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Abstract

Extreme multi-label text classification (XMTC)
is the task of tagging each document with the
relevant labels from a very large space of prede-
fined categories, which presents an open chal-
lenge in the recent development of neural classi-
fiers. Popular Transformer-based XMTC meth-
ods typically use the last-layer features to repre-
sent the document and to match it against candi-
date labels. We argue that the last-layer features
may not be sufficient for predicting labels at
different levels of semantic granularity, and that
multi-layer features may offer a better choice
instead. Based on this insight we propose a
novel multi-expert model, namely ME-XML
(Multiple Experts for XMTC), which combines
multi-layer embeddings in Transformer for im-
proving the prediction power of the model. Our
experiments show that ME-XML outperforms
the state-of-the-art methods on two out of three
datasets, in the predictions over both head (com-
mon) labels and tail (rare) labels.

1 Introduction

Extreme multi-label text classification(XMTC) is
the task to assign a set of relevant labels to each
input text instance, where the number of candidate

labels can reach tens of thousands or over a million.

With such an enormous label space, severe data
sparse issue is one of the main challenges as most
of the label has a very few training instances. For
example, in the Wikil0-31k dataset, more than
90% of labels have less than 20 training instances.
XMTC has many real-world applications, such as
topic spotting for Wikipedia articles, news stories,
and academic publications, and tagging products
for advertising.

With the resent success of large-scale pre-trained
language models (Peters et al., 2018; Devlin et al.,
2018; Yang et al., 2019; Liu et al., 2019a; Raffel
et al., 2020) in neural network research, modern
XMTC models employs pre-trained Transformers
to extract latent features for input documents and

then train the classification models based on the
extracted features. Typically, the features in the
last layer of a Transformer are used to represent
the whole input document because they tend to
capture the richest abstract semantic information
of the text.

However, we argue that the different labels in
XMTC can reflect the semantic contents of a doc-
ument at various granularity levels, and that using
only the last-layer features may not be the best de-
sign choice for classification modeling. For some
labels, a keyword or key phrase may be sufficient
to classify the concept, and such keywords or key
phrases may be best captured by the latent features
in some early or middle layers of the Transformer,
instead of the last layer. For example, a model can
easily classify the "electronic" category by simply
detecting the keyword "computer” or "hardware" in
the text without knowing a higher-level abstraction
of the content in the whole document.

In this paper, we investigate how to improve the
XMTC prediction power by using features from
multiple Transformer layers, which may represent
the semantic information at various granularity lev-
els. A simple approach is just to concatenate or
pool over the embeddings from several layers (Sun
et al., 2019; Jiang et al., 2021). However, as ob-
served by prior work (Sun et al., 2019) and by our
own analysis in Section. 4.4, such a simplistic treat-
ment has a limited success as it does not have the
capability to discriminate which layers are more
important for different labels, and cannot dynami-
cally decide which layers should be relied on more
than other layers given an input instance.

As a remedy, we propose ME-XML, a Multiple
Experts model for XMTC, where each expert is
forced to utilize the embeddings from only one as-
signed Transformer layer. To better leverage word
or phrase level information, the experts on the early
layers focus on label-to-word attention (You et al.,
2018), where each label directly selects the most



important words to form its label-specific docu-
ment representation. On the other hand, the expert
on the last layer simply uses [CLS] embedding
to represent the whole document. With different
model architecture for different experts, it encour-
ages experts to specialize for different tasks, which
can potentially improve the performance of our
multiple experts models. Furthermore, we propose
a distribution-aware diversity loss which is tailored
for XMTC, to encourage the experts to be profi-
cient for labels at different levels of rareness. This
is particularly important for effective modeling in
XMTC as the label distributions in XMTC are often
highly skewed.

Our experiments demonstrate the effectiveness
of our proposed method. As an ensemble approach,
it enhances the diversity of expert predictions,
which is correlated to the model performance im-
provement. Compared to other Transformer-based
ensemble models, such as LightXML (Jiang et al.,
2021), which ensembles the predictions by fine-
tuning BERT, RoBERTa, and XL-Net separately,
our method is more efficient because the experts
share the same Transformer backbone and can be
jointly finetuned. With such a lightweight multiple
experts ensemble method, we achieve state-of-the-
art results on two out of three datasets, in both head
labels (common) and tail (rare) labels.

2 Related Work

Description based Text Classification Recently,
utilizing keywords information or label description
for text classification has attracted the attention of
many researchers. This is especially useful for few
shot or zero shot (Zhang et al., 2019) text classifi-
cation where this extra information regularizes the
behavior of the models. Prompt-based few shot text
classification (Schick and Schiitze, 2021; Gao et al.,
2021) utilizes label description to extract knowl-
edge from Transformers. Bao et al. (2020) com-
putes the word importance by incorporating word
statistic information into neural network training.

For example, the method by Wang et al. (2018)
selects the most relevant words for each class and
learns label-to-word attention, where the label em-
beddings are generated based on label descriptions.
Chai et al. (2020) generates the label descriptions
in an unsupervised manner, and concatenate them
with the input text for selecting the most salient
part of the text.

Extreme Multi-Label Text Classification Ex-
treme multi-label text classification (XMTC) is dif-
ferent from typical text classification in its enor-
mous label space. The main difficulties in XMTC
are regarding how to improve the performance
with feasible computational complexity, and how
to handle highly skewed label distributions and the
associated severe data sparse issues. Before the
deep learning era, traditional classifiers use bag-
of-words (BoW) features with frequency based
weights (such as TF-IDF) as the input features.
To reduce the label search space, tree-based meth-
ods (Prabhu and Varma, 2014; Khandagale et al.,
2019; Prabhu et al., 2018) construct hierarchical
label trees that partition the label space into clus-
ters of labels, and then train local classifiers models
within the scope of each cluster.

Deep learning methods employ various deep
neural networks such as CNN (Kim, 2014),
LSTM (Hochreiter and Schmidhuber, 1997), or
Transformers (Vaswani et al., 2017) to learn generic
features for all labels, which can be further incor-
porated with tree-based methods by replacing the
node classifiers with neural networks. Similar to
Wang et al. (2018), Attentional-XML (You et al.,
2018) employs LSTM with label-to-word attention
along a system-induced hierarchy of labels. X-
Transformer (Chang et al., 2020) is a two stages
method, which uses XLNet (Yang et al., 2019) to
predict the relevant cluster given an input document
in the first stage, and then predicts labels within
the selected clusterin the second stage. APLC-
XLNet (Ye et al., 2020) separates the labels into
several groups based on their frequencies, and each
group has its own classifier with the dimension of
label embeddings proportional to the label frequen-
cies. LightXML (Jiang et al., 2021) is a method
similar to X-Transformer and Attentional-XML in
terms of using a label hierarchy to decouple the
problem into sub-problems, but finetunes Trans-
formers in an end2end manner instead of a two-
stage training.

Ensemble Learning Different models can spe-
cialize in different types of tasks. The goal of en-
semble learning is to get a more accurate prediction
by combining the predictions from many models.
Mixtures of experts models (Jacobs et al., 1991)
modularize a huge cumbersome network by decom-
posing it into several expert networks, where each
network is trained on a subset of a training corpus.
The experts are encouraged to acquire diverse ex-
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Figure 1: The framework of the proposed method. Here, we consider two experts setting in which the experts
share the same Transformer model with 12 layers. Expert 1 extracts the embedding of [CLS] tag as its document
representation. Expert 2 employs a label to word attention module on the first layer of the Transformer.

pertise to make a more robust prediction (Shazeer
et al., 2017). Knowledge distillation (Hinton et al.,
2015) is widely applied to transfer knowledge from
multiple networks to a smaller network.

Ensemble learning demonstrates its effective-
ness for tail label prediction, which is an impor-
tant task in XMTC due to the label sparsity is-
sue. BBN (Zhou et al., 2020) splits a network
into bilateral branches, one for learning tail label
features and another one for head label, of which
predictions are ensembled into a single prediction.
LFME (Xiang et al., 2020) transfers knowledge
from multiple expert networks to a student network
with curriculum learning. RIDE (Wang et al., 2021)
is trained with a distribution-aware diversity loss
to encourage the diversity of experts on tail label
prediction.

3 Proposed Method

3.1 Overall framework

In Figure 1, we only consider a scenario with two
experts, named Expert 1 and expert 2. Expert 1
has a typical architecture for text classification,
which uses the representation of a "[CLS]" tag from
the last layer to represent a whole document. Ex-
pert 2 uses a label to word attention on an early
Transformer layer, which selects the most impor-
tant words to form a label-specific document repre-
sentation.

The experts are trained on binary cross entropy
loss individually without collaborating with each
other. A distribution-aware diversity loss is ap-
plied to encourage the experts to predict diverse
tail labels. During inference, each expert predicts a
probability of each class, and the probabilities of a
class from different experts are combined together

with equal weights to produce the final prediction.

3.2 Model Architecture

In this section, we elaborate on the model architec-
ture of experts.

3.2.1 Expert using high-level features

The Expert 1 in Figure 1 utilizes the high-level
abstract features of Transformer, which is the clas-
sic architecture for text classification. The hidden
representations from the m-th Transformer layer is
denoted as:

QZ)g"ansformer (‘r) = {hgm)a h;m)v hém),

, where T" denotes the input sequence length, and
(™

!

denotes the contextualized word embedding
of [CLS] tag. Here, as the expert leverages the
high-level features, we set m = 12, which is the
last layer of RoBERTa-base (Liu et al., 2019a)
model. Then a multi-layer perceptron (MLP) net-
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, where d is the dimension of contextualized word
embedding, k£ denotes the expert index and L de-
notes the label number.

3.2.2 Expert using low-level features

In Figure 1, Expert 2 uses the low-level features,
thus we set m = 1. We found that using contextu-
alized word embedding of [CLS] tag as document
representation on early layers yields poor results.
Therefore, we explore a model architecture that can
directly use these keywords information on low-
level features. Label to word attention (Wang et al.,



2018; You et al., 2018) is a straightforward option
for utilizing such low-level features, which selects
the most salient words to form a label-specific doc-
ument representation.

Specifically, the label to word attention allows
each label to interact with each word by an attention
mechanism. The attention score «;; of label j to
word 7 can be calculated as:

ehiw j
Qi = Zt ST how, ()
, where w; denotes the label embedding for j-th
label. The attention score c;; can be interpreted as
the importance of word ¢ to label j. Then, the label-
specific document embedding e; can be calculated

as:
T
ej = ajjh; 3)
i=1
Finally, the logit l;k) for label j is calculated by:
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where qﬁg\’f[)L p(ej) : RY — R is the multi-layer per-
ceptron function that summarizes a label specific
document feature into a real-valued logtit. The
MLP function is shared by all labels.

3.3 Training

We use individual expert loss and distribution-
aware diversity loss to train our multiple experts
model. In the following sections, we elaborate on
these two losses respectively.

3.3.1 Individual Loss

As multiple experts models aim at improving the
performance of the final prediction combined from
individual experts, one intuitive method is making
experts collaborate with each other to make a bet-
ter final prediction. Collaborative loss (Zhou et al.,
2020; Xiang et al., 2020) aggregates the logits from
multiple experts, and then the aggregated logits are
used to optimize the objective function. Specifi-
cally, the collaborative loss for an input z and its
ground truth labels y can be written as:

K
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L coliaborative (.’I}, y) =

, where fg,(xz) = {l},15,...,15} denotes the out-
put logits of expert ¢ and K denotes the number

of experts. We use binary cross entropy loss with
logits as £. However, Wang et al. (2021) found
that collaborative loss hiders the experts from mak-
ing complementary or diverse predictions. This
phenomenon is also found in our experiment that
the collaborative loss makes the final prediction re-
lies on the expert using high-level features because
the high-level features can better fit the objective.
Therefore, we use the individual loss calculated as:

KZE (fo,(x

With this loss, it forces each expert to make a good
prediction independently, and thus enhance the di-
versity of expert predictions.
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3.3.2 Distribution-aware Diversity Loss

As shown in the Table 1, in XMTC datasets, the
average training instances for most of the labels are
very few, especially for Wikil0-31K dataset. Thus,
predicting tail labels is an important direction for
improving XMTC. To tackle tail label prediction,
Wang et al. (2021) proposed distribution-aware di-
versity loss which maximizes the KL-divergence
between experts’ classification probability distribu-
tions with a focus on tail labels.

However, their diversity loss is designed for sin-
gle label classification task rather than multi-label
classification task, and thus we cannot directly ap-
ply their loss to our task. Also, we argue that di-
rectly maximizes the KL divergence between ex-
perts’ predictions is not reasonable. Considering a
scenario that all the experts can perfectly predict
the correct labels for an input text, then the experts’
output label distributions will be close to each other
and thus the KL-divergence will be small. In this
scenario, maximizing KL divergence discourages
the experts to make correct prediction.

To fix this, we propose a distribution-aware di-
versity loss tailored for the XMTC. For an input
X, the diversity loss between predictions from an
expert 7 and an expert k is calculated as:
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Dataset ‘ Nirain Niest |y7n| L ny |Lfew| ‘Lmed‘ |Lmany‘
EURLex-4K 15,539 3,809 5.30 3,956 20.84 3,133 2,978 183
Wikil0-31K 14,146 6,616 18.64 30,938 18.64 29,309 1,321 308
AmazonCat-13K | 1,186,239 306,782  5.04 13,330 448.57 5,875 3,889 3,566

Table 1: Datasets statistics. Ny qin and Nyes; refer to the number of training and testing instances respectively. |y;L|
is the average number of labels per instance. L is the number of labels. |L ey, |Limea| and | Lyqany| denote the
number of labels belongs to few-shot(< 20) /medium-shot(< 100 & > 20) /many-shot(> 100) classes respectively.

, where pz(-J ) = sigmoid(l;) is the probability for
label ¢ from expert j. The KL-divergence is in
this form because the distributions for each label
are independent Bernoulli distributions. The term
Ai € [0,1] controls the extent to which the KL

divergence of the label ¢ is maximized :

0 ifidy
A= {1—SG(mafc(pz(-j)»Pz(k))) else ®

, where SG(-) means the gradient stop operator
and n; is the number of training instances for label
1. For tail labels, ); is larger, which encourages the
experts to make diverse predictions on tail labels.
If the label ¢ is not in the ground truth label set y
for an input z, then its KL-divergence will not be
maximized because maximizing the KL-divergence
makes the model predict irrelevant labels. If any
expert can successfully predict the ground truth
label i € y, then the \; will be smaller because we
don’t want the loss to hinder experts from making
a correct prediction. The diversity loss is large
only when both experts cannot correctly predict the
label.
Finally, the whole training loss L is:

L= ﬁindividual(:ﬁv y) + aﬁdiversity (l‘, y) (10)

, Where « controls the weight of diversity term. We
only apply Ediversity after using Lindividual 10 train
a few epochs.

3.4 Inference

During inference, we have tried to train a neural net-
work such as expert routing network (Wang et al.,
2021) to assign suitable experts to predict the input
text. However, we found that a simple combination
that assigns each expert with an equal weight yields
better results. The final prediction g(x) of an input
x can be written as:

1 K
9(x) = 52 > sigmoid(fy,(x))
=1

, where K denotes the expert number.

4 Experiments

4.1 Experimental Settings

Datasets We conduct experiments on three
datasets, which are EUR-LEX (LLoza Mencia and
Fiirnkranz, 2008), Wiki10-31k (Zubiaga, 2012) and
AmazonCat-13k (McAuley and Leskovec, 2013).
The processed data is obtained from Jiang et al.
(2021)".

From the data statistics in Table 1, we can find
that the average number of training instances 7n; for
the labels in EURLex-4K and WikilO are very few,
which is less than 21. While in AmazonCat-13K,
each labels has 448 training instances in average.
To better understand the data statistics, we follow
the literature of long tail classification (Liu et al.,
2019b), dividing the labels into three classes, which
are few-shot, medium-shot, and many-shot. In the
few-shot class, all the labels have less or equal to
20 training instances (n; < 20). The medium-shot
class has 20 < n; < 100, and the many-shot class
has 100 < n;. More than 90% of labels in Wikil0-
31K belongs to the few-shot class, which highlights
the severe data sparsity issue in this dataset.

4.2 Comparison with Prior Methods

Evaluation Metric In this section, we use the
micro-averaging P@Xk (precision@k), the most
widely used metric in XMTC, to evaluate our re-
sults. P@k evaluates the accuracy on the top k
ranked labels. Note that micro-averaging P@k is
averaged over instances, and thus its performance
is dominated by the high-frequency labels. Specifi-
cally, P@k is calculated as:

1 N 1 k
N Z % Z Yrank(l)
=1

n=1

1D

, where N is the number of testing instances, and
Yrankeny € {0,13C is 1if rank(1™) € y®
otherwise 0, and rank(1(™) is the index of the I-th
highest predicted label of the n-th instance.

"https://github.com/kongds/Light XML
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\ EUR-LEX Wikil0-31k AmazonCat-13k

Methods | P@1 P@3 P@5 | P@l P@3 P@5|P@l P@3 P@5
SVM 86.43 7394 6243 | 85.16 7534 66.87 | 9421 79.80 64.78
Parabel 82.12 6891 57.89 | 84.19 7246 63.37 | 93.02 79.14 64.51
Bonsai 82.30 69.55 5835|8452 73776 64.69 | 92.98 79.13 64.46
XML-CNN 7638 62.81 5141|8141 6623 56.11 | 93.26 77.06 61.40
AttnXML 85.49 73.08 61.10 | 87.05 77.78 68.78 | 95.65 81.93 66.90
X-Transformer-E | 87.22 75.12 62.90 | 88.51 78.71 69.62 | 96.70 83.85 68.58
X-Transformer 85.46 72.87 60.79 | 87.12 76.51 66.69 | 95.75 82.46 67.22
APLC-XLNet 87.72 7456 6228 | 89.44 7893 69.73 | 9456 79.82 64.60
LightXML-E 87.63 75.89 63.36 | 89.45 78.96 69.85 | 96.77 84.02 68.70
LightXML 87.56 7431 62.14 | 88.55 78.48 68.87 | 9521 81.01 65.93
ME-XML (1 expert) | 87.11 74.53 62.33 | 88.61 78.53 68.92 | 95.82 82.68 67.42
ME-XML (2 experts) | 89.43 77.12 64.38 | 90.32 80.10 71.51 | 96.01 82.71 67.45
ME-XML (3 experts) | 89.38 77.63 64.85 | 90.35 80.22 71.58 | 9598 82.78 67.55

Table 2: Comparison with different methods using micro-averaging P@k. The method ending with "-E" denotes the
model as an ensemble model. Compared with Transformer-based methods, ME-XML improves the results on two

out of three datasets.

Settings The implementation details are in Ap-
pendix A. In Table 2, the ME-XML (1 expert)
refers to the expert using the last layer features
described in Section 3.2.1, which is a vanilla
Transformer-based classifier. The ME-XML (2
experts) refers to the two experts model described
in Section 3, in which one expert uses the last layer
features and another expert employs label to word
attention on the features of the first layer. ME-
XML(3 experts) is based on ME-XML (2 experts)
with an extra expert using label to word attention
on the sixth layer of Transformer.

Baselines In Table 2, the non-neural baselines
include SVM (Chang and Lin, 2011), Bon-
sai (Khandagale et al., 2019) and Parabel (Prabhu
et al., 2018). For the neural network baselines,
there are XML-CNN (Liu et al., 2017) and At-
tentionXML (You et al., 2018). Our main base-
lines are Transformer based methods, includ-
ing X-Transformer (Chang et al., 2020), APLC-
XLNet (Ye et al., 2020) and LightXML (Jiang
et al., 2021). X-Transformer-E and LightXML-
E denote they are ensemble models rather than a
single model.

Results ME-XML outperforms all other sin-
gle model baselines. ME-XML shows signifi-
cant improvements on EUR-LEX and Wikil0-31k
datasets, and only slightly improve the results on

AmazonCat-13k. Compared with Transformer-
based ensemble methods, ME-XML still performs
better on EUR-LEX and Wikil0-31k datasets,
but it doesn’t improve the performance on the
AmazonCat-13k dataset. Note that although ME-
XML is an ensemble method, the Transformer
backbone of all the experts can be jointly finetuned
rather than finetuning on several Transformer mod-
els, like LightXML-E ensembles the predictions
by finetuning BERT, RoBERTa and XL-Net sepa-
rately.

Analysis LightXML also leverages the represen-
tations from multiple Transformer layers by con-
catenating the embeddings of [CLS] from several
layers. The superior single model performance of
ME-XML shows that the multiple experts train-
ing is a better method to utilize representations
from multiple layers. In addition, we can observe
that ME-XML is more effective on EUR-LEX and
Wikil0-31k than on AmazonCat-13k. We specu-
late the main reason is that EUR-LEX and Wikil0-
31k have more serious data sparsity issues as shown
in Table 1. We speculate that leveraging keyword
information or low-level features is more effective
when the number of training instances is not suffi-
cient. To support this speculation, we examine the
performance on tail labels in the next section.



EUR-Lex

|
‘ Few-shot Medium-shot Many-shot
Methods \ P@5 R@5 F@5 | P@5 R@5 F@5 | P@5 R@5 F@5
ME-XML (1 expert) | 22.08 27.98 22.97 | 4296 72.81 52.02 | 46.06 82.84 58.07
ME-XML (2 experts) | 22.57 28.64 23.66 | 44.08 76.51 54.01 | 46.15 85.02 58.83
\ Wikil0-31k
‘ Few-shot Medium-shot Many-shot
Methods | P@5 R@5 F@5 | P@5 R@5 F@5 | P@5 R@5 F@5
ME-XML (1 expert) | 632  4.13 455 | 37.94 2251 26.34 | 4465 32.03 3557
ME-XML (2 experts) | 5.68 3.69 4.05 | 38.94 2497 27.86 | 4587 33.84 36.65
‘ AmazonCat-13k
‘ Few-shot Medium-shot Many-shot
Methods | P@5 R@5 F@5 | P@5 R@5 F@5 | P@5 R@5 F@5
ME-XML (1 expert) | 22.05 26.19 21.02 | 40.39 69.81 4589 | 43.13 7276 49.95
ME-XML (2 experts) | 28.84 31.65 27.24 | 43.78 69.23 49.21 | 4290 72.51 4991

Table 3: Performance analysis on different frequency classes using macro-averaging metrics.

4.3 Performance on Different Frequency
Classes
Evaluation Metrics In this section, we examine
the performance of ME-XML on different label
frequency classes. Here, we follow paradigm in
tail label classification literature (Liu et al., 2019b),
which divides the labels into few-shot, medium-
shot and many-shot classes. The boundary for few-
shot is (n < 20), medium-shot is (20 < n < 100)
and many-shot is (100 < n). The label number for
each class on different datasets is shown in Table 1.
Following the tail label evaluation literature, we
use macro-averaging evaluation metrics to evaluate
our results, which is averaged over labels rather
than instances. Specifically, it is calculated as:

1

Metricmacm = m
ctass

Metric(l)

l€L iass

(12)
, where L 445 can be few-shot class L f,,, medium-
shot class Ly,edium, or many-shot class Lyany-
Metric(l) is a metric to evaluate the performance
of label [. We use macro- P@5 (precision@5),
R@5 (Recall@5) and F@5 (Fl-score@5) as our
metrics. The details of these metrics are in Ap-
pendix B.

Performance Analysis In Table 2 AmazonCat-
13k, when using micro-averaging metric, the P@k

scores of ME-XML with 2 experts and 1 expert are
almost the same. However, in Table 3, by splitting
the labels into different frequency classes, we can
find that their behavior is actually different. The
two experts model performs much better on few-
shot and medium-shot classes, which demonstrates
its efficacy on tail label prediction. The slightly
higher R@35 scores of the single expert model on
the Medium-shot and Many-shot classes implies it
predicts more head labels in the top 5 ranking lists.

In the EUR-LEX dataset, the two experts model
outperforms the single expert model on all classes.
In the Wikil0-31k dataset, both methods perform
equally poorly on the few-shot class, which means
the labels in the few-shot category are almost not
possible to be predicted and thus the models tend
to not put these tail labels in the top 5 ranking
lists. In conclusion, the multiple experts model can
improve the performance on few-shot and medium-
shot classes except for the almost unpredictable
few-shot class of Wikil0-31k.

4.4 Ablation Study

Model Architecture In Table 4, to utiliz multi-
layer features, the 1E (D-(12+1)) concatenates the
[CLS] embeddings from layer 12 and layer 1. Com-
paring 1E (D-(12+1)) with 2E(D-12+A-1), we can
find that multiple experts training is a more effec-
tive way to leverage features from multiple layers.



P@5

Layer 1 Layer 5

i IzbEFtO-WOND BTIN

(a) The micro-averaging P@5

KL-divergence

(b) The KL-divergence of the two experts.

Figure 2: Comparison of different model architectures
for the second expert on EUR-LEX dataset.

Method | P@1 P@3 P@5
1E (D-12) 87.11 7453 6233
IE (A-1) 86.03 71.10 57.75
1E (A-12) 86.14 7239  59.05
IE (D-(12+1)) 8724 7467 6235
2E (A-14D-12)+Lco 88.35 76.12 63.22
2E (A-14D-12)+Lina 89.13  77.01 64.14
2E (A-14D-12)+Lina+Laiv | 89.43 7712 64.38
2E (D-14D-12)+Lina+Laiv | 87.69 7548 62.96
2E (A-124D-12) +Lina+Laiv | 87.77 7594  63.76
3E(A1+A6+DI12)+Ling+Laiv | 89.38 77.63 64.85
3E(A14D6+D12)+Lina+Laiv | 88.54 76.15 63.51

Table 4: Ablation Study on EUR-LEX dataset with
micro-averaging P@k. #E denotes the number of ex-
perts (# is a number). A# denotes one expert uses label
to word attention on layer #. D# denotes one expert
uses [CLS] as document representation on layer #. L.,
Lind, and Lg4;, denote the collaborative loss, individual
loss, and diversity loss respectively.

Then, we examine whether using low-level features
and word-to-label attention can benefit the perfor-
mance of multi-experts model. In Figure 2, there
are two experts. Expert 1 is fixed, which uses the
[CLS] embedding on the last layer as described in
Section 3.2.1. We adjust the model architecture of
expert 2, and evaluate its performance using micro-
based P@5. As shown in Figure 2(a), using label
to word architecture on early layer features as the
second expert can greatly enhance the performance.
Similar observation can also be found in Table 4,
by comparing 2E(A-1+D-12) with 2E(D-1+D-12)
and 2E(A-12+D-12).

We speculate the main reason is that using the la-
bel to word attention on the first layer as expert
2 can generate a complementary prediction for
expert 1 to the most extent because their model
architectures are the most different. To verify
this, we plot the KL-divergence in Eq(6) and set
A = 1if ¢ € y,. Greater KL-divergence im-
plies the predictions are more different. Putting
Figure 2(a) and Figure 2(b) together, we find that
KL-divergence is correlated with the model perfor-
mance, which supports our motivation to maximize
the KL-divergence. The complementary prediction
implies that the early layer can capture different
levels of semantic granularity.

Training Loss As shown in the Table 4, com-
pared with the collaborative loss L., the individ-
ual loss L;,q performs better. The distribution-
aware diversity loss L4, also improves the per-
formance. The improvement of using these two
losses highlights the importance of boosting the
complementary and diverse predictions from multi-
ple experts.

Expert Number In Table 4, comapred with us-
ing 1 expert, using 2 experts greatly enhance the
performance. The performance of using 3 experts
depends on the model architecture of the third ex-
pert. When using label to word attention on the
sixth layer of Transformer, it improves the P@3
and P@5 scores. Considering the extra compu-
tation of using more experts, using 2 experts is
sufficient to get good performance.

5 Conclusion

In this paper, we propose a multiple experts model
(ME-XML) for XMTC, in which different experts
leverage features from different Transformer layers.
By leveraging features from different layers, each
expert specializes in different levels of semantic
granularity, thus proficient in different types of la-
bels. With label to word attention on the early layer,
one expert captures the salient part of texts. To
encourage diversification, individual loss and diver-
sity loss are applied to train the experts. With exten-
sive experiments, ME-XML demonstrates its supe-
rior performance over other SOTA methods on two
out of three datasets. Comparing ME-XML with
vanilla Transfermer on labels in different frequency
intervals, our method is particularly stronger in tail
label prediction, which is harder part of XMTC due
to the severe data sparse issue.
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A Implementation Details

Module ‘ EUR-LEX Wiki Amazon
‘Word-label 2e-4 le-4 Se-4
Output MLP 2e-3 le-3 2e-3
Transformer 5e-5 le-5 5e-5

Table 5: Learning rates for different modules on differ-
ent datasets.

EUR-LEX Wiki Amazon
Batch size 8 5 12
Epochs 8 5 4
T 512 512 192

Table 6: Hyperparameters for different datasets. T de-
notes the input sequence length.

We choose RoBERTa-base (Liu et al., 2019a)
as our Transformer backbone. We use different
learning rates for different modules as suggested
in APLC-XLNET (Ye et al., 2020). The learning
rate for the pre-trained Transformer is set to be
smaller because we don’t want the embedded se-
mantic information in the Transformer to change
too much. The learning rate for the MLP module
in Eq.(1) and the learning rate for word-to-label
attention in Section 3.2.2 are set to be larger. The
learning rates for different modules can be found in
Table 5. Other model hyperparameters are listed in
Table 6. The « in Eq(10) is set to be 0.01 because
we found that if we set « to be a large value, the
model only optimizes the Lg;yersity and neglects
the Eindim‘dual-

B Macro-averaging Metrics

In this section, we introduce macro-averaging P@k,
R@k and F@k for a label [. The P@k(® is calcu-
lated as:

ti(l)

pr(l)
, where py (1) denotes the total number of the label
! appearing in the predicting top k ranking lists,
and ¢ (1) denotes the total number of label [ is a
ground truth label and appearing in the predicting
top k ranking lists (also known as True Positives).
The RQK® is calculated as:

pag® (13)

RakW = (14)

11

, where y(l) denotes the total number of label [
appearing in the ground truth label set.
The F@k (F1-score@Kk) is calculated as:

rak®prak®
- pak® + rak®

Fak® =2 (15)

The macro-averaging scores for each metric are
then averaging over labels as described in Eq(12).



