Under review as a conference paper at ICLR 2026

DRIFT: DECOMPOSE, RETRIEVE, ILLUSTRATE, THEN
FORMALIZE THEOREMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Automating the formalization of mathematical statements for theorem proving re-
mains a major challenge for Large Language Models (LLMs). LLMs struggle to
identify and utilize the prerequisite mathematical knowledge and its correspond-
ing formal representation in languages like Lean. Current retrieval-augmented
autoformalization methods query external libraries using the informal statement
directly, but overlook a fundamental limitation: informal mathematical statements
are often complex and offer limited context on the underlying math concepts.
To address this, we introduce DRIFT, a novel framework that enables LLMs to
decompose informal mathematical statements into smaller, more tractable “sub-
components”. This facilitates targeted retrieval of premises from mathematical
libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to
help models use premises more effectively in formalization tasks. We evaluate
DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find
that it consistently improves premise retrieval, nearly doubling the F1 score com-
pared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong per-
formance on the out-of-distribution ConNF benchmark, with BEq+@ 10 improve-
ments of 42.25% and 37.14% using GPT-4.1 and DeepSeek-V3.1, respectively.
Our analysis shows that retrieval effectiveness in mathematical autoformalization
depends heavily on model-specific knowledge boundaries, highlighting the need
for adaptive retrieval strategies aligned with each model’s capabilities.

1 INTRODUCTION

Autoformalization is formulated as a translation task that aims to translate natural language math-
ematical descriptions into machine-verifiable statements written in formal languages, such as
Coq (Barras et al., [1997), Isabelle (Paulson, |1994), and Lean (De Moura et al., [2015). Previous
work has shown that accurate autoformalization is a critical step towards developing automated the-
orem proving systems (Lin et al.l |2025b; (Chen et al., 2025; Xin et al., 2024} [Lin et al., 2025c),
and ultimately assisting mathematicians in new discoveries (Gouézel & Shchur, 2019; |Leang et al.,
2025)). Despite recent progress of Large Language Models (LLMs) in informal mathematical rea-
soning (Ahn et al., [2024; |Setlur et al., 2024; |[Luong & Lockhart, [2025)), formal reasoning presents
distinct challenges. The strict syntax and necessity for precise alignment between informal concepts
and formal definitions mean that even frontier LLMs often fail at autoformalization tasks off-the-
shelf (Wu et al., [2025).

Although synthetic data generation could enable the finetuning of LLMs for autoformalization (Jiang
et al.l 2023} Lin et al., [2025a; Wang et al., [2024; |Ying et al. 2024), the knowledge cutoff issue
raised by updating formal libraries like Mathlib (Mathlib Community} 2020) makes finetuned mod-
els prone to hallucinating non-existent formal objects that have been renamed, reorganized, or depre-
cated (Baanen et al.,[2025). Early retrieval-augmented methods addressed this by retrieving similar
theorems from external libraries to provide useful syntactic structure and compositional examples.
However, their practical utility as exemplars has been limited by the retrieval methods used to find
them. These methods often lack task-specific training data and rely on general-purpose techniques
like keyword searching (Agrawal et al., 2022), k-NN (Azerbayev et al.,|2023)), or pretrained dense
retrievers (Zhang et al.,[2024). An advance is the introduction of the “dependency retrieval” task
by Liu et al.| (2025) with the RAutoformalizer (RAuto) framework. Similar to the premise selection
for proof generation (Yang et al., 2023), this paradigm enables the training of specialized retrievers

Under review as a conference paper at ICLR 2026

Informal Statement (IF)

Consider of the form $4 t+38$. Show that a is a $(p-1)/28.
3 i | Theorem 1 .. (h : . .
. — i i IsPrimitiveRoot[| u {Fomall.zatlon
on) o Instruction}
| o i1 (Int.castRingHom i

3!_3_' H (Zmod (] p)) ..
| ‘ ¥ {Premise Set}

: - i i 3 Theorem 2 .. {a : i 3 []
!] 11 ZMod{ p} .. (ha : a "
j;;/\f’ "1 #0) :orderof@a | !
i top-1 i {Theorem Set}

= i i Theorem 3 .. {p : i i
N+ } :PNat.Prime 1 {Informal Statement}

Qg : The multiplicative order of an element a ..., ! ! i 3 p>1<p..
using orderOf a in (ZMod p)... i H orderOf ' "
. 1 1 o . Formalize
= 1 ' Retrieve || Illustrate ==y
@ @ Decompose ; : @ H @ H Theorems

Formal Statement (FS)
theorem Ireland-Rosen.exercise_4 5 {p t : N} (hp@ : p.Prime) (hpl : p = 4%t + 3) (a : p) : a
pe ((-a) » ((p-1)/2) =1 AV (k : N), k < (p-1)/2 » (-a)*k # 1) := sorry

Figure 1: An overview of the DRIFT framework. Given an informal statement, DRIFT operates in
four stages: @ Decompose: An LLM breaks down the informal statement into atomic, concept-
focused sub-queries (Q) (§3.1). @ Retrieve: For each sub-query, a dense retriever identifies foun-
dational dependent premises from a formal library (§3.2). ® Illustrate: A greedy algorithm selects
a small set of theorems that demonstrate the practical usage of these retrieved premises (§3.3). @
Formalize Theorems: Finally, conditioned on all retrieved context, an LLM synthesizes the final
formal statement (§3.4).

to identify the exact definitions that formal statements require. However, this new approach created
a key trade-off: focusing on individual components meant losing the valuable context provided by
full theorem statements. Based on this, we identify two main limitations in the current approach to
retrieval-augmented autoformalization. First, informal statements are often dense and multifaceted.
This underlying complexity of queries makes them suboptimal as direct queries for retrieving the
precise, atomic definitions required for formalization. Second, even when the correct formal defi-
nitions are retrieved, models often lack the knowledge of contextual usage required to correctly
structure and integrate them into the formal statement.

In information retrieval, query enhancement techniques like query expansion (Chan et al., [2024),
pseudo-document generation (Gao et al., 2023), and neural query rewriting (Wang et al., 2025)
have demonstrated the effectiveness of reformulating queries to provide more semantic informa-
tion. Query decomposition has proven particularly useful for multi-hop question answering as it
matches the granularity of the dense query statements with the indexed documents (Ammann et al.,
2025)). In addition to retrieving correct premises, providing rich context like exemplar proofs can
guide proof generation effectively (He et al., [2024; |Thakur et al., 2024; [Thompson et al., [2025)).
Despite advances in adjacent domains, these techniques have not yet been systematically applied
to dependency retrieval for autoformalization, which still relies on monolithic queries and provides
context-free definitions.

We propose DRIFT, a novel framework depicted in Figure [I] that enhances retrieval-augmented
autoformalization by adapting query decomposition and context augmentation to address the unique
challenges of theorem autoformalization. To tackle the complexity of informal statements, we first
adapt query decomposition to break down statements into a series of simpler, atomic sub-queries.
Each sub-query targets a single mathematical concept, transforming a multifaceted retrieval problem
into focused, precise searches. To address the challenge of correctly applying the dependencies, we
contextualize the retrieved definitions with illustrative theorems, giving the model concrete examples
of syntax and application patterns.

Contributions. 1) We introduce DRIF (Decompose, Retrieve, Illustrate, then Formalize
Theorems), a decomposition-driven retrieval-augmented formalization framework that au-

"The code and models are available at ANONYMI ZED|

ANONYMIZED

Under review as a conference paper at ICLR 2026

tonomously breaks down informal mathematical statements into atomic sub-queries and contex-
tualizes retrieved premises with demonstrative theorems, bridging the critical gap between formal
definition and syntactic usage while transforming monolithic retrieval into a process aligned with
the dependency structure of formal mathematics. 2) Our experiments establish new state-of-the-art
in dependency retrieval and autoformalization on ProofNet and ConNF across models, with excep-
tional performance on the out-of-distribution ConNF benchmark. 3) Through systematic analysis,
we establish that the utility of retrieved dependencies is conditioned on the gap between a model’s
parametric knowledge and the statement’s complexity. These insights reveal critical design consid-
erations for retrieval-augmented systems and point toward the necessity of adaptive strategies that
can assess when external knowledge genuinely complements model capabilities.

2 RELATED WORK

Retrieval-augmented Autoformalization. Early retrieval-augmented autoformalization methods
retrieved similar theorems as few-shot examples. For instance, ProofNet (Azerbayev et al., 2023)
employs k-NN search, while MS-RAG (Zhang et al., [2024) uses informal-to-informal retrieval with
iterative refinement. LTRAG (Hu et al., [2025)) retrieves thought-guided theorem pairs for neuro-
symbolic formalization. In a key development, Liu et al| (2025) established the “dependency
retrieval” paradigm, a premise selection task specialized for autoformalization: given an infor-
mal statement, retrieve the precise set of formal objects and definitions P, qcie+ that are required
for its autoformalization from a library D (e.g., Mathlib). It is essential to distinguish this task
from theorem retrieval tools, such as LeanSearch (Gao et al. [2024), LeanExplore (Asher, [2025),
Moogle (Morph Labs| 2025) or standard baselines like BM25. Although some systems may also
retrieve definitions or structures in practice, inputting the target informal statement usually returns
similar theorems instead of the dependent premises. While theorem retrieval targets semantically
similar theorems to provide examples for autoformalization or proof search, dependency retrieval
targets the precise, low-level formal definitions (e.g., IsPrimitiveRoot, ZMod) required for
the formal statement. Implementing this paradigm, RAutoformalizer (RAuto) (Liu et al., [2025)
demonstrated improvements over non-retrieval methods, yet evaluation revealed a significant gap
compared to oracle systems with ground-truth dependencies. CRAMF (Lu et al 2025)) attempts
conceptual mapping between abstraction levels. Critically, however, all existing approaches treat
complex statements as monolithic queries, failing to identify distinct mathematical concepts within
them.

Query Decomposition and Enhancement. Query enhancement has proven effective across re-
trieval tasks. Query2Doc (Wang et al., 2023)) and HyDE (Gao et al.l 2023) generate pseudo-
documents to expand semantic coverage. LeanSearch (Gao et al., |2024) augments the informal
statement by prompting an LLM to translate the query into a detailed statement containing both
informal and formal expressions. However, they only evaluated with similar theorem retrieval but
not on the downstream formalization. More relevant to our work, query decomposition has shown
success in multi-hop question answering (Ammann et al.| [2025), where breaking complex ques-
tions into sub-queries improves retrieval of distinct information aspects. [Zhao et al.| (2023) and
Jiang et al.|(2022) applied similar decompositions to theorem proving, showing the effectiveness of
divide-and-conquer in formal math. Despite these successes, no prior work has applied decomposi-
tion to informal mathematical statements for autoformalization. Specifically, generic query augmen-
tation methods fail to capture the strict dependency structure within theorems. To bridge this gap,
DRIFT employs atomic decomposition to map mathematical concepts to their formal definitions.
Furthermore, unlike similarity-based theorem selection, DRIFT’s theorem selection is conditional
on the retrieved dependencies, choosing theorems whose syntactic usage explicitly demonstrates the
retrieved formal definitions.

3 METHODOLOGY

We introduce DRIFT (Decompose, Retrieve, Illustrate, then Formalize Theorems), a novel four-
stage method designed to address the two main limitations of previous retrieval-augmented formal-
ization methods: 1) the complexity of informal statements and 2) the lack of demonstrative examples
for retrieved formal objects. As a first step, an LLM decomposes the informal statement into a set of

Under review as a conference paper at ICLR 2026

smaller, granular sub-queries (§3.1). These queries then guide the retrieval of dependent premises
from a formal library such as Mathlib (§3.2). In a subsequent, bottom-up illustration step, we find
theorems that utilize the retrieved premises, providing in-context demonstrations of their application
(§3.3). Finally, the LLM formalizes the original statement, conditioned on all retrieved premises and
theorems (§3.4). This process is visualized in Figure [T} Throughout, we prioritize generalizability
over model-specific tuning to ensure a robust, adaptable framework.

3.1 DECOMPOSE

Standard retrieval methods often treat complex informal statements as monolithic queries and simply
embed the entire statement. This approach disregards the rich semantic structure within a statement,
which may contain multiple distinct mathematical concepts. Their complexity means that a state-
ment could be under-specified, ambiguous, and/or simply too information-dense to be used as is.
Compressing the entire statement’s meaning into a single dense vector creates a representational
bottleneck, risking the loss of nuanced details and focusing the retrieval on only the most salient
concepts. We hypothesize that by decomposing an informal statement into its constituent concepts,
we can perform a more granular and accurate retrieval for each concept.

To this end, DRIFT begins with a Decompose module (panel @ in Figure|I)), which is implemented as
an LLM tasked with breaking down an informal statement (/ F’) into a set of structured sub-queries,
Q, see Equation E} While the decomposer could be a finetuned model, we leverage in-context
learning (ICL) with off-the-shelf LLMs in this study.

Decomposer(IF) — Q = {(qi, 1)}, (1)

where n, the number of sub-queries, varies for each informal statement and is determined dynami-
cally by the decomposer. Each sub-query Q; = (g¢;, l;) is designed to isolate a single mathematical
concept. As illustrated in Figure |1} the component ¢; is a natural language phrase describing the
concept (e.g., “A prime number p of the form 4¢ + 3 is a prime that leaves remainder 3 when divided
by 4”) while l;isa predicted formal representation for that concept (e.g., “p : N with the condi-
tions Nat.Prime p and p % 4 = 3, where % denotes the modulo operation on natural numbers.”).
Appending this predicted formal name serves a dual purpose. First, it probes the LLM’s parametric
knowledge, providing a syntactic “anchor” for the concept. Second, it allows the retriever to jointly
leverage the semantics of the natural language phrase ¢; and the syntactic cues from i to identify the
correct premise even in the presence of minor inaccuracies in the predicted formal representations.

3.2 RETRIEVE

The Retrieve module is designed to identify dependent premises from the library that correspond
to the concepts isolated in each sub-query. This one-to-one mapping is visualized in the panel @ of
Figure [T} which shows each sub-query (Q;) being linked to a formal object (e.g., PNat . Prime).
To accomplish this, we implement a dense passage retriever (Karpukhin et al.| 2020) using a BGE-
M3 (Chen et al.} [2024)) encoder (Ey), finetuned on the dependency retrieval task as introduced by [Liu
et al.[(2025). This training objective aligns the informal statements with their formal dependencies,
thereby making semantic similarity a strong proxy for logical dependency. We retrieve dependencies
by encoding queries and formal library objects into a shared d-dimensional embedding space. The
vector representations p = FEp(p) for all formal objects p € I are pre-computed in an offline
step and stored in an efficient search index. At inference, each sub-query is encoded into a vector
d; = FEp(Q;) and the closest dependent premise p; is identified by finding the library object that
maximizes the cosine similarity score, ¢, with the query vector. This is formally defined as:

p; = argmax (¢(qi, p)) 2
peD

where ¢(q;,p) = m. The final set of dependent premises, Rpgrr, 1S formed by aggregating
the top-1 result from each sub-query and removing duplicates: Rprier = ;- {pi }-

Under review as a conference paper at ICLR 2026

3.3 ILLUSTRATE

Retrieving useful formal definitions is a necessary first step; however, it is not sufficient for success-
ful autoformalization. For instance, a retrieved definition like “def ZMod : N = Type” tells
the model what the concept is, but provides no further guidance on its practical application, such as
the syntax for declaring a variable of that type (a : ZMod p). This gap between definition and
usage is a primary source of syntactic and structural errors in LLM-generated formal statements.

The Ilustrate module is designed to bridge this gap by providing examples of formal object usage,
visualized in Figure|l| (panel @). Given a premise like ZMod from the “Retrieve” step, the module
selects illustrative theorems that demonstrate the correct application of ZMod, such as “Theorem 2”.
The module takes the set of retrieved premises Rpgrr, and a budget m as input, and outputs a small
set of illustrative theorems 7, where |7| < m. The selection process is a greedy algorithm designed
to maximize the coverage of the input premises Rpger as follows. First, we compile a candidate set
Teang of all theorems in the library I that utilize at least one of the retrieved premises Rpger.

In order to ensure relevance and provide a deterministic tie-breaker, we pre-sort this candidate set
in descending order of semantic similarity s(¢). For each theorem t € Tqnq, this similarity score
is the cosine similarity between its informal statement I F; and the original informal statement I F,
computed using the same encoder Fy from the retrieval stage: s(t) = ¢(Ep(IF}), Eo(IF)).

The final set of illustrative theorems 7 is built iteratively. The process begins by initializing an
empty set of selected theorems 7y = () and an empty set of covered premises P,y 0 = (). At each

step j = 1,...,m, we select the theorem ¢; that provides the maximal marginal gain by including
the most new premises in Rpgrr not previously covered:
t; = argmax [P(t) N (Rorirr \ Peov,j—1)| 3)

tE€Teana\Tj—1

where P(t) is the set of premises used in theorem ¢. After selecting t;, the sets are updated for the
next iteration: 7; = T;_1 U{¢;} and Peoy j = Peowv,j—1 U (P (t;) N Rprier). The process terminates
when either the budget of m theorems is reached or when no remaining candidate theorem can offer
additional coverage (i.e., the marginal gain is zero). The final set is defined as 7 = 7T; from the last
iteration j.

3.4 FORMALIZE THEOREMS

The final DRIFT step is Formalize Theorems, shown in panel ® of Figure[I] The formalizer assem-
bles the previously gathered definitions and theorem demonstrations into a comprehensive prompt
C and generates the final formal statement. The formalization module is designed to be flexible and
can be implemented with either a finetuned model or a general-purpose LLM guided with ICL. The
formalizer compiles information in the following logical order: C = Z & Rpgipr @ 7 @ [F, where
@ denotes the concatenation operator, Z is a formalization instruction (details in Appendix [A.4.2)),
Roprirr are the retrieved premises, 7 are the illustrative theorems and I F is the original informal
statement. Conditioned on this comprehensive prompt, the formalizer then generates the final output
of the DRIFT framework, the formal statement F'S = Formalizer(C).

4 EXPERIMENTAL SETUP

4.1 BENCHMARKS

We evaluate DRIFT on three distinct autoformalization benchmarks to test its in-distribution, self-
contained, and out-of-distribution performance. While the experiments are conducted in Lean, our
framework is language-agnostic and adaptable to other formal systems with structured libraries.

ProofNet (In-Distribution). We use the ProofNet benchmark (Azerbayev et al., 2023) for in-
distribution evaluation. Its 374 theorems, sourced from undergraduate mathematics textbooks, are
integrated with the Mathlib library and require an average of 3.39 dependent premises from over
243k formal objects (including 139k theorems). This benchmark tests the framework’s primary
function, which is to effectively retrieve and utilize dependent premises with demonstration from a
large-scale, in-distribution knowledge base.

Under review as a conference paper at ICLR 2026

MiniF2F (Self-Contained). We use the MiniF2F-test set (Zheng et al.| [2021) to evaluate the frame-
work on self-contained problems. This benchmark consists of 224 Olympiad-style theorems with a
notably low average of just 0.43 dependencies from Mathlib MiniF2F-test serves as a boundary
condition, testing the model’s core formalization capabilities and its robustness against potentially
distracting context when retrieval is not strictly necessary.

ConNF (Out-of-Distribution). The OOD challenge refers to evaluation scenarios where neither
the retrieval model nor the formalization model has been exposed to the formal objects used in the
test data We therefore evaluate on ConNF, a benchmark curated by |Liu et al.| (2025) through
topological informalization to test OOD generalization. This benchmark is based on the con—-nf
library and is not integrated with Mathlibﬂ It formalizes a consistency proof for Quine’s New
Foundations (Quine, [1951), established by [Holmes & Wilshaw| (2015)) and contains 961 research-
level theorems requiring an average of 3.92 premises from its distinct library of 1,348 formal objects.
ConNF rigorously tests DRIFT’s generalization to a novel mathematical domain (Zhang et al.,[2024).

4.2 BASELINES

We evaluate our proposed framework against three key baselines representing zero-shot, state-of-
the-art retrieval, and oracle-level performance. We note that concurrent work, CRAMF (Lu et al.,
2025])), was not publicly available for comparison at the time of our experiments. The no retrieval
(zero-shot) baseline establishes a performance floor. The autoformalization model receives only
the informal statement as input, without access to any retrieved context. DPR (RAuto) repre-
sents the current state-of-the-art. We compare our method to the dependency retrieval module from
the RAutoformalizer framework (Liu et al., [2025), which is a finetuned dense passage retriever
(DPR) (Karpukhin et al., ZOZO)E] The top-5 retrieved premises are provided to the formalizer model
as augmented context. The oracle* (retrieval) setting provides an approximate upper bound for
retrieval. The model is provided with ground-truth dependencies (P, qcie«) for each problem, sim-
ulating a perfect retriever, as defined by [Liu et al.|(2025)). We mark this setting with an asterisk (x)
to denote that this oracle is, in fact, imperfect. This is because the provided dependencies are not
necessarily optimal or exhaustive for formalization and do not necessarily lead to the best autofor-
malization performance. As we discuss in Section [5] some of our settings actually outperform this
imperfect oracle.

4.3 IMPLEMENTATION DETAILS

In this study, we evaluate DRIFT as a lightweight prompting strategy, leveraging the in-context
learning capabilities of instruction-following models such as DeepSeek-V3.1 (DeepSeek-AlL |[2024),
GPT-4.1 (OpenAl, 2025), and Claude-Opus-4 (Anthropic, 2025a) to demonstrate DRIFT’s broad
applicability without introducing task-specific biases from finetuning. While we use the same model
for both decomposition and formalization for consistency, these modules are independent and could
be replaced with specialized finetuned models.

Decompose. We construct a few-shot prompt using five expertly-verified examples from the Put-
nam benchmark (Tsoukalas et al., [2024)) to instruct LLMs to decompose the informal statements;
full details in Appendix [A.I.1|and Appendix[A.4.1] Each decomposed sub-query consists of a nat-
ural language description of a concept and its formal representation predicted by the decomposer
with parametric knowledge, as detailed in Section We employ a single prompt across all mod-
els to prioritize generalizability. Empirically, this yields consistent improvements across distinct
frontier models (Table E] and Table @, demonstrating framework robustness without the need for
model-specific optimization. The number of sub-queries decomposed is not fixed but autonomously
decided by the Decomposer.

2We removed 20 examples from the dataset that were either duplicated or failed to compile (Lean v4.18.0).

3The knowledge cutoff dates of the models we used are June 2024, March 2025, and July 2025, for GPT-
4.1, Claude-Opus-4, and DeepSeek-V3.1, respectively. From our zero-shot results on ConNF, we hypothesize
that the models have not been extensively trained on this benchmark, though there is a risk of exposure to the
formalizer which cannot be controlled or confirmed.

*The con-nf library is available at https: //github.com/leanprover—-community/con-nf,

>Model available at https: //huggingface.co/purewhite42/dependency_retriever_f,

https://github.com/leanprover-community/con-nf
https://huggingface.co/purewhite42/dependency_retriever_f

Under review as a conference paper at ICLR 2026

Retrieve. The retriever model is a dense passage retrieveIE] (DPR) finetuned on Mathlib data to map
informal queries to their formal dependencies (Liu et al.l [2025). We pre-compute embeddings for
all formal declarations in the relevant libraries (Mathlib for ProofNet and MiniF2F-test; con—nf
for ConNF). This training setup establishes ConNF as an OOD benchmark for the retrieval module.
For the DPR baseline, we retrieve the top-5 premises based on the entire informal statement. Unlike
fixed-k baselines, the number of premises retrieved by DRIFT is dynamic. By selecting the top-1
candidate for each sub-query and performing deduplication, the final set size is dynamic and at most
n, where n is the number of decomposed sub-queries.

Hlustrate. In order to demonstrate premise usage in real contexts, we select up to m = 3 exemplar
theorems using the greedy coverage algorithm described in Section This budget of m = 3 was
selected based on an empirical analysis of diminishing returns in premise coverage, as detailed in

Appendix

Formalize Theorems. As described in Section the formalization prompt combines the original
informal statement with the retrieved premises and illustrative theorems. Each premise is presented
with its full name, formal declaration, and source code. Each illustrative theorem is included as a
pair of its informal and formal statements. This demonstrates both the informal-to-formal alignment
and the concrete application of the premises within a theorem instance. To evaluate pass@k, we
generate 10 formalizations for each problem.

4.4 EVALUATION METRICS

We conduct the evaluation of DRIFT in two stages: a) the intrinsic performance of dependency
retrieval and the selection of illustrative theorems, and b) the extrinsic performance of autoformal-
ization.

Dependency Retrieval. The effectiveness of the decomposition is measured by its impact on the de-
pendency retrieval task as the quality of the decomposed sub-queries directly impacts the relevance
of the retrieved premises. We measure the quality of the retrieved premises against the oracle*
dependencies using Precision, Recall, and their harmonic mean, F1-score.

Formalization Correctness. For formalization, we use Typecheck (TC) and BEq+. Typecheck
measures syntactic correctness, indicating the percentage of the generated statements that are valid
and can pass the compiler’s type checker (Lu et al., 2024; |Azerbayev et al, 2023} [Liu et al., [2025).
For semantic correctness, we use BEq+ (Poiroux et al.| 2025)), a symbolic metric that measures the
logical equivalence between a predicted formal statement and the ground-truth reference by using
deterministic proof tactics to bidirectionally prove that each statement can be transformed into the
other. We adopt BEq+ over LLM-based evaluations to avoid stochasticity and ensure compiler-
verified reliability. Furthermore, given that large-scale human evaluation is infeasible, BEq+ serves
as an effective proxy, demonstrating strong alignment with human judgments (Pearson: 0.974,
Kendall: 0.872) (Poiroux et al.,2025)). For each metric, we assess performance using pass@1 and
pass@10, where pass@Fk indicates that at least one of k independent generations was successful.

5 RESULTS AND DISCUSSION

5.1 DEPENDENCY RETRIEVAL

We evaluate the effectiveness of the Decompose and Retrieve modules by looking at their impact on
intrinsic performance in dependency retrieval. As detailed in Table [I} we compare DRIFT against
a monolithic query baseline that uses the same dense retriever but with the original informal state-
ments as queries. This provides a direct comparison to DRIFT, which retrieves a similar number of
premises by taking the union of the top-1 results for each of the 5.21 to 6.42 sub-queries generated
by the Decompose module[] The results show that decomposition provides a substantial perfor-
mance improvement in both precision and recall. Averaged across all decomposer models, DRIFT
achieves an absolute improvement of 13.34, 2.08, and 7.74 points over the baseline F1 score on the

®Training details of the retriever in Appendix
"The full statistics of the decomposed sub-queries are available at Appendix

Under review as a conference paper at ICLR 2026

Benchmark Decomposer Precision Recall F1
- 11.55 17.03 13.77
ProofNet Claude-Opus-4 23.02 34.70 27.68
GPT-4.1 21.71 34.46 26.64
DeepSeek-V3.1 24.38 30.28 27.01
- 0.36 4.12 0.66
.. Claude-Opus-4 2.08 23.71 3.83
MiniF2F-test— Gpry 1.42 15.46 2.60
DeepSeek-V3.1 0.98 9.28 1.78
- 25.12 32.06 28.17
Claude-Opus-4 30.97 41.01 35.29
ConNF GPT-4.1 31.62 40.64 35.56
DeepSeek-V3.1 34.67 39.39 36.88

Table 1: A comparison of dependency retrieval performance (%) between DRIFT and a no-

decomposition baseline (“-”). The baseline queries the retriever directly with the original informal
statement. Best results are in bold.

ProofNet, MiniF2F-test, and ConNF benchmarks, respectively. Regarding the choice of decomposer
model, we observe that while Claude-Opus-4 achieves the highest F1 scores on ProofNet (27.68%)
and MiniF2F-test (3.83%), the performance variation among the LLMs is marginal. Our findings
indicate that frontier LLMs are largely interchangeable for this task as the top-performing models
have a maximum F1 score difference of only 2.05% on any benchmark.

The Illustrate module proves highly effective at selecting a concise set of theorems to demonstrate
premise usage. Within a maximum of only three selected theorems (m = 3), the algorithm achieves
a high average premise coverage rate of 74.5944.80% across all the decomposers and benchmarks.

5.2 FORMALIZATION

For extrinsic performance on autoformalization, DRIFT consistently outperforms both the zero-
shot baseline and the strong retrieval-augmented baseline DPR (RAuto) on ProofNet and ConNF
benchmarks, both on Typecheck and BEq+ with pass@1 and pass@10 (see Table [J). Specifically,
on ProofNet, GPT-4.1 with DRIFT achieves a BEq+ pass@10 of 21.93%, a 2.74% improvement
over DPR (RAuto). This trend holds across models in our main evaluation, demonstrating that our
decomposition-driven approach provides more effective context for the formalization task.

A key insight from our results is that while the frontier models we tested are all highly proficient and
largely interchangeable as query decomposers, this parity does not extend to the final formalization
step. For instance, DeepSeek-V3.1 generally outperforms GPT-4.1 in the zero-shot setting across
all benchmarks, suggesting a stronger parametric knowledge for direct formalization. However, this
trend reverses when retrieval is introduced, most significantly on the OOD ConNF benchmark. On
ConNF, all models achieve low zero-shot BEq+ scores (<10%), confirming a severe knowledge gap.
Retrieval substantially improves performance, where GPT-4.1 consistently outperforms DeepSeek-
V3.1 across all metrics with different retrieval strategies. DRIFT provides a particularly significant
improvement, increasing GPT-4.1’s BEq+@10 score by 55.57% and even surpassing the oracle*
baseline by 3.43%. We hypothesize this is because the oracle* provides only necessary premises
based on the reference statement, while the illustrative theorems selected with DRIFT provide crucial
demonstrations of premise usage. We support this hypothesis with a detailed qualitative analysis of
the Oracle* baseline’s failure modes in Appendix[A.3.2]

On the in-distribution ProofNet benchmark, the results are more nuanced. GPT-4.1 surpasses
DeepSeek-V3.1 on BEq+@ 10 when using DRIFT. This pattern suggests that GPT-4.1 is more adept
at in-context synthesis, integrating and reasoning over retrieved information to construct formal
statements, especially in unfamiliar domains. In contrast to the interchangeability we observed
among models as decomposers, the formalization stage reveals clear performance differences. The
distinction suggests that the two stages of our pipeline rely on distinct LLM capabilities. Decom-

Under review as a conference paper at ICLR 2026

Benchmark Formalizer Retrieval TC@1 BEq+@1 TC@10 BEq+@10

Oracle* 58.82 20.32 79.68 27.54
GPT-4.1 Zero-shot 34.22 9.36 51.60 13.37

DPR (RAuto) 51.60(+17.38) 14.71(+ 5.35) 73.53(+21.93) 19.25(+ 5.88)

ProofNet DRIFT 55.88(+21.66) 17.38(+ 8.02) 77.01(+25.41) 21.93(+ 8.56)
Oracle* 71.12 21.93 82.09 27.54
DeepSeek-V3.1 Zero-shot 60.43 15.51 71.93 20.32

DPR (RAuto) 63.37(+ 2.94) 17.38(+ 1.87) 73.53(+ 1.60) 19.52(— 0.80)

DRIFT 72.73(+12.30) 18.18(+ 2.67) 79.41(+ 7.48) 20.59(+ 0.27)
Oracle* 75.45 23.66 89.29 30.36
GPT-4.1 Zero-shot 69.64 23.21 84.82 28.12

DPR (RAuto) 77.23(+ 7.59) 24.55(+ 1.34) 92.41(+ 7.59) 32.14(+ 4.02)

MiniF2F-test DRIFT T4.55(+ 4.91) 24.55(+ 1.34) 92.41(+ 7.59) 29.02(+ 0.90)
Oracle* 77.68 23.21 87.50 28.12
DeepSeek-V3.1 Zero-shot 76.34 22.77 87.50 27.23

DPR (RAuto) 75.89(— 0.45) 22.77(x 0.00) 87.95(+ 0.45) 27.68(+ 0.45)

DRIFT T4.11(— 2.23) 22.77+ 000) 88.84(+ 1.34) 24.55(— 2.68)
Oracle* 60.46 48.28 75.23 58.90
GPT-4.1 Zero-shot 7.28 4.47 11.45 6.76

’ DPR (RAuto) 24.56(+17.28) 15.19(+10.72) 31.95(+20.50) 20.08(+13.32)

ConNF DRIFT 65.76(+58.48) 54.84(+50.37) 77.00(+65.55) 62.33(+55.57)
Oracle* 57.34 44.22 71.28 55.15
DeepSeek-V3. 1 Zero-shot 13.42 8.12 17.59 11.03

DPR (RAuto) 21.96(+ 8.54) 12.90(+ 4.78) 28.20(+10.61) 17.07(+ 6.04)

DRIFT 60.67 (+47.25) 46.72(+38.60) T1.18(+53.59) 54.21(+43.18)

Table 2: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance
is measured by Typecheck (TC@k) and BEq+@k. We compare DRIFT against zero-shot, DPR
(RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) rel-
ative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are bold.

position leverages natural language reasoning, whereas formalization demands advanced formal
reasoning.

As we discussed in Section[d] the MiniF2F-test benchmark presents a distinct profile with an aver-
age of only 0.43 library dependencies. This limits the potential for retrieval-based improvements,
evidenced by the small gap between the zero-shot and oracle* performance, (e.g., a pass@10 gap
of 2.24% for GPT-4.1 and 0.89% for DeepSeek-V3.1). Instead, this low-dependency regime reveals
the models’ high sensitivity to the provided context, which can act as a distractor rather than an
aid. We provide a detailed analysis of these failures in Appendix [A-3.1] offering a granular error
taxonomy that specifically identifies issues like force-fitting and over-complication.

We include a comparison with the finetuned Goedel-Formalizer-V2-8B (Lin et al.l 2025c) in Ap-
pendix [A2.10] The results demonstrate that while the finetuned baseline scales effectively in-
domain, DRIFT significantly outperforms it on the OOD ConNF benchmark by bridging the se-
mantic knowledge gap.

5.3 ABLATION STUDY

In order to isolate and measure the contribution of each component of DRIFT, we conducted a sys-
tematic ablation study (Table [B). As expected, removing the illustrative theorems (w/o Illustrate)
decreased the BEq+ score on ProofNet and ConNF, which confirms that demonstrations of premise
usage are crucial for the formalization correctness beyond just the definitions of the formal objects.
Intriguingly, additionally removing the Decompose module (w/o Decompose) does not further de-
grade performance and even leads to a slight recovery on ConNF and ProofNet in the BEq+ score.
We hypothesize this is because the baseline DPR retrieves a thematically homogeneous (lexically
close though less precise) set of premises via single query retrieval, which may be less distracting

Under review as a conference paper at ICLR 2026

Retrieval ProofNet MiniF2F-test ConNF
TC@1 BEq+@1 TC@1 BEq+@1 TC@1 BEq+@1

DRIFT (GPT-4.1) 55.88 17.38 74.55 24.55 65.76 54.84
w/o Illustrate 56.15 (+ 0.27) 1417 (- 3.21) 76.34 (+ 1.79) 24.55 (£ 0.00) 45.47 (-20.29) 35.90 (-18.94)
w/o Decompose 50.80 (- 5.08) 13.64 (- 3.74) 7634 (+ 1.79) 2634 (+ 1.79) 59.63 (- 6.13) 46.72 (- 8.12)
w/o Retrieval 3422 (-21.66) 936 (- 8.02) 69.64 (- 491) 2321(- 1.34) 7.28(-58.48) 4.47 (-50.37)

DRIFT (DeepSeek-V3.1) 72.73 18.18 74.11 22.77 60.67 46.72
w/o Ilustrate 7032 (- 2.41) 1524 (- 2.94) 77.68 (+ 3.57) 2143 (- 1.34) 41.31(-19.36) 29.34 (-17.38)
w/o Decompose 64.97 (- 7.76) 1578 (- 2.40) 77.68 (+ 3.57) 20.98 (- 1.79) 50.36 (-10.31) 38.81 (- 7.91)
w/o Retrieval 60.43 (-12.30) 1551 (- 2.67) 76.34 (+ 2.23) 2277 (£ 0.00) 13.42 (-47.25) 8.12(-38.60)

Table 3: Ablation study of DRIFT using GPT-4.1 and DeepSeek-V3.1 with pass@1. First, we
remove the Illustrate module (premises retrieved with sub-queries provided in C), then the Decom-
pose module (premises retrieved using original informal statement provided in C), and finally all the
Retrieval components. Values in parentheses show relative performance (increase) or (decrease)
compared to the full model.

than the precise but more diverse set retrieved via decomposition. This reveals a crucial synergy:
the illustrative theorems act as a scaffold that helps the model navigate the diverse information from
the decomposer. In Appendix [A-33] we analyze specific instances where using premises retrieved
by DRIFT alone failed, whereas the full DRIFT pipeline and the baseline DPR succeeded, further
validating the scaffolding hypothesis.

The complex interaction creates a trade-off on the MiniF2F-test benchmark: removing theorems
improves syntactic correctness (Typecheck) while degrading logical correctness (BEq+). This fur-
ther supports the hypothesis that for the simpler, low-dependency problems in MiniF2F-test, adding
more context can act as a distractor. Removing external context improves syntactic validity but
degrades logical correctness of the generated formal statements. This sensitivity strongly moti-
vates the need for more dynamic and adaptive retrieval strategies. To quantify the theoretical gains
of such strategies, we provide an “Oracle Ensemble” analysis in Appendix [A-2.9] demonstrating
that an adaptive upper bound consistently outperforms individual methods. Future work on agentic
frameworks could selectively retrieve information, judge its utility, and iterate based on the compiler
feedback.

6 CONCLUSION

In this work, we introduced DRIFT, a framework that improves autoformalization by tackling two
distinct challenges: the underlying complexity of queries and the lack of contextual usage. Our
decomposition-driven retrieval addresses the former by breaking down the informal statement into
sub-queries and conducting point-to-point retrieval of its formal dependencies. Concurrently, the
Ilustrate module resolves the latter by providing illustrative examples to guide the utilization of re-
trieved premises in theorem instances. This dual approach substantially improves formalization cor-
rectness on both complex in-distribution (ProofNet) and out-of-distribution (ConNF) benchmarks,
demonstrating its effectiveness as a broadly generalizable and model-agnostic strategy. On a sim-
pler, low-dependency MiniF2F-test benchmark, our method performs comparably to related meth-
ods. Our findings suggest future work to focus on dynamic and adaptive retrieval strategies, as well
as on agentic frameworks that iteratively refine attempts based on compiler feedback.

ETHICS STATEMENT

We adhere to the licenses of the data artifacts and models used in this study, as well as to the ICLR
code of ethics. Human experts who verified decomposed queries were fairly compensated for their
contributions.

We acknowledge the societal risks associated with reasoning LLMs. Our method operates within
the existing paradigm of retrieval-augmented generation and does not introduce novel risks.

10

Under review as a conference paper at ICLR 2026

Finally, Large Language Models were used as a writing assistant for improving the language and
clarity of this manuscript. The scientific contributions, including all ideas, experiments, and analy-
ses, are the work of the human authors.

REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of this study. Upon publication, we will release the
complete source code for the DRIFT framework, all curated data artifacts, and our finetuned mod-
els under a permissible open-source license. Key implementation details and hyperparameters are
described in Appendix

REFERENCES

Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. To-
wards a mathematics formalisation assistant using large language models. arXiv preprint
arXiv:2211.07524, 2022.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Computational Linguistics: Student Research
Workshop, pp. 225-237, 2024.

Paul J. L. Ammann, Jonas Golde, and Alan Akbik. Question decomposition for retrieval-augmented
generation. In Jin Zhao, Mingyang Wang, and Zhu Liu (eds.), Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 4: Student Research Work-
shop), pp. 497-507, Vienna, Austria, July 2025. Association for Computational Linguistics.

Anthropic. Introducing Claude 4. https://www.anthropic.com/news/claude-4, May
2025a. Accessed: September 24, 2025.

Anthropic. Claude’s extended thinking. https://www.anthropic.com/news/
visible—-extended-thinking, Feb 2025b. Accessed: October 17, 2025.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Conference
on Learning Representations, 2024.

Justin Asher. Leanexplore: A search engine for Lean 4 declarations. arXiv preprint
arXiv:2506.11085, 2025.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level math-
ematics, 2023.

Anne Baanen, Matthew Robert Ballard, Johan Commelin, Bryan Gin-ge Chen, Michael Rothgang,
and Damiano Testa. Growing Mathlib: Maintenance of a large scale mathematical library. arXiv
preprint arXiv:2508.21593, 2025.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Jean-Christophe Filliatre, Eduardo
Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq Proof
Assistant Reference Manual : Version 6.1. PhD thesis, Inria, 1997.

BICMR@PKU AI. Jixia: Static analysis tool for Lean 4. |https://github.com/
frenzymath/jixia, 2024. GitHub repository.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. RQ-RAG:
Learning to refine queries for retrieval augmented generation. In First Conference on Language
Modeling, 2024.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. BGE M3-Embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. arXiv preprint arXiv:2402.03216, 2024.

11

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking
https://github.com/frenzymath/jixia
https://github.com/frenzymath/jixia

Under review as a conference paper at ICLR 2026

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-Prover: Deep and broad reasoning for automated
theorem proving. arXiv preprint arXiv:2507.23726, 2025.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378-388. Springer, 2015.

DeepSeek-Al Deepseek-v3 technical report, 2024.

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine
for Mathlib4. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
8001-8013, 2024.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1762—-1777, 2023.

Sébastien Gouézel and Vladimir Shchur. A corrected quantitative version of the Morse lemma.
Journal of Functional Analysis, 277(4):1258—-1268, 2019.

Yuhang He, Jihai Zhang, Jianzhu Bao, Fangquan Lin, Cheng Yang, Bing Qin, Ruifeng Xu, and
Wotao Yin. BC-prover: Backward chaining prover for formal theorem proving. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp. 3059-3077, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics.

M Randall Holmes and Sky Wilshaw. Nf is consistent. arXiv preprint arXiv:1503.01406, 2015.

Ruikang Hu, Shaoyu Lin, Yeliang Xiu, and Yongmei Liu. LTRAG: Enhancing autoformalization and
self-refinement for logical reasoning with thought-guided RAG. In Findings of the Association
for Computational Linguistics: ACL 2025, pp. 2483-2493, 2025.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755, 2023.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2022.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769-6781, 2020.

Joshua Ong Jun Leang, Giwon Hong, Wenda Li, and Shay B Cohen. Theorem prover as a judge
for synthetic data generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
hammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2994129977, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0.

Haohan Lin, Zhiging Sun, Sean Welleck, and Yiming Yang. Lean-STaR: Learning to interleave
thinking and proving. In The Thirteenth International Conference on Learning Representations,
2025a.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Dangqi Chen, Sanjeev Arora, et al. Goedel-Prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025b.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover-V2: Scaling
Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction, August 2025c.
arXiv:2508.03613 [cs].

12

Under review as a conference paper at ICLR 2026

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
autoformalization: Towards a faithful metric and a dependency retrieval-based approach. In The
Thirteenth International Conference on Learning Representations, 2025.

Jiangiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-
driven autoformalization in Lean 4, 2024.

Wangyue Lu, Lun Du, Sirui Li, Ke Weng, Haozhe Sun, Hengyu Liu, Minghe Yu, Tiancheng Zhang,
and Ge Yu. Automated formalization via conceptual retrieval-augmented LLMs. arXiv preprint
arXiv:2508.06931, 2025.

Thang Luong and Edward Lockhart. Advanced version of Gemini with deep think officially achieves
gold medal standard at the international mathematical olympiad, July 2025. Available at: Google
DeepMind Blog. Accessed: 2025-09-09.

Mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, pp. 367-381, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370974. doi: 10.1145/
3372885.3373824.

Morph Labs. Moogle: A semantic search engine for Lean 4. https://www.moogle.ai/,
2025. Accessed: 2025.

OpenAl. Introducing GPT-4.1 model family. |https://openai.com/index/gpt—-4-1/,
April 2025. Accessed: September 24, 2025.

Lawrence C Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

Auguste Poiroux, Gail Weiss, Viktor Kuncak, and Antoine Bosselut. Improving autoformalization
using type checking, 2025.

WYV Quine. On the consistency of “new foundations”. Proceedings of the National Academy of
Sciences, 37(8):538-540, 1951.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
on incorrect synthetic data scales the efficiency of LLM math reasoning by eight-fold. Advances
in Neural Information Processing Systems, 37:43000-43031, 2024.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-
context learning agent for formal theorem-proving. In First Conference on Language Modeling,
2024.

Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex Sanchez-Stern, Yuriy Brun,
Jodo F Ferreira, Sorin Lerner, and Emily First. Rango: Adaptive retrieval-augmented proving for
automated software verification. In 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE), pp. 347-359. IEEE, 2025.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition, 2024.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 9414-9423, 2023.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theo-
remLlama: Transforming general-purpose LLMs into Lean4 experts. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 11953-11974, 2024.

Shuting Wang, Xin Yu, Mang Wang, Weipeng Chen, Yutao Zhu, and Zhicheng Dou. RichRAG:
Crafting rich responses for multi-faceted queries in retrieval-augmented generation. In Proceed-
ings of the 31st International Conference on Computational Linguistics, pp. 11317-11333, 2025.

13

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://www.moogle.ai/
https://openai.com/index/gpt-4-1/

Under review as a conference paper at ICLR 2026

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang,
Zidong Du, Jie Yan, et al. StepFun-Formalizer: Unlocking the autoformalization potential of
LLMs through knowledge-reasoning fusion. arXiv preprint arXiv:2508.04440, 2025.

Huajian Xin, Z.Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. DeepSeek-Prover-V1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. In The Thirteenth International Confer-
ence on Learning Representations, 2024.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with retrieval-
augmented language models. Advances in Neural Information Processing Systems, 36:21573—
21612, 2023.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
A large-scale Lean problem set formalized from natural language math problems. In Proceedings
of the 38th International Conference on Neural Information Processing Systems, pp. 105848—
105863, 2024.

Lan Zhang, Xin Quan, and André Freitas. Consistent autoformalization for constructing mathemat-
ical libraries. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 4020-4033, 2024.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. arXiv preprint arXiv:2305.16366, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 FEW-SHOT EXAMPLES FOR DECOMPOSITION

To construct a robust set of few-shot demonstrations for our Decompose module, we strategically
selected five problems from the Putnam benchmark (Tsoukalas et al., 2024). These problems were
chosen to ensure diversity in both their mathematical domain and the number of underlying premises
required for their formal statements.

We decomposed the informal statement of each selected problem into its atomic, logical sub-
components using Claude-Opus-4 with extended thinking enabled (Anthropicl 2025b). The decom-
position followed a zero-shot prompting strategy guided by a carefully engineered instruction set.
To ensure correctness and logical atomicity, each generated decomposition exemplar was manually
verified by human experts. While the decomposition task inherently lacks a unique ground truth,
the robustness of the resulting sub-queries is validated empirically by the significant improvements
observed in downstream premise retrieval performance (see Table[I] Section 5.I)).

This curated set of examples, detailed below, provides the model with varied demonstrations for the
decomposition task across number theory, algebra, analysis, and geometry.

* Number Theory: putnam_1966_b2

* Algebra: putnam_2000_bl

¢ Analysis: putnam_2000_a4, putnam_2015_b1

* Geometry: putnam_2003_b5

14

Under review as a conference paper at ICLR 2026

A.1.2 RETRIEVER FINETUNING DETAILS

We finetuned the BGE-M3 retriever model [2024) on the Mathlib 4.7 dataset to special-
ize it for dependency retrieval in formal mathematics. The finetuning process was executed using
the FlagEmbedding library (Chen et al., [2024) on a server equipped with four 32GB GPUs. The
complete set of hyperparameters used for this process, including optimizer settings and loss config-
uration, is provided in Table El

Category Hyperparameter Value

Model & Data model_name_or_path bge-m3
train_data mathlib 4.7
query_max_len 1024
passage_max_len 1024
train_group-size 4
sentence_pooling.method cls

Training num_train_epochs 1
per_device_train_batch_size 32
per_device_eval_batch_size 4
learning.rate 5x 1076
warmup-ratio 0.1
weight _decay 0.01
repetition_penalty 1.0
dataloader_drop_last True
even_batches True
non_blocking False
split_batches False
use_seedable_sampler True

Loss & Objective temperature 0.02
normalize_embeddings True
negatives_cross_device True
same benchmark within batch True
unified_finetuning True
kd-loss_type m3_kd_loss

Optimizer optim adamw_torch
adafactor False
adam betal 0.9
adam_beta?2 0.999
adam_epsilon 1x10°8

Table 4: Hyperparameters for model fine-tuning.

Training Objective and Data Source.. We utilized the informalized Mathlib dataset provided by

RAutoformalizer 2025)), which aligns informal statements with formal declarations from
Mathlib 4.7.0. To extract the ground-truth dependent premises from the raw Lean code, we utilized
Jixia (BICMR @PKU Al}[2024), a static analysis tool for Lean 4 that parses the abstract syntax tree
to identify source-level dependencies. The retriever was trained using a standard contrastive loss
framework: the informal statement serves as the anchor, the Jixia-extracted dependencies serve as
positive samples, and other random library objects serve as negative samples. Crucially, the retriever
was trained exclusively on Mathlib data to ensure strict isolation from the ProofNet and MiniF2F-
test sets.

Toolchain Versions and Robustness.. We utilized distinct Lean versions due to data constraints and

benchmark requirements. The retriever training relied on Mathlib 4.7.0 data due to the availability of
aligned informal-formal pairs. However, for the inference and evaluation of ProofNet and MiniF2F-
test, we utilized the more recent Lean 4.18.0 (released April 2025); the high compilation success
rate of gold statements (~100%) confirms that the version difference between training data and the
evaluation environment does not introduce instability. For ConNF, we utilized Lean 4.7.0 strictly

15

Under review as a conference paper at ICLR 2026

because the benchmark is pinned to this version by its dependencies. Notably, DRIFT mitigates the
“brittleness” often associated with rapid Lean and Mathlib evolution: unlike finetuned models that
memorize static syntax and require expensive retraining to adapt to updates, DRIFT adapts to new
Lean versions through a low-cost offline re-indexing of the active library.

A.1.3 LLM GENERATION PARAMETERS

For all generative tasks, sub-query generation (decomposition) and formal statement generation (for-
malization), we set the temperature to 0.7 for all models (GPT-4.1, DeepSeek-V3.1, and Claude-
Opus-4) to encourage diverse yet coherent outputs. To ensure reproducibility, single-attempt evalu-
ations (pass@1) used a fixed seed of 42. For multi-attempt evaluations (pass @ 10), we generated ten
distinct outputs by using a sequential range of seeds from 42 to 51.

A.2 ADDITIONAL RESULTS AND DISCUSSION
A.2.1 DEPENDENCY RETRIEVAL PERFORMANCE METRICS

We evaluate retrieval performance using standard precision, recall, and their harmonic mean, the F1
score. For a given retrieved set R and the ground-truth set of oracle* premises P, qcies, precision

and recall are defined as: Precision(P) = % and Recall(R) = w The F1 score

provides a single, balanced measure of performance by combining precision and recall: F1 = 2 -

% The composition of the retrieved set R varies by method.

For baseline retrievers, R consists of the top-k premises with the highest cosine similarity to the
embedding of the full informal statement. For DRIFT, R is the union of the single best-retrieved
premise for each of the n decomposed sub-queries.

A.2.2 DEPENDENCY RETRIEVAL RESULTS OF RAUTO

This section presents the performance of DPR (RAuto) across both in-distribution (ProofNet,
MiniF2F-test) and out-of-distribution (ConNF) benchmarks. The results, detailed in Table [5} high-
light a crucial trade-off between specialization and generalization that motivates our proposed ap-
proach. When comparing DPR baselines, our retriever without decomposition substantially outper-
forms DPR (RAuto) on the ConNF benchmark but underperforms on ProofNet and MiniF2F-test.
We hypothesize that this discrepancy arises because DPR (RAuto) may be overfitted to Mathlib-
specific content.

Benchmark Precision Recall F1

ProofNet 22.89 33.75 27.28
MiniF2F-test 0.63 7.22 1.15
ConNF 14.01 17.88 15.71

Table 5: Dependency Retrieval performance (%) of DPR (RAuto), the retriever from RAutoformal-
izer (Liu et al.,[2025)). Retrieval k is set to 5.

A.2.3 AUTOFORMALIZATION RESULTS OF CLAUDE-OPUS-4

In the main paper, we evaluated Claude-Opus-4’s effectiveness as a decomposer for query decom-
position. Here, we provide Claude-Opus-4’s formalization results for completeness. Table [0 reports
pass@1 performance (TC@1 and BEq+@1) across all benchmarks. Note that pass@ 10 results for
Claude-Opus-4 are not available due to computational costs.

A.2.4 THE ROLE OF ILLUSTRATIVE THEOREMS AS A SCAFFOLD

As presented in Table 3] removing the Decompose module (w/o Decompose: reverting to the base-
line DPR) does not degrade performance further. In fact, on ConNF and ProofNet, it leads to slight
recovery in the BEq+ scores compared to the “w/o Illustrate” setting. We hypothesize this is due
to the nature of retrieval noise. The baseline DPR, using a single query, retrieves a thematically

16

Under review as a conference paper at ICLR 2026

Benchmark Retrieval TC@1 BEq+@1

Oracle* 81.28 26.20

Zero-shot 68.45 17.65
ProofNet pauto 75.67(ira2) 19.25(11.60)
DRIFT 78.61(+10.16) 19.79(+2.14)

Oracle* 93.30 35.27

.. Zero-shot 95.09 31.25
MiniF2F-test pauto 95.98(1050) 30.36(0.50)
DRIFT 93.75(-1.34) 32.59(+1.34)

Oracle* 62.75 50.36

Zero-shot 13.32 8.53

Sl RAuto 26.64(+13.32) 18.52(+9.99)

DRIFT 72.32(+59.00) 60.35(+51.82)

Table 6: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance
is measured by Typecheck (TC@1) and BEq+@1. We compare DRIFT against zero-shot, DPR
(RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) rel-
ative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are bold.
The pass@ 10 experiments for Claude were omitted due to funding constraints.

clustered set of premises. While its precision is lower, its noise is homogeneous and may be less
distracting to the LLM. Our decomposition method retrieves a more diverse set of premises. While
this captures more correct dependencies (higher recall and precision), the accompanying noise is
also more varied. This reveals a crucial synergy: the selected theorems in the Illustrate module
act as a contextual scaffold, helping the model navigate the diverse information retrieved by the
decomposer. Without this guidance, the varied noise can outweigh the benefit of improved retrieval.

A.2.5 SCALING PERFORMANCE WITH SAMPLING

Across all experiments in Table 2] we observe a consistent and significant gap between pass@1
and pass@10 results. For instance, performance on ProofNet improved by an average of 27.20%
across all settings and formalizer models. This large uplift underscores the potential for enhancing
performance through sampling-based methods at test time. This suggests that performance could be
further scaled by integrating our method into an agentic framework equipped with a verifier (e.g.,
Typecheck correctness).

Notably, DeepSeek-V3.1’s performance of pass@ 10 saturates more quickly than Claude-Opus-4’s
on the ProofNet benchmark. Its zero-shot pass@10 score is only 0.27% lower than the DRIFT
score. This suggests that with sufficient sampling, the model can sometimes recover the necessary
knowledge parametrically. We anticipate a similar, albeit slower, trend for the larger Claude-Opus-4
and GPT-4.1 models if the number of attempts were increased further.

A.2.6 PARAMETRIC RETRIEVAL

To disentangle the contributions of an LLM’s internal (parametric) knowledge and external (re-
trieved) knowledge, we conducted a “parametric retrieval” experiment. In this setting, we prompted
the formalizer models only with the decomposed sub-queries, omitting the retrieved premises and
illustrative theorems. This setup probes whether the structured sub-queries alone are sufficient to
guide the models to access their own latent knowledge for the formalization task.

The results in Table [7)indicate that external knowledge from retrieval remains largely indispensable
and cannot be fully substituted by the LLM’s internal knowledge alone. However, we observe a
notable distinction between the models. DeepSeek-V3.1 demonstrates a stronger grasp of the re-
quired formal knowledge; for this model, the sub-queries appear to function as a Chain-of-Thought-
style prompt, structuring its reasoning process and thereby improving formalization accuracy. This
aligns with our earlier finding that DeepSeek-V3.1’s zero-shot performance with sufficient sam-

17

Under review as a conference paper at ICLR 2026

Retrieval ProofNet MiniF2F-test ConNF
TC@1 BEq+@1 TC@1 BEq+@1 TC@1 BEq+@1
DRIFT (GPT-4.1) 55.88 17.38 74.55 24.55 65.76 54.84
Parametric Retrieval 43.85(-12.03) 13.64 (- 3.74) 63.84 (-10.71) 20.09 (- 4.46) 10.41 (-55.35) 3.64 (-51.20)
w/o Retrieval 34.22 (-21.66) 9.36 (- 8.02) 69.64 (- 491) 23.21 (- 1.34) 7.28 (-58.48) 4.47 (-50.37)
DRIFT (DeepSeek-V3.1) 72.73 18.18 74.11 22.77 60.67 46.72
Parametric Retrieval 69.25 (- 3.48) 1979 (+ 1.61) 76.79 (+ 2.68) 24.55(+ 1.78) 10.51 (-50.16) 5.93 (-40.79)
w/o Retrieval 60.43 (-12.30) 1551 (- 2.67) 7634 (+ 2.23) 22.77(£ 0.00) 13.42 (-47.25) 8.12 (-38.60)

Table 7: Performance comparison of the full DRIFT model, parametric retrieval baseline, and zero-
shot using GPT-4.1 and DeepSeek-V3.1 with pass@1. Values in parentheses show performance
change relative to the full DRIFT model.

pling (pass@10) approaches its retrieval-augmented performance, suggesting it often possesses the
necessary formal knowledge but requires effective prompting to surface it.

Crucially, this ablation counters the data contamination hypothesis, which suggests that retrieval im-
provements on in-distribution benchmarks (e.g., ProofNet) stem merely from priming the model to
recall memorized solutions. Under this hypothesis, structured sub-queries, which explicitly identify
the target concepts, should be sufficient to trigger correct recall. However, the significant perfor-
mance gap between Parametric Retrieval and full DRIFT (e.g., GPT-4.1 improves from 13.64% to
17.38% on ProofNet) confirms that the retrieved definitions and theorems provide essential syntactic
and semantic information absent from the model’s parameters, rather than simply triggering recall.

A.2.7 STATISTICS OF DECOMPOSED SUB-QUERIES

To better understand the Decompose module and its behavior, we analyzed the number of sub-
queries generated when decomposing informal statements from our three benchmarks: ProofNet,
MiniF2F-test, and ConNF with different LLMs as decomposers.

Model ProofNet MiniF2F-test ConNF Model Avg.
Claude-Opus-4 5.84 5.59 6.52 5.98
GPT-4.1 6.39 5.40 7.03 6.27
DeepSeek-V3.1 4.83 4.65 5.71 5.06
Benchmark Avg. 5.69 5.21 6.42 5.77

Table 8: Average number of decomposed sub-queries generated by different LLMs as decomposers
across three benchmarks. The final row and column show the average values for each benchmark
and model, respectively.

The results, summarized in Table 8] show that different models produce a varying number of sub-
queries. GPT-4.1 tends to generate the most detailed decompositions, with an average of 6.27 sub-
queries, while DeepSeek-V3.1 produces the most concise ones, averaging 5.06. Furthermore, the
complexity of the benchmark appears to influence the decomposition length. Statements from the
ConNF benchmark, which covers frontier mathematical research, consistently required more sub-
queries (6.42 on average) across all models, likely reflecting their greater conceptual density com-
pared to the undergraduate-level problems in ProofNet (5.69) and the more self-contained problems
in MiniF2F-test (5.21).

A.2.8 DIMINISHING RETURNS OF INCREASING ILLUSTRATIVE THEOREMS

We selected the illustration budget m = 3 to optimize the trade-off between premise coverage
and contextual noise. To validate this choice, we conducted an empirical analysis of the premise
coverage rate versus the theorem selection budget m, as illustrated in Figure[2}

As shown in the figure, m = 3 represents the critical point of diminishing returns (the “elbow”
of the curve). While the coverage rate continues to increase marginally up to m = 5, the slope
flattens significantly after m = 3, indicating that the vast majority of discoverable premises are

18

Under review as a conference paper at ICLR 2026

0.9 1

0.8 1

e
N

Premise Coverage Rate
o o
wn o

—o— gpt-4.1 (minif2f)
gpt-4.1 (proofnet)
—e— gpt-4.1 (connf)

0.4 4
—®- deepseek-v3.1 (minif2f)
deepseek-v3.1 (proofnet)
—®- deepseek-v3.1 (connf)
0.3 poo.m=3
1 2 4 5 6 7 8 9 10
Top-m

Figure 2: Premise Coverage Rate vs. Top-m. The dashed purple line marks the selected budget of
m = 3, indicating the point of diminishing returns.

captured within the first three selected theorems. This design choice is supported by our ablation
study (Table [3] Section [5.3), where we observed that excessive context degrades performance in
low-dependency regimes (e.g., MiniF2F-test).

A.2.9 THEORETICAL GAINS OF ADAPTIVE RETRIEVAL ON SELF-CONTAINED BENCHMARKS

Model Metric Zero-Shot DRIFT Oracle Ensemble
(Adaptive Upper Bound)
TC@1 95.09 93.75 95.98
Claude-Opus-4 ppoi@1 3125 32.59 35.27
TC@1 69.64 74.55 81.70
GPT-4.1 BEq+@1 2321 2455 25.89

Table 9: “Oracle Ensemble” Performance on MiniF2F-test (Pass@1). The Oracle Ensemble repre-
sents the best-case scenario for adaptive retrieval, selecting the best result between Zero-Shot and
DRIFT per problem. Best results are bold.

To quantify the theoretical gains of an adaptive retrieval strategy, specifically, a system capable of
distinguishing when to skip retrieval for self-contained problems versus when to employ DRIFT for
dependency-heavy problems, we calculated the “Oracle Ensemble” performance on the MiniF2F-
test benchmark. This metric represents the performance upper bound achievable by a perfect classi-
fier that dynamically selects the optimal strategy (Zero-Shot vs. DRIFT) for each problem instance.

As detailed in Table] the Oracle Ensemble consistently outperforms both the Zero-Shot baseline
and the standalone DRIFT framework. For instance, using Claude-Opus-4, the ensemble raises the
BEq+@1 score from 32.59% (DRIFT) to 35.27%. These results confirm that the two approaches are
complementary: DRIFT provides necessary scaffolding for complex formalization tasks, while the
Zero-Shot approach avoids introducing spurious dependencies in self-contained problems. While
the training of such an adaptive classifier (e.g., Self-RAG 2024)) is outside the scope
of this work, these findings establish a compelling theoretical motivation for future research into
dynamic retrieval gating.

19

Under review as a conference paper at ICLR 2026

Dataset Setting Model TC@1 BEq+@1 TC@10 BEq+@10
Fine-tuned Goedel-Formalizer-V2-8B + Oracle* 35.29 9.09 75.40 62.03
Goedel-Formalizer-V2-8B 38.50 9.09 76.74 55.08
ProofNet Zero-shot GPT-4.1 34.22 9.36 51.60 13.37
DeepSeek-V3.1 60.43 15.51 71.93 20.32
DRIFT GPT-4.1 55.88 17.38 77.01 21.93
DeepSeek-V3.1 72.73 18.18 79.41 20.59
Fine-tuned Goedel-Formalizer-V2-8B + Oracle* 96.00 28.89 100.00 93.33
Goedel-Formalizer-V2-8B 93.33 22.22 100.00 93.33
MiniF2F-test Zero-shot GPT-4.1 69.64 23.21 84.82 28.12
DeepSeek-V3.1 76.34 22.77 87.50 27.23
DRIFT GPT-4.1 74.55 24.55 92.41 29.02
DeepSeek-V3.1 74.11 22.77 88.84 24.55
Fine-tuned Goedel-Formalizer-V2-8B + Oracle* 9.99 4.37 48.80 23.10
Goedel-Formalizer-V2-8B 16.03 2.29 71.19 10.93
ConNF Zero-shot GPT-4.1 7.28 4.47 11.45 6.76
DeepSeek-V3.1 13.42 8.12 17.59 11.03
DRIFT GPT-4.1 65.76 54.84 77.00 62.33
DeepSeck-V3.1 60.67 46.72 71.18 54.21

Table 10: Comparison of DRIFT against the fine-tuned Goedel-Formalizer-V2-8B and other zero-
shot baselines. Bold: Best overall (excluding Oracle*). Underline: Best zero-shot. Grey : Oracle*
baseline with ground-truth dependencies.

A.2.10 COMPARISON WITH FINETUNED AUTOFORMALIZER

We excluded the finetuned Goedel-Formalizer-V2-8B model as a backbone for the DRIFT frame-
work due to its inability to follow explicit decomposition instructions. Our experiments indicate
that the model consistently ignores prompts to generate search queries, defaulting instead to direct
formalization. This suggests that the finetuning process, while effective for syntax, causes catas-
trophic forgetting of the general instruction-following alignment required for the multi-stage DRIFT
pipeline.

As shown in Table[I0] on in-domain tasks, Goedel-Formalizer-V2-8B exhibits strong compilability,
aided by an internal “thinking” mechanism that functions as an implicit Chain-of-Thought (example
in Figure[3). While this internal reasoning mimics a decompose-and-conquer strategy and incorpo-
rates self-reflection, it lacks the precision of DRIFT’s explicit retrieval. DRIFT significantly outper-
forms Goedel-Formalizer-V2-8B in single-pass precision (72.73% vs 38.50% TC@1 on ProofNet).
Furthermore, Goedel-Formalizer-V2-8B demonstrates limited adaptability; even when provided
with Oracle* context, it fails to effectively leverage the external knowledge (e.g., ProofNet BEq+@1
remains 9.09%), instead relying heavily on extensive sampling (Pass@10) to surface correct solu-
tions.

The limitations of relying on internal parametric memory are most pronounced on the out-of-
distribution ConNF benchmark. Although Goedel-Formalizer-V2-8B scales well in compilation rate
(71.19% TC@10), it suffers from severe hallucination, resulting in a low semantic equivalence score
(10.93% BEq+@10). Even with Oracle* context, the model struggles to bridge this knowledge gap
(23.10% BEqg+@10). Conversely, DRIFT maintains a high correlation between compilation and cor-
rectness (62.33% BEq+@10), confirming that retrieval-augmented generation is strictly necessary
to generalize to unseen mathematical domains.

20

Under review as a conference paper at ICLR 2026

Input (Informal Statement):
If r is rational (r # 0) and x is irrational, prove that rz is irrational.

Model Internal Reasoning (<think>):
Let me analyze this problem step by step. The problem is asking to prove that if r
is rational (and nonzero) and x is irrational, then rzx is irrational.
In Lean 4, I need to:

1. Define what it means for a number to be rational
2. Define what it means for a number to be irrational
3. State the theorem that if r is rational (nonzero) and x is irrational, then rz is

irrational
In Lean 4:
» Rational numbers are represented by Q
¢ The condition ”’r is rational and nonzero” can be writtenas r : Qand r
0
¢ Irrational numbers are represented by the complement of rationals, or we can
use Irrational x which means x ¢ Q (orequivalently ~(x : @Q))

when z is a real number

[Reasoning about Types and Coercion]

Let me think about the types. Since we’re dealing with irrational numbers, we’re
working in the real numbers R. The rational number 7 can be coerced into R, and
x is a real number.

[Self-Correction]

Wait, let me double-check the definition of irrational in Lean 4. 1 believe
Irrational is defined as = (x : Q) when z is real... Actually, let me be
more careful about the coercion. When we have r : Qand x : R, the ex-

pression r x x should work because there’s a coercion from Q to R.

Generated Formal Statement:
theorem : forall (r : \mathbb{Q}) (x : R), r # 0 —>
Irrational x -> Irrational (fr * x) := by sorry

Figure 3: An Example of the Goedel-Formalizer-V2-8B’s internal reasoning. The model first out-
lines the necessary definitions in natural language, then maps them to specific Lean 4 syntax, and
finally reasons about type coercion (Real vs. Rational) before generating the compilable code.

A.3 QUALITATIVE ANALYSIS
A.3.1 MINIF2F-TEST FAILURE ANALYSIS

We conducted an error analysis to understand cases where retrieval harms performance for MiniF2F-
test. Among 672 examples across all benchmarked models, we identified 23 instances where the
zero-shot baseline correctly predicted the formal statement while DRIFT failed. These examples
have an average informal statement length of 22.20 words with 0.00% requiring explicit quantifiers,
indicating low complexity. For 12 of these 23 failures, DRIFT generated formal statements that
passed typecheck but failed on BEq+.

Our analysis of DRIFT failures on MiniF2F-test identifies several contributing factors. First, retrieval
noise can lead to over-complication, where the added context confuses the model on straightforward
problems; in these cases, the zero-shot baseline often produces cleaner, simpler statements. Second,
we observed variable naming issues, where the retrieval process introduces inconsistent variable
names into the formalization. Finally, formalization style mismatches occur when the model adopts
patterns from retrieved theorems that differ from the reference, causing the BEq+ metric to fail in
capturing the semantic equivalence. We display selected examples to illustrate the failure modes
below.

21

Under review as a conference paper at ICLR 2026

Example 1: mathd_algebra 432 (Claude-Opus-4)
The Problem: Expand (z + 3)(2z — 6)
Zero-shot (correct):

theorem mathd_algebra_432 (x : R) : (x + 3) * (2 » x — 6) =2 % x"2 - 18

DRIFT (failed typecheck).

theorem mathd_algebra_432 : (X + 3) x (2 = X = 6) = 2 x X"2 - 18

The statement generated by DRIFT failed because of the undefined variable “X”

Example 2: mathd_algebra_143 (Claude-Opus-4)

The Problem: If f(x) = x + 1 and g(z) = 22 + 3, what is f(g(2))?

Zero-shot (correct):

theorem mathd_algebra_143 (f g : R - R) (hf : V x, £f x = x + 1) (hg : V
X, gx=x"2+3) :f (g2) =28

DRIFT (failed BEq+; false negative of BEq+):

theorem mathd_algebra_143 :
let £ : R - R := fun x =>
let g : R - R := fun x =>
f (g 2) =8

+ 1
"2+ 3

Both statements are semantically equivalent to the ground-truth, BEq+ fails to classify DRIFT’s
statement correctly.

Example 3: amc12_2000_20 (DeepSeek-V3.1)
The problem: System of equations with xyz
Zero-shot (correct):

theorem amcl12_2000_20 (x y z : R) (hx : x > 0) (hy : y > 0) (hz : z > 0)
(hl1 : x + 1/y = 4) (h2 : y + 1/z =1) (h3 : z + 1/x =
z =1

DRIFT (failed typecheck):

theorem amcl12_2000_20 : 3! (x y z : R), x >0 Ay >0Az>0Azx+1/y =
4 Ny +1/z=1AN2z+ 1/x=T/3 N x vy * z =1

A.3.2 DRIFT OUTPERFORMING ORACLE* RETRIEVAL

In Table2] we found that DRIFT can surpass Oracle* on ConNF. We hypothesize formalization fails
even with ground-truth premises because they lack context of how to use the premises correctly.
Retrieved theorems in DRIFT provide scaffolding that demonstrates usage patterns.

Statistically, there are 205, 171, and 184 cases out of 961 where DRIFT succeeds but Oracle* fails
across models. On average, ~78% of Oracle* failures are typecheck errors (missing namespace/type
context) and ~22% of Oracle* failures are semantic equivalence issues (typechecks but not equiva-
lent to gold statement as measured by BEq+). We also found that the statements generated by DRIFT
are longer than Oracle* with namespace qualification, necessary type class instances, proper type
coercions and explicit type annotations. These features reduced the error rate of the formalization.

The selected cases below highlight that providing ground-truth premises is insufficient to guarantee
syntactically and semantically correct formalization, as the Oracle* model consistently fails when

22

Under review as a conference paper at ICLR 2026

success depends on subtle usage patterns not captured by dependency names alone. DRIFT sur-
passes the oracle by utilizing retrieved theorems as scaffolding to bridge this gap. Specifically,
these theorems demonstrate correct syntax, such as namespace usage and type coercions (e.g.,
T pB), and illustrate structural patterns regarding implicit, explicit, or typeclass argument bind-
ing. Crucially, they also reveal hidden requirements, such as non-obvious typeclass instances (e.g.,
[ConNF .FOAAssumptions]) that are contextually necessary, and guide correct semantic for-
mulations (e.g., distinguishing set vs. type cardinality) that are not explicitly stated in the informal
problem.

Example 1: ConNF .Pretangle.ofCoe_inj (Claude-Opus-4)

The Problem: ConNF.Pretangle.ofCoe_in7j is a theorem in Lean 4 that states the injectiv-
ity of the ConNF .Pretangle.ofCoe function in the context of Constructive Ordinal Notation
(ConNF). This theorem asserts that two pretangles a and b are equal if and only if their images
under the ConNF .Pretangle.ofCoe function are equal.

Gold Statement:

@[simp]ltheorem ConNF.Pretangle.ofCoe_inj [ConNF.Params] {a : ConNF.A}
{a : ConNF.Pretangle Ta} {b : ConNF.Pretangle T«
}:ConNF.Pretangle.ofCoe a = ConNF.Pretangle.ofCoe b < a = b := by
sorry

Oracle* Dependent Premises:

ConNF .Params
ConNF.Pretangle

Oracle* (failed typecheck): The failure here is a type signature mismatch. The generated statement
defined the universal level o as a generic TypeIndex, whereas the library requires the specific
model index type (ConNF.A). Consequently, the model failed to apply the necessary type coercion
(1 @) required for Pretangle in this context. The premise list provided the names and declaration
of those premises, but not the specific type constraints to apply.

theorem Pretangle.ofCoe_inj [Params] {a : TypelIndex} {a b : Pretangle «a}
Pretangle.ofCoe a = Pretangle.ofCoe b < a = b := by sorry
DRIFT (correct):

theorem ConNF.Pretangle.ofCoe_inj [ConNF.Params] {«a : ConNF.A} {a b
ConNF.Pretangle «} : ConNF.Pretangle.ofCoe a = ConNF.Pretangle.ofCoe
b < a =Db := by sorry

The key retrieved theorems: The retrieved theorem ConNF .Pretangle.toCoe_inj provided a
structural template.

theorem toCoe_inj {a b} : (toCoe a : Pretangle a) = toCoe b < a = b :=
toCoe.injective.eq iff

Example 2: ConNF . StructAction.refine precise (DeepSeek-V3.1)

The Problem: The theorem ConNF.StructAction.refine_precise states that if ¢ is a
[B-structural action that satisfies the lawfulness condition for each -extended index, then the re-
fined S-structural action ConNF . StructAction.refine ¢ hy is precise, meaning it assigns
a precise near-litter action to each 3-extended index.

Gold Statement:

theorem ConNF.StructAction.refine_precise [ConNF.Params] {8
ConNF.TypelIndex} {¢ : ConNF.StructAction 5} {hy
ConNF.StructAction.Lawful ¢} :ConNF.StructAction.Precise
(ConNF.StructAction.refine ¢ hy) := by sorry

Oracle* Dependent Premises:

23

Under review as a conference paper at ICLR 2026

ConNF.Params
ConNF.StructAction.refine
ConNF.StructAction
ConNF.StructAction.Precise
ConNF.StructAction.Lawful

Oracle* (failed BEq+): The model failed the bidirectional equivalence check due to argument struc-
ture. It incorrectly typed the parameter 5 as ConNF . A instead of ConNF . TypeIndex and failed
to structure the hypothesis h¢ as an instance-implicit argument.

theorem ConNF.StructAction.refine_precise [ConNF.Params] {f : ConNF.A}
(p : ConNF.StructAction B) (he : ConNF.StructAction.Lawful ¢)
ConNF.StructAction.Precise (ConNF.StructAction.refine ¢ hy) := by
sorry

DRIFT (correct):

theorem ConNF.StructAction.refine_precise [ConNF.Params] {f :
ConNF.TypelIndex} {¢ : ConNF.StructAction B} {hep
ConNF.StructAction.Lawful ¢} : ConNF.StructAction.Precise
(ConNF.StructAction.refine ¢) := by sorry

The key retrieved theorems: The retrieved theorem ConNF .NearLitterAction.refine_precise
showed the correct usage pattern for “precise” predicates, implicitly suggesting the argument struc-
ture that allowed DRIFT to match the library’s conventions.

theorem refine_precise : Precise (gp.refine hy) := fillAtomOrbits_precise
(fillAtomRange_symmDiff_ subset_ran hy)

Example 3: ConNF .CodingFunction.mem of_smul mem (GPT-4.1)

The Problem: In the context of Constructive Ordinal Notation (ConNF), the theorem
ConNF.CodingFunction.mem_of_smul_mem asserts that for any CodingFunction x at
level B,if p « S (where pisanAllowable and S is a Support) is in the domain of y, then S
itself must also be in the domain of .

Gold Statement:

theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
[ConNF.Level] [ConNF.FOAAssumptions] {8 : ConNF.A} [ConNF.LeLevel 13
] {x : ConNF.CodingFunction B} {S : ConNF.Support 18} {p
ConNF.Allowable 18} (h : p - S € x) :S € x := by sorry

Oracle* Dependent Premises:

ConNF .Params
ConNF.LeLevel
ConNF.CodingFunction
ConNF'. Support

Oracle* (failed typecheck): The model failed to compile the statement because it missed critical,
non-obvious constraints: the global typeclass instance [ConNF .FOAAssumptions] and the spe-
cific type coercion from 3 to 1 3 for the “LeLevel” instance.

theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
[ConNF.Level] {f : ConNF.A} [ConNF.LelLevel (] (x
ConNF.CodingFunction) (p : ConNF.Allowable [) (S : ConNF.Support
) : (x.decode (p - S)).isSome — (x.decode S).isSome := by sorry

DRIFT (correct):

theorem ConNF.CodingFunction.mem_of_smul_mem [ConNF.Params]
[ConNF.Level] [ConNF.FOAAssumptions] {8 : ConNF.A} [ConNF.LeLevel 13
] (x : ConNF.CodingFunction f) (p : ConNF.Allowable 718) (S
ConNF.Support) : S € x.domain — p - S € x.domain := by sorry

24

Under review as a conference paper at ICLR 2026

The key retrieved theorems: The retrieved theorem ConNF . CodingFunction. supports_decode
demonstrated the interaction between CodingFunction 3, Support ,and Allowable f.

theorem supports_decode {x : CodingFunction [} (S : Support B) (hS : S €
X) : Supports (Allowable) (S : Set (Address f)) ((x.decode S).get
hS) := x.supports_decode’ S hS

While not identical, it provided a contextual example of how these types work together, guiding the
model to infer the correct, more complex signature.

Example 4: ConNF .mk _nearLitter’’ (Claude-Opus-4)

The problem: The size of each near-litter in the context of Constructive Ordinal Notation (ConNF)
is equal to the cardinality of the type «.

Gold Statement:

@[simp]theorem ConNF.mk_nearLitter’’ [ConNF.Params] (N
ConNF .NearLitter) :Cardinal.mk IN = Cardinal.mk ConNF.k := by sorry

Oracle* Dependent Premises:

ConNF .Params
Cardinal .mk

Oracle* (failed BEq+): The Oracle* based statement committed a semantic formulation error. It
hallucinated a theorem equating the cardinality of the Type ConNF .NearLitter to k. The prob-
lem asks about the size of individual near-litter sets (coerced from “N”), not the cardinality of the
type containing all near-litters.

theorem ConNF.mk_nearLitter’’ [ConNF.Params] : Cardinal.mk
ConNF.NearLitter = Cardinal.mk ConNF.k := by sorry

DRIFT (correct):

theorem ConNF.mk_nearLitter’’ [ConNF.Params] (L : ConNF.Litter) (s : Set
ConNF .Atom) (h : ConNF.IsNearLitter L s) : Cardinal.mk s =
Cardinal.mk ConNF.k := by sorry

The key retrieved theorems: DRIFT retrieved ConNF .mk_litterSet, which shows that cardi-
nality theorems in this library typically apply to a specific set s (e.g., “litterSet L) rather than types.
This scaffolding helped the model correctly formulate the theorem using an explicit set s and the
witness hypothesis ConNF . IsNearLitter L s.

theorem mk_litterSet (L : Litter) : #(litterSet L) = #k := Cardinal.eq.2
(litterSetEquiv L)

A.3.3 FAILURE ANALYSIS FOR ABLATION STUDY (CONNF)

From the ablation study in Table 3] in Section [5.3] we found that on ConNF and MiniF2F-test,
removing the Decompose module after Illustrate, does not degrade the performance further. For
MiniF2F-test, our analysis in Appendix [A.3.T]indicates that the benchmark relies minimally on de-
pendent premises. In this regime, additional context frequently introduces distraction rather than
aid, making performance fluctuations more attributable to the stochastic nature of generation. We
provide a deep analysis based on ConNF for this phenomena. In the following examples, we pro-
vided cases where the “Base Retriever” (DRIFT w/o Illustrate and w/o Decompose) and “DRIFT”
succeeded, while “DRIFT Premises Only” (w/o Illustrate) failed. Despite DRIFT’s higher global
recall (40.6% vs 32.0% for GPT-4), this breakdown reveals qualitative differences in retrieval: Base
Retriever often finds “lexically close” helper lemmas (e.g., invFun_as_coe), while DRIFT re-
trieves a more diverse set of premises across namespaces. Consequently, DRIFT Premises Only
failures stem from (1) local recall gaps (missing specific helpers found by Base) or (2) application
gaps (retrieving broader definitions but failing to apply them without usage examples). Full DRIFT
bridges these gaps via theorem scaffolding.

25

Under review as a conference paper at ICLR 2026

These comparisons reveal that even when DRIFT Premises Only retrieves the necessary definitions
(as in Examples 1 and 3), it often fails to apply them correctly, suffering from application gaps. Base
Retriever sometimes avoids this by finding exact match lemmas (Example 2) or perhaps through
favorable ranking (Example 1). However, Full DRIFT proves most robust because its retrieved
theorems provide the necessary application knowledge (e.g., templates, style guides, and usage ex-
amples) that allow the model to synthesize the correct solution even when an exact-match lemma is
missing or when the model is prone to syntax hallucinations.

Another key observation is the diversity of retrieved premises. The Base Retriever typically finds
premises within the exact or very close namespaces (e.g., PartialPerm.invFun_as_coe or
Cardinal. x), effectively locating “lexically close” helper lemmas. In contrast, DRIFT retrieves
a more diverse set of premises, often including broader concepts (e.g., Set, PartialOrder,
PFun.image) or related but distinct namespaces (e.g., Equiv vs PartialPerm). While this
diversity can bridge conceptual gaps (as seen in Example 2 with PartialEquiv), it can also
introduce distractions if the model lacks the scaffolding to navigate these broader definitions.

Example 1: Equiv.Perm.toPartialPerm inv (Claude-Opus-4)

The Problem: Prove that the inverse of a permutation, when converted to a partial permutation, is
equal to the inverse of the partial permutation obtained from the original.

Gold Statement:

@[simp]theorem thm_P {a : Type u_1l} (m : Equiv.Perm «)
1

:Equiv.Perm.toPartialPerm 7w ~ = PartialPerm.symm
(Equiv.Perm.toPartialPerm m) := by sorry
Base Retriever (Success): The Base Retriever successfully found

PartialPerm.toPartialEquiv (ranked 2nd), which helped the model infer the cor-
rect structure.

theorem Equiv.Perm.toPartialPerm_inv {a : Typex} (f : Equiv.Perm «)
f~!.toPartialPerm = f.toPartialPerm.symm := by sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
PartialPerm.toPartialEquiv
PartialPerm.refl
PartialPerm.symm
PartialPerm

DRIFT Premises Only (failed typecheck): The model retrieved
PartialPerm.toPartialEquiv (ranked 3rd) but failed to understand how to use it to
bridge Equiv.Perm and PartialPerm.symm. Instead, it hallucinated an invalid usage
m.symm.toPartialPerm.

theorem Equiv.Perm.toPartialPerm_inv {a : Typex} (m : Equiv.Perm «) : 7
.symm.toPartialPerm = w.toPartialPerm.symm := by sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
PartialPerm.symm
PartialPerm.toPartialEquiv
PartialPerm

Equiv.Perm

Full DRIFT (Success): Full DRIFT succeeded because the retrieved theorems explicitly demon-
strated the pattern of commuting operations (moving symm across toPartialEquiv), acting as
a structural scaffold.

theorem Equiv.Perm.toPartialPerm_inv {a : Type u_1l} (w7 : Equiv.Perm «)
(m™') .toPartialPerm = (m.toPartialPerm) .symm := by sorry

26

Under review as a conference paper at ICLR 2026

Key retrieved theorems:

theorem toPartialEquiv_symm : w.symm.toPartialEquiv = 7w
.toPartialEquiv.symm := rfl

Example 2: PartialPerm.coe_toPartialEquiv_symm (gpt-4.1)

The Problem: The theorem states that for a partial permutation 7, the inverse of the partial equiva-
lence obtained from 7 is equal to the function representing the inverse of .

Gold Statement:

@[simp]theorem thm_P {a : Type u_1l} (m : PartialPerm «)
:T(PartialEquiv.symm (PartialPerm.toPartialEquiv m)) =
(PartialPerm.symm 7) .toFun := by sorry

Base Retriever (Success): Base Retriever found helper lemmas like invFun_as_coe and
toFun_as_coe, which directly link the function coercion to the inverse, guiding the model to a
correct formulation using invFun.

theorem PartialPerm.coe_toPartialEquiv_symm {a : Typex} (m : PartialPerm
a) : ((m.toPartialEquiv) .symm : Part (o — «)) = w.invFun := by sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
PartialPerm.toPartialEquiv
PartialPerm.invFun_as_coe
PartialPerm.symm
PartialPerm.toFun_as_coe

DRIFT Premises Only (failed typecheck): The model retrieved the necessary definitions but
failed to apply them correctly. It attempted to apply PartialEquiv.symm directly to 7 (a
PartialPerm) without converting it first, resulting in a type error.

theorem PartialPerm.coe_toPartialEquiv_symm {a : Typex} (m : PartialPerm
«) : (PartialPerm.symm 7) .toFun = (PartialEquiv.symm 7).toFun := by
sorry

Key retrieved premises:

Equiv.Perm.toPartialPerm
Equiv.toPartialEquiv
PartialEquiv.symm
PartialPerm.symm
PartialPerm

Full DRIFT (Success): Full DRIFT retrieved the theorem toPartialEquiv_symm, which pro-
vides an exact template for the equality between the symmetric partial equivalence and the partial
equivalence of the symmetric permutation. This scaffold allowed the model to construct a correct
statement.

theorem PartialPerm.coe_toPartialEquiv_symm {a : Typex} (m : PartialPerm
a) : (PartialPerm.toPartialEquiv m) .symm =
PartialPerm.toPartialEquiv (PartialPerm.symm 7) := by sorry

Key retrieved theorems:

theorem toPartialEquiv_symm : w.symm.toPartialEquiv = m
.toPartialEquiv.symm := rfl

Example 3: Cardinal.nonempty _compl of mk_1t mk (Claude-Opus-4)

27

Under review as a conference paper at ICLR 2026

The Problem: If the cardinality of set s is less than the cardinality of type «, then the complement
s¢ is nonempty.

Gold Statement:

theorem thm P {a : Type u} {s : Set a} (h : Cardinal.mk Ts < Cardinal.mk
a) :Set.Nonempty s := by sorry

Base Retriever (Success): Base Retriever correctly identified and retrieved the function
Cardinal .mk, enabling the model to apply the premise correctly.

theorem Cardinal.nonempty_compl_of _mk_1t_mk {a : Typex} {s : Set a} (h
Cardinal.mk s < Cardinal.mk «) : (s°) .Nonempty := by sorry

Key retrieved premises:

Set .Nonempty
Cardinal.mk
Cardinal
Cardinal.IsRegular
Cardinal.alephO

DRIFT Premises Only (failed typecheck): Despite retrieving Cardinal .mk (ranked 2nd, same as
Base), the model failed to prioritize it over the notation #s. The use of #s < #a without opening
the necessary namespaces caused a typecheck failure.

theorem Cardinal.nonempty_compl_of_mk_1lt_mk {a : Typex} {s : Set a} (h
#s < #a) : (s .Nonempty := by sorry

Key retrieved premises:

Set .Nonempty
Cardinal.mk
Set

Full DRIFT (Success): Full DRIFT succeeded because it retrieved the theorem
ConNF.pu-lemk_cloud, which explicitly uses Cardinal.mk. This scaffolding guided
the model to prefer the explicit function over the notation.

theorem Cardinal.nonempty_compl_of _mk 1t _mk {a : Typex} {s : Set a} (h
Cardinal.mk s < Cardinal.mk «) : Set.Nonempty s := by sorry

Key retrieved theorems:

theorem pu_le_mk_cloud : s.Nonempty — #u < #(cloud hyf8 s) := by
rintro <t, ht>
refine’ (Cardinal.mk_le_mk_of_subset <| subset_cloud ht).trans_eq’
rw [Cardinal.mk_image_eq, mk_localCardinal]
exact typedNearLitter.inij’

A.4 PROMPT TEMPLATES

A.4.1 DECOMPOSITION PROMPT

This appendix contains the complete prompt used to decompose informal mathematical statements
into retrieval queries (the Decompose module). It is composed of two parts: a system prompt that

defines the model’s expert persona and overall task, and a user prompt template that structures the
specific input and desired output format.

You are an expert in formal mathematics. Your task is to decompose
an informal mathematical statement into a set of natural

28

Under review as a conference paper at ICLR 2026

language queries. These queries are for retrieving the precise
definitions, theorems, and structures from a formal mathematics
library (like mathlib) that are necessary to xxformalizexx the
statement.

Your response must be in LaTeX. Decompose the statement into a
list of queries, with each query enclosed in a ‘\\boxed{({}}"‘
command. The goal is to identify the building blocks for
writing the statement formally, xxnot** to find a proof.

You need to:

1. Analyze the informal statement and identify its key
mathematical components that need formal definitions

2. Break down the statement into natural language queries that
describe the mathematical concepts and structures needed for
formalization

3. from the best of your knowledge, come up with the Lean
representation of it.

4. Focus on what needs to be defined and the implicit hypothesis.

Given the xxInformal statementxx, decompose the informal statement
into retrieval queries for xxformalizingxx (not proving) the
statement. Each query must:

— Describe mathematical definitions, structures, or concepts
needed to formally express the statement in Lean 4

- Explain what mathematical objects or type signatures are involved

— Read as a complete sentence that teaches about the formal
mathematical structure

— Focus on how to represent concepts formally rather than how to
prove them

- Sound like an excerpt from a mathematics reference that explains
formal definitions

**Important*«*:

— The goal is FORMALIZATION (translating to Lean 4), NOT finding
proof strategies

- Write informative descriptions that explain formal concepts and
definitions

- Each query should describe mathematical structures or type
information

- Avoid interrogative words (what, how, when, why, etc.)

— The queries should collectively cover all definitions and
structures needed to write the formal statement

Please return each query using the \\boxed{{}} LaTeX command.

{few_shot_examples}

*xInformal statementxx:
{informal_statement}

«**Decomposed queries for formalizationw*x:

A.4.2 FORMALIZATION PROMPT

This appendix contains the complete prompt used to formalize informal mathematical statements
into formal statements (the Formalize Theorems module). It is composed of two parts: a system

29

Under review as a conference paper at ICLR 2026

prompt that defines the model’s expert persona and overall task, and a user prompt template that
structures the specific input and desired output format.

You are an advanced assistant specializing in formal mathematics
and Lean 4 theorem proving. You have extensive expertise in
translating mathematical concepts from natural language into
precise Lean 4 code. Please make sure the generated Lean 4 code
compiles with {libraries} and Lean version {lean_version}.

Given the potential dependent premises listed under **Potential
dependent premises** (some may be irrelevant) and the
demonstration examples under xxDemonstration examplesx*x,
translate the natural language statement provided under =%
Informal statement** into a formal Lean 4 theorem. Use the
theorem name specified under **Namexx as the Lean identifier.

Your response must:

- Write only valid Lean 4 code with clear and idiomatic use of
Lean syntax and conventions
— Include only the formalization - do not include any headers,
explanations, or proofs
— Use the provided name as the theorem identifier, ensuring it
adheres to Lean’s naming conventions (no hyphens, prefer
snake_case or camelCase)
— Faithfully capture the meaning of the informal statement, paying
close attention to:
- Predicate usage and logical structure
Type class inference
Quantifier scope and binding
Mathematical notation and operations
— Enclose all code within triple backticks with the ‘lean‘
language identifier

Expected Output Format:

‘Y‘lean
theorem [NAME] : [Lean formalization of the statement] := by sorry
Guidelines:

— Select only the relevant premises from those provided

- Ensure proper type annotations where necessary

- Use standard Lean 4 mathematical library conventions, Lean
version {lean_version}

- Maintain logical equivalence with the informal statement

— Keep the formalization as clean and readable as possible

+**xPotential dependent premisesxx
{dependent_premises_list}

+Demonstration examplesxx
{theorems_1list}

**Name x x
{problem_full_name}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

*xInformal statementxx
{problem_informal_statement}

31

	Introduction
	Related Work
	Methodology
	Decompose
	Retrieve
	Illustrate
	Formalize Theorems

	Experimental Setup
	Benchmarks
	Baselines
	Implementation Details
	Evaluation Metrics

	Results and Discussion
	Dependency Retrieval
	Formalization
	Ablation study

	Conclusion
	Appendix
	Implementation Details
	Few-Shot Examples for Decomposition
	Retriever Finetuning Details
	LLM Generation Parameters

	Additional Results and Discussion
	Dependency Retrieval Performance Metrics
	Dependency Retrieval Results of RAuto
	Autoformalization Results of Claude-Opus-4
	The Role of Illustrative Theorems as a Scaffold
	Scaling Performance with Sampling
	Parametric Retrieval
	Statistics of Decomposed Sub-queries
	Diminishing returns of increasing Illustrative Theorems
	Theoretical gains of Adaptive Retrieval on Self-contained Benchmarks
	Comparison with Finetuned Autoformalizer

	Qualitative Analysis
	MiniF2F-test Failure Analysis
	Drift outperforming Oracle* retrieval
	Failure Analysis for Ablation Study (ConNF)

	Prompt Templates
	Decomposition Prompt
	Formalization Prompt

