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Abstract

Extreme multi-label text classification (XMTC)001
is the task of tagging each document with the002
relevant labels from a very large space of prede-003
fined categories, which presents an open chal-004
lenge in the recent development of neural classi-005
fiers. Popular Transformer-based XMTC meth-006
ods typically use the last-layer features to repre-007
sent the document and to match it against candi-008
date labels. We argue that the last-layer features009
may not be sufficient for predicting labels at010
different levels of semantic granularity, and that011
multi-layer features may offer a better choice012
instead. Based on this insight we propose a013
novel multi-expert model, namely ME-XML014
(Multiple Experts for XMTC), which combines015
multi-layer embeddings in Transformer for im-016
proving the prediction power of the model. Our017
experiments show that ME-XML outperforms018
the state-of-the-art methods on two out of three019
datasets, in the predictions over both head (com-020
mon) labels and tail (rare) labels.021

1 Introduction022

Extreme multi-label text classification(XMTC) is023

the task to assign a set of relevant labels to each024

input text instance, where the number of candidate025

labels can reach tens of thousands or over a million.026

With such an enormous label space, severe data027

sparse issue is one of the main challenges as most028

of the label has a very few training instances. For029

example, in the Wiki10-31k dataset, more than030

90% of labels have less than 20 training instances.031

XMTC has many real-world applications, such as032

topic spotting for Wikipedia articles, news stories,033

and academic publications, and tagging products034

for advertising.035

With the resent success of large-scale pre-trained036

language models (Peters et al., 2018; Devlin et al.,037

2018; Yang et al., 2019; Liu et al., 2019a; Raffel038

et al., 2020) in neural network research, modern039

XMTC models employs pre-trained Transformers040

to extract latent features for input documents and041

then train the classification models based on the 042

extracted features. Typically, the features in the 043

last layer of a Transformer are used to represent 044

the whole input document because they tend to 045

capture the richest abstract semantic information 046

of the text. 047

However, we argue that the different labels in 048

XMTC can reflect the semantic contents of a doc- 049

ument at various granularity levels, and that using 050

only the last-layer features may not be the best de- 051

sign choice for classification modeling. For some 052

labels, a keyword or key phrase may be sufficient 053

to classify the concept, and such keywords or key 054

phrases may be best captured by the latent features 055

in some early or middle layers of the Transformer, 056

instead of the last layer. For example, a model can 057

easily classify the "electronic" category by simply 058

detecting the keyword "computer" or "hardware" in 059

the text without knowing a higher-level abstraction 060

of the content in the whole document. 061

In this paper, we investigate how to improve the 062

XMTC prediction power by using features from 063

multiple Transformer layers, which may represent 064

the semantic information at various granularity lev- 065

els. A simple approach is just to concatenate or 066

pool over the embeddings from several layers (Sun 067

et al., 2019; Jiang et al., 2021). However, as ob- 068

served by prior work (Sun et al., 2019) and by our 069

own analysis in Section. 4.4, such a simplistic treat- 070

ment has a limited success as it does not have the 071

capability to discriminate which layers are more 072

important for different labels, and cannot dynami- 073

cally decide which layers should be relied on more 074

than other layers given an input instance. 075

As a remedy, we propose ME-XML, a Multiple 076

Experts model for XMTC, where each expert is 077

forced to utilize the embeddings from only one as- 078

signed Transformer layer. To better leverage word 079

or phrase level information, the experts on the early 080

layers focus on label-to-word attention (You et al., 081

2018), where each label directly selects the most 082
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important words to form its label-specific docu-083

ment representation. On the other hand, the expert084

on the last layer simply uses [CLS] embedding085

to represent the whole document. With different086

model architecture for different experts, it encour-087

ages experts to specialize for different tasks, which088

can potentially improve the performance of our089

multiple experts models. Furthermore, we propose090

a distribution-aware diversity loss which is tailored091

for XMTC, to encourage the experts to be profi-092

cient for labels at different levels of rareness. This093

is particularly important for effective modeling in094

XMTC as the label distributions in XMTC are often095

highly skewed.096

Our experiments demonstrate the effectiveness097

of our proposed method. As an ensemble approach,098

it enhances the diversity of expert predictions,099

which is correlated to the model performance im-100

provement. Compared to other Transformer-based101

ensemble models, such as LightXML (Jiang et al.,102

2021), which ensembles the predictions by fine-103

tuning BERT, RoBERTa, and XL-Net separately,104

our method is more efficient because the experts105

share the same Transformer backbone and can be106

jointly finetuned. With such a lightweight multiple107

experts ensemble method, we achieve state-of-the-108

art results on two out of three datasets, in both head109

labels (common) and tail (rare) labels.110

2 Related Work111

Description based Text Classification Recently,112

utilizing keywords information or label description113

for text classification has attracted the attention of114

many researchers. This is especially useful for few115

shot or zero shot (Zhang et al., 2019) text classifi-116

cation where this extra information regularizes the117

behavior of the models. Prompt-based few shot text118

classification (Schick and Schütze, 2021; Gao et al.,119

2021) utilizes label description to extract knowl-120

edge from Transformers. Bao et al. (2020) com-121

putes the word importance by incorporating word122

statistic information into neural network training.123

For example, the method by Wang et al. (2018)124

selects the most relevant words for each class and125

learns label-to-word attention, where the label em-126

beddings are generated based on label descriptions.127

Chai et al. (2020) generates the label descriptions128

in an unsupervised manner, and concatenate them129

with the input text for selecting the most salient130

part of the text.131

Extreme Multi-Label Text Classification Ex- 132

treme multi-label text classification (XMTC) is dif- 133

ferent from typical text classification in its enor- 134

mous label space. The main difficulties in XMTC 135

are regarding how to improve the performance 136

with feasible computational complexity, and how 137

to handle highly skewed label distributions and the 138

associated severe data sparse issues. Before the 139

deep learning era, traditional classifiers use bag- 140

of-words (BoW) features with frequency based 141

weights (such as TF-IDF) as the input features. 142

To reduce the label search space, tree-based meth- 143

ods (Prabhu and Varma, 2014; Khandagale et al., 144

2019; Prabhu et al., 2018) construct hierarchical 145

label trees that partition the label space into clus- 146

ters of labels, and then train local classifiers models 147

within the scope of each cluster. 148

Deep learning methods employ various deep 149

neural networks such as CNN (Kim, 2014), 150

LSTM (Hochreiter and Schmidhuber, 1997), or 151

Transformers (Vaswani et al., 2017) to learn generic 152

features for all labels, which can be further incor- 153

porated with tree-based methods by replacing the 154

node classifiers with neural networks. Similar to 155

Wang et al. (2018), Attentional-XML (You et al., 156

2018) employs LSTM with label-to-word attention 157

along a system-induced hierarchy of labels. X- 158

Transformer (Chang et al., 2020) is a two stages 159

method, which uses XLNet (Yang et al., 2019) to 160

predict the relevant cluster given an input document 161

in the first stage, and then predicts labels within 162

the selected clusterin the second stage. APLC- 163

XLNet (Ye et al., 2020) separates the labels into 164

several groups based on their frequencies, and each 165

group has its own classifier with the dimension of 166

label embeddings proportional to the label frequen- 167

cies. LightXML (Jiang et al., 2021) is a method 168

similar to X-Transformer and Attentional-XML in 169

terms of using a label hierarchy to decouple the 170

problem into sub-problems, but finetunes Trans- 171

formers in an end2end manner instead of a two- 172

stage training. 173

Ensemble Learning Different models can spe- 174

cialize in different types of tasks. The goal of en- 175

semble learning is to get a more accurate prediction 176

by combining the predictions from many models. 177

Mixtures of experts models (Jacobs et al., 1991) 178

modularize a huge cumbersome network by decom- 179

posing it into several expert networks, where each 180

network is trained on a subset of a training corpus. 181

The experts are encouraged to acquire diverse ex- 182

2



Figure 1: The framework of the proposed method. Here, we consider two experts setting in which the experts
share the same Transformer model with 12 layers. Expert 1 extracts the embedding of [CLS] tag as its document
representation. Expert 2 employs a label to word attention module on the first layer of the Transformer.

pertise to make a more robust prediction (Shazeer183

et al., 2017). Knowledge distillation (Hinton et al.,184

2015) is widely applied to transfer knowledge from185

multiple networks to a smaller network.186

Ensemble learning demonstrates its effective-187

ness for tail label prediction, which is an impor-188

tant task in XMTC due to the label sparsity is-189

sue. BBN (Zhou et al., 2020) splits a network190

into bilateral branches, one for learning tail label191

features and another one for head label, of which192

predictions are ensembled into a single prediction.193

LFME (Xiang et al., 2020) transfers knowledge194

from multiple expert networks to a student network195

with curriculum learning. RIDE (Wang et al., 2021)196

is trained with a distribution-aware diversity loss197

to encourage the diversity of experts on tail label198

prediction.199

3 Proposed Method200

3.1 Overall framework201

In Figure 1, we only consider a scenario with two202

experts, named Expert 1 and expert 2. Expert 1203

has a typical architecture for text classification,204

which uses the representation of a "[CLS]" tag from205

the last layer to represent a whole document. Ex-206

pert 2 uses a label to word attention on an early207

Transformer layer, which selects the most impor-208

tant words to form a label-specific document repre-209

sentation.210

The experts are trained on binary cross entropy211

loss individually without collaborating with each212

other. A distribution-aware diversity loss is ap-213

plied to encourage the experts to predict diverse214

tail labels. During inference, each expert predicts a215

probability of each class, and the probabilities of a216

class from different experts are combined together217

with equal weights to produce the final prediction. 218

3.2 Model Architecture 219

In this section, we elaborate on the model architec- 220

ture of experts. 221

3.2.1 Expert using high-level features 222

The Expert 1 in Figure 1 utilizes the high-level
abstract features of Transformer, which is the clas-
sic architecture for text classification. The hidden
representations from the m-th Transformer layer is
denoted as:

ϕn
transformer(x) = {h(m)

1 , h
(m)
2 , h

(m)
3 , ..., h

(m)
T }

, where T denotes the input sequence length, and 223

h
(m)
1 denotes the contextualized word embedding 224

of [CLS] tag. Here, as the expert leverages the 225

high-level features, we set m = 12, which is the 226

last layer of RoBERTa-base (Liu et al., 2019a) 227

model. Then a multi-layer perceptron (MLP) net- 228

work ϕ
(k)
MLP : Rd → RL projects h(m)

1 to L class 229

logits l(k)i : 230

ϕ
(k)
MLP (h

(m)
1 ) = {l(k)1 , l

(k)
2 , ..., l

(k)
L }, (1) 231

, where d is the dimension of contextualized word 232

embedding, k denotes the expert index and L de- 233

notes the label number. 234

3.2.2 Expert using low-level features 235

In Figure 1, Expert 2 uses the low-level features, 236

thus we set m = 1. We found that using contextu- 237

alized word embedding of [CLS] tag as document 238

representation on early layers yields poor results. 239

Therefore, we explore a model architecture that can 240

directly use these keywords information on low- 241

level features. Label to word attention (Wang et al., 242
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2018; You et al., 2018) is a straightforward option243

for utilizing such low-level features, which selects244

the most salient words to form a label-specific doc-245

ument representation.246

Specifically, the label to word attention allows247

each label to interact with each word by an attention248

mechanism. The attention score αij of label j to249

word i can be calculated as:250

αij =
ehiwj∑T
t=1 e

htwj
(2)251

, where wj denotes the label embedding for j-th252

label. The attention score αij can be interpreted as253

the importance of word i to label j. Then, the label-254

specific document embedding ej can be calculated255

as:256

ej =
T∑
i=1

αijhi (3)257

Finally, the logit l(k)j for label j is calculated by:258

l
(k)
j = ϕ

(k)
MLP (ej) (4)259

where ϕ
(k)
MLP (ej) : R

d → R is the multi-layer per-260

ceptron function that summarizes a label specific261

document feature into a real-valued logtit. The262

MLP function is shared by all labels.263

3.3 Training264

We use individual expert loss and distribution-265

aware diversity loss to train our multiple experts266

model. In the following sections, we elaborate on267

these two losses respectively.268

3.3.1 Individual Loss269

As multiple experts models aim at improving the270

performance of the final prediction combined from271

individual experts, one intuitive method is making272

experts collaborate with each other to make a bet-273

ter final prediction. Collaborative loss (Zhou et al.,274

2020; Xiang et al., 2020) aggregates the logits from275

multiple experts, and then the aggregated logits are276

used to optimize the objective function. Specifi-277

cally, the collaborative loss for an input x and its278

ground truth labels y can be written as:279

Lcollaborative(x, y) = L( 1
K

K∑
i=1

(fθi(x)), y) (5)280

, where fθi(x) = {li1, li2, ..., liC} denotes the out-
put logits of expert i and K denotes the number

of experts. We use binary cross entropy loss with
logits as L. However, Wang et al. (2021) found
that collaborative loss hiders the experts from mak-
ing complementary or diverse predictions. This
phenomenon is also found in our experiment that
the collaborative loss makes the final prediction re-
lies on the expert using high-level features because
the high-level features can better fit the objective.
Therefore, we use the individual loss calculated as:

Lindividual(x, y) =
1

K

K∑
i=1

L((fθi(x)), y)

With this loss, it forces each expert to make a good 281

prediction independently, and thus enhance the di- 282

versity of expert predictions. 283

3.3.2 Distribution-aware Diversity Loss 284

As shown in the Table 1, in XMTC datasets, the 285

average training instances for most of the labels are 286

very few, especially for Wiki10-31K dataset. Thus, 287

predicting tail labels is an important direction for 288

improving XMTC. To tackle tail label prediction, 289

Wang et al. (2021) proposed distribution-aware di- 290

versity loss which maximizes the KL-divergence 291

between experts’ classification probability distribu- 292

tions with a focus on tail labels. 293

However, their diversity loss is designed for sin- 294

gle label classification task rather than multi-label 295

classification task, and thus we cannot directly ap- 296

ply their loss to our task. Also, we argue that di- 297

rectly maximizes the KL divergence between ex- 298

perts’ predictions is not reasonable. Considering a 299

scenario that all the experts can perfectly predict 300

the correct labels for an input text, then the experts’ 301

output label distributions will be close to each other 302

and thus the KL-divergence will be small. In this 303

scenario, maximizing KL divergence discourages 304

the experts to make correct prediction. 305

To fix this, we propose a distribution-aware di- 306

versity loss tailored for the XMTC. For an input 307

x, the diversity loss between predictions from an 308

expert j and an expert k is calculated as: 309

Ldiversity(x, y) = −
C∑
i=1

λiDKL(p
(j)
i ||p(k)i ) (6) 310

311

DKL(p
(j)
i ||p(k)i ) = p

(j)
i log(

p
(j)
i

p
(k)
i

) (7) 312

+ (1− p
(j)
i ) log(

1− p
(j)
i

1− p
(k)
i

) (8) 313
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Dataset Ntrain Ntest
¯|yn| L n̄l |Lfew| |Lmed| |Lmany|

EURLex-4K 15,539 3,809 5.30 3,956 20.84 3,133 2,978 183
Wiki10-31K 14,146 6,616 18.64 30,938 18.64 29,309 1,321 308
AmazonCat-13K 1,186,239 306,782 5.04 13,330 448.57 5,875 3,889 3,566

Table 1: Datasets statistics. Ntrain and Ntest refer to the number of training and testing instances respectively. ¯|yn|
is the average number of labels per instance. L is the number of labels. |Lfew|, |Lmed| and |Lmany| denote the
number of labels belongs to few-shot(≤ 20) /medium-shot(≤ 100 & > 20) /many-shot(> 100) classes respectively.

, where p
(j)
i = sigmoid(li) is the probability for314

label i from expert j. The KL-divergence is in315

this form because the distributions for each label316

are independent Bernoulli distributions. The term317

λi ∈ [0, 1] controls the extent to which the KL318

divergence of the label i is maximized :319

λi =

{
0 if i /∈ y
1−SG(max(p

(j)
i ,p

(k)
i ))

ni
else

(9)320

, where SG(·) means the gradient stop operator321

and ni is the number of training instances for label322

i. For tail labels, λi is larger, which encourages the323

experts to make diverse predictions on tail labels.324

If the label i is not in the ground truth label set y325

for an input x, then its KL-divergence will not be326

maximized because maximizing the KL-divergence327

makes the model predict irrelevant labels. If any328

expert can successfully predict the ground truth329

label i ∈ y, then the λi will be smaller because we330

don’t want the loss to hinder experts from making331

a correct prediction. The diversity loss is large332

only when both experts cannot correctly predict the333

label.334

Finally, the whole training loss L is:335

L = Lindividual(x, y) + αLdiversity(x, y) (10)336

, where α controls the weight of diversity term. We337

only apply Ldiversity after using Lindividual to train338

a few epochs.339

3.4 Inference340

During inference, we have tried to train a neural net-
work such as expert routing network (Wang et al.,
2021) to assign suitable experts to predict the input
text. However, we found that a simple combination
that assigns each expert with an equal weight yields
better results. The final prediction g(x) of an input
x can be written as:

g(x) =
1

K

K∑
i=1

sigmoid(fθi(x))

, where K denotes the expert number.341

4 Experiments 342

4.1 Experimental Settings 343

Datasets We conduct experiments on three 344

datasets, which are EUR-LEX (Loza Mencía and 345

Fürnkranz, 2008), Wiki10-31k (Zubiaga, 2012) and 346

AmazonCat-13k (McAuley and Leskovec, 2013). 347

The processed data is obtained from Jiang et al. 348

(2021)1. 349

From the data statistics in Table 1, we can find 350

that the average number of training instances n̄l for 351

the labels in EURLex-4K and Wiki10 are very few, 352

which is less than 21. While in AmazonCat-13K, 353

each labels has 448 training instances in average. 354

To better understand the data statistics, we follow 355

the literature of long tail classification (Liu et al., 356

2019b), dividing the labels into three classes, which 357

are few-shot, medium-shot, and many-shot. In the 358

few-shot class, all the labels have less or equal to 359

20 training instances (nl ≤ 20). The medium-shot 360

class has 20 < nl ≤ 100, and the many-shot class 361

has 100 < nl. More than 90% of labels in Wiki10- 362

31K belongs to the few-shot class, which highlights 363

the severe data sparsity issue in this dataset. 364

4.2 Comparison with Prior Methods 365

Evaluation Metric In this section, we use the 366

micro-averaging P@k (precision@k), the most 367

widely used metric in XMTC, to evaluate our re- 368

sults. P@k evaluates the accuracy on the top k 369

ranked labels. Note that micro-averaging P@k is 370

averaged over instances, and thus its performance 371

is dominated by the high-frequency labels. Specifi- 372

cally, P@k is calculated as: 373

1

N

N∑
n=1

1

k

k∑
l=1

yrank(l) (11) 374

, where N is the number of testing instances, and 375

yrank(l(n)) ∈ {0, 1}C is 1 if rank(l(n)) ∈ y(n) 376

otherwise 0, and rank(l(n)) is the index of the l-th 377

highest predicted label of the n-th instance. 378

1https://github.com/kongds/LightXML

5

https://github.com/kongds/LightXML


EUR-LEX Wiki10-31k AmazonCat-13k

Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

SVM 86.43 73.94 62.43 85.16 75.34 66.87 94.21 79.80 64.78
Parabel 82.12 68.91 57.89 84.19 72.46 63.37 93.02 79.14 64.51
Bonsai 82.30 69.55 58.35 84.52 73.76 64.69 92.98 79.13 64.46

XML-CNN 76.38 62.81 51.41 81.41 66.23 56.11 93.26 77.06 61.40
AttnXML 85.49 73.08 61.10 87.05 77.78 68.78 95.65 81.93 66.90

X-Transformer-E 87.22 75.12 62.90 88.51 78.71 69.62 96.70 83.85 68.58
X-Transformer 85.46 72.87 60.79 87.12 76.51 66.69 95.75 82.46 67.22
APLC-XLNet 87.72 74.56 62.28 89.44 78.93 69.73 94.56 79.82 64.60
LightXML-E 87.63 75.89 63.36 89.45 78.96 69.85 96.77 84.02 68.70
LightXML 87.56 74.31 62.14 88.55 78.48 68.87 95.21 81.01 65.93

ME-XML (1 expert) 87.11 74.53 62.33 88.61 78.53 68.92 95.82 82.68 67.42
ME-XML (2 experts) 89.43 77.12 64.38 90.32 80.10 71.51 96.01 82.71 67.45
ME-XML (3 experts) 89.38 77.63 64.85 90.35 80.22 71.58 95.98 82.78 67.55

Table 2: Comparison with different methods using micro-averaging P@k. The method ending with "-E" denotes the
model as an ensemble model. Compared with Transformer-based methods, ME-XML improves the results on two
out of three datasets.

Settings The implementation details are in Ap-379

pendix A. In Table 2, the ME-XML (1 expert)380

refers to the expert using the last layer features381

described in Section 3.2.1, which is a vanilla382

Transformer-based classifier. The ME-XML (2383

experts) refers to the two experts model described384

in Section 3, in which one expert uses the last layer385

features and another expert employs label to word386

attention on the features of the first layer. ME-387

XML(3 experts) is based on ME-XML (2 experts)388

with an extra expert using label to word attention389

on the sixth layer of Transformer.390

Baselines In Table 2, the non-neural baselines391

include SVM (Chang and Lin, 2011), Bon-392

sai (Khandagale et al., 2019) and Parabel (Prabhu393

et al., 2018). For the neural network baselines,394

there are XML-CNN (Liu et al., 2017) and At-395

tentionXML (You et al., 2018). Our main base-396

lines are Transformer based methods, includ-397

ing X-Transformer (Chang et al., 2020), APLC-398

XLNet (Ye et al., 2020) and LightXML (Jiang399

et al., 2021). X-Transformer-E and LightXML-400

E denote they are ensemble models rather than a401

single model.402

Results ME-XML outperforms all other sin-403

gle model baselines. ME-XML shows signifi-404

cant improvements on EUR-LEX and Wiki10-31k405

datasets, and only slightly improve the results on406

AmazonCat-13k. Compared with Transformer- 407

based ensemble methods, ME-XML still performs 408

better on EUR-LEX and Wiki10-31k datasets, 409

but it doesn’t improve the performance on the 410

AmazonCat-13k dataset. Note that although ME- 411

XML is an ensemble method, the Transformer 412

backbone of all the experts can be jointly finetuned 413

rather than finetuning on several Transformer mod- 414

els, like LightXML-E ensembles the predictions 415

by finetuning BERT, RoBERTa and XL-Net sepa- 416

rately. 417

Analysis LightXML also leverages the represen- 418

tations from multiple Transformer layers by con- 419

catenating the embeddings of [CLS] from several 420

layers. The superior single model performance of 421

ME-XML shows that the multiple experts train- 422

ing is a better method to utilize representations 423

from multiple layers. In addition, we can observe 424

that ME-XML is more effective on EUR-LEX and 425

Wiki10-31k than on AmazonCat-13k. We specu- 426

late the main reason is that EUR-LEX and Wiki10- 427

31k have more serious data sparsity issues as shown 428

in Table 1. We speculate that leveraging keyword 429

information or low-level features is more effective 430

when the number of training instances is not suffi- 431

cient. To support this speculation, we examine the 432

performance on tail labels in the next section. 433
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EUR-Lex

Few-shot Medium-shot Many-shot

Methods P@5 R@5 F@5 P@5 R@5 F@5 P@5 R@5 F@5

ME-XML (1 expert) 22.08 27.98 22.97 42.96 72.81 52.02 46.06 82.84 58.07
ME-XML (2 experts) 22.57 28.64 23.66 44.08 76.51 54.01 46.15 85.02 58.83

Wiki10-31k

Few-shot Medium-shot Many-shot

Methods P@5 R@5 F@5 P@5 R@5 F@5 P@5 R@5 F@5

ME-XML (1 expert) 6.32 4.13 4.55 37.94 22.51 26.34 44.65 32.03 35.57
ME-XML (2 experts) 5.68 3.69 4.05 38.94 24.97 27.86 45.87 33.84 36.65

AmazonCat-13k

Few-shot Medium-shot Many-shot

Methods P@5 R@5 F@5 P@5 R@5 F@5 P@5 R@5 F@5

ME-XML (1 expert) 22.05 26.19 21.02 40.39 69.81 45.89 43.13 72.76 49.95
ME-XML (2 experts) 28.84 31.65 27.24 43.78 69.23 49.21 42.90 72.51 49.91

Table 3: Performance analysis on different frequency classes using macro-averaging metrics.

4.3 Performance on Different Frequency434

Classes435

Evaluation Metrics In this section, we examine436

the performance of ME-XML on different label437

frequency classes. Here, we follow paradigm in438

tail label classification literature (Liu et al., 2019b),439

which divides the labels into few-shot, medium-440

shot and many-shot classes. The boundary for few-441

shot is (n ≤ 20), medium-shot is (20 < n ≤ 100)442

and many-shot is (100 < n). The label number for443

each class on different datasets is shown in Table 1.444

Following the tail label evaluation literature, we445

use macro-averaging evaluation metrics to evaluate446

our results, which is averaged over labels rather447

than instances. Specifically, it is calculated as:448

Metricmacro =
1

|Lclass|
∑

l∈Lclass

Metric(l)

(12)449

, where Lclass can be few-shot class Lfew, medium-450

shot class Lmedium, or many-shot class Lmany.451

Metric(l) is a metric to evaluate the performance452

of label l. We use macro- P@5 (precision@5),453

R@5 (Recall@5) and F@5 (F1-score@5) as our454

metrics. The details of these metrics are in Ap-455

pendix B.456

Performance Analysis In Table 2 AmazonCat-457

13k, when using micro-averaging metric, the P@k458

scores of ME-XML with 2 experts and 1 expert are 459

almost the same. However, in Table 3, by splitting 460

the labels into different frequency classes, we can 461

find that their behavior is actually different. The 462

two experts model performs much better on few- 463

shot and medium-shot classes, which demonstrates 464

its efficacy on tail label prediction. The slightly 465

higher R@5 scores of the single expert model on 466

the Medium-shot and Many-shot classes implies it 467

predicts more head labels in the top 5 ranking lists. 468

In the EUR-LEX dataset, the two experts model 469

outperforms the single expert model on all classes. 470

In the Wiki10-31k dataset, both methods perform 471

equally poorly on the few-shot class, which means 472

the labels in the few-shot category are almost not 473

possible to be predicted and thus the models tend 474

to not put these tail labels in the top 5 ranking 475

lists. In conclusion, the multiple experts model can 476

improve the performance on few-shot and medium- 477

shot classes except for the almost unpredictable 478

few-shot class of Wiki10-31k. 479

4.4 Ablation Study 480

Model Architecture In Table 4, to utiliz multi- 481

layer features, the 1E (D-(12+1)) concatenates the 482

[CLS] embeddings from layer 12 and layer 1. Com- 483

paring 1E (D-(12+1)) with 2E(D-12+A-1), we can 484

find that multiple experts training is a more effec- 485

tive way to leverage features from multiple layers. 486
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(a) The micro-averaging P@5

(b) The KL-divergence of the two experts.

Figure 2: Comparison of different model architectures
for the second expert on EUR-LEX dataset.

Method P@1 P@3 P@5

1E (D-12) 87.11 74.53 62.33
1E (A-1) 86.03 71.10 57.75
1E (A-12) 86.14 72.39 59.05
1E (D-(12+1)) 87.24 74.67 62.35

2E (A-1+D-12)+Lcol 88.35 76.12 63.22
2E (A-1+D-12)+Lind 89.13 77.01 64.14
2E (A-1+D-12)+Lind+Ldiv 89.43 77.12 64.38
2E (D-1+D-12)+Lind+Ldiv 87.69 75.48 62.96
2E (A-12+D-12) +Lind+Ldiv 87.77 75.94 63.76

3E(A1+A6+D12)+Lind+Ldiv 89.38 77.63 64.85
3E(A1+D6+D12)+Lind+Ldiv 88.54 76.15 63.51

Table 4: Ablation Study on EUR-LEX dataset with
micro-averaging P@k. #E denotes the number of ex-
perts (# is a number). A# denotes one expert uses label
to word attention on layer #. D# denotes one expert
uses [CLS] as document representation on layer #. Lcol,
Lind, and Ldiv denote the collaborative loss, individual
loss, and diversity loss respectively.

Then, we examine whether using low-level features487

and word-to-label attention can benefit the perfor-488

mance of multi-experts model. In Figure 2, there489

are two experts. Expert 1 is fixed, which uses the490

[CLS] embedding on the last layer as described in491

Section 3.2.1. We adjust the model architecture of492

expert 2, and evaluate its performance using micro-493

based P@5. As shown in Figure 2(a), using label494

to word architecture on early layer features as the495

second expert can greatly enhance the performance.496

Similar observation can also be found in Table 4,497

by comparing 2E(A-1+D-12) with 2E(D-1+D-12)498

and 2E(A-12+D-12).499

We speculate the main reason is that using the la- 500

bel to word attention on the first layer as expert 501

2 can generate a complementary prediction for 502

expert 1 to the most extent because their model 503

architectures are the most different. To verify 504

this, we plot the KL-divergence in Eq(6) and set 505

λi = 1 if i ∈ yn. Greater KL-divergence im- 506

plies the predictions are more different. Putting 507

Figure 2(a) and Figure 2(b) together, we find that 508

KL-divergence is correlated with the model perfor- 509

mance, which supports our motivation to maximize 510

the KL-divergence. The complementary prediction 511

implies that the early layer can capture different 512

levels of semantic granularity. 513

Training Loss As shown in the Table 4, com- 514

pared with the collaborative loss Lcol, the individ- 515

ual loss Lind performs better. The distribution- 516

aware diversity loss Ldiv also improves the per- 517

formance. The improvement of using these two 518

losses highlights the importance of boosting the 519

complementary and diverse predictions from multi- 520

ple experts. 521

Expert Number In Table 4, comapred with us- 522

ing 1 expert, using 2 experts greatly enhance the 523

performance. The performance of using 3 experts 524

depends on the model architecture of the third ex- 525

pert. When using label to word attention on the 526

sixth layer of Transformer, it improves the P@3 527

and P@5 scores. Considering the extra compu- 528

tation of using more experts, using 2 experts is 529

sufficient to get good performance. 530

5 Conclusion 531

In this paper, we propose a multiple experts model 532

(ME-XML) for XMTC, in which different experts 533

leverage features from different Transformer layers. 534

By leveraging features from different layers, each 535

expert specializes in different levels of semantic 536

granularity, thus proficient in different types of la- 537

bels. With label to word attention on the early layer, 538

one expert captures the salient part of texts. To 539

encourage diversification, individual loss and diver- 540

sity loss are applied to train the experts. With exten- 541

sive experiments, ME-XML demonstrates its supe- 542

rior performance over other SOTA methods on two 543

out of three datasets. Comparing ME-XML with 544

vanilla Transfermer on labels in different frequency 545

intervals, our method is particularly stronger in tail 546

label prediction, which is harder part of XMTC due 547

to the severe data sparse issue. 548
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A Implementation Details719

Module EUR-LEX Wiki Amazon

Word-label 2e-4 1e-4 5e-4
Output MLP 2e-3 1e-3 2e-3
Transformer 5e-5 1e-5 5e-5

Table 5: Learning rates for different modules on differ-
ent datasets.

EUR-LEX Wiki Amazon

Batch size 8 5 12
Epochs 8 5 4

T 512 512 192

Table 6: Hyperparameters for different datasets. T de-
notes the input sequence length.

We choose RoBERTa-base (Liu et al., 2019a)720

as our Transformer backbone. We use different721

learning rates for different modules as suggested722

in APLC-XLNET (Ye et al., 2020). The learning723

rate for the pre-trained Transformer is set to be724

smaller because we don’t want the embedded se-725

mantic information in the Transformer to change726

too much. The learning rate for the MLP module727

in Eq.(1) and the learning rate for word-to-label728

attention in Section 3.2.2 are set to be larger. The729

learning rates for different modules can be found in730

Table 5. Other model hyperparameters are listed in731

Table 6. The α in Eq(10) is set to be 0.01 because732

we found that if we set α to be a large value, the733

model only optimizes the Ldiversity and neglects734

the Lindividual.735

B Macro-averaging Metrics736

In this section, we introduce macro-averaging P@k,737

R@k and F@k for a label l. The P@k(l) is calcu-738

lated as:739

P@k(l) =
tk(l)

pk(l)
(13)740

, where pk(l) denotes the total number of the label741

l appearing in the predicting top k ranking lists,742

and tk(l) denotes the total number of label l is a743

ground truth label and appearing in the predicting744

top k ranking lists (also known as True Positives).745

The R@k(l) is calculated as:746

R@k(l) =
tk(l)

y(l)
(14)747

, where y(l) denotes the total number of label l 748

appearing in the ground truth label set. 749

The F@k (F1-score@k) is calculated as: 750

F@k(l) = 2 · P@k(l)R@k(l)

P@k(l) +R@k(l)
(15) 751

The macro-averaging scores for each metric are 752

then averaging over labels as described in Eq(12). 753
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