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ABSTRACT

Graph Neural Networks (GNNs) demand substantial memory and computation as
datasets scale in size. Thus, quantization is a promising remedy by compress-
ing full-precision values into low-bit representations. However, existing GNN
quantization methods depend on tedious gradient-based updates to preserve accu-
racy. This quantization time may be a major barrier to real-world deployments
as the input graph size scales. To this end, we present TopGQ (Topology-aware
GNN Quantization), an accurate post-training quantization framework tailored
for GNNS, alleviating the burden of redundant quantization overhead. We pro-
pose Dual-axis scale absorption, which applies scale factors along both activation
axes, merging one into the static adjacency matrix. Dual-axis scale absorption at-
tains higher accuracy via addressing outlier nodes. This helps maintain the same
computational cost as column-wise quantized inference. We further introduce
topology-guided quantization, which exploits the relationship between local graph
structure and activation variance. TopGQ enables fast inference for unseen nodes,
via a novel node index (TopPIN), a lightweight proxy of activation variance from
local structure. With these techniques, TopGQ eliminates the need for retraining
while preserving accuracy. Experimental results show that TopGQ is compara-
ble to prior works while reducing quantization time by an order of magnitude,
establishing it as a practical solution for efficient and scalable GNN inference.
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One promising approach to address this need is quantization, which reduces memory usage and
computational costs by using low-bit representations (Ashkboos et al., 2024} [Liu et al., |2024b; |L1
et al.f [2023). However, quantizing GNNs is known to be difficult due to the varying magnitudes of
node activations. The outlier node features are induced by aggregation from the message-passing
algorithm, leading to quantization errors (Tailor et al., [2020; Zhu et al., |2022; [Wei et al., |2022).
Accordingly, existing methods target managing these outliers.

These GNN quantization methods demand extensive parameter tuning or long training time.
Quantization-aware training (QAT) methods involve costly retraining, often exceeding full-precision
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training time (Feng et al.||2020; |Tailor et al., 2020; Huang et al.}[2022} Zhu et al., [ 2022;[Wang et al.,
2023)). Post-training quantization (PTQ) methods typically avoid such overhead by keeping model
weights fixed. However, the existing PTQ method (Jedd: et al., [2024) still employs gradient-based
iterations on quantization parameters, negating its expected advantage. Section [I]illustrates such a
phenomenon, where their quantization time for large graphs can take up much more than a day.

This large quantization time poses a major barrier to quantized GNN deployment in real-world
scenarios, particularly when frequent model updates are required. Popular GNN applications such as
personalization and recommendation (Wu et al., 2023;/Chen et al.,|2023}|You et al.,[2022; Guan et al.,
2025)) operate on large-scale graphs and benefit from quantization. However, these applications often
require model updates on a minute-to-hour scale (Liu et al.| [2022; N1 et al., 2021)), and excessive
quantization time makes deployment impractical by canceling out the benefits of quantization.

For this, we present TopGQ, a PTQ method which achieves orders of magnitude faster quantization
with comparable or even better task performance. First, we show that node-wise quantization is more
preferable for GNN (Section[d)), due to the existence of outlier nodes. However, node-wise quantiza-
tion on the aggregation phase prevents integer arithmetic. To this end, we propose (1) dual-axis scale
absorption, a technique that enables fast and accurate integer matrix multiplication with node-wise
scaling. It merges the scaling factors of each node into the adjacency matrix, preserving efficiency
while maintaining accuracy. We further propose (2) TopPIN, a lightweight node index that encodes
local topology to guide quantization. TopPIN enables rapid assignment of quantization parameters
to unseen nodes, ensuring fast inference. We show theoretically and empirically that TopPIN is a
sound proxy for unseen node assignment. Extensive experimental results validate that TopGQ out-
performs current state-of-the-art baselines, achieving orders of magnitude faster quantization while
preserving accuracy and inference latency, establishing a new standard in GNN quantization.

2 BACKGROUND

Graph neural networks. Let G = (V, E) be a directed graph with » = |V| nodes, v, ..., vy.
Denote A € R"*"™ as the adjacency matrix, where A4;; = L(v; v:)eE- For node v;, define its closed

i

in-neighborhood as NV(v;) = {v; | (vj,v;) € E} U {v;}, and let degree d(v;) = [N (v;)|. We
denote D = diag(d(v1),d(vs),...,d(v,)) as the diagonal degree matrix, h; as feature vector of v;.

To embed topology, GNNs aggregate information from neighboring nodes v; € N'(v;) to update
h;. This procedure is referred to as the message-passing algorithm, which consists of two steps:

combination and aggregation. First, the hidden node feature h,l(l) is multiplied by the weight matrix
W® in the I-th GNN layer. Next, the feature is aggregated to hElH) as follows:

(+1) _ (OFRO;
hi (b(@{j\vjemm}w hi ) 0

where ¢ is an update function, and €p is a permutation-invariant operator such as sum or mean.

The GNN computation can also be formulated in matrix form. Let X O = [n{!, ... DT € Rrxa:
be the matrix of node features at layer [, and let W) € R%*%+1 be the weight matrix. Then, using
an augmented adjacency matrix A € R™*", the combination and aggregation steps are:

X0 =xOwh - XU = 6(AXD), 2)

where o is a nonlinear function. The specific form of A varies by GNN architecture. For example,
GCN (Kipf & Welling, [2016) employs the normalized graph Laplacian A = D~1/2(A+1,,)D~1/2,
while GIN (Xu et al.,2019)) uses the binary matrix A=A+1 n. GraphSAGE (Hamilton et al., 2017)
differs by sampling a subset of neighbors instead of using the entire neighborhood at aggregation.

Transductive and inductive settings. GNN training operates in either a transductive or an induc-
tive setting. In the transductive setting, the entire graph (e.g., features and topology) is available
during training, except for the test node labels. As a result, inference can be done with precom-
puted embeddings (Xu et al., [2024)), leaving little room for acceleration and quantization benefits.
In contrast, the inductive setting introduces unseen nodes or graphs at test time, requiring compu-
tation of node embedding during inference. Consequently, GNN quantization would have a much
greater impact in inductive settings, where reducing computation and memory directly accelerates
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inference. Moreover, the inductive setting better reflects real-world scenarios where graphs evolve
or differ from those used for training—such as social networks with new users, recommendation
systems between users and new items, or molecular property prediction for unseen molecules—and
is therefore generally considered the more practical and deployment-oriented evaluation setting.

Quantization replaces high-precision floating-point operations with low-bit integer operations,
thereby reducing computational cost and memory usage. We adopt uniform integer quantization
with scale (s) and zero-point (2). Given a tensor X, each element x € X is quantized as:

z? = Q(-T, S, Z) = Clal’np(L1 : (l’ - Z)—‘7 Gmin; qmax>7 s = Ma 3)

s dmax — Gmin
Gmin and ¢ ax are the minimum and maximum integer values in k-bit representation, and | -] denotes
rounding. Quantization operates at various granularities, such as per-tensor, per-column, or per-
row. Quantization typically follows either post-training quantization (PTQ) or quantization-aware
training (QAT). QAT iteratively updates the weights using the calculated gradients, whereas PTQ
calibrates scale and zero-point without updating model weights, and therefore much faster in general.

3 RELATED WORK

GNN quantization efficiently reduce extensive memory and computational costs of GNNs (Kipf &
Welling|, 2016} Velickovic et al.| |2018; Xu et al.| [2019; [Hamilton et al.;,[2017)). Degree-Quant (Tailor
et al.,|2020) is the first work to quantize GNN using QAT, excluding high-degree node activations in
calibration for robust quantization parameters and compressing later at inference. EPQuant (Huang
et al.|[2022) utilizes product quantization for reducing the high memory cost. SGQuant (Feng et al.,
2020) and A2Q (Zhu et al., [2022) are also QAT methods, but they differ in that they allow mixed-
precision to assign a higher bitwidth to high-magnitude features. The quantization parameters are
optimized with gradients in QLR (Wang et al.| [2023) and DRA (Jeddi et al.l 2024). While QLR
leverages these parameters with customized message propagation, DRA optimizes them to recon-
struct the FP32 distributions. Thus, they require significant and redundant quantization overheads,
whereas TopGQ allows orders of magnitude shorter quantization time (Section|[I)).

Graph topology in GNNss is often integrated during training to help the model effectively learn the
structural information (Ji, 2019; Zhang & Lul 2020} Hu et al.| [2022; Wu et al 2018} [You et al.,
2021} Brasoveanu et al.| 2023)). For example, (Ji,|2019) uses degree centrality to find highly central
nodes for effective representation learning. Also, (Zhang & Lul 2020) uses betweenness centrality
to assign weights to each node during aggregation. There are prior attempts to leverage topology for
binarization of graph neural networks (Bahri et al., 2021} Jing et al.|[2021). However, these methods
do not incorporate topology in relation to per-node activation statistics for GNN quantization.

4 TOPOLOGY-AWARE GNN QUANTIZATION: NECESSITY AND CHALLENGES

Necessity of topology-aware GNN quantization. GNN quantization requires special considera-
tion due to its unique message-passing mechanism. In particular, the accumulation of neighborhood
information induces substantial diversity across nodes, making node-wise quantization a preferred
approach. Figure[2]illustrates such behavior by comparing the range of values within each node di-
mension (Figures [2a]and [2c) and feature dimension (Figures [2b]and [2d). Figures[2a]and 2c|presents
that node-wide ranges are more concentrated, with high similarity between the 5th-95th percentile
range and the min—max range. This indicates the absence of extreme outliers within each node
group, making it favorable for quantization. However, in the feature-wise plots (Figures [2b]and 2d),
each min-max range is much broader, while 95% of the values exist within a much narrow interval.
This distribution is more prone to outliers, leading to wasted quantization bins and higher error. This
indicates that node-wise quantization is a more favorable choice for the activation in GNNS.

Based on the observation, we assign different quantization scales to the group of nodes for the
feature matrix X in both the combination and the aggregation phase of GNN inference. Enabling
such a method in the combination phase is relatively straightforward. In fact, existing methods (Zhu
et al.| 2022; [Feng et al.l 2020) already employ node-wise quantization:

X W = diag(Sx) - X9 - W2 . diag(Sw) = (Sx - Syy) @ (X9 - W) (4)
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Figure 2: Node-wise and feature-wise range plot, sorted in ascending order. ‘Node Index’ indicates
each node, and ‘Feature Index’ indicates each feature dimension. Each plot shows the min-max
range and the 5th-95th percentile range of the values within the same dimension.

where Sy € R™*! is the node-wise scale for X, Sy € R%*! is the feature-wise scale for W, and ®
denotes the element-wise (Hadamard) product. Since X is quantized node-wise and W is quantized
feature-wise, the quantized multiplication remains fast and efficient in combination phase.

Challenge 1: Quantization along inner dimensions. By contrast, node-wise quantization in the
aggregation phase is more challenging. Existing GNN quantization (Zhu et al.| |2022; [Feng et al.,
2020) methods instead apply column-wise quantization to the intermediate activation matrix X,
because the columns correspond to the outer dimension in message passing (see Figure fh). While
this approach is computationally advantageous, it may fail to preserve the precision of activations.
Specifically, applying node-wise quantization for the aggregation step,

A X ~ diag(S;) - A? - diag(Sx,) - X&, %)

introduces the diagonal matrix diag(Sx,) within the multiplication. Unlike Equation this cannot
be computed using integer matrix multiplication units with common methods (Jacob et al.,|2018). To
capitalize on the precision benefits of node-wise quantization while also preserving computational
efficiency, TopGQ proposes a novel method, dual-axis scale absorption (Section [5.2).

Challenge 2: Generalization on unseen nodes. For practical inductive settings (Section 2)), con-
trary to transductive settings, GNN encounters nodes unseen at training time. To deal with unseen
nodes, there can be two approaches to obtain accurate quantization parameters for each node:

(i) On-the-Fly Quantization Parameter Computation. A straightforward approach is to dynamically
compute quantization parameters per node during inference. For each intermediate activation, every

row of X and X C(l) is scanned, and the minimum and maximum values of each node are empiri-
cally determined to obtain scales and zero-points. While this ensures low quantization errors, it is
less preferred as it causes runtime overhead that might counteract efficiency gains by quantization.

(ii) Precomputed Mapping. An alternative is to precompute a set of quantization parameters at
calibration time and map each unseen node to one of its entries, typically to one from the training
set nodes. Before inference, we can perform a simple lookup to retrieve and prepare the appropriate
parameters for each activation. Nonetheless, this requires an accurate low-complexity node index
@(+) such that nodes with similar index values exhibit similar feature statistics. TopGQ chooses this
precomputed mapping approach, where we design a novel Topology-Aware Pairwise Index (TopPIN)
that simply uses local topology for lightweight computation (Section [5.3). TopPIN ensures that
unseen nodes are assigned adequate quantization parameters at low inference overhead.

5 TorPGQ METHODOLOGY

5.1 OVERALL FRAMEWORK OF ToPGQ

Figure [3] illustrates the overall process of TopGQ. In the calibration phase (Figure [3h), we first
compute a topology-based value TopPIN(v) for each node v, which we define in Section Based
on these index values, we then calculate node-wise quantization parameters (s,, z,) as described in
Section 2] If multiple nodes share the same TopPIN, we aggregate the statistics by taking the global
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Figure 3: The process of topology-aware quantization. (a) shows group generation using topological
characteristics: TopPIN. Each color is used to denote each group. (b) shows the calibration process
to achieve a set of quantization parameters for each group. (c) demonstrates how inference is done
on unseen data by using the quantization parameters of the nearest groups with interpolation.

maximum and the global minimum (Figure [3b), ensuring the quantization parameters cover the full
dynamic range. This gives us a pair of quantization parameters for each unique TopPIN value.
Finally, during inference, we only need to compute the TopPIN(v) for each unseen node v and use
it as a key to retrieve the appropriate quantization parameters (Figure[3). For this, we retrieve the k-
nearest TopPIN groups and interpolate among their parameters. Such design is built on the idea that
nodes with similar TopPIN(v) values exhibit similar activation distribution, which we theoretically
demonstrate in Section

On top of that, we apply dual-axis scale absorption which preserves the accuracy and efficiency dur-
ing inference. Dual-axis scale absorption mimics the effect of node-wise quantization, while actually
using feature-wise quantization to be compatible with integer matrix multiplication. This requires
the computation of quantization scales along both axes, which are also calibrated via TopPIN. We
demonstrate this process in detail in Section[5.2]

5.2 SELECTIVE DUAL-AXIS SCALE ABSORPTION

Node-wise quantization assigns quantization parameters per node, helping preserve diverse feature
magnitudes. However, as seen in Equation (3)), aggregation with naive node-wise quantization does
not support integer operations. Given this, we aim to design dual-axis scale absorption, a technique
that preserves both integer-operation speedups and node-wise quantization effects.

To account for the differing magnitude of node fea-

SE"X]] S[lxd] I SK . SX - S[_nxd]
tures (Figure, we employ a node-wise scale factor A | < A%
Sy € RN*1 where Sy consists of the maximum it
feature value for each node. Specifically, we scale X A0 X XQE =|Siy |Oliexe
to X! with Sy, i.e., X! = diag™*(Sxn) - Xc. Then, - y ‘
to eliminate any obstacle terms preventing integer op- i

col-wise

erations, Sy is merged to the given static adjacency
matrix, A € RVXN_ The operation is as follows:

A X, = (A diag(Sn)) - X, = Ax. - X, (6)

(a) Column-wise activation quantization

Scale Absorption 1) row-wise

After merging Sy to A, we can conduct integer ma- A " [HasS) c
trix multiplication for two matrices, Ax, and X/
with corresponding quantization parameters Sz € Sy (X))
Nx1 1xd.
R , and SXé eR : l Si, 5, ...
Ax. - X ) ~ 3
. N _ A 0y f0 1)
~ (diag(Sz, ) AL - (X2 - diag(Sx;)) (8) Ax, |7 Ax | [XE
= (84, " Sx) © (A, - X(9). © ; 1
¢ Absorbed A 2) col-wise
In the calibration process, TopGQ adaptively chooses (b) Quantization via dual-axis scale absorption

between dual-axis and feature-wise quantization for
X, for each GNN layer. TopGQ evaluates both
configurations by measuring the mean squared error

Figure 4: Comparing quantization ap-
proaches at aggregation phase.
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(MSE) between the original floating-point activations and their quantized counterparts. The con-
figuration with lower MSE is saved for inference. When dual-axis scale absorption is selected, the
scaling elements for Sy are calibrated like the quantization parameters. When dual-axis scale ab-
sorption is used at inference, X, can be immediately quantized with Sy - Sx: € RN>4 which acts
like an element-wise quantization parameters for X.. 4

5.3 TOoOPPIN: A LIGHTWEIGHT INDEX FOR UNSEEN NODES

To support quantization in inductive settings, we devise TopPIN, a lightweight index that maps
unseen nodes to existing train set nodes used at calibration. The formulation of TopPIN is as follows:

1 1
TopPIN(v) = (d(v), e UkezN:(v) o] ) (10)

Its formulation is derived from two aggregation cases, where connections from neighbor nodes affect
the target node’s feature distribution. We present this link of local structure and node features at
Theorem [T} We can leverage the link to a node-level index function ¢ : V' — R, that captures the
expected per-node feature variance from local topology. The proof is provided in Section

Theorem 1 (Node index ¢ for GNN activation). Let G = (V, E) be an undirected graph. For A,
we separately consider unnormalized and normalized cases. Consider a GNN of the form

XD = ReLU(AXOw®),

where the hidden dimensions d; are sufficiently large (d; > 1) for all layers 1, and each entry of

X O and WO is drawn independently from a distribution with zero mean and finite variance. Then,
for each layer | of the GNN, define the scalar function ¢ : V. — R by:

(;3(’[)) = Z ’U.)(’U, vkl) Z w(vk‘lﬂvkz) e Z w(vkl—l ) Ukl)a

Vi eN(v) Vko EN(Ukl) Vi, EN(’U"L—l)
wy(v,u) =1, A=A+1,,
with  w(v,u) = 1 ~ _1 _1
’ - A=D3(A+1,)D2
w20 ) = Sy (A+1n)

Asymptotically, the probability distribution of each row of X DWW and AXWOW O s determined
solely by ¢(v).

¢(-) implies that similar quantization parameters can be made when ¢-values align among nodes.
We show this correlation in Theorem 21

Theorem 2 (Node index ¢ and GNN quantization parameters). The expected per-node quantization
parameters for X and XO WO vary as uniformly continuous functions of ¢(+). In particular:

o If o(u) = ¢(v), then E[s,]| = E[s,| and E[z,] = E[z,], where (sy, z,) and (s, z,) are
the respective scale and zero-point parameters of nodes v and v.

* More generally, if |p(u) — ¢(v)| < 0, then |E[s,] — E[sy]| < € and |E[z,] — E[z]] < €
for any desired € > 0, by uniform continuity.

Hence, Nodes with similar ¢-values have similar calibrated quantization parameters in expectation.
The proof can be found in Section [B]

While ¢ faithfully reflects the expected per-node quantization statistics, its direct usage is compu-
tationally expensive for multi-layer GNN inference. Therefore, we derive TopPIN from ¢, which is
notably fast to compute as it is composed with the first summation terms from Theorem [T} Conse-
quently, TopPIN is also noted as follows. Refer to Section |C|for the details:

TopPIN(v)z( Z wi (v, u), Z wg(v,u)). (11)

uEN (v) u€N (v)
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Table 1: Comparison of quantization accuracy and time for node classification task

Cora Citeseer PubMed
GCN GAT GIN GCN GAT GIN GCN GAT GIN
Acc. QT. Acc. QT. Acc. QT. Acc. QT. Acc. QT. Acc. QT. Acc. QT. Acc. QT. Acc. QT
FP32 80.14 - 8036 - 79.76 - 7646 - 7642 - 7706 - 8712 - 8766 - 8893 -

INTS

SGQ 79.93 (6.4s) 80.30 (7.7s) 78.35 (5.4s) 76.21 (9.3s) 76.20 (9.6s) 76.04(11.3s) 86.37 (14.8s) 88.96 (19.6s) 88.89 (16.6s)
DQ 78.94(11.5s) 78.66(14.6s) 67.56(18.5s) 75.62(25.7s) 23.66(28.4s) 65.64 (50.65) 88.26 (50.6s) 88.11 (60.6s) 88.32(188.9s)
EPQ 77.52(20.6s) 75.60(23.0s) 56.78 (20.8s) 75.26(72.4s) 75.30(73.2s) 56.68 (72.9s) 83.16(106.5s) 82.54(107.7s) 77.26(108.7s)
A2Q 79.66 (3.55) 75.29 (63s) 69.16 (3.3s) 75.72 (3.55) 74.34 (7.1s) 67.09 (4.0s) 85.20 (8.0s) 83.38 (8.2s) 88.36 (13.1s)
QLR 79.12 (4.0s) 78.84 (6.45) 60.60 (3.3s) 40.66 (3.85) 43.76 (6.2s) 56.92 (3.35) 83.14 (4.1s) 86.66 (6.6s) 86.84 (6.8s)
DRA 79.76 (1.7s) 80.20 (3.6s) 78.83 (1.7s) 76.26 (1.6s) 76.31 (3.1s) 76.55 (1.7s) 86.75 (1.7s) 88.69 (3.3s) 87.73 (1.7s)
TopGQ 79.96 (0.2s) 80.63 (0.2s) 80.01 (0.25) 76.52 (0.25) 76.31 (0.2s) 77.08 (0.2s) 87.14 (0.2s) 87.42 (0.25) 88.82 (0.3s)

INT4

SGQ 78.73 (6.4s) 77.92 (6.8s) 76.93 (5.4s) 76.31(10.4s) 75.54(13.3s) 75.47 (11.3s) 85.12 (14.8s) 85.14 (19.6s) 88.33 (16.6s)
DQ 78.54(11.5s) 77.90(14.5s) 65.98 (18.5s) 23.54 (25.5s) 23.58 (28.6s) 46.02(49.5s) 87.78 (50.25) 87.41 (60.3s) 86.94 (190.6s)
EPQ 76.32(20.6s) 74.52(23.1s) 32.98(20.7s) 74.92(72.3s) 74.70(73.2s) 46.66(72.9s) 81.26(106.4s) 81.36(107.5s) 41.18 (108.8s)
A2Q 50.00 (3.65) 45.64 (6.3s) 68.76 (3.2s) 43.52 (3.55) 58.50 (7.1s) 62.50 (4.0s) 70.08 (4.0s) 72.52 (8.4s) 84.74 (8.2s)
QLR 76.64 (3.7s) 78.76 (6.2s) 68.38 (3.4s) 37.40 (3.9s) 40.06 (6.1s) 62.90 (3.35) 74.08 (4.25) 86.26 (6.4s) 76.90 (6.9s)
DRA 77.02 (1.7s) 74.35 (3.3s) 57.29 (1.7s) 74.10 (1.6s) 72.92 (3.1s) 61.10 (1.7s) 75.09 (1.7s) 72.44 (3.4s) 36.90 (1.7s)
TopGQ 78.84 (0.2s) 78.56 (0.2s) 79.34 (0.25) 75.96 (0.25) 76.24 (0.2s) 76.92 (0.2s) 86.92 (0.25) 86.91 (0.25) 87.72 (0.3s)

*Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETTINGS

We evaluate TopGQ on both node-level and graph-level classification tasks, and compare it with five
QAT baselines: SGQuant (Feng et al.| [2020), Degree-Quant (Tailor et al., 2020), EPQuant (Huang
et all [2022), A2Q (Zhu et all [2022), and QLR (Wang et al [2023), and one recent PTQ base-
line: DRA (Jeddi et al., [2024). For node classification, we use the Cora, CiteSeer, PubMed, Red-
dit, ogbn-products, and MAG240M datasets; and for graph classification, we use IMDB-BINARY,
and COLLAB datasets. For large-scale and hyper-scale datasets, we evaluate GNN architectures
(e.g., GCN, GraphSAGE, R-GAT) that were introduced as baseline architectures in the original ogb-
benchmark papers (Hu et al.|[2020;2021)). For other datasets, we calibrate a fully-trained GCN (Kipf
& Welling, |2016), GAT (Velickovi€ et al., [2018)), GIN (Xu et al.,2019), and GraphSAGE (Hamilton
et al., |2017) for 4-bit and 8-bit integer quantization; the bitwidth is fixed across all layers for fair
comparison. Tasks with datasets except MAG240M were conducted in the inductive setting, which
reflects a more practical use of quantization. Node classification with MAG240M was evaluated
with the original transductive setting introduced in the ogb-lsc (Hu et al.| 2021} challenge. Further
experimental results and details are provided in the Appendix.

6.2 EVALUATION RESULTS OF NODE-LEVEL TASKS

Table [1] reports results on the conventional node-level Table 2: Quantized validation accu-
datasets commonly used in baselines. Even though the racy and time on MAG240M node-
datasets are relatively small, TopGQ is the fastest, taking less  ¢]assification task with R-GAT
than a second for quantization while achieving comparable
or superior accuracy compared to the baselines. For larger Method Type Acc. Q. Time
datasets (Table [3), the difference is clearer, where baselines o — T =
take up to hours (3.27h, Reddit, GS) for quantization whilst $SGQ QAT 46.7 6  550da

B . . ys
TopGQ takes less than a minute. For INT4, TopGQ exceeds A2Q QAT 5797 246days
all baselines in terms of both accuracy and speed. Notably, QLR QAT 68.10 1.97days
while all methods suffer from low accuracy in ogbn-products DRA PTQ 66.13 2.06days
due to the small number of train nodes, TopGQ shows best TopGQ PTQ 69.14 0.98 hours
accuracy due to its ability to adapt to unseen nodes. For
brevity, we report the full experiment set in the Appendix.
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Table 3: Comparison of node classification task with large-scale graphs

INTS INT4
Method Reddit, GCN Reddit, GS ogbn, GCN ogbn, GS Reddit, GCN Reddit, GS ogbn, GCN ogbn, GS
Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time

FP32 9440 - 9509 - 7125 - 7033 - 9440 - 9509 - 7125 - 7033 -

SGQ  92.10 @64m) 92.01 (327n) 39.13 (2.52m) 58.80 (2.11h) 43.00 (4.84m) 87.42 (327h) 6.14 (257m) 27.95 (2.13h)
DQ 87.01 (10.59m) 90.53 (16.35h) 72.34 (14.05m) 70.17 (6.55h) 64.18 (10.55m) 89.61 (16.33h) 36.66 (13.93m) 69.90 (6.52h)
EPQ 8029 (530m) 93.11 (1.36h) 49.33 (53.68s) 56.83 (52.42m) 22.02 (5.29m) 79.61 (1.36h) 26.96 (53.585) 26.97 (52.40m)
A2Q 7371 @i12m) 75.13 (283h) 50.78 (83.94s) 60.15 (1.67h) 2324 (4.12m) 67.94 (2.83h) 25.95 (83.30s) 31.32 (1.66h)
QLR 9421 (72.86s) 95.11 (31.82m) 66.48 (76.30s) 63.85 (50.15m) 86.95 (72.79s) 81.68 (31.78m) 27.36 (76.12s) 29.38 (50.16m)
DRA  93.15 (42.995) 94.36 (23.71m) 36.22 (41.63s) 47.70 (4497m) 1.75 (42.82) 531 (23.71m) 3.12 (41.61s) 26.40 (44.96m)
TopGQ 94.41 (1.88s) 94.55 (35.79s) 71.33 (1.16s) 70.31 (34.885) 93.05 (1.87s) 89.88 (35.285) 39.03 (1.16s) 61.83 (34.905)

*Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

Table 4: Comparison of quantization accuracy and time for the graph-classification benchmarks

IMDB-BINARY COLLAB
Method Gy GAT GIN GCN GAT GIN
Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time
FP32 - 79.58 - 77136 - 7972 - 82.54 - 7999 - 8231 -

SGQ 68.28 (5.88m) 68.60 (14.65m) 68.26 (6.74m) 80.96 (39.35m) 80.10 (2.12h) 81.80 (40.26m)
DQ 77.32 (898m) 75.12(25.53m) 76.00 (9.08m) 82.30 (2.39h) 80.30 (8.14h) 81.62 (2.30h)
EPQ 76.30 (13.99m) 74.00 (18.87m) 76.70 (14.17m) 82.36 (2.99h) 79.81 (0.81h) 77.66 (2.95h)

INT8 A%Q  75.12 3.24m) 74.91 8.18m) 75.97 (3.78m) 64.10 (14.75m) 74.35 (2.03h) 80.21 (14.50m)
QLR 75.50 (3.44m) 74.40 (7.30m) 74.50 (3.70m) 81.98 (13.04m) 75.47 (0.81h) 81.70 (9.42m)

DRA 78.88 (2.24m) 77.70 (4.38m) 78.52 (2.29m) 82.08 (11.49m) 80.78 (0.50h) 82.18 (10.19m)
TopGQ 79.34 (2.18s) 76.58 (5.58s) 79.50 (2.05s) 82.52 (13.86s) 77.46 (47.325) 82.28 (11.71s)

SGQ 67.64 (5.89m) 67.49 (14.71m) 63.72 (6.71m) 78.14 (38.87m) 78.22 (2.11h) 72.06 (40.44m)

DQ 76.02 (9.03m) 74.71 (26.07m) 75.98 (9.22m) 73.24 (2.40n) 79.51 (8.16h) 77.61 (2.31h)

INT4 EPQ 74.80 (13.95m) 74.10 (18.80m) 64.80 (14.12m) 65.54 (2.98h) 71.63 (0.82h) 65.94 (2.94h)

A%2Q  74.09 3.13m) 72.80 8.11m) 75.62 (3.79m) 69.32 (14.94m) 74.96 (2.02h) 74.78 (14.40m)
QLR 73.40 (3.46m) 74.00 (7.26m) 73.50 (3.74m) 81.92 (13.09m) 72.87 (0.80h) 79.32 (9.47m)
DRA 74.32 (2.22m) 75.58 (4.34m) 70.28 (2.30m) 64.16 (11.45m) 78.75 (0.50h) 66.24 (10.18m)
TopGQ 76.71 (2.08s) 75.72 (5.69s) 76.00 (2.13s) 81.75 (13.85s) 73.33 (47.29s) 77.39 (11.71s)

*Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

We further emphasize the benefit TopGQ by using a hyper-scale graph with 240 million nodes in
Table [2l Existing methods take at least 1.97 days, up to 5.50 days to quantize a GNN on such a
hyper-scale graph, while TopGQ cuts it down to 0.98 hour, showing at least 49x speedup. At the
same time, TopGQ presents a negligible difference to the FP32 model.

6.3 EVALUATION RESULTS OF GRAPH-LEVEL TASKS

Table [4] presents the graph-level classification results on IMDB-BINARY and COLLAB. TopGQ
significantly improves quantization speed while maintaining competitive task performance. For in-
stance, while EPQuant is the strongest baseline in GCN COLLAB, it takes 2.39 hours for quantiza-
tion. However, TopGQ shows superior accuracy while cutting down the overhead to 13.86 seconds.
While TopGQ takes the least time to quantize, in many cases TopGQ also shows the best accuracy
with minimal degradation compared to FP32. We attribute this to TopGQ’s explicit integration of
GNN-specific considerations — leveraging TopPIN to effectively capture local topological structures,
while QAT baselines largely neglect these properties. Overall, the experimental results for node and
graph classification tasks demonstrate that TopGQ provides a robust balance between accuracy and
quantization speed, making it well-suited for both small and large-scale GNN tasks.

6.4 EVALUATION RESULTS OF INFERENCE LATENCY

Table[5]report the inference latency of TopGQ and competing baselines with the minibatch setting of
large-scale graphs. Measurements were conducted on both GPU and edge devices, reflecting practi-
cal scenarios for quantized GNN deployment. A key observation is that A%(Q) and on-the-fly PTQ are
expensive and slow. This is because both methods require row-wise scans of intermediate activations
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Table 5: GCN inference time (sec) on GPU (RTX4090) and edge device (Jetson AGX Orin)

GPU (RTX 4090) Edge (Jetson AGX Orin)
Method Type Reddit ogbn-products Reddit ogbn-products
Time Speedup Time Speedup Time Speedup Time Speedup

FP32 - 2.18 - 34.51 - 51.68 - 754.09 -

Degree-Quant QAT 141  1.55x 2037 1.69x 33.65 1.54x 46396 1.63x
A2Q QAT 196 1.11x 27.74 124x 4842 1.07x 63515 1.19x
SGQuant QAT 142 1.54x 2053 1.68x 3417 1.51x 470.89 1.60x
On-the-fly PTQ PTQ 2.04 1.07x 2773 1.24x 5488 0.94x 689.82 1.09x
TopGQ PTQ 142 1.54x 2053 1.68x 3423 151x 47325 1.59x

Table 6: Accuracy and index computation time
comparison on IMDB-BINARY Table 7: Ablation Study of TopGQ

Bit NodelIndex GCN GAT GIN Time Reddit ogbn-products

Bit Method
Naive PTQ  60.14 51.72 56.50 - GCN GS GCN GS
Betweenness 50.00 71.42 50.00 1.85s

Naive PTQ  3.79 297 133 2474

INT4 Closeness 7290 70.62 67.78  1.48s

ot 6934 5748 7958 20.04s INT4 Only TopPIN 93.05 85.83 143 5245
TopPIN  76.71 75.72 76.00 0.00059s TopGQ 93.05 89.88 39.03 63.18

to derive quantization parameters. These findings highlight the importance of storing quantization
parameters and retrieving them via efficient mapping function. TopGQ leverages TopPIN, where
index computation incurs negligible overhead, enabling efficient inference (Section [5.3).

6.5 ANALYSIS ON TOPPIN AND ABLATION STUDY

We assess the effectiveness of TopPIN by comparing it against a naive PTQ strategy as well as com-
monly used centrality measures, including betweenness, closeness, and Katz centrality (Table [6).
We report both the accuracy and the total time to compute values for all nodes in the dataset. The
naive PTQ approach, which relies on a single global quantization parameter, shows significant ac-
curacy degradation due to high variance in node magnitudes. The conventional centrality measures
may mitigate the accuracy degradation, compared to naive PTQ. However, they require costly global
graph traversal for each node, making them impractical for quantized inference. In contrast, TopPIN
only depends on 1-hop neighborhood information, thereby significantly reducing the computational
overhead. Despite its lightweight design, TopPIN outperforms other centrality baselines, highlight-
ing its practicality and effectiveness as an indexing strategy for GNN quantization.

Finally, Table [/| shows the ablation study, where each row corresponds to the incremental addition
of TopPIN and selective dual-axis scale absorption to the naive PTQ baseline, ultimately forming
TopGQ. While naive PTQ fails to effectively exploit the quantization bins under the INT4 config-
uration, TopPIN mitigates this limitation by leveraging topology to better preserve node features.
However, as graph size increases (e.g., ogbn-products with GCN), TopPIN alone proves insufficient.
By further introducing dual-axis scale absorption, the node-wise quantization effects are consistently
preserved across GNN layers, leading to additional accuracy recovery.

7 CONCLUSION

In this work, we introduce TopGQ, a topology-aware post-training quantization framework for
GNNss that eliminates the need for retraining while preserving high accuracy. By leveraging a novel
node index (TopPIN) and the dual-axis scale absorption mechanism, TopGQ can handle unseen node
features of differing magnitudes. This node-level strategy enables fast and precise activation quan-
tization while preserving the computational benefits of integer operations. Extensive experiments
across various GNN architectures and datasets show that TopGQ achieves quantization-aware train-
ing (QAT)-level accuracy, while reducing quantization time by an order of magnitude compared to
prior works. These results establish TopGQ as a practical and scalable solution for efficient GNN
inference, including large-scale and hyper-scale graph datasets.
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8 REPRODUCIBILITY STATEMENT

The derivation of TopPIN comes from the theoretically grounded link between local structure and
expected node feature variance. We provide the related theorems and corresponding proof in the
Appendix. The code to reproduce the results of TopGQ with citation datasets can be downloaded at
https://anonymous.4open.science/r/topgg-code-3CF1. We provide a README
file for the environment setups, TopPIN generation, and commands for experiments with TopGQ.
Further details for the experiments are at Section [[}
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A THE PROOF OF THEOREM I

Theorem (Node index ¢ for GNN activation). Let G = (V, E) be an undirected graph. For A, we
separately consider unnormalized and normalized cases. Consider a GNN of the form

XD = ReLU(AXOw®),

where the hidden dimensions d; are sufficiently large (d; > 1) for all layers I, and each entry of

X©) and WO is drawn independently from a distribution with zero mean and finite variance. Then,
for each layer | of the GNN, define the scalar function ¢ : V. — R by:

P(v) = Z w(v, v, ) Z W(Vk,, Vky )+ Z w(v, Uk, )

Vky eN(v) Vky GN('Uk,l) Vk; eN(vkl—l)
wy(v,u) =1, A:A—l—]n,
with  w(v,u) = 1 ~ _1 _1
) =~ A=D3(A+1,)D2
wa(vu) = Ses (A+1n)

Asymptotically, the probability distribution of each row of X (VW) and AXOWW s determined
solely by ¢(v).

Proof. Case 1: If A=A+ I,, (unnormalized), then

P(v) = Z Z Z 1.

Uiy EN (V) Uiy EN (V) Vi EN (Vg ;)

- 1 1
Case2: If A= D 2(A+ I,) D™ 2 (normalized), then

-5 ¥ o ¥ (o v X )|

k1eN (v) ka€N (vg,) kieN (v, _,)

We consider the L-layer GNN
XU = ReLU(AXOW®), 1=0,...,L—1,

ie {A +1,, D 3(A+ In)D*%}.
Assume that each entry of the initial feature matrix X (*) € R"*9 is drawn i.i.d. from a zero-mean

distribution D, (0, o2), and each entry of the weight matrices W) € R4 *d+1 is drawn i.i.d. from
a zero-mean distribution D;(0, o7). Denote

zO = xOwO yO = Az0O  xWH — ReLU(Y(l)).

for notational simplicity. We prove in several steps that each row of Z() and Y'¥) is (approximately)
a zero-mean Gaussian whose variance depends only on a node-specific function ¢(+), and that this
leads to the stated continuity property of expected quantization parameters.

Step 1: Propagation for 1st layer of GNN. Consider Z(© = X 1) For each entry,
0 _ N2 0 0
0 0) 17,(0
Ziyh = > Xia Waj
a=1

Since X, 52) and Wc(g) are i.i.d. with zero mean and finite variance, it follows that

0) 1,(0 0) 1(0 0 0
ELXjo Wil =0, Var(Xg' W) = E[(X2)E[(W,])) = oZo?
By the Central Limit Theorem (CLT), Zi(j(.)) is approximately NV'(0, dpo203).
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Next, we consider the multiplication by the augmented adjacency matrix. For instance, A =
1 1
D 2(I+A)D 2.

v = 470, = Z A2l = Y ——— 2.

kj
(kv € N (vi)} Vd(vi) d(vk)

Summing independent Gaussians preserves Gaussianity and yields

1 1
v ~ N(0, [doo20? > :
1] N( ) [ Oo’mao}d(vi) d(l)k))
v EN(v;)

Step 2: Subsequent layers and ReLU. Next we consider for the second layer of GNN. Focusing
on a particular entry ZZ(J1 ) , We can write

7D = Z xPwl) = Z ReLU(Y, )WY,

Since W(g) ~ N(0,0%), we have :

(1) (1) | (1) 11(1) Oy 2 1900308 a0 Doenwn aw s
E[ch Waj] = 07 ar(Xia Way) = E[(RGLU(Y;a )) ]01 = 9 o

Summing over o = 1, ..., d; and again invoking the CLT, we arrive at

dodic20202. 1 1
ZQ) ~ 0. (2041929071 )
§ o~ N (PR Y )
vk EN(v;)

We then multiply by the adjacency matrix A as before,

T e 1 _ v W _ (1)
YW = Az v =3 Az = > Z
a=1

\/ﬁ kg
{K1lor, €N (vi)} i) d(vr,)

Thus for Yi?) we have

dodi02030%. 1 1 E !
Y,(,l) ~ N(O [ 071 270 1] Z )
7 ’ 3 ?
2 d(vl) v, EN (v3) d(vkl) Vioy EN (Viey ) a Ukz)

One can easily see that through repetition we have

1 1 ! !
)Gy 2 a2 @, 2 @

¢ k1€N (v;) L kieN (vk,_,)

(o) o (2)

Y;jz-n ~N o,

l l
(H7n:0 dm) 0’% (Hm:O o-%n
21

Zi(Jl.) ~N 10, ) “¢(vy)

that is the distribution for each row of Z() and Y'(*) are zero-mean Gaussian whose variance depends
on the corresponding node-specific scalar function which is a constant factor of ¢.

"For a ReLU applied zero mean gaussian random variable Y ~ N (0, 05),

oo 2
27 2 1 —y2/(202) _ 9y
BURLU(Y)) = [0 e O dy =

oyV2m
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Step 3 : Unnormalized adjacency. For the case A = A+ 1, since each neighbor contribution is
no longer scaled, the entire degree-based weighting disappears. That is,

YOS SN SRS S

Uiy EN (Vi) Viy EN (k7)) vk, EN (v, ;)

-1 2 -1 2
L dm);fl(nm“) ). o(v1)

A

holds. O

B THE PROOF OF THE THEOREM

Theorem (Node index ¢ and GNN quantization parameters). The expected per-node quantization
parameters for X and X WO vary as uniformly continuous functions of ¢(+). In particular:

o If o(u) = ¢(v), then E[s,] = E[s,]| and E[z,] = E[z,], where (sy, z,) and (s, z,) are
the respective scale and zero-point parameters of nodes u and v.

* More generally, if |p(u) — ¢p(v)| < 6, then |E[s,] — E[s,]| < € and |E[z,] — E[z,]| < €
for any desired € > 0, by uniform continuity.

Proof. Let M € R™*“ be any matrix whose ith row is comprised of i.i.d. random variables with
distribution N(0, o (i)?). Define the row-wise (node-wise) quantization parameters (s;, z;) for this
row by

maxi<j<q Mi; — mini<j<a My

S; = and z; = min M;; — 5; Qmin,
gmax — Gmin 1<5<d

where gmin and gmax are fixed integers. The expectation of max; M;; and min; M;; can be ex-
pressed via the classical order-statistics integralﬂ One has

E[ max M;;| = /00 [1 —FX(I)}ddx,

1<j<d e

where Fx is the cumulative distribution function of N(0,(i)?). Fx is a continuous function of
o(%). Also, this integral is absolutely convergent, implying that E[max; M;;] is a continuous func-
tion of o(z). A similar argument shows that E[min; M;;] is also continuous in o (7). Consequently,

E[s;] = g(a(i)), Elz] = h(a(i)),

for some continuous functions g, h. From Steps 1-3, we showed that the row variance o (i)? in our
GNN setting is proportional to a node-dependent scalar ¢(v;). Hence,

E[si] = G(¢(v)), Elz] = H(é(v),
for some continuous functions ¢, H. Next, let

A = max ¢(v).

veV

2As d — 00, it is known that
E[man MU] N \/§O'
Vind

In other words, the integral is approximately ov/2 In d (Kamath, |2015).
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Since G, H are continuous on a compact set [0, A], G and H are uniformly continuous on [0, A].
Therefore,

|¢(u) — ¢(v)| <) = |G(¢(u)) - G((b(v))! <€ and fH(gb(u)) — H((b(v))! < €,
for any desired € > 0. In particular, if ¢(u) = ¢(v), then E[s,] = E[s,] and E[z,] = E[z,].

Remark. In the case that M;; = ReLU(Y;;) for i.i.d. zero mean Gaussian Yj;, as d — oo, the
probability of at least one entry being zero in each row goes to one, so E[min; ReLU(Y;;)] — 0.

Thus the above argument for scale parameters is valid for all matrices X and Z() = X, C(l).

This completes the proof. O

C DERIVATION OF TOPPIN FROM THEOREM [1]

In Case 1 at Theorem let d(v) denote the indegree of node v, we can approximate all summations
beyond the first term as a constant C', which yields:

gv)= Y. Ci=d(v)-C, (12)
Uiy eN(vy)

In Case 2, we approximate the summand of the second summation as a constant Cs, which yields:

1 1 1 Oy
)= (d(vm? 2 02>d<v> 2 dey W

vy EN(vy) Vky EN(U“kl) Vi EN(vy)

This leads to the second element of TopPIN. Alternatively, approximating the entire summation as
Cs gives ¢(v) ~ C5/d(v), further reinforcing the choice of degree-based terms. This lightweight
design effectively balances between accuracy and efficiency. Note that TopPIN(v) does not depend
on the definition of fl, and thus can be used for various GNNs. Empirically, we observed that the
approximated first-order terms of TopPIN can capture most of the benefits with minimal overhead.

D APPLICATION OF TOPGQ TO GAT-BASED ARCHITECTURES

We provide a theoretical justification for applying TopPIN in GAT-based architectures, which oper-
ates on edge weights obtained via the softmax function. We analyze the bound of expected variance
of node activations, and show that the expected variance of GAT node activation is bounded by the
terms of TopPIN. We demonstrate that these bounds align with the structure of TopPIN, validating
its use as a lightweight proxy for per-node quantization.

D.1 SETUP AND ASSUMPTIONS

We consider a GAT layer as defined in Section [A}
XY = ReLU(AXW WD), 1=0,...,L -1,

zO = xOwO  yO = gAz0  x0H — ReLU(Y(l)).
with the following assumptions, in line with Section [A}

. Zi(j(-)) ~ N(0, doo2a?) (i.i.d. per feature dimension),
* Assume edge weights for target node ¢ are drawn from a normal distribution, specifically
a; ~ N(1/d(i), 02 ), independently across j and independently across layers, where

i 1 1
2 R —
0<0’ai d(z) d(i)Q'

We derive the upper bound of o2 as follows:

Since >~ aij = 1, and avij > 0, E[a] = ﬁ. Using the Cauchy-Schwarz inequality, E[a?] >
(E[a;])? and the bound 0 < a;; < 1, this leads to the bound 7552 < E[of] < Eloy] = g5
1 1
7

therefore, 0 < o7, = Var[a;;] = E[afj] — (Elay))? < — —

d(@)  (d(@)?
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D.2 DERIVING THE ACTIVATION VARIANCE BOUND

We aim to quantify the variance of the output activation Yi(l) at node 7. Consider a coordinate j:

0 0
Vi = 3wzl
keN (i)

Since Z; O N (0, dpo203) are independent, The mean and variance of Y( )i

d(7)
E[Y\] = ZEO%Z(O) 0, (14)

d(z
Var(v,”) ZE E[(Z\))? (15)

= (d(1)) (Var(a;) + (E[ay])?) - doo2og = (d(i)) (aii+ (d(t))2> ~docia?  (16)

Denote t)(7) as (0(2“ + W) We can bound ¢ (i) with o2 as below.

1 . 1 1 1 (())
.<¢(Z)=(Ui.+ - >§ s < Var(V;7) <1
(d(i))? bood@)?) T d@) (d@) Y
By the Central Limit Theorem (CLT), Yig-o) is approximately N'(0, doo2o3 - d(i)y(i)). Since
quantization scale (e.g., in min—max quantization) is influenced by the activation variance, bounding
(1) leads directly to bounding the expected quantization parameters. We show that the lower bound
of (%) is equivalent to the first term of TopPIN.

With the same assumption and operation for the next layer, and Y'(°) as input, the approximated
dlstrlbuuon of Yy; ) is A (0, ¢-o(i)), with ¢ as a constant, and 15 (7) bounded in the range of
(= d(l (Zke N (D) d(k)) 1]. We demonstrate that the lower bound of 15(v) is equivalent to the
product of each term in TopPIN, bringing a strong correlation to the formulation of TopPIN.

D.3 TOPPIN AS A PROXY FOR FEATURE VARIANCE

1 1
TopPIN(v) = [ d(v), d(“)ug,:(v)d(“)

Since ¥(v) is a degree-dependent property, TopPIN provides a topology-aware approximated bound
of the per-node activation statistics, without computing the attention scores explicitly.

GAT activation variance is governed by t(v). Modeling cv;; ~ N'(1/d(i), 02 ) gives a tight, degree-
bounded expectation for 1(v). Quantization parameters are thus bounded in expectation by d(v).
TopPIN aligns with these bounds and provides a practical, theoretically grounded proxy for quanti-
zation in GNNs with softmax-generated edge weights.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXPERIMENTAL RESULTS OF GRAPHSAGE ARCHITECTURE ON INDUCTIVE SETTING

We evaluate the quantization accuracy and quantization speed of our method (TopGQ) on the Graph-
SAGE architecture (Table B]) covering node classification (Cora, Citeseer, PubMed) and graph clas-
sification tasks (IMDB-BINARY, COLLAB). The experimental results show that TopGQ consis-
tently achieves competitive or superior accuracy compared to baseline methods, while significantly
reducing quantization time. These results further support that TopGQ generalizes effectively across
architectures, providing acceleration for GraphSAGE models while achieving comparable perfor-
mance to quantization-aware training methods that require substantially longer quantization times.
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Table 8: Comparison of quantization accuracy with GraphSAGE architecture

Node Classification Graph Classification
Method " corq Citeseer ~ PubMed  IMDB-B  COLLAB
Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time
FP32 77.02 - 7634 - 89.18 - 7746 - 8036 -
INTS

SGQ 76.28 (8.24s) 76.06 (14.84s) 88.87 (23.23s) 66.36 (6.15m) 80.29 (38.21m)
DQ 75.50 (23.87s) 74.77 (69.955) 88.62 (3.07m) 73.04 (9.09m) 79.32 (2.28h)
EPQ 72.84 (21.16s) 74.44 (73.24s) 84.70 (1.80m) 71.91 (14.02m) 79.78 (2.51h)
A%2Q 76.94 (456s) 75.08 (4.96s) 88.76 (18.21s) 74.49 (4.97m) 79.64 (14.59m)
QLR 77.96 4.12s) 31.78 (4.62s) 88.08 (7.285) 63.42 (3.67s) 70.16 (13.71m)
DRA 76.46 @3.11s) 75.74 (3.00s) 88.98 (3.15s) 76.51 (2.67m) 80.27 (12.12m)
TopGQ 76.86 (0.54s) 76.32 (0.56s) 89.00 (0.62s) 77.23 (2.93s) 80.53 (15.89s)

INT4
SGQ 75.52 (8.41s) 75.94 (14.65s) 86.62 (23.24s) 65.56 (6.11m) 78.30 (39.20m)
DQ 74.36 (23.49s) 74.99 (69.91s) 88.58 (3.07m) 73.52 (9.10m) 79.02 (2.26h)
EPQ 73.00 (21.10s) 74.58 (73.47s) 84.44 (1.80m) 61.00 (14.06m) 58.92 (2.58h)
A%Q 74.66 (4.655) 73.00 (5.01s) 85.32 (18.17s) 73.92 (4.93m) 66.12 (14.64m)
QLR 74.52 (4.055) 30.68 (4.43s) 87.42 (7.29s) 63.30 (4.69s) 63.30 (13.62m)
DRA 76.18 (3.24s) 74.60 (2.93s) 78.84 (3.42s) 75.04 (2.56m) 78.18 (12.12m)
TopGQ 76.30 (0.535) 75.76 (0.57s) 87.26 (0.62s) 75.44 (2.91s) 79.38 (15.92s)

*SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQquant

Table 9: Comparison of quantization accuracy on transductive setting

INT4 INT8
Dataset Method g GAT GIN  GraphSAGE  GCN GAT GIN  GraphSAGE
Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time
FP32 8772 - 808 - 86.14 - 870 - 8.72 - 8808 - 8614 - 8570 -

SGQ 87.46 (4.09s) 8232 (7.095) 78.92 (4.46s) 85.82 (6.33s) 87.88 (4.185) 88.14 (7.055) 86.02 (4.46s) 85.94 (6.37s)
DQ 86.40 (8.96s) 87.10 (11.72s) 83.10 (29.46s) 86.04 (33.37s) 87.12 (9.77s) 87.54 (11.85s) 80.34 (30.50s) 86.60 (33.50s)
EPQ 83.44 (40.74s) 86.50 (42.17s) 41.96 (40.89s) 84.96 (40.66s) 86.50 (40.71s) 86.98 (42.09s) 81.20 (40.77s) 84.80 (40.60s)
A%2Q 5570 (1.99s) 75.80 (3.655) 85.30 (245s) 86.20 (2.485) 87.40 (2.06s) 87.60 (3.725) 86.10 (247s) 87.20 (2.75s)
QLR 8520 (247s) 87.04 (3.885) 85.30 (2.44s) 85.78 (2.165) 86.54 (2.41s) 87.02 (3.73s) 84.88 (2.30s) 86.74 (2.10s)
DRA 82.60 (1.025) 77.58 (251s) 27.52 (0.98s) 83.80 (1.10s) 87.56 (1.04s) 87.84 (2.48s) 8540 (1.06s) 85.58 (1.09s)
TopGQ 87.38 (0.66s) 87.64 (0.46s) 85.86 (0.51s) 85.90 (0.465) 87.78 (0.58s) 88.10 (0.655) 86.18 (0.555) 86.10 (0.755)

FP32 7984 - 7978 - 7936 - 7956 - 7984 - 7978 - 7936 - 7956 -

SGQ 79.10 (6.50s) 79.22 (9.36s) 77.28 (8.56s) 79.36 (12.64s) 79.88 (6.40s) 80.02 (9.46s) 79.54 (8.60s) 79.52 (12.55s)
DQ 24.32 (21.36s) 23.10 (23.67s) 70.58 (85.98s) 23.10 (99.04s) 79.56 (21.14s) 79.72 (23.87s) 72.24 (86.44s) 78.98 (100.53s)
EPQ 78.78 (137.88s) 79.34 (139.37s) 47.22 (138.38s) 77.26 (138.65s) 79.14 (138.02s) 79.36 (139.43s) 70.60 (138.41s) 78.24 (138.64s)
A2Q 5390 (220s) 64.00 (3.925) 78.30 (4.285) 78.60 (5.47s) 76.50 (2.21s) 79.80 (3.90s) 79.50 (4.27s) 79.20 (5.53s)
QLR 67.78 (2.54s) 79.72 (3.925) 75.74 (3.725) 76.16 (4.60s) 77.82 (2.625) 79.24 (3.89s) 75.00 (3.74s) 79.20 (4.39s)
DRA 77.56 (1.63s) 78.88 (2.46s) 42.34 (1.63s) 78.90 (1.53s) 79.70 (1.63s) 79.78 (1.63s) 79.38 (1.61s) 79.70 (1.50s)
TopGQ 79.56 (0.46s) 79.48 (0.51s) 79.26 (0.61s) 79.98 (0.66s) 79.86 (0.46s) 79.82 (0.62s) 79.44 (0.555) 79.68 (0.63s)

FP32 8836 - 8776 - 842 - 8938 - 8836 - 8776 - 8942 - 8938 -

SGQ 86.52 (12.64s) 82.86 (6.34s) 86.02 (10.18s) 88.84 (8.70s) 88.64 (6.30s) 87.50 (10.11s) 89.72 (8.60s) 89.72 (11.66s)
DQ 87.26 (99.04s) 87.50 (20.27s) 88.60 (33.37s) 88.84 (105.63s) 88.02 (19.28s) 87.04 (31.99s) 89.54 (103.28s) 88.84 (94.59s)
EPQ 84.34 (138.65s) 86.08 (101.95s) 52.32 (2.90s) 87.06 (2.07s) 85.40 (102.00s) 86.54 (103.37s) 86.90 (102.50s) 87.16 (102.61s)
A2Q 79.70 (547s) 82.40 (102.52s) 89.10 (107.55s) 87.20 (105.27s) 87.20 (2.16s) 87.10 (6.955) 90.30 (4.94s) 88.70 (5.42s)
QLR 79.48 (4.60s) 87.42 (2.59s) 85.40 (3.73s) 88.86 (4.23s) 87.06 (2.50s) 87.40 (3.90s) 88.46 (4.21s) 88.94 (4.49s)
DRA 85.10 (147s) 83.26 (2.82s) 47.30 (1.42s) 85.96 (242s) 88.28 (1.43s) 87.70 (2.81s) 88.76 (1.45s) 89.20 (2.43s)
TopGQ 87.72 (0.66s) 87.52 (0.505) 89.20 (0.49s) 88.92 (0.86s) 88.42 (0.525) 87.86 (0.53s) 89.40 (0.625) 89.14 (0.565)

*SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

Cora

Citeseer

PubMed

E.2 NODE CLASSIFICATION ON TRANSDUCTIVE SETTING
We report additional experimental results on transductive node classification tasks in Table O] in

addition to the inductive results presented in Table[T} The experimental results in Table[0]consistently
align with the trends that TopGQ persistently achieves the lowest quantization times compared to
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Table 10: Comparison of quantization accuracy on large scale inductive datasets

INT4 INTS

Method ogbn-arxiv ogbn-proteins ogbn-arxiv ogbn-proteins
GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE

Acc. Q.Time Acc. Q.Time R-A Q.Time R-A Q.Time Acc. Q.Time Acc. Q.Time R-A Q.Time R-A Q.Time

FP32 5557 - 5754 - 6896 - 7200 - 5557 - 5754 - 6896 - 7200 -
SGQ 55.25 (1.24m) 57.65 (1.87m) 70.75 (8.93m) 73.18 (4.44m) 24.03 (1.22m) 52.90 (1.88m) 54.50 (8.90m) 65.69 (4.44m)
DQ 55.67 (9.30m) 57.46 (13.70m) 60.08 (37.59m) 73.41 (24.54m) 54.02 (8.88m) 56.83 (13.86m) 52.89 (36.90m) 71.84 (23.82m)
EPQ 43.71 (5.61m) 46.72 (5.65m) 63.26 (4.96m) 58.65 (2.85m) 27.11 (5.60m) 44.82 (5.65m) 52.87 (4.96m) 57.71 (2.84m)
A2Q  47.06 (37.39s) 57.51 (48.33s) 49.83 (4.42m) 72.18 (2.80m) 24.00 (36.55) 55.24 (46.69s) 47.99 (4.41m) 70.06 (2.79m)
QLR  55.54 (46.06) 57.46 (57.17s) 65.76 (7.11m) 73.65 (3.07m) 52.96 (45.19s) 55.98 (57.60s) 56.21 (7.15m) 50.26 (3.07m)
DRA 54.46 (25.55s) 57.55 (31.99s) 56.91 (3.47m) 72.15 (1.68m) 22.76 (25.47s) 53.56 (31.81s) 51.73 (3.43m) 63.89 (1.67m)
TOPGQ 55.86 (0.52s) 57.55 (0.61s) 68.50 (1.28s) 73.07 (1.27s) 47.97 (0.51s) 54.48 (0.59s) 60.39 (1.28s) 70.72 (1.265)

*R-A: ROC-AUC, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

Table 11: Comparison of quantization accuracy on molecular-domain datasets

INT4 INTS
Method MUTAG PPI MUTAG PPI
GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE
Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time
FP32 87.44 - 86.74 - 71.10 - 91.37 - 87.44 - 86.74 - 71.10 - 91.37 -

SGQ 81.57 (86.27s) 86.02 (100.65s) 55.71 (86.27m) 59.46 (100.65m) 81.87 (84.92s) 83.53 (102.82s) 73.26 (6.74m) 91.33 (39.35m)
DQ  85.27 (109.07s) 80.66 (104.39s) 48.32 (9.08m) 64.24 (2.39h) 86.00 (105.04s) 80.24 (102.78s) 64.55 (9.08m) 67.17 (2.39h)
EPQ 76.11 (52.225) 76.58 (55.83s) 51.18 (14.17m) 7471 (2.99h) 78.27 (51.20s) 77.11 (55.13s) 63.87 (14.17m) 81.59 (2.99h)
A2Q 8099 (47.06s) 77.99 (55.59s) 40.83 (3.78m) 43.12 (14.75m) 79.30 (45.56s) 83.12 (50.89s) 40.46 (3.78m) 45.78 (14.75m)
QLR 89.88 (51.85s) 79.27 (51.90s) 61.43 (3.70m) 58.60 (13.04m) 86.64 (50.25s) 76.08 (54.265) 62.49 (3.70m) 71.89 (13.04m)
DRA 85.78 (33.14s) 85.22 (37.07s) 33.29 (2.29m) 49.74 (11.49m) 85.86 (32.30s) 83.60 (34.89s) 73.26 (2.29m) 88.00 (11.49m)

TOPGQ 78.30 (1.29s) 82.68 (1.22s) 61.10 (1.87s) 71.53 (13.86s) 86.61 (1.29s) 86.74 (5.58s) 7348 (1.23s) 92.54 (13.86s)

*SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

baselines, while maintaining comparable or superior accuracy. This advantage in quantization speed
demonstrates the practical value and effectiveness of TopGQ, particularly in resource-constrained
environments. We show that this advantage holds in both transductive and inductive settings.

E.3 EXPERIMENTAL RESULTS ON LARGE SCALE INDUCTIVE DATASETS.

To further evaluate the generalizability of TopGQ, we provide additional quantization results on
ogbn-arxiv and ogbn-proteins in Table [I0] both inductive node classification tasks. For these ex-
periments, we use GCN and GraphSAGE as baseline models, the same GNN baseline architectures
used for the original paper for the dataset (Hu et al.,[2020). Compared to existing methods, TopGQ
achieves comparable or superior performance without requiring retraining or gradient-based up-
dates. Also, TopGQ acceleration gains in the quantization time is up to 92 x —1,076x compared
to baseline methods. These results further demonstrate the effectiveness of TopGQ and its ability to
generalize across diverse datasets.

F LIMITATIONS OF ToPGQ

In this section, we analyze the limitations of TopGQ. First, we find that TopGQ shows limited
performance when applied to molecule-domain datasets. We report the results on molecule-domain
datasets in Table using MUTAG and PPI (Zitnik & Leskovec,2017). In the table, we can observe
a more noticeable gap between other baselines and TopGQ.We believe this partially comes from the
two reasons: the lack of topological diversity, and the heterophily between connected nodes. Since
each graph is a molecular chain, the nodes exhibit a short range of degree diversity and have weak
distinguishability in topology. As our work builds on the distinct topological characteristics of the
graph, it has a limited advantage in such weak-topology graphs. Also, the graphs in the molecu-
lar domain tend to have a heterophilic connection, as a vast amount of edges connect to different
molecules. To overcome such limitations, we restrict parameter sharing to nodes with matching
input features and similar TopPIN values, thereby encoding heterophily. On the PPI dataset, this
strategy proved effective in preserving accuracy, with additional gains up to 2.86% — 9.47%.
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Table 12: Comparison of theoretical costs and storage for different methods.

Metrics Theoretical Cost Theoretical Storage

FP32 OFP(N2F1+NF1F2) OFP(E-‘rFlFQ-‘rNFo)
Degree—Quant OINT(N2F1+NF1F2)+OFPEIEW(NF2) O[NT(E+F1F2+NFO)+OFP(1)
Degree—Quant—PTQ O[NT(N2F1 +NF1F2)-‘rOFpglgm(NFz) O]NT(E+F1F2+NF0)+OFP(1)
TopGQ Ornt(N?Fy + NF\F>) + Opp,,,,. (NFs)  Oinr(E+ FiFs + NFy) + Opp(Nr + Fb)

Secondly, we find that dual-axis scale absorption introduces an additional runtime operation when
quantizing GNN architectures with dynamic edge weights. In such cases, we fuse precalculated
scaling vectors to the quantization scale matrix for the adjacency matrix, so that dual-axis scale
absorption operation itself can be fused with the runtime quantization of runtime-calculated edge
weights. The absorption will alter the SPMYV operation between scale vectors and edge weights to
SPMM operation between scale matrices and edge weights when the absorption is fused with the
online computation. Although this may slightly increase the floating-point operations of runtime-
computed edge weights, the online quantization of arbitrary edge weights is a global overhead across
all GNN quantization methods (Feng et al., [2020; Tailor et al.| 2020} [Huang et al., 2022} Zhu et al.,
2022; ' Wang et al.,2023; Jeddi et al., 2024), which also target to quantize GNNs with dynamic edge
weights. On top of that, we believe the difference of the inference time can be fairly negligible by
parallelism within GPU operations.

G QUANTIZATION TRADE-OFF AND COMPRESSION ANALYSIS OF TOPGQ

Here, we present a comprehensive analysis regarding the trade-offs and compression advantages
of TopGQ. We provide analysis of computational cost and storage consumption. The theoretical
analysis is shown in Table [I2]

TopGQ finds a good balance between reducing quantization time and preserving accuracy, while
other choices in FP32, Degree-Quant, TopGQ demonstrate disadvantages in either accuracy, time,
or memory. FP32 suffers from the expensive costs of computation and storage. While Degree-Quant
alleviates this cost via quantization, the long quantization time is required to obtain the benefits.
TopGQ is free from the quantization time problem but at the cost of considerable performance
degradation. TopGQ aims to find the best way of addressing each issue by leveraging topological
node similarities with an additional amount of storage cost.

As for the theoretical costs (Table [I2), we assume GNN layer propagation as AXW operation,
with A € RVXN X e RVNXFL 1 ¢ RFIXF2 with initial dataset size of N x Fy. We note the
computation and storage costs of floating-point (FP) and integer (INT) operations as follows:

* Opp(): Complexity for FP operations / Storage complexity for FP values.

* Opp,,.. (): Complexity for element-wise FP operations.

lem

* Ornt(): Complexity for INT operations / Storage complexity for INT values.

The computational cost shows that quantization converts the expensive floating-point matrix multi-
plication into integer operations. The additional floating-point cost comes from converting integer
outputs back to floating-point values. The theoretical analysis is based on (Zhu et al., 2022]).

To further validate the actual compression advantage, we provide the results of memory usage reduc-
tion ratios for inference components of a GCN model on Reddit dataset at Table [I3] This confirms
that TopGQ can effectively benefit from model/data memory reduction and faster inference.

H DATASET STATISTICS

We report the dataset statistics used for the evaluation of our method, TopGQ at Table[I4] To assess
generalizability, we selected datasets spanning a range of scales. Note that we evaluate graph-level
datasets with 10-fold cross-validation, with a fixed validation/test set size per fold.
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Table 13: Actual quantization reduction ratios for INT8 and INT4

Inference Component INTS8 INT4

Graph Input (Node Features) 3.995x  7.982x
Model Intermediate Activation  3.987x  7.951x
Model Weights 3.922x  7.681x

Total Reduction Ratio 3.992 x 7.971x

Table 14: Statistics of node-level and graph-level datasets for evaluation.

Node-Level Datasets ‘ Graph # Node # Edge # Train Node # Val Node # Test Node # Class #
Cora 1 2,708 10,556 140 500 1,000 7
Citeseer 1 3,327 9,104 120 500 1,000 6
Pubmed 1 19,717 88,648 60 500 1,000 3
PPI 24 56,944 1,587,264 44,906 6,514 5,524 121
Reddit 1 232,965 114,615,892 153,431 23,831 55,703 41
ogbn-proteins 1 132,534 79,122,504 86,619 21,236 24,679 112
ogbn-arxiv 1 169,343 1,166,243 90,941 29,799 48,603 40
ogbn-products 1 2,449,029 123,718,280 196,615 39,323 2,213,091 47
MAG240M 1 244,160,499 1,728,364,232 1,112,392 138,949 88,092 153
Graph-Level Datasets | Graph # Avg. Node # Avg. Edge # Train Graph# Val Graph# Test Graph# Class #
MUTAG 188 17.9 39.6 150 19 19 2
IMDB-BINARY 1,000 19.8 193.1 800 100 100 2
COLLAB 5,000 74.5 4914.4 4,000 500 500 3

I ADDITIONAL EXPERIMENTAL SETTINGS

We report evaluation results on two representative graph processing tasks: Node-level classification,
graph-level classification. For node-level classification, we compare the accuracy of Cora, Citeseer,
PubMed, Reddit, ogbn-products, and MAG240M in inductive setting. For the inductive setting, we
construct a training graph containing only train nodes and separate validation/test graphs containing
only validation or test nodes For graph-level classification, we choose IMDB-BINARY and COL-
LAB datasets to evaluate the inductive inference performance of quantized GNNs. We report the
accuracy by 10-fold cross-validation, with a fixed random seed.

All experiments are conducted and measured on a server with a single A6000 GPU, RTX 4090 GPU,
and Intel(R) Xeon(R) Gold 6442Y CPU. We implement our algorithm on PyG library v2.5.2 with
PyTorch v2.4.0. In the index computation, we use the SciPy library and Pytorch implementations.

J CODE

The code, which includes our implementation of this work, is included in a zip archive of the sup-
plementary material. The code is under GNU General Public License v3.0. The guideline to run the
code and reproduce the results from TopGQ is provided in the README file.
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