

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOPGQ: FAST GNN POST-TRAINING QUANTIZATION LEVERAGING TOPOLOGY INFORMATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) demand substantial memory and computation as datasets scale in size. Thus, quantization is a promising remedy by compressing full-precision values into low-bit representations. However, existing GNN quantization methods depend on tedious gradient-based updates to preserve accuracy. This quantization time may be a major barrier to real-world deployments as the input graph size scales. To this end, we present **TopGQ** (**T**opology-aware **G**NN **Q**uantization), an accurate post-training quantization framework tailored for GNNs, alleviating the burden of redundant quantization overhead. We propose *Dual-axis scale absorption*, which applies scale factors along both activation axes, merging one into the static adjacency matrix. Dual-axis scale absorption attains higher accuracy via addressing outlier nodes. This helps maintain the same computational cost as column-wise quantized inference. We further introduce topology-guided quantization, which exploits the relationship between local graph structure and activation variance. TopGQ enables fast inference for unseen nodes, via a *novel node index (TopPIN)*, a lightweight proxy of activation variance from local structure. With these techniques, TopGQ eliminates the need for retraining while preserving accuracy. Experimental results show that TopGQ is comparable to prior works while reducing quantization time by an order of magnitude, establishing it as a practical solution for *efficient and scalable* GNN inference.

1 INTRODUCTION

Graph neural networks (GNNs) have attracted a great amount of attention due to their ability to process diverse unstructured data in diverse domains, such as recommendation systems (Zhang et al., 2023), molecular interaction (Wale et al., 2008), transportation networks (Cao et al., 2020), and social network analysis (Arazzi et al., 2023). Although model sizes are typically small (Wu et al., 2020), they introduce an extensive amount of computation and memory costs from activations, i.e., the node and edge features (Liu et al., 2021). Especially with the trend where the graph size is continuously growing (Liu et al., 2024a; Hu et al., 2020), there is a growing need to process large graphs with limited resources.

One promising approach to address this need is quantization, which reduces memory usage and computational costs by using low-bit representations (Ashkboos et al., 2024; Liu et al., 2024b; Li et al.; 2023). However, quantizing GNNs is known to be difficult due to the varying magnitudes of node activations. The outlier node features are induced by aggregation from the message-passing algorithm, leading to quantization errors (Tailor et al., 2020; Zhu et al., 2022; Wei et al., 2022). Accordingly, existing methods target managing these outliers.

These GNN quantization methods demand extensive parameter tuning or long training time. Quantization-aware training (QAT) methods involve costly retraining, often exceeding full-precision

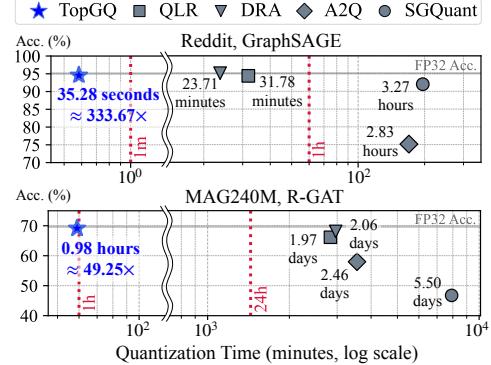


Figure 1: Quantization time-accuracy trade-off plot with large-scale graph datasets.

054 training time (Feng et al., 2020; Tailor et al., 2020; Huang et al., 2022; Zhu et al., 2022; Wang et al.,
 055 2023). Post-training quantization (PTQ) methods typically avoid such overhead by keeping model
 056 weights fixed. However, the existing PTQ method (Jeddi et al., 2024) still employs gradient-based
 057 iterations on quantization parameters, negating its expected advantage. Section 1 illustrates such a
 058 phenomenon, where their quantization time for large graphs can take up much more than a day.

059 This large quantization time poses a major barrier to quantized GNN deployment in real-world
 060 scenarios, particularly when frequent model updates are required. Popular GNN applications such as
 061 personalization and recommendation (Wu et al., 2023; Chen et al., 2023; You et al., 2022; Guan et al.,
 062 2025) operate on large-scale graphs and benefit from quantization. However, these applications often
 063 require model updates on a minute-to-hour scale (Liu et al., 2022; Ni et al., 2021), and excessive
 064 quantization time makes deployment impractical by canceling out the benefits of quantization.

065 For this, we present TopGQ, a PTQ method which achieves *orders of magnitude faster* quantization
 066 with comparable or even better task performance. First, we show that node-wise quantization is more
 067 preferable for GNN (Section 4), due to the existence of outlier nodes. However, node-wise quantiza-
 068 tion on the aggregation phase prevents integer arithmetic. To this end, we propose (1) dual-axis scale
 069 absorption, a technique that enables fast and accurate integer matrix multiplication with node-wise
 070 scaling. It merges the scaling factors of each node into the adjacency matrix, preserving efficiency
 071 while maintaining accuracy. We further propose (2) TopPIN, a lightweight node index that encodes
 072 local topology to guide quantization. TopPIN enables rapid assignment of quantization parameters
 073 to unseen nodes, ensuring fast inference. We show theoretically and empirically that TopPIN is a
 074 sound proxy for unseen node assignment. Extensive experimental results validate that TopGQ out-
 075 performs current state-of-the-art baselines, achieving orders of magnitude faster quantization while
 076 preserving accuracy and inference latency, establishing a new standard in GNN quantization.

077 2 BACKGROUND

080 **Graph neural networks.** Let $G = (V, E)$ be a directed graph with $n = |V|$ nodes, v_1, \dots, v_n .
 081 Denote $A \in \mathbb{R}^{n \times n}$ as the adjacency matrix, where $A_{ij} = 1_{(v_j, v_i) \in E}$. For node v_i , define its closed
 082 in-neighborhood as $\mathcal{N}(v_i) = \{v_j \mid (v_j, v_i) \in E\} \cup \{v_i\}$, and let degree $d(v_i) = |\mathcal{N}(v_i)|$. We
 083 denote $D = \text{diag}(d(v_1), d(v_2), \dots, d(v_n))$ as the diagonal degree matrix, h_i as feature vector of v_i .

084 To embed topology, GNNs aggregate information from neighboring nodes $v_j \in \mathcal{N}(v_i)$ to update
 085 h_i . This procedure is referred to as the *message-passing* algorithm, which consists of two steps:
 086 *combination* and *aggregation*. First, the hidden node feature $h_i^{(l)}$ is multiplied by the weight matrix
 087 $W^{(l)}$ in the l -th GNN layer. Next, the feature is aggregated to $h_i^{(l+1)}$ as follows:

$$089 \quad h_i^{(l+1)} = \phi \left(\bigoplus_{\{j \mid v_j \in \mathcal{N}(v_i)\}} W^{(l)} h_j^{(l)} \right), \quad (1)$$

090 where ϕ is an update function, and \bigoplus is a permutation-invariant operator such as *sum* or *mean*.

091 The GNN computation can also be formulated in matrix form. Let $X^{(l)} = [h_1^{(l)}, \dots, h_n^{(l)}]^T \in \mathbb{R}^{n \times d_l}$
 092 be the matrix of node features at layer l , and let $W^{(l)} \in \mathbb{R}^{d_l \times d_{l+1}}$ be the weight matrix. Then, using
 093 an augmented adjacency matrix $\tilde{A} \in \mathbb{R}^{n \times n}$, the combination and aggregation steps are:

$$094 \quad X_c^{(l)} = X^{(l)} W^{(l)}, \quad X^{(l+1)} = \sigma(\tilde{A} X_c^{(l)}), \quad (2)$$

095 where σ is a nonlinear function. The specific form of \tilde{A} varies by GNN architecture. For example,
 096 GCN (Kipf & Welling, 2016) employs the normalized graph Laplacian $\tilde{A} = D^{-1/2}(A + I_n)D^{-1/2}$,
 097 while GIN (Xu et al., 2019) uses the binary matrix $\tilde{A} = A + I_n$. GraphSAGE (Hamilton et al., 2017)
 098 differs by sampling a subset of neighbors instead of using the entire neighborhood at aggregation.

099 **Transductive and inductive settings.** GNN training operates in either a transductive or an inductive
 100 setting. In the transductive setting, the entire graph (e.g., features and topology) is available
 101 during training, except for the test node labels. As a result, inference can be done with precom-
 102 puted embeddings (Xu et al., 2024), leaving little room for acceleration and quantization benefits.
 103 In contrast, the inductive setting introduces unseen nodes or graphs at test time, requiring compu-
 104 tation of node embedding during inference. Consequently, GNN quantization would have a much
 105 greater impact in inductive settings, where reducing computation and memory directly accelerates

108 inference. Moreover, the inductive setting better reflects real-world scenarios where graphs evolve
 109 or differ from those used for training—such as social networks with new users, recommendation
 110 systems between users and new items, or molecular property prediction for unseen molecules—and
 111 is therefore generally considered the more practical and deployment-oriented evaluation setting.

112 **Quantization** replaces high-precision floating-point operations with low-bit integer operations,
 113 thereby reducing computational cost and memory usage. We adopt uniform integer quantization
 114 with scale (s) and zero-point (z). Given a tensor X , each element $x \in X$ is quantized as:

$$116 \quad x^q = Q(x; s, z) = \text{clamp}\left(\left\lfloor \frac{1}{s} \cdot (x - z) \right\rfloor, q_{\min}, q_{\max}\right), \quad s = \frac{x_{\max} - x_{\min}}{q_{\max} - q_{\min}}, \quad (3)$$

118 q_{\min} and q_{\max} are the minimum and maximum integer values in k -bit representation, and $\lfloor \cdot \rfloor$ denotes
 119 rounding. Quantization operates at various granularities, such as per-tensor, per-column, or per-
 120 row. Quantization typically follows either post-training quantization (PTQ) or quantization-aware
 121 training (QAT). QAT iteratively updates the weights using the calculated gradients, whereas PTQ
 122 calibrates scale and zero-point without updating model weights, and therefore much faster in general.

124 3 RELATED WORK

126 **GNN quantization** efficiently reduce extensive memory and computational costs of GNNs (Kipf &
 127 Welling, 2016; Veličković et al., 2018; Xu et al., 2019; Hamilton et al., 2017). Degree-Quant (Tailor
 128 et al., 2020) is the first work to quantize GNN using QAT, excluding high-degree node activations in
 129 calibration for robust quantization parameters and compressing later at inference. EPQuant (Huang
 130 et al., 2022) utilizes product quantization for reducing the high memory cost. SGQuant (Feng et al.,
 131 2020) and A^2Q (Zhu et al., 2022) are also QAT methods, but they differ in that they allow mixed-
 132 precision to assign a higher bitwidth to high-magnitude features. The quantization parameters are
 133 optimized with gradients in QLR (Wang et al., 2023) and DRA (Jeddi et al., 2024). While QLR
 134 leverages these parameters with customized message propagation, DRA optimizes them to recon-
 135 struct the FP32 distributions. Thus, they require significant and redundant quantization overheads,
 136 whereas TopGQ allows orders of magnitude shorter quantization time (Section 1).

137 **Graph topology in GNNs** is often integrated during training to help the model effectively learn the
 138 structural information (Ji, 2019; Zhang & Lu, 2020; Hu et al., 2022; Wu et al., 2018; You et al.,
 139 2021; Brasoveanu et al., 2023). For example, (Ji, 2019) uses degree centrality to find highly central
 140 nodes for effective representation learning. Also, (Zhang & Lu, 2020) uses betweenness centrality
 141 to assign weights to each node during aggregation. There are prior attempts to leverage topology for
 142 binarization of graph neural networks (Bahri et al., 2021; Jing et al., 2021). However, these methods
 143 do not incorporate topology in relation to per-node activation statistics for GNN quantization.

144 4 TOPOLOGY-AWARE GNN QUANTIZATION: NECESSITY AND CHALLENGES

146 **Necessity of topology-aware GNN quantization.** GNN quantization requires special considera-
 147 tion due to its unique message-passing mechanism. In particular, the accumulation of neighborhood
 148 information induces substantial diversity across nodes, making node-wise quantization a preferred
 149 approach. Figure 2 illustrates such behavior by comparing the range of values within each node di-
 150 mension (Figures 2a and 2c) and feature dimension (Figures 2b and 2d). Figures 2a and 2c presents
 151 that node-wide ranges are more concentrated, with high similarity between the 5th–95th percentile
 152 range and the min–max range. This indicates the absence of extreme outliers within each node
 153 group, making it favorable for quantization. However, in the feature-wise plots (Figures 2b and 2d),
 154 each min–max range is much broader, while 95% of the values exist within a much narrow interval.
 155 This distribution is more prone to outliers, leading to wasted quantization bins and higher error. This
 156 indicates that node-wise quantization is a more favorable choice for the activation in GNNs.

157 Based on the observation, we assign different quantization scales to the group of nodes for the
 158 feature matrix X in both the combination and the aggregation phase of GNN inference. Enabling
 159 such a method in the *combination* phase is relatively straightforward. In fact, existing methods (Zhu
 160 et al., 2022; Feng et al., 2020) already employ node-wise quantization:

$$161 \quad X \cdot W \approx \text{diag}(S_X) \cdot X^Q \cdot W^Q \cdot \text{diag}(S_W) = (S_X \cdot S_W^\top) \odot (X^Q \cdot W^Q) \quad (4)$$

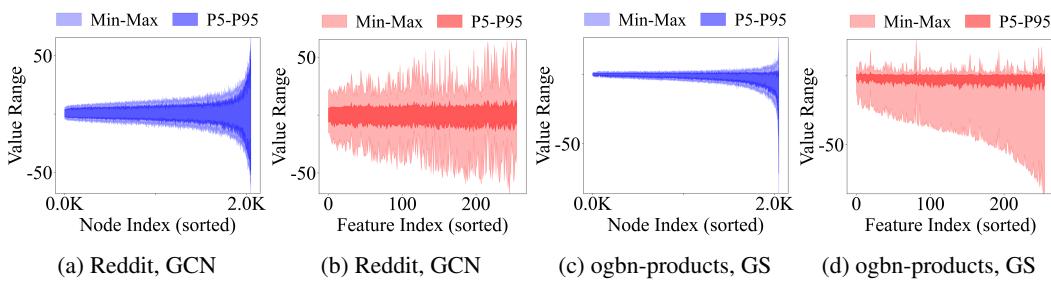


Figure 2: Node-wise and feature-wise range plot, sorted in ascending order. ‘Node Index’ indicates each node, and ‘Feature Index’ indicates each feature dimension. Each plot shows the min-max range and the 5th-95th percentile range of the values within the same dimension.

where $S_X \in \mathbb{R}^{n \times 1}$ is the node-wise scale for X , $S_W \in \mathbb{R}^{d \times 1}$ is the feature-wise scale for W , and \odot denotes the element-wise (Hadamard) product. Since X is quantized node-wise and W is quantized feature-wise, the quantized multiplication remains fast and efficient in *combination* phase.

Challenge 1: Quantization along inner dimensions. By contrast, node-wise quantization in the *aggregation* phase is more challenging. Existing GNN quantization (Zhu et al., 2022; Feng et al., 2020) methods instead apply column-wise quantization to the intermediate activation matrix X_c , because the columns correspond to the outer dimension in message passing (see Figure 4a). While this approach is computationally advantageous, it may fail to preserve the precision of activations. Specifically, applying node-wise quantization for the aggregation step,

$$\tilde{A} \cdot X_c \approx \text{diag}(S_{\tilde{A}}) \cdot \tilde{A}^Q \cdot \text{diag}(S_{X_c}) \cdot X_c^Q, \quad (5)$$

introduces the diagonal matrix $\text{diag}(S_{X_c})$ within the multiplication. Unlike Equation 4, this cannot be computed using integer matrix multiplication units with common methods (Jacob et al., 2018). To capitalize on the precision benefits of node-wise quantization while also preserving computational efficiency, TopGQ proposes a novel method, *dual-axis scale absorption* (Section 5.2).

Challenge 2: Generalization on unseen nodes. For practical inductive settings (Section 2), contrary to transductive settings, GNN encounters nodes unseen at training time. To deal with unseen nodes, there can be two approaches to obtain accurate quantization parameters for each node:

(i) *On-the-Fly Quantization Parameter Computation.* A straightforward approach is to dynamically compute quantization parameters per node during inference. For each intermediate activation, every row of $X^{(l)}$ and $X_c^{(l)}$ is scanned, and the minimum and maximum values of each node are empirically determined to obtain scales and zero-points. While this ensures low quantization errors, it is less preferred as it causes runtime overhead that might counteract efficiency gains by quantization.

(ii) *Precomputed Mapping.* An alternative is to precompute a set of quantization parameters at calibration time and map each unseen node to one of its entries, typically to one from the training set nodes. Before inference, we can perform a simple lookup to retrieve and prepare the appropriate parameters for each activation. Nonetheless, this requires an accurate low-complexity *node index* $\phi(\cdot)$ such that nodes with similar index values exhibit similar feature statistics. TopGQ chooses this precomputed mapping approach, where we design a novel *Topology-Aware Pairwise Index (TopPIN)* that simply uses local topology for lightweight computation (Section 5.3). TopPIN ensures that unseen nodes are assigned adequate quantization parameters at low inference overhead.

5 TOPGQ METHODOLOGY

5.1 OVERALL FRAMEWORK OF TOPGQ

Figure 3 illustrates the overall process of TopGQ. In the calibration phase (Figure 3a), we first compute a topology-based value $\text{TopPIN}(v)$ for each node v , which we define in Section 5.3. Based on these index values, we then calculate node-wise quantization parameters (s_v, z_v) as described in Section 2. If multiple nodes share the same TopPIN, we aggregate the statistics by taking the global

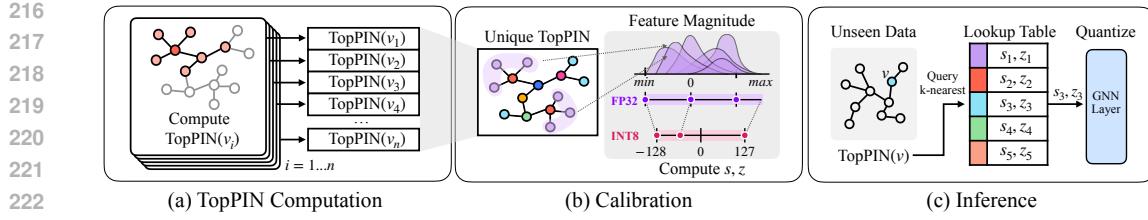


Figure 3: The process of topology-aware quantization. (a) shows group generation using topological characteristics: TopPIN. Each color is used to denote each group. (b) shows the calibration process to achieve a set of quantization parameters for each group. (c) demonstrates how inference is done on unseen data by using the quantization parameters of the nearest groups with interpolation.

maximum and the global minimum (Figure 3b), ensuring the quantization parameters cover the full dynamic range. This gives us a pair of quantization parameters for each unique TopPIN value. Finally, during inference, we only need to compute the TopPIN(v) for each unseen node v and use it as a key to retrieve the appropriate quantization parameters (Figure 3c). For this, we retrieve the k -nearest TopPIN groups and interpolate among their parameters. Such design is built on the idea that nodes with similar TopPIN(v) values exhibit similar activation distribution, which we theoretically demonstrate in Section 5.3.

On top of that, we apply dual-axis scale absorption which preserves the accuracy and efficiency during inference. Dual-axis scale absorption mimics the effect of node-wise quantization, while actually using feature-wise quantization to be compatible with integer matrix multiplication. This requires the computation of quantization scales along both axes, which are also calibrated via TopPIN. We demonstrate this process in detail in Section 5.2.

5.2 SELECTIVE DUAL-AXIS SCALE ABSORPTION

Node-wise quantization assigns quantization parameters per node, helping preserve diverse feature magnitudes. However, as seen in Equation (5), aggregation with naive node-wise quantization does not support integer operations. Given this, we aim to design *dual-axis scale absorption*, a technique that preserves both integer-operation speedups and node-wise quantization effects.

To account for the differing magnitude of node features (Figure 2), we employ a node-wise scale factor $S_N \in \mathbb{R}^{N \times 1}$, where S_N consists of the maximum feature value for each node. Specifically, we scale X_c to X'_c with S_N , i.e., $X'_c = \text{diag}^{-1}(S_N) \cdot X_c$. Then, to eliminate any obstacle terms preventing integer operations, S_N is merged to the given static adjacency matrix, $\tilde{A} \in \mathbb{R}^{N \times N}$. The operation is as follows:

$$\tilde{A} \cdot X_c = (\tilde{A} \cdot \text{diag}(S_N)) \cdot X'_c = \tilde{A}_{X_c} \cdot X'_c \quad (6)$$

After merging S_N to \tilde{A} , we can conduct integer matrix multiplication for two matrices, \tilde{A}_{X_c} and X'_c with corresponding quantization parameters $S_{\tilde{A}_{X_c}} \in \mathbb{R}^{N \times 1}$, and $S_{X'_c} \in \mathbb{R}^{1 \times d}$:

$$\tilde{A}_{X_c} \cdot X'_c \quad (7)$$

$$\approx (\text{diag}(S_{\tilde{A}_{X_c}}) \cdot \tilde{A}_{X_c}^Q) \cdot (X'_c \cdot \text{diag}(S_{X'_c})) \quad (8)$$

$$= (S_{\tilde{A}_{X_c}} \cdot S_{X'_c}) \odot (\tilde{A}_{X_c}^Q \cdot X'_c^Q). \quad (9)$$

In the calibration process, TopGQ adaptively chooses between dual-axis and feature-wise quantization for X_c for each GNN layer. TopGQ evaluates both configurations by measuring the mean squared error

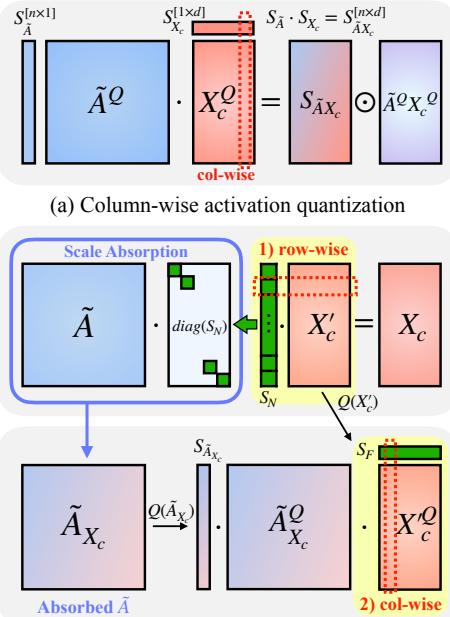


Figure 4: Comparing quantization approaches at *aggregation* phase.

(MSE) between the original floating-point activations and their quantized counterparts. The configuration with lower MSE is saved for inference. When dual-axis scale absorption is selected, the scaling elements for S_N are calibrated like the quantization parameters. When dual-axis scale absorption is used at inference, X_c can be immediately quantized with $S_N \cdot S_{X'_c} \in \mathbb{R}^{N \times d}$, which acts like an element-wise quantization parameters for X_c .

276 5.3 TopPIN: A LIGHTWEIGHT INDEX FOR UNSEEN NODES

278 To support quantization in inductive settings, we devise TopPIN, a lightweight index that maps
279 unseen nodes to existing train set nodes used at calibration. The formulation of TopPIN is as follows:

$$280 \quad 281 \quad \text{TopPIN}(v) = \left(d(v), \frac{1}{d(v)} \sum_{v_k \in \mathcal{N}(v)} \frac{1}{d(v_k)} \right). \quad (10)$$

283 Its formulation is derived from two aggregation cases, where connections from neighbor nodes affect
284 the target node's feature distribution. We present this link of local structure and node features at
285 Theorem 1. We can leverage the link to a node-level index function $\phi : V \rightarrow \mathbb{R}$, that captures the
286 expected per-node feature variance from local topology. The proof is provided in Section A.

287 **Theorem 1** (Node index ϕ for GNN activation). *Let $G = (V, E)$ be an undirected graph. For \tilde{A} ,
288 we separately consider unnormalized and normalized cases. Consider a GNN of the form*

$$290 \quad 291 \quad X^{(l+1)} = \text{ReLU}(\tilde{A} X^{(l)} W^{(l)}),$$

292 where the hidden dimensions d_l are sufficiently large ($d_l \gg 1$) for all layers l , and each entry of
293 $X^{(0)}$ and $W^{(l)}$ is drawn independently from a distribution with zero mean and finite variance. Then,
294 for each layer l of the GNN, define the scalar function $\phi : V \rightarrow \mathbb{R}$ by:

$$295 \quad 296 \quad \phi(v) = \sum_{v_{k_1} \in \mathcal{N}(v)} w(v, v_{k_1}) \sum_{v_{k_2} \in \mathcal{N}(v_{k_1})} w(v_{k_1}, v_{k_2}) \cdots \sum_{v_{k_l} \in \mathcal{N}(v_{k_{l-1}})} w(v_{k_{l-1}}, v_{k_l}),$$

$$297 \quad 298 \quad \text{with } w(v, u) = \begin{cases} w_1(v, u) = 1, & \tilde{A} = A + I_n, \\ w_2(v, u) = \frac{1}{d(v) d(u)}, & \tilde{A} = D^{-\frac{1}{2}}(A + I_n)D^{-\frac{1}{2}} \end{cases}$$

303 Asymptotically, the probability distribution of each row of $X^{(l)} W^{(l)}$ and $\tilde{A} X^{(l)} W^{(l)}$ is determined
304 solely by $\phi(v)$.

305 $\phi(\cdot)$ implies that similar quantization parameters can be made when ϕ -values align among nodes.
306 We show this correlation in Theorem 2.

308 **Theorem 2** (Node index ϕ and GNN quantization parameters). *The expected per-node quantization
309 parameters for $X^{(l)}$ and $X^{(l)} W^{(l)}$ vary as uniformly continuous functions of $\phi(\cdot)$. In particular:*

- 311 • If $\phi(u) = \phi(v)$, then $\mathbb{E}[s_u] = \mathbb{E}[s_v]$ and $\mathbb{E}[z_u] = \mathbb{E}[z_v]$, where (s_u, z_u) and (s_v, z_v) are
312 the respective scale and zero-point parameters of nodes u and v .
- 313 • More generally, if $|\phi(u) - \phi(v)| < \delta$, then $|\mathbb{E}[s_u] - \mathbb{E}[s_v]| < \epsilon$ and $|\mathbb{E}[z_u] - \mathbb{E}[z_v]| < \epsilon$,
314 for any desired $\epsilon > 0$, by uniform continuity.

316 Hence, Nodes with similar ϕ -values have similar calibrated quantization parameters in expectation.
317 The proof can be found in Section B.

318 While ϕ faithfully reflects the expected per-node quantization statistics, its direct usage is computa-
319 tionally expensive for multi-layer GNN inference. Therefore, we derive TopPIN from ϕ , which is
320 notably fast to compute as it is composed with the first summation terms from Theorem 1. Conse-
321 quently, TopPIN is also noted as follows. Refer to Section C for the details:

$$322 \quad 323 \quad \text{TopPIN}(v) = \left(\sum_{u \in \mathcal{N}(v)} w_1(v, u), \sum_{u \in \mathcal{N}(v)} w_2(v, u) \right). \quad (11)$$

324
325
326

Table 1: Comparison of quantization accuracy and time for node classification task

	Cora						Citeseer						PubMed					
	GCN			GAT			GIN			GCN			GAT			GIN		
	Acc.	Q.T.	Acc.	Q.T.	Acc.	Q.T.												
FP32	80.14	-	80.36	-	79.76	-	76.46	-	76.42	-	77.06	-	87.12	-	87.66	-	88.93	-
INT8																		
SGQ	79.93	(6.4s)	80.30	(7.7s)	78.35	(5.4s)	76.21	(9.3s)	76.20	(9.6s)	76.04	(11.3s)	86.37	(14.8s)	88.96	(19.6s)	88.89	(16.6s)
DQ	78.94	(11.5s)	78.66	(14.6s)	67.56	(18.5s)	75.62	(25.7s)	23.66	(28.4s)	65.64	(50.6s)	88.26	(50.6s)	88.11	(60.6s)	88.32	(188.9s)
EPQ	77.52	(20.6s)	75.60	(23.0s)	56.78	(20.8s)	75.26	(72.4s)	75.30	(73.2s)	56.68	(72.9s)	83.16	(106.5s)	82.54	(107.7s)	77.26	(108.7s)
A^2Q	79.66	(3.5s)	75.29	(6.3s)	69.16	(3.3s)	75.72	(3.5s)	74.34	(7.1s)	67.09	(4.0s)	85.20	(8.0s)	83.38	(8.2s)	88.36	(13.1s)
QLR	79.12	(4.0s)	78.84	(6.4s)	60.60	(3.3s)	40.66	(3.8s)	43.76	(6.2s)	56.92	(3.3s)	83.14	(4.1s)	86.66	(6.6s)	86.84	(6.8s)
DRA	79.76	(1.7s)	80.20	(3.6s)	78.83	(1.7s)	76.26	(1.6s)	76.31	(3.1s)	76.55	(1.7s)	86.75	(1.7s)	88.69	(3.3s)	87.73	(1.7s)
TopGQ	79.96	(0.2s)	80.63	(0.2s)	80.01	(0.2s)	76.52	(0.2s)	76.31	(0.2s)	77.08	(0.2s)	87.14	(0.2s)	87.42	(0.2s)	88.82	(0.3s)
INT4																		
SGQ	78.73	(6.4s)	77.92	(6.8s)	76.93	(5.4s)	76.31	(10.4s)	75.54	(13.3s)	75.47	(11.3s)	85.12	(14.8s)	85.14	(19.6s)	88.33	(16.6s)
DQ	78.54	(11.5s)	77.90	(14.5s)	65.98	(18.5s)	23.54	(25.5s)	23.58	(28.6s)	46.02	(49.5s)	87.78	(50.2s)	87.41	(60.3s)	86.94	(190.6s)
EPQ	76.32	(20.6s)	74.52	(23.1s)	32.98	(20.7s)	74.92	(72.3s)	74.70	(73.2s)	46.66	(72.9s)	81.26	(106.4s)	81.36	(107.5s)	41.18	(108.8s)
A^2Q	50.00	(3.6s)	45.64	(6.3s)	68.76	(3.2s)	43.52	(3.5s)	58.50	(7.1s)	62.50	(4.0s)	70.08	(4.0s)	72.52	(8.4s)	84.74	(8.2s)
QLR	76.64	(3.7s)	78.76	(6.2s)	68.38	(3.4s)	37.40	(3.9s)	40.06	(6.1s)	62.90	(3.3s)	74.08	(4.2s)	86.26	(6.4s)	76.90	(6.9s)
DRA	77.02	(1.7s)	74.35	(3.3s)	57.29	(1.7s)	74.10	(1.6s)	72.92	(3.1s)	61.10	(1.7s)	75.09	(1.7s)	72.44	(3.4s)	36.90	(1.7s)
TopGQ	78.84	(0.2s)	78.56	(0.2s)	79.34	(0.2s)	75.96	(0.2s)	76.24	(0.2s)	76.92	(0.2s)	86.92	(0.2s)	86.91	(0.2s)	87.72	(0.3s)

*Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETTINGS

We evaluate TopGQ on both node-level and graph-level classification tasks, and compare it with five QAT baselines: SGQuant (Feng et al., 2020), Degree-Quant (Tailor et al., 2020), EPQuant (Huang et al., 2022), A^2Q (Zhu et al., 2022), and QLR (Wang et al., 2023), and one recent PTQ baseline: DRA (Jeddi et al., 2024). For node classification, we use the Cora, CiteSeer, PubMed, Reddit, ogbn-products, and MAG240M datasets; and for graph classification, we use IMDB-BINARY, and COLLAB datasets. For large-scale and hyper-scale datasets, we evaluate GNN architectures (e.g., GCN, GraphSAGE, R-GAT) that were introduced as baseline architectures in the original ogb-benchmark papers (Hu et al., 2020; 2021). For other datasets, we calibrate a fully-trained GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018), GIN (Xu et al., 2019), and GraphSAGE (Hamilton et al., 2017) for 4-bit and 8-bit integer quantization; the bitwidth is fixed across all layers for fair comparison. Tasks with datasets except MAG240M were conducted in the inductive setting, which reflects a more practical use of quantization. Node classification with MAG240M was evaluated with the original transductive setting introduced in the ogb-lsc (Hu et al., 2021) challenge. Further experimental results and details are provided in the Appendix.

6.2 EVALUATION RESULTS OF NODE-LEVEL TASKS

Table 1 reports results on the conventional node-level datasets commonly used in baselines. Even though the datasets are relatively small, TopGQ is the fastest, taking less than a second for quantization while achieving comparable or superior accuracy compared to the baselines. For larger datasets (Table 3), the difference is clearer, where baselines take up to hours (3.27h, Reddit, GS) for quantization whilst TopGQ takes less than a minute. For INT4, TopGQ exceeds all baselines in terms of both accuracy and speed. Notably, while all methods suffer from low accuracy in ogbn-products due to the small number of train nodes, TopGQ shows best accuracy due to its ability to adapt to unseen nodes. For brevity, we report the full experiment set in the Appendix.

Table 2: Quantized validation accuracy and time on MAG240M node-classification task with R-GAT

Method	Type	Acc.	Q. Time
FP32	—	69.66	—
SGQ	QAT	46.76	5.50 days
A^2Q	QAT	57.97	2.46 days
QLR	QAT	68.10	1.97 days
DRA	PTQ	66.13	2.06 days
TopGQ	PTQ	69.14	0.98 hours

378 Table 3: Comparison of node classification task with large-scale graphs
379

380 381 382	INT8								INT4							
	Reddit, GCN		Reddit, GS		ogbn, GCN		ogbn, GS		Reddit, GCN		Reddit, GS		ogbn, GCN		ogbn, GS	
	Acc.	Q.Time														
FP32	94.40	—	95.09	—	71.25	—	70.33	—	94.40	—	95.09	—	71.25	—	70.33	—
SGQ	92.10	(4.64m)	92.01	(3.27h)	39.13	(2.52m)	58.80	(2.11h)	43.00	(4.84m)	87.42	(3.27h)	6.14	(2.57m)	27.95	(2.13h)
DQ	87.01	(10.59m)	90.53	(16.35h)	72.34	(14.05m)	70.17	(6.55h)	64.18	(10.55m)	89.61	(16.33h)	36.66	(13.93m)	69.90	(6.52h)
EPQ	80.29	(5.30m)	93.11	(1.36h)	49.33	(53.68s)	56.83	(52.42m)	22.02	(5.29m)	79.61	(1.36h)	26.96	(53.58s)	26.97	(52.40m)
A^2Q	73.71	(4.12m)	75.13	(2.83h)	50.78	(83.94s)	60.15	(1.67h)	23.24	(4.12m)	67.94	(2.83h)	25.95	(83.30s)	31.32	(1.66h)
QLR	94.21	(72.86s)	95.11	(31.82m)	66.48	(76.30s)	63.85	(50.15m)	86.95	(72.79s)	81.68	(31.78m)	27.36	(76.12s)	29.38	(50.16m)
DRA	93.15	(42.99s)	94.36	(23.71m)	36.22	(41.63s)	47.70	(44.97m)	1.75	(42.82s)	5.31	(23.71m)	3.12	(41.61s)	26.40	(44.96m)
TopGQ	94.41	(1.88s)	94.55	(35.79s)	71.33	(1.16s)	70.31	(34.88s)	93.05	(1.87s)	89.88	(35.28s)	39.03	(1.16s)	61.83	(34.90s)

383 *Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant
384
385
386
387
388390 Table 4: Comparison of quantization accuracy and time for the graph-classification benchmarks
391

392 393 394 395 396	Method	IMDB-BINARY						COLLAB					
		GCN		GAT		GIN		GCN		GAT		GIN	
		Acc.	Q.Time										
FP32	-	79.58	—	77.36	—	79.72	—	82.54	—	79.99	—	82.31	—
INT8	SGQ	68.28	(5.88m)	68.60	(14.65m)	68.26	(6.74m)	80.96	(39.35m)	80.10	(2.12h)	81.80	(40.26m)
	DQ	77.32	(8.98m)	75.12	(25.53m)	76.00	(9.08m)	82.30	(2.39h)	80.30	(8.14h)	81.62	(2.30h)
	EPQ	76.30	(13.99m)	74.00	(18.87m)	76.70	(14.17m)	82.36	(2.99h)	79.81	(0.81h)	77.66	(2.95h)
	A^2Q	75.12	(3.24m)	74.91	(8.18m)	75.97	(3.78m)	64.10	(14.75m)	74.35	(2.03h)	80.21	(14.50m)
	QLR	75.50	(3.44m)	74.40	(7.30m)	74.50	(3.70m)	81.98	(13.04m)	75.47	(0.81h)	81.70	(9.42m)
	DRA	78.88	(2.24m)	77.70	(4.38m)	78.52	(2.29m)	82.08	(11.49m)	80.78	(0.50h)	82.18	(10.19m)
	TopGQ	79.34	(2.18s)	76.58	(5.58s)	79.50	(2.05s)	82.52	(13.86s)	77.46	(47.32s)	82.28	(11.71s)
INT4	SGQ	67.64	(5.89m)	67.49	(14.71m)	63.72	(6.71m)	78.14	(38.87m)	78.22	(2.11h)	72.06	(40.44m)
	DQ	76.02	(9.03m)	74.71	(26.07m)	75.98	(9.22m)	73.24	(2.40h)	79.51	(8.16h)	77.61	(2.31h)
	EPQ	74.80	(13.95m)	74.10	(18.80m)	64.80	(14.12m)	65.54	(2.98h)	71.63	(0.82h)	65.94	(2.94h)
	A^2Q	74.09	(3.13m)	72.80	(8.11m)	75.62	(3.79m)	69.32	(14.94m)	74.96	(2.02h)	74.78	(14.40m)
	QLR	73.40	(3.46m)	74.00	(7.26m)	73.50	(3.74m)	81.92	(13.09m)	72.87	(0.80h)	79.32	(9.47m)
	DRA	74.32	(2.22m)	75.58	(4.34m)	70.28	(2.30m)	64.16	(11.45m)	78.75	(0.50h)	66.24	(10.18m)
	TopGQ	76.71	(2.08s)	75.72	(5.69s)	76.00	(2.13s)	81.75	(13.85s)	73.33	(47.29s)	77.39	(11.71s)

403 *Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant
404
405
406
407
408410 We further emphasize the benefit TopGQ by using a hyper-scale graph with 240 million nodes in
411 Table 2. Existing methods take at least 1.97 days, up to 5.50 days to quantize a GNN on such a
412 hyper-scale graph, while TopGQ cuts it down to 0.98 hour, showing at least 49× speedup. At the
413 same time, TopGQ presents a negligible difference to the FP32 model.
414415 6.3 EVALUATION RESULTS OF GRAPH-LEVEL TASKS
416417 Table 4 presents the graph-level classification results on IMDB-BINARY and COLLAB. TopGQ
418 significantly improves quantization speed while maintaining competitive task performance. For in-
419 stance, while EPQuant is the strongest baseline in GCN COLLAB, it takes 2.39 hours for quantiza-
420 tion. However, TopGQ shows superior accuracy while cutting down the overhead to 13.86 seconds.
421 While TopGQ takes the least time to quantize, in many cases TopGQ also shows the best accuracy
422 with minimal degradation compared to FP32. We attribute this to TopGQ’s explicit integration of
423 GNN-specific considerations – leveraging TopPIN to effectively capture local topological structures,
424 while QAT baselines largely neglect these properties. Overall, the experimental results for node and
425 graph classification tasks demonstrate that TopGQ provides a robust balance between accuracy and
426 quantization speed, making it well-suited for both small and large-scale GNN tasks.
427428 6.4 EVALUATION RESULTS OF INFERENCE LATENCY
429430 Table 5 report the inference latency of TopGQ and competing baselines with the minibatch setting of
431 large-scale graphs. Measurements were conducted on both GPU and edge devices, reflecting practi-
432 cal scenarios for quantized GNN deployment. A key observation is that A^2Q and on-the-fly PTQ are
433 expensive and slow. This is because both methods require row-wise scans of intermediate activations

432
433

Table 5: GCN inference time (sec) on GPU (RTX4090) and edge device (Jetson AGX Orin)

434
435
436
437
438
439
440
441
442

Method	Type	GPU (RTX 4090)				Edge (Jetson AGX Orin)			
		Reddit		ogbn-products		Reddit		ogbn-products	
		Time	Speedup	Time	Speedup	Time	Speedup	Time	Speedup
FP32	-	2.18	-	34.51	-	51.68	-	754.09	-
Degree-Quant	QAT	1.41	1.55 \times	20.37	1.69 \times	33.65	1.54 \times	463.96	1.63 \times
A^2Q	QAT	1.96	1.11 \times	27.74	1.24 \times	48.42	1.07 \times	635.15	1.19 \times
SGQuant	QAT	1.42	1.54 \times	20.53	1.68 \times	34.17	1.51 \times	470.89	1.60 \times
On-the-fly PTQ	PTQ	2.04	1.07 \times	27.73	1.24 \times	54.88	0.94 \times	689.82	1.09 \times
TopGQ	PTQ	1.42	1.54 \times	20.53	1.68 \times	34.23	1.51 \times	473.25	1.59 \times

443
444
445

Table 6: Accuracy and index computation time comparison on IMDB-BINARY

446
447
448
449
450
451

Bit	Node Index	GCN	GAT	GIN	Time
INT4	Naive PTQ	60.14	51.72	56.50	-
	Betweenness	50.00	71.42	50.00	1.85s
	Closeness	72.90	70.62	67.78	1.48s
	Katz	69.34	57.48	72.58	20.04s
TopPIN		76.71	75.72	76.00	0.00059s

452
453
454
455

to derive quantization parameters. These findings highlight the importance of storing quantization parameters and retrieving them via efficient mapping function. TopGQ leverages TopPIN, where index computation incurs negligible overhead, enabling efficient inference (Section 5.3).

456
457

6.5 ANALYSIS ON TOPPIN AND ABLATION STUDY

458
459
460
461
462
463
464
465
466
467

We assess the effectiveness of TopPIN by comparing it against a naive PTQ strategy as well as commonly used centrality measures, including betweenness, closeness, and Katz centrality (Table 6). We report both the accuracy and the total time to compute values for all nodes in the dataset. The naive PTQ approach, which relies on a single global quantization parameter, shows significant accuracy degradation due to high variance in node magnitudes. The conventional centrality measures may mitigate the accuracy degradation, compared to naive PTQ. However, they require costly global graph traversal for each node, making them impractical for quantized inference. In contrast, TopPIN only depends on 1-hop neighborhood information, thereby significantly reducing the computational overhead. Despite its lightweight design, TopPIN outperforms other centrality baselines, highlighting its practicality and effectiveness as an indexing strategy for GNN quantization.

468
469
470
471
472
473
474

Finally, Table 7 shows the ablation study, where each row corresponds to the incremental addition of TopPIN and selective dual-axis scale absorption to the naive PTQ baseline, ultimately forming TopGQ. While naive PTQ fails to effectively exploit the quantization bins under the INT4 configuration, TopPIN mitigates this limitation by leveraging topology to better preserve node features. However, as graph size increases (e.g., ogbn-products with GCN), TopPIN alone proves insufficient. By further introducing dual-axis scale absorption, the node-wise quantization effects are consistently preserved across GNN layers, leading to additional accuracy recovery.

475
476
477

7 CONCLUSION

478
479
480
481
482
483
484
485

In this work, we introduce TopGQ, a topology-aware post-training quantization framework for GNNs that eliminates the need for retraining while preserving high accuracy. By leveraging a novel node index (TopPIN) and the dual-axis scale absorption mechanism, TopGQ can handle unseen node features of differing magnitudes. This node-level strategy enables fast and precise activation quantization while preserving the computational benefits of integer operations. Extensive experiments across various GNN architectures and datasets show that TopGQ achieves quantization-aware training (QAT)-level accuracy, while reducing quantization time by an order of magnitude compared to prior works. These results establish TopGQ as a practical and scalable solution for efficient GNN inference, including large-scale and hyper-scale graph datasets.

Table 7: Ablation Study of TopGQ

Bit	Method	Reddit		ogbn-products	
		GCN	GS	GCN	GS
INT4	Naive PTQ	3.79	2.97	1.33	24.74
INT4	Only TopPIN	93.05	85.83	1.43	52.45
	TopGQ	93.05	89.88	39.03	63.18

486 8 REPRODUCIBILITY STATEMENT
487

488 The derivation of TopPIN comes from the theoretically grounded link between local structure and
489 expected node feature variance. We provide the related theorems and corresponding proof in the
490 Appendix. The code to reproduce the results of TopGQ with citation datasets can be downloaded at
491 <https://anonymous.4open.science/r/topgq-code-3CF1>. We provide a README
492 file for the environment setups, TopPIN generation, and commands for experiments with TopGQ.
493 Further details for the experiments are at Section I.

494
495 REFERENCES
496

497 Marco Arazzi, Marco Cotogni, Antonino Nocera, and Luca Virgili. Predicting tweet engagement
498 with graph neural networks. In *ICMR*, 2023.

499 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
500 Jaggi, Dan Alistarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in
501 rotated llms. *NeurIPS*, 2024.

502 Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph neural networks. In *CVPR*, 2021.

503 Andrei Dragos Brasoveanu, Fabian Jogl, Pascal Welke, and Maximilian Thiessen. Extending graph
504 neural networks with global features. In *LoG*, 2023.

505 Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
506 iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
507 series forecasting. *NeurIPS*, 2020.

508 Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo Fu, Xuecang Zhang, Junhua
509 Zhu, Yu Gu, and Ge Yu. Neutronstream: A dynamic gnn training framework with sliding window
510 for graph streams. *arXiv preprint arXiv:2312.02473*, 2023.

511 Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding. Sqquant: Squeezing
512 the last bit on graph neural networks with specialized quantization. In *ICTAI*, 2020.

513 Mingyu Guan, Saumia Singhal, Taesoo Kim, and Anand Padmanabha Iyer. Reinc: Scaling training
514 of dynamic graph neural networks. *arXiv preprint arXiv:2501.15348*, 2025.

515 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
516 *NeurIPS*, 2017.

517 Man Hu, Dezhui Sun, Fucheng You, and Han Xiao. Hybrid structure encoding graph neural networks
518 with attention mechanism for link prediction. In *ICTAI*. IEEE, 2022.

519 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
520 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *NeurIPS*,
521 2020.

522 Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
523 A large-scale challenge for machine learning on graphs. *arXiv preprint arXiv:2103.09430*, 2021.

524 Linyong Huang, Zhe Zhang, Zhaoyang Du, Shuangchen Li, Hongzhong Zheng, Yuan Xie, and Ni-
525 anxiang Tan. Epquant: A graph neural network compression approach based on product quantiza-
526 tion. *Neurocomput.*, 503(C):49–61, 2022. ISSN 0925-2312. doi: 10.1016/j.neucom.2022.06.097.

527 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
528 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
529 efficient integer-arithmetic-only inference. In *CVPR*, 2018.

530 Hadi Mousanejad Jeddi, Mahdieh Grailio, and Jose Nunez-Yanez. Leveraging dynamic range anal-
531 ysis for efficient post-training quantization in graph convolutional networks. In *NorCAS*, 2024.
532 doi: 10.1109/NorCAS64408.2024.10752486.

533 H Gao and S Ji. Graph u-nets. In *ICML*, 2019.

540 Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-aggregator:
 541 Learning to aggregate for 1-bit graph neural networks. In *ICCV*, 2021.
 542

543 Gautam Kamath. Bounds on the expectation of the maximum of samples from a gaussian. *URL*
 544 http://www.gautamkamath.com/writings/gaussian_max.pdf, 10(20-30):31, 2015.
 545

546 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 547 works. In *ICLR*, 2016.
 548

549 Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Junxian Guo, Xiuyu Li, Enze Xie, Chenlin Meng,
 550 Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank component for 4-bit
 551 diffusion models. In *ICLR*.
 552

553 Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
 554 Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In *ICCV*, 2023.
 555

556 Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Yiwei Wang, Chaosheng Dong, and Xiaokui Xiao.
 557 Scalable and effective implicit graph neural networks on large graphs. In *ICLR*, 2024a.
 558

559 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
 560 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
 561 tion with learned rotations. *CoRR*, 2024b.
 562

563 Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin Zhu, Yijie Zhu,
 564 Peng Wu, Ke Wang, and Youlong Cheng. Monolith: Real time recommendation system with
 565 collisionless embedding table. In *CEUR Workshop in RecSys*, 2022.
 566

567 Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
 568 networks training via extreme activation compression. In *ICLR*, 2021.
 569

570 Xiuyan Ni, Shujian Bu, Lucas Adams, and Igor L Markov. Prioritizing original news on facebook.
 571 In *CIKM*, 2021.
 572

573 Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
 574 Quantization-aware training for graph neural networks. In *ICLR*, 2020.
 575

576 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 577 Bengio. Graph attention networks. In *ICLR*, 2018.
 578

579 Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
 580 compound retrieval and classification. *Knowledge and Information Systems*, 14:347–375, 2008.
 581

582 Shuang Wang, Bahaeddin Eravci, Rustam Guliyev, and Hakan Ferhatsmanoglu. Low-bit quanti-
 583 zation for deep graph neural networks with smoothness-aware message propagation. In *CIKM*,
 584 2023.
 585

586 Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
 587 wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
 588 guage models. *NeurIPS*, 2022.
 589

590 Dan Wu, Zhaoying Li, and Tulika Mitra. Inkstream: Real-time gnn inference on streaming graphs
 591 via incremental update. *arXiv preprint arXiv:2309.11071*, 2023.
 592

593 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 594 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
 595 ing. *Chemical science*, 9(2), 2018.
 596

597 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 598 comprehensive survey on graph neural networks. *TNNLS*, 32(1), 2020.
 599

600 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 601 networks? In *ICLR*, 2019.
 602

594 Zhibo Xu, Shangqi Lai, Xiaoning Liu, Alsharif Abuadbba, Xingliang Yuan, and Xun Yi. Oblivgnn:
595 Oblivious inference on transductive and inductive graph neural network. In *USENIX Security*,
596 2024.

597 Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
598 networks. In *AAAI*, 2021.

600 Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
601 In *SIGKDD*, 2022.

602 Li Zhang and Haiping Lu. A feature-importance-aware and robust aggregator for gcn. In *CIKM*,
603 2020.

605 Yiming Zhang, Lingfei Wu, Qi Shen, Yitong Pang, Zhihua Wei, Fangli Xu, Ethan Chang, and
606 Bo Long. Graph learning augmented heterogeneous graph neural network for social recommen-
607 dation. *ACM TORS*, 2023.

608 Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian Cheng.
609 A^2q : Aggregation-aware quantization for graph neural networks. In *ICLR*, 2022.

611 Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
612 networks. *Bioinformatics*, 33(14), 2017.

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A THE PROOF OF THEOREM 1**
 649

650 **Theorem** (Node index ϕ for GNN activation). *Let $G = (V, E)$ be an undirected graph. For \tilde{A} , we*
 651 *separately consider unnormalized and normalized cases. Consider a GNN of the form*

652
$$653 \quad X^{(l+1)} = \text{ReLU}(\tilde{A} X^{(l)} W^{(l)}),$$

654 *where the hidden dimensions d_l are sufficiently large ($d_l \gg 1$) for all layers l , and each entry of*
 655 *$X^{(0)}$ and $W^{(l)}$ is drawn independently from a distribution with zero mean and finite variance. Then,*
 656 *for each layer l of the GNN, define the scalar function $\phi : V \rightarrow \mathbb{R}$ by:*

657
$$658 \quad \phi(v) = \sum_{v_{k_1} \in \mathcal{N}(v)} w(v, v_{k_1}) \sum_{v_{k_2} \in \mathcal{N}(v_{k_1})} w(v_{k_1}, v_{k_2}) \cdots \sum_{v_{k_l} \in \mathcal{N}(v_{k_{l-1}})} w(v_{k_{l-1}}, v_{k_l}),$$

 659
 660
$$661 \quad \text{with } w(v, u) = \begin{cases} w_1(v, u) = 1, & \tilde{A} = A + I_n, \\ w_2(v, u) = \frac{1}{d(v) d(u)}, & \tilde{A} = D^{-\frac{1}{2}}(A + I_n)D^{-\frac{1}{2}} \end{cases}$$

 662
 663

664 *Asymptotically, the probability distribution of each row of $X^{(l)} W^{(l)}$ and $\tilde{A} X^{(l)} W^{(l)}$ is determined*
 665 *solely by $\phi(v)$.*

666 *Proof.* **Case 1:** If $\tilde{A} = A + I_n$ (**unnormalized**), then

667
$$668 \quad \phi(v) = \sum_{v_{k_1} \in \mathcal{N}(v)} \sum_{v_{k_2} \in \mathcal{N}(v_{k_1})} \cdots \sum_{v_{k_l} \in \mathcal{N}(v_{k_{l-1}})} 1.$$

 669
 670

671 **Case 2:** If $\tilde{A} = D^{-\frac{1}{2}}(A + I_n)D^{-\frac{1}{2}}$ (**normalized**), then

672
$$673 \quad \phi(v) = \frac{1}{d(v)} \sum_{k_1 \in \mathcal{N}(v)} \left[\frac{1}{d(v_{k_1})^2} \sum_{k_2 \in \mathcal{N}(v_{k_1})} \left(\frac{1}{d(v_{k_2})^2} \cdots \sum_{k_l \in \mathcal{N}(v_{k_{l-1}})} \frac{1}{d(v_{k_l})} \right) \right].$$

 674
 675

676 We consider the L -layer GNN

677
$$678 \quad X^{(l+1)} = \text{ReLU}(\tilde{A} X^{(l)} W^{(l)}), \quad l = 0, \dots, L-1,$$

 679
 680

681
$$682 \quad \tilde{A} \in \left\{ A + I_n, \quad D^{-\frac{1}{2}}(A + I_n)D^{-\frac{1}{2}} \right\}.$$

 683

684 Assume that each entry of the initial feature matrix $X^{(0)} \in \mathbb{R}^{n \times d_0}$ is drawn i.i.d. from a zero-mean
 685 distribution $\mathcal{D}_x(0, \sigma_x^2)$, and each entry of the weight matrices $W^{(l)} \in \mathbb{R}^{d_l \times d_{l+1}}$ is drawn i.i.d. from
 686 a zero-mean distribution $\mathcal{D}_l(0, \sigma_l^2)$. Denote

687
$$688 \quad Z^{(l)} = X^{(l)} W^{(l)}, \quad Y^{(l)} = \tilde{A} Z^{(l)}, \quad X^{(l+1)} = \text{ReLU}(Y^{(l)}).$$

 689

690 for notational simplicity. We prove in several steps that each row of $Z^{(l)}$ and $Y^{(l)}$ is (approximately)
 691 a zero-mean Gaussian whose variance depends only on a node-specific function $\phi(\cdot)$, and that this
 692 leads to the stated continuity property of expected quantization parameters.

693 **Step 1: Propagation for 1st layer of GNN.** Consider $Z^{(0)} = X^{(0)} W^{(0)}$. For each entry,

694
$$695 \quad Z_{ij}^{(0)} = \sum_{\alpha=1}^{d_0} X_{i\alpha}^{(0)} W_{\alpha j}^{(0)}.$$

 696

697 Since $X_{i\alpha}^{(0)}$ and $W_{\alpha j}^{(0)}$ are i.i.d. with zero mean and finite variance, it follows that

698
$$699 \quad \mathbb{E}[X_{i\alpha}^{(0)} W_{\alpha j}^{(0)}] = 0, \quad \text{Var}(X_{i\alpha}^{(0)} W_{\alpha j}^{(0)}) = \mathbb{E}[(X_{i\alpha}^{(0)})^2] \mathbb{E}[(W_{\alpha j}^{(0)})^2] = \sigma_x^2 \sigma_0^2$$

 700

701 By the Central Limit Theorem (CLT), $Z_{ij}^{(0)}$ is approximately $\mathcal{N}(0, d_0 \sigma_x^2 \sigma_0^2)$.

702 Next, we consider the multiplication by the augmented adjacency matrix. For instance, $\tilde{A} =$
 703 $D^{-\frac{1}{2}}(I + A)D^{-\frac{1}{2}}$.
 704

$$705 \quad Y^{(0)} = \tilde{A}Z^{(0)}, \quad Y_{ij}^{(0)} = \sum_{\alpha=1}^n \tilde{A}_{i\alpha} Z_{\alpha j}^{(0)} = \sum_{\{k|v_k \in \mathcal{N}(v_i)\}} \frac{1}{\sqrt{d(v_i)d(v_k)}} Z_{kj}^{(0)}.$$

708 Summing independent Gaussians preserves Gaussianity and yields

$$709 \quad Y_{ij}^{(0)} \sim \mathcal{N}(0, [d_0 \sigma_x^2 \sigma_0^2] \frac{1}{d(v_i)} \sum_{v_k \in \mathcal{N}(v_i)} \frac{1}{d(v_k)}).$$

712 **Step 2: Subsequent layers and ReLU.** Next we consider for the second layer of GNN. Focusing
 713 on a particular entry $Z_{ij}^{(1)}$, we can write
 714

$$715 \quad Z_{ij}^{(1)} = \sum_{\alpha=1}^{d_1} X_{i\alpha}^{(1)} W_{\alpha j}^{(1)} = \sum_{\alpha=1}^{d_1} \text{ReLU}(Y_{i\alpha}^{(0)}) W_{\alpha j}^{(1)}.$$

718 Since $W_{\alpha j}^{(1)} \sim \mathcal{N}(0, \sigma_1^2)$, we have :

$$720 \quad \mathbb{E}[X_{i\alpha}^{(1)} W_{\alpha j}^{(1)}] = 0, \quad {}^1\text{Var}(X_{i\alpha}^{(1)} W_{\alpha j}^{(1)}) = \mathbb{E}[(\text{ReLU}(Y_{i\alpha}^{(0)}))^2] \sigma_1^2 = \frac{[d_0 \sigma_x^2 \sigma_0^2] \frac{1}{d(v_i)} \sum_{v_k \in \mathcal{N}(v_i)} \frac{1}{d(v_k)}}{2} \sigma_1^2.$$

723 Summing over $\alpha = 1, \dots, d_1$ and again invoking the CLT, we arrive at

$$724 \quad Z_{ij}^{(1)} \sim \mathcal{N}(0, [\frac{d_0 d_1 \sigma_x^2 \sigma_0^2 \sigma_1^2}{2}] \frac{1}{d(v_i)} \sum_{v_k \in \mathcal{N}(v_i)} \frac{1}{d(v_k)}).$$

728 We then multiply by the adjacency matrix \tilde{A} as before,

$$729 \quad Y^{(1)} = \tilde{A}Z^{(1)}, \quad Y_{ij}^{(1)} = \sum_{\alpha=1}^n \tilde{A}_{i\alpha} Z_{\alpha j}^{(1)} = \sum_{\{k_1|v_{k_1} \in \mathcal{N}(v_i)\}} \frac{1}{\sqrt{d(v_i)d(v_{k_1})}} Z_{k_1 j}^{(1)}.$$

732 Thus for $Y_{ij}^{(1)}$ we have

$$733 \quad Y_{ij}^{(1)} \sim \mathcal{N}(0, [\frac{d_0 d_1 \sigma_x^2 \sigma_0^2 \sigma_1^2}{2}] \frac{1}{d(v_i)} \sum_{v_{k_1} \in \mathcal{N}(v_i)} \frac{1}{d(v_{k_1})^2} \sum_{v_{k_2} \in \mathcal{N}(v_{k_1})} \frac{1}{d(v_{k_2})}).$$

737 One can easily see that through repetition we have

$$738 \quad \phi(v_i) = \frac{1}{d(v_i)} \sum_{k_1 \in \mathcal{N}(v_i)} \left[\frac{1}{d(v_{k_1})^2} \sum_{k_2 \in \mathcal{N}(v_{k_1})} \left(\frac{1}{d(v_{k_2})^2} \cdots \sum_{k_l \in \mathcal{N}(v_{k_{l-1}})} \frac{1}{d(v_{k_l})} \right) \right]$$

$$739 \quad Y_{ij}^{(l-1)} \sim \mathcal{N} \left(0, \frac{\left(\prod_{m=0}^{l-1} d_m \right) \sigma_x^2 \left(\prod_{m=0}^{l-1} \sigma_m^2 \right)}{2^{l-1}} \cdot \phi(v_i) \right)$$

$$740 \quad Z_{ij}^{(l)} \sim \mathcal{N} \left(0, \frac{\left(\prod_{m=0}^l d_m \right) \sigma_x^2 \left(\prod_{m=0}^l \sigma_m^2 \right)}{2^l} \cdot \phi(v_i) \right)$$

750 that is the distribution for each row of $Z^{(l)}$ and $Y^{(l)}$ are zero-mean Gaussian whose variance depends
 751 on the corresponding node-specific scalar function which is a constant factor of ϕ .

752 ¹For a ReLU applied zero mean gaussian random variable $Y \sim \mathcal{N}(0, \sigma_y^2)$,

$$753 \quad \mathbb{E}[(\text{ReLU}(Y))^2] = \int_0^\infty y^2 \frac{1}{\sigma_y \sqrt{2\pi}} e^{-y^2/(2\sigma_y^2)} dy = \frac{\sigma_y^2}{2}$$

756 **Step 3 : Unnormalized adjacency.** For the case $\tilde{A} = A + I_n$, since each neighbor contribution is
 757 no longer scaled, the entire degree-based weighting disappears. That is,
 758

$$759 \quad \phi(v_i) = \sum_{v_{k_1} \in \mathcal{N}(v_i)} \sum_{v_{k_2} \in \mathcal{N}(v_{k_1})} \cdots \sum_{v_{k_l} \in \mathcal{N}(v_{k_{l-1}})} 1.$$

$$760 \quad Y_{ij}^{(l-1)} \sim N \left(0, \frac{\left(\prod_{m=0}^{l-1} d_m \right) \sigma_x^2 \left(\prod_{m=0}^{l-1} \sigma_m^2 \right)}{2^{l-1}} \cdot \phi(v_i) \right)$$

$$761 \quad Z_{ij}^{(l)} \sim N \left(0, \frac{\left(\prod_{m=0}^l d_m \right) \sigma_x^2 \left(\prod_{m=0}^l \sigma_m^2 \right)}{2^l} \cdot \phi(v_i) \right)$$

762 holds. □
 763

764 B THE PROOF OF THE THEOREM 2

765 **Theorem** (Node index ϕ and GNN quantization parameters). *The expected per-node quantization
 766 parameters for $X^{(l)}$ and $X^{(l)} W^{(l)}$ vary as uniformly continuous functions of $\phi(\cdot)$. In particular:*
 767

- 768 • *If $\phi(u) = \phi(v)$, then $\mathbb{E}[s_u] = \mathbb{E}[s_v]$ and $\mathbb{E}[z_u] = \mathbb{E}[z_v]$, where (s_u, z_u) and (s_v, z_v) are
 769 the respective scale and zero-point parameters of nodes u and v .*
- 770 • *More generally, if $|\phi(u) - \phi(v)| < \delta$, then $|\mathbb{E}[s_u] - \mathbb{E}[s_v]| < \epsilon$ and $|\mathbb{E}[z_u] - \mathbb{E}[z_v]| < \epsilon$,
 771 for any desired $\epsilon > 0$, by uniform continuity.*

772 *Proof.* Let $M \in \mathbb{R}^{n \times d}$ be any matrix whose i th row is comprised of i.i.d. random variables with
 773 distribution $\mathcal{N}(0, \sigma(i)^2)$. Define the row-wise (node-wise) quantization parameters (s_i, z_i) for this
 774 row by
 775

$$776 \quad s_i = \frac{\max_{1 \leq j \leq d} M_{ij} - \min_{1 \leq j \leq d} M_{ij}}{q_{\max} - q_{\min}} \quad \text{and} \quad z_i = \min_{1 \leq j \leq d} M_{ij} - s_i q_{\min},$$

777 where q_{\min} and q_{\max} are fixed integers. The expectation of $\max_j M_{ij}$ and $\min_j M_{ij}$ can be ex-
 778 pressed via the classical order-statistics integrals². One has
 779

$$780 \quad \mathbb{E} \left[\max_{1 \leq j \leq d} M_{ij} \right] = \int_{-\infty}^{\infty} \left[1 - F_X(x) \right]^d dx,$$

781 where F_X is the cumulative distribution function of $\mathcal{N}(0, \sigma(i)^2)$. F_X is a continuous function of
 782 $\sigma(i)$. Also, this integral is absolutely convergent, implying that $\mathbb{E}[\max_j M_{ij}]$ is a continuous func-
 783 tion of $\sigma(i)$. A similar argument shows that $\mathbb{E}[\min_j M_{ij}]$ is also continuous in $\sigma(i)$. Consequently,
 784

$$785 \quad \mathbb{E}[s_i] = g(\sigma(i)), \quad \mathbb{E}[z_i] = h(\sigma(i)),$$

786 for some continuous functions g, h . From Steps 1–3, we showed that the row variance $\sigma(i)^2$ in our
 787 GNN setting is proportional to a node-dependent scalar $\phi(v_i)$. Hence,
 788

$$789 \quad \mathbb{E}[s_i] = G(\phi(v_i)), \quad \mathbb{E}[z_i] = H(\phi(v_i)),$$

790 for some continuous functions G, H . Next, let
 791

$$792 \quad A = \max_{v \in V} \phi(v).$$

801 ²As $d \rightarrow \infty$, it is known that
 802

$$803 \quad \frac{\mathbb{E}[\max_j M_{ij}]}{\sqrt{\ln d}} \rightarrow \sqrt{2}\sigma$$

804 In other words, the integral is approximately $\sigma\sqrt{2\ln d}$ (Kamath, 2015).
 805

810 Since G, H are continuous on a compact set $[0, A]$, G and H are uniformly continuous on $[0, A]$.
 811 Therefore,

812 $|\phi(u) - \phi(v)| < \delta \implies |G(\phi(u)) - G(\phi(v))| < \epsilon \text{ and } |H(\phi(u)) - H(\phi(v))| < \epsilon$,
 813 for any desired $\epsilon > 0$. In particular, if $\phi(u) = \phi(v)$, then $\mathbb{E}[s_u] = \mathbb{E}[s_v]$ and $\mathbb{E}[z_u] = \mathbb{E}[z_v]$.
 814

815 *Remark.* In the case that $M_{ij} = \text{ReLU}(Y_{ij})$ for i.i.d. zero mean Gaussian Y_{ij} , as $d \rightarrow \infty$, the
 816 probability of at least one entry being zero in each row goes to one, so $\mathbb{E}[\min_j \text{ReLU}(Y_{ij})] \rightarrow 0$.
 817 Thus the above argument for scale parameters is valid for all matrices $X^{(l)}$ and $Z^{(l)} = X_c^{(l)}$.
 818

819 This completes the proof. \square
 820

821 C DERIVATION OF TOPPIN FROM THEOREM 1.

823 In **Case 1** at Theorem 1, let $d(v)$ denote the indegree of node v , we can approximate all summations
 824 beyond the first term as a constant C_1 , which yields:

$$825 \quad \phi(v) = \sum_{v_{k_1} \in \mathcal{N}(v_v)} C_1 = d(v) \cdot C_1, \quad (12)$$

828 In **Case 2**, we approximate the summand of the second summation as a constant C_2 , which yields:

$$829 \quad \phi(v) = \frac{1}{d(v)} \sum_{v_{k_1} \in \mathcal{N}(v_v)} \left(\frac{1}{d(v_{k_1})^2} \sum_{v_{k_2} \in \mathcal{N}(v_{v_{k_1}})} C_2 \right) = \frac{1}{d(v)} \sum_{v_{k_1} \in \mathcal{N}(v_v)} \frac{C_2}{d(v_{k_1})} \quad (13)$$

832 This leads to the second element of TopPIN. Alternatively, approximating the entire summation as
 833 C_3 gives $\phi(v) \approx C_3/d(v)$, further reinforcing the choice of degree-based terms. This lightweight
 834 design effectively balances between accuracy and efficiency. Note that TopPIN(v) does not depend
 835 on the definition of \tilde{A} , and thus can be used for various GNNs. Empirically, we observed that the
 836 approximated first-order terms of TopPIN can capture most of the benefits with minimal overhead.
 837

838 D APPLICATION OF TOPGQ TO GAT-BASED ARCHITECTURES

840 We provide a theoretical justification for applying TopPIN in GAT-based architectures, which oper-
 841 ates on edge weights obtained via the softmax function. We analyze the bound of *expected variance*
 842 of *node activations*, and show that the *expected variance of GAT node activation is bounded by the*
 843 *terms of TopPIN*. We demonstrate that these bounds align with the structure of TopPIN, validating
 844 its use as a lightweight proxy for per-node quantization.

846 D.1 SETUP AND ASSUMPTIONS

847 We consider a GAT layer as defined in Section A:

$$848 \quad X^{(l+1)} = \text{ReLU}(\tilde{A} X^{(l)} W^{(l)}), \quad l = 0, \dots, L-1,$$

$$849 \quad Z^{(l)} = X^{(l)} W^{(l)}, \quad Y^{(l)} = \tilde{A} Z^{(l)}, \quad X^{(l+1)} = \text{ReLU}(Y^{(l)}).$$

851 with the following assumptions, in line with Section A:

- 853 $Z_{ij}^{(0)} \sim \mathcal{N}(0, d_0 \sigma_x^2 \sigma_0^2)$ (i.i.d. per feature dimension),
- 854 Assume edge weights for target node i are drawn from a normal distribution, specifically
 855 $\alpha_i \sim \mathcal{N}(1/d(i), \sigma_{\alpha_i}^2)$, independently across j and independently across layers, where

$$856 \quad 0 < \sigma_{\alpha_i}^2 \leq \frac{1}{d(i)} - \frac{1}{d(i)^2}.$$

859 We derive the upper bound of $\sigma_{\alpha_i}^2$ as follows:

860 Since $\sum_j \alpha_{ij} = 1$, and $\alpha_{ij} \geq 0$, $\mathbb{E}[\alpha_i] = \frac{1}{d(i)}$. Using the Cauchy-Schwarz inequality, $\mathbb{E}[\alpha_i^2] \geq$
 861 $(\mathbb{E}[\alpha_i])^2$ and the bound $0 \leq \alpha_{ij} < 1$, this leads to the bound $\frac{1}{(d(i))^2} \leq \mathbb{E}[\alpha_i^2] \leq \mathbb{E}[\alpha_i] = \frac{1}{d(i)}$.
 862

$$863 \quad \text{therefore, } 0 < \sigma_{\alpha_i}^2 = \text{Var}[\alpha_{ij}] = \mathbb{E}[\alpha_{ij}^2] - (\mathbb{E}[\alpha_{ij}])^2 \leq \frac{1}{d(i)} - \frac{1}{(d(i))^2}$$

864 D.2 DERIVING THE ACTIVATION VARIANCE BOUND
865866 We aim to quantify the variance of the output activation $Y_i^{(l)}$ at node i . Consider a coordinate j :

867
$$868 Y_{ij}^{(0)} = \sum_{k \in \mathcal{N}(i)} \alpha_{ik} Z_{kj}^{(0)}.$$

869

870 Since $Z_{kj}^{(0)} \sim \mathcal{N}(0, d_0 \sigma_x^2 \sigma_0^2)$ are independent, The mean and variance of $Y_{ij}^{(0)}$ is:

871
$$872 \mathbb{E}[Y_{ij}^{(0)}] = \sum_{k=1}^{d(i)} \mathbb{E}[\alpha_{ik} Z_{kj}^{(0)}] = 0, \quad (14)$$

873

874
$$875 \text{Var}(Y_{ij}^{(0)}) = \sum_{k=1}^{d(i)} \mathbb{E}[\alpha_{ik}^2] \cdot \mathbb{E}[(Z_{kj}^{(0)})^2] \quad (15)$$

876

877
$$878 = (d(i)) (\text{Var}(\alpha_i) + (\mathbb{E}[\alpha_i])^2) \cdot d_0 \sigma_x^2 \sigma_0^2 = (d(i)) \left(\sigma_{\alpha_i}^2 + \frac{1}{(d(i))^2} \right) \cdot d_0 \sigma_x^2 \sigma_0^2 \quad (16)$$

879

880 Denote $\psi(i)$ as $\left(\sigma_{\alpha_i}^2 + \frac{1}{(d(i))^2} \right)$. We can bound $\psi(i)$ with $\sigma_{\alpha_i}^2$ as below.

881
$$882 \frac{1}{(d(i))^2} < \psi(i) = \left(\sigma_{\alpha_i}^2 + \frac{1}{(d(i))^2} \right) \leq \frac{1}{(d(i))}, \quad \frac{1}{(d(i))} < \text{Var}(Y_{ij}^{(0)}) \leq 1$$

883

884 By the Central Limit Theorem (CLT), $Y_{ij}^{(0)}$ is approximately $\mathcal{N}(0, d_0 \sigma_x^2 \sigma_0^2 \cdot d(i) \psi(i))$. Since
885 quantization scale (e.g., in min–max quantization) is influenced by the activation variance, bounding
886 $\psi(i)$ leads directly to bounding the expected quantization parameters. We show that the lower bound
887 of $\psi(i)$ is equivalent to the first term of TopPIN.888 With the same assumption and operation for the next layer, and $Y^{(0)}$ as input, the approximated
889 distribution of $Y_{ij}^{(1)}$ is $\mathcal{N}(0, c \cdot \psi_2(i))$, with c as a constant, and $\psi_2(i)$ bounded in the range of
890 $(\frac{1}{(d(i))^2} (\sum_{k \in \mathcal{N}(i)} \frac{1}{d(k)}), 1]$. We demonstrate that the lower bound of $\psi_2(v)$ is equivalent to the
891 product of each term in TopPIN, bringing a strong correlation to the formulation of TopPIN.

892 D.3 TOPPIN AS A PROXY FOR FEATURE VARIANCE

893
$$894 \text{TopPIN}(v) = \left(d(v), \frac{1}{d(v)} \sum_{u \in \mathcal{N}(v)} \frac{1}{d(u)} \right).$$

895

896 Since $\psi(v)$ is a degree-dependent property, TopPIN provides a topology-aware approximated bound
897 of the per-node activation statistics, without computing the attention scores explicitly.898 GAT activation variance is governed by $\psi(v)$. Modeling $\alpha_{ij} \sim \mathcal{N}(1/d(i), \sigma_{\alpha_i}^2)$ gives a tight, degree-
899 bounded expectation for $\psi(v)$. Quantization parameters are thus bounded in expectation by $d(v)$.
900 TopPIN aligns with these bounds and provides a practical, theoretically grounded proxy for quanti-
901 zation in GNNs with softmax-generated edge weights.

902 E ADDITIONAL EXPERIMENTAL RESULTS

903 E.1 EXPERIMENTAL RESULTS OF GRAPHSAGE ARCHITECTURE ON INDUCTIVE SETTING

904 We evaluate the quantization accuracy and quantization speed of our method (TopGQ) on the Graph-
905 SAGE architecture (Table 8), covering node classification (Cora, Citeseer, PubMed) and graph clas-
906 sification tasks (IMDB-BINARY, COLLAB). The experimental results show that TopGQ consis-
907 tently achieves competitive or superior accuracy compared to baseline methods, while significantly
908 reducing quantization time. These results further support that TopGQ generalizes effectively across
909 architectures, providing acceleration for GraphSAGE models while achieving comparable per-
910 formance to quantization-aware training methods that require substantially longer quantization times.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 8: Comparison of quantization accuracy with GraphSAGE architecture

Method	Node Classification				Graph Classification					
	Cora		Citeseer		PubMed		IMDB-B			
	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time		
FP32	77.02	-	76.34	-	89.18	-	77.46	-	80.36	-
INT8										
SGQ	76.28	(8.24s)	76.06	(14.84s)	88.87	(23.23s)	66.36	(6.15m)	80.29	(38.21m)
DQ	75.50	(23.87s)	74.77	(69.95s)	88.62	(3.07m)	73.04	(9.09m)	79.32	(2.28h)
EPQ	72.84	(21.16s)	74.44	(73.24s)	84.70	(1.80m)	71.91	(14.02m)	79.78	(2.51h)
A^2Q	76.94	(4.56s)	75.08	(4.96s)	88.76	(18.21s)	74.49	(4.97m)	79.64	(14.59m)
QLR	77.96	(4.12s)	31.78	(4.62s)	88.08	(7.28s)	63.42	(3.67s)	70.16	(13.71m)
DRA	76.46	(3.11s)	75.74	(3.00s)	88.98	(3.15s)	76.51	(2.67m)	80.27	(12.12m)
TopGQ	76.86	(0.54s)	76.32	(0.56s)	89.00	(0.62s)	77.23	(2.93s)	80.53	(15.89s)
INT4										
SGQ	75.52	(8.41s)	75.94	(14.65s)	86.62	(23.24s)	65.56	(6.11m)	78.30	(39.20m)
DQ	74.36	(23.49s)	74.99	(69.91s)	88.58	(3.07m)	73.52	(9.10m)	79.02	(2.26h)
EPQ	73.00	(21.10s)	74.58	(73.47s)	84.44	(1.80m)	61.00	(14.06m)	58.92	(2.58h)
A^2Q	74.66	(4.65s)	73.00	(5.01s)	85.32	(18.17s)	73.92	(4.93m)	66.12	(14.64m)
QLR	74.52	(4.05s)	30.68	(4.43s)	87.42	(7.29s)	63.30	(4.69s)	63.30	(13.62m)
DRA	76.18	(3.24s)	74.60	(2.93s)	78.84	(3.42s)	75.04	(2.56m)	78.18	(12.12m)
TopGQ	76.30	(0.53s)	75.76	(0.57s)	87.26	(0.62s)	75.44	(2.91s)	79.38	(15.92s)

*SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 9: Comparison of quantization accuracy on transductive setting

Dataset	Method	INT4				INT8											
		GCN		GAT		GIN		GraphSAGE									
		Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time								
	FP32	87.72	-	88.08	-	86.14	-	85.70	-	87.72	-	88.08	-	86.14	-	85.70	-
Cora	SGQ	87.46	(4.09s)	82.32	(7.09s)	78.92	(4.46s)	85.82	(6.33s)	87.88	(4.18s)	88.14	(7.05s)	86.02	(4.46s)	85.94	(6.37s)
	DQ	86.40	(8.96s)	87.10	(11.72s)	83.10	(29.46s)	86.04	(33.37s)	87.12	(9.77s)	87.54	(11.85s)	80.34	(30.50s)	86.60	(33.50s)
	EPQ	83.44	(40.74s)	86.50	(42.17s)	41.96	(40.89s)	84.96	(40.66s)	86.50	(40.71s)	86.98	(42.09s)	81.20	(40.77s)	84.80	(40.60s)
	A^2Q	55.70	(1.99s)	75.80	(3.65s)	85.30	(2.45s)	86.20	(2.48s)	87.40	(2.06s)	87.60	(3.72s)	86.10	(2.47s)	87.20	(2.75s)
	QLR	85.20	(2.47s)	87.04	(3.88s)	85.30	(2.44s)	85.78	(2.16s)	86.54	(2.41s)	87.02	(3.73s)	84.88	(2.30s)	86.74	(2.10s)
	DRA	82.60	(1.02s)	77.58	(2.51s)	27.52	(0.98s)	83.80	(1.10s)	87.56	(1.04s)	87.84	(2.48s)	85.40	(1.06s)	85.58	(1.09s)
	TopGQ	87.38	(0.66s)	87.64	(0.46s)	85.86	(0.51s)	85.90	(0.46s)	87.78	(0.58s)	88.10	(0.65s)	86.18	(0.55s)	86.10	(0.75s)
Citeseer	FP32	79.84	-	79.78	-	79.36	-	79.56	-	79.84	-	79.78	-	79.36	-	79.56	-
	SGQ	79.10	(6.50s)	79.22	(9.36s)	77.28	(8.56s)	79.36	(12.64s)	79.88	(6.40s)	80.02	(9.46s)	79.54	(8.60s)	79.52	(12.55s)
	DQ	24.32	(21.36s)	23.10	(23.67s)	70.58	(85.98s)	23.10	(99.04s)	79.56	(21.14s)	79.72	(23.87s)	72.24	(86.44s)	78.98	(100.53s)
	EPQ	78.78	(137.88s)	79.34	(139.37s)	47.22	(138.38s)	77.26	(138.65s)	79.14	(138.02s)	79.36	(139.43s)	70.60	(138.41s)	78.24	(138.64s)
	A^2Q	53.90	(2.20s)	64.00	(3.92s)	78.30	(4.28s)	78.60	(5.47s)	76.50	(2.21s)	79.80	(3.90s)	79.50	(4.27s)	79.20	(5.53s)
	QLR	67.78	(2.54s)	79.72	(3.92s)	75.74	(3.72s)	76.16	(4.60s)	77.82	(2.62s)	79.24	(3.89s)	75.00	(3.74s)	79.20	(4.39s)
	DRA	77.56	(1.63s)	78.88	(2.46s)	42.34	(1.63s)	78.90	(1.53s)	79.70	(1.63s)	79.78	(1.63s)	79.38	(1.61s)	79.70	(1.50s)
PubMed	TopGQ	79.56	(0.46s)	79.48	(0.51s)	79.26	(0.61s)	79.98	(0.66s)	79.86	(0.46s)	79.82	(0.62s)	79.44	(0.55s)	79.68	(0.63s)
	FP32	88.36	-	87.76	-	89.42	-	89.38	-	88.36	-	87.76	-	89.42	-	89.38	-
	SGQ	86.52	(12.64s)	82.86	(6.34s)	86.02	(10.18s)	88.84	(8.70s)	88.64	(6.30s)	87.50	(10.11s)	89.72	(8.60s)	89.72	(11.66s)
	DQ	87.26	(99.04s)	87.50	(20.27s)	88.60	(33.37s)	88.84	(105.63s)	88.02	(19.28s)	87.04	(31.99s)	89.54	(103.28s)	88.84	(94.59s)
	EPQ	84.34	(138.65s)	86.08	(101.95s)	52.32	(2.90s)	87.06	(2.07s)	85.40	(102.00s)	86.54	(103.37s)	86.90	(102.50s)	87.16	(102.61s)
PubMed	A^2Q	79.70	(5.47s)	82.40	(102.52s)	89.10	(107.55s)	87.20	(105.27s)	87.20	(2.16s)	87.10	(6.95s)	90.30	(4.94s)	88.70	(5.42s)
	QLR	79.48	(4.60s)	87.42	(2.59s)	85.40	(3.73s)	88.86	(4.23s)	87.06	(2.50s)	87.40	(3.90s)	88.46	(4.21s)	88.94	(4.49s)
	DRA	85.10	(1.47s)	83.26	(2.82s)	47.30	(1.42s)	85.96	(2.42s)	88.28	(1.43s)	87.70	(2.81s)	88.76	(1.45s)	89.20	(2.43s)
	TopGQ	87.72	(0.66s)	87.52	(0.50s)	89.20	(0.49s)	88.92	(0.86s)	88.42	(0.52s)	87.86	(0.53s)	89.40	(0.62s)	89.14	(0.56s)

*SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

968
969
970
971
E.2 NODE CLASSIFICATION ON TRANSDUCTIVE SETTING972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
We report additional experimental results on transductive node classification tasks in Table 9, in addition to the inductive results presented in Table 1. The experimental results in Table 9 consistently align with the trends that TopGQ persistently achieves the lowest quantization times compared to

972 Table 10: Comparison of quantization accuracy on large scale inductive datasets
973

975 976 977 978 979 980 981 982 983 984	INT4								INT8							
	ogbn-arxiv				ogbn-proteins				ogbn-arxiv				ogbn-proteins			
	GCN		GraphSAGE		GCN		GraphSAGE		GCN		GraphSAGE		GCN		GraphSAGE	
	Acc.	Q.Time	Acc.	Q.Time	R-A	Q.Time	R-A	Q.Time	Acc.	Q.Time	Acc.	Q.Time	R-A	Q.Time	R-A	Q.Time
FP32	55.57	-	57.54	-	68.96	-	72.00	-	55.57	-	57.54	-	68.96	-	72.00	-
SGQ	55.25	(1.24m)	57.65	(1.87m)	70.75	(8.93m)	73.18	(4.44m)	24.03	(1.22m)	52.90	(1.88m)	54.50	(8.90m)	65.69	(4.44m)
DQ	55.67	(9.30m)	57.46	(13.70m)	60.08	(37.59m)	73.41	(24.54m)	54.02	(8.88m)	56.83	(13.86m)	52.89	(36.90m)	71.84	(23.82m)
EPQ	43.71	(5.61m)	46.72	(5.65m)	63.26	(4.96m)	58.65	(2.85m)	27.11	(5.60m)	44.82	(5.65m)	52.87	(4.96m)	57.71	(2.84m)
A^2Q	47.06	(37.39s)	57.51	(48.33s)	49.83	(4.42m)	72.18	(2.80m)	24.00	(36.55s)	55.24	(46.69s)	47.99	(4.41m)	70.06	(2.79m)
QLR	55.54	(46.06s)	57.46	(57.17s)	65.76	(7.11m)	73.65	(3.07m)	52.96	(45.19s)	55.98	(57.60s)	56.21	(7.15m)	50.26	(3.07m)
DRA	54.46	(25.55s)	57.55	(31.99s)	56.91	(3.47m)	72.15	(1.68m)	22.76	(25.47s)	53.56	(31.81s)	51.73	(3.43m)	63.89	(1.67m)
TOPGQ	55.86	(0.52s)	57.55	(0.61s)	68.50	(1.28s)	73.07	(1.27s)	47.97	(0.51s)	54.48	(0.59s)	60.39	(1.28s)	70.72	(1.26s)

*R-A: ROC-AUC, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

985 Table 11: Comparison of quantization accuracy on molecular-domain datasets
986

987 988 989 990 991 992 993 994 995 996 997 998	INT4								INT8							
	MUTAG				PPI				MUTAG				PPI			
	GCN		GraphSAGE		GCN		GraphSAGE		GCN		GraphSAGE		GCN		GraphSAGE	
	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time	Acc.	Q.Time
FP32	87.44	-	86.74	-	71.10	-	91.37	-	87.44	-	86.74	-	71.10	-	91.37	-
SGQ	81.57	(86.27s)	86.02	(100.65s)	55.71	(86.27m)	59.46	(100.65m)	81.87	(84.92s)	83.53	(102.82s)	73.26	(6.74m)	91.33	(39.35m)
DQ	85.27	(109.07s)	80.66	(104.39s)	48.32	(9.08m)	64.24	(2.39h)	86.00	(105.04s)	80.24	(102.78s)	64.55	(9.08m)	67.17	(2.39h)
EPQ	76.11	(52.22s)	76.58	(55.83s)	51.18	(14.17m)	74.71	(2.99h)	78.27	(51.20s)	77.11	(55.13s)	63.87	(14.17m)	81.59	(2.99h)
A^2Q	80.99	(47.06s)	77.99	(55.59s)	40.83	(3.78m)	43.12	(14.75m)	79.30	(45.56s)	83.12	(50.89s)	40.46	(3.78m)	45.78	(14.75m)
QLR	89.88	(51.85s)	79.27	(51.90s)	61.43	(3.70m)	58.60	(13.04m)	86.64	(50.25s)	76.08	(54.26s)	62.49	(3.70m)	71.89	(13.04m)
DRA	85.78	(33.14s)	85.22	(37.07s)	33.29	(2.29m)	49.74	(11.49m)	85.86	(32.30s)	83.60	(34.89s)	73.26	(2.29m)	88.00	(11.49m)
TOPGQ	78.30	(1.29s)	82.68	(1.22s)	61.10	(1.87s)	71.53	(13.86s)	86.61	(1.29s)	86.74	(5.58s)	73.48	(1.23s)	92.54	(13.86s)

*SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

999 baselines, while maintaining comparable or superior accuracy. This advantage in quantization speed
1000 demonstrates the practical value and effectiveness of TopGQ, particularly in resource-constrained
1001 environments. We show that this advantage holds in both transductive and inductive settings.1002
1003 E.3 EXPERIMENTAL RESULTS ON LARGE SCALE INDUCTIVE DATASETS.1004 To further evaluate the generalizability of TopGQ, we provide additional quantization results on
1005 ogbn-arxiv and ogbn-proteins in Table 10, both inductive node classification tasks. For these
1006 experiments, we use GCN and GraphSAGE as baseline models, the same GNN baseline architectures
1007 used for the original paper for the dataset (Hu et al., 2020). Compared to existing methods, TopGQ
1008 achieves comparable or superior performance without requiring retraining or gradient-based
1009 updates. Also, TopGQ acceleration gains in the quantization time is up to $92 \times - 1,076 \times$ compared
1010 to baseline methods. These results further demonstrate the effectiveness of TopGQ and its ability to
1011 generalize across diverse datasets.1012
1013 F LIMITATIONS OF TOPGQ1014 In this section, we analyze the limitations of TopGQ. First, we find that TopGQ shows limited
1015 performance when applied to molecule-domain datasets. We report the results on molecule-domain
1016 datasets in Table 11, using MUTAG and PPI (Zitnik & Leskovec, 2017). In the table, we can observe
1017 a more noticeable gap between other baselines and TopGQ. We believe this partially comes from the
1018 two reasons: the lack of topological diversity, and the heterophily between connected nodes. Since
1019 each graph is a molecular chain, the nodes exhibit a short range of degree diversity and have weak
1020 distinguishability in topology. As our work builds on the distinct topological characteristics of the
1021 graph, it has a limited advantage in such weak-topology graphs. Also, the graphs in the molecu-
1022 lar domain tend to have a heterophilic connection, as a vast amount of edges connect to different
1023 molecules. To overcome such limitations, we restrict parameter sharing to nodes with matching
1024 input features and similar TopPIN values, thereby encoding heterophily. On the PPI dataset, this
1025 strategy proved effective in preserving accuracy, with additional gains up to 2.86% – 9.47%.

1026
1027
1028 Table 12: Comparison of theoretical costs and storage for different methods.
1029
1030
1031
1032

Metrics	Theoretical Cost	Theoretical Storage
FP32	$O_{FP}(N^2F_1 + NF_1F_2)$	$O_{FP}(E + F_1F_2 + NF_0)$
Degree-Quant	$O_{INT}(N^2F_1 + NF_1F_2) + O_{FP_{elem}}(NF_2)$	$O_{INT}(E + F_1F_2 + NF_0) + O_{FP}(1)$
Degree-Quant-PTQ	$O_{INT}(N^2F_1 + NF_1F_2) + O_{FP_{elem}}(NF_2)$	$O_{INT}(E + F_1F_2 + NF_0) + O_{FP}(1)$
TopGQ	$O_{INT}(N^2F_1 + NF_1F_2) + O_{FP_{elem}}(NF_2)$	$O_{INT}(E + F_1F_2 + NF_0) + O_{FP}(N_T + F_2)$

1033
1034
1035 Secondly, we find that dual-axis scale absorption introduces an additional runtime operation when
1036 quantizing GNN architectures with dynamic edge weights. In such cases, we fuse precalculated
1037 scaling vectors to the quantization scale matrix for the adjacency matrix, so that dual-axis scale
1038 absorption operation itself can be fused with the runtime quantization of runtime-calculated edge
1039 weights. The absorption will alter the SPMV operation between scale vectors and edge weights to
1040 SPMW operation between scale matrices and edge weights when the absorption is fused with the
1041 online computation. Although this may slightly increase the floating-point operations of runtime-
1042 computed edge weights, the online quantization of arbitrary edge weights is a global overhead across
1043 all GNN quantization methods (Feng et al., 2020; Tailor et al., 2020; Huang et al., 2022; Zhu et al.,
1044 2022; Wang et al., 2023; Jreddi et al., 2024), which also target to quantize GNNs with dynamic edge
1045 weights. On top of that, we believe the difference of the inference time can be fairly negligible by
1046 parallelism within GPU operations.

1047 G QUANTIZATION TRADE-OFF AND COMPRESSION ANALYSIS OF TOPGQ

1048
1049 Here, we present a comprehensive analysis regarding the trade-offs and compression advantages
1050 of TopGQ. We provide analysis of computational cost and storage consumption. The theoretical
1051 analysis is shown in Table 12.

1052 TopGQ finds a good balance between reducing quantization time and preserving accuracy, while
1053 other choices in FP32, Degree-Quant, TopGQ demonstrate disadvantages in either accuracy, time,
1054 or memory. FP32 suffers from the expensive costs of computation and storage. While Degree-Quant
1055 alleviates this cost via quantization, the long quantization time is required to obtain the benefits.
1056 TopGQ is free from the quantization time problem but at the cost of considerable performance
1057 degradation. TopGQ aims to find the best way of addressing each issue by leveraging topological
1058 node similarities with an additional amount of storage cost.

1059
1060 As for the theoretical costs (Table 12), we assume GNN layer propagation as AXW operation,
1061 with $A \in \mathbb{R}^{N \times N}$, $X \in \mathbb{R}^{N \times F_1}$, $W \in \mathbb{R}^{F_1 \times F_2}$ with initial dataset size of $N \times F_0$. We note the
1062 computation and storage costs of floating-point (FP) and integer (INT) operations as follows:

- 1063 • $O_{FP}()$: Complexity for FP operations / Storage complexity for FP values.
- 1064 • $O_{FP_{elem}}()$: Complexity for element-wise FP operations.
- 1065 • $O_{INT}()$: Complexity for INT operations / Storage complexity for INT values.

1066
1067 The computational cost shows that quantization converts the expensive floating-point matrix
1068 multiplication into integer operations. The additional floating-point cost comes from converting integer
1069 outputs back to floating-point values. The theoretical analysis is based on (Zhu et al., 2022).

1070
1071 To further validate the actual compression advantage, we provide the results of memory usage reduc-
1072 tion ratios for inference components of a GCN model on Reddit dataset at Table 13. This confirms
1073 that TopGQ can effectively benefit from model/data memory reduction and faster inference.

1074 H DATASET STATISTICS

1075
1076 We report the dataset statistics used for the evaluation of our method, TopGQ at Table 14. To assess
1077 generalizability, we selected datasets spanning a range of scales. Note that we evaluate graph-level
1078 datasets with 10-fold cross-validation, with a fixed validation/test set size per fold.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 13: Actual quantization reduction ratios for INT8 and INT4

Inference Component	INT8	INT4
Graph Input (Node Features)	3.995 \times	7.982 \times
Model Intermediate Activation	3.987 \times	7.951 \times
Model Weights	3.922 \times	7.681 \times
Total Reduction Ratio	3.992 \times	7.971 \times

Table 14: Statistics of node-level and graph-level datasets for evaluation.

Node-Level Datasets	Graph #	Node #	Edge #	Train Node #	Val Node #	Test Node #	Class #
Cora	1	2,708	10,556	140	500	1,000	7
Citeseer	1	3,327	9,104	120	500	1,000	6
Pubmed	1	19,717	88,648	60	500	1,000	3
PPI	24	56,944	1,587,264	44,906	6,514	5,524	121
Reddit	1	232,965	114,615,892	153,431	23,831	55,703	41
ogbn-proteins	1	132,534	79,122,504	86,619	21,236	24,679	112
ogbn-arxiv	1	169,343	1,166,243	90,941	29,799	48,603	40
ogbn-products	1	2,449,029	123,718,280	196,615	39,323	2,213,091	47
MAG240M	1	244,160,499	1,728,364,232	1,112,392	138,949	88,092	153
Graph-Level Datasets	Graph #	Avg. Node #	Avg. Edge #	Train Graph #	Val Graph #	Test Graph #	Class #
MUTAG	188	17.9	39.6	150	19	19	2
IMDB-BINARY	1,000	19.8	193.1	800	100	100	2
COLLAB	5,000	74.5	4914.4	4,000	500	500	3

I ADDITIONAL EXPERIMENTAL SETTINGS

We report evaluation results on two representative graph processing tasks: Node-level classification, graph-level classification. For node-level classification, we compare the accuracy of Cora, Citeseer, PubMed, Reddit, ogbn-products, and MAG240M in inductive setting. For the inductive setting, we construct a training graph containing only train nodes and separate validation/test graphs containing only validation or test nodes For graph-level classification, we choose IMDB-BINARY and COLLAB datasets to evaluate the inductive inference performance of quantized GNNs. We report the accuracy by 10-fold cross-validation, with a fixed random seed.

All experiments are conducted and measured on a server with a single A6000 GPU, RTX 4090 GPU, and Intel(R) Xeon(R) Gold 6442Y CPU. We implement our algorithm on PyG library v2.5.2 with PyTorch v2.4.0. In the index computation, we use the SciPy library and Pytorch implementations.

J CODE

The code, which includes our implementation of this work, is included in a zip archive of the supplementary material. The code is under GNU General Public License v3.0. The guideline to run the code and reproduce the results from TopGQ is provided in the README file.