
Discovering and Interpreting Shared Components for Sequence
Continuation Tasks in a Large Language Model

Anonymous ACL submission

Abstract

While transformer models exhibit strong capa-001
bilities on linguistic tasks, their complex archi-002
tectures make them difficult to interpret. Re-003
cent work has aimed to reverse engineer trans-004
former models into human-readable representa-005
tions called circuits that implement algorithmic006
functions. We extend this research by analyz-007
ing and comparing circuits for similar sequence008
continuation tasks, which include increasing009
sequences of Arabic numerals, number words,010
and months. By applying circuit interpretabil-011
ity analysis, we identify a key sub-circuit in012
GPT-2 responsible for detecting sequence mem-013
bers and for predicting the next member in a014
sequence. Our analysis reveals that semanti-015
cally related sequences rely on shared circuit016
subgraphs with analogous roles. Overall, doc-017
umenting shared computational structures en-018
ables better model behavior predictions, identi-019
fication of errors, and safer editing procedures.020
This mechanistic understanding of transformers021
is a critical step towards building more robust,022
aligned, and interpretable language models.023

1 Introduction024

Transformer-based large language models (LLMs)025

like GPT-4 have demonstrated impressive natu-026

ral language capabilities across a variety of tasks027

(Brown et al., 2020; Bubeck et al., 2023). How-028

ever, these models largely remain black boxes due029

to their complex, densely connected architectures.030

Understanding how these models work is important031

for ensuring safe and aligned deployment, espe-032

cially as they are already being used in high-impact033

real-world settings (Zhang et al., 2022; Caldarini034

et al., 2022; Miceli-Barone et al., 2023).035

Several researchers argue that the ability to inter-036

pret AI decisions is essential for the safe implemen-037

tation of sophisticated machine learning technolo-038

gies (Hendrycks and Mazeika, 2022; Barez et al.,039

2023). Previous studies show that AI interpretabil-040

ity is vital for AI safety, for catching deception,041

and for addressing misalignment (Barredo Arrieta 042

et al., 2020; Amodei et al., 2016). Mechanistic in- 043

terpretability, a sub-field of interpretability, aims to 044

reverse engineer models into understandable com- 045

ponents (such as neurons or attention heads) (El- 046

hage et al., 2021). By uncovering underlying mech- 047

anisms, researchers can better predict model behav- 048

iors (Mu and Andreas, 2020; Foote et al., 2023) 049

and understand emergent phenomena (Nanda et al., 050

2023; Quirke and Barez, 2023; Marks et al., 2023). 051

Recent work in interpretability has uncovered 052

transformer circuits that implement simple linguis- 053

tic tasks, such as identifying indirect objects in 054

sentences (Wang et al., 2022). However, only a 055

few studies have focused on the existence of shared 056

circuits (Merullo et al., 2023), in which circuits 057

utilize the same sub-circuits for similar tasks. Iden- 058

tifying shared circuits assists in aligning AI via 059

methods such as model editing (Meng et al., 2023), 060

which precisely targets problematic areas for more 061

efficient re-alignment without erroneously altering 062

healthy components. Documenting the existence 063

of shared circuits enables safer, more predictable 064

model editing with fewer risks, as editing a cir- 065

cuit may affect another if they share sub-circuits 066

(Hoelscher-Obermaier et al., 2023). Therefore, 067

interpretability enables safer alignment by under- 068

standing adverse effect prevention. 069

While models use the same components for 070

different tasks, such as when there are far more 071

tasks/features than neurons (Elhage et al., 2022), 072

our focus is on locating components which are 073

shared due to similar, re-usable functionality, and 074

not for vastly different functionalities. Our work 075

tackles the hypothesis that LLMs may re-use cir- 076

cuits across analogous tasks that share common 077

abstractions. For instance, similar sequence con- 078

tinuation tasks, such as number words ("one two 079

three") and months ("Jan Feb Mar"), can be analo- 080

gously mapped to one another via the natural num- 081

ber abstraction (eg. one and Jan are mapped to 1). 082

1



As these tasks share a common abstraction, LLMs083

may have learned to efficiently re-use components084

that utilize shared patterns. Understanding how085

LLMs re-use components based on commonalities086

can shed light on how they represent and associate087

semantic concepts with one another (Gurnee and088

Tegmark, 2023). Not only would this enhance un-089

derstanding of how LLMs actually perceive infor-090

mation, but it may have potential applications in091

transfer learning (Zhuang et al., 2020).092

Thus, in this paper, we demonstrate the existence093

of shared circuits for similar sequence continuation094

tasks, as the similarity across these tasks is clear,095

allowing us to cleanly pinpoint functionality. Our096

key finding is that there exist shared sub-circuits097

between similar tasks in GPT-2 (Radford et al.,098

2019), where the shared components have the same099

functionality across tasks. As shown in Figure 1,100

the circuit for continuing a sequence of numerals101

shares a sub-circuit with the circuit for continu-102

ing a sequence of number words, which generally103

handles sequence continuation functionality.104

The main contributions of this work are: (1) The105

discovery of shared circuits for sequence contin-106

uation tasks, (2) Finding that similar tasks utilize107

sub-circuits with the same functionality, and (3) A108

simple iterative approach to find circuits at a coarse109

granularity level. This advances our understand-110

ing of the mechanisms of how transformer models111

generalize concepts by re-using components.112

2 Background and Related Work113

Transformer Models. We analyze LLM114

transformer-based models with a vocabulary size115

V . The model takes an input sequence (x1, . . . , xp)116

where each xi ∈ {1, . . . , V }. Tokens are mapped117

to de-dimensional embeddings by selecting the xi-118

th column of E ∈ Rde×V (Vaswani et al., 2017).119

Attention Head. A transformer model consists120

of blocks of attention heads, which each consists121

of two matrices: the QK matrix that outputs the122

attention pattern Ai,j ∈ RN×N , and the OV matrix123

that outputs to the residual stream. The output of124

an attention layer is the sum of attention heads hi,j .125

We use the notation L.H for attention heads, where126

L is a layer index and H is a head index in layer L.127

Multi-Layer Perceptron. Each attention layer128

output is passed to a Multi-Layer Perceptron129

(MLP). The MLPs in transformers are generally130

made of two linear layers with a ReLU activation131

function in between.132

Residual Stream. Attention head and MLP out- 133

puts are added to the residual stream, from which 134

components read from and write to. Components in 135

non-adjacent layers are able to interact via indirect 136

effects from the additivity of the residual stream 137

(Elhage et al., 2021). 138

Circuit Discovery. To analyze computations 139

within models, a recent approach has been to find 140

circuits, which are subgraphs of neural networks 141

that represent algorithmic tasks (Elhage et al., 142

2021). In transformer circuits, evidence has shown 143

that in general, MLPs associate input information 144

with features (Geva et al., 2020), while attention 145

heads move information (Olsson et al., 2022). 146

Prior work has employed causal interventions 147

to locate circuits for specific tasks (Meng et al., 148

2023; Vig et al., 2020), such as for the Indirect 149

Object Identification (IOI) task, in which the goal 150

is to complete sentences with the correct subject 151

(Wang et al., 2022). One type of causal interven- 152

tion is called knockout, which, after a model has 153

processed a dataset, replaces (or ablates) the acti- 154

vations of certain components with other values, 155

such as activations sampled from another distri- 156

bution. The sampled activations may come from 157

a corrupted dataset, which outputs the wrong an- 158

swer, but resembles the same dataset without the 159

information of interest (eg. "1 2 3" becomes "8 1 160

4" to preserve information about numbers, while 161

removing sequence information). After running 162

again, if the ablated nodes do not change model 163

performance much, they are deemed as not part of 164

a circuit of interest. 165

Another type of causal intervention is activation 166

patching, which takes the corrupted dataset as in- 167

put, and then restores the activations at a certain 168

component with the original activations to observe 169

how much that restored component recovers the 170

original performance. Path patching is a differ- 171

ent type of patching that allows for a more precise 172

analysis of an intervention’s effect on a particular 173

path (Goldowsky-Dill et al., 2023). It can be per- 174

formed by ablating component interactions, mea- 175

suring the effect of one component on another. The 176

Automatic Circuit DisCovery (ACDC) technique 177

employs iterative patching automatically find cir- 178

cuit graphs for given tasks (Conmy et al., 2023); 179

however, this technique only seeks to automate 180

finding the connectivity of circuit graphs, and not 181

their functionality interpretation. 182

2



Figure 1: Simplified circuit show important components for the Increasing numerals (red) and Increasing Number
Words (blue) tasks merged into one diagram. The purple portions denote a shared, entangled sub-circuit across both
tasks. For demonstration simplicity, components exclusive to each tasks’ circuit are not shown. In §5.2.1, "Number
Detection" Head 4.4 is generalized as an "Adjacent Member Detection" Head.

Model Interpretability of Sequential Tasks.183

(Hanna et al., 2023) found circuits for "greater-184

than" sequence tasks; one such task, for instance,185

would be completing the sentence, “The war lasted186

from the year 1732 to the year 17”, with any valid187

two-digit end years (years > 32). Greater-than tasks188

allow any year greater than a value to be valid,189

which differs from our sequence completion tasks190

that only have one valid answer. The authors noted191

that "similar tasks had similar, but not identical, cir-192

cuits", but all the tasks they tested were on greater-193

than number tasks, and not on non-number tasks194

such as months. In our work, we study similar tasks195

that are more dissimilar in their content.196

Shared Circuits for Similar Tasks. Locating197

shared circuits is a relatively new research topic.198

Previous studies have noted that circuits for the199

Induction task (Olsson et al., 2022) are found in200

circuits for the IOI task. Recently, (Merullo et al.,201

2023) discovered shared circuits for the IOI task202

and Colored Objects task (where the aim is to iden-203

tify the correct color for an object given a set of204

colored objects). The authors utilized an interven-205

tion experiment to improve the Colored Objects206

circuit by modifying subject inhibition heads of the207

IOI circuits to inhibit the wrong color answers. In208

our paper, we focus on tasks which are much more209

similar and map to a common abstraction. While210

the IOI task and Colored Objects task both share211

similar sub-tasks such as "inhibiting tokens", the212

focus of our paper is on enhancing our understand-213

ing of how LLMs represent analogous concepts by214

discovering sub-circuits which represent common215

abstractions, instead of just shared sub-tasks.216

3 Methodology217

Circuit Discovery Process. Our approach be-218

gins by applying iterative pruning to obtain con-219

nectivities for circuits of similar tasks. Then, we 220

employ methods to deduce component functional- 221

ities shared by similar tasks. We approach circuit 222

discovery in two types of stages: 1 223

1. Connectivity Discovery consists of apply- 224

ing causal mediation analysis techniques for 225

identifying important connections for varying 226

component granualarity levels (eg. residual 227

stream, attention head, MLP, neuron). 228

2. Functionality Discovery aims to describe the 229

tasks handled by circuit components, labeling 230

them with interpretable semantics. 231

3.1 Connectivity Discovery Methods 232

Metrics. We utilize the logit difference to measure 233

model task capability by taking the difference be- 234

tween the correct token LC and an incorrect token 235

logit LI . The incorrect logit may be chosen as a 236

token that is not the correct token. To compare 237

an ablated model with the unablated model, we 238

employ the performance score, a percentage cal- 239

culated as the logit difference of the ablated model 240

over the logit difference of the unablated model. 241

Iterative Pruning for Nodes. To search for 242

circuit components, we use a knockout method 243

that ablates one candidate component (node) at a 244

time and checks how much performance falls. This 245

method begins with all the components as a can- 246

didate circuit. At each step, ablation is performed 247

by patching in the mean activations of a corrupted 248

dataset at a candidate node, plus all the nodes not 249

in our candidate circuit. If performance falls below 250

Tn, a user-defined performance threshold, the node 251

is kept for the candidate circuit, as it is deemed 252

necessary for the task. Else, it is removed. 253

1The methods we apply to one stage may also yield infor-
mation about another stage.

3



We start by removing components from the last254

layer, continuing until the first layer; we call this255

procedure the backward sweep. At each layer dur-256

ing the backward sweep, we first ablate the layer’s257

MLP, and then consider its attention heads. Next,258

we then prune again from the first layer to the last259

layer; we call this the forward sweep. At each layer260

during the forward sweep, we first ablate each at-261

tention heads, and then its MLP. We continue it-262

erating by successive backward-forward sweeps,263

stopping when no new components are pruned dur-264

ing a sweep. The output is the unpruned node set.265

This method may be considered as a simpli-266

fied and coarser variation of ACDC (Conmy et al.,267

2023), which decomposes heads into key, query,268

and value (qkv) vector interactions. As head out-269

puts deemed unimportant may also be unimportant270

when decomposed, our method first filters nodes at271

a coarse level, then decomposes heads into separate272

(qkv) nodes during edge pruning. 2273

Iterative Path Patching for Edges. After find-274

ing circuit nodes, we utilize path patching to obtain275

interactions (edges) between them. Edges denote276

nodes with high effects on other nodes 3. We apply277

a form of iterative path patching which works back-278

wards from the last layers by finding earlier com-279

ponents that affect them. First, we ablate the nodes280

pruned from iterative node pruning. Then, we ab-281

late one candidate edge of the unablated nodes at a282

time. Using the same order as the backward sweep,283

we take a node as a receiver and find the sender284

nodes that have an important effect on it. If patch-285

ing the effect of sender A on receiver B causes the286

model performance to fall below threshold Te, the287

edge is kept; else, it is removed.288

For example, if node pruning found a circuit that289

obtains a 85% score above Tn = 80%, we now290

measure which circuits with the ablated nodes and291

the ablated candidate edge still have performance292

above Te = 80% 4. Performing node pruning be-293

fore edge pruning filters out many nodes, reducing294

the number of edges to check. After edge pruning,295

nodes without edges are removed. This method has296

2While the graphs found by ACDC utilize even finer gran-
ularity levels than just head decomposition, the authors of
the paper note that different granularity levels are valid based
on analysis goals (eg. (Hanna et al., 2023) analyze at a level
without head decomposition). We find our chosen granularity
level to be sufficient for analyzing shared circuits.

3As the residual stream allows for indirect effects, edges
may be between components at non-adjacent layers,

4The edge pruning threshold Te may be the same or differ-
ent as the node pruning threshold Tn.

similarities to the path patching used by (Hanna 297

et al., 2023), but with several differences, such as 298

using our performance metric as a threshold. 299

3.2 Functionality Discovery Methods 300

Attention Pattern Analysis. We analyze the 301

QK matrix of attention heads to track informa- 302

tion movement from keys to queries. When we 303

run attention pattern analysis on sequences com- 304

prised solely of sequence member tokens such as 305

“1 2 3 4”, there are no other ‘non-sequence mem- 306

ber’ words to compare to, so it is hard to tell what 307

‘type’ of token each head is attending to. Thus, we 308

measure what types of tokens the heads attend to 309

by using prompts that contained these sequences 310

within other types of tokens, such as "Table lost in 311

March. Lamp lost in April." 312

Component Output Scores. We analyze head 313

outputs by examining the values written to the resid- 314

ual stream via the heads’ output matrices (OV), al- 315

lowing us to see what information is being passed 316

by each head along in the circuit. These values 317

are measured by component output scores; we uti- 318

lize a "next sequence" score that measures how 319

well a head, given sequence token I , outputs token 320

I + 1. The details of this method are described in 321

Appendix F. 322

Logit Lens. Logit lens is a method for under- 323

standing the internal representations by unembed- 324

ding each layer output into vocabulary space and 325

analyzing the top tokens (Nostalgebraist, 2020). 326

We use logit lens to uncover the layer at which 327

the predicted token goes from the ’last sequence 328

member’ to the ’next sequence member’. 329

4 Discovering Circuit Connectivity 330

In this section, we describe the experimental setup 331

for our ablation experiments. We observe that there 332

are multiple circuits, with slight variations between 333

them, that have similar performances for the same 334

task. However, we find that important heads are of- 335

ten found in most circuits, regardless of the method, 336

metric or dataset choices. Thus, we focus more on 337

the "big picture" comparison of scores and on the 338

most important heads, and less on the exact vari- 339

ations between scores or the less important heads. 340

We ran experiments on a NVIDIA A100 GPU. 341

Model. We test on GPT-2 Small (117M param- 342

eters), which has 144 heads and 12 MLPs. 343

Task Comparison. We compare increasing se- 344

quences of: (1) Arabic Numerals (or ’Numerals’), 345

4



(2) Number Words, and (3) Months.346

Datasets. We run a generated prompts dataset of347

length 4 sequences (eg. 1 2 3 4). We found that the348

model could continue Numerals sequences even349

past 1000. However, our focus in this paper is not350

on finding circuits only for Numeral sequences, but351

on prompt types that share a common abstraction.352

Thus, to better compare numbers to months, we353

use sequences ranging from 1 to 12.354

For each task, we generate samples by placing355

our sequence members among non-sequence to-356

kens. For instance, one sample may be ’Kyle was357

born in February. Anthony was born in March.358

Grant was born in April. Madison was born in’.359

Placing sequence members amongst non-sequence360

tokens allows us to evaluate the circuit represen-361

tation of the shared sub-task of how the model se-362

lects sequence members from non-sequence mem-363

bers. We generate a total of 1536 samples per task;364

thus, there are 4608 total samples. More discussion365

about datasets is found in Appendix A.366

Corrupted Datasets. We corrupt sequence in-367

formation by using randomly chosen tokens of a368

similar sequence type (eg. ’1 2 3’ is replaced with369

’8 1 4’). The non-sequence tokens are kept the370

same, while the sequence members are replaced.371

Metric. We measure using logit difference372

using the last sequence member as the incorrect373

token (eg. 1 2 3 has 4 as correct, and 3 as incorrect).374

4.1 Shared Sub-Circuits for Similar Sequence375

Continuation Tasks376

We discover shared sub-circuits across the three377

sequence continuation tasks. Figure 2 combines378

all three circuits into one graph 5. These circuits379

were found using a performance threshold of Tn =380

Te = 80%. There is a sub-circuit found across the381

circuits for all three tasks, which includes heads382

4.4, 7.11 and 9.1, which we show to be important383

in Table 2. As seen in both Figure 2 and in Table384

4 in Appendix C, in which only head 0.5 of the385

Numerals circuit is not part of the Number Words386

circuit, the Numerals circuit is nearly a subset of387

the Number Words circuit. This suggests that the388

Number Words circuit uses the Numerals circuit as389

a sub-circuit, but requires additional components390

to make accurate predictions.391

In Table 1, we compare every task’s circuit with392

other similar tasks, isolating each circuit by resam-393

5Due to the (qkv) circuit’s large display size, we show the
circuits with (qkv) decomposition in Appendix C.

pling ablation on non-circuit components. First, 394

we observe that in general, the model cannot per- 395

form well on these tasks for non-sequence-task 396

circuits. For instance, we show that the model has 397

negative performance for all tasks when run on 398

the IOI circuit. The negative values mean that the 399

(LC)− (LI) < 0 in the ablated circuit, indicating 400

bad performance. 401

We observe that for the Numerals task, the model 402

performs better on the Number Words circuit than 403

the Numerals circuit, which may be because the 404

Numerals circuit is nearly a sub-circuit of the Num- 405

ber Words circuit. It is possible to find a Numer- 406

als circuit with higher performance by setting the 407

threshold higher. However, this paper’s pruning 408

methods attempt to find minimal circuits with only 409

necessary components above a certain threshold; 410

they do not seek to find the circuit with the most 411

optimal performance 6. 412

For the Number Words task, the model only per- 413

forms well with the Number Words circuit, as this 414

task may require more components than the other 415

two. On the other hand, for the Months task, the 416

model performs even better than the unblated cir- 417

cuit for all sequence-task circuits, indicating that 418

this task may not require as many components as 419

the other two. Due to components such as inhi- 420

bition heads (Wang et al., 2022), ablating certain 421

heads may allow the model to perform better for 422

specific tasks, though may hurt its ability on other 423

tasks. Overall, these results show that these tasks 424

do not use the exact same circuit, but may have par- 425

tially good performance on other sequence task’s 426

circuits due to shared sub-circuit(s). 427

Several important attention heads are identified 428

across various circuits. We define a head as im- 429

portant if their ablation from a circuit causes an 430

average drop of at least -20% performance for all 431

tasks 7. Table 2 compares the importance of these 432

attention heads for our tasks. We note that ablating 433

heads 0.1, 4.4, 7.11, and 9.1 cause drops >20% for 434

all three circuits, while ablating 1.5% causes a drop 435

>20% for Numerals and Number Words circuits. 436

MLP Connectivity. For all tasks, we find that 437

several MLP ablations cause a >20% performance 438

drop. In particular, MLP 9 causes a substantial 439

drop of more than 90%. These results are found in 440

6One can obtain circuits with >100% performance by set-
ting the threshold to be 100.

720% is chosen due to using Tn = 80%, so that for many
removal order variations, a component with a 20% importance
cannot be removed, unless there are alternative backups.

5



0 , 1

8 , 8

1 , 5

6 , 1 7 , 6

6 , 108 , 6

4 , 4

5 , 8

7 , 10

10 , 7

7 , 11

6 , 6

9 , 1

MLP 1

MLP 2

MLP 3

MLP 4

MLP 5 MLP 6

resid_post

MLP 9

MLP 10

MLP 11

8 , 1

5 , 0

MLP 7

MLP 8

9 , 5

8 , 9

0 , 5

4 , 10

8 , 11

MLP 0

7 , 2

9 , 7

Figure 2: A Numerals Sequence Circuit (red), a Number Words Sequence Circuit (blue), a Months Sequence Circuit
(gold). The overlapping sub-circuit parts are coded as follows: Numerals and Number Words only are in purple,
Numerals and Months only are in orange, Number Words and Months only are in green, and All Three Tasks are in
white with black edges. The most important sub-circuit components are in gray with a bold outline. Resid_post
denotes the residual stream state right before the linear unembedding to logits.

Table 1: Performance Scores for Figure 2 Circuits’ Components (cols) run on Similar Tasks (rows)

Numerals Task NumWords Task Months Task

Numerals Circuit 81.01% 48.41% 113.52%

Number Words Circuit 87.35% 81.11% 103.64%

Months Circuit 43.74% 32.36% 80.30%

IOI Circuit -6.70% -15.82% -9.20%

Appendix D.441

5 Explaining Shared Component442

Functionalities443

5.1 Sub-Circuit Hypothesis444

We hypothesize how the important shared compo-445

nents for the three tasks work together as a func-446

tional sub-circuit. We define sub-tasks that all three447

sequence continuation tasks share: (1) Identifying448

Sequence Members and (2) Predicting the Next449

Member after the Most Recent Member.450

Our hypothesis is that early heads, in particu-451

lar 1.5 and 4.4, identify similar, adjacent sequence452

members, such as numbers or Months, without453

yet attending to the distinction of which numbers454

should be focused on more than others. Following455

this, information is passed further along the model456

to heads, such as 7.11, to discern consecutive num-457

ber sequences and deem the two most recent el-458

ements as more significant. This information is 459

then conveyed to head 9.1 to put more emphasis on 460

predicting the next element in the sequence. Lastly, 461

the next element calculation is done primarily by 462

MLP 9. Thus, this sub-circuit would represent an 463

algorithm that carries out the sub-tasks shared for 464

all three tasks. This section details evidence that 465

supports this circuit hypothesis. 466

5.2 Attention Head Functionality 467

Duplicate Head Head 0.1 was noted to be a Dupli- 468

cate Token Head by (Wang et al., 2022), in which it 469

recognizes repeating patterns. As we did not note 470

that 0.1 had any effects on sequence members in 471

particular, given our non-sequence token patterns, 472

it is likely that 0.1 is recognizing all repeating pat- 473

terns in general, which is prevalent in our dataset. 474

Though it plays an important role for this sub-task, 475

it does not appear specific to sequence continua- 476

tion. 477

6



Table 2: Drop in Task Performance when a Head is Removed from a Circuit in Figure 2.

Important Head Numerals NumWords Months

0.1 -44.29% -78.74% -52.10%

4.4 -33.19% -34.11% -73.16%

7.11 -41.64% -44.78% -45.37%

9.1 -34.94% -27.74% -43.03%

1.5 -27.83% -18.65% -

5.2.1 Sequence Member Detection Heads478

We discover a "similar member" detection head 1.5,479

and a "sequence member detection" 4.4. Attention480

pattern analysis reveals that these heads detect how481

sequence members (as queries) attend to sequence482

members (as keys) of the same type, such as nu-483

merals. To determine if this detection only occurs484

if the sequence members are in sequential order, or485

if this occurs even if they are not, we input prompts486

with Numerals in random order but with Months in487

sequential order. In Figure 3, we observe, for head488

1.5, similar types attend to similar types. However,489

for head 4.4, Months attend to Months, but Nu-490

merals do not attend to Numerals, as the Numerals491

are not in sequential order. Therefore, in general,492

both heads 1.5 and 4.4 appear to detect similar to-493

ken types that belong to an ordinal sequence such494

Numerals or Months, but head 4.4 acts even more495

specifically as an adjacent sequence member detec-496

tion head. More discussion about these attention497

patterns are in Appendix G.498

5.2.2 Last Sequence Token Detection Head499

In Figure 2, there is an edge from heads 1.5 and500

4.4 to 7.11, showing 7.11 obtaining sequence token501

information from earlier heads. Then, we observe502

in Figure 4 that for head 7.11, query tokens attend503

to its previous key tokens, indicating 7.11 acts like504

a "Previous Token" head. Noticeably, at the last505

query token, the strongest attention appears to be506

from the non-sequence tokens to the sequence to-507

kens. This head may "ordering" identified sequence508

tokens to send to the last token, or it may be figur-509

ing out the pattern at which token the model should510

predict the next member of the identified sequence;511

for instance, it notices that after each non-number512

token often follows the next member of the number513

sequence.514

5.2.3 Next Sequence Head 515

Figure 2 shows that head 9.1 receives information 516

from both head 4.4 and 7.11. Head 9.1, shown 517

in Figure 5, pays strong attention to only the last 518

member of the sequence, and it appears to attend 519

even stronger to the last member than 7.11. 520

Next Sequence Scores. To check that head 9.1 521

outputs next sequence tokens, we study its com- 522

ponent output scores. Table 3 shows that given a 523

numeral token I as input (eg. 1), head 9.1 often 524

outputs a token I+1 or higher (eg. 2). For numerals 525

between 1 and 100, its next score is 87%, while 526

its copy score is 59%. We also note that the next 527

sequence scores of most heads are low, with an 528

average of 3.29%, and that head 9.1 has the highest 529

next sequence score. Thus, it seems to function as 530

a "next sequence head". This is reinforced by the 531

next sequence score for number words, which is 532

90.63%, while the average for all attention heads 533

is 2.97%. Although head 9.1 does not appear to 534

output months given any month token, we observe 535

something peculiar: 9.1 is the only head that will 536

output the next rank given a month (eg. given 537

"February", output "third", and its "next rank given 538

month" score is 31.25%. This appears to be related 539

to how months can be mapped onto ranks. 540

Table 3: The top-3 tokens output tokens after OV Un-
embedding head 9.1 for several input tokens.

Token Top-3 Tokens after Unembed

‘78’ ’ 79’, ‘80’, ‘81’

‘six’ ’ seventh’, ’ eighth’, ’ seven’

‘August’ ‘ighth’, ‘eighth’, ‘ninth’

7



Figure 3: Attention Patterns for (a) Head 1.5 and (b) Head 4.4. Lighter colors mean higher attention values. For
each of these detection patterns, the query is shown in green, and the key is shown in blue. The Months are in
sequential order, but the Numerals are not. We observe for head 1.5, similar types attend to similar types. However,
for head 4.4, Months attend to Months, but that Numerals do not attend to Numerals.

Figure 4: Head 7.11 Attention Pattern for Numerals.
At the last token, head 7.11 has attends more to later
numbers. The previous token offset pattern is in dark
green.

Figure 5: Head 9.1 Attention Patterns shows it pays
strong attention to only the most recent number.

5.3 MLP Functionality 541

For all sequence types, logit lens reveals that the 542

model does not predict the correct answer before 543

MLP 9. However, after the information is pro- 544

cessed through MLP 9, the model outputs the next 545

sequence member. These findings suggests that 546

MLP 9 is largely responsible for finding the next 547

sequence member, even more so than Head 9.1, 548

which may just be boosting this information and/or 549

acting as a backup component. Logit lens results 550

can be found in Appendix §D. 551

6 Conclusion 552

Understanding the inner workings of neural net- 553

works such as transformers is essential for foster- 554

ing alignment and safety. In this paper, we iden- 555

tify that across similar sequence continuation tasks, 556

there exist shared sub-circuits that exhibit similar 557

functionality. Specifically, we find sequence token 558

detection heads and components associated with 559

next sequence outputs. The aim of this work to ad- 560

vance our understanding of how transformers dis- 561

cover and leverage shared computational structures 562

across similar tasks. By locating and comparing 563

these circuits, we hope to gain insight into both 564

the inductive biases that allow efficient generaliza- 565

tion in these models and their semantic represen- 566

tations of abstract concepts, which may provide 567

evidence for hierarchical associations. In future 568

work, we plan to investigate how shared circuits 569

affects model editing. 570

8



Limitations571

As the research topic of our work is relatively new,572

the aim of this paper is to first investigate shared573

circuits for simple tasks. This way, later work may574

build upon it to look for shared circuits for more575

complex tasks that are more important for AI safety.576

We discuss limitations of this paper in this section.577

Number of Models. As it is common for many578

well-received interpretability papers to focus on579

analyzing one model (Wang et al., 2022; Conmy580

et al., 2023; Hanna et al., 2023; Nanda et al., 2023)581

or even just one attention head (McDougall et al.,582

2023), we only analyze one model. We plan to583

investigate this phenomenon for multiple models,584

including toy models and larger models, that can585

perform other types of sequence continuation in fu-586

ture work. This future work may include Fibonacci587

sequences, or comparing circuits for adding 2 (e.g.588

2 4 6 8 10) vs circuits for multiplying 2 (e.g. 2589

4 8 16 24), studying if the model uses diverging590

circuits to differentiate between the two tasks while591

still computing parts of them using shared circuits.592

Dataset Size. As there are only twelve months,593

the number of possible continuing sequences was594

limited. Additionally, even if months were not595

used, GPT-2 also has limited prediction ability for596

number word sequences, as detailed in Appendix597

A. However, our dataset size for the months con-598

tinuation task fully captures all of the months; in599

contrast, a small dataset size brings more issues600

when it does not capture all of the true distribution.601

Task Complexity. Though sequence continu-602

ation may be seen as possibly simply associating603

what comes after every sequence member, the aim604

of our work is to find how this task is internally605

represented, even if it is done by simple association.606

Previous works have investigated how association607

is done by MLPs (Geva et al., 2020), so understand-608

ing how language models associate information can609

shed light on how it represents similar concepts.610

Future Work. In the future, we plan to611

dive deeper into this study, such as by perform-612

ing neuron-level and feature-level analysis, and by613

examining components exclusive to the number614

words task to see if they handle mapping between615

abstract representations of numbers and number616

words. Our future work plans also include ana-617

lyzing the effects of model editing on shared, en-618

tangled circuits. These may include quantifying619

the relationship between circuit entanglement and620

editing impact (which may be done via embedding621

space projection (Dar et al., 2022)), modifying the 622

sub-circuit used for sub-task S and observing if the 623

ability to recognize S in multiple tasks is destroyed, 624

and utilizing methods such as model steering to edit 625

task S to perform a similar task S′ (Turner et al., 626

2023; Merullo et al., 2023). 627

References 628

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul 629
Christiano, John Schulman, and Dan Mané. 2016. 630
Concrete problems in ai safety. arXiv: Learning, 631
abs/1606.06565. 632

Fazl Barez, Hosien Hasanbieg, and Alesandro Abbate. 633
2023. System iii: Learning with domain knowledge 634
for safety constraints. 635

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, 636
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al- 637
berto Barbado, Salvador Garcia, Sergio Gil-Lopez, 638
Daniel Molina, Richard Benjamins, Raja Chatila, and 639
Francisco Herrera. 2020. Explainable artificial intel- 640
ligence (xai): Concepts, taxonomies, opportunities 641
and challenges toward responsible ai. Information 642
Fusion, 58:82–115. 643

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 644
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 645
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 646
Askell, et al. 2020. Language models are few-shot 647
learners. Advances in neural information processing 648
systems, 33:1877–1901. 649

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 650
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe- 651
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, 652
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, 653
and Yi Zhang. 2023. Sparks of artificial general in- 654
telligence: Early experiments with gpt-4. 655

Guendalina Caldarini, Sardar Jaf, and Kenneth McGarry. 656
2022. A literature survey of recent advances in chat- 657
bots. Information, 13(1):41. 658

Arthur Conmy, Augustine N Mavor-Parker, Aengus 659
Lynch, Stefan Heimersheim, and Adrià Garriga- 660
Alonso. 2023. Towards automated circuit discov- 661
ery for mechanistic interpretability. arXiv preprint 662
arXiv:2304.14997. 663

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. 664
2022. Analyzing transformers in embedding space. 665

Nelson Elhage, Tristan Hume, Catherine Olsson, 666
Nicholas Schiefer, Tom Henighan, Shauna Kravec, 667
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, 668
Carol Chen, Roger Grosse, Sam McCandlish, Jared 669
Kaplan, Dario Amodei, Martin Wattenberg, and 670
Christopher Olah. 2022. Toy models of superposition. 671
Transformer Circuits Thread. Https://transformer- 672
circuits.pub/2022/toy_model/index.html. 673

9

http://arxiv.org/abs/2304.11593
http://arxiv.org/abs/2304.11593
http://arxiv.org/abs/2304.11593
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2209.02535


Nelson Elhage, Neel Nanda, Catherine Olsson, Tom674
Henighan, Nicholas Joseph, Ben Mann, Amanda675
Askell, Yuntao Bai, Anna Chen, Tom Conerly,676
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac677
Hatfield-Dodds, Danny Hernandez, Andy Jones,678
Jackson Kernion, Liane Lovitt, Kamal Ndousse,679
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-680
plan, Sam McCandlish, and Chris Olah. 2021. A681
mathematical framework for transformer circuits.682
Transformer Circuits Thread. Https://transformer-683
circuits.pub/2021/framework/index.html.684

Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas,685
Shay Cohen, and Fazl Barez. 2023. Neuron to graph:686
Interpreting language model neurons at scale. In687
Proceedings of the Trustworthy and Reliable Large-688
Scale Machine Learning Models Workshop at ICLR.689

Mor Geva, Roei Schuster, Jonathan Berant, and Omer690
Levy. 2020. Transformer feed-forward layers are key-691
value memories. arXiv preprint arXiv:2012.14913.692

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,693
and Aryaman Arora. 2023. Localizing model behav-694
ior with path patching.695

Wes Gurnee and Max Tegmark. 2023. Language models696
represent space and time.697

Michael Hanna, Ollie Liu, and Alexandre Variengien.698
2023. How does gpt-2 compute greater-than?: In-699
terpreting mathematical abilities in a pre-trained lan-700
guage model.701

Dan Hendrycks and Mantas Mazeika. 2022. X-702
risk analysis for ai research. arXiv preprint703
arXiv:2206.05862.704

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran,705
Ioannis Konstas, and Fazl Barez. 2023. Detecting706
edit failures in large language models: An improved707
specificity benchmark.708

Luke Marks, Amir Abdullah, Luna Mendez, Rauno709
Arike, Philip Torr, and Fazl Barez. 2023. Interpreting710
reward models in rlhf-tuned language models using711
sparse autoencoders.712

Callum McDougall, Arthur Conmy, Cody Rushing,713
Thomas McGrath, and Neel Nanda. 2023. Copy714
suppression: Comprehensively understanding an at-715
tention head.716

Kevin Meng, David Bau, Alex Andonian, and Yonatan717
Belinkov. 2023. Locating and editing factual associa-718
tions in gpt.719

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2023.720
Circuit component reuse across tasks in transformer721
language models.722

Antonio Valerio Miceli-Barone, Fazl Barez, Ioannis723
Konstas, and Shay B. Cohen. 2023. The larger they724
are, the harder they fail: Language models do not725
recognize identifier swaps in python.726

Jesse Mu and Jacob Andreas. 2020. Compositional 727
explanations of neurons. Advances in Neural Infor- 728
mation Processing Systems, 33:17153–17163. 729

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess 730
Smith, and Jacob Steinhardt. 2023. Progress mea- 731
sures for grokking via mechanistic interpretability. 732

Nostalgebraist. 2020. Interpreting gpt: The 733
logit lens. https://www.alignmentforum. 734
org/posts/AcKRB8wDpdaN6v6ru/ 735
interpreting-gpt-the-logit-lens. Accessed: 736
[Insert Date Here]. 737

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas 738
Joseph, Nova DasSarma, Tom Henighan, Ben Mann, 739
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con- 740
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, 741
Danny Hernandez, Scott Johnston, Andy Jones, Jack- 742
son Kernion, Liane Lovitt, Kamal Ndousse, Dario 743
Amodei, Tom Brown, Jack Clark, Jared Kaplan, 744
Sam McCandlish, and Chris Olah. 2022. In-context 745
learning and induction heads. Transformer Circuits 746
Thread. Https://transformer-circuits.pub/2022/in- 747
context-learning-and-induction-heads/index.html. 748

Philip Quirke and Fazl Barez. 2023. Understanding 749
addition in transformers. 750

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario 751
Amodei, and Ilya Sutskever. 2019. Language models 752
are unsupervised multitask learners. 753

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan 754
Hadfield-Menell. 2023. Toward transparent ai: A 755
survey on interpreting the inner structures of deep 756
neural networks. 757

Alexander Matt Turner, Lisa Thiergart, David Udell, 758
Gavin Leech, Ulisse Mini, and Monte MacDiarmid. 759
2023. Activation addition: Steering language models 760
without optimization. 761

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 762
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 763
Kaiser, and Illia Polosukhin. 2017. Attention is all 764
you need. Advances in neural information processing 765
systems, 30. 766

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, 767
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart 768
Shieber. 2020. Investigating gender bias in language 769
models using causal mediation analysis. Advances 770
in neural information processing systems, 33:12388– 771
12401. 772

Kevin Wang, Alexandre Variengien, Arthur Conmy, 773
Buck Shlegeris, and Jacob Steinhardt. 2022. Inter- 774
pretability in the wild: a circuit for indirect object 775
identification in gpt-2 small. 776

Audrey Zhang, Liang Xing, James Zou, et al. 2022. 777
Shifting machine learning for healthcare from de- 778
velopment to deployment and from models to data. 779
Nature Biomedical Engineering, 6:1330–1345. 780

10

http://arxiv.org/abs/2305.19911
http://arxiv.org/abs/2305.19911
http://arxiv.org/abs/2305.19911
http://arxiv.org/abs/2304.05969
http://arxiv.org/abs/2304.05969
http://arxiv.org/abs/2304.05969
http://arxiv.org/abs/2310.02207
http://arxiv.org/abs/2310.02207
http://arxiv.org/abs/2310.02207
http://arxiv.org/abs/2305.00586
http://arxiv.org/abs/2305.00586
http://arxiv.org/abs/2305.00586
http://arxiv.org/abs/2305.00586
http://arxiv.org/abs/2305.00586
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2310.08164
http://arxiv.org/abs/2310.08164
http://arxiv.org/abs/2310.08164
http://arxiv.org/abs/2310.08164
http://arxiv.org/abs/2310.08164
http://arxiv.org/abs/2310.04625
http://arxiv.org/abs/2310.04625
http://arxiv.org/abs/2310.04625
http://arxiv.org/abs/2310.04625
http://arxiv.org/abs/2310.04625
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2310.08744
http://arxiv.org/abs/2310.08744
http://arxiv.org/abs/2310.08744
http://arxiv.org/abs/2305.15507
http://arxiv.org/abs/2305.15507
http://arxiv.org/abs/2305.15507
http://arxiv.org/abs/2305.15507
http://arxiv.org/abs/2305.15507
http://arxiv.org/abs/2301.05217
http://arxiv.org/abs/2301.05217
http://arxiv.org/abs/2301.05217
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
http://arxiv.org/abs/2310.13121
http://arxiv.org/abs/2310.13121
http://arxiv.org/abs/2310.13121
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2308.10248
http://arxiv.org/abs/2308.10248
http://arxiv.org/abs/2308.10248
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593
https://doi.org/10.1038/s41551-022-00898-y
https://doi.org/10.1038/s41551-022-00898-y
https://doi.org/10.1038/s41551-022-00898-y


Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,781
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing782
He. 2020. A comprehensive survey on transfer learn-783
ing.784

A Dataset Details785

Code and data will be released after review.786

Dataset Generation Procedure. To gener-787

ate each sample, we place each sequence within788

a specific template that is generated from an ab-789

stract template. For instance, the abstract template790

of ’<name 1> born in <seq mem A>. <name 2>791

born in <seq mem B>. <name 3> born in’ can fill792

in names with (Kyle, Anthony, Madison) to make793

a specific template. Then, the specific template794

can be filled in with sequence members (Febru-795

ary, March) to create the sample ’Kyle was born in796

February. Anthony was born in March. Madison797

was born in’. We generate 1024 samples from each798

of three abstract templates, where each sequence799

(eg. 1 2 3, or 8 9 10) is represented the same num-800

ber of times, for a total of 1536 samples per task.801

We use single tokens for all tokens in each sample.802

We choose samples such that the model outputs the803

correct answer with at least twice as high proba-804

bility as the incorrect answer’s probability. Each805

specific template must also meet these conditions806

for all sequences (eg. must work for 1 2 3, 8 9807

10, and two three four); else, it is not used. Each808

template is represented in equal proportion.809

We use the same templates for all tasks. For810

example: given the sample for the months task811

"Ham was bought in February. Egg was bought812

in March. Bread was bought in April. Steak was813

bought in”, we use the same non-sequence tokens814

to make a sample for the digits task: "Ham was815

bought in 2. Egg was bought in 3. Bread was816

bought in 4. Steak was bought in”.817

The three templates we used are: <name> born818

in, <item> lost in, <item> done in. We choose from819

a set of 136 names and 100 items.820

Originally, we use the token "was" in our sam-821

ples (eg. "Steak was sold in March.") However,822

we find that the prediction outcomes were largely823

the same whether we included "was" or not. Thus,824

although "was" would make the sentences sound825

more natural to a human, we choose to omit it. Ad-826

ditionally, this allows to reduce the memory usage827

while running in Colab.828

Random Words vs Meaningful Sentences.829

We find that using random words as non-sequence830

tokens could also allow the model to sometimes831

predict the next sequence member correctly. How- 832

ever, this did not always occur; thus, we choose to 833

use semantically meaningful templates instead. 834

Sequence Member Input Positions. We did 835

not construct samples such that there are different 836

intervals between the sequence members, placing 837

them at different positions in the input (eg. "1 2 838

house fork 3" or "1 house fork 2 3"), because we 839

want the model to be able to predict the next se- 840

quence member with high probability. Thus, we 841

give it an in-context pattern where after every ran- 842

dom word, it should predict a sequence member. 843

Sequence Length. We find that using se- 844

quences with four members allows the model to 845

consistently obtain high probability predictions for 846

the correct answer for all three tasks. For contin- 847

uing sequences without non-sequence members, 848

four members is usually enough to obtain a correct 849

token probability of around 90% or more for the 850

three tasks, within a certain range (eg. not above 851

twenty for number words for GPT-2). 852

Model Sequence Continuation Abilities. For 853

number words, as GPT-2 Small does not seem to 854

be able to continue number word sequences higher 855

than twenty, even when giving it the starting prefix 856

with and without hyphens (eg. twenty or twenty- 857

for twenty-one). We add a space in front of each 858

number word as without the space in front, the 859

model tokenizer would break some words greater 860

than ten into more than one token (eg. eleven into 861

two tokens, and seventeen into three tokens), while 862

we aim for all our samples in a dataset to have 863

the same number of tokens. Similarly, for digit 864

sequences there were cases where it would break 865

the answer into multiple tokens (eg. in the 500-600 866

digit range, sometimes the next token predicted 867

would be "5", and sometimes it would be "524"). 868

Corrupted Dataset Details. We ensure that our 869

randomly chosen sequence does not contain any el- 870

ements in sequence for the last two elements of the 871

input, as if the last two elements are not sequential, 872

sequence continuation cannot successfully occur. 873

We also test variations of several corruptions other 874

than randomly chosen tokens of a similar sequence 875

type, such as repeats and permutations. Overall, 876

the most important components remain the same re- 877

gardless of the ablation dataset and metric choices. 878

Other Task Datasets. We also look for sim- 879

ilarities between other types of tasks, such as de- 880

creasing sequences, greater-than sequences, and 881

alphabet sequences. However, while there were 882

11

http://arxiv.org/abs/1911.02685
http://arxiv.org/abs/1911.02685
http://arxiv.org/abs/1911.02685


a few shared circuit overlaps between these tasks883

and three main tasks of this paper, there were more884

dissimilarities. Thus, we mainly focus on the simi-885

larities of the three tasks of this paper.886

A.1 IOI Circuit.887

The IOI circuit we use for comparison in Table 1888

uses all MLPs and the following heads:889

(0, 1), (0, 10), (2, 2), (3, 0), (4, 11), (5, 5), (5, 8),890

(5, 9), (6, 9),891

(7, 3), (7, 9), (8, 6), (8, 10), (9, 0), (9, 6), (9, 7),892

(9, 9),893

(10, 0), (10, 1), (10, 2), (10, 6), (10, 7), (10, 10),894

(11, 2), (11, 9), (11, 10)895

B Computational Resources and896

Packages897

For each task, the node and edge iterative methods898

took a total of 1 to 2 hours to run on an A100 GPU.899

The code for the experiments was written in Python,900

utilizing the TransformerLens package, and were901

run on Colab Pro+.902

C Individual Circuit Results903

Figure 6 shows a Numerals circuit, Figure 7 shows904

a Number Words circuit, and Figure 8 shows a905

Months circuit, each with Attention Head Decom-906

position. In Table 4, we show the result of dropping907

each head from the circuit shown in each of the Fig-908

ures.909

In Table 5, we show the result of dropping each910

head from the fully unablated circuit shown in each911

of the Figures. While Head 0.1 is of little impor-912

tance when using the full circuit for the Numerals913

task with a -4.60% performance drop when ablated,914

it is of very significant importance for the Num-915

ber Words task, with a -91.90% performance drop916

when ablated. Similar results are found for heads917

4.4 and 9.1. This may occur because the model918

has learned multiple "backup circuits or paths" for919

the Numerals task, which activate when main com-920

ponents are ablated; it may also suggest that these921

heads are not important when the full circuit is922

present and are only important when certain com-923

ponents are ablated, acting as backup. The results924

also demonstrates that, for the Months task, the925

model places different importance on the heads926

than for the other two tasks. Overall, this shows927

that for each task, though the model re-uses many928

of the same important circuit parts, the importance929

of each part for each task varies greatly.930

D MLP Analysis Details 931

In Table 6, we show the performance drop for the 932

three tasks when ablating each MLP from the full, 933

unablated circuit. We note that MLP 0 and MLP 934

9 are highly important. MLP 0 may be important 935

due to acting as a "further embedding" after the 936

embedding layer, which embeds the tokens into 937

latent space. For all numeral sequence-member 938

only samples ("1 2 3 4" to "8 9 10 11"), we find 939

with logit lens that the "last sequence member" (eg. 940

for 1 2 3, this is "3") is always output at some layer 941

between MLP 6 to MLP 8. However, after MLP 942

9 to the last MLP, the output is always the next 943

sequence member. The logit lens results for the 944

top-3 tokens at each layer for a sample with non- 945

sequence-members is shown in Table 7, and the 946

logit lens results for a sample with only sequence- 947

members is shown in Table 8. This pattern occurs 948

in 1531 out of 1536, or 99.67%, of the samples 949

with non-sequence-members. The anomalies have 950

MLP 8 predicting the correct answer of ’5’ or ’7’. 951

However, for number words with only sequence- 952

members, MLP 9’s role is not so clear. In some 953

cases, MLP 8 will output the last sequence member 954

and MLP will output the next one. In other cases, 955

MLP 8 will output the last sequence member as a 956

numeral, and MLP 9 will output the next sequence 957

member as a number word. Yet in other cases, MLP 958

8 will output a number word related token, such as 959

"thousand" or "teen", and MLP 9 will output the 960

correct answer. For one sample, "six seven eight 961

nine", the token ’10’ is outputed by MLP 9, and 962

only until MLP 11 does the output become ’ten’. 963

Table 9 displays a number words prompt’s results. 964

The pattern of MLP 8 outputting a sequence 965

member before MLP 9 outputs the next sequence 966

member occurs in 1396 out of 1536, or 90.89%, of 967

samples with non-sequence-members. The main 968

culprits where this does not occur are for sequences 969

that have correct answers of "seven" (in which MLP 970

8 outputs "seven") or "ten" (in which MLP 9 out- 971

puts ’10’ and MLP 10 outputs ’ten’). These results 972

suggest that the role of MLP 9 is more nuanced 973

than simply acting as a key:value store for next 974

sequence members. Instead, this task may be dis- 975

tributed across various components, with MLP 9 976

being one of the most important parts for this task. 977

For months, all the samples with only sequence- 978

members have the last sequence member at MLP 979

8, and the next sequence member at MLP 9. For 980

samples with non-sequence-members, this occurs 981

12



Table 4: All Head Drops from Circuits of Figure 2.

Important Head Numerals NumWords Months Average

0.1 -44.29% -78.74% -52.10% -58.38%

4.4 -33.19% -34.11% -73.16% -46.82%

7.11 -41.64% -44.78% -45.37% -43.93%

9.1 -34.94% -27.74% -43.03% -35.24%

1.5 -27.83% -18.65% - -23.24%

6.10 -14.00% -24.28% -16.90% -18.39%

10.7 - - -13.1% -13.10%

8.8 -15.23% -13.21% -10.15% -12.86%

8.1 -12.93% -12.61% - -12.77%

8.11 - -10.86% - -10.86%

6.6 -7.56% -9.70% -8.93% -8.73%

8.6 -11.02% -6.22% - -8.62%

7.10 - - -6.25% -6.25%

6.1 -10.28% -4.49% -3.77% -6.18%

4.10 -4.87% -5.73% - -5.30%

5.8 - -5.15% - -5.15%

5.0 -5.02% - - -5.02%

7.6 - -4.96% -5.23% -5.10%

9.5 - -5.84% -3.77% -4.81%

0.5 - - -3.79% -3.79%

8.9 -4.09% -3.36% - -3.72%

9.7 - -3.08% - -3.08%

7.2 - -2.84% - -2.84%

Table 5: Drop in Task Performance when a Head is Removed from the Full, Unablated (Original) Circuit.

Important Head Numerals NumWords Months

0.1 -4.60% -91.90% -29.89%

4.4 -13.10% -52.08% -54.40%

7.11 -47.21% -61.51% -46.63%

9.1 -8.78% -29.93% -44.01%

1.5 -14.30% -38.03% -13.15

13



Figure 6: Numerals Circuit with Attention Head (QKV) Decomposition.

in 1495 out of 1536, or 97.33%, cases. The anoma-982

lies are samples that have the correct answer of983

"September", in which MLP 8 will output Septem-984

ber. Table 10 shows that for the sample with only985

sequence-members that has the correct answer of986

"September", this does not occur, but strangely,987

MLP 0 will output "Aug" while MLPs 1 to MLP 5988

will output years. It is possible that the sequence989

of months is more predictable than the other se-990

quences. This is because for numerals and number991

words, a sequence of numerals doesn’t always re-992

sult in the next one, as there can be cases in natural993

language where "1 2 3 4" results in "55" because994

it is recording counts in general, or there may be995

some non-linear growth. Unlike numbers, months996

are more constrained in a smaller range.997

E Iterative Method Details998

Instead of absolute impact on performance score,999

we can also use relative impact. This means that1000

the removal won’t cause it to go down by more than1001

0.01 of the existing score, rather than an absolute1002

threshold of 80%. However, this still doesn’t take1003

combos into account. one edge removal may make1004

it 0.01, and another 0.01, but doesn’t mean their1005

combined effect is also 0.02; it may be more. Thus,1006

order of removal appears to an impact on the circuit1007

that is found.1008

Table 6: Drop in Task Performance when a MLP is
Removed from the Full, Unablated (Original) Circuit.

MLP Numerals NumWords Months

0 -62.58% -95.98% -84.80%

1 -9.28% -34.71% -8.30%

2 -2.68% -20.18% -16.40%

3 -2.67% -18.19% -9.33%

4 -14.19% -49.24% -23.88%

5 -12.64% -25.16% 6.42%

6 -15.83% -33.46% -10.22%

7 -11.90% -29.71% -19.42%

8 -25.19% -43.17% -41.33%

9 -71.33% -84.10% -83.97%

10 -32.71% -42.09% -32.53%

11 -21.16% -24.97% -19.50%

14



Figure 7: Number Words Circuit with Attention Head (QKV) Decomposition.

Table 7: Logit Lens- "Anne born in 2. Chelsea born in
3. Jeremy born in 4. Craig born in 5. Elizabeth born in"

MLP Top-3 Tokens

0 order, the, particular

1 the, order, a

2 the, order, a

3 the, order, accordance

4 order, the, front

5 18, 3, 2

6 5, 3, 2

7 3, 5, 2

8 5, 6, 4

9 6, 5, 7

10 6, 7, 8

11 6, 7, 1

Table 8: Logit Lens- "8 9 10 11"

MLP Top-3 Tokens

0 th, 11, 11

1 th, 11, 45

2 th, 30, 45

3 30, 45, 34

4 45, 34, th

5 votes, ., 9

6 9, ., 11

7 11, 9, 1

8 11, 12, 111

9 12, 11, 12

10 12, 13, 12

11 12, 13, \n

15



Figure 8: Months Circuit with Attention Head (QKV) Decomposition.

Table 9: Logit Lens- "seven eight nine ten"

MLP Top-3 Tokens

0 thousand, ten, years

1 thousand, fold, hundred

2 thousand, percent, minutes

3 thousand, percent, years

4 thousand, percent, million

5 thousand, ths, million

6 thousand, million, years

7 thousand, ths, 9

8 nine, 11, 9

9 eleven, 11, twelve

10 eleven, 11, twelve

11 eleven, twelve, 11

Table 10: Logit Lens- "May June July August"

MLP Top-3 Tokens

0 Aug, August, 2017

1 2017, 2014, Aug

2 2014, 2017, 2015

3 2017, 2014, 2015

4 2014, 2017, 2018

5 2014, 2013, 2018

6 September, December, August

7 December, September, August

8 August, September, October

9 September, August, October

10 September, August, October

11 September, August, October

16



F Functionality Method Details1009

Component Output Scores Details. To continue1010

from Section §3, we employ the heads’ output pro-1011

jection (OV) matrices to examine the attention1012

head outputs written to the residual stream by the1013

OV circuit. For example, we can check if a head1014

is copying tokens, a behavior introduced as copy1015

scores by (Wang et al., 2022). Copy scores measure1016

how well a head reproduces a token from the input.1017

We modify this method to obtain the component1018

output score, which follows a similar principle but1019

measures how many prompts have a keyword token1020

are in the output. For instance, a keyword may be1021

the integer I+1, given integer I as the last token in1022

a sequence. To calculate these scores, we multiply1023

the state of the residual stream after the first MLP1024

layer at the last token with the OV matrix of the at-1025

tention head of interest. This result is unembedded1026

and layer normalized to get logits. If the keyword1027

is in the top-5 of these logits, +1 is added to the1028

score. Finally, we divide the total score by the total1029

number of keywords across all prompts to obtain1030

a percentage. In this paper, we use all sequence1031

members of the prompt as keywords.1032

G Attention Pattern Extended Results1033

Sequence Member Detection Heads Details. We1034

discovered a "similar member" detection head, 1.5,1035

and a "sequence member detection", 4.4, both1036

shown in Figure 9, where numerals attend to pre-1037

vious numerals, and in Figure 10, where number1038

words attend to previous number words. Further-1039

more, in Figure 11, we use prompts consisting of1040

names, same tokens ("is") and periods in the for-1041

mat of "<name> is <number>" (such as "Adam is1042

1.") to discern whether these heads are "similarity1043

detection" heads in general, or are more specific1044

to detecting sequence members such as numbers.1045

This analysis shows that not all token types attend1046

to their similar types; for instance, names do not1047

attend to names. We also do not observe every to-1048

ken attending to a previous position k tokens back1049

(where k is an integer), so we do not conclude that1050

these heads also act as previous token heads. Addi-1051

tionally, Figure 12 shows that when both Numerals1052

and Months are in sequence order, the heads attend1053

to both Numerals and Months.1054

H Months Circuit Keeping MLP 111055

Although the iterative node pruning algorithm re-1056

moves MLP 11 for the Months task, we note1057

Table 11: Performance Drop when Head is Removed
from Months Circuit with MLP 11.

Important Head Months

(4, 4) -78.27

(7, 11) -68.61

(0, 1) -61.09

(9, 1) -51.60

(6, 10) -33.00

(8, 8) -12.47

(6, 6) -11.87

(4, 10) -6.95

(7, 10) -4.74

(6, 1) -4.52

(7, 2) -2.06

this is only because the performance drop of - 1058

19.50%, shown in Table 6, is barely within thresh- 1059

old T = 20%. Thus, we also run experiments to 1060

iteratively find a Months circuit that keeps MLP 11, 1061

which is shown with the other two tasks’ circuits in 1062

Figure 13. Table 11 shows the importance of each 1063

head in the circuit. Overall, the results are largely 1064

similar to the Months circuit shown in Figure 2. 1065

I Circuit Entanglement and Editing 1066

Definitions 1067

Definitions. A circuit can be defined as "a human- 1068

comprehensible subgraph, which is dedicated to 1069

performing certain task(s), of a neural network 1070

model" (Räuker et al., 2023). To describe the cir- 1071

cuits representations in this paper, we define a cir- 1072

cuit graph as a connected graph C with (1) a node 1073

set N of components, and (2) an edge set E, in 1074

which an edge (n1, n2) represents how component 1075

n1 affects of component n2. 8 We define that a 1076

circuit graph C is used for a task T based on how 1077

ablating all model components aside from those 1078

in the circuit still allows the model to have a cer- 1079

tain level of performance; we determine this level 1080

as described in iterative pruning in §3.1. We note 1081

that a task T can be broken into a set of sub-tasks 1082

ST = {S1, ..., Sn}; for instance, one sub-task of 1083

8Different studies may define "circuit" in different ways.

17



Figure 9: Attention Patterns for Increasing Digits of (a) Head 1.5 and (b) Head 4.4. Lighter colors mean higher
attention values. For each of these detection patterns, the query is shown in green, and the key is shown in blue. We
observe that digits attend to digits.

Figure 10: Attention Patterns for Increasing Number Words of (a) Head 1.5 and (b) Head 4.4. We observe that
number words attend to number words. We also observe that the attention scores here are less than they are for
digits, suggesting that head 4.4 is more important for digit detection, which is consistent with its importance for the
digits task over the number words task as shown in Table 2.

IOI is to inhibit repeated subjects. Next, we define1084

a circuit graph C1 to be a circuit subset of circuit1085

graph C2 if all the nodes in the node set of C1 are1086

contained in the set of nodes for C2. We also de-1087

fine C1 to be a sub-circuit of C2 all the edges in the1088

edge set of C1 are also contained in the edge set1089

of C2. We further define circuit graph C1 used for1090

task T1 to be a functional sub-circuit (or subset) of1091

circuit graph C2 used for task T2 if these conditions1092

are met: (1) C1 is a sub-circuit of C2, and (2) T1 is1093

a subtask in ST2 , the set of subtasks of T2.1094

Circuit Entanglement. Given that components1095

play multiple roles (Merullo et al., 2023), editing1096

components in a circuit used for task A can have an1097

effect on task B. Instead of just vaguely assuming1098

this would have "some effect", such as ruining task 1099

B in "some way", our aim is to precisely describe, 1100

and thus approximately predict, what this effect is. 1101

We define two circuits C1 and C2 as being analo- 1102

gously entangled if editing the functionality of C1 1103

affects the functionality of C2 in an analogous way. 1104

For instance, let C1 be for "digits continuation" and 1105

let C2 be for "months continuation". If component 1106

H in C1 finds the "next digit of a sequence" and 1107

we edit it to now find the "previous digit", then if 1108

task B now finds the "previous month", we say C1 1109

and C2 are analogously entangled. 1110

18



Figure 11: Attention Patterns for (a) Head 1.5 and (b) Head 4.4. We observe that digits attend to digits, but they are
not considered general "similarity detection heads" as non-number token types do not attend to their similar or same
token types.

Figure 12: Attention Patterns for (a) Head 1.5 and (b) Head 4.4. We observe that digits attend to digits, and that
months attend to months. In general, they appear to be adjacent sequence member detection heads.

0 , 1

8 , 8

1 , 5

6 , 1

7 , 6 6 , 108 , 6

4 , 4 4 , 10

5 , 8

7 , 107 , 117 , 2

6 , 6

9 , 1

MLP 1

MLP 2

MLP 3

MLP 4

MLP 5MLP 6

MLP 7

resid_post

MLP 9

MLP 10

MLP 11

8 , 1

5 , 0

MLP 8

9 , 5

8 , 9 8 , 11

MLP 0

9 , 7

Figure 13: Showing all three circuits and their overlap, but using a Months circuit that keeps MLP 11.

19


