

000 DRIFT: DECOMPOSE, RETRIEVE, ILLUSTRATE, THEN 001 FORMALIZE THEOREMS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Automating the formalization of mathematical statements for theorem proving re-
010 mains a major challenge for Large Language Models (LLMs). LLMs struggle to
011 identify and utilize the prerequisite mathematical knowledge and its correspond-
012 ing formal representation in languages like Lean. Current retrieval-augmented
013 autoformalization methods query external libraries using the informal statement
014 directly, but overlook a fundamental limitation: informal mathematical statements
015 are often complex and offer limited context on the underlying math concepts.
016 To address this, we introduce DRIFT, a novel framework that enables LLMs to
017 decompose informal mathematical statements into smaller, more tractable “sub-
018 components”. This facilitates targeted retrieval of premises from mathematical
019 libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to
020 help models use premises more effectively in formalization tasks. We evaluate
021 DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find
022 that it consistently improves premise retrieval, nearly doubling the F1 score com-
023 pared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong per-
024 formance on the out-of-distribution ConNF benchmark, with BEq+@10 improve-
025 ments of 42.25% and 37.14% using GPT-4.1 and DeepSeek-V3.1, respectively.
026 Our analysis shows that retrieval effectiveness in mathematical autoformalization
027 depends heavily on model-specific knowledge boundaries, highlighting the need
028 for adaptive retrieval strategies aligned with each model’s capabilities.
029

030 1 INTRODUCTION 031

032 Autoformalization is formulated as a translation task that aims to translate natural language math-
033 ematical descriptions into machine-verifiable statements written in formal languages, such as
034 Coq (Barras et al., 1997), Isabelle (Paulson, 1994), and Lean (De Moura et al., 2015). Previous
035 work has shown that accurate autoformalization is a critical step towards developing automated the-
036 orem proving systems (Lin et al., 2025b; Chen et al., 2025; Xin et al., 2024; Lin et al., 2025c),
037 and ultimately assisting mathematicians in new discoveries (Gouëzel & Shchur, 2019; Leang et al.,
038 2025). Despite recent progress of Large Language Models (LLMs) in informal mathematical rea-
039 soning (Ahn et al., 2024; Setlur et al., 2024; Luong & Lockhart, 2025), formal reasoning presents
040 distinct challenges. The strict syntax and necessity for precise alignment between informal concepts
041 and formal definitions mean that even frontier LLMs often fail at autoformalization tasks off-the-
042 shelf (Wu et al., 2025).
043

044 Although synthetic data generation could enable the finetuning of LLMs for autoformalization (Jiang
045 et al., 2023; Lin et al., 2025a; Wang et al., 2024; Ying et al., 2024), the knowledge cutoff issue
046 raised by updating formal libraries like Mathlib (Mathlib Community, 2020) makes finetuned mod-
047 els prone to hallucinating non-existent formal objects that have been renamed, reorganized, or depre-
048 cated (Baanen et al., 2025). Early retrieval-augmented methods addressed this by retrieving similar
049 theorems from external libraries to provide useful syntactic structure and compositional examples.
050 However, their practical utility as exemplars has been limited by the retrieval methods used to find
051 them. These methods often lack task-specific training data and rely on general-purpose techniques
052 like keyword searching (Agrawal et al., 2022), k-NN (Azerbayev et al., 2023), or pretrained dense
053 retrievers (Zhang et al., 2024). An advance is the introduction of the “**dependency retrieval**” task
by Liu et al. (2025) with the RAutoformalizer (RAuto) framework. Similar to the premise selection
for proof generation (Yang et al., 2023), this paradigm enables the training of specialized retrievers

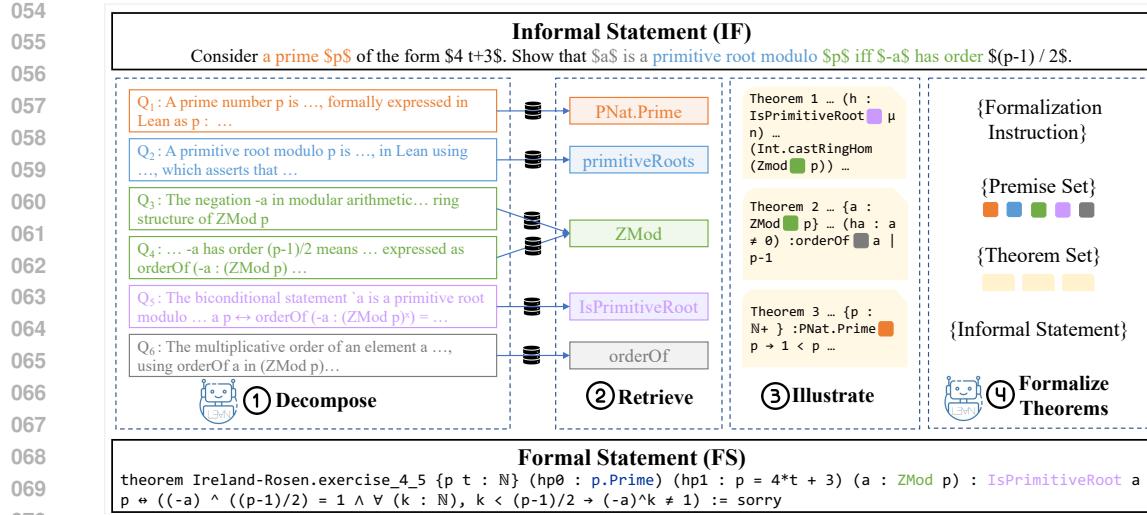


Figure 1: An overview of the DRIFT framework. Given an informal statement, DRIFT operates in four stages: ① **Decompose**: An LLM breaks down the informal statement into atomic, concept-focused sub-queries (\mathcal{Q}) (§3.1). ② **Retrieve**: For each sub-query, a dense retriever identifies foundational dependent premises from a formal library (§3.2). ③ **Illustrate**: A greedy algorithm selects a small set of theorems that demonstrate the practical usage of these retrieved premises (§3.3). ④ **Formalize Theorems**: Finally, conditioned on all retrieved context, an LLM synthesizes the final formal statement (§3.4).

to identify the exact definitions that formal statements require. However, this new approach created a key trade-off: focusing on individual components meant losing the valuable context provided by full theorem statements. Based on this, we identify two main limitations in the current approach to retrieval-augmented autoformalization. First, informal statements are often dense and multifaceted. This **underlying complexity of queries** makes them suboptimal as direct queries for retrieving the precise, atomic definitions required for formalization. Second, even when the correct formal definitions are retrieved, models often **lack the knowledge of contextual usage** required to correctly structure and integrate them into the formal statement.

In information retrieval, query enhancement techniques like query expansion (Chan et al., 2024), pseudo-document generation (Gao et al., 2023), and neural query rewriting (Wang et al., 2025) have demonstrated the effectiveness of reformulating queries to provide more semantic information. Query decomposition has proven particularly useful for multi-hop question answering as it matches the granularity of the dense query statements with the indexed documents (Ammann et al., 2025). In addition to retrieving correct premises, providing rich context like exemplar proofs can guide proof generation effectively (He et al., 2024; Thakur et al., 2024; Thompson et al., 2025). Despite advances in adjacent domains, these techniques have not yet been systematically applied to dependency retrieval for autoformalization, which still relies on monolithic queries and provides context-free definitions.

We propose DRIFT, a novel framework depicted in Figure 1, that enhances retrieval-augmented autoformalization by adapting query decomposition and context augmentation to address the unique challenges of theorem autoformalization. To tackle the complexity of informal statements, we first adapt query decomposition to break down statements into a series of simpler, atomic sub-queries. Each sub-query targets a single mathematical concept, transforming a multifaceted retrieval problem into focused, precise searches. To address the challenge of correctly applying the dependencies, we contextualize the retrieved definitions with illustrative theorems, giving the model concrete examples of syntax and application patterns.

Contributions. 1) We introduce DRIFT¹ (**D**ecompose, **R**etrieve, **I**llustrate, then **F**ormalize **T**heorems), a decomposition-driven retrieval-augmented formalization framework that au-

¹The code and models are available at ANONYMIZED.

108 **tonomously** breaks down informal mathematical statements into atomic sub-queries and context-
 109 tualizes retrieved premises with demonstrative theorems, **bridging the critical gap between formal**
 110 **definition and syntactic usage while transforming monolithic retrieval into a process aligned with**
 111 **the dependency structure of formal mathematics.** **2)** Our experiments establish new state-of-the-art
 112 in dependency retrieval and autoformalization on ProofNet and ConNF across models, with excep-
 113 tional performance on the out-of-distribution ConNF benchmark. **3)** Through systematic analysis,
 114 we establish that the utility of retrieved dependencies is conditioned on the gap between a model’s
 115 parametric knowledge and the statement’s complexity. These insights reveal critical design consid-
 116 erations for retrieval-augmented systems and point toward the necessity of adaptive strategies that
 117 can assess when external knowledge genuinely complements model capabilities.

118 2 RELATED WORK

121 **Retrieval-augmented Autoformalization.** Early retrieval-augmented autoformalization methods
 122 retrieved similar theorems as few-shot examples. For instance, ProofNet (Azerbaiyev et al., 2023)
 123 employs k-NN search, while MS-RAG (Zhang et al., 2024) uses informal-to-informal retrieval with
 124 iterative refinement. LTRAG (Hu et al., 2025) retrieves thought-guided theorem pairs for neuro-
 125 symbolic formalization. In a key development, Liu et al. (2025) established the “**dependency**
 126 **retrieval**” paradigm, a premise selection task specialized for autoformalization: given an infor-
 127 mal statement, retrieve the precise set of formal objects and definitions $\mathcal{P}_{oracle*}$ that are required
 128 for its autoformalization from a library \mathbb{D} (e.g., Mathlib). **It is essential to distinguish this task**
 129 **from theorem retrieval tools, such as LeanSearch (Gao et al., 2024), LeanExplore (Asher, 2025),**
 130 **Moogle (Morph Labs, 2025) or standard baselines like BM25.** Although some systems may also
 131 retrieve definitions or structures in practice, inputting the target informal statement usually returns
 132 similar theorems instead of the dependent premises. While theorem retrieval targets semantically
 133 similar theorems to provide examples for autoformalization or proof search, dependency retrieval
 134 targets the precise, low-level formal definitions (e.g., `IsPrimitiveRoot`, `ZMod`) required for
 135 the formal statement. Implementing this paradigm, RAuformalizer (RAuto) (Liu et al., 2025)
 136 demonstrated improvements over non-retrieval methods, yet evaluation revealed a significant gap
 137 compared to oracle systems with ground-truth dependencies. CRAMF (Lu et al., 2025) attempts
 138 conceptual mapping between abstraction levels. Critically, however, all existing approaches treat
 139 complex statements as monolithic queries, failing to identify distinct mathematical concepts within
 them.

140 **Query Decomposition and Enhancement.** Query enhancement has proven effective across re-
 141 trieval tasks. Query2Doc (Wang et al., 2023) and HyDE (Gao et al., 2023) generate pseudo-
 142 documents to expand semantic coverage. LeanSearch (Gao et al., 2024) augments the informal
 143 statement by prompting an LLM to translate the query into a detailed statement containing both
 144 informal and formal expressions. However, they only evaluated with similar theorem retrieval but
 145 not on the downstream formalization. More relevant to our work, query decomposition has shown
 146 success in multi-hop question answering (Ammann et al., 2025), where breaking complex ques-
 147 tions into sub-queries improves retrieval of distinct information aspects. Zhao et al. (2023) and
 148 Jiang et al. (2022) applied similar decompositions to theorem proving, showing the effectiveness of
 149 divide-and-conquer in formal math. Despite these successes, no prior work has applied decomposi-
 150 tion to informal mathematical statements for autoformalization. **Specifically, generic query augmen-**
 151 **tation methods fail to capture the strict dependency structure within theorems.** To bridge this gap,
 152 DRIFT employs *atomic decomposition* to map mathematical concepts to their formal definitions.
 153 Furthermore, unlike similarity-based theorem selection, DRIFT’s theorem selection is conditional
 154 on the retrieved dependencies, choosing theorems whose syntactic usage explicitly demonstrates the
 retrieved formal definitions.

155 3 METHODOLOGY

156 We introduce DRIFT (**D**ecompose, **R**etrieve, **I**llustrate, then **F**ormalize **T**heorems), a novel four-
 157 stage method designed to address the two main limitations of previous retrieval-augmented formal-
 158 ization methods: 1) the complexity of informal statements and 2) the lack of demonstrative examples
 159 for retrieved formal objects. As a first step, an LLM decomposes the informal statement into a set of

162 smaller, granular sub-queries (§3.1). These queries then guide the retrieval of dependent premises
 163 from a formal library such as Mathlib (§3.2). In a subsequent, bottom-up illustration step, we find
 164 theorems that utilize the retrieved premises, providing in-context demonstrations of their application
 165 (§3.3). Finally, the LLM formalizes the original statement, conditioned on all retrieved premises and
 166 theorems (§3.4). This process is visualized in Figure 1. **Throughout, we prioritize generalizability**
 167 **over model-specific tuning to ensure a robust, adaptable framework.**

168
 169 **3.1 DECOMPOSE**
 170

171 Standard retrieval methods often treat complex informal statements as monolithic queries and simply
 172 embed the entire statement. This approach disregards the rich semantic structure within a statement,
 173 which may contain multiple distinct mathematical concepts. Their complexity means that a state-
 174 ment could be under-specified, ambiguous, and/or simply too information-dense to be used as is.
 175 Compressing the entire statement’s meaning into a single dense vector creates a representational
 176 bottleneck, risking the loss of nuanced details and focusing the retrieval on only the most salient
 177 concepts. We hypothesize that by decomposing an informal statement into its constituent concepts,
 178 we can perform a more granular and accurate retrieval for each concept.

179 To this end, DRIFT begins with a **Decompose** module (panel ① in Figure 1), which is implemented as
 180 an LLM tasked with breaking down an informal statement (IF) into a set of structured sub-queries,
 181 \mathcal{Q} , see Equation 1. While the decomposer could be a finetuned model, we leverage in-context
 182 learning (ICL) with off-the-shelf LLMs in this study.

183
 184
$$\text{Decomposer}(IF) \rightarrow \mathcal{Q} = \{(q_i, \hat{l}_i)\}_{i=1}^n \quad (1)$$

 185

186 where n , the number of sub-queries, varies for each informal statement and is determined dynami-
 187 cally by the decomposer. Each sub-query $Q_i = (q_i, \hat{l}_i)$ is designed to isolate a single mathematical
 188 concept. As illustrated in Figure 1, the component q_i is a natural language phrase describing the
 189 concept (e.g., “A prime number p of the form $4t + 3$ is a prime that leaves remainder 3 when divided
 190 by 4”) while \hat{l}_i is a predicted formal representation for that concept (e.g., “ $p : \mathbb{N}$ with the con-
 191 ditions $\text{Nat}.\text{Prime } p$ and $p \% 4 = 3$, where $\%$ denotes the modulo operation on natural numbers.”).
 192 Appending this predicted formal name serves a dual purpose. First, it probes the LLM’s parametric
 193 knowledge, providing a syntactic “anchor” for the concept. Second, it allows the retriever to jointly
 194 leverage the semantics of the natural language phrase q_i and the syntactic cues from \hat{l}_i to identify the
 195 correct premise even in the presence of minor inaccuracies in the predicted formal representations.
 196

197
 198 **3.2 RETRIEVE**
 199

200 The **Retrieve** module is designed to identify dependent premises from the library that correspond
 201 to the concepts isolated in each sub-query. This one-to-one mapping is visualized in the panel ② of
 202 Figure 1, which shows each sub-query (Q_i) being linked to a formal object (e.g., $\text{PNat}.\text{Prime}$).
 203 To accomplish this, we implement a dense passage retriever (Karpukhin et al., 2020) using a BGE-
 204 M3 (Chen et al., 2024) encoder (E_θ), finetuned on the dependency retrieval task as introduced by Liu
 205 et al. (2025). This training objective aligns the informal statements with their formal dependencies,
 206 thereby making semantic similarity a strong proxy for logical dependency. We retrieve dependencies
 207 by encoding queries and formal library objects into a shared d -dimensional embedding space. The
 208 vector representations $\mathbf{p} = E_\theta(p)$ for all formal objects $p \in \mathbb{D}$ are pre-computed in an offline
 209 step and stored in an efficient search index. At inference, each sub-query is encoded into a vector
 210 $\mathbf{q}_i = E_\theta(Q_i)$ and the closest dependent premise p_i is identified by finding the library object that
 211 maximizes the cosine similarity score, ϕ , with the query vector. This is formally defined as:

212
$$p_i = \underset{p \in \mathbb{D}}{\text{argmax}} (\phi(\mathbf{q}_i, \mathbf{p})) \quad (2)$$

 213

214 where $\phi(\mathbf{q}_i, \mathbf{p}) = \frac{\mathbf{q}_i \cdot \mathbf{p}}{\|\mathbf{q}_i\| \|\mathbf{p}\|}$. The final set of dependent premises, $\mathcal{R}_{\text{DRIFT}}$, is formed by aggregating
 215 the top-1 result from each sub-query and removing duplicates: $\mathcal{R}_{\text{DRIFT}} = \bigcup_{i=1}^n \{p_i\}$.

216 3.3 ILLUSTRATE
217

218 Retrieving useful formal definitions is a necessary first step; however, it is not sufficient for success-
219 ful autoformalization. For instance, a retrieved definition like “`def ZMod : ℕ → Type`” tells
220 the model what the concept is, but provides no further guidance on its practical application, such as
221 the syntax for declaring a variable of that type $(a : \text{ZMod } p)$. This gap between definition and
222 usage is a primary source of syntactic and structural errors in LLM-generated formal statements.

223 The **Illustrate** module is designed to bridge this gap by providing examples of formal object usage,
224 visualized in Figure 1 (panel ③). Given a premise like `ZMod` from the “Retrieve” step, the module
225 selects illustrative theorems that demonstrate the correct application of `ZMod`, such as “Theorem 2”.
226 The module takes the set of retrieved premises $\mathcal{R}_{\text{DRIFT}}$, and a budget m as input, and outputs a small
227 set of illustrative theorems \mathcal{T} , where $|\mathcal{T}| \leq m$. The selection process is a greedy algorithm designed
228 to maximize the coverage of the input premises $\mathcal{R}_{\text{DRIFT}}$ as follows. First, we compile a candidate set
229 $\mathcal{T}_{\text{cand}}$ of all theorems in the library \mathbb{D} that utilize at least one of the retrieved premises $\mathcal{R}_{\text{DRIFT}}$.

230 In order to ensure relevance and provide a deterministic tie-breaker, we pre-sort this candidate set
231 in descending order of semantic similarity $s(t)$. For each theorem $t \in \mathcal{T}_{\text{cand}}$, this similarity score
232 is the cosine similarity between its informal statement IF_t and the original informal statement IF ,
233 computed using the same encoder E_θ from the retrieval stage: $s(t) = \phi(E_\theta(IF_t), E_\theta(IF))$.

234 The final set of illustrative theorems \mathcal{T} is built iteratively. The process begins by initializing an
235 empty set of selected theorems $\mathcal{T}_0 = \emptyset$ and an empty set of covered premises $\mathcal{P}_{\text{cov},0} = \emptyset$. At each
236 step $j = 1, \dots, m$, we select the theorem t_j that provides the maximal **marginal gain** by including
237 the most new premises in $\mathcal{R}_{\text{DRIFT}}$ not previously covered:

$$t_j = \operatorname{argmax}_{t \in \mathcal{T}_{\text{cand}} \setminus \mathcal{T}_{j-1}} |\mathcal{P}(t) \cap (\mathcal{R}_{\text{DRIFT}} \setminus \mathcal{P}_{\text{cov},j-1})| \quad (3)$$

238 where $\mathcal{P}(t)$ is the set of premises used in theorem t . After selecting t_j , the sets are updated for the
239 next iteration: $\mathcal{T}_j = \mathcal{T}_{j-1} \cup \{t_j\}$ and $\mathcal{P}_{\text{cov},j} = \mathcal{P}_{\text{cov},j-1} \cup (\mathcal{P}(t_j) \cap \mathcal{R}_{\text{DRIFT}})$. The process terminates
240 when either the budget of m theorems is reached or when no remaining candidate theorem can offer
241 additional coverage (i.e., the marginal gain is zero). The final set is defined as $\mathcal{T} = \mathcal{T}_j$ from the last
242 iteration j .

243 3.4 FORMALIZE THEOREMS
244

245 The final DRIFT step is **Formalize Theorems**, shown in panel ④ of Figure 1. The formalizer assem-
246 bles the previously gathered definitions and theorem demonstrations into a comprehensive prompt
247 \mathcal{C} and generates the final formal statement. The formalization module is designed to be flexible and
248 can be implemented with either a finetuned model or a general-purpose LLM guided with ICL. The
249 formalizer compiles information in the following logical order: $\mathcal{C} = \mathcal{I} \oplus \mathcal{R}_{\text{DRIFT}} \oplus \mathcal{T} \oplus IF$, where
250 \oplus denotes the concatenation operator, \mathcal{I} is a formalization instruction (details in Appendix A.4.2),
251 $\mathcal{R}_{\text{DRIFT}}$ are the retrieved premises, \mathcal{T} are the illustrative theorems and IF is the original informal
252 statement. Conditioned on this comprehensive prompt, the formalizer then generates the final output
253 of the DRIFT framework, the formal statement $FS = \text{Formalizer}(\mathcal{C})$.

254 4 EXPERIMENTAL SETUP
255256 4.1 BENCHMARKS
257

258 We evaluate DRIFT on three distinct autoformalization benchmarks to test its in-distribution, self-
259 contained, and out-of-distribution performance. While the experiments are conducted in Lean, our
260 framework is language-agnostic and adaptable to other formal systems with structured libraries.

261 **ProofNet (In-Distribution).** We use the ProofNet benchmark (Azerbayev et al., 2023) for in-
262 distribution evaluation. Its 374 theorems, sourced from undergraduate mathematics textbooks, are
263 integrated with the Mathlib library and require an average of 3.39 dependent premises from over
264 243k formal objects (including 139k theorems). This benchmark tests the framework’s primary
265 function, which is to effectively retrieve and utilize dependent premises with demonstration from a
266 large-scale, in-distribution knowledge base.

270 **MiniF2F (Self-Contained).** We use the MiniF2F-test set (Zheng et al., 2021) to evaluate the framework on self-contained problems. This benchmark consists of 224 Olympiad-style theorems with a notably *low average* of just 0.43 dependencies from Mathlib.² MiniF2F-test serves as a boundary condition, testing the model’s core formalization capabilities and its robustness against potentially distracting context when retrieval is not strictly necessary.

275 **ConNF (Out-of-Distribution).** The OOD challenge refers to evaluation scenarios where neither the retrieval model nor the formalization model has been exposed to the formal objects used in the test data.³ We therefore evaluate on ConNF, a benchmark curated by Liu et al. (2025) through topological informalization to test OOD generalization. This benchmark is based on the `con-nf` library and is *not integrated* with Mathlib.⁴ It formalizes a consistency proof for Quine’s New Foundations (Quine, 1951), established by Holmes & Wilshaw (2015) and contains 961 research-level theorems requiring an average of 3.92 premises from its distinct library of 1,348 formal objects. ConNF rigorously tests DRIFT’s generalization to a novel mathematical domain (Zhang et al., 2024).

284 4.2 BASELINES

285 We evaluate our proposed framework against three key baselines representing zero-shot, state-of-the-art retrieval, and oracle-level performance. We note that concurrent work, CRAMF (Lu et al., 2025), was not publicly available for comparison at the time of our experiments. The **no retrieval (zero-shot)** baseline establishes a performance floor. The autoformalization model receives only the informal statement as input, without access to any retrieved context. **DPR (RAuto)** represents the current state-of-the-art. We compare our method to the dependency retrieval module from the RAutoformalizer framework (Liu et al., 2025), which is a finetuned dense passage retriever (DPR) (Karpukhin et al., 2020).⁵ The top-5 retrieved premises are provided to the formalizer model as augmented context. The **oracle* (retrieval)** setting provides an *approximate* upper bound for retrieval. The model is provided with ground-truth dependencies ($\mathcal{P}_{\text{oracle}*}$) for each problem, simulating a perfect retriever, as defined by Liu et al. (2025). We mark this setting with an asterisk (*) to denote that this oracle is, in fact, imperfect. This is because the provided dependencies are not necessarily optimal or exhaustive for formalization and do not necessarily lead to the best autoformalization performance. As we discuss in Section 5, some of our settings actually outperform this imperfect oracle.

301 4.3 IMPLEMENTATION DETAILS

302 In this study, we evaluate DRIFT as a lightweight prompting strategy, leveraging the in-context learning capabilities of instruction-following models such as DeepSeek-V3.1 (DeepSeek-AI, 2024), GPT-4.1 (OpenAI, 2025), and Claude-Opus-4 (Anthropic, 2025a) to demonstrate DRIFT’s broad applicability without introducing task-specific biases from finetuning. While we use the same model for both decomposition and formalization for consistency, these modules are independent and could be replaced with specialized finetuned models.

309 **Decompose.** We construct a few-shot prompt using five expertly-verified examples from the Putnam benchmark (Tsoukalas et al., 2024) to instruct LLMs to decompose the informal statements; 310 full details in Appendix A.1.1 and Appendix A.4.1. Each decomposed sub-query consists of a natural 311 language description of a concept and its formal representation predicted by the decomposer 312 with parametric knowledge, as detailed in Section 3.1. **We employ a single prompt across all 313 models to prioritize generalizability. Empirically, this yields consistent improvements across distinct 314 frontier models (Table 1 and Table 8), demonstrating framework robustness without the need for 315 model-specific optimization. The number of sub-queries decomposed is not fixed but autonomously 316 decided by the Decomposer.**

317 ²We removed 20 examples from the dataset that were either duplicated or failed to compile (Lean v4.18.0).

318 ³The knowledge cutoff dates of the models we used are June 2024, March 2025, and July 2025, for GPT- 319 4.1, Claude-Opus-4, and DeepSeek-V3.1, respectively. From our zero-shot results on ConNF, we hypothesize 320 that the models have not been extensively trained on this benchmark, though there is a risk of exposure to the 321 formalizer which cannot be controlled or confirmed.

322 ⁴The `con-nf` library is available at <https://github.com/leanprover-community/con-nf>.

323 ⁵Model available at https://huggingface.co/purewhite42/dependency_retriever_f.

324 **Retrieve.** The retriever model is a dense passage retriever⁶ (DPR) finetuned on Mathlib data to map
 325 informal queries to their formal dependencies (Liu et al., 2025). We pre-compute embeddings for
 326 all formal declarations in the relevant libraries (Mathlib for ProofNet and MiniF2F-test; `con-nf`
 327 for ConNF). This training setup establishes ConNF as an OOD benchmark for the retrieval module.
 328 For the DPR baseline, we retrieve the top-5 premises based on the entire informal statement. **Unlike**
 329 **fixed- k baselines, the number of premises retrieved by DRIFT is dynamic. By selecting the top-1**
 330 **candidate for each sub-query and performing deduplication, the final set size is dynamic and at most**
 331 **n , where n is the number of decomposed sub-queries.**

332 **Illustrate.** In order to demonstrate premise usage in real contexts, we select up to $m = 3$ exemplar
 333 theorems using the greedy coverage algorithm described in Section 3.3. **This budget of $m = 3$ was**
 334 **selected based on an empirical analysis of diminishing returns in premise coverage, as detailed in**
 335 **Appendix A.2.8.**

337 **Formalize Theorems.** As described in Section 3.4, the formalization prompt combines the original
 338 informal statement with the retrieved premises and illustrative theorems. Each premise is presented
 339 with its full name, formal declaration, and source code. Each illustrative theorem is included as a
 340 pair of its informal and formal statements. This demonstrates both the informal-to-formal alignment
 341 and the concrete application of the premises within a theorem instance. To evaluate pass@ k , we
 342 generate 10 formalizations for each problem.

343 4.4 EVALUATION METRICS

345 We conduct the evaluation of DRIFT in two stages: a) the intrinsic performance of dependency
 346 retrieval and the selection of illustrative theorems, and b) the extrinsic performance of autoformal-
 347 ization.

349 **Dependency Retrieval.** The effectiveness of the decomposition is measured by its impact on the de-
 350 pendency retrieval task as the quality of the decomposed sub-queries directly impacts the relevance
 351 of the retrieved premises. We measure the quality of the retrieved premises against the oracle*
 352 dependencies using **Precision**, **Recall**, and their harmonic mean, **F1-score**.

353 **Formalization Correctness.** For formalization, we use **Typecheck (TC)** and **BEq+**. Typecheck
 354 measures syntactic correctness, indicating the percentage of the generated statements that are valid
 355 and can pass the compiler’s type checker (Lu et al., 2024; Azerbayev et al., 2023; Liu et al., 2025).
 356 For semantic correctness, we use BEq+ (Poiroux et al., 2025), a symbolic metric that measures the
 357 logical equivalence between a predicted formal statement and the ground-truth reference by using
 358 deterministic proof tactics to bidirectionally prove that each statement can be transformed into the
 359 other. **We adopt BEq+ over LLM-based evaluations to avoid stochasticity and ensure compiler-**
 360 **verified reliability. Furthermore, given that large-scale human evaluation is infeasible, BEq+ serves**
 361 **as an effective proxy, demonstrating strong alignment with human judgments (Pearson: 0.974,**
 362 **Kendall: 0.872) (Poiroux et al., 2025).** For each metric, we assess performance using pass@1 and
 363 pass@10, where pass@ k indicates that at least one of k independent generations was successful.

364 5 RESULTS AND DISCUSSION

365 5.1 DEPENDENCY RETRIEVAL

369 We evaluate the effectiveness of the Decompose and Retrieve modules by looking at their impact on
 370 intrinsic performance in dependency retrieval. As detailed in Table 1, we compare DRIFT against
 371 a monolithic query baseline that uses the same dense retriever but with the original informal state-
 372 ments as queries. This provides a direct comparison to DRIFT, which retrieves a similar number of
 373 premises by taking the union of the top-1 results for each of the 5.21 to 6.42 sub-queries generated
 374 by the Decompose module.⁷ The results show that decomposition provides a substantial perfor-
 375 mance improvement in both precision and recall. Averaged across all decomposer models, DRIFT
 376 achieves an absolute improvement of 13.34, 2.08, and 7.74 points over the baseline F1 score on the

377 ⁶Training details of the retriever in Appendix A.1.2.

⁷The full statistics of the decomposed sub-queries are available at Appendix A.2.7.

Benchmark	Decomposer	Precision	Recall	F1
ProofNet	-	11.55	17.03	13.77
	Claude-Opus-4	23.02	34.70	27.68
	GPT-4.1	21.71	34.46	26.64
	DeepSeek-V3.1	24.38	30.28	27.01
MiniF2F-test	-	0.36	4.12	0.66
	Claude-Opus-4	2.08	23.71	3.83
	GPT-4.1	1.42	15.46	2.60
	DeepSeek-V3.1	0.98	9.28	1.78
ConNF	-	25.12	32.06	28.17
	Claude-Opus-4	30.97	41.01	35.29
	GPT-4.1	31.62	40.64	35.56
	DeepSeek-V3.1	34.67	39.39	36.88

Table 1: A comparison of dependency retrieval performance (%) between DRIFT and a no-decomposition baseline (“-”). The baseline queries the retriever directly with the original informal statement. Best results are in **bold**.

ProofNet, MiniF2F-test, and ConNF benchmarks, respectively. Regarding the choice of decomposer model, we observe that while Claude-Opus-4 achieves the highest F1 scores on ProofNet (27.68%) and MiniF2F-test (3.83%), the performance variation among the LLMs is marginal. Our findings indicate that frontier LLMs are largely interchangeable for this task as the top-performing models have a maximum F1 score difference of only 2.05% on any benchmark.

The Illustrate module proves highly effective at selecting a concise set of theorems to demonstrate premise usage. Within a maximum of only three selected theorems ($m = 3$), the algorithm achieves a high average premise coverage rate of $74.59 \pm 4.80\%$ across all the decomposers and benchmarks.

5.2 FORMALIZATION

For extrinsic performance on autoformalization, DRIFT consistently outperforms both the zero-shot baseline and the strong retrieval-augmented baseline DPR (RAuto) on ProofNet and ConNF benchmarks, both on Typecheck and BEq+ with pass@1 and pass@10 (see Table 2). Specifically, on ProofNet, GPT-4.1 with DRIFT achieves a BEq+ pass@10 of 21.93%, a 2.74% improvement over DPR (RAuto). This trend holds across models in our main evaluation, demonstrating that our decomposition-driven approach provides more effective context for the formalization task.

A key insight from our results is that while the frontier models we tested are all highly proficient and largely interchangeable as query decomposers, this parity does not extend to the final formalization step. For instance, DeepSeek-V3.1 generally outperforms GPT-4.1 in the zero-shot setting across all benchmarks, suggesting a stronger parametric knowledge for direct formalization. However, this trend reverses when retrieval is introduced, most significantly on the OOD ConNF benchmark. On ConNF, all models achieve low zero-shot BEq+ scores (<10%), confirming a severe knowledge gap. Retrieval substantially improves performance, where GPT-4.1 consistently outperforms DeepSeek-V3.1 across all metrics with different retrieval strategies. DRIFT provides a particularly significant improvement, increasing GPT-4.1’s BEq+@10 score by 55.57% and even surpassing the oracle* baseline by 3.43%. We hypothesize this is because the oracle* provides only necessary premises based on the reference statement, while the illustrative theorems selected with DRIFT provide crucial demonstrations of premise usage. [We support this hypothesis with a detailed qualitative analysis of the Oracle* baseline’s failure modes in Appendix A.3.2.](#)

On the in-distribution ProofNet benchmark, the results are more nuanced. GPT-4.1 surpasses DeepSeek-V3.1 on BEq+@10 when using DRIFT. This pattern suggests that GPT-4.1 is more adept at in-context synthesis, integrating and reasoning over retrieved information to construct formal statements, especially in unfamiliar domains. In contrast to the interchangeability we observed among models as decomposers, the formalization stage reveals clear performance differences. The distinction suggests that the two stages of our pipeline rely on distinct LLM capabilities. Decom-

Benchmark	Formalizer	Retrieval	TC@1	BEq+@1	TC@10	BEq+@10
432 433 434 435 436 437 438 439 440 441	GPT-4.1 442 443 444	Oracle*	58.82	20.32	79.68	27.54
		Zero-shot	34.22	9.36	51.60	13.37
		DPR (RAuto)	51.60(+17.38)	14.71(+ 5.35)	73.53(+21.93)	19.25(+ 5.88)
		DRIFT	55.88 (+21.66)	17.38 (+ 8.02)	77.01 (+25.41)	21.93 (+ 8.56)
	ProofNet 445 446 447 448	Oracle*	71.12	21.93	82.09	27.54
		Zero-shot	60.43	15.51	71.93	20.32
		DPR (RAuto)	63.37(+ 2.94)	17.38(+ 1.87)	73.53(+ 1.60)	19.52(− 0.80)
		DRIFT	72.73 (+12.30)	18.18 (+ 2.67)	79.41 (+ 7.48)	20.59 (+ 0.27)
	GPT-4.1 449 450 451	Oracle*	75.45	23.66	89.29	30.36
		Zero-shot	69.64	23.21	84.82	28.12
		DPR (RAuto)	77.23 (+ 7.59)	24.55 (+ 1.34)	92.41 (+ 7.59)	32.14 (+ 4.02)
		DRIFT	74.55(+ 4.91)	24.55 (+ 1.34)	92.41 (+ 7.59)	29.02(+ 0.90)
452 453 454 455 456 457 458 459 460 461	MiniF2F-test 445 446 447 448	Oracle*	77.68	23.21	87.50	28.12
		Zero-shot	76.34	22.77	87.50	27.23
		DPR (RAuto)	75.89(− 0.45)	22.77 (± 0.00)	87.95(+ 0.45)	27.68 (+ 0.45)
		DRIFT	74.11(− 2.23)	22.77 (± 0.00)	88.84 (+ 1.34)	24.55(− 2.68)
	GPT-4.1 449 450 451	Oracle*	60.46	48.28	75.23	58.90
		Zero-shot	7.28	4.47	11.45	6.76
		DPR (RAuto)	24.56(+17.28)	15.19(+10.72)	31.95(+20.50)	20.08(+13.32)
		DRIFT	65.76 (+58.48)	54.84 (+50.37)	77.00 (+65.55)	62.33 (+55.57)
	ConNF 452 453 454 455	Oracle*	57.34	44.22	71.28	55.15
		Zero-shot	13.42	8.12	17.59	11.03
		DPR (RAuto)	21.96(+ 8.54)	12.90(+ 4.78)	28.20(+10.61)	17.07(+ 6.04)
		DRIFT	60.67 (+47.25)	46.72 (+38.60)	71.18 (+53.59)	54.21 (+43.18)

Table 2: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance is measured by Typecheck (TC@k) and BEq+@k. We compare DRIFT against zero-shot, DPR (RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) relative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are **bold**.

position leverages natural language reasoning, whereas formalization demands advanced formal reasoning.

As we discussed in Section 4, the MiniF2F-test benchmark presents a distinct profile with an average of only 0.43 library dependencies. This limits the potential for retrieval-based improvements, evidenced by the small gap between the zero-shot and oracle* performance, (e.g., a pass@10 gap of 2.24% for GPT-4.1 and 0.89% for DeepSeek-V3.1). Instead, this low-dependency regime reveals the models’ high sensitivity to the provided context, which can act as a distractor rather than an aid. We provide a detailed analysis of these failures in Appendix A.3.1, offering a granular error taxonomy that specifically identifies issues like force-fitting and over-complication.

We include a comparison with the finetuned Goedel-Formalizer-V2-8B (Lin et al., 2025c) in Appendix A.2.10. The results demonstrate that while the finetuned baseline scales effectively in-domain, DRIFT significantly outperforms it on the OOD ConNF benchmark by bridging the semantic knowledge gap.

5.3 ABLATION STUDY

In order to isolate and measure the contribution of each component of DRIFT, we conducted a systematic ablation study (Table 3). As expected, removing the illustrative theorems (w/o Illustrate) decreased the BEq+ score on ProofNet and ConNF, which confirms that demonstrations of premise usage are crucial for the formalization correctness beyond just the definitions of the formal objects. Intriguingly, additionally removing the Decompose module (w/o Decompose) does not further degrade performance and even leads to a slight recovery on ConNF and ProofNet in the BEq+ score. We hypothesize this is because the baseline DPR retrieves a thematically homogeneous (lexically close though less precise) set of premises via single query retrieval, which may be less distracting

Retrieval	ProofNet		MiniF2F-test		ConNF	
	TC@1	BEq+@1	TC@1	BEq+@1	TC@1	BEq+@1
DRIFT (GPT-4.1)	55.88	17.38	74.55	24.55	65.76	54.84
w/o Illustrate	56.15 (+ 0.27)	14.17 (- 3.21)	76.34 (+ 1.79)	24.55 (\pm 0.00)	45.47 (-20.29)	35.90 (-18.94)
w/o Decompose	50.80 (- 5.08)	13.64 (- 3.74)	76.34 (+ 1.79)	26.34 (+ 1.79)	59.63 (- 6.13)	46.72 (- 8.12)
w/o Retrieval	34.22 (-21.66)	9.36 (- 8.02)	69.64 (- 4.91)	23.21 (- 1.34)	7.28 (-58.48)	4.47 (-50.37)
DRIFT (DeepSeek-V3.1)	72.73	18.18	74.11	22.77	60.67	46.72
w/o Illustrate	70.32 (- 2.41)	15.24 (- 2.94)	77.68 (+ 3.57)	21.43 (- 1.34)	41.31 (-19.36)	29.34 (-17.38)
w/o Decompose	64.97 (- 7.76)	15.78 (- 2.40)	77.68 (+ 3.57)	20.98 (- 1.79)	50.36 (-10.31)	38.81 (- 7.91)
w/o Retrieval	60.43 (-12.30)	15.51 (- 2.67)	76.34 (+ 2.23)	22.77 (\pm 0.00)	13.42 (-47.25)	8.12 (-38.60)

Table 3: Ablation study of DRIFT using GPT-4.1 and DeepSeek-V3.1 with pass@1. First, we remove the **Illustrate** module (premises retrieved with sub-queries provided in \mathcal{C}), then the **Decompose** module (premises retrieved using original informal statement provided in \mathcal{C}), and finally all the **Retrieval** components. Values in parentheses show relative performance (**increase**) or (**decrease**) compared to the full model.

than the precise but more diverse set retrieved via decomposition. This reveals a crucial synergy: the illustrative theorems act as a scaffold that helps the model navigate the diverse information from the decomposer. In Appendix A.3.3, we analyze specific instances where using premises retrieved by DRIFT alone failed, whereas the full DRIFT pipeline and the baseline DPR succeeded, further validating the scaffolding hypothesis.

The complex interaction creates a trade-off on the MiniF2F-test benchmark: removing theorems improves syntactic correctness (Typecheck) while degrading logical correctness (BEq+). This further supports the hypothesis that for the simpler, low-dependency problems in MiniF2F-test, adding more context can act as a distractor. Removing external context improves syntactic validity but degrades logical correctness of the generated formal statements. This sensitivity strongly motivates the need for more dynamic and adaptive retrieval strategies. To quantify the theoretical gains of such strategies, we provide an “Oracle Ensemble” analysis in Appendix A.2.9, demonstrating that an adaptive upper bound consistently outperforms individual methods. Future work on agentic frameworks could selectively retrieve information, judge its utility, and iterate based on the compiler feedback.

6 CONCLUSION

In this work, we introduced DRIFT, a framework that improves autoformalization by tackling two distinct challenges: the underlying complexity of queries and the lack of contextual usage. Our decomposition-driven retrieval addresses the former by breaking down the informal statement into sub-queries and conducting point-to-point retrieval of its formal dependencies. Concurrently, the Illustrate module resolves the latter by providing illustrative examples to guide the utilization of retrieved premises in theorem instances. This dual approach substantially improves formalization correctness on both complex in-distribution (ProofNet) and out-of-distribution (ConNF) benchmarks, demonstrating its effectiveness as a broadly generalizable and model-agnostic strategy. On a simpler, low-dependency MiniF2F-test benchmark, our method performs comparably to related methods. Our findings suggest future work to focus on dynamic and adaptive retrieval strategies, as well as on agentic frameworks that iteratively refine attempts based on compiler feedback.

ETHICS STATEMENT

We adhere to the licenses of the data artifacts and models used in this study, as well as to the ICLR code of ethics. Human experts who verified decomposed queries were fairly compensated for their contributions.

We acknowledge the societal risks associated with reasoning LLMs. Our method operates within the existing paradigm of retrieval-augmented generation and does not introduce novel risks.

540 Finally, Large Language Models were used as a writing assistant for improving the language and
 541 clarity of this manuscript. The scientific contributions, including all ideas, experiments, and analy-
 542 ses, are the work of the human authors.

544 **REPRODUCIBILITY STATEMENT**

546 We are committed to the full reproducibility of this study. Upon publication, we will release the
 547 complete source code for the DRIFT framework, all curated data artifacts, and our finetuned mod-
 548 els under a permissible open-source license. Key implementation details and hyperparameters are
 549 described in Appendix A.1.

551 **REFERENCES**

553 Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. To-
 554 wards a mathematics formalisation assistant using large language models. *arXiv preprint*
 555 *arXiv:2211.07524*, 2022.

556 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
 557 for mathematical reasoning: Progresses and challenges. In *Proceedings of the 18th Conference*
 558 *of the European Chapter of the Association for Computational Linguistics: Student Research*
 559 *Workshop*, pp. 225–237, 2024.

560 Paul J. L. Ammann, Jonas Golde, and Alan Akbik. Question decomposition for retrieval-augmented
 561 generation. In Jin Zhao, Mingyang Wang, and Zhu Liu (eds.), *Proceedings of the 63rd Annual*
 562 *Meeting of the Association for Computational Linguistics (Volume 4: Student Research Work-*
 563 *shop)*, pp. 497–507, Vienna, Austria, July 2025. Association for Computational Linguistics.

565 Anthropic. Introducing Claude 4. <https://www.anthropic.com/news/clause-4>, May
 566 2025a. Accessed: September 24, 2025.

567 Anthropic. Claude’s extended thinking. [https://www.anthropic.com/news/](https://www.anthropic.com/news/visible-extended-thinking)
 568 visible-extended-thinking, Feb 2025b. Accessed: October 17, 2025.

570 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
 571 to retrieve, generate, and critique through self-reflection. In *The Twelfth International Conference*
 572 *on Learning Representations*, 2024.

573 Justin Asher. Leanexplore: A search engine for Lean 4 declarations. *arXiv preprint*
 574 *arXiv:2506.11085*, 2025.

576 Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
 577 and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level math-
 578 ematics, 2023.

579 Anne Baanen, Matthew Robert Ballard, Johan Commelin, Bryan Gin-ge Chen, Michael Rothgang,
 580 and Damiano Testa. Growing Mathlib: Maintenance of a large scale mathematical library. *arXiv*
 581 *preprint arXiv:2508.21593*, 2025.

582 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Eduardo
 583 Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. *The Coq Proof*
 584 *Assistant Reference Manual : Version 6.1*. PhD thesis, Inria, 1997.

586 BICMR@PKU AI. Jixia: Static analysis tool for Lean 4. [https://github.com/](https://github.com/frenzymath/jixia)
 587 *frenzymath/jixia*, 2024. GitHub repository.

588 Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. RQ-RAG:
 589 Learning to refine queries for retrieval augmented generation. In *First Conference on Language*
 590 *Modeling*, 2024.

592 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. BGE M3-Embedding:
 593 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
 tillation. *arXiv preprint arXiv:2402.03216*, 2024.

594 Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
 595 Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-Prover: Deep and broad reasoning for automated
 596 theorem proving. *arXiv preprint arXiv:2507.23726*, 2025.

597 Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
 598 Lean theorem prover (system description). In *International Conference on Automated Deduction*,
 599 pp. 378–388. Springer, 2015.

600 601 DeepSeek-AI. Deepseek-v3 technical report, 2024.

602 603 Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine
 604 for Mathlib4. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 8001–8013, 2024.

605 606 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
 607 relevance labels. In *Proceedings of the 61st Annual Meeting of the Association for Computational
 608 Linguistics (Volume 1: Long Papers)*, pp. 1762–1777, 2023.

609 Sébastien Gouëzel and Vladimir Shchur. A corrected quantitative version of the Morse lemma.
 610 *Journal of Functional Analysis*, 277(4):1258–1268, 2019.

611 612 Yuhang He, Jihai Zhang, Jianzhu Bao, Fangquan Lin, Cheng Yang, Bing Qin, Rui Feng Xu, and
 613 Wotao Yin. BC-prover: Backward chaining prover for formal theorem proving. In Yaser Al-
 614 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Em-
 615 pirical Methods in Natural Language Processing*, pp. 3059–3077, Miami, Florida, USA, Novem-
 616 ber 2024. Association for Computational Linguistics.

617 M Randall Holmes and Sky Wilshaw. Nf is consistent. *arXiv preprint arXiv:1503.01406*, 2015.

618 619 Ruihang Hu, Shaoyu Lin, Yeliang Xiu, and Yongmei Liu. LTRAG: Enhancing autoformalization and
 620 self-refinement for logical reasoning with thought-guided RAG. In *Findings of the Association
 621 for Computational Linguistics: ACL 2025*, pp. 2483–2493, 2025.

622 Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. *arXiv
 623 preprint arXiv:2311.03755*, 2023.

624 625 Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
 626 Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
 627 theorem provers with informal proofs. In *The Eleventh International Conference on Learning
 628 Representations*, 2022.

629 630 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 631 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
 632 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
 (EMNLP)*, pp. 6769–6781, 2020.

633 634 Joshua Ong Jun Leang, Giwon Hong, Wenda Li, and Shay B Cohen. Theorem prover as a judge
 635 for synthetic data generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
 636 hammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for
 637 Computational Linguistics (Volume 1: Long Papers)*, pp. 29941–29977, Vienna, Austria, July
 638 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0.

639 Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-STaR: Learning to interleave
 640 thinking and proving. In *The Thirteenth International Conference on Learning Representations*,
 2025a.

641 642 Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
 643 Danqi Chen, Sanjeev Arora, et al. Goedel-Prover: A frontier model for open-source automated
 644 theorem proving. *arXiv preprint arXiv:2502.07640*, 2025b.

645 646 Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
 647 Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
 648 Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover-V2: Scaling
 649 Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction, August 2025c.
 arXiv:2508.03613 [cs].

648 Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
 649 autoformalization: Towards a faithful metric and a dependency retrieval-based approach. In *The*
 650 *Thirteenth International Conference on Learning Representations*, 2025.

651

652 Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
 653 Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-
 654 driven autoformalization in Lean 4, 2024.

655 Wangyue Lu, Lun Du, Sirui Li, Ke Weng, Haozhe Sun, Hengyu Liu, Minghe Yu, Tiancheng Zhang,
 656 and Ge Yu. Automated formalization via conceptual retrieval-augmented LLMs. *arXiv preprint*
 657 *arXiv:2508.06931*, 2025.

658

659 Thang Luong and Edward Lockhart. Advanced version of Gemini with deep think officially achieves
 660 gold medal standard at the international mathematical olympiad, July 2025. Available at: Google
 661 DeepMind Blog. Accessed: 2025-09-09.

662

663 Mathlib Community. The Lean mathematical library. In *Proceedings of the 9th ACM SIGPLAN*
 664 *International Conference on Certified Programs and Proofs*, CPP 2020, pp. 367–381, New York,
 665 NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370974. doi: 10.1145/
 3372885.3373824.

666

667 Morph Labs. Moogle: A semantic search engine for Lean 4. <https://www.moogle.ai/>,
 668 2025. Accessed: 2025.

669

670 OpenAI. Introducing GPT-4.1 model family. <https://openai.com/index/gpt-4-1/>,
 April 2025. Accessed: September 24, 2025.

671

672 Lawrence C Paulson. *Isabelle: A Generic Theorem Prover*. Springer, 1994.

673

674 Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformalization
 675 using type checking, 2025.

676

677 WV Quine. On the consistency of “new foundations”. *Proceedings of the National Academy of*
 678 *Sciences*, 37(8):538–540, 1951.

679

680 Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RI
 681 on incorrect synthetic data scales the efficiency of LLM math reasoning by eight-fold. *Advances*
 682 *in Neural Information Processing Systems*, 37:43000–43031, 2024.

683

684 Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-
 685 context learning agent for formal theorem-proving. In *First Conference on Language Modeling*,
 686 2024.

687

688 Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex Sanchez-Stern, Yuriy Brun,
 689 João F Ferreira, Sorin Lerner, and Emily First. Rango: Adaptive retrieval-augmented proving for
 690 automated software verification. In *2025 IEEE/ACM 47th International Conference on Software*
 691 *Engineering (ICSE)*, pp. 347–359. IEEE, 2025.

692

693 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
 694 tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
 695 putnam mathematical competition, 2024.

696

697 Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
 698 In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 699 pp. 9414–9423, 2023.

700

701 Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theo-
 702 remLlama: Transforming general-purpose LLMs into Lean4 experts. In *Proceedings of the 2024*
 703 *Conference on Empirical Methods in Natural Language Processing*, pp. 11953–11974, 2024.

704

705 Shuting Wang, Xin Yu, Mang Wang, Weipeng Chen, Yutao Zhu, and Zhicheng Dou. RichRAG:
 706 Crafting rich responses for multi-faceted queries in retrieval-augmented generation. In *Proceed-
 707 ings of the 31st International Conference on Computational Linguistics*, pp. 11317–11333, 2025.

702 Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang,
 703 Zidong Du, Jie Yan, et al. StepFun-Formalizer: Unlocking the autoformalization potential of
 704 LLMs through knowledge-reasoning fusion. *arXiv preprint arXiv:2508.04440*, 2025.
 705

706 Huajian Xin, Z.Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
 707 Zhang, Xuan Lu, Qiushi Du, et al. DeepSeek-Prover-V1.5: Harnessing proof assistant feedback
 708 for reinforcement learning and monte-carlo tree search. In *The Thirteenth International Confer-
 709 ence on Learning Representations*, 2024.

710 Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
 711 Ryan J Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with retrieval-
 712 augmented language models. *Advances in Neural Information Processing Systems*, 36:21573–
 713 21612, 2023.

714 Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
 715 A large-scale Lean problem set formalized from natural language math problems. In *Proceedings
 716 of the 38th International Conference on Neural Information Processing Systems*, pp. 105848–
 717 105863, 2024.

718 Lan Zhang, Xin Quan, and André Freitas. Consistent autoformalization for constructing mathemat-
 719 ical libraries. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
 720 Processing*, pp. 4020–4033, 2024.

721 Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
 722 stration learning for formal theorem proving. *arXiv preprint arXiv:2305.16366*, 2023.

723 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: a cross-system benchmark for
 724 formal olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021.

730 731 A APPENDIX

732 733 A.1 IMPLEMENTATION DETAILS

734 735 A.1.1 FEW-SHOT EXAMPLES FOR DECOMPOSITION

736 To construct a robust set of few-shot demonstrations for our Decompose module, we strategically
 737 selected five problems from the Putnam benchmark (Tsoukalas et al., 2024). These problems were
 738 chosen to ensure diversity in both their mathematical domain and the number of underlying premises
 739 required for their formal statements.

740 We decomposed the informal statement of each selected problem into its atomic, logical sub-
 741 components using Claude-Opus-4 with extended thinking enabled (Anthropic, 2025b). The decom-
 742 position followed a zero-shot prompting strategy guided by a carefully engineered instruction set.
 743 To ensure correctness and logical atomicity, each generated decomposition exemplar was manually
 744 verified by human experts. While the decomposition task inherently lacks a unique ground truth,
 745 the robustness of the resulting sub-queries is validated empirically by the significant improvements
 746 observed in downstream premise retrieval performance (see Table 1, Section 5.1).

747 This curated set of examples, detailed below, provides the model with varied demonstrations for the
 748 decomposition task across number theory, algebra, analysis, and geometry.

- 749 750 • **Number Theory:** putnam_1966_b2
- 751 752 • **Algebra:** putnam_2000_b1
- 753 754 • **Analysis:** putnam_2000_a4, putnam_2015_b1
- 755 756 • **Geometry:** putnam_2003_b5

756 A.1.2 RETRIEVER FINETUNING DETAILS
757

758 We finetuned the BGE-M3 retriever model (Chen et al., 2024) on the Mathlib 4.7 dataset to special-
759 ize it for dependency retrieval in formal mathematics. The finetuning process was executed using
760 the FlagEmbedding library (Chen et al., 2024) on a server equipped with four 32GB GPUs. The
761 complete set of hyperparameters used for this process, including optimizer settings and loss config-
762 uration, is provided in Table 4.

763 Category	764 Hyperparameter	765 Value
766 Model & Data	767 model_name_or_path	768 bge-m3
	769 train_data	770 mathlib 4.7
	771 query_max_len	772 1024
	773 passage_max_len	774 1024
	775 train_group_size	776 4
	777 sentence_pooling_method	778 cls
779 Training	780 num_train_epochs	781 1
	782 per_device_train_batch_size	783 32
	784 per_device_eval_batch_size	785 4
	786 learning_rate	787 5×10^{-6}
	788 warmup_ratio	789 0.1
	790 weight_decay	791 0.01
	792 repetition_penalty	793 1.0
	794 dataloader_drop_last	795 True
	796 even_batches	797 True
	798 non_blocking	799 False
	800 split_batches	801 False
	802 use_seedable_sampler	803 True
804 Loss & Objective	805 temperature	806 0.02
	807 normalize_embeddings	808 True
	809 negatives_cross_device	810 True
	811 same_benchmark_within_batch	812 True
	813 unified_finetuning	814 True
	815 kd_loss_type	816 m3_kd_loss
817 Optimizer	818 optim	819 adamw_torch
	820 adafactor	821 False
	822 adam_beta1	823 0.9
	824 adam_beta2	825 0.999
	826 adam_epsilon	827 1×10^{-8}

794 Table 4: Hyperparameters for model fine-tuning.
795

796 **Training Objective and Data Source..** We utilized the informalized Mathlib dataset provided by
797 RAuformalizer (Liu et al., 2025), which aligns informal statements with formal declarations from
798 Mathlib 4.7.0. To extract the ground-truth dependent premises from the raw Lean code, we utilized
799 **Jixia** (BICMR@PKU AI, 2024), a static analysis tool for Lean 4 that parses the abstract syntax tree
800 to identify source-level dependencies. The retriever was trained using a standard contrastive loss
801 framework: the informal statement serves as the *anchor*, the Jixia-extracted dependencies serve as
802 *positive* samples, and other random library objects serve as *negative* samples. Crucially, the retriever
803 was trained exclusively on Mathlib data to ensure strict isolation from the ProofNet and MiniF2F-
804 test sets.

805 **Toolchain Versions and Robustness..** We utilized distinct Lean versions due to data constraints and
806 benchmark requirements. The retriever training relied on Mathlib 4.7.0 data due to the availability of
807 aligned informal-formal pairs. However, for the inference and evaluation of ProofNet and MiniF2F-
808 test, we utilized the more recent Lean 4.18.0 (released April 2025); the high compilation success
809 rate of gold statements ($\sim 100\%$) confirms that the version difference between training data and the
810 evaluation environment does not introduce instability. For ConNF, we utilized Lean 4.7.0 strictly

810 because the benchmark is pinned to this version by its dependencies. Notably, DRIFT mitigates the
 811 “brittleness” often associated with rapid Lean and Mathlib evolution: unlike finetuned models that
 812 memorize static syntax and require expensive retraining to adapt to updates, DRIFT adapts to new
 813 Lean versions through a low-cost offline re-indexing of the active library.
 814

815 A.1.3 LLM GENERATION PARAMETERS

816 For all generative tasks, sub-query generation (decomposition) and formal statement generation (for-
 817 malization), we set the temperature to 0.7 for all models (GPT-4.1, DeepSeek-V3.1, and Claude-
 818 Opus-4) to encourage diverse yet coherent outputs. To ensure reproducibility, single-attempt eval-
 819 uations (pass@1) used a fixed seed of 42. For multi-attempt evaluations (pass@10), we generated ten
 820 distinct outputs by using a sequential range of seeds from 42 to 51.
 821

822 A.2 ADDITIONAL RESULTS AND DISCUSSION

824 A.2.1 DEPENDENCY RETRIEVAL PERFORMANCE METRICS

826 We evaluate retrieval performance using standard precision, recall, and their harmonic mean, the F1
 827 score. For a given retrieved set \mathcal{R} and the ground-truth set of oracle* premises $\mathcal{P}_{oracle*}$, precision
 828 and recall are defined as: $Precision(P) = \frac{|\mathcal{P}_{oracle*} \cap \mathcal{R}|}{|\mathcal{R}|}$ and $Recall(R) = \frac{|\mathcal{P}_{oracle*} \cap \mathcal{R}|}{|\mathcal{P}_{oracle*}|}$. The F1 score
 829 provides a single, balanced measure of performance by combining precision and recall: $F1 = 2 \cdot \frac{P \cdot R}{P + R}$. The composition of the retrieved set \mathcal{R} varies by method.
 830

831 For baseline retrievers, \mathcal{R} consists of the top- k premises with the highest cosine similarity to the
 832 embedding of the full informal statement. For DRIFT, \mathcal{R} is the union of the single best-retrieved
 833 premise for each of the n decomposed sub-queries.
 834

835 A.2.2 DEPENDENCY RETRIEVAL RESULTS OF RAUTO

837 This section presents the performance of DPR (RAuto) across both in-distribution (ProofNet,
 838 MiniF2F-test) and out-of-distribution (ConNF) benchmarks. The results, detailed in Table 5, high-
 839 light a crucial trade-off between specialization and generalization that motivates our proposed
 840 approach. When comparing DPR baselines, our retriever without decomposition substantially outper-
 841 forms DPR (RAuto) on the ConNF benchmark but underperforms on ProofNet and MiniF2F-test.
 842 We hypothesize that this discrepancy arises because DPR (RAuto) may be overfitted to Mathlib-
 843 specific content.
 844

Benchmark	Precision	Recall	F1
ProofNet	22.89	33.75	27.28
MiniF2F-test	0.63	7.22	1.15
ConNF	14.01	17.88	15.71

845 Table 5: Dependency Retrieval performance (%) of DPR (RAuto), the retriever from RAutoformal-
 846 izer (Liu et al., 2025). Retrieval k is set to 5.
 847

852 A.2.3 AUTOFORMALIZATION RESULTS OF CLAUDE-OPUS-4

855 In the main paper, we evaluated Claude-Opus-4’s effectiveness as a decomposer for query decom-
 856 position. Here, we provide Claude-Opus-4’s formalization results for completeness. Table 6 reports
 857 pass@1 performance (TC@1 and BEq+@1) across all benchmarks. Note that pass@10 results for
 858 Claude-Opus-4 are not available due to computational costs.
 859

860 A.2.4 THE ROLE OF ILLUSTRATIVE THEOREMS AS A SCAFFOLD

861 As presented in Table 3, removing the Decompose module (w/o Decompose: reverting to the base-
 862 line DPR) does not degrade performance further. In fact, on ConNF and ProofNet, it leads to slight
 863 recovery in the BEq+ scores compared to the “w/o Illustrate” setting. We hypothesize this is due
 864 to the nature of retrieval noise. The baseline DPR, using a single query, retrieves a thematically

Benchmark	Retrieval	TC@1	BEq+@1
ProofNet	Oracle*	81.28	26.20
	Zero-shot	68.45	17.65
	RAuto	75.67 ^(+7.22)	19.25 ^(+1.60)
	DRIFT	78.61 ^(+10.16)	19.79 ^(+2.14)
MiniF2F-test	Oracle*	93.30	35.27
	Zero-shot	95.09	31.25
	RAuto	95.98 ^(+0.89)	30.36 ^(-0.89)
	DRIFT	93.75 ^(-1.34)	32.59 ^(+1.34)
ConNF	Oracle*	62.75	50.36
	Zero-shot	13.32	8.53
	RAuto	26.64 ^(+13.32)	18.52 ^(+9.99)
	DRIFT	72.32 ^(+59.00)	60.35 ^(+51.82)

Table 6: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance is measured by Typecheck (TC@1) and BEq+@1. We compare DRIFT against zero-shot, DPR (RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) relative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are **bold**. The pass@10 experiments for Claude were omitted due to funding constraints.

clustered set of premises. While its precision is lower, its noise is homogeneous and may be less distracting to the LLM. Our decomposition method retrieves a more diverse set of premises. While this captures more correct dependencies (higher recall and precision), the accompanying noise is also more varied. This reveals a crucial synergy: the selected theorems in the Illustrate module act as a contextual scaffold, helping the model navigate the diverse information retrieved by the decomposer. Without this guidance, the varied noise can outweigh the benefit of improved retrieval.

A.2.5 SCALING PERFORMANCE WITH SAMPLING

Across all experiments in Table 2, we observe a consistent and significant gap between pass@1 and pass@10 results. For instance, performance on ProofNet improved by an average of 27.20% across all settings and formalizer models. This large uplift underscores the potential for enhancing performance through sampling-based methods at test time. This suggests that performance could be further scaled by integrating our method into an agentic framework equipped with a verifier (e.g., Typecheck correctness).

Notably, DeepSeek-V3.1’s performance of pass@10 saturates more quickly than Claude-Opus-4’s on the ProofNet benchmark. Its zero-shot pass@10 score is only 0.27% lower than the DRIFT score. This suggests that with sufficient sampling, the model can sometimes recover the necessary knowledge parametrically. We anticipate a similar, albeit slower, trend for the larger Claude-Opus-4 and GPT-4.1 models if the number of attempts were increased further.

A.2.6 PARAMETRIC RETRIEVAL

To disentangle the contributions of an LLM’s internal (parametric) knowledge and external (retrieved) knowledge, we conducted a “parametric retrieval” experiment. In this setting, we prompted the formalizer models only with the decomposed sub-queries, omitting the retrieved premises and illustrative theorems. This setup probes whether the structured sub-queries alone are sufficient to guide the models to access their own latent knowledge for the formalization task.

The results in Table 7 indicate that external knowledge from retrieval remains largely indispensable and cannot be fully substituted by the LLM’s internal knowledge alone. However, we observe a notable distinction between the models. DeepSeek-V3.1 demonstrates a stronger grasp of the required formal knowledge; for this model, the sub-queries appear to function as a Chain-of-Thought-style prompt, structuring its reasoning process and thereby improving formalization accuracy. This aligns with our earlier finding that DeepSeek-V3.1’s zero-shot performance with sufficient sam-

918 919 920 921 922 923 924 925	926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	ProofNet		MiniF2F-test		ConNF	
		926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	
DRIFT (GPT-4.1)	55.88	17.38	74.55	24.55	65.76	54.84	
Parametric Retrieval	43.85 (-12.03)	13.64 (- 3.74)	63.84 (-10.71)	20.09 (- 4.46)	10.41 (-55.35)	3.64 (-51.20)	
w/o Retrieval	34.22 (-21.66)	9.36 (- 8.02)	69.64 (- 4.91)	23.21 (- 1.34)	7.28 (-58.48)	4.47 (-50.37)	
DRIFT (DeepSeek-V3.1)	72.73	18.18	74.11	22.77	60.67	46.72	
Parametric Retrieval	69.25 (- 3.48)	19.79 (+ 1.61)	76.79 (+ 2.68)	24.55 (+ 1.78)	10.51 (-50.16)	5.93 (-40.79)	
w/o Retrieval	60.43 (-12.30)	15.51 (- 2.67)	76.34 (+ 2.23)	22.77 (\pm 0.00)	13.42 (-47.25)	8.12 (-38.60)	

Table 7: Performance comparison of the full DRIFT model, parametric retrieval baseline, and zero-shot using GPT-4.1 and DeepSeek-V3.1 with pass@1. Values in parentheses show performance change relative to the full DRIFT model.

pling (pass@10) approaches its retrieval-augmented performance, suggesting it often possesses the necessary formal knowledge but requires effective prompting to surface it.

Crucially, this ablation counters the data contamination hypothesis, which suggests that retrieval improvements on in-distribution benchmarks (e.g., ProofNet) stem merely from priming the model to recall memorized solutions. Under this hypothesis, structured sub-queries, which explicitly identify the target concepts, should be sufficient to trigger correct recall. However, the significant performance gap between Parametric Retrieval and full DRIFT (e.g., GPT-4.1 improves from 13.64% to 17.38% on ProofNet) confirms that the retrieved definitions and theorems provide essential syntactic and semantic information absent from the model’s parameters, rather than simply triggering recall.

A.2.7 STATISTICS OF DECOMPOSED SUB-QUERIES

To better understand the Decompose module and its behavior, we analyzed the number of sub-queries generated when decomposing informal statements from our three benchmarks: ProofNet, MiniF2F-test, and ConNF with different LLMs as decomposers.

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	Model	ProofNet	MiniF2F-test	ConNF	Model Avg.
Claude-Opus-4	5.84	5.59	6.52	5.98		
GPT-4.1	6.39	5.40	7.03	6.27		
DeepSeek-V3.1	4.83	4.65	5.71	5.06		
Benchmark Avg.	5.69	5.21	6.42	5.77		

Table 8: Average number of decomposed sub-queries generated by different LLMs as decomposers across three benchmarks. The final row and column show the average values for each benchmark and model, respectively.

The results, summarized in Table 8, show that different models produce a varying number of sub-queries. GPT-4.1 tends to generate the most detailed decompositions, with an average of 6.27 sub-queries, while DeepSeek-V3.1 produces the most concise ones, averaging 5.06. Furthermore, the complexity of the benchmark appears to influence the decomposition length. Statements from the ConNF benchmark, which covers frontier mathematical research, consistently required more sub-queries (6.42 on average) across all models, likely reflecting their greater conceptual density compared to the undergraduate-level problems in ProofNet (5.69) and the more self-contained problems in MiniF2F-test (5.21).

A.2.8 DIMINISHING RETURNS OF INCREASING ILLUSTRATIVE THEOREMS

We selected the illustration budget $m = 3$ to optimize the trade-off between premise coverage and contextual noise. To validate this choice, we conducted an empirical analysis of the premise coverage rate versus the theorem selection budget m , as illustrated in Figure 2.

As shown in the figure, $m = 3$ represents the critical point of diminishing returns (the “elbow” of the curve). While the coverage rate continues to increase marginally up to $m = 5$, the slope flattens significantly after $m = 3$, indicating that the vast majority of discoverable premises are

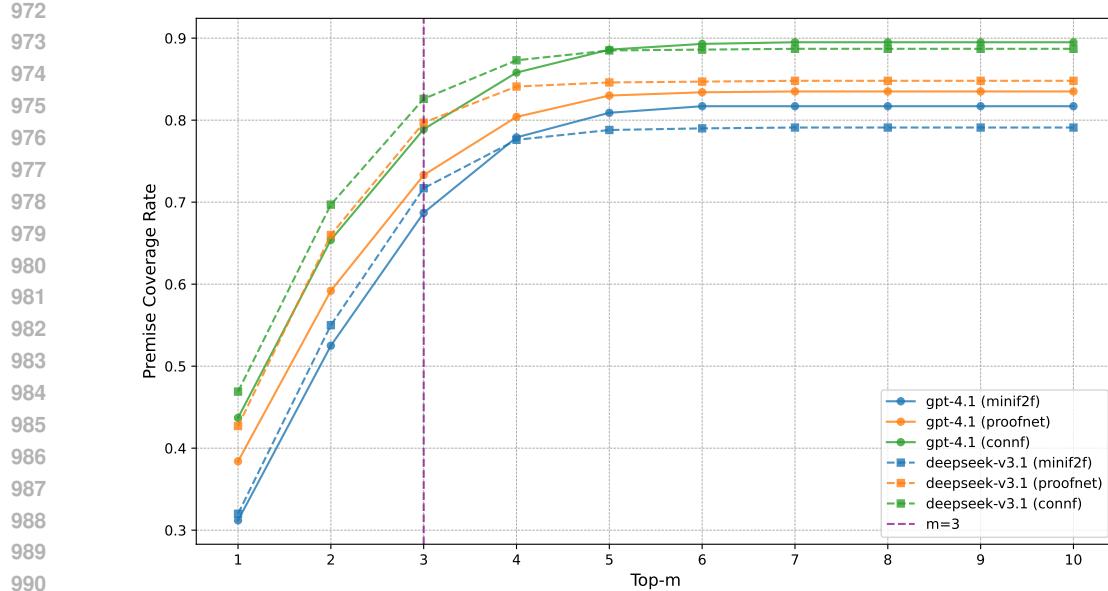


Figure 2: Premise Coverage Rate vs. Top- m . The dashed purple line marks the selected budget of $m = 3$, indicating the point of diminishing returns.

captured within the first three selected theorems. This design choice is supported by our ablation study (Table 3, Section 5.3), where we observed that excessive context degrades performance in low-dependency regimes (e.g., MiniF2F-test).

A.2.9 THEORETICAL GAINS OF ADAPTIVE RETRIEVAL ON SELF-CONTAINED BENCHMARKS

Model	Metric	Zero-Shot	DRIFT	Oracle Ensemble (Adaptive Upper Bound)
Claude-Opus-4	TC@1	95.09	93.75	95.98
	BEq+@1	31.25	32.59	35.27
GPT-4.1	TC@1	69.64	74.55	81.70
	BEq+@1	23.21	24.55	25.89

Table 9: “Oracle Ensemble” Performance on MiniF2F-test (Pass@1). The Oracle Ensemble represents the best-case scenario for adaptive retrieval, selecting the best result between Zero-Shot and DRIFT per problem. Best results are **bold**.

To quantify the theoretical gains of an adaptive retrieval strategy, specifically, a system capable of distinguishing when to skip retrieval for self-contained problems versus when to employ DRIFT for dependency-heavy problems, we calculated the “Oracle Ensemble” performance on the MiniF2F-test benchmark. This metric represents the performance upper bound achievable by a perfect classifier that dynamically selects the optimal strategy (Zero-Shot vs. DRIFT) for each problem instance.

As detailed in Table 9, the Oracle Ensemble consistently outperforms both the Zero-Shot baseline and the standalone DRIFT framework. For instance, using Claude-Opus-4, the ensemble raises the BEq+@1 score from 32.59% (DRIFT) to 35.27%. These results confirm that the two approaches are complementary: DRIFT provides necessary scaffolding for complex formalization tasks, while the Zero-Shot approach avoids introducing spurious dependencies in self-contained problems. While the training of such an adaptive classifier (e.g., Self-RAG (Asai et al., 2024)) is outside the scope of this work, these findings establish a compelling theoretical motivation for future research into dynamic retrieval gating.

1026	Dataset	Setting	Model	TC@1	BEq+@1	TC@10	BEq+@10
1027	ProofNet	Fine-tuned	Goedel-Formalizer-V2-8B + Oracle*	35.29	9.09	75.40	62.03
1028			Goedel-Formalizer-V2-8B	38.50	9.09	76.74	55.08
1029		Zero-shot	GPT-4.1	34.22	9.36	51.60	13.37
1030			DeepSeek-V3.1	<u>60.43</u>	<u>15.51</u>	<u>71.93</u>	<u>20.32</u>
1031	DRIFT	GPT-4.1		55.88	17.38	77.01	21.93
1032			DeepSeek-V3.1	72.73	18.18	79.41	20.59
1033		Fine-tuned	Goedel-Formalizer-V2-8B + Oracle*	96.00	28.89	100.00	93.33
1034			Goedel-Formalizer-V2-8B	93.33	22.22	100.00	93.33
1035	MiniF2F-test	Zero-shot	GPT-4.1	69.64	<u>23.21</u>	84.82	<u>28.12</u>
1036			DeepSeek-V3.1	<u>76.34</u>	22.77	<u>87.50</u>	27.23
1037		DRIFT	GPT-4.1	74.55	24.55	92.41	29.02
1038			DeepSeek-V3.1	74.11	22.77	88.84	24.55
1039	ConNF	Fine-tuned	Goedel-Formalizer-V2-8B + Oracle*	9.99	4.37	48.80	23.10
1040			Goedel-Formalizer-V2-8B	16.03	2.29	71.19	10.93
1041		Zero-shot	GPT-4.1	7.28	4.47	11.45	6.76
1042			DeepSeek-V3.1	<u>13.42</u>	<u>8.12</u>	<u>17.59</u>	<u>11.03</u>
1043		DRIFT	GPT-4.1	65.76	54.84	77.00	62.33
1044			DeepSeek-V3.1	60.67	46.72	71.18	54.21

Table 10: Comparison of DRIFT against the fine-tuned Goedel-Formalizer-V2-8B and other zero-shot baselines. **Bold**: Best overall (excluding Oracle*). Underline: Best zero-shot. Grey : Oracle* baseline with ground-truth dependencies.

A.2.10 COMPARISON WITH FINETUNED AUTOFORMALIZER

We excluded the finetuned Goedel-Formalizer-V2-8B model as a backbone for the DRIFT framework due to its inability to follow explicit decomposition instructions. Our experiments indicate that the model consistently ignores prompts to generate search queries, defaulting instead to direct formalization. This suggests that the finetuning process, while effective for syntax, causes catastrophic forgetting of the general instruction-following alignment required for the multi-stage DRIFT pipeline.

As shown in Table 10, on in-domain tasks, Goedel-Formalizer-V2-8B exhibits strong compilability, aided by an internal “thinking” mechanism that functions as an implicit Chain-of-Thought (example in Figure 3). While this internal reasoning mimics a decompose-and-conquer strategy and incorporates self-reflection, it lacks the precision of DRIFT’s explicit retrieval. DRIFT significantly outperforms Goedel-Formalizer-V2-8B in single-pass precision (72.73% vs 38.50% TC@1 on ProofNet). Furthermore, Goedel-Formalizer-V2-8B demonstrates limited adaptability; even when provided with Oracle* context, it fails to effectively leverage the external knowledge (e.g., ProofNet BEq+@1 remains 9.09%), instead relying heavily on extensive sampling (Pass@10) to surface correct solutions.

The limitations of relying on internal parametric memory are most pronounced on the out-of-distribution ConNF benchmark. Although Goedel-Formalizer-V2-8B scales well in compilation rate (71.19% TC@10), it suffers from severe hallucination, resulting in a low semantic equivalence score (10.93% BEq+@10). Even with Oracle* context, the model struggles to bridge this knowledge gap (23.10% BEq+@10). Conversely, DRIFT maintains a high correlation between compilation and correctness (62.33% BEq+@10), confirming that retrieval-augmented generation is strictly necessary to generalize to unseen mathematical domains.

1080
1081

Analysis of Goedel-Formalizer-V2-8B's "Think" Capability

1082

Input (Informal Statement):

1083

If r is rational ($r \neq 0$) and x is irrational, prove that rx is irrational.

1084

Model Internal Reasoning (<think>):

1085

Let me analyze this problem step by step. The problem is asking to prove that if r is rational (and nonzero) and x is irrational, then rx is irrational.

1086

In Lean 4, I need to:

1087

1. Define what it means for a number to be rational
2. Define what it means for a number to be irrational
3. State the theorem that if r is rational (nonzero) and x is irrational, then rx is irrational

1088

In Lean 4:

1089

- Rational numbers are represented by \mathbb{Q}
- The condition " r is rational and nonzero" can be written as $r : \mathbb{Q}$ and $r \neq 0$
- Irrational numbers are represented by the complement of rationals, or we can use `Irrational` x which means $x \notin \mathbb{Q}$ (or equivalently $\neg(x : \mathbb{Q})$) when x is a real number

1090

[Reasoning about Types and Coercion]

1091

Let me think about the types. Since we're dealing with irrational numbers, we're working in the real numbers \mathbb{R} . The rational number r can be coerced into \mathbb{R} , and x is a real number.

1092

[Self-Correction]

1093

Wait, let me double-check the definition of irrational in Lean 4. I believe `Irrational` is defined as $\neg(x : \mathbb{Q})$ when x is real... Actually, let me be more careful about the coercion. When we have $r : \mathbb{Q}$ and $x : \mathbb{R}$, the expression $r * x$ should work because there's a coercion from \mathbb{Q} to \mathbb{R} .

1094

Generated Formal Statement:

1095

```
theorem : forall (r : $\mathbb{Q}) (x : \mathbb{R}), r \neq 0 ->
  Irrational x -> Irrational (r * x) := by sorry
```

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

Figure 3: An Example of the Goedel-Formalizer-V2-8B's internal reasoning. The model first outlines the necessary definitions in natural language, then maps them to specific Lean 4 syntax, and finally reasons about type coercion (Real vs. Rational) before generating the compilable code.

1113

1114

1115

1116

1117

A.3 QUALITATIVE ANALYSIS

1118

1119

A.3.1 MINIF2F-TEST FAILURE ANALYSIS

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

We conducted an error analysis to understand cases where retrieval harms performance for MiniF2F-test. Among 672 examples across all benchmarked models, we identified 23 instances where the zero-shot baseline correctly predicted the formal statement while DRIFT failed. These examples have an average informal statement length of 22.20 words with 0.00% requiring explicit quantifiers, indicating low complexity. For 12 of these 23 failures, DRIFT generated formal statements that passed typecheck but failed on BEq+.

Our analysis of DRIFT failures on MiniF2F-test identifies several contributing factors. First, retrieval noise can lead to over-complication, where the added context confuses the model on straightforward problems; in these cases, the zero-shot baseline often produces cleaner, simpler statements. Second, we observed variable naming issues, where the retrieval process introduces inconsistent variable names into the formalization. Finally, formalization style mismatches occur when the model adopts patterns from retrieved theorems that differ from the reference, causing the BEq+ metric to fail in capturing the semantic equivalence. We display selected examples to illustrate the failure modes below.

1134 **Example 1: mathd_algebra_432 (Claude-Opus-4)**
 1135
 1136 The Problem: Expand $(x + 3)(2x - 6)$
 1137 Zero-shot (correct):
 1138 `theorem mathd_algebra_432 (x : ℝ) : (x + 3) * (2 * x - 6) = 2 * x^2 - 18`
 1139
 1140 DRIFT (failed typecheck).
 1141 `theorem mathd_algebra_432 : (X + 3) * (2 * X - 6) = 2 * X^2 - 18`
 1142
 1143 The statement generated by DRIFT failed because of the undefined variable “X”

1144 **Example 2: mathd_algebra_143 (Claude-Opus-4)**
 1145
 1146 The Problem: If $f(x) = x + 1$ and $g(x) = x^2 + 3$, what is $f(g(2))$?
 1147 Zero-shot (correct):
 1148 `theorem mathd_algebra_143 (f g : ℝ → ℝ) (hf : ∀ x, f x = x + 1) (hg : ∀`
 1149 `x, g x = x^2 + 3) : f (g 2) = 8`
 1150
 1151 DRIFT (failed BEq+; false negative of BEq+):
 1152 `theorem mathd_algebra_143 :`
 1153 `let f : ℝ → ℝ := fun x => x + 1`
 1154 `let g : ℝ → ℝ := fun x => x^2 + 3`
 1155 `f (g 2) = 8`
 1156
 1157 Both statements are semantically equivalent to the ground-truth, BEq+ fails to classify DRIFT’s
 1158 statement correctly.

1159 **Example 3: amc12_2000_20 (DeepSeek-V3.1)**
 1160
 1161 The problem: System of equations with xyz
 1162 Zero-shot (correct):
 1163 `theorem amc12_2000_20 (x y z : ℝ) (hx : x > 0) (hy : y > 0) (hz : z > 0)`
 1164 `(h1 : x + 1/y = 4) (h2 : y + 1/z = 1) (h3 : z + 1/x = 7/3) : x * y *`
 1165 `z = 1`
 1166
 1167 DRIFT (failed typecheck):
 1168 `theorem amc12_2000_20 : ∃! (x y z : ℝ), x > 0 ∧ y > 0 ∧ z > 0 ∧ x + 1/y =`
 1169 `4 ∧ y + 1/z = 1 ∧ z + 1/x = 7/3 ∧ x * y * z = 1`
 1170
 1171 A.3.2 DRIFT OUTPERFORMING ORACLE* RETRIEVAL
 1172
 1173 In Table 2, we found that DRIFT can surpass Oracle* on ConNF. We hypothesize formalization fails
 1174 even with ground-truth premises because they lack context of how to use the premises correctly.
 1175 Retrieved theorems in DRIFT provide scaffolding that demonstrates usage patterns.
 1176
 1177 Statistically, there are 205, 171, and 184 cases out of 961 where DRIFT succeeds but Oracle* fails
 1178 across models. On average, ~78% of Oracle* failures are typecheck errors (missing namespace/type
 1179 context) and ~22% of Oracle* failures are semantic equivalence issues (typechecks but not equivalent
 1180 to gold statement as measured by BEq+). We also found that the statements generated by DRIFT
 1181 are longer than Oracle* with namespace qualification, necessary type class instances, proper type
 1182 coercions and explicit type annotations. These features reduced the error rate of the formalization.
 1183
 1184 The selected cases below highlight that providing ground-truth premises is insufficient to guarantee
 1185 syntactically and semantically correct formalization, as the Oracle* model consistently fails when

1188 success depends on subtle usage patterns not captured by dependency names alone. DRIFT sur-
 1189 passes the oracle by utilizing retrieved theorems as scaffolding to bridge this gap. Specifically,
 1190 these theorems demonstrate correct syntax, such as namespace usage and type coercions (e.g.,
 1191 $\uparrow \beta$), and illustrate structural patterns regarding implicit, explicit, or typeclass argument bind-
 1192 ing. Crucially, they also reveal hidden requirements, such as non-obvious typeclass instances (e.g.,
 1193 [ConNF.FOAAssumptions]) that are contextually necessary, and guide correct semantic for-
 1194 mulations (e.g., distinguishing set vs. type cardinality) that are not explicitly stated in the informal
 1195 problem.

1196 **Example 1: ConNF.Pretangle.ofCoe_inj (Claude-Opus-4)**

1197 The Problem: ConNF.Pretangle.ofCoe_inj is a theorem in Lean 4 that states the injectiv-
 1198 ity of the ConNF.Pretangle.ofCoe function in the context of Constructive Ordinal Notation
 1199 (ConNF). This theorem asserts that two pretangles a and b are equal if and only if their images
 1200 under the ConNF.Pretangle.ofCoe function are equal.

1201 Gold Statement:

```
1203 @ [simp] theorem ConNF.Pretangle.ofCoe_inj [ConNF.Params] {α : ConNF.Λ}
1204   {a : ConNF.Pretangle ↑α} {b : ConNF.Pretangle ↑α}
1205   : ConNF.Pretangle.ofCoe a = ConNF.Pretangle.ofCoe b ↔ a = b := by
1206   sorry
```

1207 Oracle* Dependent Premises:

```
1209 ConNF.Params
1210 ConNF.Pretangle
```

1211 Oracle* (failed typecheck): The failure here is a type signature mismatch. The generated statement
 1212 defined the universal level α as a generic TypeIndex, whereas the library requires the specific
 1213 model index type (ConNF.Λ). Consequently, the model failed to apply the necessary type coercion
 1214 ($\uparrow \alpha$) required for Pretangle in this context. The premise list provided the names and declaration
 1215 of those premises, but not the specific type constraints to apply.

```
1217 theorem Pretangle.ofCoe_inj [Params] {α : TypeIndex} {a b : Pretangle α}
1218   : Pretangle.ofCoe a = Pretangle.ofCoe b ↔ a = b := by sorry
```

1219 DRIFT (correct):

```
1221 theorem ConNF.Pretangle.ofCoe_inj [ConNF.Params] {α : ConNF.Λ} {a b :
1222   ConNF.Pretangle α} : ConNF.Pretangle.ofCoe a = ConNF.Pretangle.ofCoe
1223   b ↔ a = b := by sorry
```

1224 The key retrieved theorems: The retrieved theorem ConNF.Pretangle.toCoe_inj provided a
 1225 structural template.

```
1226 theorem toCoe_inj {a b} : (toCoe a : Pretangle α) = toCoe b ↔ a = b :=
1227   toCoe.injective.eq_iff
```

1231 **Example 2: ConNF.StructAction.refine_precise (DeepSeek-V3.1)**

1232 The Problem: The theorem ConNF.StructAction.refine_precise states that if φ is a
 1233 β -structural action that satisfies the lawfulness condition for each β -extended index, then the re-
 1234 fined β -structural action ConNF.StructAction.refine φ $h\varphi$ is precise, meaning it assigns
 1235 a precise near-litter action to each β -extended index.

1236 Gold Statement:

```
1237 theorem ConNF.StructAction.refine_precise [ConNF.Params] {β :
1238   ConNF.TypeIndex} {φ : ConNF.StructAction β} {hφ :
1239   ConNF.StructAction.Lawful φ} : ConNF.StructAction.Precise
1240   (ConNF.StructAction.refine φ hφ) := by sorry
```

1241 Oracle* Dependent Premises:

```

1242 ConNF.Params
1243 ConNF.StructAction.refine
1244 ConNF.StructAction
1245 ConNF.StructAction.Precise
1246 ConNF.StructAction.Lawful

1247 Oracle* (failed BEq+): The model failed the bidirectional equivalence check due to argument struc-
1248 ture. It incorrectly typed the parameter  $\beta$  as ConNF.Λ instead of ConNF.TypeIndex and failed
1249 to structure the hypothesis  $h\varphi$  as an instance-implicit argument.
1250
1251 theorem ConNF.StructAction.refine_precise [ConNF.Params] { $\beta$  : ConNF.Λ}
1252   ( $\varphi$  : ConNF.StructAction  $\beta$ ) ( $h\varphi$  : ConNF.StructAction.Lawful  $\varphi$ ) :
1253     ConNF.StructAction.Precise (ConNF.StructAction.refine  $\varphi$   $h\varphi$ ) := by
1254     sorry

1255 DRIFT (correct):
1256
1257 theorem ConNF.StructAction.refine_precise [ConNF.Params] { $\beta$  :
1258   ConNF.TypeIndex} { $\varphi$  : ConNF.StructAction  $\beta$ } { $h\varphi$  :
1259   ConNF.StructAction.Lawful  $\varphi$ } : ConNF.StructAction.Precise
1260   (ConNF.StructAction.refine  $\varphi$ ) := by sorry

1261 The key retrieved theorems: The retrieved theorem ConNF.NearLitterAction.refine_precise
1262 showed the correct usage pattern for “precise” predicates, implicitly suggesting the argument struc-
1263 ture that allowed DRIFT to match the library’s conventions.
1264
1265 theorem refine_precise : Precise ( $\varphi$ .refine  $h\varphi$ ) := fillAtomOrbits_precise
1266   _ (fillAtomRange_symmDiff_subset_ran  $h\varphi$ )
1267
1268 Example 3: ConNF.CodingFunction.mem_of_smul_mem (GPT-4.1)
1269 The Problem: In the context of Constructive Ordinal Notation (ConNF), the theorem
1270 ConNF.CodingFunction.mem_of_smul_mem asserts that for any CodingFunction  $\chi$  at
1271 level  $\beta$ , if  $\rho \cdot S$  (where  $\rho$  is an Allowable and  $S$  is a Support) is in the domain of  $\chi$ , then  $S$ 
1272 itself must also be in the domain of  $\chi$ .
1273 Gold Statement:
1274
1275 theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
1276   [ConNF.Level] [ConNF.FOAAssumptions] { $\beta$  : ConNF.Λ} [ConNF.LeLevel  $\uparrow\beta$ 
1277   ] { $\chi$  : ConNF.CodingFunction  $\beta$ } { $S$  : ConNF.Support  $\uparrow\beta$ } { $\rho$  :
1278   ConNF.Allowable  $\uparrow\beta$ } ( $h$  :  $\rho \cdot S \in \chi$ ) :  $S \in \chi$  := by sorry
1279
1280 Oracle* Dependent Premises:
1281
1282 ConNF.Params
1283 ConNF.LeLevel
1284 ConNF.CodingFunction
1285 ConNF.Support

1286 Oracle* (failed typecheck): The model failed to compile the statement because it missed critical,
1287 non-obvious constraints: the global typeclass instance [ConNF.FOAAssumptions] and the spe-
1288 cific type coercion from  $\beta$  to  $\uparrow\beta$  for the “LeLevel” instance.
1289
1290 theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
1291   [ConNF.Level] { $\beta$  : ConNF.Λ} [ConNF.LeLevel  $\beta$ ] ( $\chi$  :
1292   ConNF.CodingFunction  $\beta$ ) ( $\rho$  : ConNF.Allowable  $\beta$ ) ( $S$  : ConNF.Support  $\beta$ 
1293   ) : ( $\chi$ .decode ( $\rho \cdot S$ )).isSome  $\rightarrow$  ( $\chi$ .decode  $S$ ).isSome := by sorry
1294
1295 DRIFT (correct):
1296
1297 theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
1298   [ConNF.Level] [ConNF.FOAAssumptions] { $\beta$  : ConNF.Λ} [ConNF.LeLevel  $\uparrow\beta$ 
1299   ] ( $\chi$  : ConNF.CodingFunction  $\beta$ ) ( $\rho$  : ConNF.Allowable  $\uparrow\beta$ ) ( $S$  :
1300   ConNF.Support  $\beta$ ) :  $S \in \chi$ .domain  $\rightarrow$   $\rho \cdot S \in \chi$ .domain := by sorry

```

1296 The key retrieved theorems: The retrieved theorem `ConNF.CodingFunction.supports_decode`
 1297 demonstrated the interaction between `CodingFunction` β , `Support` β , and `Allowable` β .
 1298

```
1299 theorem supports_decode { $\chi$  : CodingFunction  $\beta$ } (S : Support  $\beta$ ) (hS : S  $\in$   

1300    $\chi$ ) : Supports (Allowable  $\beta$ ) (S : Set (Address  $\beta$ )) (( $\chi$ .decode S).get  

1301   hS) :=  $\chi$ .supports_decode' S hS
```

1302 While not identical, it provided a contextual example of how these types work together, guiding the
 1303 model to infer the correct, more complex signature.

1305 Example 4: `ConNF.mk_nearLitter''` (Claude-Opus-4)

1306 The problem: The size of each near-litter in the context of Constructive Ordinal Notation (ConNF)
 1307 is equal to the cardinality of the type κ .

1308 Gold Statement:

```
1309 @[simp]theorem ConNF.mk_nearLitter'' [ConNF.Params] (N :  

1310   ConNF.NearLitter) : Cardinal.mk ↑N = Cardinal.mk ConNF.κ := by sorry
```

1311 Oracle* Dependent Premises:

```
1312 ConNF.Params  

1313 Cardinal.mk
```

1314 Oracle* (failed BEq+): The Oracle* based statement committed a semantic formulation error. It
 1315 hallucinated a theorem equating the cardinality of the *Type* `ConNF.NearLitter` to κ . The prob-
 1316 lem asks about the size of individual near-litter sets (coerced from “N”), not the cardinality of the
 1317 type containing all near-litters.

```
1318 theorem ConNF.mk_nearLitter'' [ConNF.Params] : Cardinal.mk  

1319   ConNF.NearLitter = Cardinal.mk ConNF.κ := by sorry
```

1320 DRIFT (correct):

```
1321 theorem ConNF.mk_nearLitter'' [ConNF.Params] (L : ConNF.Litter) (s : Set  

1322   ConNF.Atom) (h : ConNF.IsNearLitter L s) : Cardinal.mk s =  

1323   Cardinal.mk ConNF.κ := by sorry
```

1324 The key retrieved theorems: DRIFT retrieved `ConNF.mk_litterSet`, which shows that cardinality
 1325 theorems in this library typically apply to a specific set s (e.g., “`litterSet L`”) rather than types.
 1326 This scaffolding helped the model correctly formulate the theorem using an explicit set s and the
 1327 witness hypothesis `ConNF.IsNearLitter L s`.

```
1328 theorem mk_litterSet (L : Litter) : #(litterSet L) = # $\kappa$  := Cardinal.eq.2  

1329   {litterSetEquiv L}
```

1330

1331 A.3.3 FAILURE ANALYSIS FOR ABLATION STUDY (CONNF)

1332 From the ablation study in Table 3 in Section 5.3, we found that on ConNF and MiniF2F-test,
 1333 removing the `Decompose` module after `Illustrate`, does not degrade the performance further. For
 1334 MiniF2F-test, our analysis in Appendix A.3.1 indicates that the benchmark relies minimally on de-
 1335 pendent premises. In this regime, additional context frequently introduces distraction rather than
 1336 aid, making performance fluctuations more attributable to the stochastic nature of generation. We
 1337 provide a deep analysis based on ConNF for this phenomena. In the following examples, we pro-
 1338 vided cases where the “Base Retriever” (DRIFT w/o `Illustrate` and w/o `Decompose`) and “DRIFT”
 1339 succeeded, while “DRIFT Premises Only” (w/o `Illustrate`) failed. Despite DRIFT’s higher global
 1340 recall (40.6% vs 32.0% for GPT-4), this breakdown reveals qualitative differences in retrieval: Base
 1341 Retriever often finds “lexically close” helper lemmas (e.g., `invFun_as_coe`), while DRIFT re-
 1342 trievals a more diverse set of premises across namespaces. Consequently, DRIFT Premises Only
 1343 failures stem from (1) local recall gaps (missing specific helpers found by Base) or (2) application
 1344 gaps (retrieving broader definitions but failing to apply them without usage examples). Full DRIFT
 1345 bridges these gaps via theorem scaffolding.

1350 These comparisons reveal that even when DRIFT Premises Only retrieves the necessary definitions
 1351 (as in Examples 1 and 3), it often fails to apply them correctly, suffering from application gaps. Base
 1352 Retriever sometimes avoids this by finding exact match lemmas (Example 2) or perhaps through
 1353 favorable ranking (Example 1). However, Full DRIFT proves most robust because its retrieved
 1354 theorems provide the necessary application knowledge (e.g., templates, style guides, and usage ex-
 1355 amples) that allow the model to synthesize the correct solution even when an exact-match lemma is
 1356 missing or when the model is prone to syntax hallucinations.

1357 Another key observation is the diversity of retrieved premises. The Base Retriever typically finds
 1358 premises within the exact or very close namespaces (e.g., `PartialPerm.invFun_as_coe` or
 1359 `Cardinal.*`), effectively locating "lexically close" helper lemmas. In contrast, DRIFT retrieves
 1360 a more diverse set of premises, often including broader concepts (e.g., `Set`, `PartialOrder`,
 1361 `PFun.image`) or related but distinct namespaces (e.g., `Equiv` vs `PartialPerm`). While this
 1362 diversity can bridge conceptual gaps (as seen in Example 2 with `PartialEquiv`), it can also
 1363 introduce distractions if the model lacks the scaffolding to navigate these broader definitions.

1364 **Example 1: `Equiv.Perm.toPartialPerm.inv` (Claude-Opus-4)**

1365 The Problem: Prove that the inverse of a permutation, when converted to a partial permutation, is
 1366 equal to the inverse of the partial permutation obtained from the original.

1367 Gold Statement:

```
1368 @[simp]theorem thm_P {α : Type u_1} (π : Equiv.Perm α)
  1369   : Equiv.Perm.toPartialPerm π-1 = PartialPerm.symm
  1370   (Equiv.Perm.toPartialPerm π) := by sorry
  1371
  1372
```

1373 Base Retriever (Success): The Base Retriever successfully found
 1374 `PartialPerm.toPartialEquiv` (ranked 2nd), which helped the model infer the cor-
 1375 rect structure.

```
1376 theorem Equiv.Perm.toPartialPerm_inv {α : Type*} (f : Equiv.Perm α) :
  1377   f-1.toPartialPerm = f.toPartialPerm.symm := by sorry
  1378
```

1379 Key retrieved premises:

```
1380 Equiv.Perm.toPartialPerm
  1381 PartialPerm.toPartialEquiv
  1382 PartialPerm.refl
  1383 PartialPerm.symm
  1384 PartialPerm
  1385
```

1386 DRIFT Premises Only (failed typecheck): The model retrieved
 1387 `PartialPerm.toPartialEquiv` (ranked 3rd) but failed to understand how to use it to
 1388 bridge `Equiv.Perm` and `PartialPerm.symm`. Instead, it hallucinated an invalid usage
 1389 `π.symm.toPartialPerm`.

```
1390 theorem Equiv.Perm.toPartialPerm_inv {α : Type*} (π : Equiv.Perm α) : π
  1391   .symm.toPartialPerm = π.toPartialPerm.symm := by sorry
  1392
```

1393 Key retrieved premises:

```
1394 Equiv.Perm.toPartialPerm
  1395 PartialPerm.symm
  1396 PartialPerm.toPartialEquiv
  1397 PartialPerm
  1398 Equiv.Perm
  1399
```

1400 Full DRIFT (Success): Full DRIFT succeeded because the retrieved theorems explicitly demon-
 1401 strated the pattern of commuting operations (moving `symm` across `toPartialEquiv`), acting as
 1402 a structural scaffold.

```
1403 theorem Equiv.Perm.toPartialPerm_inv {α : Type u_1} (π : Equiv.Perm α) :
  1404   (π-1).toPartialPerm = (π.toPartialPerm).symm := by sorry
  1405
```

1404 Key retrieved theorems:
 1405
 1406 `theorem toPartialEquiv_symm : π.symm.toPartialEquiv = π`
 1407 `.toPartialEquiv.symm := rfl`
 1408

1409
 1410 **Example 2: `PartialPerm.coe_toPartialEquiv_symm` (gpt-4.1)**
 1411 The Problem: The theorem states that for a partial permutation π , the inverse of the partial equivalence obtained from π is equal to the function representing the inverse of π .
 1412
 1413 Gold Statement:
 1414
 1415 `@[simp]theorem thm_P {α : Type u_1} (π : PartialPerm α)`
 1416 `:↑(PartialEquiv.symm (PartialPerm.toPartialEquiv π)) =`
 1417 `(PartialPerm.symm π).toFun := by sorry`
 1418
 1419 Base Retriever (Success): Base Retriever found helper lemmas like `invFun_as_coe` and
 1420 `toFun_as_coe`, which directly link the function coercion to the inverse, guiding the model to a
 1421 correct formulation using `invFun`.
 1422
 1423 `theorem PartialPerm.coe_toPartialEquiv_symm {α : Type*} (π : PartialPerm`
`α) : ((π.toPartialEquiv).symm : Part (α → α)) = π.invFun := by sorry`
 1424
 1425 Key retrieved premises:
 1426 `Equiv.Perm.toPartialPerm`
 1427 `PartialPerm.toPartialEquiv`
 1428 `PartialPerm.invFun_as_coe`
 1429 `PartialPerm.symm`
 1430 `PartialPerm.toFun_as_coe`
 1431 DRIFT Premises Only (failed typecheck): The model retrieved the necessary definitions but
 1432 failed to apply them correctly. It attempted to apply `PartialEquiv.symm` directly to π (a
 1433 `PartialPerm`) without converting it first, resulting in a type error.
 1434
 1435 `theorem PartialPerm.coe_toPartialEquiv_symm {α : Type*} (π : PartialPerm`
`α) : (PartialPerm.symm π).toFun = (PartialEquiv.symm π).toFun := by`
`sorry`
 1436
 1437 Key retrieved premises:
 1438 `Equiv.Perm.toPartialPerm`
 1439 `Equiv.toPartialEquiv`
 1440 `PartialEquiv.symm`
 1441 `PartialPerm.symm`
 1442 `PartialPerm`
 1443
 1444 Full DRIFT (Success): Full DRIFT retrieved the theorem `toPartialEquiv_symm`, which pro-
 1445 vides an exact template for the equality between the symmetric partial equivalence and the partial
 1446 equivalence of the symmetric permutation. This scaffold allowed the model to construct a correct
 1447 statement.
 1448
 1449 `theorem PartialPerm.coe_toPartialEquiv_symm {α : Type*} (π : PartialPerm`
`α) : (PartialPerm.toPartialEquiv π).symm =`
`PartialPerm.toPartialEquiv (PartialPerm.symm π) := by sorry`
 1450
 1451
 1452 Key retrieved theorems:
 1453
 1454 `theorem toPartialEquiv_symm : π.symm.toPartialEquiv = π`
`.toPartialEquiv.symm := rfl`
 1455
 1456

1457
 1458 **Example 3: `Cardinal.nonempty_compl_of_mk_lt_mk` (Claude-Opus-4)**

1458 The Problem: If the cardinality of set s is less than the cardinality of type α , then the complement
 1459 s^c is nonempty.
 1460

1461 Gold Statement:

1462 `theorem thm_P {α : Type u} {s : Set α} (h : Cardinal.mk ↑s < Cardinal.mk
 1463 α) : Set.Nonempty sc := by sorry`

1464 Base Retriever (Success): Base Retriever correctly identified and retrieved the function
 1465 `Cardinal.mk`, enabling the model to apply the premise correctly.
 1466

1467 `theorem Cardinal.nonempty_compl_of_mk_lt_mk {α : Type*} {s : Set α} (h :
 1468 Cardinal.mk s < Cardinal.mk α) : (sc).Nonempty := by sorry`

1469 Key retrieved premises:
 1470

1471 `Set.Nonempty`
 1472 `Cardinal.mk`
 1473 `Cardinal`
 1474 `Cardinal.IsRegular`
 1475 `Cardinal.aleph0`

1476 DRIFT Premises Only (failed typecheck): Despite retrieving `Cardinal.mk` (ranked 2nd, same as
 1477 Base), the model failed to prioritize it over the notation $\#s$. The use of $\#s < \#\alpha$ without opening
 1478 the necessary namespaces caused a typecheck failure.

1479 `theorem Cardinal.nonempty_compl_of_mk_lt_mk {α : Type*} {s : Set α} (h :
 1480 #s < #α) : (sc).Nonempty := by sorry`

1481 Key retrieved premises:

1482 `Set.Nonempty`
 1483 `Cardinal.mk`
 1484 `Set`

1485 Full DRIFT (Success): Full DRIFT succeeded because it retrieved the theorem
 1486 `ConNF.μ_le_mk_cloud`, which explicitly uses `Cardinal.mk`. This scaffolding guided
 1487 the model to prefer the explicit function over the notation.

1488 `theorem Cardinal.nonempty_compl_of_mk_lt_mk {α : Type*} {s : Set α} (h :
 1489 Cardinal.mk s < Cardinal.mk α) : Set.Nonempty sc := by sorry`

1490 Key retrieved theorems:

1491 `theorem μ_le_mk_cloud : s.Nonempty → #μ ≤ #(cloud hγβ s) := by
 1492 rintro {t, ht}
 1493 refine' (Cardinal.mk_le_mk_of_subset <| subset_cloud ht).trans_eq' _
 1494 rw [Cardinal.mk_image_eq, mk_localCardinal]
 1495 exact typedNearLitter.inj'`

1496 A.4 PROMPT TEMPLATES

1497 A.4.1 DECOMPOSITION PROMPT

1498 This appendix contains the complete prompt used to decompose informal mathematical statements
 1499 into retrieval queries (the **Decompose** module). It is composed of two parts: a system prompt that
 1500 defines the model’s expert persona and overall task, and a user prompt template that structures the
 1501 specific input and desired output format.

1502

1503 System Prompt

1504

1505

1506

1507

1508

1509

1510

1511

1512 You are an expert in formal mathematics. Your task is to decompose
 1513 an informal mathematical statement into a set of natural

1512
 1513 language queries. These queries are for retrieving the precise
 1514 definitions, theorems, and structures from a formal mathematics
 1515 library (like mathlib) that are necessary to ****formalize**** the
 1516 statement.
 1517
 1518 Your response must be in LaTeX. Decompose the statement into a
 1519 list of queries, with each query enclosed in a '\boxed{}' command.
 1520 The goal is to identify the building blocks for
 1521 writing the statement formally, ****not**** to find a proof.
 1522
 1523 You need to:
 1524 1. Analyze the informal statement and identify its key
 1525 mathematical components that need formal definitions
 1526 2. Break down the statement into natural language queries that
 1527 describe the mathematical concepts and structures needed for
 1528 formalization
 1529 3. from the best of your knowledge, come up with the Lean
 1530 representation of it.
 1531 4. Focus on what needs to be defined and the implicit hypothesis.

User Prompt Template (Instruction and Context)

1531
 1532
 1533 Given the ****Informal statement****, decompose the informal statement
 1534 into retrieval queries for ****formalizing**** (not proving) the
 1535 statement. Each query must:
 1536 - Describe mathematical definitions, structures, or concepts
 1537 needed to formally express the statement in Lean 4
 1538 - Explain what mathematical objects or type signatures are involved
 1539 - Read as a complete sentence that teaches about the formal
 1540 mathematical structure
 1541 - Focus on how to represent concepts formally rather than how to
 1542 prove them
 1543 - Sound like an excerpt from a mathematics reference that explains
 1544 formal definitions
 1545
****Important**:**
 1546 - The goal is FORMALIZATION (translating to Lean 4), NOT finding
 1547 proof strategies
 1548 - Write informative descriptions that explain formal concepts and
 1549 definitions
 1550 - Each query should describe mathematical structures or type
 1551 information
 1552 - Avoid interrogative words (what, how, when, why, etc.)
 1553 - The queries should collectively cover all definitions and
 1554 structures needed to write the formal statement
 1555
 1556 Please return each query using the '\boxed{}' LaTeX command.
 1557
 1558 {few_shot_examples}
 1559
 1560 ----
 1561 ****Informal statement**:**
 1562 {informal_statement}
 1563
****Decomposed queries for formalization**:**

A.4.2 FORMALIZATION PROMPT

1564
 1565 This appendix contains the complete prompt used to formalize informal mathematical statements
 1566 into formal statements (the **Formalize Theorems** module). It is composed of two parts: a system

1566 prompt that defines the model's expert persona and overall task, and a user prompt template that
 1567 structures the specific input and desired output format.
 1568

1569 **System Prompt**

1570
 1571 You are an advanced assistant specializing in formal mathematics
 1572 and Lean 4 theorem proving. You have extensive expertise in
 1573 translating mathematical concepts from natural language into
 1574 precise Lean 4 code. Please make sure the generated Lean 4 code
 1575 compiles with {libraries} and Lean version {lean_version}.
 1576

1577 **User Prompt Template (Instruction and Context)**

1578 Given the potential dependent premises listed under ****Potential**
 1579 dependent premises** (some may be irrelevant) and the
 1580 demonstration examples under ****Demonstration examples****,
 1581 translate the natural language statement provided under ******
 1582 **Informal statement**** into a formal Lean 4 theorem. Use the
 1583 theorem name specified under ****Name**** as the Lean identifier.
 1584

1585
 1586 Your response must:

- 1587 - Write only valid Lean 4 code with clear and idiomatic use of
 1588 Lean syntax and conventions
- 1589 - Include only the formalization - do not include any headers,
 1590 explanations, or proofs
- 1591 - Use the provided name as the theorem identifier, ensuring it
 1592 adheres to Lean's naming conventions (no hyphens, prefer
 1593 snake_case or camelCase)
- 1594 - Faithfully capture the meaning of the informal statement, paying
 1595 close attention to:
 - 1596 · Predicate usage and logical structure
 - 1597 · Type class inference
 - 1598 · Quantifier scope and binding
 - 1599 · Mathematical notation and operations
- 1600 - Enclose all code within triple backticks with the 'lean'
 1601 language identifier

1602 Expected Output Format:

1603 ```lean
 1604 theorem [NAME] : [Lean formalization of the statement] := by sorry
 1605 ````

1606 Guidelines:

- 1607 - Select only the relevant premises from those provided
- 1608 - Ensure proper type annotations where necessary
- 1609 - Use standard Lean 4 mathematical library conventions, Lean
 1610 version {lean_version}
- 1611 - Maintain logical equivalence with the informal statement
- 1612 - Keep the formalization as clean and readable as possible

1613 ****Potential dependent premises****
 1614 {dependent_premises_list}

1615 ****Demonstration examples****
 1616 {theorems_list}

1617
 1618 ****Name****
 1619 {problem_full_name}

```
1620
1621
1622    **Informal statement**
1623    {problem_informal_statement}
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
```