn ̸= a ⇐= Wϵ,a⋆,a(µ̃n, Nn) + logNn,a > Wϵ,a⋆,b(µ̃n, Nn) + logNn,b

⇐= 1

n− 1
(Wϵ,a⋆,a(µ̃n, Nn)−Wϵ,a⋆,b(µ̃n, Nn)) >

1

n− 1
log

ω⋆
ϵ,β,b

ω⋆
ϵ,β,a + γ

⇐= 1

n− 1
(Wϵ,a⋆,a(µ̃n, Nn)−Wϵ,a⋆,b(µ̃n, Nn)) >

1

n− 1
max
a ̸=b

∣∣∣∣∣log ω⋆
ϵ,β,b

ω⋆
ϵ,β,a

∣∣∣∣∣ ,
where we used the positivity of the β-optimal allocation (Lemma 42) to ensure that
maxa̸=b

∣∣∣log ω⋆
ϵ,β,b

ω⋆
ϵ,β,a

∣∣∣ ∈ (0,+∞). Using that µ̃n,a⋆ > max{µ̃n,a, µ̃n,b}, we obtain

1

n− 1
(Wϵ,a⋆,a(µ̃n, Nn)−Wϵ,a⋆,b(µ̃n, Nn))

≥ inf
u∈[0,1]

{
Nn,a⋆

n− 1
d−ϵ (µ̃n,a⋆ , u) + (ω⋆

ϵ,β,a + γ)d+ϵ (µ̃n,a, u)

}
− inf

u∈[0,1]

{
Nn,a⋆

n− 1
d−ϵ (µ̃n,a⋆ , u) + ω⋆

ϵ,β,bd
+
ϵ (µ̃n,b, u)

}
≥ inf

β̃:|β̃−β|≤γ̃
Ga,b(µ̃n, β̃) ≥ inf

λ:∥λ−µ∥∞≤η
inf

β̃:|β̃−β|≤γ̃
Ga,b(λ, β̃) ,

where, for all (a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b,

Ga,b(λ, β̃) = inf
u∈[0,1]

{
β̃d−ϵ (λa⋆ , u) + (ω⋆

ϵ,β,a + γ)d+ϵ (λa, u)
}

− inf
u∈[0,1]

{
β̃d−ϵ (λa⋆ , u) + ω⋆

ϵ,β,bd
+
ϵ (λb, u)

}
.

Using the equality at equilibrium from (39) (see Lemma 42) and the fact that the transportation
costs are increasing in their allocation argument (see Lemma 36), we obtain Ga,b(µ, β) > 0 for all
(a, b) ∈ ([K] \ {a⋆})2 such that a ̸= b, since

inf
u∈[0,1]

{
βd−ϵ (µa⋆ , u) + (ω⋆

ϵ,β,a + γ)d+ϵ (µa, u)
}
> Wϵ,a⋆,a(µ,w

⋆
ϵ,β) =Wϵ,a⋆,b(µ,w

⋆
ϵ,β) .
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By Lemma 48, the functions (λ, β̃)→ Ga,b(λ, β̃) and λ→ inf β̃:|β̃−β|≤γ̃ Ga,b(λ, β̃) are continuous.
Therefore, there exists ηµ and γµ small enough such that

inf
λ:∥λ−µ∥∞≤η

inf
β̃:|β̃−β|≤γ̃

Ga,b(λ, β̃) ≥ Ga,b(µ, β)/2 ≥
1

2
min

a ̸=b,a̸=a⋆,b ̸=a⋆
Ga,b(µ, β) > 0 ,

where the last strict inequality uses that the minimum of a finite number of positive constants
is also positive. Considering such (ηµ, γµ) at the beginning of the proof and taking N2 =
max{C0N1, N3, κµ} where

κµ = 2 +
2maxa ̸=b

∣∣∣log ω⋆
ϵ,β,b

ω⋆
ϵ,β,a

∣∣∣
mina̸=b,a̸=a⋆,b̸=a⋆ Ga,b(µ, β)

< +∞ ,

As it satisfies Eνπ[N2] < +∞, this concludes the proof.

Lemma 63 shows that the convergence time towards the β-optimal allocation has finite expectation.
It is a direct consequence of Lemmas 60, 61 and 62 by using the same proof as Lemma 41 in Azize
et al. [12], hence we omit the proof.
Lemma 63 (Lemma 41 in Azize et al. [12]). Let γ ∈ (0, γµ) where γµ is a problem dependent
constant, and Tγ(w) as in Eq. (40). Then, we have Eνπ[Tγ(ω

⋆
ϵ,β)] < +∞.

H.4 Asymptotic Upper Bound

The final step of the generic analysis of Top Two algorithms [50] is to invert the GLR stopping rule in
Eq. (7) by leveraging the convergence of the empirical proportions towards the β-optimal allocation.
Provided this convergence is shown, the asymptotic upper bound on the expected sample complexity
only depends on the dependence in log(1/δ) of the threshold that ensures δ-correctness. Compared
to the non-private GLR stopping rule, the GLR stopping rule in Eq. (7) pay an extra cost to ensure
privacy.
Lemma 64. Let ϵ > 0, η > 0 and (δ, β) ∈ (0, 1)2. Let T ⋆

ϵ,β(ν) as in Eq. (35) and ω⋆
ϵ,β be its

associated β-optimal allocation. Assume that there exists γµ > 0 such that Eνπ[Tγ(ω
⋆
ϵ,β)] < +∞

for all γ ∈ (0, γµ), where Tγ(w) is defined in Eq. (40). Combining such a sampling rule, using the
GPEη(ϵ) update, with the GLR stopping rule as in Eq. (7) and the stopping threshold c as in Eq. (8)
yields an ϵ-global DP and δ-correct algorithm which satisfies that, for all ν with mean µ such that
|a⋆(µ)| = 1,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ,β(ν) .

Proof. Lemma 4 yields the ϵ-global DP. Theorem 5 yields the δ-correctness.

Let ζ > 0 and a⋆ be the unique best arm. Using the equality at equilibrium from (39) (see Lemma 42)
and the continuity of (µ,w) 7→ mina̸=a⋆(µ)Wϵ,a⋆(µ),a(µ,w) (see Lemma 41), there exists γζ > 0

such that
∥∥∥ Nn

n−1 − ω
⋆
ϵ,β

∥∥∥
∞
≤ γζ and ∥µ̃n − µ∥∞ ≤ γζ implies that

∀a ̸= a⋆, Wϵ,a⋆,a(µ̃n, Nn/(n− 1)) ≥ (1− ζ)
T ⋆
ϵ,β(ν)

.

We choose such a γζ . Let γµ > 0 be such that for Eνπ[Tγ(ω
⋆
ϵ,β)] < +∞ for all γ ∈ (0, γµ), where

Tγ(ω) is defined in Eq. (40). Let γ ∈ (0,min{γµ, γζ ,mina∈[K] ω
⋆
ϵ,β,a/4,∆min/4,∆0/4}) where

∆min = mina̸=a⋆(µa⋆ − µa) and ∆0 = mina∈[K] min{µa, 1− µa}. For all n ≥ Tγ(ω⋆
ϵ,β), we have

Ñn,a ≥ Nn,a/(1 + η) ≥ (n− 1)(ω⋆
ϵ,β,a − γ)/(1 + η) ≥ (n− 1)

3

4(1 + η)
min
a∈[K]

ω⋆
ϵ,β,a > 0 ,

where the last inequality used the positivity of the β-optimal allocation (Lemma 42). Since arms
are sampled linearly, it is direct to construct N3 ≥ Tγ(ω

⋆
ϵ,β) with Eνπ[N3] < +∞ such that

∥µ̃n − µ∥∞ ≤ γ and
∥∥∥ Nn

n−1 − ω
⋆
ϵ,β

∥∥∥
∞
≤ γ (as well as mina∈[K]Nn,a > e trivially).
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Recall that c(n, ϵ, δ) = c1(n, δ)+ c2(n, ϵ) where n 7→ c1(n, δ) and n 7→ c1(n, δ) are increasing (see
Lemmas 51 and 38). Since Ñn,a ≤ Nn,a ≤ n, we obtain∑

b∈{a⋆,a}

c(Ñn, ϵ, δ) ≤ 2(c1(n, δ) + c2(n, ϵ)) .

Using Lemma 36 and Ñn,a ≥ Nn,a/(1 + η) for all a ∈ [K] (Lemma 49), we obtain

Wϵ,a⋆,a(µ̃n, Ñn) ≥
n− 1

1 + η
Wϵ,a⋆,a

(
µ̃n,

Nn

n− 1

)
.

Let κ ∈ (0, 1) and T > N3/κ. For all n ∈ [κT, T ], we have ãn = a⋆ and, for all a ̸= a⋆,

τϵ,δ > n

=⇒ ∃a ̸= a⋆, Wϵ,a⋆,a(µ̃n, Ñn) ≤
∑

b∈{a⋆,a}

c(Ñn, ϵ, δ)

=⇒ ∃a ̸= a⋆,
n− 1

1 + η
Wϵ,a⋆,a

(
µ̃n,

Nn

n− 1

)
≤ 2(c1(n, δ) + c2(n, ϵ))

=⇒ ∃a ̸= a⋆,
n− 1

1 + η

(1− ζ)
T ⋆
ϵ,β(ν)

≤ 2c1(T, δ) + 2c2(T, ϵ) ,

where we used that n 7→ c1(n, δ) and n 7→ c2(n, ϵ) are increasing and n ≤ T . Therefore, we obtain

min {τϵ,δ, T} ≤ κT +

T∑
n=κT

1 (τδ > n)

≤ κT +

T∑
n=κT

1

(
n− 1

1 + η

(1− ζ)
T ⋆
ϵ,β(ν)

≤ 2c1(T, δ) + 2c2(T, ϵ)

)

≤ κT + 1 +
2(1 + η)T ⋆

ϵ,β(ν)

1− ζ
(c1(T, δ) + c2(T, ϵ)) .

Let Tζ(δ) defined as

Tζ(δ) := inf

{
T ≥ 1 | 1

1− κ

(
1 +

2(1 + η)T ⋆
ϵ,β(ν)

1− ζ
(c1(T, δ) + c2(T, ϵ))

)
≤ T

}
.

Using Lemma 51, we know that W−1(x) =x→∞ x + log x, hence we have
lim supδ→0 c1(T, δ)/ log(1/δ) ≤ 1. Since limδ→0 c2(T, ϵ)/ log(1/δ) = 0, we obtain
lim supδ→0

Tζ(δ)
log(1/δ) ≤

2(1+η)T⋆
ϵ,β(ν)

(1−ζ)(1−κ) . For every T ≥ max{Tζ(δ), N3/κ}, we have τϵ,δ ≤ T ,
hence Eνπ [τϵ,δ] ≤ Tζ(δ) + Eνπ [N3] /κ < +∞. Therefore, for all ζ, κ > 0, we obtain

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ lim sup

δ→0

Tζ(δ)

log(1/δ)
≤

2(1 + η)T ⋆
ϵ,β(ν)

(1− ζ)(1− κ)
.

Letting ζ and κ go to zero concludes the proof.

Proof of Theorem 6 The proof is obtained by combining Theorem 5 and Lemmas 4, 59, 63 and 64.

I Variants of Algorithms

In Appendix I, we propose several variants of the algorithmic components used in our algorithm. The
objective is to give freedom of choice for the practitioners interested in solving ϵ-global DP BAI.
Given the rich literature on BAI, it is unreasonable to provide details for the ϵ-global DP version of
all the existing BAI algorithms. Therefore, we settle for a few instances that has received increased
scrutiny in the BAI literature.
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First, we adapt the Track-and-Stop sampling rule [38] to solve ϵ-global DP BAI (Appendix I.1). This
leverages the computational tractable procedure to compute the optimal allocation w⋆

ϵ derived in
Lemma 46. Second, we explore some alternative choices of components of the Top Two sampling
rule for ϵ-global DP BAI (Appendix I.2). This includes adaptive choice of target for the leader, hence
aiming at achieving T ⋆

ϵ (ν) instead of T ⋆
ϵ,β(ν). Third, we adapt the LUCB sampling rule [55] for

ϵ-global DP BAI (Appendix I.3).

I.1 Track-and-Stop Sampling Rule

The Track-and-Stop (TaS) sampling rule was introduced in the seminal paper [38]. At each time
n, it solves the optimization problem defining the characteristic time for the current empirical
estimator µ̃n. When µ̃n ∈ (0, 1)K , we define w̃n = w⋆

ϵ (ν̃n) where ν̃n is the Bernoulli instance with
means µ̃n. When µ̃n /∈ (0, 1)K , [µ̃n]

1
0 corresponds to a degenerate Bernoulli instance, hence we

define w̃n = 1K/K. Since µ̃n is updated on a per-arm geometric grid governed by η, the optimal
allocation w̃n is updated on the same per-arm geometric grid. Therefore, choosing a larger η yields
lower computational cost of TaS at the cost of larger expected sampled complexity, i.e., asymptotic
multiplicative factor 1 + η due to the update grid.

Given the vector w̃n ∈ △K , the next arm an to sample is obtained by using C-Tracking [38] with
forced exploration in order to ensure that sufficient exploration holds. This is done here by projecting
on △ϵ

K = {w ∈ [ϵ, 1]K |
∑

a∈[K] wa = 1} for a well chosen ϵ ∈ (0, 1/K]. Let w̃ϵn
n be the ℓ∞

projection of w̃n on△ϵn
K with ϵn = (K2 + n)−1/2/2. While we consider a projection that changes

at each time n (due to ϵn), w̃ϵn
n could also be updated on a per-arm geometric grid, i.e., when w̃n is

updated itself. For all n ≥ K + 1, the TaS sampling rule defines

an ∈ argmax
a∈[K]

∑
t∈[n]

w̃ϵt
t,a −Nn,a

 . (43)

In summary, our proposed Track-and-Stop algorithm is defined as in DP-TT with the sole modification
that Lines 13-14 are replaced by the sampling rule defined in Eq. (43).

Optimal Allocation Oracle In Lemma 46, we show that w⋆
ϵ (ν) can be computed explicitly based

on the unique fixed-point solution Fµ(y) = 1 for y ∈ [0,mina̸=a⋆(µ) d
−
ϵ (µa⋆(µ), µa)), where Fµ is

an increasing one-to-one mapping from [0,mina̸=a⋆(µ) d
−
ϵ (µa⋆(µ), µa)) to [0,+∞) defined as

Fµ(y) =
∑

a ̸=a⋆(µ)

d−ϵ (µa⋆(µ), ua(xa(y)))

d+ϵ (µa, ua(xa(y)))
. (44)

The definitions of ua and xa is defered to Lemma 46, ua is decreasing and xa is increasing and
strictly convex.

Asymptotic Expected Sample Complexity Combining the TaS sampling rule an as in Eq. (43)
with the GPEη(ϵ) update and the GLR stopping rule as in Eq. (7) for the stopping threshold as in
Eq. (8) yields a δ-correct and ϵ-global DP algorithm (see Lemma 4 and Theorem 5). Moreover, we
conjecture that its satisfies that, for all ν ∈ FK with unique best arm,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ (ν) .

The multiplicative factor 1+ η comes from the per-arm geometric update grid, and the factor 2 comes
from the asymptotic scaling in 2 log(1/δ) of the stopping threshold. Using Theorem 6 for β = 1/2
and T ⋆

ϵ,1/2(ν) ≤ 2T ⋆
ϵ (ν) (Lemma 43), proving this conjecture would only yield an asymptotic

improvement by a factor of at most 2. However, this would come at the price of a significantly higher
computational cost.

Proof Sketch of Conjecture While the detailed proof of this conjecture is beyond the scope of this
work, an astute reader could notice that all the necessary steps were proven to derive Theorem 6 for
DP-TT. At a high level, it is intuitive that the asymptotic analysis of Track-and-Stop is simpler than
the one of DP-TT.
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First, the forced exploration is enforced algorithmically, hence an equivalent of Lemma 59 can be
shown for the Track-and-Stop sampling rule. In contrast, the proof of sufficient exploration for DP-TT
is more challenging and involves a subbtle reasoning towards contradiction, see Appendix H.2 for
more details.

Second, the convergence towards the optimal allocation is also enforced algorithmically. Thanks to
the forced exploration and due to the continuity of ν 7→ w⋆

ϵ (ν) (Lemma 41) and the convergence
µ̃n →n→+∞ µ, the empirical optimal allocation w̃n converges towards the true optimal allocation
w⋆

ϵ (ν). Therefore, an equivalent of Lemma 63 can be shown for the Track-and-Stop sampling rule.
In contrast, the proof of convergence towards β-optimal allocation for DP-TT is more challenging
and leverage subbtle regularity properties of the β characteristic time and its optimal allocation, e.g.,
the equality at equilibrium of all the transportations costs in Eq. (39), see Appendix H.3 for more
details.

Third, the invertion of the GLR stopping rule can be done similarly as for DP-TT. The sole modifica-
tion lies in using our derived regularity properties for w⋆

ϵ (ν) instead of w⋆
ϵ,β(ν), e.g., the equality at

equilibrium of all the transportations costs in Lemma 42. Therefore, an equivalent of Lemma 64 can
be shown for the Track-and-Stop sampling rule with 2(1 + η)T ⋆

ϵ (ν) instead of 2(1 + η)T ⋆
ϵ,β(ν), see

Appendix H.4 for more details.

I.2 Top Two Sampling Rule

As detailed in Chapter 2.2 in [48], a Top Two sampling rule is defined by four choices: a leader arm
Bn ∈ [K], a challenger arm Cn ∈ [K] \ {Bn}, a target βn(Bn, Cn) ∈ [0, 1] and a mechanism to
reach the target, i.e., an ∈ {Bn, Cn} by using βn(Bn, Cn). For instance, the sampling rule in DP-TT
uses the EB leader, the TCI challenger, a fixed target β ∈ (0, 1) and K independent β-tracking
procedures (one per leader). We propose adaptive choice of target (Appendix I.2.1), as well as leader
fostering implicit exploration (Appendix I.2.2).

I.2.1 Adaptive Target

When the target is fixed to β beforehand, the Top Two sampling rule can achieve T ⋆
ϵ,β(ν) at best. We

propose adaptive choices of the target inspired by the recent literature on asymptotically optimal Top
Two algorithms [86, 14].

BOLD Target Given the EB-TCI leader/challenger pair (Bn, Cn) defined in DP-TT, we adapt the
BOLD target from Bandyopadhyay et al. [14]. Let us define

uϵ,Bn,a(µ̃n, Nn) = argmin
u∈[0,1]

{
Nn,Bnd

−
ϵ (µ̃n,Bn , u) +Nn,ad

+
ϵ (µ̃n,b, u)

}
, (45)

whose closed-form solution is given in Lemma 44. Then, the deterministic BOLD target defines the
next arm to pull as

an = Bn if
∑
a ̸=Bn

d−ϵ (µ̃n,Bn , uϵ,Bn,a(µ̃n, Nn))

d+ϵ (µ̃n,a, uϵ,Bn,a(µ̃n, Nn))
> 1 and an = Cn otherwise. (46)

In summary, the sole modification in DP-TT is Line 14 that is replaced by the sampling rule defined
in Eq. (46).

For any single-parameter exponential family of distributions, Bandyopadhyay et al. [14] shows that the
BOLD target allows to reach asymptotic optimality. Forced exploration is added by Bandyopadhyay
et al. [14] to ensure that sufficient exploration holds. Showing that the BOLD target can achieve
asymptotic optimality without forced exploration, i.e., meaning that it ensures sufficient exploration
on its own, is an open problem.

IDS Target Given the EB-TCI leader/challenger pair (Bn, Cn) defined in DP-TT, we adapt the
IDS target from You et al. [86]. Namely, the randomized IDS target defines the next arm to pull from
as

an =

{
Bn with proba βn(Bn, Cn)

Cn otherwise
where βn(Bn, Cn) =

Nn,Bn
d−ϵ (µ̃n,Bn

, uϵ,Bn,Cn
(µ̃n, Nn)

Wϵ,Bn,Cn
(µ̃n, Nn)

,

(47)
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where uϵ,Bn,Cn(µ̃n, Nn) is defined in Eq. (45). In summary, the sole modification in DP-TT is Line
14 that is replaced by the sampling rule defined in Eq. (47).

While we could use K(K − 1) tracking procedures to select an ∈ {Bn, Cn}, we use randomization
above for the sake of simplicity. For Gaussian distributions with known variance, You et al. [86]
shows that the IDS target allows to reach asymptotic optimality. Showing that the IDS target can
achieve optimality for other classes of distributions is an open problem.

Asymptotic Expected Sample Complexity Sampling an as in Eq. (46) or (47) for the EB-TCI
leader/challenger pair (Bn, Cn) defined in DP-TT based on the GPEη(ϵ) update and the GLR stopping
rule as in Eq. (7) for the stopping threshold as in Eq. (8) yields a δ-correct and ϵ-global DP algorithm
(see Lemma 4 and Theorem 5).

While we conjecture that their asymptotic expected sample complexities lim supδ→0
Eνπ [τϵ,δ]
log(1/δ) are

both upper bounded by 2(1+ η)T ⋆
ϵ (ν), we emphasize that our analysis doesn’t provide the necessary

steps for this result to hold. This is an interesting research direction left for future work.

I.2.2 Implicit Exploring Leaders and TC Chalenger

The empirical best (EB) leader is a greedy choice of leader that doesn’t foster implicit exploration.
Without additional exploration mechanism, it can suffer from large empirical stopping time despite
being enough for an asymptotic analysis, see [50]. This motivated the choice of the TCI challenger
for DP-TT, since it fosters additional implicit exploration by penalizing over sampled challengers
with the logNn,a term. We propose other choices of leaders that foster implicit exploration, and
define the TC challenger that removes this penalization.

The UCB leader is defined as

BUCB
n ∈ argmax

a∈[K]

Un,a where Un,a = max
{
u ∈ [0, 1] | Nn,ad

+
ϵ ([µ̃n,a]

1
0, u) ≤ log(n)

}
. (48)

By adding a bonus to the empirical mean, we are optimistic since we consider that the means are
better than suggested by our observations.

The IMED leader builds on the IMED algorithm [42] is defined as

BIMED
n ∈ argmin

a∈[K]

{
Nn,ad

+
ϵ ([µ̃n,a]

1
0, µ̃

⋆
n) + logNn,a

}
where µ̃⋆

n = max
a∈[K]

[µ̃n,a]
1
0 . (49)

The TC challenger is defined as

CTC
n ∈ argmin

a ̸=Bn

Wϵ,Bn,b(µ̃n, Nn) , (50)

where Wϵ,a,b is defined as in Eq. (4).

In summary, the sole modification in DP-TT is Line 13 which can be replaced by choosing the leader
as in Eq. (48) or Eq. (49), or choosing the challenger as in Eq. (50).

Asymptotic Expected Sample Complexity Choosing the leader as in Eq. (48) or Eq. (49) or the
challenger as in Eq. (50) based on the β-tracking as in DP-TT, the GPEη(ϵ) update and the GLR
stopping rule as in Eq. (7) for the stopping threshold as in Eq. (8) yields a δ-correct and ϵ-global
DP algorithm (see Lemma 4 and Theorem 5). Moreover, we conjecture that its satisfies that, for all
ν ∈ FK with distinct means,

lim sup
δ→0

Eνπ [τϵ,δ]

log(1/δ)
≤ 2(1 + η)T ⋆

ϵ,β(ν) .

While the detailed proof of this conjecture is beyond the scope of this work, an astute reader could
notice that all the necessary steps were proven to derive Theorem 6 for DP-TT. When using the TC
challenger as in Eq. (50), the proofs of Lemmas 58 and 62 can be readily adapted. When using the
UCB leader as in Eq. (48) or the IMED leader as in Eq. (49), the proofs of Lemmas 55 and 60 could
also be adapted.
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I.3 LUCB Sampling Rule

While the Top Two terminology was introduced in Russo [73], the first sampling rule having a Top
Two structure is the greedy sampling strategy in LUCB1 introduced by Kalyanakrishnan et al. [55].
At each time n, it selects the EB leader BEB

n = ãn and the UCB challenger defined as

CUCB
n ∈ argmax

a ̸=BEB
n

Un,a where Un,a as in Eq. (48) . (51)

Then, it samples both BEB
n and CUCB

n . Instead of using the GLR stopping rule as in Eq.(7), LUCB1
stops when the LCB (lower confidence bound) of the leader exceeds the UCB of the challenger, i.e.,

τLUCB1
ϵ,δ = inf

{
n | L̃n,BEB

n
> Un,CUCB

n

}
, (52)

where
L̃n,a = max

{
u ∈ [0, 1] | Nn,ad

−
ϵ ([µ̃n,a]

1
0, u) ≤ log(n)

}
. (53)

In summary, the modifications in DP-TT are: (1) the sampling rule in Lines 13-15 is replaced by
sampling both BEB

n and CUCB
n , and (2) the stopping rule in Line 10 is replaced by Eq. (52). While

studying this algorithm is beyond the scope of this work, we emphasize that LUCB is known to not
reach asymptotic (β-)optimality.

J Implementation Details and Supplementary Experiments

Appendix J is organized as follows. First, we provide additional detail on the implementation details
for our algorithm (Appendix J.1). Second, we provide supplementary experiments to illustrate the
good performance of our algorithm (Appendix J.2).

J.1 Implementation Details

We present additional experiments comparing the algorithms in different bandit instances with
Bernoulli distributions, as defined by Sajed and Sheffet [74], namely

µ1 = (0.95, 0.9, 0.9, 0.9, 0.5), µ2 = (0.75, 0.7, 0.7, 0.7, 0.7),

µ3 = (0.1, 0.3, 0.5, 0.7, 0.9), µ4 = (0.75, 0.625, 0.5, 0.375, 0.25)},
µ5 = (0.75, 0.53125, 0.375, 0.28125, 0.25), µ6 = (0.75, 0.71875, 0.625, 0.46875, 0.25)}.

For each Bernoulli instance, we implement the algorithms with

ϵ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 10, 100, 125} .

The risk level is set at δ = 0.01. We verify empirically that the algorithms are δ-correct by running
each algorithm 1000 times.

We implement all the algorithms in Python (version 3.8) and on an 8 core 64-bits Intel i5@1.6 GHz
CPU.
Remark 2. To implement the thresholds of AdaP-TT, AdaP-TT⋆ and DP-TT, we use empirical
thresholds that we get by approximating the theoretical thresholds. The expressions of the empirical
thresholds used can be found in the code in the supplementary material.

J.2 Supplementary Experiments

Figure 2 confirms our experimental findings from Section 6. DP-TT outperforms all the other
δ-correct and ϵ-global DP BAI algorithms, for different values of ϵ and in all the instances tested.
The empirical performance of DP-TT demonstrates two regimes. A high-privacy regime, where the
stopping time depends on the privacy budget ϵ, and a low privacy regime, where the performance
of DP-TT is independent of ϵ, and requires twice the number of samples used by the non-private
EB-TCI-β.
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Figure 2: Empirical stopping time τϵ,δ (mean ±2 std. over 1000 runs) for δ = 10−2 with respect to
the privacy budget ϵ for ϵ-global DP on Bernoulli instances µ3, µ4, µ5 and µ6 (top left to bottom
right). The shaded vertical line separates the two privacy regimes.
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