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Abstract

On User-Generated Content (UGC) platforms, recommendation algorithms sig-
nificantly impact creators’ motivation to produce content as they compete for
algorithmically allocated user traffic. This phenomenon subtly shapes the volume
and diversity of the content pool, which is crucial for the platform’s sustainability.
In this work, we demonstrate, both theoretically and empirically, that a purely
relevance-driven policy with low exploration strength boosts short-term user sat-
isfaction but undermines the long-term richness of the content pool. In contrast,
a more aggressive exploration policy may slightly compromise user satisfaction
but promote higher content creation volume. Our findings reveal a fundamental
trade-off between immediate user satisfaction and overall content production on
UGC platforms. Building on this finding, we propose an efficient optimization
method to identify the optimal exploration strength, balancing user and creator
engagement. Our model can serve as a pre-deployment audit tool for recommen-
dation algorithms on UGC platforms, helping to align their immediate objectives
with sustainable, long-term goals.

1 Introduction

User-generated content (UGC) platforms have become an indispensable component of our daily lives
[5, 45]. Those platforms, including various social media (e.g., Facebook, Instagram), streaming
services (e.g., YouTube, TikTok) and many more, count on algorithmic recommendation algorithms
[36, 5] to help content consumers (i.e., users) navigate the vast ocean of content generated by creators.
Unlike other content recommendation platforms such as Netflix and Spotify, user experience on UGC
platforms critically relies on the active participation of creators [58], as the goal of enhancing user
engagement is inherently linked to the abundancy and diversity of the content pool.

Recent studies have begun to explore how a platform’s algorithmic decisions, such as their employed
recommendation algorithms and revenue sharing agreements, might influence the behavior of content
creators and subsequently affect user welfare [52, 54, 55, 34, 30, 33, 32, 43]. A common technique
used in these works is to model the competition among creators who strive to establish their brand and
comparative advantages by selecting topics that maximize the traffic or rewards from the platform.
While these competition models offer valuable insights into how platforms’ interventions could
lead to suboptimal outcomes in terms of content diversity and issues related to popularity bias, they
ignore the dimension of content creation volume — an equally critical aspect of such competition
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dynamics. In fact, there are evidence suggesting that traffic received directly influences creator
productivity [31, 56]. A recent study on a leading video recommendation platform found that creators
whose content received boosted exposure significantly increased their video production without
compromising quality [31]. And a recent field experiment on a large-scale video sharing social
network showed that while popularity-based recommendation strategies boost content consumption,
they can reduce content production [56]. The similar effect has also been documented on Instagram.
For instance, when the recommender system allocates more traffic to targeted groups of creators, their
production frequency increases, as indicated by metrics such as the number of daily active creators
and the daily average creation volume per group. However, disproportionately boosting traffic to
certain creator groups can negatively impact others; for instance, directing more traffic to popular, or
“head”, creators often diminishes engagement from less prominent, or “tail”, creators. And overall, a
statistically significant positive correlation exists between content viewership and the corresponding
creator’s productivity2.

Motivated by real-world evidence and the research gap in modeling production frequency within
content creation competition, we introduce a new game-theoretical model, named Cournot Content
Creation Competition (C4), aiming to study the impact of a platform’s recommendation strategy on
creators’ production willingness. Our C4 framework builds upon the Content Creator Competition
(C3) framework introduced in [52, 54, 55], assuming that creators compete for platform-allocated
user traffic [27, 29]. However, unlike C3 and similar previous models, our approach models the
competition where creators are aware of their expertise and consistently produce within their niche,
but strategically adjust their production frequency to balance gain and cost, which is often observed
on mature platforms such as YouTube and Instagram. Our proposed competition model resonates
with the well-established Cournot competition [14] in economics, where firms compete for revenue
by strategically setting their production quantities. Hence, it inherits its name.

Our C4 framework offers a powerful tool for analyzing the competition dynamics among creators,
as it always yields a unique Pure Nash equilibrium (PNE) that enables a precise prediction of the
total content creation volume under any specific recommendation strategy. Furthermore, our in-depth
analysis of C4’s equilibrium reveals a critical and interesting insight: while increased recommendation
accuracy boosts immediate user satisfaction, it simultaneously reduces creators’ motivation to produce
content, potentially compromising long-term user engagement. This finding, supported by both
theoretical analyses and simulations, suggests the necessity to balance user and creator engagement
through a careful control over the recommendation algorithm’s exploration strength at a per-user
basis. We formulated this mechanism design challenge as a bi-level optimization problem and tackled
it using a projected gradient descent approach with an efficient gradient approximation scheme,
providing an effective method to achieve the optimal trade-off between user satisfaction and creator
productivity.

In summary, our contributions are threefold: (a) modeling-wise, we introduce a new game-theoretical
framework, C4, to investigate how recommendation algorithms affect content creation frequency
among creators; (b) conceptually, we reveal a new insight that managing the exploration strength of
the recommendation algorithm can balance between short-term user satisfaction and long-term creator
engagement at equilibrium; and (c) technique-wise, we reformulate the mechanism design problem
of identifying the optimal engagement trade-off at the equilibrium into a solvable offline optimization
problem, tackled using approximated gradient descent. Our C4 framework and its derived solution
serve as a pre-deployment audit tool for platforms, assessing the effects of algorithmic choices on
creator and user engagement.

2 Related Work

The study of online content creation economy has captured the attention of machine learning commu-
nity recently, leading to a diverse collection of models addressing the dynamics of content creator
competition [25, 24, 3, 54, 52, 57, 32, 34, 30, 16]. In these models, creators strategically select the
type [49], topic [30, 34, 52], or quality [25, 32] of their content, competing for resources such as
traffic [30, 2, 24], user engagement [52], or platform-provided incentives [57, 54]. Some models
aim to explore the properties of creator-side equilibrium, investigating how creators specialize at
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equilibrium [34], the impact of creators’ strategic behaviors on social welfare [52], and the design of
optimization methods for long-term welfare considering these behaviors [2, 3, 54, 57, 32, 33, 39].
Unlike these works, which generally assume equally paced creation frequency among creators, our
proposed C4 games consider scenarios where creators strategically control their creation quantities,
allowing us to analyze how recommendation algorithms influence overall content creation volume at
the equilibrium.

Our model of the platform’s recommendation algorithm draws inspiration from the proportional
allocation concept in game theory, applicable to resource distribution [9, 41] and contest design
[48]. We assume that each user contributes a unit of traffic, which is allocated to creators based on
both of their merit and effort (content creation frequency). This modeling is closely related to the
Tullock contest [48], also known as the lottery contest, where the probability of winning a fixed
prize is proportionate to the effort expended relative to the total effort by all contestants. While the
Nash equilibrium of the one-dimensional Tullock contest with homogeneous costs is well-understood
[20, 21], our work extends this framework to include heterogeneous convex costs. A recent study
[53] also explored competition between human and Generative AI creators within a similar setup,
examining its impact on total content creation volume. However, they did not address the influence
of different recommendation algorithms, which we investigate in our work.

In a broader sense, our work contributes to a line of research evaluating the impact of recommender
systems on individuals, specifically exploring how deployed algorithms shape user and content creator
behavior [16, 12, 11, 38, 17, 35, 19] and how we can design new algorithms to address these effects
[10, 50, 6, 51, 4, 43, 1]. Our study introduces a key insight: recommender algorithms optimized
solely for user satisfaction can unintentionally reduce content creators’ willingness to engage, thereby
impacting long-term user engagement. We address this challenge by proposing a solution that
balances creator engagement and user satisfaction through imposing exploration strengths tailored to
individual users.

3 The Cournot Content Creation Competition

In this section, we introduce the formulation of Cournot Content Creation Competition (C4), which
models the competition among creators for traffic on UGC platforms. This model considers the
potential impact of the platform’s traffic reallocation mechanisms, such as their deployed recommen-
dation algorithms, where creators strategically choose their production frequencies to optimize their
allocated traffic. Each C4 game instance G is characterized by a tuple (n,m,M, {ci}ni=1, {βi}mi=1).
We detail each component of this tuple as follows:

1. Basic setups. There is a set of content creators denoted by [n] = {1, · · · , n}, and a set of users
denoted by {uj}mj=1. We assume each user j has a stable preference over creators and such
relationship is captured by an n-by-m matrix M with its (i, j)-th entry wij ∈ [0, 1] denoting the
strength of user j’s preference over creator i’s content. Each creator determines a production
frequency xi ∈ R≥0 in a unit amount of time (e.g., one week/one month). For the purpose of
our analysis, xi can be interpreted interchangeably as either the production frequency or volume,
provided there is no ambiguity3. Follow the terminology of game theory literature, xi is referred
to as the action or pure strategy of creator i. Each creator i is associated with a cost function ci,
which characterizes the cost for creating content at frequency xi. We have two assumptions about
ci: 1. ci is increasing in xi and ci(xi)→ +∞ as xi → +∞, which reflects that content creation
is always not free. 2. ci is convex in xi, indicating a non-decreasing marginal cost of improving
production frequency.

2. Platform intervention. We assume that each user uj contributes a unit amount of traffic, and the
platform redistributes the total user traffic based on a relevance-based recommendation algorithm
that adheres to certain probabilistic principle. Specifically, the recommendation algorithm matches
uj to each piece of content produced by creator i with a probability proportional to exp(βjσij),
where σij = wij + ϵij represents the algorithm’s estimated relevance score. This score combines
the true preference score wij with independent Gaussian noise ϵij ∼ N (0, σ2). The parameter
βj ≥ 0 governs the exploration of the matching for user uj : a higher βj results in a more precise

3For the elegance of our theoretical analysis, we treat xi as a continuous variable, although the key messages
and insights of this paper are preserved if xi is discrete.
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matching, while a lower βj introduces more exploration into the matching results 4. In this work,
we analyze intervention mechanisms that operate under this Personalized Probabilistic Matching
(PPM) principle, parameterized by β = {βi}mi=1, and refer to it as PPM(β) for ease of notations.

3. Creator utility. Creators are reward-seeking individuals who try to maximize the expected traffic
for their created content while carefully balancing the costs. Under PPM(β) and when each
creator i produces xi copies of content, the platform will allocate to i the amount of traffic from

uj proportional to Eϵij∼N (0,σ2)

[
xie

βj(wij+ϵij)
]
= xie

βjwij · e
σ2β2

j
2 . Here we should note that

xi does not suggest the creator would create xi pieces of identical content, but amount of content
following his/her expertise. Therefore, we formulate creator i’s utility function as the following:

ui(xi,x−i;β) =

m∑
j=1

(
E[xie

βjσij ]∑n
k=1 E[xkeβjσkj ]

)
− ci(xi)

=

m∑
j=1

(
xie

βjwij∑n
k=1 xkeβjwkj

)
− ci(xi), (1)

where x−i ∈ Rn−1
≥0 denotes the strategy profile of all creators except i.

The C4 game models the scenario where creators are aware of their expertise (i.e., what topic to
create), and compete purely on creation quantity. This concept is akin to the extensively studied
Cournot competition [14] model in economics, where firms independently determine the output of
homogeneous products at different costs. However, our model diverges from the classic Cournot
competition in several key aspects. First of all, they have different revenue functions: in Cournot
competition, the revenue for each firm is calculated as the product of price and production quantity,
and the price only depends on all firms’ joint strategy. In contrast, in the C4 game, the gain of a
creator not only relies on other creators’ decision but also hinges on the platform’s traffic allocation
algorithm. In addition, while Cournot competition typically incorporates only linear cost functions,
the C4 game accommodates general convex cost functions, offering a more nuanced reflection of
the real cost faced by creators. These distinctions highlight the unique aspects of our model, while
maintaining a conceptual link to traditional economic theories of competition.

Research questions: Under the C4 framework, an important and natural research question is how
we can predict creators’ strategic choices in the competition. This is a fundamental question in game
theory and we employ the concept of Pure Nash Equilibrium (PNE) [40] to characterize the outcome
of C4 games. The definition of PNE is given by the following:
Definition 1. A joint strategy profile of all creators x∗ = (x∗

1, · · · , x∗
n) forms a pure Nash equilibrium

(PNE), if for every creator i, x∗
i is a best response strategy that maximizes ui given other creators’

strategy x−i; formally,
ui(x

∗
i ,x

∗
−i) ≥ ui(xi,x

∗
−i) for every xi ∈ R≥0,∀i ∈ [n]. (2)

In other word, a PNE represents a stable state when everyone is satisfied with their strategies and
does not want to deviate. As we will demonstrate in the subsequent section, a PNE always exists in
C4 under any PPM(β) and can be computed efficiently. This finding forms the basis for our further
theoretical analysis and empirical simulations.

In addition to the predictability and stability of creators’ production strategies, it is equally crucial for
platform designers to develop metrics that encourage the prosperity of the content ecosystem. They
must also devise algorithmic solutions to optimize these metrics, balancing the trade-off between
engagement of users and creators, using the available “knob” PPM(β). We will explore these issues
in the upcoming technical discussions.

4 The PNEs of C4 Games and Their Properties

As widely known, the PNE does not always exist [18, 23, 26]. However, our first main result
establishes that, under mild assumptions, C4 always admits a unique PNE.

4The randomness in matching results may stem from either the imperfect estimation of the preference score
wij or intentionally injected exploration strength based on the intervention mechanism. In this paper, we focus
on the latter source of randomness and analyze how such exploration strength might affect the outcomes.
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Theorem 1. For any C4 instance G(n,m,M, {ci}ni=1,β). If each ci is convex in xi, G admits a
unique PNE.

Note that the primary challenge in proving Theorem 1 is to show G is a strictly monotone game,
whereas the existence and uniqueness of PNE in such games is a classic result from [44]. Theorem 1
is interesting from multiple perspectives. First, it strictly generalizes previous equilibrium existence
results in classic Tullock contest [42, 13], which corresponds to the special case when m = 1 and
w11 = · · · = wn1. Second, the fact that C4 games are monotone is significant because it is well-
known that the PNE of strictly monotone games can be found efficiently. For example, many natural
multi-agent online learning dynamics such as mirror descent [7], accelerated optimistic gradient [8],
and payoff-based learning [47] guarantee the last-iterate convergence to the unique PNE in strictly
monotone games, even when players have mere zeroth order feedback about their utility functions.
These results suggest that the PNE of G is achievable if all creators use a reasonable update rule in
their strategies. This observation not only makes this equilibrium a plausible prediction of real-world
competition but also paves the way to our simulation-based studies in our experiments, where we use
multi-agent mirror descent with perfect gradient to numerically solve the PNE of C4.

In addition to the existence and uniqueness properties, the following corollary characterizes the
first-order characterization of G’s PNE.
Corollary 1. The unique PNE x∗(β) of any G(n,m,M, {ci}ni=1,β) satisfies the following first-order
condition:

∂ui

∂xi

∣∣∣∣
x=x∗(β)

= 0, 1 ≤ i ≤ n. (3)

Since we have already shown the existence and uniqueness of G’s PNE, Corollary 1 follows immedi-
ately according to Definition 1. Corollary 1 is useful for establishing further properties of C4 games
in Section 5.

5 The Trade-Off Between User and Creator Engagement

We have established that a unique PNE exists in any C4 game under any PPM(β) and can be naturally
achieved by competing content creators. This raises a crucial question for platform designers: how
should the quality of the PNE be evaluated? For any mature UGC platform, it is essential to balance
user satisfaction, which is key to short-term prosperity, with creator engagement, which is crucial for
long-term sustainability. Within our C4 framework, this requires the platform designer to generate
matching results that not only guarantee high user satisfaction (by improving the average matching
quality at PNE) but also stimulate substantial content creation volume (by encouraging creators to
increase their production frequency x∗ at PNE). We define these two objectives as follows:
Definition 2. For any C4 instance G(n,m,M, {ci}ni=1,β), let x∗(β) = (x∗

1, · · · , x∗
n) be the unique

PNE under PPM(β). Then the (short-term) total user satisfaction is defined as

U(x∗(β);β) =

m∑
j=1

n∑
i=1

(
wijx

∗
i e

βjwij∑n
k=1 x

∗
ke

βjwkj

)
, (4)

and the (long-term) total content creation volume is defined as

V (x∗(β)) =

n∑
i=1

x∗
i . (5)

The social welfare of the whole system is measured by a linear combination of U and V , defined as

Wλ(x
∗(β);β) = U(x∗(β);β) + λV (x∗(β);β). (6)

If we denote π∗
j (x

∗(β),β) =
∑n

i=1

(
wijx

∗
i e

βjwij∑n
k=1 x∗

ke
βjwkj

)
as the indicator of an individual user’s satis-

faction or utility, which is the expected matching scores of user j at the PNE under PPM(β). And
the total user satisfaction measure U =

∑m
j=1 π

∗
j is the accumulated user utility. We argue that

U primarily serves as a metric for short-term welfare evaluation, since it focuses solely on user
satisfaction at a specific instance of matching outcomes but does not capture the dynamics of user
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engagement over time. This overlooks the crucial fact that sustained user engagement on a platform
requires a continuous supply of relevant content, as users can hardly be satisfied by their previously
consumed material. This limitation is also evident in U ’s mathematical formulation: its value remains
unchanged with a rescaling of {x∗

i }, indicating that it fails to reflect changes in content volume or
frequency that might affect long-term user engagement. On the other hand, the long-term prosperity
of a UGC platform is fundamentally linked to the engagement of content creators. Therefore, we
introduce the total content creation volume V as an indicator of the long-term welfare of the platform.

For the platform designers, it is essential to develop metrics that balance both short-term and long-
term considerations. Thus, we propose a hybrid social welfare metric, W , which combines U and
V to reflect both user satisfaction and content supply sustainability. However, understanding the
mechanisms to optimize U and V independently is critical. In the following sections, we will explore
the optimal matching mechanisms tailored to the exclusive objectives of U (short-term) and V
(long-term), and then present an efficient algorithm designed to optimize W .

Interestingly, our findings suggest that both U and V exhibit monotonicity with respect to the
parameter β, even in scenarios involving a homogeneous user population. This uniform behavior of
U and V offers valuable insights into how the adjustment of exploration strength could potentially
impact platform performance. Our forthcoming theorem formally characterizes these observations.
Theorem 2. Consider any C4 game with m = 1. If the elements of M = [w1, · · · , wn]

⊤ are not
identical, it holds that:

1. U(β) defined in Eq. (4) is strictly increasing in β.

2. V (β) defined in Eq. (5) is strictly decreasing in β ∈ [β0,+∞) for some β0 > 0.

Theorem 2 conveys two significant insights. The first one, though perhaps unsurprising, reveals that
improving matching accuracy corresponds to an increase in expected user satisfaction. Despite its
intuitiveness, this is a strong observation because it holds without relying on any specific structural
assumptions about creator cost functions. This means that regardless of the potential complexity
in equilibrium structures due to creator costs, and even when the order of x∗

i does not align with a
creator’s capability wi, the metric U is still monotonically increasing with respect to β. The second
insight may surprise some readers: it suggests that while keep increasing the matching accuracy
motivates some creators to produce more content, it demotivates others, resulting in a net decrease
in the overall volume of content creation. This finding illustrates an intrinsic trade-off between
short-term matching accuracy and long-term content supply: strategies that enhance short-term user
satisfaction can inadvertently reduce content creation frequency across creators. To the best of our
knowledge, this result is novel and has not been discussed in similar studies.

Here is an intuitive explanation for why a large β diminishes creators’ willingness to produce content.
As the traffic allocation becomes more deterministic, the marginal gain from increasing production
frequency diminishes because the amount of traffic accrued is largely determined by the relevance
score, rather than volume. In the extreme case where β → +∞, only the most relevant creator
captures all the user traffic, regardless of her production volume. Consequently, due to the presence
of production costs, this creator, and others, will only sustain the minimum viable productivity.
Conversely, in the other extreme scenario where β = 0, i.e., user traffic is distributed uniformly
among creators irrespective of relevance, the gain for each creator depends solely on their production
frequency, prompting a productivity arms race. Clearly, both extremes are suboptimal, but they
effectively illustrate the rationale behind our theoretical findings.

Although in Theorem 2 we consider the game instance G with m = 1 as a representative snapshot of
how creators compete for a single unit of user traffic (i.e., homogeneous user population), extending
the time frame to encompass a sequence of heterogeneous users suggests that the observed trade-off
between U and V remains consistent. In our experiments, we will demonstrate this trade-off in
broader settings through simulations, e.g. when m > 1 and with various complex user distributions.

The proof of Theorem 2, while delivering a clear message, is far from trivial. Since the dependencies
of U and V on β are indirectly linked through x∗, which lacks a closed form, the derivation of their
derivatives with respect to β necessitates the use of the implicit function theorem [37] to articulate the
derivative of x∗ with respect to β. This involves a complex matrix inverse, which we simplify using
the Sherman–Morrison formula [46] due to its structure being a diagonal matrix with a rank-one
update. This proof technique not only supports our theorem but also inspires a novel first-order
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optimization approach to address the hybrid social welfare optimization discussed in Section 7.
Detailed proofs are provided in Appendix A.2.

6 Finding the Optimal Trade-off through Optimization

Our theory thus far indicates that optimizing both user satisfaction U and creator engagement V is
non-trivial, even when the user population is homogeneous, as achieving the optimal of U and V
simultaneously is impossible. Consequently, an essential and intriguing question arises within any
specific competitive environment C4: how can we identify the optimal trade-off between these two
factors by optimizing any given welfare metric Wλ?

Generally, the welfare metric W is influenced by three factors: the platform’s algorithmic recommen-
dation policy PPM(β), the resulting content creation profile x∗ at the PNE induced by β, and the
relevance matrix M . Thus, we can formulate the resulting optimization problem (OP) as follows:

Find arg max
β∈Rm

≥0

Wλ(x
∗(β),β) (7)

s.t. x∗(β) is the PNE of G.

In general, OP (7) presents a formidable challenge, as solving for a PNE of a game is known to be
difficult [15]. Fortunately, the nice structure of C4 allows us to utilize the implicit characterization of
the PNE detailed in Corollary 1 to tackle OP (7) effectively. In the subsequent section, we demonstrate
that the gradient of Wλ w.r.t. β can be explicitly computed.

6.1 The Derivation of Exact Gradient

According to the chain rule, the first-order gradient of Wλ w.r.t. β can be expressed as

dWλ

dβ
=

dU(x∗(β),β)

dβ
+ λ

dV (x∗(β))

dβ
=

(
∂U

∂x∗ + λ
∂V

∂x∗

)
· dx

∗

dβ
+

∂U

∂β
. (8)

The evaluation of the gradient of Wλ relies on the calculation of three vectors, ∂U
∂x∗ ,

∂V
∂x∗ ∈ R1×n,

and ∂U
∂β ∈ R1×m, as well as a Jacobian matrix dx∗

dβ ∈ Rn×m. The computations of ∂U
∂x∗ , ∂V

∂x∗ and ∂U
∂β

are straightforward and computationally light, which position the main challenge as the computation
of dx∗

dβ . Fortunately, the first-order characterization of x∗ by Corollary 1 enables us to express the

gradient of x∗ w.r.t. β using implicit function derivation [37] as dx∗

dβ = −
(

∂F
∂x∗

)−1 · ∂F∂β , where

F (x,β) =
(

∂ui

∂xi

)n
i=1

is an n-valued function, and both ∂F
∂x∗ and ∂F

∂β are matrices of dimensions
n×n and n×m, respectively. The following proposition provides the exact formula for the gradient.
The calculation is straightforward and we omit the detailed derivation.
Proposition 1. Let x∗ = (x∗

1, · · · , x∗
n) be the PNE of G(n,m,M, {ci}ni=1,β). Then, the Jacobian

matrix of x∗ as a function of β is

dx∗

dβ
=
(
D + Y Z⊤)−1

B ∈ Rn×m, (9)

where D is an n× n diagonal matrix given by

D = diag

c′′1 +

m∑
j=1

P 2
1j

x∗2
1

, · · · , c′′n +

m∑
j=1

P 2
nj

x∗2
n

 , (10)

and B, Y, Z are Rn×m matrices calculated as follows (1 ≤ i ≤ n, 1 ≤ j ≤ m):

Y =

[
Pij(1− 2Pij)

x∗
i

]
ij

, Z =

[
Pij

x∗
i

]
ij

, B =

[
Pij(1− 2Pij)

x∗
i

·

(
wij −

n∑
k=1

wkjPkj

)]
ij

,

(11)
where c′′i is the second-order derivative of creator i’s cost function, and Pij =

x∗
i exp(βjwij)∑n

k=1 x∗
k exp(βjwkj)

is
the probability that creator i is matched with user j at the PNE under PPM(β).
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6.2 Optimization with Approximated Gradients

Proposition 1 together with Eq. (8) offers us a possibility to directly apply gradient-based approaches
for solving OP (7). However, the gradient computation requires the inversion of an n × n matrix,
whose time complexity is O(n3) and thus too cumbersome. To reduce the computational burden, we
propose to approximately compute the gradient using the Sherman–Morrison-Woodbury formula [46]
to approximate the matrix inverse, inspired by the specific structure of the RHS of Eq. (9). According
to Sherman–Morrison-Woodbury formula, it holds that

(D + Y Z⊤)−1 = D−1 −D−1Y
(
I + Z⊤D−1Y

)−1
Z⊤D−1, (12)

and the computation of the RHS of Eq. (12) now requires a time complexity of O(n2m+nm2+m3).
However, the size of the user population m in practical scenarios is often even larger than n. To
efficiently compute the RHS of Eq. (12), we propose a method to “sketch” the matrices Y and Z by
sampling a subset of users. Initially, each column of Y and Z corresponds to a user index j. We begin
by sampling a sub-population of X , indexed by I, with |I| = m̃ = [δm], where δ ∈ (0, 1] denotes
the sampling rate. With this sampled index set I, we construct matrices Ỹ , Z̃ ∈ Rn×m, where the
(i, j)-th entries are defined as follows:

Ỹij =
Pij′(1− 2Pij′)

x∗
i

, Z̃ij =
Pij′

x∗
i

, (13)

with j′ being uniformly sampled from I. Given that Ỹ , Z̃ now possess reduced ranks of [δm], the
computational complexity of evaluating (D + Ỹ Z̃⊤)−1 is significantly lowered to O(n2m̃+ nm̃2 +
m̃3). Algorithm 1 describes the steps for addressing OP (7).

Algorithm 1: Approximated Gradient Descent for Solving OP (7).
Input: The environment specified by G, maximum iteration number T , sample rate δ, learning

rate η, initial mechanism PPM(β).
1 for t ∈ [T ] do
2 Find the PNE x∗ of G under PPM(β) using Algorithm 2,
3 Uniformly sample [δm] users from X and use them to compute matrices Ỹ , Z̃ in Eq. (13),
4 Compute the approximated gradient dWλ

dβ using (8),(9),(12) with sketched matrices Ỹ , Z̃,
5 Update β = β + η dWλ

dβ .

Algorithm 1 requires solving for the PNE of G each time when β is updated. To accomplish this, we
employ the multi-agent mirror descent method, as proposed in [7] and detailed in Algorithm 2 in
Appendix, to serve as a subroutine5. To accelerate the convergence of Algorithm 1, the PNE strategy
x∗ obtained under the previous β is used as the initial strategy for computing the new PNE after
updating β. Further implementation details are provided in the experiment section.

7 Experiments

To validate our theoretical findings and demonstrate the performance of Algorithm 1, we conduct
simulations on instances of G constructed from both synthetic data and the MovieLens-1m dataset
[28]. In our experiments, Algorithm 2 is employed to solve the PNE for each instance of G. Below,
we first outline the specifications of these two simulation environments and then present our results.

Synthetic environment For the synthetic environment, we construct the user population X by
setting an embedding dimension d = 32 and independently sampling 50 cluster centers, denoted
as {c1, . . . , c50}, from the unit sphere Sd−1. For each center ci, users belonging to cluster-i are
generated by sampling independently from a Gaussian distribution N (ci, 0.5

2Id). The sizes of the
50 user clusters are determined uniformly at random, ensuring the total size of X is m = 1000.
Similarly, n = 200 creators are generated, and the relevance matrix M ∈ Rn×m is defined by the dot
product between each user-creator pair, which are then normalized to the range [0, 1]. This synthetic

5In [7], the algorithm is guaranteed to converge to PNE under zeroth order feedback. Here we use the perfect
gradient as input and thus the convergence is also guaranteed.
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Figure 1: The left and the middle panel: the empirical distributions of content creation frequency x∗
i

and each user’s individual utility π∗
j . Different colors represent results for PNEs induced by different

β. Right: the total content creation V and total user satisfaction U obtained under different β. Error
bars obtained from 10 independently generated environments.

dataset encapsulates a class of clustered user and creator preference distributions. On the creators’
side, their cost functions are set to ci(x) = cix

ρ, with the default ρ = 1.5. The marginal costs
{ci}ni=1 are randomly sampled from a uniform distribution U [0.1, 0.5].
Environment constructed from MovieLens-1m dataset We use deep matrix factorization [22] to
train user and movie embeddings (with dimension set to 32) by fitting the observed ratings in the range
of 1 to 5. To ensure the quality of the trained embeddings, we performed a 5-fold cross-validation
and obtained an averaged RMSE=0.739 on the test sets. With the same hyper-parameter, we train the
user/item embeddings with the complete dataset. We randomly select m = 1000 user embeddings to
construct the population X and n = 200 movie embeddings as the creator profiles. Similarly, The
relevance matrix M ∈ Rn×m is given by the dot product between each user-creator pair normalized
to [0, 1] and creators’ cost functions are the same as we specified in the synthetic environment.

7.1 The Empirical Trade-Offs Between U and V

Figure 1 illustrates the content creation frequency x∗
i , user utility π∗

j , and their corresponding
aggregated values U =

∑
j π

∗
j , V =

∑
i x

∗
i under the PNE induced by different homogeneous β

(i.e., all users share the same β). The result in the right panel shows that a larger β enhances overall
user satisfaction U but undermines total content creation V . As β increases, the drop in V becomes
more significant. This empirical finding supports Theorem 2 and suggests it holds under broader
settings without the assumptions on creator cost function and user population structure. The left and
middle plots illustrate each creator i’s creation frequency x∗

i and each user j’s utility π∗
j at the PNE,

such that both x∗
i and π∗

j are rearranged in descending order. They show that when β is shared across
all users, its change affects x∗

i and π∗
j in the same direction.

7.2 The Optimal PPM(β) Found by Algorithm 1

Next, we use Algorithm 1 to find the optimal PPM(β) and investigate the properties of the optimal β.
We set λ = 0.5 and aim to maximize the objective Wλ = U + 0.5V , more results under different
choices of λ can be found in Appendix B. The initial β is set to (100, · · · , 100), representing a nearly
deterministic matching for every user. Algorithm 1 is then run to update β. The sample rate and
learning rate are set to δ = 0.1, η = 200. In addition to searching for personalized βj for each user j,
we also attempt to find a homogeneous β (i.e., a fixed βj for each j) using Algorithm 16.

The first and third panels in Figure 2 show the evolution of Wλ during the optimization process in
both synthetic and MovieLens environments. As illustrated, Algorithm 1 successfully finds a better
PPM(β) compared to the baseline of exact matching for all users, with a significant gain of over 20%
in the welfare metric. Furthermore, in both environments, personalized β leads to a slightly better
outcome compared to homogeneous β.

The second and fourth panels depict the optimal βj for each user j, arranged in descending order.
These panels provide insights into how such a mechanism achieves better trade-offs. For each user

6The gradient of Wλ with respect to a homogeneous β can be readily obtained by summing all the partial
derivatives of Wλ with respect to βj .
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Figure 2: Panel 1,2: social welfare improving curve under Algorithm 1, and the distribution of
the obtained optimal βj in the synthetic environment. Panel 3,4: the same plots in the MovieLens
environment. λ = 0.5.

index j on the x-axis, we also plot the average and the standard deviation of the relevance scores
{wij}ni=1 associated with each user j over all creators, shown as orange and green lines. Based on
the definition, users with smaller average scores and higher standard deviations are considered more
“picky” or selective, indicating high relevance scores with a small group of creators and low scores
with many others. Conversely, users with higher average scores and smaller standard deviations are
less selective and more open to exploration. The results show that the optimal β tends to increase the
exploration strengths (by deploying smaller βj) for less selective users. This approach is intuitive, as
it safely increases exploration while minimizing losses in user engagement.

8 Conclusion

In this work, we introduced a new game-theoretical model C4 (Cournot Content Creation Competi-
tion) to explore how creators strategically determine their creation frequency under a UGC platform’s
recommendation algorithm. Our investigations reveal a critical balance between user satisfaction and
creator engagement, mediated by the exploration strength of the recommendation. The existence
and uniqueness of the PNE of C4 games provide a predictive framework for assessing the effects
of algorithmic choices on content diversity and volume. Through both theoretical analysis and
empirical simulations, we demonstrated how varying the exploration strength can either enhance
user engagement at the cost of reduced content diversity or encourage richer content creation at
the expense of immediate user satisfaction. These findings disclose the delicate trade-offs platform
designers face and highlight the utility of our model as a pre-deployment audit tool for optimizing
recommendation algorithms to balance platforms’ long-term and short-term objectives.

While our C4 model offers insights into strategic differentiation among creators regarding production
quantity, it relies on a simplified assumption that creators maintain a fixed niche, consistently
producing content on the same topic with similar quality. This assumption, though useful for
modeling purposes, may be restrictive in real-world scenarios where creators dynamically adjust
topics, vary content quality, and scale production quantity. Exploring the dynamics where creators
compete across heterogeneous dimensions—such as topic variety, content quality, and production
quantity—would be a valuable direction for future research. We leave this intriguing problem for
future work.
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Appendix to Unveiling User Satisfaction and Creator Productivity
Trade-Offs in Recommendation Platforms

A Omitted Proofs

A.1 Proof of Theorem 1

Proof. First of all, we argue that given any G(n,m,M, {ci},β), for any creator i, there exists an
δi > 0 such that any xi ∈ [0, δi] cannot be an equilibrium strategy. This is because given any
x−i ∈ Rn−1

≥0 , ui as a function of xi has a continuous and strictly positive gradient at xi = 0, meaning

that there exists a δi > 0 such that ∂ui

∂xi

∣∣∣∣
xi=t

> 0,∀t ∈ [0, δi] regardless of what other creators’

strategies are. In other word, for any xi ≤ δi, creator i can always increase her strategy to strictly
improve her utility. As a result, any potential PNE x∗ must satisfy that x∗

i ≥ δi.

On the other hand, since ci(xi) → +∞ when xi → +∞ but the traffic gain for each creator is at
most m, we have ui(xi,x−i)→ −∞,∀x−i ∈ Rn−1

≥0 when xi → +∞. As a result, any equilibrium
strategy must also be upper bounded by a uniform constant ∆ > 0.

To argue the existence and uniqueness of PNE of G, in the following we may with out loss of
generality restrict each creator i’s strategy set to a convex set [δi,∆].

For any fixed β = (β1, · · · , βm), let aij = exp(βjwij) and Eq. (1) can be simplified to

ui(xi,x−i;β) =

m∑
j=1

(
xiaij∑n

k=1 xkakj

)
− ci(xi), (14)

For simplicity we denote gj(x) =
∑n

k=1 xkakj and ui can be expressed as ui(xi,x−i) =∑m
j=1

xiaij

gj(x)
− ci(xi). Our proof starts from a sufficient condition from [44] for a game to be

monotone. A game is said to satisfy the diagonal strict concavity (DSC) condition if (1) each player
has a concave utility function in his own strategy in a convex strategy space; and (2) there exists some
non-zero parameter λ = (λ1, · · · , λn) such that the Hessian matrix given by

Hkl(x;λ) ≜
λk

2

∂2uk(x)

∂xk∂xl
+

λl

2

∂2ul(x)

∂xl∂xk
(15)

is strictly negative-definite. In [44], it is shown that any game satisfying λ-DSC condition has a
unique pure Nash equilibrium (PNE); such a game is often referred to as monotone games.

First of all, we already argued that each creator i’s strategy set is [δi,∆], which is a convex set. Core
to our proof is to show that game G is 1-DSC under the theorem conditions. Direct calculation shows
that for any 1 ≤ k ≤ l ≤ n,

∂2uk(x)

∂xk∂xl
=

akjalj
g3j

· (−gj + 2akjxk),

∂2ul(x)

∂xl∂xk
=

akjalj
g3j

· (−gj + 2aljxl),

and therefore the Hessian matrix of G specified by the RHS of Eq. (15) is equal to

−[H(x)] =

m∑
j=1

g−3
j

a1ja2j
...


 2

∑
i ̸=1 xiaij

∑
i/∈{1,2} xiaij . . .∑

i/∈{1,2} xiaij 2
∑

i̸=2 xiaij . . .
...

...
. . .

 [a1j , a2j , . . .] +


∂2c1
∂x2

1
0 . . .

0 ∂2c2
∂x2

2
. . .

...
...

. . .


≜

m∑
j=1

g−3
j ajHja

⊤
j +H0, (16)
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where gj in the above expressions denotes gj(x), vector aj = (a1j , · · · , anj)⊤. We can see that if
all the cost functions are strictly convex, the second diagonal matrix H0 in the RHS of Eq. (16) is
strictly positive-definite (PD). Therefore, it suffices to show that (1) for all j ∈ [m], Hj is PD. To see
this, let zi = xiaij and we show that for any y = (y1, · · · , yn) ∈ Rn, y⊤Hjy ≥ 0, and the equality
holds if and only if y = 0. In fact, note that

y⊤Hjy = 2

n∑
i=1

y2i

∑
j ̸=i

zj

+ 2
∑
i<j

yiyj

 ∑
k/∈{i,j}

zk


=

n∑
i=1

y2i

∑
j ̸=i

zj

+

 n∑
i=1

y2i

∑
j ̸=i

zj

+ 2
∑
i<j

yiyj

 ∑
k/∈{i,j}

zk


=

n∑
i=1

y2i

∑
j ̸=i

zj

+

n∑
k=1

zk

∑
j ̸=k

y2j + 2
∑

i<j,i ̸=k,j ̸=k

yiyj


=

n∑
i=1

y2i

∑
j ̸=i

zj

+

n∑
i=1

zi

∑
j ̸=i

yj

2

≥ 0. (17)

Because xi and ai are all strictly positive, each zi must also be strictly positive. Hence, Eq. (17) can
take value zero if and only if yi = 0,∀i ∈ [n]. Therefore, Hj is PD for any j ∈ [m], which completes
the proof.

A.2 Proof of Theorem 2

First let’s recall the definition of U, V when m = 1:

U(x∗(β);β) =

n∑
i=1

(
wix

∗
i e

βwi∑n
k=1 x

∗
ke

βwk

)
, (18)

V (x∗) =

n∑
i=1

x∗
i . (19)

In the following, we prove the monotonicity of U(β) and V (β) by showing d lnU
dβ > 0 and dV

dβ < 0,
respectively. Before presenting the detailed proof, we first derive some relevant definitions and their
properties that will be used in the proof.

For simplicity we omit the superscript ∗ in x∗ and simply use x to refer to the PNE of G. When
m = 1, the creator utility function writes

ui(xi, x−i) =
xie

βwi∑n
k=1 xkeβwk

− ci(xi), i ∈ [n]. (20)

Let Pi =
xiai∑n

k=1 xkak
, where ai = eβwi . First of all, we claim that it is without loss of generality to

consider the regime where Pi ≤ 1
3 . To see this, consider the following two C4 instances:

G1(n,m = 1,w = (w1, · · · , wn), c = (c1, · · · , cn),β),
G2(3n,m = 1, [w,w,w], [c/3, c/3, c/3], [β,β,β]).

Clearly, both games G1,G2 have unique PNE. Let the PNE of G1 be denoted by x∗
1. In G2, since its

3n players are divided into three identical groups, its PNE can be represented as (x∗
2,x

∗
2,x

∗
2), where

each group of n players follow the same strategy. Moreover, for any 1 ≤ i ≤ n, it is straightforward
to observe that the i-th player’s utility functions in G1 and G2 differ only by a multiplicative constant
of 3. Consequently, we have x∗

1 = x∗
2. Therefore, for any C4 instance G1 with m = 1, we can always
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construct an equivalent instance G2 that shares the same PNE structure, while ensuring Pi ≤ 1
3 . This

justifies the assumptions that, without loss of generality, we can take Pi ≤ 1
3 .

Another property we need is that the PNE strategy xi of any player i in G1 is bounded in a compact
region [0, L] for some constant L, regardless of the values of β. To see this, note that ci(xi) is
increasing in xi and goes to infinity as xi → +∞ while Pi is upper bounded by 1. As a result, for
any xi such that ui(xi,x−i) ≤ 1− ci(xi) < −ci(0) = ui(0,x−i), xi cannot be a PNE strategy as
switching to 0 increases player i’s utility. Therefore, if we take

L = max
i∈[n]
{inf

x
{x ≥ 0 : 1− ci(xi) < −ci(0)}},

it holds that xi ≤ L,∀i ∈ [n].

Let F (x, β) =
(

∂ui

∂xi

)n
i=1

be an n-value function. From Corollary 1 we know x, β satisfy F (x, β) =

0. And Theorem 1 guarantees that for any β ≥ 0, the x implicitly determined by F (x, β) = 0 exists
and is unique. Therefore, by the implicit function theorem [37], the derivative of x w.r.t. β can be
written as

dx

dβ
= −

(
∂F

∂x

)−1

· ∂F
∂β

,

where
[
∂F
∂x

]
n×n

is the Jacobian matrix (which is also the Hessian of G when λ = 1, see Eq. (15))
and ∂F

∂β ∈ Rn×1 is the partial derivative of F w.r.t. β.

The first-order derivative of ui can be calculated as

∂ui

∂xi
=

eβwi∑n
k=1 xkeβwk

− xi

(
eβwi∑n

k=1 xkeβwk

)2

− c′i(xi), (21)

and we can use it to further obtain the following explicit expressions in terms of the derivatives of F :

(
∂Fi

∂xi

)
= − 1

x2
i

P 2
i (1− 2Pi)−

1

x2
i

P 2
i − c′′i (xi),(

∂Fi

∂xj

)
= − 1

xixj
PiPj (1− 2Pi) , j ̸= i,(

∂Fi

∂β

)
=

Pi

xi
· (1− 2Pi) ·

(
wi −

n∑
k=1

Pkwk

)
. (22)

Let’s define a positive definite diagonal matrix

D = diag
(
P 2
1

x2
1

+ c′′1 , · · · ,
P 2
n

x2
n

+ c′′n

)
.

Since c′′i > 0, we can introduce variables

δi ∈ (0, 1) such that
P 2
i

x2
i

+ c′′i =
P 2
i

δix2
i

. (23)

In addition, let’s also define

y =

(
P1(1− 2P1)

x1
, · · · , Pn(1− 2Pn)

xn

)⊤

, z =

(
P1

x1
, · · · , Pn

xn

)⊤

, (24)

then we have ∂F
∂x = D + yz⊤ and from Sherman–Morrison formula[46], it holds that

−
(
∂F

∂x

)−1

= (D + yz⊤)−1

= D−1 − D−1yz⊤D−1

1 + z⊤D−1y
, (25)
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where

D−1 = diag
(
δ1x

2
1

P 2
1

, · · · , δnx
2
n

P 2
n

)
,

D−1y =

(
δ1x1(1− 2P1)

P1
, · · · , δnxn(1− 2Pn)

Pn

)⊤

,

z⊤D−1 =

(
δ1x1

P1
, · · · , δnxn

Pn

)
.

Since Pi ≤ 1
3 , we have 1− 2Pi ≥ 1

3 > 0. With all the notations introduced so far we are now ready
to give the formal proof of Theorem 2.

Proof. We prove the monotonicity of U(β) and V (β) by showing d lnU
dβ > 0 and dV

dβ < 0.

The monotonicity of U(β): The first-order derivative of lnU w.r.t. β is given by

d lnU

dβ
=

1

U
·
(
∂U

∂x
· dx
dβ

+
∂U

∂β

)
= − 1

U
· ∂U
∂x
·
(
∂F

∂x

)−1

· ∂F
∂β

+
1

U
· ∂U
∂β

. (26)

where ∂U
∂x ∈ R1×n is the partial derivative of U w.r.t. x. Let ai = eβwi , we will first show 1

U ·
∂U
∂β ≥ 0.

In fact, calculation shows
1

U
· ∂U
∂β

=

∑n
k=1 xkak∑n

k=1 wkxkak
·
(
(
∑n

k=1 w
2
kxkak)(

∑n
k=1 xkak)− (

∑n
k=1 wkxkak)

2

(
∑n

k=1 xkak)2

)
=

∑n
k=1 w

2
kxkak∑n

k=1 wkxkak
−
∑n

k=1 wkxkak∑n
k=1 xkak

. (27)

From Cauchy–Schwarz inequality, it holds that

n∑
k=1

w2
kxkak ·

n∑
k=1

xkak ≥

(
n∑

k=1

√
w2

kxkak · xkak

)2

=

(
n∑

k=1

wkxkak

)2

.

Therefore, the RHS of Eq. (27) is greater than or equal to 0. Hence, it suffices to show

− 1

U
· ∂U
∂x
·
(
∂F

∂x

)−1

· ∂F
∂β

> 0. (28)

Also note that
1

U
· ∂U
∂xi

=

∑n
k=1 xkak∑n

k=1 wkxkak
·
(
wiai(

∑n
k=1 xkak)− ai

∑n
k=1 wkxkak

(
∑n

k=1 xkak)2

)
=

wiai∑n
k=1 wkxkak

− ai∑n
k=1 xkak

=
wiai∑n

k=1 wkxkak
− Pi

xi
, (29)

and substitute Eq. (22), (25), and (29) into the LHS of Eq. (28), we obtain

− 1

U
· ∂U
∂x
·
(
∂F

∂x

)−1

· ∂F
∂β

=

[
wiai∑n

k=1 wkxkak
− Pi

xi

]⊤
i∈[n]

·
[
D−1 − D−1yz⊤D−1

1 + z⊤D−1y

]
·

[
Pi

xi
· (1− 2Pi) ·

(
wi −

n∑
k=1

Pkwk

)]
i∈[n]

=
1

T

n∑
i=1

δi(1− 2Pi)(wi − T )2 −
(
∑n

i=1 δi(1− 2Pi)(wi − T ))
2

T (1 +
∑n

i=1 δi(1− 2Pi))
, (30)
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where T =
∑n

k=1 wkxkak∑n
k=1 xkak

=
∑n

i=1 Piwi. Therefore, it suffices to prove

n∑
i=1

δi(1− 2Pi)(wi − T )2 −
(
∑n

i=1 δi(1− 2Pi)(wi − T ))
2

1 +
∑n

i=1 δi(1− 2Pi)
> 0. (31)

Since 1− 2Pi > 0, from Cauchy–Schwarz inequality it holds that

n∑
i=1

δi(1− 2Pi)(wi − T )2 ·

(
1 +

n∑
i=1

δi(1− 2Pi)

)

=

n∑
i=1

δi(1− 2Pi)(wi − T )2 ·
n∑

i=1

δi(1− 2Pi) +

n∑
i=1

δi(1− 2Pi)(wi − T )2

≥

(
n∑

i=1

δi(1− 2Pi)(wi − T )

)2

+

n∑
i=1

δi(1− 2Pi)(wi − T )2

>

(
n∑

i=1

δi(1− 2Pi)(wi − T )

)2

,

where the last inequality holds because {wi} are not identical so there exists at least one j ∈ [n] such
that δj(1− 2Pj)(wj − T )2 > 0. Therefore, Eq. (31) holds and we have d lnU

dβ > 0.

The monotonicity of V (β): Next we show dV
dβ < 0. Since ∂V

∂β = 0, this is equivalent to show

∂V

∂x
·
(
∂F

∂x

)−1

· ∂F
∂β

> 0. (32)

Note that dV
dxi

= 1, we have

∂V

∂x
·
(
∂F

∂x

)−1

· ∂F
∂β

=− [1, 1, · · · , 1] ·
[
D−1 − D−1yz⊤D−1

1 + z⊤D−1y

]
·

[
Pi

xi
· (1− 2Pi) ·

(
wi −

n∑
k=1

Pkwk

)]
i∈[n]

=−
n∑

i=1

δixi(1− 2Pi)(wi − T )

Pi
+

1

1 +
∑n

i=1 δi(1− 2Pi)

n∑
i=1

δixi(1− 2Pi)

Pi

n∑
i=1

δi(1− 2Pi)(wi − T ).

(33)

To show the RHS of Eq. (33) is positive, it suffices to show

(
1 +

n∑
i=1

δi(1− 2Pi)

)
n∑

i=1

δixi(1− 2Pi)(wi − T )

Pi
<

n∑
i=1

δixi(1− 2Pi)

Pi

n∑
i=1

δi(1−2Pi)(wi−T ).

(34)

Plugin T =
∑n

i=1 Piwi into Eq. (34), it is equivalent to show that(
1 +

n∑
i=1

δi(1− 2Pi)

)
n∑

i=1

δixi(1− 2Pi)wi

Pi
−

n∑
i=1

Piwi

n∑
i=1

δixi(1− 2Pi)

Pi
<

n∑
i=1

δixi(1− 2Pi)

Pi

n∑
i=1

δi(1−2Pi)wi,

and note that 1 =
∑n

i=1 Pi, it is equivalent to show

n∑
i=1

[δi(1− 2Pi) + Pi]

n∑
i=1

δixi(1− 2Pi)wi

Pi
<

n∑
i=1

δixi(1− 2Pi)

Pi

n∑
i=1

[δi(1− 2Pi) + Pi]wi. (35)
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Let ai =
δixi(1−2Pi)

Pi
, bi = δi(1− 2Pi) + Pi, then Eq. (35) is equivalent to

n∑
i=1

bi ·
n∑

i=1

aiwi <

n∑
i=1

ai ·
n∑

i=1

biwi ⇐⇒
∑
i>j

(wi − wj)

(
bi
ai
− bj

aj

)
> 0.

Next, without loss of generality we show that for any 1 ≤ i < j ≤ n, if wi > wj then it also holds
that bi

ai
>

bj
aj

for sufficiently large β. In fact, from Pi =
xie

βwi∑n
k=1 xke

βwk
and Eq. (23) we obtain

bi
ai
· aj
bj

=
δj(δi(1− 2Pi) + Pi)(1− 2Pj)

δi(δj(1− 2Pj) + Pj)(1− 2Pi)
· eβ(wi−wj)

=
1 + Piδi/(1− 2Pi)

1 + Pjδj/(1− 2Pj)
· eβ(wi−wj)

=
1 +

P 3
i

(1−2Pi)(P 2
i +x2

i c
′′
i (xi))

1 +
P 3

j

(1−2Pj)(P 2
j +x2

jc
′′
j (xj))

· eβ(wi−wj). (36)

On the one hand, because 1− 2Pi, 1− 2Pj ∈ [ 13 , 1], xi, xj ∈ [0, L], and c′′i (xi), c
′′
j (xj) > 0, the first

terms of the LHS of Eq. (36) is a positive number lower bounded away from zero. On the other hand,
wi > wj ensures that the second term eβ(wi−wj) can be arbitrarily large as long as β is sufficiently
large. Therefore, there must exist a β0 > 0 such that for any β > β0, bi

ai
· aj

bj
> 1 holds for any i > j.

As a result, (wi − wj)
(

bi
ai
− bj

aj

)
> 0 holds, which completes the proof.

B Additional Experiments

We use the following Multi-agent Mirror Descent (MMD) algorithm as the PNE solver of C4,
whose convergence is guaranteed by [7]. Since each creator’s strategy set Xi = [0,+∞), we can
simply choose a projection mapping ProjXi

(x) = (max(xi, 0))
n
i=1. The gradients of utility functions

can be implemented directly since they have closed forms. Through our experiment, the default
T = 10000, η = 0.1, ϵ = 1e− 2, x

(0)
i = 1.0. Algorithm 2 is a simplified version of Algorithm 1 in

[7] where we replace the gradient estimation to the exact gradient. According to Theorem 5.1 in [7],
Algorithm 2 converges to the unique PNE of any C4 game with probability 1.

Algorithm 2: Multi-agent Mirror Descent (MMD) with perfect gradient
Input: Maximum iteration number T , step size η, each player i’s utility function ui, error

tolerance ϵ, initial strategy xi = x
(0)
i .

1 for t ∈ [T ] do
2 if ∥(g1, · · · , gn)∥2 < ϵ, then
3 Break
4 Compute gradient gi = ∇iui(xi,x−i), for i ∈ [n],
5 Update xi ← ProjXi

(xi + ηgi),∀i ∈ [n].

Output :(x1, · · · ,xn).

Figure 3 illustrates the trade-off between U and V in the MovieLens environment, and Figure 4
plots the same information as shown in Figure 2 but with a different value of λ = 0.1. As we
can see, the optimal PPM(β) found by Algorithm 1 conveys a consistent message: it prioritizes
the recommendation accuracy for users with more determined preferences while increasing the
exploration strength for less selective users.

19



0 25 50 75 100 125 150 175 200
creator index i

0

5

10

15

20

25

30

35

x
* i

Individual content creation at PNE
= 1.0
= 3.0
= 10.0
= 30.0
= 100.0

0 200 400 600 800 1000
user index j

0.4

0.5

0.6

0.7

0.8

* j

Individual user utility at PNE

1.0 3.0 10.0 30.0 100.0
500

600

700

800

900

1000

1100

1200

Aggregated Engagement Metrics at PNE

V: Content Creation
U: User Satisfaction
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and each user’s individual utility π∗
j . Different colors represent results for PNEs induced by different

β. Right: the total content creation V and total user satisfaction U obtained under different β. Error
bars obtained from 10 independently generated environments.
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environment. λ = 0.1.
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made in the paper.
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by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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commented python notebook for reproducing all the results and figures. Experiment details
are listed in Section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
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to make their results reproducible or verifiable.
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authors are welcome to describe the particular way they provide for reproducibility.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
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should state which ones are omitted from the script and why.
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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• The answer NA means that the paper does not include experiments.
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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didn’t make it into the paper).
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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