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Abstract

The emergence of single-cell transcriptomics and proteomics approaches has re-
sulted in a wealth of high-dimensional data that are challenging to interpret. Di-
mensionality reduction methods, such as UMAP and t-SNE, project data points
onto a low-dimensional space that preserves cellular similarities from the high-
dimensional measurement space. However, the projected dimensions typically
have no interpretable biological meaning, and the relationships between measured
biomolecular features are obscured completely. These limitations can be overcome
by finding embeddings in which each dimension is a function of a distinct and
biologically meaningful set of features. Here, we introduce Janus autoencoders,
a novel neural network architecture capable of finding such low-dimensional em-
beddings by jointly optimizing multiple distinct one-dimensional embeddings of
a dataset. We demonstrate the utility of Janus autoencoders for (1) visualizing
multiomic data such that modality-specific contributions to cell state can be decon-
volved and (2) visualizing mass cytometry data such that cell cycle effects can be
distinguished from “true” cell state differences. Our initial demonstrations indicate
that Janus autoencoders can visually represent relationships between cellular states
and their underlying cellular features in multiple biological contexts.

1 Introduction

The advances of sequencing technology enables profiling of whole genomes and/or transcriptomes
at single-cell resolution [10, 6]. Single-cell proteomics technologies, such as mass cytometry
(CyTOF), CITE-seq, and CODEX, use antibodies to detect proteins of interest, and allow for the
simultaneous quantification of over 50 epitopes in millions of single cells [2, 14, 8]. Such high-
dimensional measurements yield information on regulatory mechanisms of cellular behaviors and
enable investigations of cellular and tissue heterogeneity. However, precise interpretations of highly
multiplexed data remain challenging.

Visualization is an essential step in the analysis of high dimensional single cell data. Dimensionality
reduction techniques allow visualization of -omics data in two-dimensional plots, interpretable by
human inspection. Principal component analysis (PCA) is typically performed to linearly transform
and project high-dimensional data to coordinates that preserve variation in cellular state. Recently
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popularized non-linear dimensionality reduction techniques, such as t-stochastic neighbour embedding
(t-SNE) [11] and uniform manifold approximation and projection (UMAP) [1], aim to find a nonlinear
mapping from a high-dimensional measurement space to a low-dimensional (typically 2D) space, in
which similarities between data points are preserved.

Although UMAP and t-SNE are widely used in analyzing transcriptomics and proteomics data, a
few inherent limitations of these type of methods prevent deep and precise biological interpretations.
First, the low-dimensional embeddings identified by UMAP and t-SNE are determined by arbitrary
nonlinear maps of the high-dimensional input space. As such, the dimensions of the low-dimensional
embedding have no interpretable biological meaning. Second, while these methods preserve the
similarity of single cells, the relationships between features are lost completely in the nonlinear
mapping. Third, multi-omics analysis with UMAP or t-SNE involves intensive data normalization,
preprocessing and integration [3, 9] which could potentially bias resulting visualizations.

One-SENSE, a related nonlinear dimensionality reduction approach, aims to find embeddings in
which the dimensions have interpretable biological meaning and relationships between markers
of interest are preserved [5]. This is done by splitting measured cellular features into biologically
meaningful categories using prior knowledge, mapping each category of features to a single dimension
using t-SNE or UMAP, and plotting the one dimensional embeddings together in a biaxial plot. This
yields dimensions that each represent a distinct category of features, such that variation along an axis
indicates the category of features responsible the variation.

However, one-SENSE visualizations typically lack well-defined clusters and clear distinctions of
cell state [5, 12]. We hypothesize that this is due to the lack of robustness of reduction to a single
dimension using UMAP and t-SNE. It has been shown that there are often many appreciably different
yet equally faithful low dimensional embeddings of single cell data [4]. As there are likely to
be several equivalently faithful one-dimensional embeddings, different pairs of one-dimensional
embeddings may have very different qualities when jointly visualized in two-dimensional space. In
one-SENSE, the two one-dimensional embeddings are optimized completely separately, so pairs of
one-dimensional embeddings suitable for 2D visualization cannot be selected for.

In this work, we seek to visualize single cell data using a nonlinear dimensionality reduction method
in which each reduced dimension represents a distinct, biologically meaningful set of features. In
contrast with previous methods, we preserve cell state information by jointly optimizing multiple one-
dimensional embeddings in a context-aware fashion. To perform this optimization, we introduce Janus
autoencoders, a novel neural network architecture. We demonstrate the utility of Janus autoencoders
for two tasks: (1) visualizing multiomic data such that modality-specific contributions to cell state
can be deconvolved, and (2) visualizing mass cytometry data such that cell cycle effects can be
distinguished from “true” cell state differences.

2 Results

2.1 Network architecture

To jointly optimize multiple one dimensional embeddings of high dimensional data, we have devel-
oped a topologically modified autoencoder that we refer to as a Janus ("two-faced") autoencoder
(Fig 1a). While traditional autoencoders find low dimensional latent spaces in which each dimension
is a function of all input dimensions, Janus autoencoders constrain the information used in each
latent dimension by restricting the connectivity of the network. In particular, Janus autoencoders
contain multiple disjoint encoder modules which map distinct sets of input dimensions to distinct
latent dimensions, each of which can be used for a one-dimensional embedding. To ensure that these
latent dimensions yield faithful joint embeddings as well as faithful one-dimensional embeddings,
we use multiple decoder modules: one for each latent dimension which aims to reconstruct only the
connected inputs, and one “joint” decoder which aims to reconstruct the full initial input based on all
latent dimensions. A more specific description of the Janus architecture can be found in Appendix.

2.2 Decoupling modal contributions to cell state in single cell CITE-seq data

Janus autoencoders can be used naturally to analyze multiomics data in a modality-aware fashion,
without intensive preprocessing or integration. With each measurement modality mapped to a
different latent dimension, it is possible to infer modality-specific contributions to cell state based
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Figure 1: (a) Workflow of single cell data visualization using Janus autoencoders. First, features in
high dimensional single cell data are split into biologically meaningful categories. Then, a Janus
autoencoder is trained on the dataset with categorized features. The Janus autoencoder architecture
contains two encoder modules (shown with inputs X1, X2) and three decoder modules (shown
with outputs X̂, X̂1, X̂2). This architecture jointly optimizes two latent dimensions, each of which
represents a different category of features. Finally, the optimized latent space (shown in dark red
and dark blue) is used to visualize the dataset. (b) A Janus autoencoder visualization of CITE-seq
profiling of PBMCs. Each axis is an encoding of a distinct modality. Colors correspond to Leiden
clusters. (c) Correspondence between 1D embeddings of cell cycle markers in mass cytometry data
and pseudotime estimate based on phospho-RB value.
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on visualization of the latent space. We demonstrate a proof-of-concept using a publically available
CITE-seq [14] dataset simultaneously quantifying the transcripts and surface proteins of 5,000
peripheral blood mononuclear cells (PBMCs) [7].

Using Janus autoencoders, we visualize this data such that each axis corresponds to information
from a single modality (Fig. 1b). Qualitatively, Leiden clusters are preserved, satisfying an initial
sanity check for accurate embeddings. When a similar visualization is generated using oneSENSE,
this sanity check is failed (Appendix Fig. 2b). Furthermore, the Janus visualization shows distinct
populations of PBMCs within coarse Leiden clusters. For example, the cluster shown in green
diverges into two sub-clusters along the RNA axis. Based on established cell type markers [15], we
determined that this cluster corresponds to CD8+ T-cells, and the sub-clusters correspond to CD8+
memory and naive T-cells, differentiated by transcriptomic state (Appendix Fig 3).

It is well known mRNA levels in cells and tissues do not fully predict protein abundance [16]. In
this initial demonstration, we show that Janus antoencoders could be used to decipher relationships
between transcriptome and proteome in multi-omics data.

2.3 Regressing out cell cycle effects in mass cytometry data

Experimentally meaningful single cell variation is often obscured by confounding factors such as cell
cycle stage and cell size [13]. Using Janus autoencoders, it is possible to map potential confounding
features to a different latent dimension than other markers of interest, allowing one to visualize the
effects of and regress out confounding features in single cell datasets.

We demonstrate a proof of concept using a mass cytometry dataset which profiles 4 proteins with
prominent cell cycle dependence in addition to 31 intracellular phosphorylation sites in a monocyte
cell line (THP1) [13]. As observed in prior work, non-cell-cycle aware analyses, such as visualization
with 2D UMAP, erroneously indicate the presence of multiple cell clusters due to the differential cell
cycle states of analyzed cells (Appendix Fig 4a).

By analyzing cell-cycle dependent markers independently from the phosphorylation panel, it is
possible to deconvolve cell cycle effects from experimentally meaningful differences in cell state.
When visualized with Janus autoencoders, it is clear that cell state is relatively homogeneous when
standard phosphorylation targets are decoupled from cell-cycle dependent targets, with the exception
of cells in M-phase (Appendix Fig 4c), in line with prior analyses [13]. Furthermore, the Janus
autoencoder visualization faithfully reconstructs the pseudotime ordering of the cells in their cell
cycle state (Fig 1c). In comparison to an analogous plot generated using oneSENSE, cell cycle
trajectory is captured much more effectively: the Janus autoencoder has Spearman rank correlation of
> 0.99 with a pseudotime estimate, compared to ∼ 0.88 for the analogous oneSENSE plot.

This analysis indicates that Janus autoencoders enable directly analyzing the effects of confounding
factors in mass cytometry data without intensive data correction or normalization.

3 Discussion

In this work, we have introduced Janus autoencoders, a novel neural network architecture for jointly
learning multiple one dimensional embeddings of high dimensional data. Through initial demon-
strations for modality-aware clustering in multiomic sequencing data and cell cycle normalization
in mass cytometry data, we have shown the potential general utility of Janus autoencoders for inter-
pretable visualization of single cell data. Compared to oneSENSE, the existing state-of-the-art, Janus
autoencoders appear to more effectively capture cell type information, regress out cell cycle effects,
and preserve pseudotime ordering.

Janus autoencoders are subject to some of the same intrinsic shortcomings as other single cell data
visualization techniques. In particular, for most high-dimensional datasets, it is highly unclear if
reduction to a low dimensional space is mathematically justifiable. In future work, we plan to develop
general metrics of embedding quality that can serve as a heuristic for the validity of visualizations
produced by Janus autoencoders.
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5 Appendix

5.1 Network architecture details

Informally, for the case of a two dimensional latent space, Janus architectures contain two encoder
modules computing

z1 = E1(x1)

z2 = E2(x2)

in which x1, x2 are two disjoint subsets of elements in the input vector x, and z1, z2 are the latent
dimensions to which they are mapped. These two latent dimensions are decoded with three modules,
computing

x̂1 = D1(z1)

x̂2 = D2(z2)

x̂ = D(z1, z2)

in which |x̂| = |x1|+ |x2|.
In the case of a Janus autoencoder with 2 latent dimensions, where the input X is split into disjoint
categories X1, X2, with reconstructions X̂, X̂1, X̂2, we use a weighted mean-squared error loss
function

L(x̂1, x̂2, x̂, x1, x2, x) = w1MSE(x̂1, x1) + w2MSE(x̂2, x2) + w3MSE(x̂, x)

where the decoder weights w1, w2, w3 are user-defined parameters which must be tuned for each
specific application.

In initial demonstrations, we have used three hidden layers for each of the encoders and decoders,
generally following the rule of thumb that each successive hidden encoding layer should decrease in
size by a factor of 2 until enforced to be 1 in the latent dimension, and the inverse for decoding layers.

While this architecture is theoretically generalizable to larger latent spaces, we have thus far explored
only 2 dimensional latent spaces.

5.2 CITE-seq analysis details

We used MUON [3] to preprocess data by filtering cells based on read count and percentage of
mitochondrial reads, log transforming RNA counts, and selecting highly variable genes. In line
with the MUON documentation, we performed multiplexed Leiden clustering. We generated a
conventional 2D UMAP plot, preconditioned on 20 principal components (Fig 2a).

We find that a OneSENSE plot of the data partitioned by modality does not preserve Leiden clusters,
indicating that cell type information is not faithfully represented (Fig 2b).

As seen in Fig , the Leiden cluster shown in green in Fig 2c contains cells with high CD8 protein
expression. Through differential gene expression analysis, we found that the left subcluster has
high expression of CCL5, a marker of memory T cells [15]. As such, we propose that the Janus
autoencoder has differentiated CD8 positive cells into memory and naive cells, a finer visualization
of cell type than shown in the 2D UMAP 2a. We note that while this Leiden cluster is split in the
One-SENSE plot, it diverges on the protein axis rather than the RNA axis, and thus cannot indicate
the same distinction in CD8 positive subtypes.
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(a) 2D UMAP (b) oneSENSE (c) Janus autoencoding

Figure 2: Visualizations of CITE-seq profiling of PBMCs, colored by Leiden cluster. (a) A con-
ventional 2D UMAP plot. (b) A one-SENSE plot, where the X and Y dimensions are 1D UMAP
reductions of RNA and protein measurements respectively. (c) A Janus autoencoding visualization,
where the X and Y dimensions are neural network encodings of RNA and protein measurements
respectively.

(a) Colored by Leiden cluster (b) Colored by CD8 protein (c) Colored by CCL5 RNA

Figure 3: Specific feature values of cells in Janus autoencoding of CITE-seq PBMC dataset. (a) Janus
autoencoding colored by Leiden cluster. (b) Janus autoencoding colored by CD8 surface protein
expression. (c) Janus autoencoding colored by log-normalized CCL5 RNA expression.

(a) 2D UMAP (b) oneSENSE (c) Janus autoencoding

Figure 4: Visualization of mass cytometry profiling of THP1 cell line. (a) A conventional 2D UMAP
plot, colored based on ground truth cell cycle stage annotations from [13]. (b) A one-SENSE plot,
where the X and Y dimensions are 1D UMAP reductions of cell cycle markers and general protein
measurements respectively. (c) A Janus autoencoding visualization, where the X and Y dimensions
are neural network encodings of cell cycle markers and general protein measurements respectively.
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