
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DRIFT: DECOMPOSE, RETRIEVE, ILLUSTRATE, THEN
FORMALIZE THEOREMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Automating the formalization of mathematical statements for theorem proving re-
mains a major challenge for Large Language Models (LLMs). LLMs struggle to
identify and utilize the prerequisite mathematical knowledge and its correspond-
ing formal representation in languages like Lean. Current retrieval-augmented
autoformalization methods query external libraries using the informal statement
directly, but overlook a fundamental limitation: informal mathematical statements
are often complex and offer limited context on the underlying math concepts.
To address this, we introduce DRIFT, a novel framework that enables LLMs to
decompose informal mathematical statements into smaller, more tractable “sub-
components”. This facilitates targeted retrieval of premises from mathematical
libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to
help models use premises more effectively in formalization tasks. We evaluate
DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find
that it consistently improves premise retrieval, nearly doubling the F1 score com-
pared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong per-
formance on the out-of-distribution ConNF benchmark, with BEq+@10 improve-
ments of 42.25% and 37.14% using GPT-4.1 and DeepSeek-V3.1, respectively.
Our analysis shows that retrieval effectiveness in mathematical autoformalization
depends heavily on model-specific knowledge boundaries, highlighting the need
for adaptive retrieval strategies aligned with each model’s capabilities.

1 INTRODUCTION

Autoformalization is formulated as a translation task that aims to translate natural language math-
ematical descriptions into machine-verifiable statements written in formal languages, such as
Coq (Barras et al., 1997), Isabelle (Paulson, 1994), and Lean (De Moura et al., 2015). Previous
work has shown that accurate autoformalization is a critical step towards developing automated the-
orem proving systems (Lin et al., 2025b; Chen et al., 2025; Xin et al., 2024; Lin et al., 2025c),
and ultimately assisting mathematicians in new discoveries (Gouëzel & Shchur, 2019; Leang et al.,
2025). Despite recent progress of Large Language Models (LLMs) in informal mathematical rea-
soning (Ahn et al., 2024; Setlur et al., 2024; Luong & Lockhart, 2025), formal reasoning presents
distinct challenges. The strict syntax and necessity for precise alignment between informal concepts
and formal definitions mean that even frontier LLMs often fail at autoformalization tasks off-the-
shelf (Wu et al., 2025).

Although synthetic data generation could enable the finetuning of LLMs for autoformalization (Jiang
et al., 2023; Lin et al., 2025a; Wang et al., 2024; Ying et al., 2024), the knowledge cutoff issue
raised by updating formal libraries like Mathlib (Mathlib Community, 2020) makes finetuned mod-
els prone to hallucinating non-existent formal objects that have been renamed, reorganized, or depre-
cated (Baanen et al., 2025). Early retrieval-augmented methods addressed this by retrieving similar
theorems from external libraries to provide useful syntactic structure and compositional examples.
However, their practical utility as exemplars has been limited by the retrieval methods used to find
them. These methods often lack task-specific training data and rely on general-purpose techniques
like keyword searching (Agrawal et al., 2022), k-NN (Azerbayev et al., 2023), or pretrained dense
retrievers (Zhang et al., 2024). An advance is the introduction of the “dependency retrieval” task
by Liu et al. (2025) with the RAutoformalizer (RAuto) framework. Similar to the premise selection
for proof generation (Yang et al., 2023), this paradigm enables the training of specialized retrievers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Formal Statement (FS)
theorem Ireland-Rosen.exercise_4_5 {p t : ℕ} (hp0 : p.Prime) (hp1 : p = 4*t + 3) (a : ZMod p) : IsPrimitiveRoot a
p ↔ ((-a) ^ ((p-1)/2) = 1 ∧ ∀ (k : ℕ), k < (p-1)/2 → (-a)^k ≠ 1) := sorry

Informal Statement (IF)
Consider a prime p of the form $4 t+3$. Show that a is a primitive root modulo p iff $-a$ has order $(p-1) / 2$.

primitiveRoots

ZMod

orderOf

PNat.PrimeQ1 : A prime number p is …, formally expressed in
Lean as p : …

Q2 : A primitive root modulo p is …, in Lean using
…, which asserts that …

Q6 : The multiplicative order of an element a …,
using orderOf a in (ZMod p)…

Q5 : The biconditional statement `a is a primitive root
modulo … a p ↔ orderOf (-a : (ZMod p)ˣ) = …

Decompose Retrieve
Formalize
Theorems

{Formalization
Instruction}

{Informal Statement}
Theorem 3 … {p :
ℕ+ } :PNat.Prime
p → 1 < p …

Theorem 2 … {a :
ZMod p} … (ha : a
≠ 0) :orderOf a |
p-1

Illustrate

IsPrimitiveRoot

Q4 : … -a has order (p-1)/2 means … expressed as
orderOf (-a : (ZMod p) …

Theorem 1 … (h :
IsPrimitiveRoot . μ
n) …
(Int.castRingHom
(Zmod p)) …

Q3 : The negation -a in modular arithmetic… ring
structure of ZMod p

{Theorem Set}

{Premise Set}

Figure 1: An overview of the DRIFT framework. Given an informal statement, DRIFT operates in
four stages: ① Decompose: An LLM breaks down the informal statement into atomic, concept-
focused sub-queries (Q) (§3.1). ② Retrieve: For each sub-query, a dense retriever identifies foun-
dational dependent premises from a formal library (§3.2). ③ Illustrate: A greedy algorithm selects
a small set of theorems that demonstrate the practical usage of these retrieved premises (§3.3). ④
Formalize Theorems: Finally, conditioned on all retrieved context, an LLM synthesizes the final
formal statement (§3.4).

to identify the exact definitions that formal statements require. However, this new approach created
a key trade-off: focusing on individual components meant losing the valuable context provided by
full theorem statements. Based on this, we identify two main limitations in the current approach to
retrieval-augmented autoformalization. First, informal statements are often dense and multifaceted.
This underlying complexity of queries makes them suboptimal as direct queries for retrieving the
precise, atomic definitions required for formalization. Second, even when the correct formal defi-
nitions are retrieved, models often lack the knowledge of contextual usage required to correctly
structure and integrate them into the formal statement.

In information retrieval, query enhancement techniques like query expansion (Chan et al., 2024),
pseudo-document generation (Gao et al., 2023), and neural query rewriting (Wang et al., 2025)
have demonstrated the effectiveness of reformulating queries to provide more semantic informa-
tion. Query decomposition has proven particularly useful for multi-hop question answering as it
matches the granularity of the dense query statements with the indexed documents (Ammann et al.,
2025). In addition to retrieving correct premises, providing rich context like exemplar proofs can
guide proof generation effectively (He et al., 2024; Thakur et al., 2024; Thompson et al., 2025).
Despite advances in adjacent domains, these techniques have not yet been systematically applied
to dependency retrieval for autoformalization, which still relies on monolithic queries and provides
context-free definitions.

We propose DRIFT, a novel framework depicted in Figure 1, that enhances retrieval-augmented
autoformalization by adapting query decomposition and context augmentation to address the unique
challenges of theorem autoformalization. To tackle the complexity of informal statements, we first
adapt query decomposition to break down statements into a series of simpler, atomic sub-queries.
Each sub-query targets a single mathematical concept, transforming a multifaceted retrieval problem
into focused, precise searches. To address the challenge of correctly applying the dependencies, we
contextualize the retrieved definitions with illustrative theorems, giving the model concrete examples
of syntax and application patterns.

Contributions. 1) We introduce DRIFT1 (Decompose, Retrieve, Illustrate, then Formalize
Theorems), a decomposition-driven retrieval-augmented formalization framework that au-

1The code and models are available at ANONYMIZED.

2

ANONYMIZED

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tonomously breaks down informal mathematical statements into atomic sub-queries and contex-
tualizes retrieved premises with demonstrative theorems, bridging the critical gap between formal
definition and syntactic usage while transforming monolithic retrieval into a process aligned with
the dependency structure of formal mathematics. 2) Our experiments establish new state-of-the-art
in dependency retrieval and autoformalization on ProofNet and ConNF across models, with excep-
tional performance on the out-of-distribution ConNF benchmark. 3) Through systematic analysis,
we establish that the utility of retrieved dependencies is conditioned on the gap between a model’s
parametric knowledge and the statement’s complexity. These insights reveal critical design consid-
erations for retrieval-augmented systems and point toward the necessity of adaptive strategies that
can assess when external knowledge genuinely complements model capabilities.

2 RELATED WORK

Retrieval-augmented Autoformalization. Early retrieval-augmented autoformalization methods
retrieved similar theorems as few-shot examples. For instance, ProofNet (Azerbayev et al., 2023)
employs k-NN search, while MS-RAG (Zhang et al., 2024) uses informal-to-informal retrieval with
iterative refinement. LTRAG (Hu et al., 2025) retrieves thought-guided theorem pairs for neuro-
symbolic formalization. In a key development, Liu et al. (2025) established the “dependency
retrieval” paradigm, a premise selection task specialized for autoformalization: given an infor-
mal statement, retrieve the precise set of formal objects and definitions Poracle∗ that are required
for its autoformalization from a library D (e.g., Mathlib). It is essential to distinguish this task
from theorem retrieval tools, such as LeanSearch (Gao et al., 2024), LeanExplore (Asher, 2025),
Moogle (Morph Labs, 2025) or standard baselines like BM25. Although some systems may also
retrieve definitions or structures in practice, inputting the target informal statement usually returns
similar theorems instead of the dependent premises. While theorem retrieval targets semantically
similar theorems to provide examples for autoformalization or proof search, dependency retrieval
targets the precise, low-level formal definitions (e.g., IsPrimitiveRoot, ZMod) required for
the formal statement. Implementing this paradigm, RAutoformalizer (RAuto) (Liu et al., 2025)
demonstrated improvements over non-retrieval methods, yet evaluation revealed a significant gap
compared to oracle systems with ground-truth dependencies. CRAMF (Lu et al., 2025) attempts
conceptual mapping between abstraction levels. Critically, however, all existing approaches treat
complex statements as monolithic queries, failing to identify distinct mathematical concepts within
them.

Query Decomposition and Enhancement. Query enhancement has proven effective across re-
trieval tasks. Query2Doc (Wang et al., 2023) and HyDE (Gao et al., 2023) generate pseudo-
documents to expand semantic coverage. LeanSearch (Gao et al., 2024) augments the informal
statement by prompting an LLM to translate the query into a detailed statement containing both
informal and formal expressions. However, they only evaluated with similar theorem retrieval but
not on the downstream formalization. More relevant to our work, query decomposition has shown
success in multi-hop question answering (Ammann et al., 2025), where breaking complex ques-
tions into sub-queries improves retrieval of distinct information aspects. Zhao et al. (2023) and
Jiang et al. (2022) applied similar decompositions to theorem proving, showing the effectiveness of
divide-and-conquer in formal math. Despite these successes, no prior work has applied decomposi-
tion to informal mathematical statements for autoformalization. Specifically, generic query augmen-
tation methods fail to capture the strict dependency structure within theorems. To bridge this gap,
DRIFT employs atomic decomposition to map mathematical concepts to their formal definitions.
Furthermore, unlike similarity-based theorem selection, DRIFT’s theorem selection is conditional
on the retrieved dependencies, choosing theorems whose syntactic usage explicitly demonstrates the
retrieved formal definitions.

3 METHODOLOGY

We introduce DRIFT (Decompose, Retrieve, Illustrate, then Formalize Theorems), a novel four-
stage method designed to address the two main limitations of previous retrieval-augmented formal-
ization methods: 1) the complexity of informal statements and 2) the lack of demonstrative examples
for retrieved formal objects. As a first step, an LLM decomposes the informal statement into a set of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

smaller, granular sub-queries (§3.1). These queries then guide the retrieval of dependent premises
from a formal library such as Mathlib (§3.2). In a subsequent, bottom-up illustration step, we find
theorems that utilize the retrieved premises, providing in-context demonstrations of their application
(§3.3). Finally, the LLM formalizes the original statement, conditioned on all retrieved premises and
theorems (§3.4). This process is visualized in Figure 1. Throughout, we prioritize generalizability
over model-specific tuning to ensure a robust, adaptable framework.

3.1 DECOMPOSE

Standard retrieval methods often treat complex informal statements as monolithic queries and simply
embed the entire statement. This approach disregards the rich semantic structure within a statement,
which may contain multiple distinct mathematical concepts. Their complexity means that a state-
ment could be under-specified, ambiguous, and/or simply too information-dense to be used as is.
Compressing the entire statement’s meaning into a single dense vector creates a representational
bottleneck, risking the loss of nuanced details and focusing the retrieval on only the most salient
concepts. We hypothesize that by decomposing an informal statement into its constituent concepts,
we can perform a more granular and accurate retrieval for each concept.

To this end, DRIFT begins with a Decompose module (panel ① in Figure 1), which is implemented as
an LLM tasked with breaking down an informal statement (IF) into a set of structured sub-queries,
Q, see Equation 1. While the decomposer could be a finetuned model, we leverage in-context
learning (ICL) with off-the-shelf LLMs in this study.

Decomposer(IF) → Q = {(qi, l̂i)}ni=1 (1)

where n, the number of sub-queries, varies for each informal statement and is determined dynami-
cally by the decomposer. Each sub-query Qi = (qi, l̂i) is designed to isolate a single mathematical
concept. As illustrated in Figure 1, the component qi is a natural language phrase describing the
concept (e.g., “A prime number p of the form 4t+3 is a prime that leaves remainder 3 when divided
by 4”) while l̂i is a predicted formal representation for that concept (e.g., “p : N with the condi-
tions Nat.Prime p and p % 4 = 3, where % denotes the modulo operation on natural numbers.”).
Appending this predicted formal name serves a dual purpose. First, it probes the LLM’s parametric
knowledge, providing a syntactic “anchor” for the concept. Second, it allows the retriever to jointly
leverage the semantics of the natural language phrase qi and the syntactic cues from l̂i to identify the
correct premise even in the presence of minor inaccuracies in the predicted formal representations.

3.2 RETRIEVE

The Retrieve module is designed to identify dependent premises from the library that correspond
to the concepts isolated in each sub-query. This one-to-one mapping is visualized in the panel ② of
Figure 1, which shows each sub-query (Qi) being linked to a formal object (e.g., PNat.Prime).
To accomplish this, we implement a dense passage retriever (Karpukhin et al., 2020) using a BGE-
M3 (Chen et al., 2024) encoder (Eθ), finetuned on the dependency retrieval task as introduced by Liu
et al. (2025). This training objective aligns the informal statements with their formal dependencies,
thereby making semantic similarity a strong proxy for logical dependency. We retrieve dependencies
by encoding queries and formal library objects into a shared d-dimensional embedding space. The
vector representations p = Eθ(p) for all formal objects p ∈ D are pre-computed in an offline
step and stored in an efficient search index. At inference, each sub-query is encoded into a vector
qi = Eθ(Qi) and the closest dependent premise pi is identified by finding the library object that
maximizes the cosine similarity score, ϕ, with the query vector. This is formally defined as:

pi = argmax
p∈D

(ϕ(qi,p)) (2)

where ϕ(qi,p) =
qi·p

∥qi∥∥p∥ . The final set of dependent premises, RDRIFT, is formed by aggregating
the top-1 result from each sub-query and removing duplicates: RDRIFT =

⋃n
i=1{pi}.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 ILLUSTRATE

Retrieving useful formal definitions is a necessary first step; however, it is not sufficient for success-
ful autoformalization. For instance, a retrieved definition like “def ZMod : N → Type” tells
the model what the concept is, but provides no further guidance on its practical application, such as
the syntax for declaring a variable of that type (a : ZMod p). This gap between definition and
usage is a primary source of syntactic and structural errors in LLM-generated formal statements.

The Illustrate module is designed to bridge this gap by providing examples of formal object usage,
visualized in Figure 1 (panel ③). Given a premise like ZMod from the “Retrieve” step, the module
selects illustrative theorems that demonstrate the correct application of ZMod, such as “Theorem 2”.
The module takes the set of retrieved premises RDRIFT, and a budget m as input, and outputs a small
set of illustrative theorems T , where |T | ≤ m. The selection process is a greedy algorithm designed
to maximize the coverage of the input premises RDRIFT as follows. First, we compile a candidate set
Tcand of all theorems in the library D that utilize at least one of the retrieved premises RDRIFT.

In order to ensure relevance and provide a deterministic tie-breaker, we pre-sort this candidate set
in descending order of semantic similarity s(t). For each theorem t ∈ Tcand , this similarity score
is the cosine similarity between its informal statement IFt and the original informal statement IF ,
computed using the same encoder Eθ from the retrieval stage: s(t) = ϕ(Eθ(IFt), Eθ(IF)).

The final set of illustrative theorems T is built iteratively. The process begins by initializing an
empty set of selected theorems T0 = ∅ and an empty set of covered premises Pcov ,0 = ∅. At each
step j = 1, . . . ,m, we select the theorem tj that provides the maximal marginal gain by including
the most new premises in RDRIFT not previously covered:

tj = argmax
t∈Tcand\Tj−1

|P(t) ∩ (RDRIFT \ Pcov ,j−1)| (3)

where P(t) is the set of premises used in theorem t. After selecting tj , the sets are updated for the
next iteration: Tj = Tj−1∪{tj} and Pcov ,j = Pcov ,j−1∪ (P(tj)∩RDRIFT). The process terminates
when either the budget of m theorems is reached or when no remaining candidate theorem can offer
additional coverage (i.e., the marginal gain is zero). The final set is defined as T = Tj from the last
iteration j.

3.4 FORMALIZE THEOREMS

The final DRIFT step is Formalize Theorems, shown in panel ④ of Figure 1. The formalizer assem-
bles the previously gathered definitions and theorem demonstrations into a comprehensive prompt
C and generates the final formal statement. The formalization module is designed to be flexible and
can be implemented with either a finetuned model or a general-purpose LLM guided with ICL. The
formalizer compiles information in the following logical order: C = I ⊕ RDRIFT ⊕ T ⊕ IF , where
⊕ denotes the concatenation operator, I is a formalization instruction (details in Appendix A.4.2),
RDRIFT are the retrieved premises, T are the illustrative theorems and IF is the original informal
statement. Conditioned on this comprehensive prompt, the formalizer then generates the final output
of the DRIFT framework, the formal statement FS = Formalizer(C).

4 EXPERIMENTAL SETUP

4.1 BENCHMARKS

We evaluate DRIFT on three distinct autoformalization benchmarks to test its in-distribution, self-
contained, and out-of-distribution performance. While the experiments are conducted in Lean, our
framework is language-agnostic and adaptable to other formal systems with structured libraries.

ProofNet (In-Distribution). We use the ProofNet benchmark (Azerbayev et al., 2023) for in-
distribution evaluation. Its 374 theorems, sourced from undergraduate mathematics textbooks, are
integrated with the Mathlib library and require an average of 3.39 dependent premises from over
243k formal objects (including 139k theorems). This benchmark tests the framework’s primary
function, which is to effectively retrieve and utilize dependent premises with demonstration from a
large-scale, in-distribution knowledge base.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

MiniF2F (Self-Contained). We use the MiniF2F-test set (Zheng et al., 2021) to evaluate the frame-
work on self-contained problems. This benchmark consists of 224 Olympiad-style theorems with a
notably low average of just 0.43 dependencies from Mathlib.2 MiniF2F-test serves as a boundary
condition, testing the model’s core formalization capabilities and its robustness against potentially
distracting context when retrieval is not strictly necessary.

ConNF (Out-of-Distribution). The OOD challenge refers to evaluation scenarios where neither
the retrieval model nor the formalization model has been exposed to the formal objects used in the
test data.3 We therefore evaluate on ConNF, a benchmark curated by Liu et al. (2025) through
topological informalization to test OOD generalization. This benchmark is based on the con-nf
library and is not integrated with Mathlib.4 It formalizes a consistency proof for Quine’s New
Foundations (Quine, 1951), established by Holmes & Wilshaw (2015) and contains 961 research-
level theorems requiring an average of 3.92 premises from its distinct library of 1,348 formal objects.
ConNF rigorously tests DRIFT’s generalization to a novel mathematical domain (Zhang et al., 2024).

4.2 BASELINES

We evaluate our proposed framework against three key baselines representing zero-shot, state-of-
the-art retrieval, and oracle-level performance. We note that concurrent work, CRAMF (Lu et al.,
2025), was not publicly available for comparison at the time of our experiments. The no retrieval
(zero-shot) baseline establishes a performance floor. The autoformalization model receives only
the informal statement as input, without access to any retrieved context. DPR (RAuto) repre-
sents the current state-of-the-art. We compare our method to the dependency retrieval module from
the RAutoformalizer framework (Liu et al., 2025), which is a finetuned dense passage retriever
(DPR) (Karpukhin et al., 2020).5 The top-5 retrieved premises are provided to the formalizer model
as augmented context. The oracle* (retrieval) setting provides an approximate upper bound for
retrieval. The model is provided with ground-truth dependencies (Poracle∗) for each problem, sim-
ulating a perfect retriever, as defined by Liu et al. (2025). We mark this setting with an asterisk (∗)
to denote that this oracle is, in fact, imperfect. This is because the provided dependencies are not
necessarily optimal or exhaustive for formalization and do not necessarily lead to the best autofor-
malization performance. As we discuss in Section 5, some of our settings actually outperform this
imperfect oracle.

4.3 IMPLEMENTATION DETAILS

In this study, we evaluate DRIFT as a lightweight prompting strategy, leveraging the in-context
learning capabilities of instruction-following models such as DeepSeek-V3.1 (DeepSeek-AI, 2024),
GPT-4.1 (OpenAI, 2025), and Claude-Opus-4 (Anthropic, 2025a) to demonstrate DRIFT’s broad
applicability without introducing task-specific biases from finetuning. While we use the same model
for both decomposition and formalization for consistency, these modules are independent and could
be replaced with specialized finetuned models.

Decompose. We construct a few-shot prompt using five expertly-verified examples from the Put-
nam benchmark (Tsoukalas et al., 2024) to instruct LLMs to decompose the informal statements;
full details in Appendix A.1.1 and Appendix A.4.1. Each decomposed sub-query consists of a nat-
ural language description of a concept and its formal representation predicted by the decomposer
with parametric knowledge, as detailed in Section 3.1. We employ a single prompt across all mod-
els to prioritize generalizability. Empirically, this yields consistent improvements across distinct
frontier models (Table 1 and Table 8), demonstrating framework robustness without the need for
model-specific optimization. The number of sub-queries decomposed is not fixed but autonomously
decided by the Decomposer.

2We removed 20 examples from the dataset that were either duplicated or failed to compile (Lean v4.18.0).
3The knowledge cutoff dates of the models we used are June 2024, March 2025, and July 2025, for GPT-

4.1, Claude-Opus-4, and DeepSeek-V3.1, respectively. From our zero-shot results on ConNF, we hypothesize
that the models have not been extensively trained on this benchmark, though there is a risk of exposure to the
formalizer which cannot be controlled or confirmed.

4The con-nf library is available at https://github.com/leanprover-community/con-nf.
5Model available at https://huggingface.co/purewhite42/dependency_retriever_f.

6

https://github.com/leanprover-community/con-nf
https://huggingface.co/purewhite42/dependency_retriever_f

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Retrieve. The retriever model is a dense passage retriever6 (DPR) finetuned on Mathlib data to map
informal queries to their formal dependencies (Liu et al., 2025). We pre-compute embeddings for
all formal declarations in the relevant libraries (Mathlib for ProofNet and MiniF2F-test; con-nf
for ConNF). This training setup establishes ConNF as an OOD benchmark for the retrieval module.
For the DPR baseline, we retrieve the top-5 premises based on the entire informal statement. Unlike
fixed-k baselines, the number of premises retrieved by DRIFT is dynamic. By selecting the top-1
candidate for each sub-query and performing deduplication, the final set size is dynamic and at most
n, where n is the number of decomposed sub-queries.

Illustrate. In order to demonstrate premise usage in real contexts, we select up to m = 3 exemplar
theorems using the greedy coverage algorithm described in Section 3.3. This budget of m = 3 was
selected based on an empirical analysis of diminishing returns in premise coverage, as detailed in
Appendix A.2.8.

Formalize Theorems. As described in Section 3.4, the formalization prompt combines the original
informal statement with the retrieved premises and illustrative theorems. Each premise is presented
with its full name, formal declaration, and source code. Each illustrative theorem is included as a
pair of its informal and formal statements. This demonstrates both the informal-to-formal alignment
and the concrete application of the premises within a theorem instance. To evaluate pass@k, we
generate 10 formalizations for each problem.

4.4 EVALUATION METRICS

We conduct the evaluation of DRIFT in two stages: a) the intrinsic performance of dependency
retrieval and the selection of illustrative theorems, and b) the extrinsic performance of autoformal-
ization.

Dependency Retrieval. The effectiveness of the decomposition is measured by its impact on the de-
pendency retrieval task as the quality of the decomposed sub-queries directly impacts the relevance
of the retrieved premises. We measure the quality of the retrieved premises against the oracle*
dependencies using Precision, Recall, and their harmonic mean, F1-score.

Formalization Correctness. For formalization, we use Typecheck (TC) and BEq+. Typecheck
measures syntactic correctness, indicating the percentage of the generated statements that are valid
and can pass the compiler’s type checker (Lu et al., 2024; Azerbayev et al., 2023; Liu et al., 2025).
For semantic correctness, we use BEq+ (Poiroux et al., 2025), a symbolic metric that measures the
logical equivalence between a predicted formal statement and the ground-truth reference by using
deterministic proof tactics to bidirectionally prove that each statement can be transformed into the
other. We adopt BEq+ over LLM-based evaluations to avoid stochasticity and ensure compiler-
verified reliability. Furthermore, given that large-scale human evaluation is infeasible, BEq+ serves
as an effective proxy, demonstrating strong alignment with human judgments (Pearson: 0.974,
Kendall: 0.872) (Poiroux et al., 2025). For each metric, we assess performance using pass@1 and
pass@10, where pass@k indicates that at least one of k independent generations was successful.

5 RESULTS AND DISCUSSION

5.1 DEPENDENCY RETRIEVAL

We evaluate the effectiveness of the Decompose and Retrieve modules by looking at their impact on
intrinsic performance in dependency retrieval. As detailed in Table 1, we compare DRIFT against
a monolithic query baseline that uses the same dense retriever but with the original informal state-
ments as queries. This provides a direct comparison to DRIFT, which retrieves a similar number of
premises by taking the union of the top-1 results for each of the 5.21 to 6.42 sub-queries generated
by the Decompose module.7 The results show that decomposition provides a substantial perfor-
mance improvement in both precision and recall. Averaged across all decomposer models, DRIFT
achieves an absolute improvement of 13.34, 2.08, and 7.74 points over the baseline F1 score on the

6Training details of the retriever in Appendix A.1.2.
7The full statistics of the decomposed sub-queries are available at Appendix A.2.7.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Benchmark Decomposer Precision Recall F1

ProofNet

- 11.55 17.03 13.77
Claude-Opus-4 23.02 34.70 27.68
GPT-4.1 21.71 34.46 26.64
DeepSeek-V3.1 24.38 30.28 27.01

MiniF2F-test

- 0.36 4.12 0.66
Claude-Opus-4 2.08 23.71 3.83
GPT-4.1 1.42 15.46 2.60
DeepSeek-V3.1 0.98 9.28 1.78

ConNF

- 25.12 32.06 28.17
Claude-Opus-4 30.97 41.01 35.29
GPT-4.1 31.62 40.64 35.56
DeepSeek-V3.1 34.67 39.39 36.88

Table 1: A comparison of dependency retrieval performance (%) between DRIFT and a no-
decomposition baseline (“-”). The baseline queries the retriever directly with the original informal
statement. Best results are in bold.

ProofNet, MiniF2F-test, and ConNF benchmarks, respectively. Regarding the choice of decomposer
model, we observe that while Claude-Opus-4 achieves the highest F1 scores on ProofNet (27.68%)
and MiniF2F-test (3.83%), the performance variation among the LLMs is marginal. Our findings
indicate that frontier LLMs are largely interchangeable for this task as the top-performing models
have a maximum F1 score difference of only 2.05% on any benchmark.

The Illustrate module proves highly effective at selecting a concise set of theorems to demonstrate
premise usage. Within a maximum of only three selected theorems (m = 3), the algorithm achieves
a high average premise coverage rate of 74.59±4.80% across all the decomposers and benchmarks.

5.2 FORMALIZATION

For extrinsic performance on autoformalization, DRIFT consistently outperforms both the zero-
shot baseline and the strong retrieval-augmented baseline DPR (RAuto) on ProofNet and ConNF
benchmarks, both on Typecheck and BEq+ with pass@1 and pass@10 (see Table 2). Specifically,
on ProofNet, GPT-4.1 with DRIFT achieves a BEq+ pass@10 of 21.93%, a 2.74% improvement
over DPR (RAuto). This trend holds across models in our main evaluation, demonstrating that our
decomposition-driven approach provides more effective context for the formalization task.

A key insight from our results is that while the frontier models we tested are all highly proficient and
largely interchangeable as query decomposers, this parity does not extend to the final formalization
step. For instance, DeepSeek-V3.1 generally outperforms GPT-4.1 in the zero-shot setting across
all benchmarks, suggesting a stronger parametric knowledge for direct formalization. However, this
trend reverses when retrieval is introduced, most significantly on the OOD ConNF benchmark. On
ConNF, all models achieve low zero-shot BEq+ scores (<10%), confirming a severe knowledge gap.
Retrieval substantially improves performance, where GPT-4.1 consistently outperforms DeepSeek-
V3.1 across all metrics with different retrieval strategies. DRIFT provides a particularly significant
improvement, increasing GPT-4.1’s BEq+@10 score by 55.57% and even surpassing the oracle*
baseline by 3.43%. We hypothesize this is because the oracle* provides only necessary premises
based on the reference statement, while the illustrative theorems selected with DRIFT provide crucial
demonstrations of premise usage. We support this hypothesis with a detailed qualitative analysis of
the Oracle* baseline’s failure modes in Appendix A.3.2.

On the in-distribution ProofNet benchmark, the results are more nuanced. GPT-4.1 surpasses
DeepSeek-V3.1 on BEq+@10 when using DRIFT. This pattern suggests that GPT-4.1 is more adept
at in-context synthesis, integrating and reasoning over retrieved information to construct formal
statements, especially in unfamiliar domains. In contrast to the interchangeability we observed
among models as decomposers, the formalization stage reveals clear performance differences. The
distinction suggests that the two stages of our pipeline rely on distinct LLM capabilities. Decom-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Benchmark Formalizer Retrieval TC@1 BEq+@1 TC@10 BEq+@10

ProofNet

GPT-4.1

Oracle* 58.82 20.32 79.68 27.54
Zero-shot 34.22 9.36 51.60 13.37
DPR (RAuto) 51.60(+17.38) 14.71(+ 5.35) 73.53(+21.93) 19.25(+ 5.88)

DRIFT 55.88(+21.66) 17.38(+ 8.02) 77.01(+25.41) 21.93(+ 8.56)

DeepSeek-V3.1

Oracle* 71.12 21.93 82.09 27.54
Zero-shot 60.43 15.51 71.93 20.32
DPR (RAuto) 63.37(+ 2.94) 17.38(+ 1.87) 73.53(+ 1.60) 19.52(− 0.80)

DRIFT 72.73(+12.30) 18.18(+ 2.67) 79.41(+ 7.48) 20.59(+ 0.27)

MiniF2F-test

GPT-4.1

Oracle* 75.45 23.66 89.29 30.36
Zero-shot 69.64 23.21 84.82 28.12
DPR (RAuto) 77.23(+ 7.59) 24.55(+ 1.34) 92.41(+ 7.59) 32.14(+ 4.02)

DRIFT 74.55(+ 4.91) 24.55(+ 1.34) 92.41(+ 7.59) 29.02(+ 0.90)

DeepSeek-V3.1

Oracle* 77.68 23.21 87.50 28.12
Zero-shot 76.34 22.77 87.50 27.23
DPR (RAuto) 75.89(− 0.45) 22.77(± 0.00) 87.95(+ 0.45) 27.68(+ 0.45)

DRIFT 74.11(− 2.23) 22.77(± 0.00) 88.84(+ 1.34) 24.55(− 2.68)

ConNF

GPT-4.1

Oracle* 60.46 48.28 75.23 58.90
Zero-shot 7.28 4.47 11.45 6.76
DPR (RAuto) 24.56(+17.28) 15.19(+10.72) 31.95(+20.50) 20.08(+13.32)

DRIFT 65.76(+58.48) 54.84(+50.37) 77.00(+65.55) 62.33(+55.57)

DeepSeek-V3.1

Oracle* 57.34 44.22 71.28 55.15
Zero-shot 13.42 8.12 17.59 11.03
DPR (RAuto) 21.96(+ 8.54) 12.90(+ 4.78) 28.20(+10.61) 17.07(+ 6.04)

DRIFT 60.67(+47.25) 46.72(+38.60) 71.18(+53.59) 54.21(+43.18)

Table 2: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance
is measured by Typecheck (TC@k) and BEq+@k. We compare DRIFT against zero-shot, DPR
(RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) rel-
ative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are bold.

position leverages natural language reasoning, whereas formalization demands advanced formal
reasoning.

As we discussed in Section 4, the MiniF2F-test benchmark presents a distinct profile with an aver-
age of only 0.43 library dependencies. This limits the potential for retrieval-based improvements,
evidenced by the small gap between the zero-shot and oracle* performance, (e.g., a pass@10 gap
of 2.24% for GPT-4.1 and 0.89% for DeepSeek-V3.1). Instead, this low-dependency regime reveals
the models’ high sensitivity to the provided context, which can act as a distractor rather than an
aid. We provide a detailed analysis of these failures in Appendix A.3.1, offering a granular error
taxonomy that specifically identifies issues like force-fitting and over-complication.

We include a comparison with the finetuned Goedel-Formalizer-V2-8B (Lin et al., 2025c) in Ap-
pendix A.2.10. The results demonstrate that while the finetuned baseline scales effectively in-
domain, DRIFT significantly outperforms it on the OOD ConNF benchmark by bridging the se-
mantic knowledge gap.

5.3 ABLATION STUDY

In order to isolate and measure the contribution of each component of DRIFT, we conducted a sys-
tematic ablation study (Table 3). As expected, removing the illustrative theorems (w/o Illustrate)
decreased the BEq+ score on ProofNet and ConNF, which confirms that demonstrations of premise
usage are crucial for the formalization correctness beyond just the definitions of the formal objects.
Intriguingly, additionally removing the Decompose module (w/o Decompose) does not further de-
grade performance and even leads to a slight recovery on ConNF and ProofNet in the BEq+ score.
We hypothesize this is because the baseline DPR retrieves a thematically homogeneous (lexically
close though less precise) set of premises via single query retrieval, which may be less distracting

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Retrieval ProofNet MiniF2F-test ConNF
TC@1 BEq+@1 TC@1 BEq+@1 TC@1 BEq+@1

DRIFT (GPT-4.1) 55.88 17.38 74.55 24.55 65.76 54.84
w/o Illustrate 56.15 (+ 0.27) 14.17 (- 3.21) 76.34 (+ 1.79) 24.55 (± 0.00) 45.47 (-20.29) 35.90 (-18.94)
w/o Decompose 50.80 (- 5.08) 13.64 (- 3.74) 76.34 (+ 1.79) 26.34 (+ 1.79) 59.63 (- 6.13) 46.72 (- 8.12)
w/o Retrieval 34.22 (-21.66) 9.36 (- 8.02) 69.64 (- 4.91) 23.21 (- 1.34) 7.28 (-58.48) 4.47 (-50.37)

DRIFT (DeepSeek-V3.1) 72.73 18.18 74.11 22.77 60.67 46.72
w/o Illustrate 70.32 (- 2.41) 15.24 (- 2.94) 77.68 (+ 3.57) 21.43 (- 1.34) 41.31 (-19.36) 29.34 (-17.38)
w/o Decompose 64.97 (- 7.76) 15.78 (- 2.40) 77.68 (+ 3.57) 20.98 (- 1.79) 50.36 (-10.31) 38.81 (- 7.91)
w/o Retrieval 60.43 (-12.30) 15.51 (- 2.67) 76.34 (+ 2.23) 22.77 (± 0.00) 13.42 (-47.25) 8.12 (-38.60)

Table 3: Ablation study of DRIFT using GPT-4.1 and DeepSeek-V3.1 with pass@1. First, we
remove the Illustrate module (premises retrieved with sub-queries provided in C), then the Decom-
pose module (premises retrieved using original informal statement provided in C), and finally all the
Retrieval components. Values in parentheses show relative performance (increase) or (decrease)
compared to the full model.

than the precise but more diverse set retrieved via decomposition. This reveals a crucial synergy:
the illustrative theorems act as a scaffold that helps the model navigate the diverse information from
the decomposer. In Appendix A.3.3, we analyze specific instances where using premises retrieved
by DRIFT alone failed, whereas the full DRIFT pipeline and the baseline DPR succeeded, further
validating the scaffolding hypothesis.

The complex interaction creates a trade-off on the MiniF2F-test benchmark: removing theorems
improves syntactic correctness (Typecheck) while degrading logical correctness (BEq+). This fur-
ther supports the hypothesis that for the simpler, low-dependency problems in MiniF2F-test, adding
more context can act as a distractor. Removing external context improves syntactic validity but
degrades logical correctness of the generated formal statements. This sensitivity strongly moti-
vates the need for more dynamic and adaptive retrieval strategies. To quantify the theoretical gains
of such strategies, we provide an “Oracle Ensemble” analysis in Appendix A.2.9, demonstrating
that an adaptive upper bound consistently outperforms individual methods. Future work on agentic
frameworks could selectively retrieve information, judge its utility, and iterate based on the compiler
feedback.

6 CONCLUSION

In this work, we introduced DRIFT, a framework that improves autoformalization by tackling two
distinct challenges: the underlying complexity of queries and the lack of contextual usage. Our
decomposition-driven retrieval addresses the former by breaking down the informal statement into
sub-queries and conducting point-to-point retrieval of its formal dependencies. Concurrently, the
Illustrate module resolves the latter by providing illustrative examples to guide the utilization of re-
trieved premises in theorem instances. This dual approach substantially improves formalization cor-
rectness on both complex in-distribution (ProofNet) and out-of-distribution (ConNF) benchmarks,
demonstrating its effectiveness as a broadly generalizable and model-agnostic strategy. On a sim-
pler, low-dependency MiniF2F-test benchmark, our method performs comparably to related meth-
ods. Our findings suggest future work to focus on dynamic and adaptive retrieval strategies, as well
as on agentic frameworks that iteratively refine attempts based on compiler feedback.

ETHICS STATEMENT

We adhere to the licenses of the data artifacts and models used in this study, as well as to the ICLR
code of ethics. Human experts who verified decomposed queries were fairly compensated for their
contributions.

We acknowledge the societal risks associated with reasoning LLMs. Our method operates within
the existing paradigm of retrieval-augmented generation and does not introduce novel risks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Finally, Large Language Models were used as a writing assistant for improving the language and
clarity of this manuscript. The scientific contributions, including all ideas, experiments, and analy-
ses, are the work of the human authors.

REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of this study. Upon publication, we will release the
complete source code for the DRIFT framework, all curated data artifacts, and our finetuned mod-
els under a permissible open-source license. Key implementation details and hyperparameters are
described in Appendix A.1.

REFERENCES

Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. To-
wards a mathematics formalisation assistant using large language models. arXiv preprint
arXiv:2211.07524, 2022.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Computational Linguistics: Student Research
Workshop, pp. 225–237, 2024.

Paul J. L. Ammann, Jonas Golde, and Alan Akbik. Question decomposition for retrieval-augmented
generation. In Jin Zhao, Mingyang Wang, and Zhu Liu (eds.), Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 4: Student Research Work-
shop), pp. 497–507, Vienna, Austria, July 2025. Association for Computational Linguistics.

Anthropic. Introducing Claude 4. https://www.anthropic.com/news/claude-4, May
2025a. Accessed: September 24, 2025.

Anthropic. Claude’s extended thinking. https://www.anthropic.com/news/
visible-extended-thinking, Feb 2025b. Accessed: October 17, 2025.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Conference
on Learning Representations, 2024.

Justin Asher. Leanexplore: A search engine for Lean 4 declarations. arXiv preprint
arXiv:2506.11085, 2025.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level math-
ematics, 2023.

Anne Baanen, Matthew Robert Ballard, Johan Commelin, Bryan Gin-ge Chen, Michael Rothgang,
and Damiano Testa. Growing Mathlib: Maintenance of a large scale mathematical library. arXiv
preprint arXiv:2508.21593, 2025.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Eduardo
Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq Proof
Assistant Reference Manual : Version 6.1. PhD thesis, Inria, 1997.

BICMR@PKU AI. Jixia: Static analysis tool for Lean 4. https://github.com/
frenzymath/jixia, 2024. GitHub repository.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. RQ-RAG:
Learning to refine queries for retrieval augmented generation. In First Conference on Language
Modeling, 2024.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. BGE M3-Embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. arXiv preprint arXiv:2402.03216, 2024.

11

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking
https://github.com/frenzymath/jixia
https://github.com/frenzymath/jixia

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-Prover: Deep and broad reasoning for automated
theorem proving. arXiv preprint arXiv:2507.23726, 2025.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378–388. Springer, 2015.

DeepSeek-AI. Deepseek-v3 technical report, 2024.

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine
for Mathlib4. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
8001–8013, 2024.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1762–1777, 2023.

Sébastien Gouëzel and Vladimir Shchur. A corrected quantitative version of the Morse lemma.
Journal of Functional Analysis, 277(4):1258–1268, 2019.

Yuhang He, Jihai Zhang, Jianzhu Bao, Fangquan Lin, Cheng Yang, Bing Qin, Ruifeng Xu, and
Wotao Yin. BC-prover: Backward chaining prover for formal theorem proving. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp. 3059–3077, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics.

M Randall Holmes and Sky Wilshaw. Nf is consistent. arXiv preprint arXiv:1503.01406, 2015.

Ruikang Hu, Shaoyu Lin, Yeliang Xiu, and Yongmei Liu. LTRAG: Enhancing autoformalization and
self-refinement for logical reasoning with thought-guided RAG. In Findings of the Association
for Computational Linguistics: ACL 2025, pp. 2483–2493, 2025.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755, 2023.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2022.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, 2020.

Joshua Ong Jun Leang, Giwon Hong, Wenda Li, and Shay B Cohen. Theorem prover as a judge
for synthetic data generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
hammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 29941–29977, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-STaR: Learning to interleave
thinking and proving. In The Thirteenth International Conference on Learning Representations,
2025a.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-Prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025b.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover-V2: Scaling
Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction, August 2025c.
arXiv:2508.03613 [cs].

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
autoformalization: Towards a faithful metric and a dependency retrieval-based approach. In The
Thirteenth International Conference on Learning Representations, 2025.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-
driven autoformalization in Lean 4, 2024.

Wangyue Lu, Lun Du, Sirui Li, Ke Weng, Haozhe Sun, Hengyu Liu, Minghe Yu, Tiancheng Zhang,
and Ge Yu. Automated formalization via conceptual retrieval-augmented LLMs. arXiv preprint
arXiv:2508.06931, 2025.

Thang Luong and Edward Lockhart. Advanced version of Gemini with deep think officially achieves
gold medal standard at the international mathematical olympiad, July 2025. Available at: Google
DeepMind Blog. Accessed: 2025-09-09.

Mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, pp. 367–381, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370974. doi: 10.1145/
3372885.3373824.

Morph Labs. Moogle: A semantic search engine for Lean 4. https://www.moogle.ai/,
2025. Accessed: 2025.

OpenAI. Introducing GPT-4.1 model family. https://openai.com/index/gpt-4-1/,
April 2025. Accessed: September 24, 2025.

Lawrence C Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformalization
using type checking, 2025.

WV Quine. On the consistency of “new foundations”. Proceedings of the National Academy of
Sciences, 37(8):538–540, 1951.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
on incorrect synthetic data scales the efficiency of LLM math reasoning by eight-fold. Advances
in Neural Information Processing Systems, 37:43000–43031, 2024.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-
context learning agent for formal theorem-proving. In First Conference on Language Modeling,
2024.

Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex Sanchez-Stern, Yuriy Brun,
João F Ferreira, Sorin Lerner, and Emily First. Rango: Adaptive retrieval-augmented proving for
automated software verification. In 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE), pp. 347–359. IEEE, 2025.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition, 2024.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 9414–9423, 2023.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theo-
remLlama: Transforming general-purpose LLMs into Lean4 experts. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 11953–11974, 2024.

Shuting Wang, Xin Yu, Mang Wang, Weipeng Chen, Yutao Zhu, and Zhicheng Dou. RichRAG:
Crafting rich responses for multi-faceted queries in retrieval-augmented generation. In Proceed-
ings of the 31st International Conference on Computational Linguistics, pp. 11317–11333, 2025.

13

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://www.moogle.ai/
https://openai.com/index/gpt-4-1/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang,
Zidong Du, Jie Yan, et al. StepFun-Formalizer: Unlocking the autoformalization potential of
LLMs through knowledge-reasoning fusion. arXiv preprint arXiv:2508.04440, 2025.

Huajian Xin, Z.Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. DeepSeek-Prover-V1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. In The Thirteenth International Confer-
ence on Learning Representations, 2024.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with retrieval-
augmented language models. Advances in Neural Information Processing Systems, 36:21573–
21612, 2023.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
A large-scale Lean problem set formalized from natural language math problems. In Proceedings
of the 38th International Conference on Neural Information Processing Systems, pp. 105848–
105863, 2024.

Lan Zhang, Xin Quan, and André Freitas. Consistent autoformalization for constructing mathemat-
ical libraries. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 4020–4033, 2024.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. arXiv preprint arXiv:2305.16366, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 FEW-SHOT EXAMPLES FOR DECOMPOSITION

To construct a robust set of few-shot demonstrations for our Decompose module, we strategically
selected five problems from the Putnam benchmark (Tsoukalas et al., 2024). These problems were
chosen to ensure diversity in both their mathematical domain and the number of underlying premises
required for their formal statements.

We decomposed the informal statement of each selected problem into its atomic, logical sub-
components using Claude-Opus-4 with extended thinking enabled (Anthropic, 2025b). The decom-
position followed a zero-shot prompting strategy guided by a carefully engineered instruction set.
To ensure correctness and logical atomicity, each generated decomposition exemplar was manually
verified by human experts. While the decomposition task inherently lacks a unique ground truth,
the robustness of the resulting sub-queries is validated empirically by the significant improvements
observed in downstream premise retrieval performance (see Table 1, Section 5.1).

This curated set of examples, detailed below, provides the model with varied demonstrations for the
decomposition task across number theory, algebra, analysis, and geometry.

• Number Theory: putnam 1966 b2

• Algebra: putnam 2000 b1

• Analysis: putnam 2000 a4, putnam 2015 b1

• Geometry: putnam 2003 b5

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1.2 RETRIEVER FINETUNING DETAILS

We finetuned the BGE-M3 retriever model (Chen et al., 2024) on the Mathlib 4.7 dataset to special-
ize it for dependency retrieval in formal mathematics. The finetuning process was executed using
the FlagEmbedding library (Chen et al., 2024) on a server equipped with four 32GB GPUs. The
complete set of hyperparameters used for this process, including optimizer settings and loss config-
uration, is provided in Table 4.

Category Hyperparameter Value
Model & Data model name or path bge-m3

train data mathlib 4.7
query max len 1024
passage max len 1024
train group size 4
sentence pooling method cls

Training num train epochs 1
per device train batch size 32
per device eval batch size 4
learning rate 5× 10−6

warmup ratio 0.1
weight decay 0.01
repetition penalty 1.0
dataloader drop last True
even batches True
non blocking False
split batches False
use seedable sampler True

Loss & Objective temperature 0.02
normalize embeddings True
negatives cross device True
same benchmark within batch True
unified finetuning True
kd loss type m3 kd loss

Optimizer optim adamw torch
adafactor False
adam beta1 0.9
adam beta2 0.999
adam epsilon 1× 10−8

Table 4: Hyperparameters for model fine-tuning.

Training Objective and Data Source.. We utilized the informalized Mathlib dataset provided by
RAutoformalizer (Liu et al., 2025), which aligns informal statements with formal declarations from
Mathlib 4.7.0. To extract the ground-truth dependent premises from the raw Lean code, we utilized
Jixia (BICMR@PKU AI, 2024), a static analysis tool for Lean 4 that parses the abstract syntax tree
to identify source-level dependencies. The retriever was trained using a standard contrastive loss
framework: the informal statement serves as the anchor, the Jixia-extracted dependencies serve as
positive samples, and other random library objects serve as negative samples. Crucially, the retriever
was trained exclusively on Mathlib data to ensure strict isolation from the ProofNet and MiniF2F-
test sets.

Toolchain Versions and Robustness.. We utilized distinct Lean versions due to data constraints and
benchmark requirements. The retriever training relied on Mathlib 4.7.0 data due to the availability of
aligned informal-formal pairs. However, for the inference and evaluation of ProofNet and MiniF2F-
test, we utilized the more recent Lean 4.18.0 (released April 2025); the high compilation success
rate of gold statements (∼100%) confirms that the version difference between training data and the
evaluation environment does not introduce instability. For ConNF, we utilized Lean 4.7.0 strictly

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

because the benchmark is pinned to this version by its dependencies. Notably, DRIFT mitigates the
“brittleness” often associated with rapid Lean and Mathlib evolution: unlike finetuned models that
memorize static syntax and require expensive retraining to adapt to updates, DRIFT adapts to new
Lean versions through a low-cost offline re-indexing of the active library.

A.1.3 LLM GENERATION PARAMETERS

For all generative tasks, sub-query generation (decomposition) and formal statement generation (for-
malization), we set the temperature to 0.7 for all models (GPT-4.1, DeepSeek-V3.1, and Claude-
Opus-4) to encourage diverse yet coherent outputs. To ensure reproducibility, single-attempt evalu-
ations (pass@1) used a fixed seed of 42. For multi-attempt evaluations (pass@10), we generated ten
distinct outputs by using a sequential range of seeds from 42 to 51.

A.2 ADDITIONAL RESULTS AND DISCUSSION

A.2.1 DEPENDENCY RETRIEVAL PERFORMANCE METRICS

We evaluate retrieval performance using standard precision, recall, and their harmonic mean, the F1
score. For a given retrieved set R and the ground-truth set of oracle* premises Poracle∗, precision
and recall are defined as: Precision(P) = |Poracle∗∩R|

|R| and Recall(R) = |Poracle∗∩R|
|Poracle∗| The F1 score

provides a single, balanced measure of performance by combining precision and recall: F1 = 2 ·
P·R
P+R The composition of the retrieved set R varies by method.

For baseline retrievers, R consists of the top-k premises with the highest cosine similarity to the
embedding of the full informal statement. For DRIFT, R is the union of the single best-retrieved
premise for each of the n decomposed sub-queries.

A.2.2 DEPENDENCY RETRIEVAL RESULTS OF RAUTO

This section presents the performance of DPR (RAuto) across both in-distribution (ProofNet,
MiniF2F-test) and out-of-distribution (ConNF) benchmarks. The results, detailed in Table 5, high-
light a crucial trade-off between specialization and generalization that motivates our proposed ap-
proach. When comparing DPR baselines, our retriever without decomposition substantially outper-
forms DPR (RAuto) on the ConNF benchmark but underperforms on ProofNet and MiniF2F-test.
We hypothesize that this discrepancy arises because DPR (RAuto) may be overfitted to Mathlib-
specific content.

Benchmark Precision Recall F1
ProofNet 22.89 33.75 27.28
MiniF2F-test 0.63 7.22 1.15
ConNF 14.01 17.88 15.71

Table 5: Dependency Retrieval performance (%) of DPR (RAuto), the retriever from RAutoformal-
izer (Liu et al., 2025). Retrieval k is set to 5.

A.2.3 AUTOFORMALIZATION RESULTS OF CLAUDE-OPUS-4

In the main paper, we evaluated Claude-Opus-4’s effectiveness as a decomposer for query decom-
position. Here, we provide Claude-Opus-4’s formalization results for completeness. Table 6 reports
pass@1 performance (TC@1 and BEq+@1) across all benchmarks. Note that pass@10 results for
Claude-Opus-4 are not available due to computational costs.

A.2.4 THE ROLE OF ILLUSTRATIVE THEOREMS AS A SCAFFOLD

As presented in Table 3, removing the Decompose module (w/o Decompose: reverting to the base-
line DPR) does not degrade performance further. In fact, on ConNF and ProofNet, it leads to slight
recovery in the BEq+ scores compared to the “w/o Illustrate” setting. We hypothesize this is due
to the nature of retrieval noise. The baseline DPR, using a single query, retrieves a thematically

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Benchmark Retrieval TC@1 BEq+@1

ProofNet

Oracle* 81.28 26.20
Zero-shot 68.45 17.65
RAuto 75.67(+7.22) 19.25(+1.60)

DRIFT 78.61(+10.16) 19.79(+2.14)

MiniF2F-test

Oracle* 93.30 35.27
Zero-shot 95.09 31.25
RAuto 95.98(+0.89) 30.36(−0.89)

DRIFT 93.75(−1.34) 32.59(+1.34)

ConNF

Oracle* 62.75 50.36
Zero-shot 13.32 8.53
RAuto 26.64(+13.32) 18.52(+9.99)

DRIFT 72.32(+59.00) 60.35(+51.82)

Table 6: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance
is measured by Typecheck (TC@1) and BEq+@1. We compare DRIFT against zero-shot, DPR
(RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) rel-
ative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are bold.
The pass@10 experiments for Claude were omitted due to funding constraints.

clustered set of premises. While its precision is lower, its noise is homogeneous and may be less
distracting to the LLM. Our decomposition method retrieves a more diverse set of premises. While
this captures more correct dependencies (higher recall and precision), the accompanying noise is
also more varied. This reveals a crucial synergy: the selected theorems in the Illustrate module
act as a contextual scaffold, helping the model navigate the diverse information retrieved by the
decomposer. Without this guidance, the varied noise can outweigh the benefit of improved retrieval.

A.2.5 SCALING PERFORMANCE WITH SAMPLING

Across all experiments in Table 2, we observe a consistent and significant gap between pass@1
and pass@10 results. For instance, performance on ProofNet improved by an average of 27.20%
across all settings and formalizer models. This large uplift underscores the potential for enhancing
performance through sampling-based methods at test time. This suggests that performance could be
further scaled by integrating our method into an agentic framework equipped with a verifier (e.g.,
Typecheck correctness).

Notably, DeepSeek-V3.1’s performance of pass@10 saturates more quickly than Claude-Opus-4’s
on the ProofNet benchmark. Its zero-shot pass@10 score is only 0.27% lower than the DRIFT
score. This suggests that with sufficient sampling, the model can sometimes recover the necessary
knowledge parametrically. We anticipate a similar, albeit slower, trend for the larger Claude-Opus-4
and GPT-4.1 models if the number of attempts were increased further.

A.2.6 PARAMETRIC RETRIEVAL

To disentangle the contributions of an LLM’s internal (parametric) knowledge and external (re-
trieved) knowledge, we conducted a “parametric retrieval” experiment. In this setting, we prompted
the formalizer models only with the decomposed sub-queries, omitting the retrieved premises and
illustrative theorems. This setup probes whether the structured sub-queries alone are sufficient to
guide the models to access their own latent knowledge for the formalization task.

The results in Table 7 indicate that external knowledge from retrieval remains largely indispensable
and cannot be fully substituted by the LLM’s internal knowledge alone. However, we observe a
notable distinction between the models. DeepSeek-V3.1 demonstrates a stronger grasp of the re-
quired formal knowledge; for this model, the sub-queries appear to function as a Chain-of-Thought-
style prompt, structuring its reasoning process and thereby improving formalization accuracy. This
aligns with our earlier finding that DeepSeek-V3.1’s zero-shot performance with sufficient sam-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Retrieval ProofNet MiniF2F-test ConNF
TC@1 BEq+@1 TC@1 BEq+@1 TC@1 BEq+@1

DRIFT (GPT-4.1) 55.88 17.38 74.55 24.55 65.76 54.84
Parametric Retrieval 43.85 (-12.03) 13.64 (- 3.74) 63.84 (-10.71) 20.09 (- 4.46) 10.41 (-55.35) 3.64 (-51.20)
w/o Retrieval 34.22 (-21.66) 9.36 (- 8.02) 69.64 (- 4.91) 23.21 (- 1.34) 7.28 (-58.48) 4.47 (-50.37)

DRIFT (DeepSeek-V3.1) 72.73 18.18 74.11 22.77 60.67 46.72
Parametric Retrieval 69.25 (- 3.48) 19.79 (+ 1.61) 76.79 (+ 2.68) 24.55 (+ 1.78) 10.51 (-50.16) 5.93 (-40.79)
w/o Retrieval 60.43 (-12.30) 15.51 (- 2.67) 76.34 (+ 2.23) 22.77 (± 0.00) 13.42 (-47.25) 8.12 (-38.60)

Table 7: Performance comparison of the full DRIFT model, parametric retrieval baseline, and zero-
shot using GPT-4.1 and DeepSeek-V3.1 with pass@1. Values in parentheses show performance
change relative to the full DRIFT model.

pling (pass@10) approaches its retrieval-augmented performance, suggesting it often possesses the
necessary formal knowledge but requires effective prompting to surface it.

Crucially, this ablation counters the data contamination hypothesis, which suggests that retrieval im-
provements on in-distribution benchmarks (e.g., ProofNet) stem merely from priming the model to
recall memorized solutions. Under this hypothesis, structured sub-queries, which explicitly identify
the target concepts, should be sufficient to trigger correct recall. However, the significant perfor-
mance gap between Parametric Retrieval and full DRIFT (e.g., GPT-4.1 improves from 13.64% to
17.38% on ProofNet) confirms that the retrieved definitions and theorems provide essential syntactic
and semantic information absent from the model’s parameters, rather than simply triggering recall.

A.2.7 STATISTICS OF DECOMPOSED SUB-QUERIES

To better understand the Decompose module and its behavior, we analyzed the number of sub-
queries generated when decomposing informal statements from our three benchmarks: ProofNet,
MiniF2F-test, and ConNF with different LLMs as decomposers.

Model ProofNet MiniF2F-test ConNF Model Avg.
Claude-Opus-4 5.84 5.59 6.52 5.98
GPT-4.1 6.39 5.40 7.03 6.27
DeepSeek-V3.1 4.83 4.65 5.71 5.06

Benchmark Avg. 5.69 5.21 6.42 5.77

Table 8: Average number of decomposed sub-queries generated by different LLMs as decomposers
across three benchmarks. The final row and column show the average values for each benchmark
and model, respectively.

The results, summarized in Table 8, show that different models produce a varying number of sub-
queries. GPT-4.1 tends to generate the most detailed decompositions, with an average of 6.27 sub-
queries, while DeepSeek-V3.1 produces the most concise ones, averaging 5.06. Furthermore, the
complexity of the benchmark appears to influence the decomposition length. Statements from the
ConNF benchmark, which covers frontier mathematical research, consistently required more sub-
queries (6.42 on average) across all models, likely reflecting their greater conceptual density com-
pared to the undergraduate-level problems in ProofNet (5.69) and the more self-contained problems
in MiniF2F-test (5.21).

A.2.8 DIMINISHING RETURNS OF INCREASING ILLUSTRATIVE THEOREMS

We selected the illustration budget m = 3 to optimize the trade-off between premise coverage
and contextual noise. To validate this choice, we conducted an empirical analysis of the premise
coverage rate versus the theorem selection budget m, as illustrated in Figure 2.

As shown in the figure, m = 3 represents the critical point of diminishing returns (the “elbow”
of the curve). While the coverage rate continues to increase marginally up to m = 5, the slope
flattens significantly after m = 3, indicating that the vast majority of discoverable premises are

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
Top-m

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
em

ise
 C

ov
er

ag
e

Ra
te

gpt-4.1 (minif2f)
gpt-4.1 (proofnet)
gpt-4.1 (connf)
deepseek-v3.1 (minif2f)
deepseek-v3.1 (proofnet)
deepseek-v3.1 (connf)
m=3

Figure 2: Premise Coverage Rate vs. Top-m. The dashed purple line marks the selected budget of
m = 3, indicating the point of diminishing returns.

captured within the first three selected theorems. This design choice is supported by our ablation
study (Table 3, Section 5.3), where we observed that excessive context degrades performance in
low-dependency regimes (e.g., MiniF2F-test).

A.2.9 THEORETICAL GAINS OF ADAPTIVE RETRIEVAL ON SELF-CONTAINED BENCHMARKS

Model Metric Zero-Shot DRIFT Oracle Ensemble
(Adaptive Upper Bound)

Claude-Opus-4 TC@1 95.09 93.75 95.98
BEq+@1 31.25 32.59 35.27

GPT-4.1 TC@1 69.64 74.55 81.70
BEq+@1 23.21 24.55 25.89

Table 9: “Oracle Ensemble” Performance on MiniF2F-test (Pass@1). The Oracle Ensemble repre-
sents the best-case scenario for adaptive retrieval, selecting the best result between Zero-Shot and
DRIFT per problem. Best results are bold.

To quantify the theoretical gains of an adaptive retrieval strategy, specifically, a system capable of
distinguishing when to skip retrieval for self-contained problems versus when to employ DRIFT for
dependency-heavy problems, we calculated the “Oracle Ensemble” performance on the MiniF2F-
test benchmark. This metric represents the performance upper bound achievable by a perfect classi-
fier that dynamically selects the optimal strategy (Zero-Shot vs. DRIFT) for each problem instance.

As detailed in Table 9, the Oracle Ensemble consistently outperforms both the Zero-Shot baseline
and the standalone DRIFT framework. For instance, using Claude-Opus-4, the ensemble raises the
BEq+@1 score from 32.59% (DRIFT) to 35.27%. These results confirm that the two approaches are
complementary: DRIFT provides necessary scaffolding for complex formalization tasks, while the
Zero-Shot approach avoids introducing spurious dependencies in self-contained problems. While
the training of such an adaptive classifier (e.g., Self-RAG (Asai et al., 2024)) is outside the scope
of this work, these findings establish a compelling theoretical motivation for future research into
dynamic retrieval gating.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Dataset Setting Model TC@1 BEq+@1 TC@10 BEq+@10

ProofNet

Fine-tuned Goedel-Formalizer-V2-8B + Oracle* 35.29 9.09 75.40 62.03
Goedel-Formalizer-V2-8B 38.50 9.09 76.74 55.08

Zero-shot GPT-4.1 34.22 9.36 51.60 13.37
DeepSeek-V3.1 60.43 15.51 71.93 20.32

DRIFT
GPT-4.1 55.88 17.38 77.01 21.93
DeepSeek-V3.1 72.73 18.18 79.41 20.59

MiniF2F-test

Fine-tuned Goedel-Formalizer-V2-8B + Oracle* 96.00 28.89 100.00 93.33
Goedel-Formalizer-V2-8B 93.33 22.22 100.00 93.33

Zero-shot GPT-4.1 69.64 23.21 84.82 28.12
DeepSeek-V3.1 76.34 22.77 87.50 27.23

DRIFT
GPT-4.1 74.55 24.55 92.41 29.02
DeepSeek-V3.1 74.11 22.77 88.84 24.55

ConNF

Fine-tuned Goedel-Formalizer-V2-8B + Oracle* 9.99 4.37 48.80 23.10
Goedel-Formalizer-V2-8B 16.03 2.29 71.19 10.93

Zero-shot GPT-4.1 7.28 4.47 11.45 6.76
DeepSeek-V3.1 13.42 8.12 17.59 11.03

DRIFT
GPT-4.1 65.76 54.84 77.00 62.33
DeepSeek-V3.1 60.67 46.72 71.18 54.21

Table 10: Comparison of DRIFT against the fine-tuned Goedel-Formalizer-V2-8B and other zero-
shot baselines. Bold: Best overall (excluding Oracle*). Underline: Best zero-shot. Grey : Oracle*
baseline with ground-truth dependencies.

A.2.10 COMPARISON WITH FINETUNED AUTOFORMALIZER

We excluded the finetuned Goedel-Formalizer-V2-8B model as a backbone for the DRIFT frame-
work due to its inability to follow explicit decomposition instructions. Our experiments indicate
that the model consistently ignores prompts to generate search queries, defaulting instead to direct
formalization. This suggests that the finetuning process, while effective for syntax, causes catas-
trophic forgetting of the general instruction-following alignment required for the multi-stage DRIFT
pipeline.

As shown in Table 10, on in-domain tasks, Goedel-Formalizer-V2-8B exhibits strong compilability,
aided by an internal “thinking” mechanism that functions as an implicit Chain-of-Thought (example
in Figure 3). While this internal reasoning mimics a decompose-and-conquer strategy and incorpo-
rates self-reflection, it lacks the precision of DRIFT’s explicit retrieval. DRIFT significantly outper-
forms Goedel-Formalizer-V2-8B in single-pass precision (72.73% vs 38.50% TC@1 on ProofNet).
Furthermore, Goedel-Formalizer-V2-8B demonstrates limited adaptability; even when provided
with Oracle* context, it fails to effectively leverage the external knowledge (e.g., ProofNet BEq+@1
remains 9.09%), instead relying heavily on extensive sampling (Pass@10) to surface correct solu-
tions.

The limitations of relying on internal parametric memory are most pronounced on the out-of-
distribution ConNF benchmark. Although Goedel-Formalizer-V2-8B scales well in compilation rate
(71.19% TC@10), it suffers from severe hallucination, resulting in a low semantic equivalence score
(10.93% BEq+@10). Even with Oracle* context, the model struggles to bridge this knowledge gap
(23.10% BEq+@10). Conversely, DRIFT maintains a high correlation between compilation and cor-
rectness (62.33% BEq+@10), confirming that retrieval-augmented generation is strictly necessary
to generalize to unseen mathematical domains.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Analysis of Goedel-Formalizer-V2-8B’s ”Think” Capability

Input (Informal Statement):
If r is rational (r ̸= 0) and x is irrational, prove that rx is irrational.

Model Internal Reasoning (<think>):
Let me analyze this problem step by step. The problem is asking to prove that if r
is rational (and nonzero) and x is irrational, then rx is irrational.
In Lean 4, I need to:

1. Define what it means for a number to be rational
2. Define what it means for a number to be irrational
3. State the theorem that if r is rational (nonzero) and x is irrational, then rx is

irrational

In Lean 4:
• Rational numbers are represented by Q
• The condition ”r is rational and nonzero” can be written as r : Q and r
̸= 0

• Irrational numbers are represented by the complement of rationals, or we can
use Irrational x which means x /∈ Q (or equivalently ¬(x : Q))
when x is a real number

[Reasoning about Types and Coercion]
Let me think about the types. Since we’re dealing with irrational numbers, we’re
working in the real numbers R. The rational number r can be coerced into R, and
x is a real number.
[Self-Correction]
Wait, let me double-check the definition of irrational in Lean 4. I believe
Irrational is defined as ¬(x : Q) when x is real... Actually, let me be
more careful about the coercion. When we have r : Q and x : R, the ex-
pression r * x should work because there’s a coercion from Q to R.

Generated Formal Statement:
theorem : forall (r : \mathbb{Q}) (x : R), r ̸= 0 ->
Irrational x -> Irrational (↑r * x) := by sorry

Figure 3: An Example of the Goedel-Formalizer-V2-8B’s internal reasoning. The model first out-
lines the necessary definitions in natural language, then maps them to specific Lean 4 syntax, and
finally reasons about type coercion (Real vs. Rational) before generating the compilable code.

A.3 QUALITATIVE ANALYSIS

A.3.1 MINIF2F-TEST FAILURE ANALYSIS

We conducted an error analysis to understand cases where retrieval harms performance for MiniF2F-
test. Among 672 examples across all benchmarked models, we identified 23 instances where the
zero-shot baseline correctly predicted the formal statement while DRIFT failed. These examples
have an average informal statement length of 22.20 words with 0.00% requiring explicit quantifiers,
indicating low complexity. For 12 of these 23 failures, DRIFT generated formal statements that
passed typecheck but failed on BEq+.

Our analysis of DRIFT failures on MiniF2F-test identifies several contributing factors. First, retrieval
noise can lead to over-complication, where the added context confuses the model on straightforward
problems; in these cases, the zero-shot baseline often produces cleaner, simpler statements. Second,
we observed variable naming issues, where the retrieval process introduces inconsistent variable
names into the formalization. Finally, formalization style mismatches occur when the model adopts
patterns from retrieved theorems that differ from the reference, causing the BEq+ metric to fail in
capturing the semantic equivalence. We display selected examples to illustrate the failure modes
below.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Example 1: mathd algebra 432 (Claude-Opus-4)

The Problem: Expand (x+ 3)(2x− 6)

Zero-shot (correct):

theorem mathd_algebra_432 (x : R) : (x + 3) * (2 * x - 6) = 2 * xˆ2 - 18

DRIFT (failed typecheck).

theorem mathd_algebra_432 : (X + 3) * (2 * X - 6) = 2 * Xˆ2 - 18

The statement generated by DRIFT failed because of the undefined variable “X”

Example 2: mathd algebra 143 (Claude-Opus-4)

The Problem: If f(x) = x+ 1 and g(x) = x2 + 3, what is f(g(2))?

Zero-shot (correct):

theorem mathd_algebra_143 (f g : R → R) (hf : ∀ x, f x = x + 1) (hg : ∀
x, g x = xˆ2 + 3) : f (g 2) = 8

DRIFT (failed BEq+; false negative of BEq+):

theorem mathd_algebra_143 :
let f : R → R := fun x => x + 1
let g : R → R := fun x => xˆ2 + 3
f (g 2) = 8

Both statements are semantically equivalent to the ground-truth, BEq+ fails to classify DRIFT’s
statement correctly.

Example 3: amc12 2000 20 (DeepSeek-V3.1)

The problem: System of equations with xyz

Zero-shot (correct):

theorem amc12_2000_20 (x y z : R) (hx : x > 0) (hy : y > 0) (hz : z > 0)
(h1 : x + 1/y = 4) (h2 : y + 1/z = 1) (h3 : z + 1/x = 7/3) : x * y *
z = 1

DRIFT (failed typecheck):

theorem amc12_2000_20 : ∃! (x y z : R), x > 0 ∧ y > 0 ∧ z > 0 ∧ x + 1/y =
4 ∧ y + 1/z = 1 ∧ z + 1/x = 7/3 ∧ x * y * z = 1

A.3.2 DRIFT OUTPERFORMING ORACLE* RETRIEVAL

In Table 2, we found that DRIFT can surpass Oracle* on ConNF. We hypothesize formalization fails
even with ground-truth premises because they lack context of how to use the premises correctly.
Retrieved theorems in DRIFT provide scaffolding that demonstrates usage patterns.

Statistically, there are 205, 171, and 184 cases out of 961 where DRIFT succeeds but Oracle* fails
across models. On average, ∼78% of Oracle* failures are typecheck errors (missing namespace/type
context) and ∼22% of Oracle* failures are semantic equivalence issues (typechecks but not equiva-
lent to gold statement as measured by BEq+). We also found that the statements generated by DRIFT
are longer than Oracle* with namespace qualification, necessary type class instances, proper type
coercions and explicit type annotations. These features reduced the error rate of the formalization.

The selected cases below highlight that providing ground-truth premises is insufficient to guarantee
syntactically and semantically correct formalization, as the Oracle* model consistently fails when

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

success depends on subtle usage patterns not captured by dependency names alone. DRIFT sur-
passes the oracle by utilizing retrieved theorems as scaffolding to bridge this gap. Specifically,
these theorems demonstrate correct syntax, such as namespace usage and type coercions (e.g.,
↑ β), and illustrate structural patterns regarding implicit, explicit, or typeclass argument bind-
ing. Crucially, they also reveal hidden requirements, such as non-obvious typeclass instances (e.g.,
[ConNF.FOAAssumptions]) that are contextually necessary, and guide correct semantic for-
mulations (e.g., distinguishing set vs. type cardinality) that are not explicitly stated in the informal
problem.

Example 1: ConNF.Pretangle.ofCoe inj (Claude-Opus-4)

The Problem: ConNF.Pretangle.ofCoe inj is a theorem in Lean 4 that states the injectiv-
ity of the ConNF.Pretangle.ofCoe function in the context of Constructive Ordinal Notation
(ConNF). This theorem asserts that two pretangles a and b are equal if and only if their images
under the ConNF.Pretangle.ofCoe function are equal.

Gold Statement:

@[simp]theorem ConNF.Pretangle.ofCoe_inj [ConNF.Params] {α : ConNF.Λ}
{a : ConNF.Pretangle ↑α} {b : ConNF.Pretangle ↑α
}:ConNF.Pretangle.ofCoe a = ConNF.Pretangle.ofCoe b ↔ a = b := by
sorry

Oracle* Dependent Premises:

ConNF.Params
ConNF.Pretangle

Oracle* (failed typecheck): The failure here is a type signature mismatch. The generated statement
defined the universal level α as a generic TypeIndex, whereas the library requires the specific
model index type (ConNF.Λ). Consequently, the model failed to apply the necessary type coercion
(↑ α) required for Pretangle in this context. The premise list provided the names and declaration
of those premises, but not the specific type constraints to apply.

theorem Pretangle.ofCoe_inj [Params] {α : TypeIndex} {a b : Pretangle α}
: Pretangle.ofCoe a = Pretangle.ofCoe b ↔ a = b := by sorry

DRIFT (correct):

theorem ConNF.Pretangle.ofCoe_inj [ConNF.Params] {α : ConNF.Λ} {a b :
ConNF.Pretangle α} : ConNF.Pretangle.ofCoe a = ConNF.Pretangle.ofCoe
b ↔ a = b := by sorry

The key retrieved theorems: The retrieved theorem ConNF.Pretangle.toCoe inj provided a
structural template.

theorem toCoe_inj {a b} : (toCoe a : Pretangle α) = toCoe b ↔ a = b :=
toCoe.injective.eq_iff

Example 2: ConNF.StructAction.refine precise (DeepSeek-V3.1)

The Problem: The theorem ConNF.StructAction.refine precise states that if φ is a
β-structural action that satisfies the lawfulness condition for each β-extended index, then the re-
fined β-structural action ConNF.StructAction.refine φ hφ is precise, meaning it assigns
a precise near-litter action to each β-extended index.

Gold Statement:

theorem ConNF.StructAction.refine_precise [ConNF.Params] {β :
ConNF.TypeIndex} {φ : ConNF.StructAction β} {hφ :
ConNF.StructAction.Lawful φ}:ConNF.StructAction.Precise
(ConNF.StructAction.refine φ hφ) := by sorry

Oracle* Dependent Premises:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ConNF.Params
ConNF.StructAction.refine
ConNF.StructAction
ConNF.StructAction.Precise
ConNF.StructAction.Lawful

Oracle* (failed BEq+): The model failed the bidirectional equivalence check due to argument struc-
ture. It incorrectly typed the parameter β as ConNF.Λ instead of ConNF.TypeIndex and failed
to structure the hypothesis hφ as an instance-implicit argument.

theorem ConNF.StructAction.refine_precise [ConNF.Params] {β : ConNF.Λ}
(φ : ConNF.StructAction β) (hφ : ConNF.StructAction.Lawful φ) :
ConNF.StructAction.Precise (ConNF.StructAction.refine φ hφ) := by
sorry

DRIFT (correct):

theorem ConNF.StructAction.refine_precise [ConNF.Params] {β :
ConNF.TypeIndex} {φ : ConNF.StructAction β} {hφ :
ConNF.StructAction.Lawful φ} : ConNF.StructAction.Precise
(ConNF.StructAction.refine φ) := by sorry

The key retrieved theorems: The retrieved theorem ConNF.NearLitterAction.refine precise
showed the correct usage pattern for “precise” predicates, implicitly suggesting the argument struc-
ture that allowed DRIFT to match the library’s conventions.

theorem refine_precise : Precise (φ.refine hφ) := fillAtomOrbits_precise
_ (fillAtomRange_symmDiff_subset_ran hφ)

Example 3: ConNF.CodingFunction.mem of smul mem (GPT-4.1)

The Problem: In the context of Constructive Ordinal Notation (ConNF), the theorem
ConNF.CodingFunction.mem of smul mem asserts that for any CodingFunction χ at
level β, if ρ • S (where ρ is an Allowable and S is a Support) is in the domain of χ, then S
itself must also be in the domain of χ.

Gold Statement:

theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
[ConNF.Level] [ConNF.FOAAssumptions] {β : ConNF.Λ} [ConNF.LeLevel ↑β
] {χ : ConNF.CodingFunction β} {S : ConNF.Support ↑β} {ρ :
ConNF.Allowable ↑β} (h : ρ · S ∈ χ) :S ∈ χ := by sorry

Oracle* Dependent Premises:

ConNF.Params
ConNF.LeLevel
ConNF.CodingFunction
ConNF.Support

Oracle* (failed typecheck): The model failed to compile the statement because it missed critical,
non-obvious constraints: the global typeclass instance [ConNF.FOAAssumptions] and the spe-
cific type coercion from β to ↑ β for the “LeLevel” instance.

theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
[ConNF.Level] {β : ConNF.Λ} [ConNF.LeLevel β] (χ :
ConNF.CodingFunction β) (ρ : ConNF.Allowable β) (S : ConNF.Support β
) : (χ.decode (ρ · S)).isSome → (χ.decode S).isSome := by sorry

DRIFT (correct):

theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
[ConNF.Level] [ConNF.FOAAssumptions] {β : ConNF.Λ} [ConNF.LeLevel ↑β
] (χ : ConNF.CodingFunction β) (ρ : ConNF.Allowable ↑β) (S :
ConNF.Support β) : S ∈ χ.domain → ρ · S ∈ χ.domain := by sorry

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The key retrieved theorems: The retrieved theorem ConNF.CodingFunction.supports decode
demonstrated the interaction between CodingFunction β, Support β, and Allowable β.

theorem supports_decode {χ : CodingFunction β} (S : Support β) (hS : S ∈
χ) : Supports (Allowable β) (S : Set (Address β)) ((χ.decode S).get
hS) := χ.supports_decode’ S hS

While not identical, it provided a contextual example of how these types work together, guiding the
model to infer the correct, more complex signature.

Example 4: ConNF.mk nearLitter’’ (Claude-Opus-4)

The problem: The size of each near-litter in the context of Constructive Ordinal Notation (ConNF)
is equal to the cardinality of the type κ.

Gold Statement:

@[simp]theorem ConNF.mk_nearLitter’’ [ConNF.Params] (N :
ConNF.NearLitter) :Cardinal.mk 7→N = Cardinal.mk ConNF.κ := by sorry

Oracle* Dependent Premises:

ConNF.Params
Cardinal.mk

Oracle* (failed BEq+): The Oracle* based statement committed a semantic formulation error. It
hallucinated a theorem equating the cardinality of the Type ConNF.NearLitter to κ. The prob-
lem asks about the size of individual near-litter sets (coerced from “N”), not the cardinality of the
type containing all near-litters.

theorem ConNF.mk_nearLitter’’ [ConNF.Params] : Cardinal.mk
ConNF.NearLitter = Cardinal.mk ConNF.κ := by sorry

DRIFT (correct):

theorem ConNF.mk_nearLitter’’ [ConNF.Params] (L : ConNF.Litter) (s : Set
ConNF.Atom) (h : ConNF.IsNearLitter L s) : Cardinal.mk s =
Cardinal.mk ConNF.κ := by sorry

The key retrieved theorems: DRIFT retrieved ConNF.mk litterSet, which shows that cardi-
nality theorems in this library typically apply to a specific set s (e.g., “litterSet L”) rather than types.
This scaffolding helped the model correctly formulate the theorem using an explicit set s and the
witness hypothesis ConNF.IsNearLitter L s.

theorem mk_litterSet (L : Litter) : #(litterSet L) = #κ := Cardinal.eq.2
⟨litterSetEquiv L⟩

A.3.3 FAILURE ANALYSIS FOR ABLATION STUDY (CONNF)

From the ablation study in Table 3 in Section 5.3, we found that on ConNF and MiniF2F-test,
removing the Decompose module after Illustrate, does not degrade the performance further. For
MiniF2F-test, our analysis in Appendix A.3.1 indicates that the benchmark relies minimally on de-
pendent premises. In this regime, additional context frequently introduces distraction rather than
aid, making performance fluctuations more attributable to the stochastic nature of generation. We
provide a deep analysis based on ConNF for this phenomena. In the following examples, we pro-
vided cases where the “Base Retriever” (DRIFT w/o Illustrate and w/o Decompose) and “DRIFT”
succeeded, while “DRIFT Premises Only” (w/o Illustrate) failed. Despite DRIFT’s higher global
recall (40.6% vs 32.0% for GPT-4), this breakdown reveals qualitative differences in retrieval: Base
Retriever often finds “lexically close” helper lemmas (e.g., invFun as coe), while DRIFT re-
trieves a more diverse set of premises across namespaces. Consequently, DRIFT Premises Only
failures stem from (1) local recall gaps (missing specific helpers found by Base) or (2) application
gaps (retrieving broader definitions but failing to apply them without usage examples). Full DRIFT
bridges these gaps via theorem scaffolding.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

These comparisons reveal that even when DRIFT Premises Only retrieves the necessary definitions
(as in Examples 1 and 3), it often fails to apply them correctly, suffering from application gaps. Base
Retriever sometimes avoids this by finding exact match lemmas (Example 2) or perhaps through
favorable ranking (Example 1). However, Full DRIFT proves most robust because its retrieved
theorems provide the necessary application knowledge (e.g., templates, style guides, and usage ex-
amples) that allow the model to synthesize the correct solution even when an exact-match lemma is
missing or when the model is prone to syntax hallucinations.

Another key observation is the diversity of retrieved premises. The Base Retriever typically finds
premises within the exact or very close namespaces (e.g., PartialPerm.invFun as coe or
Cardinal.*), effectively locating ”lexically close” helper lemmas. In contrast, DRIFT retrieves
a more diverse set of premises, often including broader concepts (e.g., Set, PartialOrder,
PFun.image) or related but distinct namespaces (e.g., Equiv vs PartialPerm). While this
diversity can bridge conceptual gaps (as seen in Example 2 with PartialEquiv), it can also
introduce distractions if the model lacks the scaffolding to navigate these broader definitions.

Example 1: Equiv.Perm.toPartialPerm inv (Claude-Opus-4)

The Problem: Prove that the inverse of a permutation, when converted to a partial permutation, is
equal to the inverse of the partial permutation obtained from the original.

Gold Statement:

@[simp]theorem thm_P {α : Type u_1} (π : Equiv.Perm α)
:Equiv.Perm.toPartialPerm π−1 = PartialPerm.symm
(Equiv.Perm.toPartialPerm π) := by sorry

Base Retriever (Success): The Base Retriever successfully found
PartialPerm.toPartialEquiv (ranked 2nd), which helped the model infer the cor-
rect structure.

theorem Equiv.Perm.toPartialPerm_inv {α : Type*} (f : Equiv.Perm α) :
f−1.toPartialPerm = f.toPartialPerm.symm := by sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
PartialPerm.toPartialEquiv
PartialPerm.refl
PartialPerm.symm
PartialPerm

DRIFT Premises Only (failed typecheck): The model retrieved
PartialPerm.toPartialEquiv (ranked 3rd) but failed to understand how to use it to
bridge Equiv.Perm and PartialPerm.symm. Instead, it hallucinated an invalid usage
π.symm.toPartialPerm.

theorem Equiv.Perm.toPartialPerm_inv {α : Type*} (π : Equiv.Perm α) : π
.symm.toPartialPerm = π.toPartialPerm.symm := by sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
PartialPerm.symm
PartialPerm.toPartialEquiv
PartialPerm
Equiv.Perm

Full DRIFT (Success): Full DRIFT succeeded because the retrieved theorems explicitly demon-
strated the pattern of commuting operations (moving symm across toPartialEquiv), acting as
a structural scaffold.

theorem Equiv.Perm.toPartialPerm_inv {α : Type u_1} (π : Equiv.Perm α) :
(π−1).toPartialPerm = (π.toPartialPerm).symm := by sorry

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Key retrieved theorems:

theorem toPartialEquiv_symm : π.symm.toPartialEquiv = π
.toPartialEquiv.symm := rfl

Example 2: PartialPerm.coe toPartialEquiv symm (gpt-4.1)

The Problem: The theorem states that for a partial permutation π, the inverse of the partial equiva-
lence obtained from π is equal to the function representing the inverse of π.

Gold Statement:

@[simp]theorem thm_P {α : Type u_1} (π : PartialPerm α)
:↑(PartialEquiv.symm (PartialPerm.toPartialEquiv π)) =
(PartialPerm.symm π).toFun := by sorry

Base Retriever (Success): Base Retriever found helper lemmas like invFun as coe and
toFun as coe, which directly link the function coercion to the inverse, guiding the model to a
correct formulation using invFun.

theorem PartialPerm.coe_toPartialEquiv_symm {α : Type*} (π : PartialPerm
α) : ((π.toPartialEquiv).symm : Part (α → α)) = π.invFun := by sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
PartialPerm.toPartialEquiv
PartialPerm.invFun_as_coe
PartialPerm.symm
PartialPerm.toFun_as_coe

DRIFT Premises Only (failed typecheck): The model retrieved the necessary definitions but
failed to apply them correctly. It attempted to apply PartialEquiv.symm directly to π (a
PartialPerm) without converting it first, resulting in a type error.

theorem PartialPerm.coe_toPartialEquiv_symm {α : Type*} (π : PartialPerm
α) : (PartialPerm.symm π).toFun = (PartialEquiv.symm π).toFun := by
sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
Equiv.toPartialEquiv
PartialEquiv.symm
PartialPerm.symm
PartialPerm

Full DRIFT (Success): Full DRIFT retrieved the theorem toPartialEquiv symm, which pro-
vides an exact template for the equality between the symmetric partial equivalence and the partial
equivalence of the symmetric permutation. This scaffold allowed the model to construct a correct
statement.

theorem PartialPerm.coe_toPartialEquiv_symm {α : Type*} (π : PartialPerm
α) : (PartialPerm.toPartialEquiv π).symm =
PartialPerm.toPartialEquiv (PartialPerm.symm π) := by sorry

Key retrieved theorems:

theorem toPartialEquiv_symm : π.symm.toPartialEquiv = π
.toPartialEquiv.symm := rfl

Example 3: Cardinal.nonempty compl of mk lt mk (Claude-Opus-4)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

The Problem: If the cardinality of set s is less than the cardinality of type α, then the complement
sc is nonempty.

Gold Statement:

theorem thm_P {α : Type u} {s : Set α} (h : Cardinal.mk ↑s < Cardinal.mk
α) :Set.Nonempty sc := by sorry

Base Retriever (Success): Base Retriever correctly identified and retrieved the function
Cardinal.mk, enabling the model to apply the premise correctly.

theorem Cardinal.nonempty_compl_of_mk_lt_mk {α : Type*} {s : Set α} (h :
Cardinal.mk s < Cardinal.mk α) : (sc).Nonempty := by sorry

Key retrieved premises:

Set.Nonempty
Cardinal.mk
Cardinal
Cardinal.IsRegular
Cardinal.aleph0

DRIFT Premises Only (failed typecheck): Despite retrieving Cardinal.mk (ranked 2nd, same as
Base), the model failed to prioritize it over the notation #s. The use of #s < #α without opening
the necessary namespaces caused a typecheck failure.

theorem Cardinal.nonempty_compl_of_mk_lt_mk {α : Type*} {s : Set α} (h :
#s < #α) : (sc).Nonempty := by sorry

Key retrieved premises:

Set.Nonempty
Cardinal.mk
Set

Full DRIFT (Success): Full DRIFT succeeded because it retrieved the theorem
ConNF.µ le mk cloud, which explicitly uses Cardinal.mk. This scaffolding guided
the model to prefer the explicit function over the notation.

theorem Cardinal.nonempty_compl_of_mk_lt_mk {α : Type*} {s : Set α} (h :
Cardinal.mk s < Cardinal.mk α) : Set.Nonempty sc := by sorry

Key retrieved theorems:

theorem µ_le_mk_cloud : s.Nonempty → #µ ≤ #(cloud hγβ s) := by
rintro ⟨t, ht⟩
refine’ (Cardinal.mk_le_mk_of_subset <| subset_cloud ht).trans_eq’ _
rw [Cardinal.mk_image_eq, mk_localCardinal]
exact typedNearLitter.inj’

A.4 PROMPT TEMPLATES

A.4.1 DECOMPOSITION PROMPT

This appendix contains the complete prompt used to decompose informal mathematical statements
into retrieval queries (the Decompose module). It is composed of two parts: a system prompt that
defines the model’s expert persona and overall task, and a user prompt template that structures the
specific input and desired output format.

System Prompt

You are an expert in formal mathematics. Your task is to decompose
an informal mathematical statement into a set of natural

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

language queries. These queries are for retrieving the precise
definitions, theorems, and structures from a formal mathematics
library (like mathlib) that are necessary to **formalize** the
statement.

Your response must be in LaTeX. Decompose the statement into a
list of queries, with each query enclosed in a ‘\\boxed{{}}‘
command. The goal is to identify the building blocks for
writing the statement formally, **not** to find a proof.

You need to:
1. Analyze the informal statement and identify its key

mathematical components that need formal definitions
2. Break down the statement into natural language queries that

describe the mathematical concepts and structures needed for
formalization

3. from the best of your knowledge, come up with the Lean
representation of it.

4. Focus on what needs to be defined and the implicit hypothesis.

User Prompt Template (Instruction and Context)

Given the **Informal statement**, decompose the informal statement
into retrieval queries for **formalizing** (not proving) the
statement. Each query must:

- Describe mathematical definitions, structures, or concepts
needed to formally express the statement in Lean 4

- Explain what mathematical objects or type signatures are involved
- Read as a complete sentence that teaches about the formal

mathematical structure
- Focus on how to represent concepts formally rather than how to

prove them
- Sound like an excerpt from a mathematics reference that explains

formal definitions

Important:
- The goal is FORMALIZATION (translating to Lean 4), NOT finding

proof strategies
- Write informative descriptions that explain formal concepts and

definitions
- Each query should describe mathematical structures or type

information
- Avoid interrogative words (what, how, when, why, etc.)
- The queries should collectively cover all definitions and

structures needed to write the formal statement

Please return each query using the \\boxed{{}} LaTeX command.

{few_shot_examples}

Informal statement:
{informal_statement}

Decomposed queries for formalization:

A.4.2 FORMALIZATION PROMPT

This appendix contains the complete prompt used to formalize informal mathematical statements
into formal statements (the Formalize Theorems module). It is composed of two parts: a system

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

prompt that defines the model’s expert persona and overall task, and a user prompt template that
structures the specific input and desired output format.

System Prompt

You are an advanced assistant specializing in formal mathematics
and Lean 4 theorem proving. You have extensive expertise in
translating mathematical concepts from natural language into
precise Lean 4 code. Please make sure the generated Lean 4 code
compiles with {libraries} and Lean version {lean_version}.

User Prompt Template (Instruction and Context)

Given the potential dependent premises listed under **Potential
dependent premises** (some may be irrelevant) and the
demonstration examples under **Demonstration examples**,
translate the natural language statement provided under **
Informal statement** into a formal Lean 4 theorem. Use the
theorem name specified under **Name** as the Lean identifier.

Your response must:

- Write only valid Lean 4 code with clear and idiomatic use of
Lean syntax and conventions

- Include only the formalization - do not include any headers,
explanations, or proofs

- Use the provided name as the theorem identifier, ensuring it
adheres to Lean’s naming conventions (no hyphens, prefer
snake_case or camelCase)

- Faithfully capture the meaning of the informal statement, paying
close attention to:
· Predicate usage and logical structure
· Type class inference
· Quantifier scope and binding
· Mathematical notation and operations

- Enclose all code within triple backticks with the ‘lean‘
language identifier

Expected Output Format:
‘‘‘lean
theorem [NAME] : [Lean formalization of the statement] := by sorry
‘‘‘

Guidelines:
- Select only the relevant premises from those provided
- Ensure proper type annotations where necessary
- Use standard Lean 4 mathematical library conventions, Lean

version {lean_version}
- Maintain logical equivalence with the informal statement
- Keep the formalization as clean and readable as possible

Potential dependent premises
{dependent_premises_list}

Demonstration examples
{theorems_list}

Name
{problem_full_name}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Informal statement
{problem_informal_statement}

31

	Introduction
	Related Work
	Methodology
	Decompose
	Retrieve
	Illustrate
	Formalize Theorems

	Experimental Setup
	Benchmarks
	Baselines
	Implementation Details
	Evaluation Metrics

	Results and Discussion
	Dependency Retrieval
	Formalization
	Ablation study

	Conclusion
	Appendix
	Implementation Details
	Few-Shot Examples for Decomposition
	Retriever Finetuning Details
	LLM Generation Parameters

	Additional Results and Discussion
	Dependency Retrieval Performance Metrics
	Dependency Retrieval Results of RAuto
	Autoformalization Results of Claude-Opus-4
	The Role of Illustrative Theorems as a Scaffold
	Scaling Performance with Sampling
	Parametric Retrieval
	Statistics of Decomposed Sub-queries
	Diminishing returns of increasing Illustrative Theorems
	Theoretical gains of Adaptive Retrieval on Self-contained Benchmarks
	Comparison with Finetuned Autoformalizer

	Qualitative Analysis
	MiniF2F-test Failure Analysis
	Drift outperforming Oracle* retrieval
	Failure Analysis for Ablation Study (ConNF)

	Prompt Templates
	Decomposition Prompt
	Formalization Prompt

