

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 YOU ARE WHAT YOU TRAIN: RETHINKING TRAINING DATA QUALITY, TARGETS, AND ARCHITECTURES FOR UNIVERSAL SPEECH ENHANCEMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Universal Speech Enhancement (USE) aims to restore the quality of diverse degraded speech while preserving fidelity. Despite recent progress, several challenges remain. In this paper, we address three key issues. (1) In speech dereverberation, the conventional use of early-reflected speech as the training target simplifies model training, but we found that it still harms perceptual quality. We therefore apply time-shifted anechoic clean speech as a simple yet more effective target. (2) Regression models preserve fidelity but produce over-smoothed outputs under severe degradation, while generative models improve perceptual quality but risk hallucination. **We introduce a two-stage framework that effectively combines the strengths of both approaches, inspired by a recent theoretical finding.** (3) We study the trade-off between training data scale and quality, a critical factor when scaling to large, imperfect corpora. Experimental results demonstrate that using time-shifted anechoic clean speech as the learning target significantly improves both speech quality and downstream automatic speech recognition (ASR) performance, while the two-stage framework further boosts quality without compromising fidelity. In addition, our model demonstrates strong language-agnostic capability, making it well-suited for enhancing training data in other speech generative tasks. To ensure reproducibility, the code will be made publicly available upon acceptance of the paper. Several enhanced real noisy speech examples are provided on the demo page: <https://anonymous.4open.science/w/USE-5232/>

1 INTRODUCTION

In universal speech enhancement (USE) (Serrà et al., 2022), the goal is to improve the intelligibility and perceptual quality of diverse degraded speech while ensuring that all other factors (e.g., speaker identity, emotion, accent) remain unchanged (Babaev et al., 2024). Recent efforts have increasingly shifted from task-specific approaches toward models that generalize across domains and conditions. For instance, VoiceFixer (Liu et al., 2021) adopts a ResUNet-based analysis stage coupled with a neural vocoder-based synthesis stage. Similarly, MaskSR (Li et al., 2024) employs a masked generative modeling objective to handle comparable conditions. More recently, AnyEnhance (Zhang et al., 2025a) introduced prompt-guidance and a self-critic mechanism, offering a unified framework capable of mitigating diverse degradations across both speech and singing voices. To advance the generalization of USE, the URGENT 2025 Challenge was introduced at Interspeech 2025 (Saijo et al., 2025). The Challenge provides training data from diverse sources with varying quality and covers seven types of distortions (additive noise, reverberation, clipping, bandwidth limitation, codec artifacts, packet loss, and wind noise), spanning multiple sampling rates (8, 16, 22.05, 24, 32, 44.1, and 48 kHz) across five languages (English, German, French, Spanish, and Chinese). This paper follows the Challenge setup and investigates three critical aspects of our proposed USE pipeline: (1) training targets, (2) model architecture, and (3) the role of training data quality.

Training targets: Six out of seven speech signal distortions considered in this Challenge use the original anechoic clean speech as the learning target. However, the training target for **reverberation** is the early-reflected speech signal, obtained by convolving the anechoic clean speech with the early reflection component of the room impulse response (RIR). This choice of the learning target follows a common convention, as many studies have shown that early reflections are particularly difficult to

remove, and attempting to do so often introduces excessive artifacts into the enhanced speech (Valin et al., 2022; Zhou et al., 2023; Zhao et al., 2020). Nevertheless, we found that early reflections still degrade both perceptual quality and machine intelligibility (for downstream ASR). In addition, early reflections present little difficulty for model training. The main challenge lies in the implicit estimation of the **direct-path time shift**, which causes a misalignment between the reverberant input and the clean target. Hence, we propose using time-shifted anechoic clean speech as the learning target, which effectively addresses this issue and significantly improves both speech quality and ASR accuracy. Although previous studies (Delfarah et al., 2020; Zhao et al., 2020; Wang et al., 2021) have also used this as a learning target, they did not compare the results across different targets.

Model architecture: In this Challenge, Sun et al. (2025) proposed a channel-mixing module between time and frequency modeling, along with progressive block extension to enable model training at different scales. Although it achieves strong performance across different metrics, some over-smoothing artifacts can be observed under bandwidth limitation and packet loss (Saijo et al., 2025), as it relies solely on a regression model. Other works have explored integrating the outputs of regression and generative models in different ways. Chao et al. (2025) combines the outputs using a simple energy criterion based on the noisy input. Both Rong et al. (2025) and Goswami & Harada (2025) propose three-stage frameworks for generating the final USE results. Rong et al. (2025) employs filling, separation, and restoration modules, while Goswami & Harada (2025) uses a fusion network to combine the outputs of the regression and token sampling-based generative models. Le et al. (2025) applies a four-stage strategy consisting of audio declipping, packet loss compensation, audio separation, and spectral inpainting modules.

Under severe degradation of input speech, regression models preserve fidelity but yield over-smoothed outputs, whereas generative models keep good quality but risk hallucination (see Section 2.2 for a detailed discussion). Effectively combining the strengths of both approaches to achieve high quality while preserving fidelity thus becomes critically important. Guided by theoretical insights, we adopt a simple two-stage framework: first, the regression model is trained to convergence and its parameters are frozen; then, its outputs are used as conditional inputs to the generative model. Our experimental results show that this approach strikes a good balance between quality and fidelity.

Training data quality: Since deep learning models are data-driven, both the quality and quantity of training data play a critical role in their performance. While prior studies (Zhang et al., 2024a; Gonzalez et al., 2024) have examined the impact of training data scale on speech enhancement models, investigations into the effect of data quality remain relatively scarce. To the best of our knowledge, only a recent study (Li et al., 2025) has highlighted that, within large-scale training sets, prioritizing high-quality data is more important. In this paper, we discuss the trade-off between training data scale and quality. We found that although the URGENT Challenge organizers have already filtered the training data, many remaining samples still contain significant degradations, not only due to the use of early-reflected speech. Including such degraded samples into the training data also imposes an upper bound on USE performance when addressing common background noise, such as electrical microphone hiss (see Section 3.8 for a detailed discussion).

2 PROPOSED METHOD

In this section, we provide a detailed discussion of the common challenges in universal speech enhancement and present our proposed methods to address them. We first present our findings and solutions for using anechoic clean speech (without early reflections) as the learning target in the speech dereverberation task. Next, we propose a strategy to effectively combine generative and regression models, aiming to preserve fidelity while mitigating the over-smoothing problem. Finally, we present our approach to investigating the trade-off between training data scale and quality, a relatively new topic that has also been explored in a recent study (Li et al., 2025).

2.1 CHALLENGE AND SOLUTION TO APPLY ANECHOIC CLEAN SPEECH AS A LEARNING TARGET FOR SPEECH DEREVERBERATION

Given an anechoic clean speech s and a RIR r , the reverberant speech y can be modeled as convolution between s and r as follows:

108
109
110

$$y[n] = s[n] * r[n] \quad (1)$$

where n denotes the discrete time index, $*$ denotes the convolution operator. The RIR $r[n]$ can be further decomposed into direct path $\delta[n - n_0]$, early reflection $r_e[n]$, and late reflection $r_l[n]$ (see Figure 4 in the Appendix as a reference):

$$r[n] = \delta[n - n_0] * (r_e[n] + r_l[n]) \quad (2)$$

In this formulation, $\delta[n]$ denotes the Dirac delta function, and n_0 represents the time shift introduced by the direct path, typically ranging from 5 to 30 ms. We estimate n_0 based on the maximum magnitude of the RIR, i.e., $n_0 = \arg \max_n |r[n]|$. Early reflections are generally defined as RIR components occurring within 50 ms after the direct-path peak $\delta[n - n_0]$, as specified in the URGENT Challenge (Zhang et al., 2024b; Saijo et al., 2025) and other studies (Wang et al., 2021). The remaining impulses are treated as late reflections (Naylor & Gaubitch, 2010).

When training a speech dereverberation model, instead of using anechoic clean speech s as learning targets, most previous works, including the previous URGENT Challenges, employ early reflected speech $s_e[n] = s[n] * \delta[n - n_0] * r_e[n]$ as the target, because "early reflections are much harder to remove, and the difficulty of solving the problem leads to excessive artifacts in the enhanced speech" (Valin et al., 2022; Zhou et al., 2023; Zhao et al., 2020). To examine this issue, we first used anechoic clean speech s directly as the learning target, but this resulted in the poorest performance, consistent with findings from previous studies.

Although early reflections have a smaller impact on perceived quality compared to late reverberation (Valin et al., 2022), we found that they still cause significant degradation in speech quality as estimated using different quality metrics (e.g., UTMOS (Saeki et al., 2022), DNSMOS (Reddy et al., 2022), and NISQA (Mittag et al., 2021)), and would therefore affect the speech enhancement quality when they're treated as the learning target. For example, when we gradually reduce the early reflection window from 50 ms to 10 ms and then to 0 ms, we observe a corresponding improvement in the quality score of the enhanced speech, as shown in Figure 3 (b).

In the case of setting early reflection window as 0 ms, the learning target simply becomes the time-shifted version of s , i.e., $s[n] * \delta[n - n_0] = s[n - n_0]$. Consequently, in Equation 2, eliminating early reflections poses little difficulty for the model. The critical challenge is the implicit estimation of the **direct-path time shift**, which introduces a misalignment of n_0 between the reverberant input and the clean target. This explains why using clean speech $s[n]$ directly as the learning target produced the worst results, whereas $s[n - n_0]$ yielded the best quality, and the early-reflection target ($s_e[n] = s[n] * \delta[n - n_0] * r_e[n] = s[n - n_0] * r_e[n]$) adopted in prior studies proved sub-optimal.

2.2 EFFECTIVE COMBINATION OF GENERATIVE AND REGRESSION MODELS

In universal speech enhancement, the goal is to restore the quality of degraded speech while preserving **fidelity**, ensuring that all other factors remain unchanged, e.g., linguistic content, speaker identity, emotion, accent, and other paralinguistic attributes. Generative and regression (also called discriminative) models tackle the problem in distinct ways. The regression model outputs the conditional expectation, $\hat{s} = E[S | Y = y]$, whereas the generative model produces samples from the conditional distribution, $\hat{s} \sim p(s | y)$, where y corresponds to the degraded input speech signal. When y is severely degraded (i.e., contains little information about the true clean signal, for example, packet loss, bandwidth limitation, low-SNR conditions, etc.), the regression output is biased towards prior mean $E[S | Y = y] \approx E[S]$. If the prior is multimodal (e.g., many plausible phonemes), the mean may be a blend of modes, which sounds muffled and unnatural, resulting in **over-smoothing problem** (Ren et al., 2022; Chao et al., 2025). Conversely, in such a scenario, the generative model produces outputs drawn from the prior distribution, $p(s | y) \approx p(s)$, enabling the generation of natural-sounding speech consistent with the prior. Nevertheless, the lexical/linguistic content or speaker characteristics are not guaranteed to match the original signal, resulting in **hallucination problem** as defined in (Saijo et al., 2025; Scheibler et al., 2024). In summary, when y is less informative, the regression model excels at preserving fidelity but may fail to improve quality, whereas the generative model enhances quality but often struggles to preserve fidelity. As demonstrated in (Blau & Michaeli, 2018), a fundamental trade-off exists between fidelity and perception. Specifically, posterior sampling from the posterior $p(s | y)$ results in a mean squared error (MSE) that is twice the minimum MSE (MMSE), which is achieved by the regression model (Blau & Michaeli, 2018).

Considering the applications of universal speech enhancement, we argue that preserving fidelity—particularly the linguistic content—is of greater importance. Therefore, our strategy is to first employ a regression model to estimate the posterior mean, and then leverage a generative model to **only correct** the over-smoothed regions. As shown in Figure 1, the regression model is first trained until convergence, after which its parameters are frozen. As inspired by DeepFilterGAN (Serbest et al., 2025), the model’s outputs, along with the noisy input, are subsequently used as inputs to the generative model. Incorporating a residual connection between the regression model output and the final output enables the generative model to focus primarily on regions whose characteristics diverge from those of real data.

Figure 1: **The two-stage framework that combines a regression model and a generative model.**

In the following, we offer some theoretical justification for this model combination. A recent finding (Freirich et al., 2021) indicates that the optimal model, which minimizes MSE while satisfying the constraint of perfect perception, can be derived by **optimally transporting** the posterior mean prediction (i.e., the MMSE estimate) to the true data distribution. Ohayon et al. (2025) approximate the optimal transport using flow matching and achieve improved MSE in image restoration. **In addition to speech enhancement, SEStream (Huang et al., 2023) and StoRM (Lemercier et al., 2023) also achieve strong results in codec compression and dereverberation, respectively, by using a regression model to provide an initial prediction for a subsequent generative model.**

In this study, we leverage GAN-based methods to approximate optimal transport. Wasserstein GANs (Arjovsky et al., 2017) optimize an objective equivalent to the Wasserstein-1 distance between the source and target distributions, a principled metric from optimal transport theory. Furthermore, a single forward-pass generation in GAN-based methods makes them more easily adaptable to real-time scenarios. In addition, because a convolutional neural network (CNN) is used as the discriminator, each element in the final feature map (prior to the averaging operation for the final prediction) has only a limited receptive field. Assuming the discriminator is Lipschitz continuous (e.g., via spectral normalization (Miyato et al., 2018)), the following constraint holds:

$$\|D^{(l)}(\tilde{s}) - D^{(l)}(s)\| \leq L\|\tilde{s} - s\|, \quad \forall l \quad (3)$$

where $D(\cdot)$ is the discriminator, l is the index of the discriminator layer, L is the Lipschitz constant and \tilde{s} is the final model output. Here, let us focus on the receptive field of one element in the final feature map. When the region \tilde{s} closely approximates the target clean speech ($\|\tilde{s} - s\| \approx 0$), the left-hand side of Equation 3—representing the **feature-matching loss** during generator training—converges toward 0. Therefore, the generative model can mainly focus on correcting the over-smoothed regions of the regression model output. Consequently, this two-stage framework can keep the fidelity while improving speech quality.

2.3 TRADE-OFF BETWEEN TRAINING DATA SCALE AND QUALITY

In Track 1 of the URGENT 2025 Challenge, the training dataset comprises of 2,500 hours of speech from various sources: CommonVoice ($\sim 1,300$ hours)(Ardila et al., 2020), DNS5 (~ 350 hours)(Dubey et al., 2024), MLS (~ 450 hours)(Pratap et al., 2020), LibriTTS (~ 200 hours)(Zen et al., 2019), VCTK (~ 80 hours)(Veaux et al., 2013), WSJ (~ 85 hours)(Garofolo et al., 2007),

Figure 2: **Histogram of VQScore for speech sources in each subset of the URGENT 2025 Challenge Track 1.** The median of each data source is indicated by a dashed vertical line.

and EARS (~ 85 hours) (Richter et al., 2024). Although the organizers have already filtered out non-speech samples using voice activity detection (VAD) and removed noisy samples based on the DNSMOS score, many recordings with audible background noise remain even after this filtering (Saijo et al., 2025). Leveraging its high correlation with subjective scores (Zhang et al., 2025b) and fast inference capability (processing 2,500 hours of speech in less than 8 hours on a single NVIDIA A100 GPU), we employed VQScore (Fu et al., 2024) to analyze the quality distribution of each training data source. Figure 2 illustrates the VQScore distribution for each speech source (individual source histograms are provided in Figure 5 in the Appendix). The figure shows that, despite comprising the majority of the dataset, CommonVoice exhibits the lowest quality, reflecting its crowdsourced nature. In contrast, WSJ, EARS, and VCTK consistently demonstrate the highest quality on average. Upon examining several low-quality examples from different sources, we found that most contained either stationary background noise or consisted entirely of non-speech noise. These training targets may confuse the speech enhancement model and degrade its performance. Therefore, a threshold on VQScore is applied to further discard such samples. We also observed that some speech samples from the EARS dataset received low quality ratings because they were expressive (e.g., whispering, high-pitched), which can be considered out-of-domain for the evaluation model. Overall, the speech in the EARS dataset is the cleanest, and we leverage this characteristic to further fine-tune our model (see Section 3.8). Examples of low VQScore samples from each source are provided in the supplementary material.

3 EXPERIMENTS

3.1 DATASET

As noted earlier, the URGENT 2025 Challenge training dataset comprises multi-condition speech recordings across five languages (English, German, French, Spanish, and Chinese) with diverse sampling frequencies (8, 16, 22.05, 24, 32, 44.1, and 48 kHz), along with noise samples and RIRs, as summarized in Table 4 in the Appendix. Seven types of distortions are considered: additive noise, reverberation, clipping, bandwidth limitation, codec artifacts, packet loss, and wind noise. We followed the organizers’ guidelines to simulate the validation set using the validation splits of the corpora (Saijo et al., 2025). The non-blind test set of URGENT 2025, consisting of 1,000 utterances with noise and RIRs from unseen sources, is used to evaluate the models.

3.2 MODEL ARCHITECTURE

To enable a single model to operate across different sampling rates, we employ sampling frequency-independent (SFI) STFT (Zhang et al., 2023a), which dynamically adjusts the FFT window and hop size according to the input sampling rate, ensuring a fixed time duration and consistent feature frame length across all sampling rates. To ensure that inputs with different sampling rates yield an integer

270 number of frequency bins, we set the FFT window size to 320 points for the 8 kHz case (i.e., for all
 271 sampling frequencies, we use a 40 ms window size and a 5 ms hop size.).
 272

273 Since the model architecture is not the focus of this paper, we adopt USEMamba with 30 layers (Chao
 274 et al., 2025; 2024) as the regression model. USEMamba alternates between two types of sequence
 275 modeling modules (i.e., Mamba) applied to frequency features and time features in the TF domain.
 276 For GAN training, the generator is a 6-layer USEMamba, while the discriminators are CNN-based.
 277

278 To account for distinct feature patterns across frequency bands and support speech with varying
 279 sampling rates, we propose an **adaptive multi-band discriminator**, inspired by Kumar et al. (2023).
 280 For each band—corresponding to the input sampling rate (e.g., for 8 kHz, only one sub-band from
 281 0–4 kHz; for 22.05 kHz, three sub-bands: 0–4 kHz, 4–8 kHz, and 8–11.025 kHz)—a 5-layer 2-D
 282 convolutional network is employed for feature extraction. The sub-band features are concatenated
 283 along the frequency axis and passed through a final 2-layer 2-D convolution with global average
 284 pooling to produce the discriminator output. The models are trained on 8 NVIDIA A100 GPUs with
 285 a batch size of 1, allowing longer input speech to be processed without memory issues. All models
 286 (i.e., the regression model, generator, and discriminator in the GAN) are optimized using AdamW
 287 with a learning rate of 0.0002. To ensure reproducibility, the code will be made publicly available
 288 upon acceptance of the paper.
 289

290 3.3 EVALUATION METRICS

291 Given the dual objectives of speech enhancement—improving perceptual quality while maintaining
 292 fidelity—a comprehensive evaluation requires multiple metrics. For fidelity and quality, Perceptual
 293 Evaluation of Speech Quality (PESQ) measures perceptual quality (Rix et al., 2001), Extended
 294 Short-Time Objective Intelligibility (ESTOI) evaluates intelligibility (Jensen & Taal, 2016), and
 295 signal-to-distortion ratio (SDR) quantifies waveform distortion in the time domain (Roux et al.,
 296 2019). Mel Cepstral Distortion (MCD) and Log-Spectral Distance (LSD) capture spectral deviations
 297 between enhanced and reference speech. Additionally, results on downstream tasks were also eval-
 298 uated. Task-independent metrics such as SpeechBERTScore (SBERT)(Saeki et al., 2024), which
 299 quantifies enhancement quality using a self-supervised model, and Levenshtein Phoneme Similarity
 300 (LPS)(Pirklbauer et al., 2023), which measures phoneme sequence similarity; and task-dependent
 301 metrics such as speaker similarity (SpkSim), which reflects preservation of speaker identity, and char-
 302 acter accuracy (CAcc), which reflects ASR performance. Finally, non-intrusive metrics—including
 303 DNSMOS (Reddy et al., 2022), NISQA (Mittag et al., 2021), and UTMOS (Saeki et al., 2022)—es-
 304 timate perceptual quality without requiring a clean reference, but focus only on quality rather than
 305 fidelity.

306 Note that, except for the non-intrusive metrics and CAcc, all evaluation metrics require clean speech
 307 as a reference. In the speech dereverberation task, however, the organizers provide **early-reflected**
 308 **speech** as the clean reference. **This mismatch implies that our model—trained using time-shifted**
 309 **anechoic clean speech targets—may receive lower leaderboard scores on PESQ, ESTOI, SDR,**
 310 **MCD, LSD, SBERT, LPS, and SpkSim, even if the actual perceptual quality and fidelity are**
 311 **improved.**

312 3.4 RESULTS ON TRAINING DATA FILTERING BASED ON THE QUALITY ESTIMATION

313 Based on the observations in Section 2.3, we first aim to determine a suitable VQScore threshold, such
 314 that training samples with scores below the threshold are excluded. Three thresholds are considered:
 315 0.50 (no filtering), 0.65, and 0.72, corresponding to 2,518 (original size), 2,506, and 629 hours of
 316 training data, respectively. We then train three models on these datasets using time-shifted anechoic
 317 clean speech as targets and present their UTMOS learning curves on the validation set in Figure 3
 318 (a). We observe that without VQScore filtering (blue line), the model performs the worst. With a
 319 threshold of 0.72 (green line), the model achieves the best performance in the early stage of training
 320 due to the higher quality of data. However, in the later stage, its performance lags behind the model
 321 trained with a threshold of 0.65 (orange line), likely due to the limited amount of training data. Based
 322 on this finding, in the following experiments, unless noted otherwise, we adopt a threshold of 0.65, as
 323 it strikes a good balance between training data quality and quantity.

Figure 3: Learning curves of UTMOS scores on the validation set under (a) different VQScore filtering thresholds, and (b) different learning targets.

Table 1: Non-blind test set results of the URGENT 2025 Challenge. All metrics are “higher is better”, except MCD and LSD. Rank N denotes the system ranked N^{th} in the challenge. Note that shaded metrics are not directly comparable across the two learning targets due to mismatches in the definition of the “clean” reference.

Team / Rank	Non-intrusive SE metrics			Intrusive SE metrics				Task-ind.		Task-dep.		
	DNSMOS	NISQA	UTMOS	PESQ	ESTOI	SDR	MCD ↓	LSD ↓	SBERT	LPS	SpkSim	CAcc
Noisy	1.84	1.69	1.56	1.37	0.61	2.53	7.92	5.51	0.75	0.62	0.63	81.29
Baseline	2.94	2.89	2.11	2.43	0.80	11.29	3.32	2.85	0.86	0.79	0.80	84.96
Rank 3	3.00	3.45	2.31	2.74	0.84	13.06	3.30	3.08	0.89	0.84	0.83	87.94
Rank 2	3.01	3.21	2.30	2.79	0.85	13.11	2.93	2.94	0.90	0.85	0.84	88.05
Rank 1	3.01	3.41	2.40	2.95	0.86	14.33	3.01	2.83	0.91	0.86	0.85	88.92
Early reflected	3.06	3.23	2.26	2.81	0.85	12.28	2.87	2.66	0.90	0.84	0.82	87.62
+GAN correction	3.04	3.53	2.30	2.78	0.84	12.25	2.97	2.75	0.90	0.84	0.85	88.13
Shifted anechoic	3.25	3.85	2.76	2.41	0.77	8.23	3.63	3.28	0.89	0.84	0.82	89.41
+GAN correction	3.26	4.12	2.80	2.38	0.76	8.18	3.73	3.51	0.89	0.84	0.83	89.88

3.5 RESULTS OF APPLYING TIME-SHIFTED ANECHOIC CLEAN SPEECH AS TARGETS

In this section, we first present the UTMOS learning curves under different training targets, shown in Figure 3 (b). As discussed in Section 2.1, directly using anechoic clean speech $s[n]$ as the learning target yields the worst performance, consistent with previous studies. Hence, in the following experiment, we ignore this learning target. In Table 1, we then present the results of our proposed approach, which uses time-shifted anechoic clean speech ($s[n - n_0]$) as the learning target for speech dereverberation. The table also presents the performance of the baseline (TF-GridNet) (Wang et al., 2023) and the top three ranked systems (1st: Team Bobbsun (Sun et al., 2025), 2nd: Team rc (Chao et al., 2025), and 3rd: Team Xiaobin (Rong et al., 2025)) as a reference. The full results are available on the leaderboard¹. From the table, it is clear that replacing early-reflected speech with time-shifted anechoic clean targets yields substantial improvements on non-intrusive quality metrics (DNSMOS from 3.06 to 3.25, NISQA from 3.23 to 3.85, and UTMOS from 2.26 to 2.76), and ASR performance (CAcc from 87.62 to 89.41). The improvement in CAcc implicitly verifies that the quality gains do not come at the expense of hallucination. As noted in Section 3.3, the remaining metrics may not accurately reflect the performance of models trained with shifted anechoic speech, as the evaluation reference on the leaderboard is based on early-reflected speech. To address this issue, Table 5 presents the evaluation results computed using anechoic clean speech as the reference. From the table, we can observe that using shifted anechoic speech as the learning target significantly outperforms using early-reflected speech. These results indicate that using early-reflected speech as a learning target still degrades the output quality of the USE model, as the enhanced audio sounds more reverberant. This is further illustrated by the spectrogram comparison in Figure 6 in the Appendix. Some audio samples are provided in the demo page.

¹<https://urgent-challenge.github.io/urgent2025/leaderboard/>

378 Table 2: Comparison with other open-source USE models on the subsets of the URGENT 2025
 379 Non-Blind Test Set. All metrics are “higher is better,” except MCD and LSD.

Team / Rank	Non-intrusive SE metrics			Intrusive SE metrics				Task-ind.		Task-dep.		
	DNSMOS	NISQA	UTMOS	PESQ	ESTOI	SDR	MCD ↓	LSD ↓	SBERT	LPS	SpkSim	CAcc
48k												
Noisy	2.04	1.83	1.99	1.28	0.56	2.29	7.77	5.50	0.78	0.77	0.69	90.60
ClearerVoice	2.97	3.38	3.02	2.09	0.72	11.55	5.08	5.15	0.85	0.87	0.63	89.90
Proposed	3.31	4.41	3.55	2.65	0.77	12.79	3.93	3.19	0.89	0.91	0.87	92.50
44.1k												
Noisy	1.91	1.79	1.52	1.33	0.64	3.34	7.44	5.62	0.76	0.63	0.71	83.60
Resemble Enhance	3.13	3.68	2.11	1.33	0.45	-15.01	11.02	7.93	0.69	0.47	0.61	47.20
Proposed	3.32	4.15	2.68	2.28	0.78	7.18	3.91	3.47	0.90	0.85	0.88	92.20

390 3.6 RESULTS OF COMBINING GENERATIVE AND REGRESSION MODELS

392 To verify that the two-stage framework allows the GAN to focus on correcting over-smoothed regions
 393 while ignoring well-predicted parts of the regression output, we compute the average Spearman’s rank
 394 correlation coefficient between the magnitude spectrogram of the clean-regression residual (clean
 395 speech (s) - regression output (\hat{s})) and the final-regression residual (final output (\hat{s}) - regression output
 396 (\hat{s})) on the non-blind set, obtaining a high correlation of 0.78. The theoretical rationale is that, as
 397 shown in Equation 3, the generator’s feature matching loss is bounded above by the distance between
 398 the regression output and the clean speech. From Table 1, it can be observed that applying GAN
 399 to refine the regression output significantly improves NISQA, SpkSim, and CAcc, with moderate
 400 gains in UTMOS. In addition, it shows only a marginal or negligible impact on most intrusive SE
 401 metrics, indicating that fidelity is well preserved. **The overall ranking table for the non-blind test set is**
 402 **provided on the demo page, where we can see that applying GAN correction leads to a higher ranking.**
 403 **To further compare our two-stage framework with other GAN training strategies, Figure 7 presents**
 404 **the learning-curve comparison on the validation set between the common approach (pre-training with**
 405 **a regression loss followed by adversarial fine-tuning) and our two-stage GAN correction. Throughout**
 406 **the entire training process, the two-stage framework consistently achieves lower magnitude, phase,**
 407 **and time-domain losses, as well as higher PESQ scores. In addition, our shifted anechoic target**
 408 **with GAN correction achieves state-of-the-art performance across all non-intrusive metrics and**
 409 **ASR CAcc.**

410 3.7 COMPARISON WITH OTHER OPEN-SOURCE USE MODELS

411 In this section, we compare our proposed USE model (shifted anechoic + GAN correction) with other
 412 popular open-source USE models, namely ClearerVoice-Studio (Zhao et al., 2025)² and Resemble
 413 Enhance³. While this comparison is not entirely fair due to differences in training data, it still
 414 provides useful insights into the relative strengths and limitations of existing approaches. Since
 415 ClearerVoice-Studio only supports 16 kHz or 48 kHz inputs, and Resemble Enhance only supports
 416 44.1 kHz, we report enhancement results on the corresponding subsets of the non-blind test set from
 417 the URGENT 2025 Challenge, as shown in Table 2. Although our proposed method outperforms
 418 ClearerVoice-Studio, a regression-based model built on MossFormer2 (Zhao et al., 2024), the latter
 419 still demonstrates reasonable enhancement performance. On the other hand, while Resemble Enhance
 420 (based on latent conditional flow matching) improves non-intrusive quality metrics, its low intrusive
 421 metrics and CAcc results suggest that it may hallucinate content—a common issue with purely
 422 generative models (Saijo et al., 2025).

423 3.8 EVALUATION ON UNSEEN LANGUAGES

425 One emerging application of USE is training data cleaning for other speech generative models (e.g.,
 426 text-to-speech, TTS) (Koizumi et al., 2023c; Karita et al., 2025; Koizumi et al., 2023b; Ma et al.,
 427 2024). This is particularly important for low-resource languages, where studio-quality speech data
 428 is often scarce. To support this goal, the USE model must be **language-agnostic**. Saijo et al.
 429 (2025) shows that regression models are relatively insensitive to language variations, whereas purely

430 ²<https://github.com/modelscope/ClearerVoice-Studio>

431 ³<https://github.com/resemble-ai/resemble-enhance>

432 Table 3: Speech enhancement results for unseen languages from the FLEURS dataset.
433

		DNSMOS	SpkSim	CAcc
Italian (it_it)				
Original	3.12	-	97.28	
FLEURS-R (Ma et al., 2024)	3.37	0.87	97.69	
Proposed	3.20	0.98	97.00	
Proposed (EARS)	3.27	0.97	98.09	
Dutch (nl_nl)				
Original	2.99	-	97.40	
FLEURS-R (Ma et al., 2024)	3.36	0.88	97.19	
Proposed	3.13	0.97	97.18	
Proposed (EARS)	3.28	0.95	97.26	
Japanese (ja_jp)				
Original	2.96	-	95.34	
FLEURS-R (Ma et al., 2024)	3.36	0.88	95.14	
Proposed	3.07	0.98	95.30	
Proposed (EARS)	3.18	0.95	95.43	

452
453 generative models (e.g., latent diffusion and vocoding) exhibit a strong dependency on language.
454 This is also one of the reasons we adopt a two-stage framework, where the generative model is used
455 solely to refine the over-smoothed regions of the regression model’s output.
456

457 Following Miipher-2 (Karita et al., 2025), we use the FLEURS dataset (Conneau et al., 2023) to
458 evaluate model performance on unseen languages. Specifically, we evaluate three languages (Italian,
459 Dutch, and Japanese), assessing speech quality with DNSMOS, speaker similarity (compared to the
460 original) (Desplanques et al., 2020), and ASR (Radford et al., 2023) CAcc before and after different
461 speech restoration models, with the results summarized in Table 3. The FLEURS-R (Ma et al., 2024)
462 speech was restored using the Miipher-2 model and obtained from the official source⁴. The model’s
463 acoustic feature extractor leverages the Universal Speech Model (Zhang et al., 2023b), which was
464 pre-trained on 12 million hours of speech spanning more than 300 languages. The enhanced features
465 are subsequently converted back to a waveform using the WaveFit vocoder (Koizumi et al., 2023a).
466

467 We observed that some samples in the FLEURS dataset contain only slight stationary wideband noise
468 or electrical microphone hiss (see Figure 8 in the Appendix)—artifacts that can still appear in our
469 training data even after VQScore filtering. Our original model (shifted anechoic + GAN) cannot
470 effectively remove such background noise, as some ‘clean’ training examples encourage the model to
471 retain these distortions. To address this, we fine-tune the model using only one of the highest-quality
472 subsets of our training data (the EARS dataset), with the results reported as Proposed (EARS) in
473 Table 3. From the table, we observe that although FLEURS-R achieves slightly higher speech quality,
474 its speaker characteristics deviate more from the original speech compared to our proposed methods.
475 This suggests that relying solely on generative restoration may enhance perceptual quality at the
476 expense of speaker fidelity, highlighting the importance of balancing the two objectives. Between
477 the two proposed methods, Proposed (EARS) achieves better speech quality and accuracy of ASR,
478 further underscoring the importance of training data quality.
479

4 CONCLUSION

480 This paper systematically investigates three key challenges in developing a universal speech en-
481 hancement (USE) model. First, we establish the importance of training targets by showing that
482 time-shifted anechoic clean speech—rather than conventional early-reflected speech—significantly
483 improves both perceptual quality and downstream ASR performance. Second, to balance fidelity
484 and perceptual quality, we provide a theoretical analysis and propose a two-stage framework that
485

⁴<https://huggingface.co/datasets/google/fleurs-r>

486 integrates a regression model for fidelity with a generative model for perceptual refinement, ensuring
 487 that the generative model only corrects over-smoothed regions without hallucinating content. Third,
 488 we underscore the critical role of training data quality, revealing a trade-off between scale and
 489 cleanliness. In particular, we demonstrate that fine-tuning on the cleanest available subset yields
 490 further improvements in enhanced speech quality. From an application perspective, the proposed
 491 USE model exhibits strong language-agnostic and high-fidelity capabilities, making it well-suited for
 492 improving the quality of training data for downstream speech generative tasks.

494 REFERENCES

496 Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben
 497 Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common Voice: A massively-
 498 multilingual speech corpus. In *Proc. of the Twelfth Language Resources and Evaluation Conference*,
 499 pp. 4218–4222, 2020.

500 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
 501 In *Proc. of International Conference on Machine Learning*, pp. 214–223, 2017.

502 Nicholas Babaev, Kirill Tamogashev, Azat Saginbaev, Ivan Shchekotov, Hanbin Bae, Hosang Sung,
 503 WonJun Lee, Hoon-Young Cho, and Pavel Andreev. FINALLY: Fast and universal speech enhance-
 504 ment with studio-like quality. In *Neural Information Processing Systems*, volume 37, pp. 934–965,
 505 2024.

506 Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proc. of the IEEE conference*
 507 *on computer vision and pattern recognition*, pp. 6228–6237, 2018.

509 Rong Chao, Wen-Huang Cheng, Moreno La Quatra, Sabato Marco Siniscalchi, Chao-Han Huck Yang,
 510 Szu-Wei Fu, and Yu Tsao. An investigation of incorporating Mamba for speech enhancement. In
 511 *IEEE Spoken Language Technology Workshop (SLT)*, pp. 302–308, 2024.

513 Rong Chao, Rauf Nasreddinov, Yu-Chiang Frank Wang, Ante Jukic, Szu-Wei Fu, and Yu Tsao.
 514 Universal speech enhancement with regression and generative Mamba. In *Proc. Interspeech*, pp.
 515 888–892, 2025.

516 Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason
 517 Riesa, Clara Rivera, and Ankur Bapna. FLEURS: Few-shot learning evaluation of universal
 518 representations of speech. In *IEEE Spoken Language Technology Workshop (SLT)*, pp. 798–805,
 519 2023.

520 Masood Delfarah, Yuzhou Liu, and DeLiang Wang. A two-stage deep learning algorithm for talker-
 521 independent speaker separation in reverberant conditions. *The Journal of the Acoustical Society of*
 522 *America*, 148(3):1157–1168, 2020.

524 Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. ECAPA-TDNN: Emphasized channel
 525 attention, propagation and aggregation in tdnn based speaker verification. In *Proc. Interspeech*, pp.
 526 3830–3834, 2020.

527 Harishchandra Dubey, Ashkan Aazami, Vishak Gopal, Babak Naderi, Sebastian Braun, Ross Cutler,
 528 Alex Ju, Mehdi Zohourian, Min Tang, Mehrsa Golestaneh, et al. ICASSP 2023 deep noise
 529 suppression challenge. *IEEE Open Journal of Signal Processing*, 5:725–737, 2024.

530 Dror Freirich, Tomer Michaeli, and Ron Meir. A theory of the distortion-perception tradeoff in
 531 Wasserstein space. In *Neural Information Processing Systems*, volume 34, pp. 25661–25672, 2021.

533 Szu-Wei Fu, Kuo-Hsuan Hung, Yu Tsao, and Yu-Chiang Frank Wang. Self-supervised speech quality
 534 estimation and enhancement using only clean speech. In *International Conference on Learning*
 535 *Representations*, 2024.

536 John S Garofolo, David Graff, Doug Paul, and David Pallett. Csr-i (wsj0) complete. 2007.

538 Philippe Gonzalez, Zheng-Hua Tan, Jan Østergaard, Jesper Jensen, Tommy Sonne Alstrøm, and
 539 Tobias May. The effect of training dataset size on discriminative and diffusion-based speech
 enhancement systems. *IEEE Signal Processing Letters*, 2024.

540 Nabarun Goswami and Tatsuya Harada. FUSE: Universal speech enhancement using multi-stage
 541 fusion of sparse compression and token generation models for the urgent 2025 challenge. In *Proc.
 542 Interspeech*, 2025.

543

544 Jiayi Huang, Zeyu Yan, Wenbin Jiang, and Fei Wen. A two-stage training framework for joint speech
 545 compression and enhancement. *arXiv preprint arXiv:2309.04132*, 2023.

546

547 Jesper Jensen and Cees H. Taal. An algorithm for predicting the intelligibility of speech masked by
 548 modulated noise maskers. *IEEE/ACM Transactions on Audio, Speech, and Language Process.*, 24
 549 (11):2009–2022, 2016.

550

551 Shigeki Karita, Yuma Koizumi, Heiga Zen, Haruko Ishikawa, Robin Scheibler, and Michiel Bacchiani.
 552 Miipher-2: A universal speech restoration model for million-hour scale data restoration. *arXiv
 553 preprint arXiv:2505.04457*, 2025.

554

555 Yuma Koizumi, Kohei Yatabe, Heiga Zen, and Michiel Bacchiani. WaveFit: An iterative and non-
 556 autoregressive neural vocoder based on fixed-point iteration. In *IEEE Spoken Language Technology
 557 Workshop (SLT)*, pp. 884–891, 2023a.

558

559 Yuma Koizumi, Heiga Zen, Shigeki Karita, Yifan Ding, Kohei Yatabe, Nobuyuki Morioka, Michiel
 560 Bacchiani, Yu Zhang, Wei Han, and Ankur Bapna. LibriTTS-R: A restored multi-speaker text-to-
 561 speech corpus. In *Proc. Interspeech*, pp. 5496–5500, 2023b.

562

563 Yuma Koizumi, Heiga Zen, Shigeki Karita, Yifan Ding, Kohei Yatabe, Nobuyuki Morioka, Yu Zhang,
 564 Wei Han, Ankur Bapna, and Michiel Bacchiani. Miipher: A robust speech restoration model
 565 integrating self-supervised speech and text representations. In *IEEE Workshop on Applications of
 566 Signal Processing to Audio and Acoustics (WASPAA)*, pp. 1–5, 2023c.

567

568 Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
 569 fidelity audio compression with improved RVQGAN. In *Neural Information Processing Systems*,
 570 2023.

571

572 Xiaohuai Le, Zhuangqi Chen, Siyu Sun, Xianjun Xia, and Chuanzeng Huang. Multistage universal
 573 speech enhancement system for urgent challenge. In *Proc. Interspeech*, pp. 868–872, 2025.

574

575 Jean-Marie Lemercier, Julius Richter, Simon Welker, and Timo Gerkmann. StoRM: A diffusion-
 576 based stochastic regeneration model for speech enhancement and dereverberation. *IEEE/ACM
 577 Transactions on Audio, Speech, and Language Processing*, 31:2724–2737, 2023.

578

579 Chenda Li, Wangyou Zhang, Wei Wang, Robin Scheibler, Kohei Saijo, Samuele Cornell, Yihui Fu,
 580 Marvin Sach, Zhaocheng Ni, Anurag Kumar, et al. Less is more: Data curation matters in scaling
 581 speech enhancement. *arXiv preprint arXiv:2506.23859*, 2025.

582

583 Xu Li, Qirui Wang, and Xiaoyu Liu. MaskSR: Masked language model for full-band speech
 584 restoration. In *Proc. Interspeech*, pp. 2275–2279, 2024.

585

586 Haohe Liu, Qiuqiang Kong, Qiao Tian, Yan Zhao, DeLiang Wang, Chuanzeng Huang, and Yuxuan
 587 Wang. VoiceFixer: Toward general speech restoration with neural vocoder. *arXiv preprint
 588 arXiv:2109.13731*, 2021.

589

590 Min Ma, Yuma Koizumi, Shigeki Karita, Heiga Zen, Jason Riesa, Haruko Ishikawa, and Michiel
 591 Bacchiani. FLEURS-R: A restored multilingual speech corpus for generation tasks. In *Proc.
 592 Interspeech*, pp. 1835–1839, 2024.

593

594 Gabriel Mittag, Babak Naderi, Assmaa Chehadi, and Sebastian Möller. NISQA: A deep cnn-self-
 595 attention model for multidimensional speech quality prediction with crowdsourced datasets. In
 596 *Proc. Interspeech*, pp. 2127–2131, 2021.

597

598 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
 599 generative adversarial networks. In *International Conference on Learning Representations*, 2018.

600

601 Patrick A Naylor and Nikolay D Gaubitch. *Speech dereverberation*. Springer Science & Business
 602 Media, 2010.

594 Guy Ohayon, Tomer Michaeli, and Michael Elad. Posterior-mean rectified flow: Towards minimum
 595 MSE photo-realistic image restoration. In *International Conference on Learning Representations*,
 596 2025.

597

598 Jan Pirklbauer, Marvin Sach, Kristoff Fluyt, Wouter Tirry, Wafaa Wardah, Sebastian Moeller, and
 599 Tim Fingscheidt. Evaluation metrics for generative speech enhancement methods: Issues and
 600 perspectives. In *IEEE Speech Communication; 15th ITG Conference*, pp. 265–269, 2023.

601 Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. MLS: A
 602 large-scale multilingual dataset for speech research. *arXiv preprint arXiv:2012.03411*, 2020.

603

604 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 605 Robust speech recognition via large-scale weak supervision. In *International Conference on
 606 Machine Learning*, pp. 28492–28518. PMLR, 2023.

607 Chandan K A Reddy, Vishak Gopal, and Ross Cutler. DNSMOS P.835: A non-intrusive perceptual
 608 objective speech quality metric to evaluate noise suppressors. In *IEEE International Conference
 609 on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 886–890, 2022.

610

611 Yi Ren, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Revisiting over-smoothness in text to speech.
 612 In *Proc. Association for Computational Linguistics (ACL)*, pp. 8197–8213, 2022.

613

614 Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander
 615 Richard, and Timo Gerkmann. EARS: An anechoic fullband speech dataset benchmarked for
 616 speech enhancement and dereverberation. In *Proc. Interspeech*, 2024.

617

618 A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra. Perceptual evaluation of speech quality
 619 (PESQ)-a new method for speech quality assessment of telephone networks and codecs. In *IEEE
 620 International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2001.

621

622 Xiaobin Rong, Dahan Wang, Qinwen Hu, Yushi Wang, Yuxiang Hu, and Jing Lu. TS-URGENet:
 623 A three-stage universal robust and generalizable speech enhancement network. *arXiv preprint
 624 arXiv:2505.18533*, 2025.

625

626 Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R. Hershey. SDR – Half-baked or Well
 627 Done? In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,
 628 2019.

629

630 Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hiroshi
 631 Saruwatari. UTMOS: Utokyo-sarulab system for VoiceMOS challenge 2022. *arXiv preprint
 632 arXiv:2204.02152*, 2022.

633

634 Takaaki Saeki, Soumi Maiti, Shinnosuke Takamichi, Shinji Watanabe, and Hiroshi Saruwatari.
 635 SpeechBERTScore: Reference-aware automatic evaluation of speech generation leveraging NLP
 636 evaluation metrics. In *Proc. Interspeech*, pp. 4943–4947, 2024.

637

638 Kohei Saijo, Wangyou Zhang, Samuele Cornell, Robin Scheibler, Chenda Li, Zhaocheng Ni, Anurag
 639 Kumar, Marvin Sach, Yihui Fu, Wei Wang, et al. Interspeech 2025 URGENT speech enhancement
 640 challenge. In *Proc. Interspeech*, pp. 858–862, 2025.

641

642 Robin Scheibler, Yusuke Fujita, Yuma Shirahata, and Tatsuya Komatsu. Universal score-based speech
 643 enhancement with high content preservation. In *Proc. Interspeech*, pp. 1165–1169, 2024.

644

645 Sanberk Serbest, Tijana Stojkovic, Milos Cernak, and Andrew Harper. DeepFilterGAN: A full-
 646 band real-time speech enhancement system with GAN-based stochastic regeneration. In *Proc.
 647 Interspeech*, 2025.

648

649 Joan Serrà, Santiago Pascual, Jordi Pons, R Oguz Araz, and Davide Scaini. Universal speech
 650 enhancement with score-based diffusion. *arXiv preprint arXiv:2206.03065*, 2022.

651

652 Zhihang Sun, Andong Li, Tong Lei, Rilin Chen, Meng Yu, Chengshi Zheng, Yi Zhou, and Dong Yu.
 653 Scaling beyond denoising: Submitted system and findings in URGENT challenge 2025. In *Proc.
 654 Interspeech*, pp. 873–877, 2025.

648 Jean-Marc Valin, Ritwik Giri, Shrikant Venkataramani, Umut Isik, and Arvindh Krishnaswamy. To
 649 dereverb or not to dereverb? Perceptual studies on real-time dereverberation targets. *arXiv preprint*
 650 *arXiv:2206.07917*, 2022.

651 Christophe Veaux, Junichi Yamagishi, and Simon King. The Voice Bank corpus: Design, collection
 652 and data analysis of a large regional accent speech database. In *IEEE Oriental COCOSDA*
 653 *International Conference on Speech Database and Assessments*, pp. 1–4, 2013.

654 Zhong-Qiu Wang, Gordon Wichern, and Jonathan Le Roux. Convulsive prediction for monaural
 655 speech dereverberation and noisy-reverberant speaker separation. *IEEE/ACM Transactions on*
 656 *Audio, Speech, and Language Processing*, 29:3476–3490, 2021.

657 Zhong-Qiu Wang, Samuele Cornell, Shukjae Choi, Younglo Lee, Byeong-Yeol Kim, and Shinji
 658 Watanabe. TF-GridNet: Integrating full-and sub-band modeling for speech separation. *IEEE/ACM*
 659 *Transactions on Audio, Speech, and Language Processing*, 31:3221–3236, 2023.

660 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and Yonghui
 661 Wu. LibriTTS: A corpus derived from librispeech for text-to-speech. In *Proc. Interspeech*, pp.
 662 1526–1530, 2019.

663 Junan Zhang, Jing Yang, Zihao Fang, Yuancheng Wang, Zehua Zhang, Zhuo Wang, Fan Fan, and
 664 Zhizheng Wu. AnyEnhance: A unified generative model with prompt-guidance and self-critic for
 665 voice enhancement. *arXiv preprint arXiv:2501.15417*, 2025a.

666 Wangyou Zhang, Kohei Saijo, Zhong-Qiu Wang, Shinji Watanabe, and Yanmin Qian. Toward
 667 universal speech enhancement for diverse input conditions. In *IEEE Automatic Speech Recognition*
 668 and *Understanding Workshop (ASRU)*, pp. 1–6. IEEE, 2023a.

669 Wangyou Zhang, Kohei Saijo, Jee weon Jung, Chenda Li, Shinji Watanabe, and Yanmin Qian.
 670 Beyond performance plateaus: A comprehensive study on scalability in speech enhancement. In
 671 *Proc. Interspeech*, pp. 1740–1744, 2024a.

672 Wangyou Zhang, Robin Scheibler, Kohei Saijo, Samuele Cornell, Chenda Li, Zhaocheng Ni, Anurag
 673 Kumar, Jan Pirklbauer, Marvin Sach, Shinji Watanabe, et al. URGENT Challenge: Universality,
 674 robustness, and generalizability for speech enhancement. In *Proc. Interspeech*, 2024b.

675 Wangyou Zhang, Kohei Saijo, Samuele Cornell, Robin Scheibler, Chenda Li, Zhaocheng Ni, Anurag
 676 Kumar, Marvin Sach, Wei Wang, Yihui Fu, Shinji Watanabe, Tim Fingscheidt, and Yanmin Qian.
 677 Lessons learned from the URGENT 2024 speech enhancement challenge. In *Proc. Interspeech*, pp.
 678 853–857, 2025b.

679 Yu Zhang, Wei Han, James Qin, Yongqiang Wang, Ankur Bapna, Zhehuai Chen, Nanxin Chen, Bo Li,
 680 Vera Axelrod, Gary Wang, et al. Google USM: Scaling automatic speech recognition beyond 100
 681 languages. *arXiv preprint arXiv:2303.01037*, 2023b.

682 Shengkui Zhao, Yukun Ma, Chongjia Ni, Chong Zhang, Hao Wang, Trung Hieu Nguyen, Kun Zhou,
 683 Jia Qi Yip, Dianwen Ng, and Bin Ma. Mossformer2: Combining Transformer and RNN-free
 684 recurrent network for enhanced time-domain monaural speech separation. In *IEEE International*
 685 *Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 10356–10360, 2024.

686 Shengkui Zhao, Zexu Pan, and Bin Ma. ClearerVoice-Studio: Bridging advanced speech processing
 687 research and practical deployment. In *Proc. Interspeech 2025*, pp. 2980–2984, 2025.

688 Yan Zhao, DeLiang Wang, Buye Xu, and Tao Zhang. Monaural speech dereverberation using
 689 temporal convolutional networks with self attention. *IEEE/ACM Transactions on Audio, Speech,*
 690 *and Language Processing*, 28:1598–1607, 2020.

691 Rui Zhou, Wenye Zhu, and Xiaofei Li. Speech dereverberation with a reverberation time shortening
 692 target. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,
 693 pp. 1–5, 2023.

694 700
 701

702
703
704
A APPENDIX
705
706
707
708
709
710
711
712
713
714
715
716
717
718719
720
Figure 4: An example of a room impulse response, highlighting the time shift n_0 introduced by the
721 path.
722
723

Table 4: Dataset Composition for URGENT 2025 Challenge

Type	Corpus	Condition	Sampling (kHz)	Duration (h)
Speech	LibriVox (DNS5)	Audiobook	8–48	350
	LibriTTS	Audiobook	8–24	200
	VCTK	Newspaper-style	48	80
	WSJ	WSJ news	16	85
	EARS	Studio recording	48	100
	Multilingual LibriSpeech (de, en, es, fr)	Audiobook	8–48	450
	CommonVoice 19.0 (de, en, es, fr, zh-CN)	Crowd-sourced voices	8–48	1300
Noise	AudioSet+FreeSound (DNS5)	Crowd-sourced + YouTube	8–48	180
	WHAM! Noise	4 urban environments	48	70
	FSD50K (Filtered)	Crowd-sourced	8–48	100
	Free Music Archive	Directed by WFMU	8–44.1	200
RIR	Simulated RIRs (DNS5)	SLR28	48	60k samples

734
735
Table 5: Non-blind test set results for the URGENT 2025 Challenge, referenced against **anechoic**
736
clean speech.
737
738
739
740

Method	PESQ	ESTOI	SBERT	LPS	SpkSim
Early reflected + GAN	2.40	0.69	0.88	0.83	0.83
Shifted anechoic + GAN	2.71	0.78	0.89	0.86	0.84

Figure 5: Histogram of VQScore across different speech sources in the URGENT 2025 Challenge Track 1. The median of each data source is indicated by a dashed vertical line.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

(a) Anechoic 1

(b) Early reflected 1

(c) Anechoic 2

(d) Early reflected 2

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 6: Enhanced spectrogram comparison between using time-shifted anechoic clean speech and early-reflected speech as learning targets. (a) and (b) correspond to the same noisy input, and (c) and (d) correspond to another noisy input. Both samples are drawn from the blind-test set.

Figure 7: Learning curves comparison on validation-set between pre-training with a regression loss followed by adversarial fine-tuning and our two-stage GAN correction. (a) Magnitude loss, (b) Phase loss, (c) Time loss, and (d) PESQ score.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

(a) Original

(b) FLEURS-R

(c) Proposed

(d) Proposed (EARS)

956
957
Figure 8: Spectrogram comparison of a Japanese utterance (9997427445140542468.wav) from the
958
959
960
961
962
963
964
965
966
967
968
969
970
971
FLEURS dataset. The original speech contains some stationary wideband noise.