
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOPGQ: FAST GNN POST-TRAINING QUANTIZATION
LEVERAGING TOPOLOGY INFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) demand substantial memory and computation as
datasets scale in size. Thus, quantization is a promising remedy by compress-
ing full-precision values into low-bit representations. However, existing GNN
quantization methods depend on tedious gradient-based updates to preserve accu-
racy. This quantization time may be a major barrier to real-world deployments
as the input graph size scales. To this end, we present TopGQ (Topology-aware
GNN Quantization), an accurate post-training quantization framework tailored
for GNNs, alleviating the burden of redundant quantization overhead. We pro-
pose Dual-axis scale absorption, which applies scale factors along both activation
axes, merging one into the static adjacency matrix. Dual-axis scale absorption at-
tains higher accuracy via addressing outlier nodes. This helps maintain the same
computational cost as column-wise quantized inference. We further introduce
topology-guided quantization, which exploits the relationship between local graph
structure and activation variance. TopGQ enables fast inference for unseen nodes,
via a novel node index (TopPIN), a lightweight proxy of activation variance from
local structure. With these techniques, TopGQ eliminates the need for retraining
while preserving accuracy. Experimental results show that TopGQ is compara-
ble to prior works while reducing quantization time by an order of magnitude,
establishing it as a practical solution for efficient and scalable GNN inference.

1 INTRODUCTION

Reddit, GraphSAGE

35.28 seconds
 333.67≈ ×

23.71
minutes

31.78
minutes

2.83
hours

3.27
hours

100 102
MAG240M, R-GAT

0.98 hours
 49.25≈ ×

5.50
days

2.46
days

2.06
days1.97

days

102 103 104
Quantization Time (minutes, log scale)

Acc. (%)

Acc. (%)

Figure 1: Quantization time-accuracy trade-
off plot with large-scale graph datasets.

Graph neural networks (GNNs) have attracted a
great amount of attention due to their ability to pro-
cess diverse unstructured data in diverse domains,
such as recommendation systems (Zhang et al.,
2023), molecular interaction (Wale et al., 2008),
transportation networks (Cao et al., 2020), and so-
cial network analysis (Arazzi et al., 2023). Although
model sizes are typically small (Wu et al., 2020),
they introduce an extensive amount of computation
and memory costs from activations, i.e., the node
and edge features (Liu et al., 2021). Especially with
the trend where the graph size is continuously grow-
ing (Liu et al., 2024a; Hu et al., 2020), there is a
growing need to process large graphs with limited
resources.

One promising approach to address this need is quantization, which reduces memory usage and
computational costs by using low-bit representations (Ashkboos et al., 2024; Liu et al., 2024b; Li
et al.; 2023). However, quantizing GNNs is known to be difficult due to the varying magnitudes of
node activations. The outlier node features are induced by aggregation from the message-passing
algorithm, leading to quantization errors (Tailor et al., 2020; Zhu et al., 2022; Wei et al., 2022).
Accordingly, existing methods target managing these outliers.

These GNN quantization methods demand extensive parameter tuning or long training time.
Quantization-aware training (QAT) methods involve costly retraining, often exceeding full-precision

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

training time (Feng et al., 2020; Tailor et al., 2020; Huang et al., 2022; Zhu et al., 2022; Wang et al.,
2023). Post-training quantization (PTQ) methods typically avoid such overhead by keeping model
weights fixed. However, the existing PTQ method (Jeddi et al., 2024) still employs gradient-based
iterations on quantization parameters, negating its expected advantage. Section 1 illustrates such a
phenomenon, where their quantization time for large graphs can take up much more than a day.

This large quantization time poses a major barrier to quantized GNN deployment in real-world
scenarios, particularly when frequent model updates are required. Popular GNN applications such as
personalization and recommendation (Wu et al., 2023; Chen et al., 2023; You et al., 2022; Guan et al.,
2025) operate on large-scale graphs and benefit from quantization. However, these applications often
require model updates on a minute-to-hour scale (Liu et al., 2022; Ni et al., 2021), and excessive
quantization time makes deployment impractical by canceling out the benefits of quantization.

For this, we present TopGQ, a PTQ method which achieves orders of magnitude faster quantization
with comparable or even better task performance. First, we show that node-wise quantization is more
preferable for GNN (Section 4), due to the existence of outlier nodes. However, node-wise quantiza-
tion on the aggregation phase prevents integer arithmetic. To this end, we propose (1) dual-axis scale
absorption, a technique that enables fast and accurate integer matrix multiplication with node-wise
scaling. It merges the scaling factors of each node into the adjacency matrix, preserving efficiency
while maintaining accuracy. We further propose (2) TopPIN, a lightweight node index that encodes
local topology to guide quantization. TopPIN enables rapid assignment of quantization parameters
to unseen nodes, ensuring fast inference. We show theoretically and empirically that TopPIN is a
sound proxy for unseen node assignment. Extensive experimental results validate that TopGQ out-
performs current state-of-the-art baselines, achieving orders of magnitude faster quantization while
preserving accuracy and inference latency, establishing a new standard in GNN quantization.

2 BACKGROUND

Graph neural networks. Let G = (V,E) be a directed graph with n = |V | nodes, v1, . . . , vn.
Denote A ∈ Rn×n as the adjacency matrix, where Aij = 1(vj ,vi)∈E . For node vi, define its closed
in-neighborhood as N (vi) = { vj | (vj , vi) ∈ E} ∪ {vi}, and let degree d(vi) = |N (vi)|. We
denote D = diag(d(v1), d(v2), . . . , d(vn)) as the diagonal degree matrix, hi as feature vector of vi.

To embed topology, GNNs aggregate information from neighboring nodes vj ∈ N (vi) to update
hi. This procedure is referred to as the message-passing algorithm, which consists of two steps:
combination and aggregation. First, the hidden node feature h(l)i is multiplied by the weight matrix
W (l) in the l-th GNN layer. Next, the feature is aggregated to h(l+1)

i as follows:

h
(l+1)
i = ϕ

(⊕
{j|vj∈N (vi)}

W (l) h
(l)
j

)
, (1)

where ϕ is an update function, and
⊕

is a permutation-invariant operator such as sum or mean.

The GNN computation can also be formulated in matrix form. LetX(l) = [h
(l)
1 , . . . , h

(l)
n]T ∈ Rn×dl

be the matrix of node features at layer l, and let W (l) ∈ Rdl×dl+1 be the weight matrix. Then, using
an augmented adjacency matrix Ã ∈ Rn×n, the combination and aggregation steps are:

X(l)
c = X(l)W (l), X(l+1) = σ

(
ÃX(l)

c

)
, (2)

where σ is a nonlinear function. The specific form of Ã varies by GNN architecture. For example,
GCN (Kipf & Welling, 2016) employs the normalized graph Laplacian Ã = D−1/2(A+ In)D

−1/2,
while GIN (Xu et al., 2019) uses the binary matrix Ã = A+In. GraphSAGE (Hamilton et al., 2017)
differs by sampling a subset of neighbors instead of using the entire neighborhood at aggregation.

Transductive and inductive settings. GNN training operates in either a transductive or an induc-
tive setting. In the transductive setting, the entire graph (e.g., features and topology) is available
during training, except for the test node labels. As a result, inference can be done with precom-
puted embeddings (Xu et al., 2024), leaving little room for acceleration and quantization benefits.
In contrast, the inductive setting introduces unseen nodes or graphs at test time, requiring compu-
tation of node embedding during inference. Consequently, GNN quantization would have a much
greater impact in inductive settings, where reducing computation and memory directly accelerates

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

inference. Moreover, the inductive setting better reflects real-world scenarios where graphs evolve
or differ from those used for training—such as social networks with new users, recommendation
systems between users and new items, or molecular property prediction for unseen molecules—and
is therefore generally considered the more practical and deployment-oriented evaluation setting.

Quantization replaces high-precision floating-point operations with low-bit integer operations,
thereby reducing computational cost and memory usage. We adopt uniform integer quantization
with scale (s) and zero-point (z). Given a tensor X , each element x ∈ X is quantized as:

xq = Q(x; s, z) = clamp
(⌊1
s
· (x− z)

⌉
, qmin, qmax

)
, s =

xmax − xmin

qmax − qmin
, (3)

qmin and qmax are the minimum and maximum integer values in k-bit representation, and ⌊·⌉ denotes
rounding. Quantization operates at various granularities, such as per-tensor, per-column, or per-
row. Quantization typically follows either post-training quantization (PTQ) or quantization-aware
training (QAT). QAT iteratively updates the weights using the calculated gradients, whereas PTQ
calibrates scale and zero-point without updating model weights, and therefore much faster in general.

3 RELATED WORK

GNN quantization efficiently reduce extensive memory and computational costs of GNNs (Kipf &
Welling, 2016; Veličković et al., 2018; Xu et al., 2019; Hamilton et al., 2017). Degree-Quant (Tailor
et al., 2020) is the first work to quantize GNN using QAT, excluding high-degree node activations in
calibration for robust quantization parameters and compressing later at inference. EPQuant (Huang
et al., 2022) utilizes product quantization for reducing the high memory cost. SGQuant (Feng et al.,
2020) and A2Q (Zhu et al., 2022) are also QAT methods, but they differ in that they allow mixed-
precision to assign a higher bitwidth to high-magnitude features. The quantization parameters are
optimized with gradients in QLR (Wang et al., 2023) and DRA (Jeddi et al., 2024). While QLR
leverages these parameters with customized message propagation, DRA optimizes them to recon-
struct the FP32 distributions. Thus, they require significant and redundant quantization overheads,
whereas TopGQ allows orders of magnitude shorter quantization time (Section 1).

Graph topology in GNNs is often integrated during training to help the model effectively learn the
structural information (Ji, 2019; Zhang & Lu, 2020; Hu et al., 2022; Wu et al., 2018; You et al.,
2021; Brasoveanu et al., 2023). For example, (Ji, 2019) uses degree centrality to find highly central
nodes for effective representation learning. Also, (Zhang & Lu, 2020) uses betweenness centrality
to assign weights to each node during aggregation. There are prior attempts to leverage topology for
binarization of graph neural networks (Bahri et al., 2021; Jing et al., 2021). However, these methods
do not incorporate topology in relation to per-node activation statistics for GNN quantization.

4 TOPOLOGY-AWARE GNN QUANTIZATION: NECESSITY AND CHALLENGES

Necessity of topology-aware GNN quantization. GNN quantization requires special considera-
tion due to its unique message-passing mechanism. In particular, the accumulation of neighborhood
information induces substantial diversity across nodes, making node-wise quantization a preferred
approach. Figure 2 illustrates such behavior by comparing the range of values within each node di-
mension (Figures 2a and 2c) and feature dimension (Figures 2b and 2d). Figures 2a and 2c presents
that node-wide ranges are more concentrated, with high similarity between the 5th–95th percentile
range and the min–max range. This indicates the absence of extreme outliers within each node
group, making it favorable for quantization. However, in the feature-wise plots (Figures 2b and 2d),
each min-max range is much broader, while 95% of the values exist within a much narrow interval.
This distribution is more prone to outliers, leading to wasted quantization bins and higher error. This
indicates that node-wise quantization is a more favorable choice for the activation in GNNs.

Based on the observation, we assign different quantization scales to the group of nodes for the
feature matrix X in both the combination and the aggregation phase of GNN inference. Enabling
such a method in the combination phase is relatively straightforward. In fact, existing methods (Zhu
et al., 2022; Feng et al., 2020) already employ node-wise quantization:

X ·W ≈ diag(SX) ·XQ ·WQ · diag(SW) = (SX · S⊤
W)⊙ (XQ ·WQ) (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Reddit, GCN (b) Reddit, GCN (c) ogbn-products, GS (d) ogbn-products, GS

Figure 2: Node-wise and feature-wise range plot, sorted in ascending order. ‘Node Index’ indicates
each node, and ‘Feature Index’ indicates each feature dimension. Each plot shows the min-max
range and the 5th-95th percentile range of the values within the same dimension.

where SX ∈ Rn×1 is the node-wise scale forX , SW ∈ Rd×1 is the feature-wise scale forW , and ⊙
denotes the element-wise (Hadamard) product. Since X is quantized node-wise and W is quantized
feature-wise, the quantized multiplication remains fast and efficient in combination phase.

Challenge 1: Quantization along inner dimensions. By contrast, node-wise quantization in the
aggregation phase is more challenging. Existing GNN quantization (Zhu et al., 2022; Feng et al.,
2020) methods instead apply column-wise quantization to the intermediate activation matrix Xc,
because the columns correspond to the outer dimension in message passing (see Figure 4a). While
this approach is computationally advantageous, it may fail to preserve the precision of activations.
Specifically, applying node-wise quantization for the aggregation step,

Ã ·Xc ≈ diag(SÃ) · Ã
Q · diag(SXc

) ·XQ
c , (5)

introduces the diagonal matrix diag(SXc
) within the multiplication. Unlike Equation 4, this cannot

be computed using integer matrix multiplication units with common methods (Jacob et al., 2018). To
capitalize on the precision benefits of node-wise quantization while also preserving computational
efficiency, TopGQ proposes a novel method, dual-axis scale absorption (Section 5.2).

Challenge 2: Generalization on unseen nodes. For practical inductive settings (Section 2), con-
trary to transductive settings, GNN encounters nodes unseen at training time. To deal with unseen
nodes, there can be two approaches to obtain accurate quantization parameters for each node:

(i) On-the-Fly Quantization Parameter Computation. A straightforward approach is to dynamically
compute quantization parameters per node during inference. For each intermediate activation, every
row of X(l) and X(l)

c is scanned, and the minimum and maximum values of each node are empiri-
cally determined to obtain scales and zero-points. While this ensures low quantization errors, it is
less preferred as it causes runtime overhead that might counteract efficiency gains by quantization.

(ii) Precomputed Mapping. An alternative is to precompute a set of quantization parameters at
calibration time and map each unseen node to one of its entries, typically to one from the training
set nodes. Before inference, we can perform a simple lookup to retrieve and prepare the appropriate
parameters for each activation. Nonetheless, this requires an accurate low-complexity node index
ϕ(·) such that nodes with similar index values exhibit similar feature statistics. TopGQ chooses this
precomputed mapping approach, where we design a novel Topology-Aware Pairwise Index (TopPIN)
that simply uses local topology for lightweight computation (Section 5.3). TopPIN ensures that
unseen nodes are assigned adequate quantization parameters at low inference overhead.

5 TOPGQ METHODOLOGY

5.1 OVERALL FRAMEWORK OF TOPGQ

Figure 3 illustrates the overall process of TopGQ. In the calibration phase (Figure 3a), we first
compute a topology-based value TopPIN(v) for each node v, which we define in Section 5.3. Based
on these index values, we then calculate node-wise quantization parameters (sv, zv) as described in
Section 2. If multiple nodes share the same TopPIN, we aggregate the statistics by taking the global

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ccc
cc

i = 1...n

Feature Magnitude

Compute …

Unique

(c) Inference(a) TopPIN Computation
Compute s, z

(b) Calibration

0

0

maxmin

127−128
INT8

FP32

TopPIN(vi)

TopPIN

Query
k-nearest GNN

Layer

QuantizeUnseen Data

TopPIN(v)

Lookup TableTopPIN(v1)
≠≠TopPIN(v2)

TopPIN(v3)
TopPIN(v4)
TopPIN(vn)

s1, z1
s2, z2

s4, z4
s3, z3

s5, z5

v
s3, z3

Figure 3: The process of topology-aware quantization. (a) shows group generation using topological
characteristics: TopPIN. Each color is used to denote each group. (b) shows the calibration process
to achieve a set of quantization parameters for each group. (c) demonstrates how inference is done
on unseen data by using the quantization parameters of the nearest groups with interpolation.

maximum and the global minimum (Figure 3b), ensuring the quantization parameters cover the full
dynamic range. This gives us a pair of quantization parameters for each unique TopPIN value.
Finally, during inference, we only need to compute the TopPIN(v) for each unseen node v and use
it as a key to retrieve the appropriate quantization parameters (Figure 3c). For this, we retrieve the k-
nearest TopPIN groups and interpolate among their parameters. Such design is built on the idea that
nodes with similar TopPIN(v) values exhibit similar activation distribution, which we theoretically
demonstrate in Section 5.3.

On top of that, we apply dual-axis scale absorption which preserves the accuracy and efficiency dur-
ing inference. Dual-axis scale absorption mimics the effect of node-wise quantization, while actually
using feature-wise quantization to be compatible with integer matrix multiplication. This requires
the computation of quantization scales along both axes, which are also calibrated via TopPIN. We
demonstrate this process in detail in Section 5.2.

5.2 SELECTIVE DUAL-AXIS SCALE ABSORPTION

Node-wise quantization assigns quantization parameters per node, helping preserve diverse feature
magnitudes. However, as seen in Equation (5), aggregation with naive node-wise quantization does
not support integer operations. Given this, we aim to design dual-axis scale absorption, a technique
that preserves both integer-operation speedups and node-wise quantization effects.

(b) Quantization via dual-axis scale absorption

(a) Column-wise activation quantization

ÃQ

S[n⋅1]
Ã

× XQ
c

col-wise

SÃXc ÃQXc
Q≈

SÃ × SXc
= S[n⋅d]

ÃXc
S[1⋅d]

Xc

=

× ×ÃQ
Xc

SÃXc
SF

ÃXc

Q(ÃXc
)

Absorbed Ã

X⊙

Q
c

2) col-wise

diag(SN) X⊙ cÃ × …

Scale Absorption

Xc=×
SN

1) row-wise

Q(X⊙ c)

Figure 4: Comparing quantization ap-
proaches at aggregation phase.

To account for the differing magnitude of node fea-
tures (Figure 2), we employ a node-wise scale factor
SN ∈ RN×1, where SN consists of the maximum
feature value for each node. Specifically, we scaleXc

to X ′
c with SN , i.e., X ′

c = diag−1(SN) · Xc. Then,
to eliminate any obstacle terms preventing integer op-
erations, SN is merged to the given static adjacency
matrix, Ã ∈ RN×N . The operation is as follows:

Ã ·Xc = (Ã · diag(SN)) ·X ′
c = ÃXc ·X ′

c (6)

After merging SN to Ã, we can conduct integer ma-
trix multiplication for two matrices, ÃXc

and X ′
c

with corresponding quantization parameters SÃXc
∈

RN×1, and SX′
c
∈ R1×d:

ÃXc
·X ′

c (7)

≈ (diag(SÃXc
) · ÃQ

Xc
) · (X ′Q

c · diag(SX′
c
)) (8)

= (SÃXc
· SX′

c
)⊙ (ÃQ

Xc
·X ′Q

c). (9)

In the calibration process, TopGQ adaptively chooses
between dual-axis and feature-wise quantization for
Xc for each GNN layer. TopGQ evaluates both
configurations by measuring the mean squared error

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(MSE) between the original floating-point activations and their quantized counterparts. The con-
figuration with lower MSE is saved for inference. When dual-axis scale absorption is selected, the
scaling elements for SN are calibrated like the quantization parameters. When dual-axis scale ab-
sorption is used at inference, Xc can be immediately quantized with SN · SX′

c
∈ RN×d, which acts

like an element-wise quantization parameters for Xc.

5.3 TOPPIN: A LIGHTWEIGHT INDEX FOR UNSEEN NODES

To support quantization in inductive settings, we devise TopPIN, a lightweight index that maps
unseen nodes to existing train set nodes used at calibration. The formulation of TopPIN is as follows:

TopPIN(v) =
(
d(v),

1

d(v)

∑
vk∈N (v)

1

d(vk)

)
. (10)

Its formulation is derived from two aggregation cases, where connections from neighbor nodes affect
the target node’s feature distribution. We present this link of local structure and node features at
Theorem 1. We can leverage the link to a node-level index function ϕ : V → R, that captures the
expected per-node feature variance from local topology. The proof is provided in Section A.

Theorem 1 (Node index ϕ for GNN activation). Let G = (V,E) be an undirected graph. For Ã,
we separately consider unnormalized and normalized cases. Consider a GNN of the form

X(l+1) = ReLU
(
ÃX(l)W (l)

)
,

where the hidden dimensions dl are sufficiently large (dl ≫ 1) for all layers l, and each entry of
X(0) andW (l) is drawn independently from a distribution with zero mean and finite variance. Then,
for each layer l of the GNN, define the scalar function ϕ : V → R by:

ϕ(v) =
∑

vk1
∈N (v)

w(v, vk1
)

∑
vk2

∈N (vk1
)

w(vk1 , vk2) · · ·
∑

vkl
∈N (vkl−1

)

w(vkl−1
, vkl

),

with w(v, u) =

w1(v, u) = 1, Ã = A+ In,

w2(v, u) =
1

d(v) d(u)
, Ã = D− 1

2 (A+ In)D
− 1

2

Asymptotically, the probability distribution of each row of X(l)W (l) and ÃX(l)W (l) is determined
solely by ϕ(v).

ϕ(·) implies that similar quantization parameters can be made when ϕ-values align among nodes.
We show this correlation in Theorem 2.

Theorem 2 (Node index ϕ and GNN quantization parameters). The expected per-node quantization
parameters for X(l) and X(l)W (l) vary as uniformly continuous functions of ϕ(·). In particular:

• If ϕ(u) = ϕ(v), then E[su] = E[sv] and E[zu] = E[zv], where (su, zu) and (sv, zv) are
the respective scale and zero-point parameters of nodes u and v.

• More generally, if |ϕ(u) − ϕ(v)| < δ, then |E[su] − E[sv]| < ϵ and |E[zu] − E[zv]| < ϵ,
for any desired ϵ > 0, by uniform continuity.

Hence, Nodes with similar ϕ-values have similar calibrated quantization parameters in expectation.
The proof can be found in Section B.

While ϕ faithfully reflects the expected per-node quantization statistics, its direct usage is compu-
tationally expensive for multi-layer GNN inference. Therefore, we derive TopPIN from ϕ, which is
notably fast to compute as it is composed with the first summation terms from Theorem 1. Conse-
quently, TopPIN is also noted as follows. Refer to Section C for the details:

TopPIN(v) =
(∑
u∈N (v)

w1(v, u),
∑

u∈N (v)

w2(v, u)
)
. (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of quantization accuracy and time for node classification task

Cora Citeseer PubMed

GCN GAT GIN GCN GAT GIN GCN GAT GIN

Acc. Q.T. Acc. Q.T. Acc. Q.T. Acc. Q.T. Acc. Q.T. Acc. Q.T. Acc. Q.T. Acc. Q.T. Acc. Q.T.

FP32 80.14 - 80.36 - 79.76 - 76.46 - 76.42 - 77.06 - 87.12 - 87.66 - 88.93 -
INT8
SGQ 79.93 (6.4s) 80.30 (7.7s) 78.35 (5.4s) 76.21 (9.3s) 76.20 (9.6s) 76.04 (11.3s) 86.37 (14.8s) 88.96 (19.6s) 88.89 (16.6s)
DQ 78.94 (11.5s) 78.66 (14.6s) 67.56 (18.5s) 75.62 (25.7s) 23.66 (28.4s) 65.64 (50.6s) 88.26 (50.6s) 88.11 (60.6s) 88.32 (188.9s)
EPQ 77.52 (20.6s) 75.60 (23.0s) 56.78 (20.8s) 75.26 (72.4s) 75.30 (73.2s) 56.68 (72.9s) 83.16 (106.5s) 82.54 (107.7s) 77.26 (108.7s)
A2Q 79.66 (3.5s) 75.29 (6.3s) 69.16 (3.3s) 75.72 (3.5s) 74.34 (7.1s) 67.09 (4.0s) 85.20 (8.0s) 83.38 (8.2s) 88.36 (13.1s)
QLR 79.12 (4.0s) 78.84 (6.4s) 60.60 (3.3s) 40.66 (3.8s) 43.76 (6.2s) 56.92 (3.3s) 83.14 (4.1s) 86.66 (6.6s) 86.84 (6.8s)
DRA 79.76 (1.7s) 80.20 (3.6s) 78.83 (1.7s) 76.26 (1.6s) 76.31 (3.1s) 76.55 (1.7s) 86.75 (1.7s) 88.69 (3.3s) 87.73 (1.7s)

TopGQ 79.96 (0.2s) 80.63 (0.2s) 80.01 (0.2s) 76.52 (0.2s) 76.31 (0.2s) 77.08 (0.2s) 87.14 (0.2s) 87.42 (0.2s) 88.82 (0.3s)

INT4
SGQ 78.73 (6.4s) 77.92 (6.8s) 76.93 (5.4s) 76.31 (10.4s) 75.54 (13.3s) 75.47 (11.3s) 85.12 (14.8s) 85.14 (19.6s) 88.33 (16.6s)
DQ 78.54 (11.5s) 77.90 (14.5s) 65.98 (18.5s) 23.54 (25.5s) 23.58 (28.6s) 46.02 (49.5s) 87.78 (50.2s) 87.41 (60.3s) 86.94 (190.6s)
EPQ 76.32 (20.6s) 74.52 (23.1s) 32.98 (20.7s) 74.92 (72.3s) 74.70 (73.2s) 46.66 (72.9s) 81.26 (106.4s) 81.36 (107.5s) 41.18 (108.8s)
A2Q 50.00 (3.6s) 45.64 (6.3s) 68.76 (3.2s) 43.52 (3.5s) 58.50 (7.1s) 62.50 (4.0s) 70.08 (4.0s) 72.52 (8.4s) 84.74 (8.2s)
QLR 76.64 (3.7s) 78.76 (6.2s) 68.38 (3.4s) 37.40 (3.9s) 40.06 (6.1s) 62.90 (3.3s) 74.08 (4.2s) 86.26 (6.4s) 76.90 (6.9s)
DRA 77.02 (1.7s) 74.35 (3.3s) 57.29 (1.7s) 74.10 (1.6s) 72.92 (3.1s) 61.10 (1.7s) 75.09 (1.7s) 72.44 (3.4s) 36.90 (1.7s)

TopGQ 78.84 (0.2s) 78.56 (0.2s) 79.34 (0.2s) 75.96 (0.2s) 76.24 (0.2s) 76.92 (0.2s) 86.92 (0.2s) 86.91 (0.2s) 87.72 (0.3s)

∗Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETTINGS

We evaluate TopGQ on both node-level and graph-level classification tasks, and compare it with five
QAT baselines: SGQuant (Feng et al., 2020), Degree-Quant (Tailor et al., 2020), EPQuant (Huang
et al., 2022), A2Q (Zhu et al., 2022), and QLR (Wang et al., 2023), and one recent PTQ base-
line: DRA (Jeddi et al., 2024). For node classification, we use the Cora, CiteSeer, PubMed, Red-
dit, ogbn-products, and MAG240M datasets; and for graph classification, we use IMDB-BINARY,
and COLLAB datasets. For large-scale and hyper-scale datasets, we evaluate GNN architectures
(e.g., GCN, GraphSAGE, R-GAT) that were introduced as baseline architectures in the original ogb-
benchmark papers (Hu et al., 2020; 2021). For other datasets, we calibrate a fully-trained GCN (Kipf
& Welling, 2016), GAT (Veličković et al., 2018), GIN (Xu et al., 2019), and GraphSAGE (Hamilton
et al., 2017) for 4-bit and 8-bit integer quantization; the bitwidth is fixed across all layers for fair
comparison. Tasks with datasets except MAG240M were conducted in the inductive setting, which
reflects a more practical use of quantization. Node classification with MAG240M was evaluated
with the original transductive setting introduced in the ogb-lsc (Hu et al., 2021) challenge. Further
experimental results and details are provided in the Appendix.

6.2 EVALUATION RESULTS OF NODE-LEVEL TASKS

Table 2: Quantized validation accu-
racy and time on MAG240M node-
classification task with R-GAT

Method Type Acc. Q. Time

FP32 — 69.66 –
SGQ QAT 46.76 5.50 days
A2Q QAT 57.97 2.46 days
QLR QAT 68.10 1.97 days
DRA PTQ 66.13 2.06 days
TopGQ PTQ 69.14 0.98 hours

Table 1 reports results on the conventional node-level
datasets commonly used in baselines. Even though the
datasets are relatively small, TopGQ is the fastest, taking less
than a second for quantization while achieving comparable
or superior accuracy compared to the baselines. For larger
datasets (Table 3), the difference is clearer, where baselines
take up to hours (3.27h, Reddit, GS) for quantization whilst
TopGQ takes less than a minute. For INT4, TopGQ exceeds
all baselines in terms of both accuracy and speed. Notably,
while all methods suffer from low accuracy in ogbn-products
due to the small number of train nodes, TopGQ shows best
accuracy due to its ability to adapt to unseen nodes. For
brevity, we report the full experiment set in the Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of node classification task with large-scale graphs

INT8 INT4

Method Reddit, GCN Reddit, GS ogbn, GCN ogbn, GS Reddit, GCN Reddit, GS ogbn, GCN ogbn, GS

Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time

FP32 94.40 – 95.09 – 71.25 – 70.33 – 94.40 – 95.09 – 71.25 – 70.33 –
SGQ 92.10 (4.64m) 92.01 (3.27h) 39.13 (2.52m) 58.80 (2.11h) 43.00 (4.84m) 87.42 (3.27h) 6.14 (2.57m) 27.95 (2.13h)
DQ 87.01 (10.59m) 90.53 (16.35h) 72.34 (14.05m) 70.17 (6.55h) 64.18 (10.55m) 89.61 (16.33h) 36.66 (13.93m) 69.90 (6.52h)
EPQ 80.29 (5.30m) 93.11 (1.36h) 49.33 (53.68s) 56.83 (52.42m) 22.02 (5.29m) 79.61 (1.36h) 26.96 (53.58s) 26.97 (52.40m)
A2Q 73.71 (4.12m) 75.13 (2.83h) 50.78 (83.94s) 60.15 (1.67h) 23.24 (4.12m) 67.94 (2.83h) 25.95 (83.30s) 31.32 (1.66h)
QLR 94.21 (72.86s) 95.11 (31.82m) 66.48 (76.30s) 63.85 (50.15m) 86.95 (72.79s) 81.68 (31.78m) 27.36 (76.12s) 29.38 (50.16m)
DRA 93.15 (42.99s) 94.36 (23.71m) 36.22 (41.63s) 47.70 (44.97m) 1.75 (42.82s) 5.31 (23.71m) 3.12 (41.61s) 26.40 (44.96m)
TopGQ 94.41 (1.88s) 94.55 (35.79s) 71.33 (1.16s) 70.31 (34.88s) 93.05 (1.87s) 89.88 (35.28s) 39.03 (1.16s) 61.83 (34.90s)

∗Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

Table 4: Comparison of quantization accuracy and time for the graph-classification benchmarks

Method
IMDB-BINARY COLLAB

GCN GAT GIN GCN GAT GIN

Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time

FP32 - 79.58 – 77.36 – 79.72 – 82.54 – 79.99 – 82.31 –

INT8

SGQ 68.28 (5.88m) 68.60 (14.65m) 68.26 (6.74m) 80.96 (39.35m) 80.10 (2.12h) 81.80 (40.26m)
DQ 77.32 (8.98m) 75.12 (25.53m) 76.00 (9.08m) 82.30 (2.39h) 80.30 (8.14h) 81.62 (2.30h)
EPQ 76.30 (13.99m) 74.00 (18.87m) 76.70 (14.17m) 82.36 (2.99h) 79.81 (0.81h) 77.66 (2.95h)
A2Q 75.12 (3.24m) 74.91 (8.18m) 75.97 (3.78m) 64.10 (14.75m) 74.35 (2.03h) 80.21 (14.50m)
QLR 75.50 (3.44m) 74.40 (7.30m) 74.50 (3.70m) 81.98 (13.04m) 75.47 (0.81h) 81.70 (9.42m)
DRA 78.88 (2.24m) 77.70 (4.38m) 78.52 (2.29m) 82.08 (11.49m) 80.78 (0.50h) 82.18 (10.19m)

TopGQ 79.34 (2.18s) 76.58 (5.58s) 79.50 (2.05s) 82.52 (13.86s) 77.46 (47.32s) 82.28 (11.71s)

INT4

SGQ 67.64 (5.89m) 67.49 (14.71m) 63.72 (6.71m) 78.14 (38.87m) 78.22 (2.11h) 72.06 (40.44m)
DQ 76.02 (9.03m) 74.71 (26.07m) 75.98 (9.22m) 73.24 (2.40h) 79.51 (8.16h) 77.61 (2.31h)
EPQ 74.80 (13.95m) 74.10 (18.80m) 64.80 (14.12m) 65.54 (2.98h) 71.63 (0.82h) 65.94 (2.94h)
A2Q 74.09 (3.13m) 72.80 (8.11m) 75.62 (3.79m) 69.32 (14.94m) 74.96 (2.02h) 74.78 (14.40m)
QLR 73.40 (3.46m) 74.00 (7.26m) 73.50 (3.74m) 81.92 (13.09m) 72.87 (0.80h) 79.32 (9.47m)
DRA 74.32 (2.22m) 75.58 (4.34m) 70.28 (2.30m) 64.16 (11.45m) 78.75 (0.50h) 66.24 (10.18m)

TopGQ 76.71 (2.08s) 75.72 (5.69s) 76.00 (2.13s) 81.75 (13.85s) 73.33 (47.29s) 77.39 (11.71s)

∗Q.T.: Quantization Time, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

We further emphasize the benefit TopGQ by using a hyper-scale graph with 240 million nodes in
Table 2. Existing methods take at least 1.97 days, up to 5.50 days to quantize a GNN on such a
hyper-scale graph, while TopGQ cuts it down to 0.98 hour, showing at least 49× speedup. At the
same time, TopGQ presents a negligible difference to the FP32 model.

6.3 EVALUATION RESULTS OF GRAPH-LEVEL TASKS

Table 4 presents the graph-level classification results on IMDB-BINARY and COLLAB. TopGQ
significantly improves quantization speed while maintaining competitive task performance. For in-
stance, while EPQuant is the strongest baseline in GCN COLLAB, it takes 2.39 hours for quantiza-
tion. However, TopGQ shows superior accuracy while cutting down the overhead to 13.86 seconds.
While TopGQ takes the least time to quantize, in many cases TopGQ also shows the best accuracy
with minimal degradation compared to FP32. We attribute this to TopGQ’s explicit integration of
GNN-specific considerations – leveraging TopPIN to effectively capture local topological structures,
while QAT baselines largely neglect these properties. Overall, the experimental results for node and
graph classification tasks demonstrate that TopGQ provides a robust balance between accuracy and
quantization speed, making it well-suited for both small and large-scale GNN tasks.

6.4 EVALUATION RESULTS OF INFERENCE LATENCY

Table 5 report the inference latency of TopGQ and competing baselines with the minibatch setting of
large-scale graphs. Measurements were conducted on both GPU and edge devices, reflecting practi-
cal scenarios for quantized GNN deployment. A key observation is thatA2Q and on-the-fly PTQ are
expensive and slow. This is because both methods require row-wise scans of intermediate activations

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: GCN inference time (sec) on GPU (RTX4090) and edge device (Jetson AGX Orin)

Method Type
GPU (RTX 4090) Edge (Jetson AGX Orin)

Reddit ogbn-products Reddit ogbn-products
Time Speedup Time Speedup Time Speedup Time Speedup

FP32 – 2.18 – 34.51 – 51.68 – 754.09 –
Degree-Quant QAT 1.41 1.55× 20.37 1.69× 33.65 1.54× 463.96 1.63×
A2Q QAT 1.96 1.11× 27.74 1.24× 48.42 1.07× 635.15 1.19×
SGQuant QAT 1.42 1.54× 20.53 1.68× 34.17 1.51× 470.89 1.60×
On-the-fly PTQ PTQ 2.04 1.07× 27.73 1.24× 54.88 0.94× 689.82 1.09×
TopGQ PTQ 1.42 1.54× 20.53 1.68× 34.23 1.51× 473.25 1.59×

Table 6: Accuracy and index computation time
comparison on IMDB-BINARY

Bit Node Index GCN GAT GIN Time

INT4

Naive PTQ 60.14 51.72 56.50 -
Betweenness 50.00 71.42 50.00 1.85s

Closeness 72.90 70.62 67.78 1.48s
Katz 69.34 57.48 72.58 20.04s

TopPIN 76.71 75.72 76.00 0.00059s

Table 7: Ablation Study of TopGQ

Bit Method Reddit ogbn-products

GCN GS GCN GS

INT4
Naive PTQ 3.79 2.97 1.33 24.74
Only TopPIN 93.05 85.83 1.43 52.45

TopGQ 93.05 89.88 39.03 63.18

to derive quantization parameters. These findings highlight the importance of storing quantization
parameters and retrieving them via efficient mapping function. TopGQ leverages TopPIN, where
index computation incurs negligible overhead, enabling efficient inference (Section 5.3).

6.5 ANALYSIS ON TOPPIN AND ABLATION STUDY

We assess the effectiveness of TopPIN by comparing it against a naive PTQ strategy as well as com-
monly used centrality measures, including betweenness, closeness, and Katz centrality (Table 6).
We report both the accuracy and the total time to compute values for all nodes in the dataset. The
naive PTQ approach, which relies on a single global quantization parameter, shows significant ac-
curacy degradation due to high variance in node magnitudes. The conventional centrality measures
may mitigate the accuracy degradation, compared to naive PTQ. However, they require costly global
graph traversal for each node, making them impractical for quantized inference. In contrast, TopPIN
only depends on 1-hop neighborhood information, thereby significantly reducing the computational
overhead. Despite its lightweight design, TopPIN outperforms other centrality baselines, highlight-
ing its practicality and effectiveness as an indexing strategy for GNN quantization.

Finally, Table 7 shows the ablation study, where each row corresponds to the incremental addition
of TopPIN and selective dual-axis scale absorption to the naive PTQ baseline, ultimately forming
TopGQ. While naive PTQ fails to effectively exploit the quantization bins under the INT4 config-
uration, TopPIN mitigates this limitation by leveraging topology to better preserve node features.
However, as graph size increases (e.g., ogbn-products with GCN), TopPIN alone proves insufficient.
By further introducing dual-axis scale absorption, the node-wise quantization effects are consistently
preserved across GNN layers, leading to additional accuracy recovery.

7 CONCLUSION

In this work, we introduce TopGQ, a topology-aware post-training quantization framework for
GNNs that eliminates the need for retraining while preserving high accuracy. By leveraging a novel
node index (TopPIN) and the dual-axis scale absorption mechanism, TopGQ can handle unseen node
features of differing magnitudes. This node-level strategy enables fast and precise activation quan-
tization while preserving the computational benefits of integer operations. Extensive experiments
across various GNN architectures and datasets show that TopGQ achieves quantization-aware train-
ing (QAT)-level accuracy, while reducing quantization time by an order of magnitude compared to
prior works. These results establish TopGQ as a practical and scalable solution for efficient GNN
inference, including large-scale and hyper-scale graph datasets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

The derivation of TopPIN comes from the theoretically grounded link between local structure and
expected node feature variance. We provide the related theorems and corresponding proof in the
Appendix. The code to reproduce the results of TopGQ with citation datasets can be downloaded at
https://anonymous.4open.science/r/topgq-code-3CF1. We provide a README
file for the environment setups, TopPIN generation, and commands for experiments with TopGQ.
Further details for the experiments are at Section I.

REFERENCES

Marco Arazzi, Marco Cotogni, Antonino Nocera, and Luca Virgili. Predicting tweet engagement
with graph neural networks. In ICMR, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. NeurIPS, 2024.

Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph neural networks. In CVPR, 2021.

Andrei Dragos Brasoveanu, Fabian Jogl, Pascal Welke, and Maximilian Thiessen. Extending graph
neural networks with global features. In LoG, 2023.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
series forecasting. NeurIPS, 2020.

Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo Fu, Xuecang Zhang, Junhua
Zhu, Yu Gu, and Ge Yu. Neutronstream: A dynamic gnn training framework with sliding window
for graph streams. arXiv preprint arXiv:2312.02473, 2023.

Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding. Sgquant: Squeezing
the last bit on graph neural networks with specialized quantization. In ICTAI, 2020.

Mingyu Guan, Saumia Singhal, Taesoo Kim, and Anand Padmanabha Iyer. Reinc: Scaling training
of dynamic graph neural networks. arXiv preprint arXiv:2501.15348, 2025.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
NeurIPS, 2017.

Man Hu, Dezhi Sun, Fucheng You, and Han Xiao. Hybrid structure encoding graph neural networks
with attention mechanism for link prediction. In ICTAI. IEEE, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. NeurIPS,
2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Linyong Huang, Zhe Zhang, Zhaoyang Du, Shuangchen Li, Hongzhong Zheng, Yuan Xie, and Ni-
anxiong Tan. Epquant: A graph neural network compression approach based on product quantiza-
tion. Neurocomput., 503(C):49–61, 2022. ISSN 0925-2312. doi: 10.1016/j.neucom.2022.06.097.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In CVPR, 2018.

Hadi Mousanejad Jeddi, Mahdieh Grailoo, and Jose Nunez-Yanez. Leveraging dynamic range anal-
ysis for efficient post-training quantization in graph convolutional networks. In NorCAS, 2024.
doi: 10.1109/NorCAS64408.2024.10752486.

H GaoandS Ji. Graph u-nets. In ICML, 2019.

10

https://anonymous.4open.science/r/topgq-code-3CF1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-aggregator:
Learning to aggregate for 1-bit graph neural networks. In ICCV, 2021.

Gautam Kamath. Bounds on the expectation of the maximum of samples from a gaussian. URL
http://www. gautamkamath. com/writings/gaussian max. pdf, 10(20-30):31, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2016.

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Junxian Guo, Xiuyu Li, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank component for 4-bit
diffusion models. In ICLR.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In ICCV, 2023.

Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Yiwei Wang, Chaosheng Dong, and Xiaokui Xiao.
Scalable and effective implicit graph neural networks on large graphs. In ICLR, 2024a.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. CoRR, 2024b.

Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin Zhu, Yijie Zhu,
Peng Wu, Ke Wang, and Youlong Cheng. Monolith: Real time recommendation system with
collisionless embedding table. In CEUR Workshop in RecSys, 2022.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In ICLR, 2021.

Xiuyan Ni, Shujian Bu, Lucas Adams, and Igor L Markov. Prioritizing original news on facebook.
In CIKM, 2021.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In ICLR, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Shuang Wang, Bahaeddin Eravci, Rustam Guliyev, and Hakan Ferhatosmanoglu. Low-bit quanti-
zation for deep graph neural networks with smoothness-aware message propagation. In CIKM,
2023.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. NeurIPS, 2022.

Dan Wu, Zhaoying Li, and Tulika Mitra. Inkstream: Real-time gnn inference on streaming graphs
via incremental update. arXiv preprint arXiv:2309.11071, 2023.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2), 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. TNNLS, 32(1), 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhibo Xu, Shangqi Lai, Xiaoning Liu, Alsharif Abuadbba, Xingliang Yuan, and Xun Yi. Oblivgnn:
Oblivious inference on transductive and inductive graph neural network. In USENIX Security,
2024.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. In AAAI, 2021.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In SIGKDD, 2022.

Li Zhang and Haiping Lu. A feature-importance-aware and robust aggregator for gcn. In CIKM,
2020.

Yiming Zhang, Lingfei Wu, Qi Shen, Yitong Pang, Zhihua Wei, Fangli Xu, Ethan Chang, and
Bo Long. Graph learning augmented heterogeneous graph neural network for social recommen-
dation. ACM TORS, 2023.

Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian Cheng.
A2q: Aggregation-aware quantization for graph neural networks. In ICLR, 2022.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14), 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE PROOF OF THEOREM 1

Theorem (Node index ϕ for GNN activation). Let G = (V,E) be an undirected graph. For Ã, we
separately consider unnormalized and normalized cases. Consider a GNN of the form

X(l+1) = ReLU
(
ÃX(l)W (l)

)
,

where the hidden dimensions dl are sufficiently large (dl ≫ 1) for all layers l, and each entry of
X(0) andW (l) is drawn independently from a distribution with zero mean and finite variance. Then,
for each layer l of the GNN, define the scalar function ϕ : V → R by:

ϕ(v) =
∑

vk1
∈N (v)

w(v, vk1
)

∑
vk2

∈N (vk1
)

w(vk1
, vk2

) · · ·
∑

vkl
∈N (vkl−1

)

w(vkl−1
, vkl

),

with w(v, u) =

w1(v, u) = 1, Ã = A+ In,

w2(v, u) =
1

d(v) d(u)
, Ã = D− 1

2 (A+ In)D
− 1

2

Asymptotically, the probability distribution of each row of X(l)W (l) and ÃX(l)W (l) is determined
solely by ϕ(v).

Proof. Case 1: If Ã = A+ In (unnormalized), then

ϕ(v) =
∑

vk1
∈N (v)

∑
vk2

∈N (vk1
)

· · ·
∑

vkl
∈N (vkl−1

)

1.

Case 2: If Ã = D− 1
2 (A+ In)D

− 1
2 (normalized), then

ϕ(v) =
1

d(v)

∑
k1∈N (v)

[
1

d(vk1
)2

∑
k2∈N (vk1

)

(
1

d(vk2
)2

· · ·
∑

kl∈N (vkl−1
)

1

d(vkl
)

)]
.

We consider the L-layer GNN

X(l+1) = ReLU
(
ÃX(l)W (l)

)
, l = 0, . . . , L− 1,

Ã ∈
{
A+ In, D− 1

2 (A+ In)D
− 1

2

}
.

Assume that each entry of the initial feature matrix X(0) ∈ Rn×d0 is drawn i.i.d. from a zero-mean
distribution Dx(0, σ

2
x), and each entry of the weight matrices W (l) ∈ Rdl×dl+1 is drawn i.i.d. from

a zero-mean distribution Dl(0, σ
2
l). Denote

Z(l) = X(l)W (l), Y (l) = Ã Z(l), X(l+1) = ReLU
(
Y (l)

)
.

for notational simplicity. We prove in several steps that each row of Z(l) and Y (l) is (approximately)
a zero-mean Gaussian whose variance depends only on a node-specific function ϕ(·), and that this
leads to the stated continuity property of expected quantization parameters.

Step 1: Propagation for 1st layer of GNN. Consider Z(0) = X(0)W (0). For each entry,

Z
(0)
ij =

d0∑
α=1

X
(0)
iα W

(0)
αj .

Since X(0)
iα and W (0)

αj are i.i.d. with zero mean and finite variance, it follows that

E[X(0)
iα W

(0)
αj] = 0, Var(X

(0)
iα W

(0)
αj) = E[(X(0)

iα)2]E[(W (0)
αj)

2] = σ2
xσ

2
0

By the Central Limit Theorem (CLT), Z(0)
ij is approximately N (0, d0σ

2
xσ

2
0).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Next, we consider the multiplication by the augmented adjacency matrix. For instance, Ã =

D− 1
2 (I +A)D− 1

2 .

Y (0) = Ã Z(0), Y
(0)
ij =

n∑
α=1

Ãiα Z
(0)
αj =

∑
{k|vk ∈N (vi)}

1√
d(vi) d(vk)

Z
(0)
kj .

Summing independent Gaussians preserves Gaussianity and yields

Y
(0)
ij ∼ N (0, [d0σ

2
xσ

2
0]

1

d(vi)

∑
vk∈N (vi)

1

d(vk)
).

Step 2: Subsequent layers and ReLU. Next we consider for the second layer of GNN. Focusing
on a particular entry Z(1)

ij , we can write

Z
(1)
ij =

d1∑
α=1

X
(1)
iα W

(1)
αj =

d1∑
α=1

ReLU(Y
(0)
iα)W

(1)
αj .

Since W (1)
αj ∼ N (0, σ2

1), we have :

E
[
X

(1)
iα W

(1)
αj

]
= 0, 1Var

(
X

(1)
iα W

(1)
αj

)
= E[(ReLU(Y

(0)
iα))2]σ2

1 =
[d0σ

2
xσ

2
0]

1
d(vi)

∑
vk∈N (vi)

1
d(vk)

2
σ2
1 .

Summing over α = 1, . . . , d1 and again invoking the CLT, we arrive at

Z
(1)
ij ∼ N (0, [

d0d1σ
2
xσ

2
0σ

2
1

2
]

1

d(vi)

∑
vk∈N (vi)

1

d(vk)
).

We then multiply by the adjacency matrix Ã as before,

Y (1) = Ã Z(1), Y
(1)
ij =

n∑
α=1

Ãiα Z
(1)
αj =

∑
{k1|vk1

∈N (vi)}

1√
d(vi) d(vk1

)
Z

(1)
k1j
.

Thus for Y (1)
ij we have

Y
(1)
ij ∼ N (0, [

d0d1σ
2
xσ

2
0σ

2
1

2
]

1

d(vi)

∑
vk1

∈N (vi)

1

d(vk1
)2

∑
vk2

∈N (vk1
)

1

d(vk2
)
).

One can easily see that through repetition we have

ϕ(vi) =
1

d(vi)

∑
k1∈N (vi)

 1

d(vk1
)2

∑
k2∈N (vk1

)

 1

d(vk2
)2

· · ·
∑

kl∈N (vkl−1
)

1

d(vkl
)



Y
(l−1)
ij ∼ N

0,

(∏l−1
m=0 dm

)
σ2
x

(∏l−1
m=0 σ

2
m

)
2 l−1

· ϕ(vi)


Z

(l)
ij ∼ N

0,

(∏l
m=0 dm

)
σ2
x

(∏l
m=0 σ

2
m

)
2 l

· ϕ(vi)


that is the distribution for each row ofZ(l) and Y (l) are zero-mean Gaussian whose variance depends
on the corresponding node-specific scalar function which is a constant factor of ϕ.

1For a ReLU applied zero mean gaussian random variable Y ∼ N (0, σ2
y),

E[(ReLU(Y))2] =

∫ ∞

0

y2 1

σy
√
2π

e−y2/(2σ2
y) dy =

σ2
y

2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Step 3 : Unnormalized adjacency. For the case Ã = A+ In, since each neighbor contribution is
no longer scaled, the entire degree-based weighting disappears. That is,

ϕ(vi) =
∑

vk1
∈N (vi)

∑
vk2

∈N (vk1
)

· · ·
∑

vkl
∈N (vkl−1

)

1.

Y
(l−1)
ij ∼ N

0,

(∏l−1
m=0 dm

)
σ2
x

(∏l−1
m=0 σ

2
m

)
2 l−1

· ϕ(vi)


Z

(l)
ij ∼ N

0,

(∏l
m=0 dm

)
σ2
x

(∏l
m=0 σ

2
m

)
2 l

· ϕ(vi)


holds.

B THE PROOF OF THE THEOREM 2

Theorem (Node index ϕ and GNN quantization parameters). The expected per-node quantization
parameters for X(l) and X(l)W (l) vary as uniformly continuous functions of ϕ(·). In particular:

• If ϕ(u) = ϕ(v), then E[su] = E[sv] and E[zu] = E[zv], where (su, zu) and (sv, zv) are
the respective scale and zero-point parameters of nodes u and v.

• More generally, if |ϕ(u) − ϕ(v)| < δ, then |E[su] − E[sv]| < ϵ and |E[zu] − E[zv]| < ϵ,
for any desired ϵ > 0, by uniform continuity.

Proof. Let M ∈ Rn×d be any matrix whose ith row is comprised of i.i.d. random variables with
distribution N (0, σ(i)2). Define the row-wise (node-wise) quantization parameters (si, zi) for this
row by

si =
max1≤j≤dMij − min1≤j≤dMij

qmax − qmin
and zi = min

1≤j≤d
Mij − si qmin,

where qmin and qmax are fixed integers. The expectation of maxj Mij and minj Mij can be ex-
pressed via the classical order-statistics integrals2. One has

E
[
max
1≤j≤d

Mij

]
=

∫ ∞

−∞

[
1− FX(x)

]d
dx,

where FX is the cumulative distribution function of N (0, σ(i)2). FX is a continuous function of
σ(i). Also, this integral is absolutely convergent, implying that E[maxj Mij] is a continuous func-
tion of σ(i). A similar argument shows that E[minj Mij] is also continuous in σ(i). Consequently,

E[si] = g
(
σ(i)

)
, E[zi] = h

(
σ(i)

)
,

for some continuous functions g, h. From Steps 1–3, we showed that the row variance σ(i)2 in our
GNN setting is proportional to a node-dependent scalar ϕ(vi). Hence,

E
[
si
]
= G

(
ϕ(vi)

)
, E

[
zi
]
= H

(
ϕ(vi)

)
,

for some continuous functions G,H . Next, let

A = max
v∈V

ϕ(v).

2As d → ∞, it is known that
E[maxj Mij]√

lnd
→

√
2σ

In other words, the integral is approximately σ
√
2 ln d (Kamath, 2015).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Since G,H are continuous on a compact set [0, A], G and H are uniformly continuous on [0, A].
Therefore,∣∣ϕ(u)− ϕ(v)

∣∣ < δ =⇒
∣∣G(ϕ(u))−G

(
ϕ(v)

)∣∣ < ϵ and
∣∣H(ϕ(u))−H

(
ϕ(v)

)∣∣ < ϵ,

for any desired ϵ > 0. In particular, if ϕ(u) = ϕ(v), then E[su] = E[sv] and E[zu] = E[zv].

Remark. In the case that Mij = ReLU
(
Yij

)
for i.i.d. zero mean Gaussian Yij , as d → ∞, the

probability of at least one entry being zero in each row goes to one, so E[minj ReLU(Yij)] → 0.
Thus the above argument for scale parameters is valid for all matrices X(l) and Z(l) = X

(l)
c .

This completes the proof.

C DERIVATION OF TOPPIN FROM THEOREM 1.

In Case 1 at Theorem 1, let d(v) denote the indegree of node v, we can approximate all summations
beyond the first term as a constant C1, which yields:

ϕ(v) =
∑

vk1
∈N (vv)

C1 = d(v) · C1, (12)

In Case 2, we approximate the summand of the second summation as a constant C2, which yields:

ϕ(v) =
1

d(v)

∑
vk1

∈N (vv)

(
1

d(vk1
)2

∑
vk2

∈N (vvk1
)

C2

)
=

1

d(v)

∑
vk1

∈N (vv)

C2

d(vk1
)

(13)

This leads to the second element of TopPIN. Alternatively, approximating the entire summation as
C3 gives ϕ(v) ≈ C3/d(v), further reinforcing the choice of degree-based terms. This lightweight
design effectively balances between accuracy and efficiency. Note that TopPIN(v) does not depend
on the definition of Ã, and thus can be used for various GNNs. Empirically, we observed that the
approximated first-order terms of TopPIN can capture most of the benefits with minimal overhead.

D APPLICATION OF TOPGQ TO GAT-BASED ARCHITECTURES

We provide a theoretical justification for applying TopPIN in GAT-based architectures, which oper-
ates on edge weights obtained via the softmax function. We analyze the bound of expected variance
of node activations, and show that the expected variance of GAT node activation is bounded by the
terms of TopPIN. We demonstrate that these bounds align with the structure of TopPIN, validating
its use as a lightweight proxy for per-node quantization.

D.1 SETUP AND ASSUMPTIONS

We consider a GAT layer as defined in Section A:
X(l+1) = ReLU

(
ÃX(l)W (l)

)
, l = 0, . . . , L− 1,

Z(l) = X(l)W (l), Y (l) = Ã Z(l), X(l+1) = ReLU
(
Y (l)

)
.

with the following assumptions, in line with Section A:

• Z(0)
ij ∼ N (0, d0σ

2
xσ

2
0) (i.i.d. per feature dimension),

• Assume edge weights for target node i are drawn from a normal distribution, specifically
αi ∼ N (1/d(i), σ2

αi
), independently across j and independently across layers, where

0 < σ2
αi

≤ 1

d(i)
− 1

d(i)2
.

We derive the upper bound of σ2
α as follows:

Since
∑

j αij = 1, and αij ≥ 0, E[αi] =
1

d(i) . Using the Cauchy-Schwarz inequality, E[α2
i] ≥

(E[αi])
2 and the bound 0 ≤ αij < 1, this leads to the bound 1

(d(i))2 ≤ E[α2
i] ≤ E[αi] =

1
d(i) .

therefore, 0 < σ2
αi

= Var[αij] = E[α2
ij]− (E[αij])

2 ≤ 1

d(i)
− 1

(d(i))2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 DERIVING THE ACTIVATION VARIANCE BOUND

We aim to quantify the variance of the output activation Y (l)
i at node i. Consider a coordinate j:

Y
(0)
ij =

∑
k∈N (i)

αikZ
(0)
kj .

Since Z(0)
kj ∼ N (0, d0σ

2
xσ

2
0) are independent, The mean and variance of Y (0)

ij is:

E[Y (0)
ij] =

d(i)∑
k=1

E[αikZ
(0)
kj] = 0, (14)

Var(Y
(0)
ij) =

d(i)∑
k=1

E[α2
ik] · E[(Z

(0)
kj)

2] (15)

= (d(i))
(
Var(αi) + (E[αi])

2
)
· d0σ2

xσ
2
0 = (d(i))

(
σ2
αi

+
1

(d(i))2

)
· d0σ2

xσ
2
0 (16)

Denote ψ(i) as
(
σ2
αi

+ 1
(d(i))2

)
. We can bound ψ(i) with σ2

αi
as below.

1

(d(i))2
< ψ(i) =

(
σ2
αi

+
1

(d(i))2

)
≤ 1

(d(i))
,

1

(d(i))
< Var(Y

(0)
ij) ≤ 1

By the Central Limit Theorem (CLT), Y (0)
ij is approximately N (0, d0σ

2
xσ

2
0 · d(i)ψ(i)). Since

quantization scale (e.g., in min–max quantization) is influenced by the activation variance, bounding
ψ(i) leads directly to bounding the expected quantization parameters. We show that the lower bound
of ψ(i) is equivalent to the first term of TopPIN.

With the same assumption and operation for the next layer, and Y (0) as input, the approximated
distribution of Y (1)

ij is N (0, c · ψ2(i)), with c as a constant, and ψ2(i) bounded in the range of
(1
(d(i))2 (

∑
k∈N (i)

1
d(k)), 1]. We demonstrate that the lower bound of ψ2(v) is equivalent to the

product of each term in TopPIN, bringing a strong correlation to the formulation of TopPIN.

D.3 TOPPIN AS A PROXY FOR FEATURE VARIANCE

TopPIN(v) =

d(v), 1

d(v)

∑
u∈N (v)

1

d(u)

 .

Since ψ(v) is a degree-dependent property, TopPIN provides a topology-aware approximated bound
of the per-node activation statistics, without computing the attention scores explicitly.

GAT activation variance is governed by ψ(v). Modeling αij ∼ N (1/d(i), σ2
αi
) gives a tight, degree-

bounded expectation for ψ(v). Quantization parameters are thus bounded in expectation by d(v).
TopPIN aligns with these bounds and provides a practical, theoretically grounded proxy for quanti-
zation in GNNs with softmax-generated edge weights.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXPERIMENTAL RESULTS OF GRAPHSAGE ARCHITECTURE ON INDUCTIVE SETTING

We evaluate the quantization accuracy and quantization speed of our method (TopGQ) on the Graph-
SAGE architecture (Table 8), covering node classification (Cora, Citeseer, PubMed) and graph clas-
sification tasks (IMDB-BINARY, COLLAB). The experimental results show that TopGQ consis-
tently achieves competitive or superior accuracy compared to baseline methods, while significantly
reducing quantization time. These results further support that TopGQ generalizes effectively across
architectures, providing acceleration for GraphSAGE models while achieving comparable perfor-
mance to quantization-aware training methods that require substantially longer quantization times.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Comparison of quantization accuracy with GraphSAGE architecture

Method
Node Classification Graph Classification

Cora Citeseer PubMed IMDB-B COLLAB

Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time

FP32 77.02 - 76.34 - 89.18 - 77.46 - 80.36 -

INT8
SGQ 76.28 (8.24s) 76.06 (14.84s) 88.87 (23.23s) 66.36 (6.15m) 80.29 (38.21m)
DQ 75.50 (23.87s) 74.77 (69.95s) 88.62 (3.07m) 73.04 (9.09m) 79.32 (2.28h)
EPQ 72.84 (21.16s) 74.44 (73.24s) 84.70 (1.80m) 71.91 (14.02m) 79.78 (2.51h)
A2Q 76.94 (4.56s) 75.08 (4.96s) 88.76 (18.21s) 74.49 (4.97m) 79.64 (14.59m)
QLR 77.96 (4.12s) 31.78 (4.62s) 88.08 (7.28s) 63.42 (3.67s) 70.16 (13.71m)
DRA 76.46 (3.11s) 75.74 (3.00s) 88.98 (3.15s) 76.51 (2.67m) 80.27 (12.12m)

TopGQ 76.86 (0.54s) 76.32 (0.56s) 89.00 (0.62s) 77.23 (2.93s) 80.53 (15.89s)

INT4
SGQ 75.52 (8.41s) 75.94 (14.65s) 86.62 (23.24s) 65.56 (6.11m) 78.30 (39.20m)
DQ 74.36 (23.49s) 74.99 (69.91s) 88.58 (3.07m) 73.52 (9.10m) 79.02 (2.26h)
EPQ 73.00 (21.10s) 74.58 (73.47s) 84.44 (1.80m) 61.00 (14.06m) 58.92 (2.58h)
A2Q 74.66 (4.65s) 73.00 (5.01s) 85.32 (18.17s) 73.92 (4.93m) 66.12 (14.64m)
QLR 74.52 (4.05s) 30.68 (4.43s) 87.42 (7.29s) 63.30 (4.69s) 63.30 (13.62m)
DRA 76.18 (3.24s) 74.60 (2.93s) 78.84 (3.42s) 75.04 (2.56m) 78.18 (12.12m)

TopGQ 76.30 (0.53s) 75.76 (0.57s) 87.26 (0.62s) 75.44 (2.91s) 79.38 (15.92s)

∗SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQquant

Table 9: Comparison of quantization accuracy on transductive setting

Dataset Method
INT4 INT8

GCN GAT GIN GraphSAGE GCN GAT GIN GraphSAGE

Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time

Cora

FP32 87.72 - 88.08 - 86.14 - 85.70 - 87.72 - 88.08 - 86.14 - 85.70 -
SGQ 87.46 (4.09s) 82.32 (7.09s) 78.92 (4.46s) 85.82 (6.33s) 87.88 (4.18s) 88.14 (7.05s) 86.02 (4.46s) 85.94 (6.37s)
DQ 86.40 (8.96s) 87.10 (11.72s) 83.10 (29.46s) 86.04 (33.37s) 87.12 (9.77s) 87.54 (11.85s) 80.34 (30.50s) 86.60 (33.50s)
EPQ 83.44 (40.74s) 86.50 (42.17s) 41.96 (40.89s) 84.96 (40.66s) 86.50 (40.71s) 86.98 (42.09s) 81.20 (40.77s) 84.80 (40.60s)
A2Q 55.70 (1.99s) 75.80 (3.65s) 85.30 (2.45s) 86.20 (2.48s) 87.40 (2.06s) 87.60 (3.72s) 86.10 (2.47s) 87.20 (2.75s)
QLR 85.20 (2.47s) 87.04 (3.88s) 85.30 (2.44s) 85.78 (2.16s) 86.54 (2.41s) 87.02 (3.73s) 84.88 (2.30s) 86.74 (2.10s)
DRA 82.60 (1.02s) 77.58 (2.51s) 27.52 (0.98s) 83.80 (1.10s) 87.56 (1.04s) 87.84 (2.48s) 85.40 (1.06s) 85.58 (1.09s)

TopGQ 87.38 (0.66s) 87.64 (0.46s) 85.86 (0.51s) 85.90 (0.46s) 87.78 (0.58s) 88.10 (0.65s) 86.18 (0.55s) 86.10 (0.75s)

Citeseer

FP32 79.84 - 79.78 - 79.36 - 79.56 - 79.84 - 79.78 - 79.36 - 79.56 -
SGQ 79.10 (6.50s) 79.22 (9.36s) 77.28 (8.56s) 79.36 (12.64s) 79.88 (6.40s) 80.02 (9.46s) 79.54 (8.60s) 79.52 (12.55s)
DQ 24.32 (21.36s) 23.10 (23.67s) 70.58 (85.98s) 23.10 (99.04s) 79.56 (21.14s) 79.72 (23.87s) 72.24 (86.44s) 78.98 (100.53s)
EPQ 78.78 (137.88s) 79.34 (139.37s) 47.22 (138.38s) 77.26 (138.65s) 79.14 (138.02s) 79.36 (139.43s) 70.60 (138.41s) 78.24 (138.64s)
A2Q 53.90 (2.20s) 64.00 (3.92s) 78.30 (4.28s) 78.60 (5.47s) 76.50 (2.21s) 79.80 (3.90s) 79.50 (4.27s) 79.20 (5.53s)
QLR 67.78 (2.54s) 79.72 (3.92s) 75.74 (3.72s) 76.16 (4.60s) 77.82 (2.62s) 79.24 (3.89s) 75.00 (3.74s) 79.20 (4.39s)
DRA 77.56 (1.63s) 78.88 (2.46s) 42.34 (1.63s) 78.90 (1.53s) 79.70 (1.63s) 79.78 (1.63s) 79.38 (1.61s) 79.70 (1.50s)

TopGQ 79.56 (0.46s) 79.48 (0.51s) 79.26 (0.61s) 79.98 (0.66s) 79.86 (0.46s) 79.82 (0.62s) 79.44 (0.55s) 79.68 (0.63s)

PubMed

FP32 88.36 – 87.76 – 89.42 – 89.38 – 88.36 – 87.76 – 89.42 – 89.38 –
SGQ 86.52 (12.64s) 82.86 (6.34s) 86.02 (10.18s) 88.84 (8.70s) 88.64 (6.30s) 87.50 (10.11s) 89.72 (8.60s) 89.72 (11.66s)
DQ 87.26 (99.04s) 87.50 (20.27s) 88.60 (33.37s) 88.84 (105.63s) 88.02 (19.28s) 87.04 (31.99s) 89.54 (103.28s) 88.84 (94.59s)
EPQ 84.34 (138.65s) 86.08 (101.95s) 52.32 (2.90s) 87.06 (2.07s) 85.40 (102.00s) 86.54 (103.37s) 86.90 (102.50s) 87.16 (102.61s)
A2Q 79.70 (5.47s) 82.40 (102.52s) 89.10 (107.55s) 87.20 (105.27s) 87.20 (2.16s) 87.10 (6.95s) 90.30 (4.94s) 88.70 (5.42s)
QLR 79.48 (4.60s) 87.42 (2.59s) 85.40 (3.73s) 88.86 (4.23s) 87.06 (2.50s) 87.40 (3.90s) 88.46 (4.21s) 88.94 (4.49s)
DRA 85.10 (1.47s) 83.26 (2.82s) 47.30 (1.42s) 85.96 (2.42s) 88.28 (1.43s) 87.70 (2.81s) 88.76 (1.45s) 89.20 (2.43s)

TopGQ 87.72 (0.66s) 87.52 (0.50s) 89.20 (0.49s) 88.92 (0.86s) 88.42 (0.52s) 87.86 (0.53s) 89.40 (0.62s) 89.14 (0.56s)

∗SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

E.2 NODE CLASSIFICATION ON TRANSDUCTIVE SETTING

We report additional experimental results on transductive node classification tasks in Table 9, in
addition to the inductive results presented in Table 1. The experimental results in Table 9 consistently
align with the trends that TopGQ persistently achieves the lowest quantization times compared to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Comparison of quantization accuracy on large scale inductive datasets

Method

INT4 INT8

ogbn-arxiv ogbn-proteins ogbn-arxiv ogbn-proteins
GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE

Acc. Q.Time Acc. Q.Time R-A Q.Time R-A Q.Time Acc. Q.Time Acc. Q.Time R-A Q.Time R-A Q.Time

FP32 55.57 - 57.54 - 68.96 - 72.00 - 55.57 - 57.54 - 68.96 - 72.00 -
SGQ 55.25 (1.24m) 57.65 (1.87m) 70.75 (8.93m) 73.18 (4.44m) 24.03 (1.22m) 52.90 (1.88m) 54.50 (8.90m) 65.69 (4.44m)
DQ 55.67 (9.30m) 57.46 (13.70m) 60.08 (37.59m) 73.41 (24.54m) 54.02 (8.88m) 56.83 (13.86m) 52.89 (36.90m) 71.84 (23.82m)
EPQ 43.71 (5.61m) 46.72 (5.65m) 63.26 (4.96m) 58.65 (2.85m) 27.11 (5.60m) 44.82 (5.65m) 52.87 (4.96m) 57.71 (2.84m)
A2Q 47.06 (37.39s) 57.51 (48.33s) 49.83 (4.42m) 72.18 (2.80m) 24.00 (36.55s) 55.24 (46.69s) 47.99 (4.41m) 70.06 (2.79m)
QLR 55.54 (46.06s) 57.46 (57.17s) 65.76 (7.11m) 73.65 (3.07m) 52.96 (45.19s) 55.98 (57.60s) 56.21 (7.15m) 50.26 (3.07m)
DRA 54.46 (25.55s) 57.55 (31.99s) 56.91 (3.47m) 72.15 (1.68m) 22.76 (25.47s) 53.56 (31.81s) 51.73 (3.43m) 63.89 (1.67m)

TOPGQ 55.86 (0.52s) 57.55 (0.61s) 68.50 (1.28s) 73.07 (1.27s) 47.97 (0.51s) 54.48 (0.59s) 60.39 (1.28s) 70.72 (1.26s)
∗R-A: ROC-AUC, SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

Table 11: Comparison of quantization accuracy on molecular-domain datasets

Method

INT4 INT8

MUTAG PPI MUTAG PPI
GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE GCN GraphSAGE

Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time Acc. Q.Time

FP32 87.44 – 86.74 – 71.10 – 91.37 – 87.44 – 86.74 – 71.10 – 91.37 –
SGQ 81.57 (86.27s) 86.02 (100.65s) 55.71 (86.27m) 59.46 (100.65m) 81.87 (84.92s) 83.53 (102.82s) 73.26 (6.74m) 91.33 (39.35m)
DQ 85.27 (109.07s) 80.66 (104.39s) 48.32 (9.08m) 64.24 (2.39h) 86.00 (105.04s) 80.24 (102.78s) 64.55 (9.08m) 67.17 (2.39h)
EPQ 76.11 (52.22s) 76.58 (55.83s) 51.18 (14.17m) 74.71 (2.99h) 78.27 (51.20s) 77.11 (55.13s) 63.87 (14.17m) 81.59 (2.99h)
A2Q 80.99 (47.06s) 77.99 (55.59s) 40.83 (3.78m) 43.12 (14.75m) 79.30 (45.56s) 83.12 (50.89s) 40.46 (3.78m) 45.78 (14.75m)
QLR 89.88 (51.85s) 79.27 (51.90s) 61.43 (3.70m) 58.60 (13.04m) 86.64 (50.25s) 76.08 (54.26s) 62.49 (3.70m) 71.89 (13.04m)
DRA 85.78 (33.14s) 85.22 (37.07s) 33.29 (2.29m) 49.74 (11.49m) 85.86 (32.30s) 83.60 (34.89s) 73.26 (2.29m) 88.00 (11.49m)

TOPGQ 78.30 (1.29s) 82.68 (1.22s) 61.10 (1.87s) 71.53 (13.86s) 86.61 (1.29s) 86.74 (5.58s) 73.48 (1.23s) 92.54 (13.86s)
∗SGQ: SGQuant, DQ: Degree-Quant, EPQ: EPQuant

baselines, while maintaining comparable or superior accuracy. This advantage in quantization speed
demonstrates the practical value and effectiveness of TopGQ, particularly in resource-constrained
environments. We show that this advantage holds in both transductive and inductive settings.

E.3 EXPERIMENTAL RESULTS ON LARGE SCALE INDUCTIVE DATASETS.

To further evaluate the generalizability of TopGQ, we provide additional quantization results on
ogbn-arxiv and ogbn-proteins in Table 10, both inductive node classification tasks. For these ex-
periments, we use GCN and GraphSAGE as baseline models, the same GNN baseline architectures
used for the original paper for the dataset (Hu et al., 2020). Compared to existing methods, TopGQ
achieves comparable or superior performance without requiring retraining or gradient-based up-
dates. Also, TopGQ acceleration gains in the quantization time is up to 92 × −1, 076× compared
to baseline methods. These results further demonstrate the effectiveness of TopGQ and its ability to
generalize across diverse datasets.

F LIMITATIONS OF TOPGQ

In this section, we analyze the limitations of TopGQ. First, we find that TopGQ shows limited
performance when applied to molecule-domain datasets. We report the results on molecule-domain
datasets in Table 11, using MUTAG and PPI (Zitnik & Leskovec, 2017). In the table, we can observe
a more noticeable gap between other baselines and TopGQ.We believe this partially comes from the
two reasons: the lack of topological diversity, and the heterophily between connected nodes. Since
each graph is a molecular chain, the nodes exhibit a short range of degree diversity and have weak
distinguishability in topology. As our work builds on the distinct topological characteristics of the
graph, it has a limited advantage in such weak-topology graphs. Also, the graphs in the molecu-
lar domain tend to have a heterophilic connection, as a vast amount of edges connect to different
molecules. To overcome such limitations, we restrict parameter sharing to nodes with matching
input features and similar TopPIN values, thereby encoding heterophily. On the PPI dataset, this
strategy proved effective in preserving accuracy, with additional gains up to 2.86%− 9.47%.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Comparison of theoretical costs and storage for different methods.

Metrics Theoretical Cost Theoretical Storage

FP32 OFP (N
2F1 +NF1F2) OFP (E + F1F2 +NF0)

Degree-Quant OINT (N
2F1 +NF1F2) +OFPelem

(NF2) OINT (E + F1F2 +NF0) +OFP (1)
Degree-Quant-PTQ OINT (N

2F1 +NF1F2) +OFPelem
(NF2) OINT (E + F1F2 +NF0) +OFP (1)

TopGQ OINT (N
2F1 +NF1F2) +OFPelem

(NF2) OINT (E + F1F2 +NF0) +OFP (NT + F2)

Secondly, we find that dual-axis scale absorption introduces an additional runtime operation when
quantizing GNN architectures with dynamic edge weights. In such cases, we fuse precalculated
scaling vectors to the quantization scale matrix for the adjacency matrix, so that dual-axis scale
absorption operation itself can be fused with the runtime quantization of runtime-calculated edge
weights. The absorption will alter the SPMV operation between scale vectors and edge weights to
SPMM operation between scale matrices and edge weights when the absorption is fused with the
online computation. Although this may slightly increase the floating-point operations of runtime-
computed edge weights, the online quantization of arbitrary edge weights is a global overhead across
all GNN quantization methods (Feng et al., 2020; Tailor et al., 2020; Huang et al., 2022; Zhu et al.,
2022; Wang et al., 2023; Jeddi et al., 2024), which also target to quantize GNNs with dynamic edge
weights. On top of that, we believe the difference of the inference time can be fairly negligible by
parallelism within GPU operations.

G QUANTIZATION TRADE-OFF AND COMPRESSION ANALYSIS OF TOPGQ

Here, we present a comprehensive analysis regarding the trade-offs and compression advantages
of TopGQ. We provide analysis of computational cost and storage consumption. The theoretical
analysis is shown in Table 12.

TopGQ finds a good balance between reducing quantization time and preserving accuracy, while
other choices in FP32, Degree-Quant, TopGQ demonstrate disadvantages in either accuracy, time,
or memory. FP32 suffers from the expensive costs of computation and storage. While Degree-Quant
alleviates this cost via quantization, the long quantization time is required to obtain the benefits.
TopGQ is free from the quantization time problem but at the cost of considerable performance
degradation. TopGQ aims to find the best way of addressing each issue by leveraging topological
node similarities with an additional amount of storage cost.

As for the theoretical costs (Table 12), we assume GNN layer propagation as AXW operation,
with A ∈ RN×N , X ∈ RN×F1,W ∈ RF1×F2 with initial dataset size of N × F0. We note the
computation and storage costs of floating-point (FP) and integer (INT) operations as follows:

• OFP (): Complexity for FP operations / Storage complexity for FP values.

• OFPelem
(): Complexity for element-wise FP operations.

• OINT (): Complexity for INT operations / Storage complexity for INT values.

The computational cost shows that quantization converts the expensive floating-point matrix multi-
plication into integer operations. The additional floating-point cost comes from converting integer
outputs back to floating-point values. The theoretical analysis is based on (Zhu et al., 2022).

To further validate the actual compression advantage, we provide the results of memory usage reduc-
tion ratios for inference components of a GCN model on Reddit dataset at Table 13. This confirms
that TopGQ can effectively benefit from model/data memory reduction and faster inference.

H DATASET STATISTICS

We report the dataset statistics used for the evaluation of our method, TopGQ at Table 14. To assess
generalizability, we selected datasets spanning a range of scales. Note that we evaluate graph-level
datasets with 10-fold cross-validation, with a fixed validation/test set size per fold.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 13: Actual quantization reduction ratios for INT8 and INT4

Inference Component INT8 INT4

Graph Input (Node Features) 3.995× 7.982×
Model Intermediate Activation 3.987× 7.951×
Model Weights 3.922× 7.681×

Total Reduction Ratio 3.992× 7.971×

Table 14: Statistics of node-level and graph-level datasets for evaluation.

Node-Level Datasets Graph # Node # Edge # Train Node # Val Node # Test Node # Class #

Cora 1 2,708 10,556 140 500 1,000 7
Citeseer 1 3,327 9,104 120 500 1,000 6
Pubmed 1 19,717 88,648 60 500 1,000 3
PPI 24 56,944 1,587,264 44,906 6,514 5,524 121
Reddit 1 232,965 114,615,892 153,431 23,831 55,703 41
ogbn-proteins 1 132,534 79,122,504 86,619 21,236 24,679 112
ogbn-arxiv 1 169,343 1,166,243 90,941 29,799 48,603 40
ogbn-products 1 2,449,029 123,718,280 196,615 39,323 2,213,091 47
MAG240M 1 244,160,499 1,728,364,232 1,112,392 138,949 88,092 153

Graph-Level Datasets Graph # Avg. Node # Avg. Edge # Train Graph # Val Graph # Test Graph # Class #

MUTAG 188 17.9 39.6 150 19 19 2
IMDB-BINARY 1,000 19.8 193.1 800 100 100 2
COLLAB 5,000 74.5 4914.4 4,000 500 500 3

I ADDITIONAL EXPERIMENTAL SETTINGS

We report evaluation results on two representative graph processing tasks: Node-level classification,
graph-level classification. For node-level classification, we compare the accuracy of Cora, Citeseer,
PubMed, Reddit, ogbn-products, and MAG240M in inductive setting. For the inductive setting, we
construct a training graph containing only train nodes and separate validation/test graphs containing
only validation or test nodes For graph-level classification, we choose IMDB-BINARY and COL-
LAB datasets to evaluate the inductive inference performance of quantized GNNs. We report the
accuracy by 10-fold cross-validation, with a fixed random seed.

All experiments are conducted and measured on a server with a single A6000 GPU, RTX 4090 GPU,
and Intel(R) Xeon(R) Gold 6442Y CPU. We implement our algorithm on PyG library v2.5.2 with
PyTorch v2.4.0. In the index computation, we use the SciPy library and Pytorch implementations.

J CODE

The code, which includes our implementation of this work, is included in a zip archive of the sup-
plementary material. The code is under GNU General Public License v3.0. The guideline to run the
code and reproduce the results from TopGQ is provided in the README file.

21

	Introduction
	Background
	Related work
	Topology-aware GNN quantization: necessity and challenges
	TopGQ methodology
	Overall framework of TopGQ
	Selective dual-axis scale absorption
	TopPIN: a lightweight index for unseen nodes

	Experimental results
	Experimental settings
	Evaluation results of node-level tasks
	Evaluation results of graph-level tasks
	Evaluation results of inference latency
	Analysis on TopPIN and Ablation Study

	Conclusion
	Reproducibility statement
	The proof of thm:dain-optimal-index
	The proof of the thm:toppin-and-quant
	Derivation of TopPIN from thm:dain-optimal-index.
	Application of TopGQ to GAT-based architectures
	Setup and Assumptions
	Deriving the activation variance bound
	TopPIN as a proxy for feature variance

	Additional experimental results
	Experimental results of GraphSAGE architecture on inductive setting
	Node classification on transductive setting
	Experimental results on large scale inductive datasets.

	Limitations of TopGQ
	Quantization trade-off and compression analysis of TopGQ
	Dataset Statistics
	Additional experimental settings
	Code

