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ABSTRACT

Automating the formalization of mathematical statements for theorem proving re-
mains a major challenge for Large Language Models (LLMs). LLMs struggle to
identify and utilize the prerequisite mathematical knowledge and its correspond-
ing formal representation in languages like Lean. Current retrieval-augmented
autoformalization methods query external libraries using the informal statement
directly, but overlook a fundamental limitation: informal mathematical statements
are often complex and offer limited context on the underlying math concepts.
To address this, we introduce DRIFT, a novel framework that enables LLMs to
decompose informal mathematical statements into smaller, more tractable “sub-
components”. This facilitates targeted retrieval of premises from mathematical
libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to
help models use premises more effectively in formalization tasks. We evaluate
DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find
that it consistently improves premise retrieval, nearly doubling the F1 score com-
pared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong per-
formance on the out-of-distribution ConNF benchmark, with BEq+@10 improve-
ments of 37.14% and 42.25% using GPT-4.1 and DeepSeek-V3.1, respectively.
Our analysis shows that retrieval effectiveness in mathematical autoformalization
depends heavily on model-specific knowledge boundaries, highlighting the need
for adaptive retrieval strategies aligned with each model’s capabilities.

1 INTRODUCTION

Autoformalization is formulated as a translation task that aims to translate natural language math-
ematical descriptions into machine-verifiable statements written in formal languages, such as
Coq (Barras et al., 1997), Isabelle (Paulson, 1994), and Lean (De Moura et al., 2015). Previous
work has shown that accurate autoformalization is a critical step towards developing automated the-
orem proving systems (Lin et al., 2025b; Chen et al., 2025; Xin et al., 2024; Lin et al., 2025c), and
ultimately assist mathematicians in new discoveries (Gouëzel & Shchur, 2019; Leang et al., 2025).
Despite recent progress of Large Language Models (LLMs) in informal mathematical reasoning
(Ahn et al., 2024; Setlur et al., 2024; Luong & Lockhart, 2025), formal reasoning presents distinct
challenges. The strict syntax and necessity for precise alignment between informal concepts and
formal definitions mean that even powerful pretrained models often fail at autoformalization tasks
off-the-shelf (Wu et al., 2025).

Although synthetic data generation could enable the fine-tuning of LLMs for autoformaliza-
tion (Jiang et al., 2023; Lin et al., 2025a; Wang et al., 2024; Ying et al., 2024), the knowledge
cut-off issue raised by updating formal libraries like Mathlib (Mathlib Community, 2020) makes
finetuned models prone to hallucinating non-existent formal objects that have been renamed, reor-
ganized or deprecated (Baanen et al., 2025). Early retrieval-augmented methods addressed this by
retrieving similar theorems from external libraries to provide useful syntactic structure and com-
positional examples. However, their practical utility as exemplars has been limited by the retrieval
methods used to find them. These methods often lack task-specific training data and rely on general-
purpose techniques like keyword searching (Agrawal et al., 2022), k-NN (Azerbayev et al., 2023),
or pretrained dense retrievers (Zhang et al., 2024). Liu et al. (2025) introduced dependency retrieval
task and developed the RAutoformalizer (RAuto) framework. Similar to the premise selection for
proof generation (Yang et al., 2023), this paradigm enables the training of specialized retrievers to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of the DRIFT framework. Given an informal statement, Given an informal
statement, DRIFT operates in four stages. ① Decompose: An LLM breaks down the statement into
atomic, concept-focused sub-queries (Q) (§3.1). ② Retrieve: For each sub-query, a dense retriever
identifies foundational dependent premises from a formal library (§3.2). ③ Illustrate: A greedy
algorithm selects a small set of theorems that demonstrate the practical usage of these retrieved
premises (§3.3). ④ Formalize: Finally, conditioned on all retrieved context, an LLM synthesizes the
final formal statement (§3.4). The oracle* dependent premises are colored in the formal statement.

identify the exact definitions that formal statements require. However, this new approach created
a key trade-off: focusing on individual components meant losing the valuable context provided by
full theorem statements. Based on this, we identify two main limitations in the current approach
to retrieval-augmented autoformalization: Informal statements are often dense and multifaceted.
This underlying complexity of queries makes them suboptimal as direct queries for retrieving the
precise, atomic definitions required for formalization. Additionally, even when the correct formal
definitions are retrieved, models often lack the knowledge of contextual usage required to correctly
structure and integrate them into the formal statement.

In information retrieval, query enhancement techniques like query expansion (Chan et al., 2024),
pseudo-document generation (Gao et al., 2023), and neural query rewriting (Wang et al., 2025)
have demonstrated effectiveness of reformulating queries to provide more semantic information.
Query decomposition has proven particularly useful for multi-hop question answering, as it matches
the granularity of the dense query statements with the indexed documents (Ammann et al., 2025).
In addition to retrieving correct premises, providing rich context like exemplar proofs can guide
proof generation effectively (He et al., 2024; Thakur et al., 2024; Thompson et al., 2025). De-
spite advances in adjacent domains, these techniques have not yet been systematically applied to
dependency retrieval for autoformalization, which still relies on monolithic queries and provides
context-free definitions.

We propose DRIFT, a novel framework depicted in Figure 1, that enhances retrieval-augmented
autoformalization by adapting query decomposition and context augmentation to address unique
challenges of theorem autoformalization. To address complex queries, we adapt query decomposi-
tion to break down complex informal statements into a series of simpler, atomic sub-queries. Each
sub-query targets a single mathematical concept, transforming a multifaceted retrieval problem into
focused, precise searches. Second, to illustrate the usage of the dependencies, we contextualize the
retrieved definitions with demonstrative theorems, giving the model concrete examples of syntax
and application patterns.

Contributions. 1) We introduce DRIFT (Decompose, Retrieve, Illustrate, then Formalize
Theorems), a decomposition-driven retrieval augmented formalization framework that breaks down
informal mathematical statements into atomic sub-queries and contextualizes retrieved premises
with demonstrative theorems, transforming monolithic retrieval into a process aligned with the de-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

pendency structure of formal mathematics. 2) Our experiments establish new state-of-the-art in
dependency retrieval and autoformalization on ProofNet and ConNF across models, with excep-
tional performance on out-of-distribution ConNF benchmark. 3) Through systematic analysis, we
establish that the utility of retrieved dependencies is conditioned on the gap between a model’s para-
metric knowledge and the statement complexity. These insights reveal critical design considerations
for retrieval-augmented systems and point toward the necessity of adaptive strategies that can assess
when external knowledge genuinely complements model capabilities.

2 RELATED WORK

Retrieval-augmented Autoformalization. Early retrieval-augmented autoformalization methods
retrieved similar theorems as few-shot examples: ProofNet (Azerbayev et al., 2023) employs k-
NN search, while MS-RAG (Zhang et al., 2024) uses informal-to-informal retrieval with iterative
refinement. LTRAG (Hu et al., 2025) retrieves thought-guided theorem pairs for neuro-symbolic
formalization. Liu et al. (2025) established this paradigm by introducing “dependency retrieval”,
a premise selection task specialized for autoformalization: given an informal statement, retrieve
the precise set of formal objects and definitions Poracle* that are required for its autoformalization
from a library D (e.g. Mathlib). While RAutoformalizer (RAuto) (Liu et al., 2025) demonstrated
improvements over non-retrieval methods, evaluation revealed a significant gap compared to oracle
systems with ground-truth dependencies. CRANF (Lu et al., 2025) attempts conceptual mapping
between abstraction levels. Critically, all existing approaches treat complex statements as monolithic
queries, failing to identify distinct mathematical concepts within them.

Query Decomposition and Enhancement. Query enhancement has proven effective across re-
trieval tasks. Query2Doc (Wang et al., 2023) and HyDE (Gao et al., 2023) generate pseudo-
documents to expand semantic coverage. SemanticSearch (Gao et al., 2024) augment the informal
statement by prompting an LLM to translate the query into a detailed statement with both informal
and formal expressions. However, they only evaluated with similar theorem retrieval but not on the
downstream formalization. More relevant to our work, query decomposition has shown success in
multi-hop question answering (Ammann et al., 2025), where breaking complex questions into sub-
queries improves retrieval of distinct information aspects. Zhao et al. (2023) and Jiang et al. (2022)
applied similar decompositions to theorem proving, showing the effectiveness of divide and con-
quer in formal math. Despite these successes, no prior work has applied decomposition to informal
mathematical statements for autoformalization.

3 METHODOLOGY

We introduce DRIFT (Decompose, Retrieve, Illustrate, then Formalize Theorems), a novel four-
stage method designed to address the two main limitations of previous retrieval-augmented formal-
ization methods, 1) handling the complexity of informal statements and 2) the lack of demonstrative
examples for retrieved formal objects. As a first step, an LLM decomposes the informal statement
into a set of smaller, granular sub-queries (§3.1). These queries then guide the retrieval of dependent
premises from a formal library such as Mathlib (§3.2). In a subsequent, bottom-up illustration step,
we find theorems that utilize the retrieved premises, providing in-context demonstrations of their
application (§3.3). Finally, the LLM formalizes the original statement, conditioned on all retrieved
premises and theorems (§3.4). This process is visualized in Figure 1.

3.1 DECOMPOSE

Standard retrieval methods often treat complex informal statements as monolithic queries and simply
embed the entire statement. This approach disregards the rich semantic structure within a statement,
which may contain multiple distinct mathematical concepts. Their complexity means that a state-
ment could be under-specified, ambiguous and/or simply too information-dense to be used as is.
Compressing the entire statement’s meaning into a single dense vector creates a representational
bottleneck, risking the loss of nuanced details and focusing the retrieval on only the most salient
concepts. We hypothesize that by decomposing an informal statement into its constituent concepts,
we can perform a more granular and accurate retrieval for each concept.

3
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To this end, DRIFT begins with a Decompose module (panel ① in Figure 1), which is implemented as
an LLM tasked with breaking down an informal statement (IF ) into a set of structured sub-queries,
Q, see Equation 1. While the decomposer could be a finetuned model, we leverage in-context
learning (ICL) with off-the-shelf LLMs in this study.

Decomposer(IF ) → Q = {(qi, l̂i)}ni=1 (1)

Each sub-query Qi = (qi, l̂i) is designed to isolate a single mathematical concept. As illustrated
in Figure 1, the component qi is a natural language phrase describing the concept (e.g., “A prime
number p of the form 4t + 3 is a prime that leaves remainder 3 when divided by 4”) while l̂i is a
predicted formal representation for that concept (e.g., “p : N with the conditions Nat.Prime p and p
% 4 = 3, where % denotes the modulo operation on natural numbers.”). Appending this predicted
formal name serves a dual purpose. First, it probes the LLM’s parametric knowledge, providing a
syntactic “anchor” for the concept. Second, it allows the retriever to jointly leverage the semantics
of the natural language phrase qi and the syntactic cues from l̂i to identify the correct premise even
in the presence of minor inaccuracies in the predicted formal representations.

3.2 RETRIEVE

The Retrieve module is designed to identify dependent premises from the library that correspond
to the concepts isolated in each sub-query. This one-to-one mapping is visualized in the ② panel of
Figure 1, which shows each sub-query (Qi) being linked to a formal object (e.g., PNat.Prime).
To accomplish this, we implement a dense passage retriever (Karpukhin et al., 2020) using a BGE-
M3 (Chen et al., 2024) encoder (Eθ), finetuned on the dependency prediction task as introduced
by Liu et al. (2025). This training objective aligns the formal dependencies with their informal
statement, thereby making semantic similarity a strong proxy for logical dependency. We achieve
this by encoding queries and formal library objects into a shared d-dimensional embedding space.
The vector representations p = Eθ(p) for all formal objects p ∈ D are pre-computed in an offline
step and stored in an efficient search index. At inference, each sub-query is encoded into a vector
qi = Eθ(Qi) and the closest dependent premise pi is identified by finding the library object that
maximizes the cosine similarity score, ϕ with the query vector. This is formally defined as:

pi = argmax
p∈D

(ϕ(qi,p)) (2)

where ϕ(qi,p) =
qi·p

∥qi∥∥p∥ . The final set of dependent premises, RDRIFT, is formed by aggregating
the top-1 result from each sub-query and removing duplicates: RDRIFT =

⋃n
i=1{pi}.

3.3 ILLUSTRATE

Retrieving useful formal definitions is a necessary first step, however, it is not sufficient for success-
ful autoformalization. For instance, a retrieved definition like def ZMod : N → Type tells
the model what the concept is, but provides no further guidance on its practical application such as
the syntax for declaring a variable of that type (a : ZMod p). This gap between definition and
usage is a primary source of syntactic and structural errors in LLM-generated formal statements.

The Illustrate module is designed to bridge this gap by providing examples of formal object usage,
visualized in Figure 1 (panel ③). Given a premise like ZMod from the “Retrieve” step, the module
selects illustrative theorems, e.g. “Theorem 2” which demonstrates the correct application of ZMod.
The module takes the set of retrieved premises RDRIFT, and a budget m, as input, and outputs a small
set of illustrative theorems T , where |T | ≤ m. The selection process is a greedy algorithm designed
to maximize the coverage of the input premises RDRIFT as follows. First, we compile a candidate set
Tcand of all theorems in library D that utilize at least one of the retrieved premises RDRIFT.

In order to ensure relevance and provide a deterministic tie-breaker, we pre-sort this candidate set
by the semantic similarity of each theorem’s informal statement IFcand to the original informal
statement IF . The cosine similarity is computed using vectors from the same encoder Eθ as the
retrieval stage: pre sort(Tcand) = ϕ(Eθ(IFcand), Eθ(IF ).

The final set of illustrative theorems T is built iteratively. The process begins by initializing an
empty set of selected theorems T0 = ∅ and an empty set of covered premises Pcov,0 = ∅. At each
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step j = 1, . . . ,m, we select the theorem tj that provides the maximal marginal gain by including
the most new premises in RDRIFT not previously covered:

tj = argmax
t∈Tcand\Tj−1

|P(t) ∩ (RDRIFT \ Pcov,j−1)| (3)

where P(t) is the set of premises used in theorem t. After selecting tj , the sets are updated for the
next iteration: Tj = Tj−1 ∪ {tj} and Pcov,j = Pcov,j−1 ∪ (P(tj)∩RDRIFT). The process terminates
when either the budget of m theorems is reached or when no remaining candidate theorem can offer
additional coverage (i.e., the marginal gain is zero). The final set T = Tj from the last iteration j.

3.4 FORMALIZE THEOREMS

The final DRIFT step is Formalize Theorems, shown in panel ④ of Figure 1. The formalizer assem-
bles the previously gathered definitions and theorem demonstrations into a comprehensive prompt
C and generates the final formal statement. The formalization module is designed to be flexible and
can be implemented with either a finetuned model or a general-purpose LLM guided with ICL. The
formalizer compiles information in the following logical order: C = I ⊕ RDRIFT ⊕ T ⊕ IF , where
⊕ denotes the concatenation operator, I is a formalization instruction (details in Appendix A.3.2),
RDRIFT are the retrieved premises, T are the illustrative theorems and IF is the original informal
statement. Conditioned on this comprehensive prompt, the formalizer then generates the final output
of the DRIFT framework, the formal statement FS = Formalizer(C).

4 EXPERIMENTAL SETUP

4.1 BENCHMARKS

We evaluate DRIFT on three distinct autoformalization benchmarks to test its in-distribution, self-
contained and out-of-distribution performance. While the experiments are conducted in Lean, our
framework is language-agnostic and adaptable to other formal systems with structured libraries.

ProofNet (In-Distribution). We use the ProofNet benchmark (Azerbayev et al., 2023) for in-
distribution evaluation. Its 374 theorems, sourced from undergraduate mathematics textbooks, are
integrated with the Mathlib library and require an average of 3.39 dependent premises from over
243k formal objects (including 139k theorems). This benchmark tests the framework’s primary
function, which is to effectively retrieve and utilize dependent premises with demonstration from a
large-scale, in-distribution knowledge base.

MiniF2F (Self-Contained). We use the MiniF2F-test set (Zheng et al., 2021) to evaluate the frame-
work on self-contained problems. This benchmark consists of 224 Olympiad-style theorems with a
notably low average of just 0.43 dependencies from Mathlib1. MiniF2F-test serves as a boundary
condition, testing the model’s core formalization capabilities and its robustness against potentially
distracting context when retrieval is not strictly necessary.

ConNF (Out-of-Distribution). The OOD challenge refers to evaluation scenarios where neither the
retrieval model nor the formalization model has been exposed to the formal objects used in the test
data2. We therefore evaluate on ConNF, a benchmark curated by Liu et al. (2025) through topolog-
ical informalization to test OOD generalization. This benchmark is based on the con-nf library
and is not integrated with Mathlib3. It formalizes a consistency proof for Quine’s New Founda-
tions (Quine, 1951), established by Holmes & Wilshaw (2015) and contains 961 research-level theo-
rems requiring an average of 3.92 premises from its distinct library of 1,348 formal objects. ConNF
provides a rigorous test of DRIFT’s ability to generalize to a novel mathematical domain (Zhang
et al., 2024).

1We removed duplicate and low-quality pairs that do not compile with our Lean version (4.18.0).
2The knowledge cutoff dates of the models we used are June 2024, March 2025 and July 2025, for GPT-4.1,

Claude-Opus-4, and DeepSeek-3.1, respectively. Though there is a risk of exposure to the formalizer which
cannot be controlled or confirmed, from our zero-shot results on ConNF, it is hypothesised that the models have
not been extensively trained on this benchmark.

3The con-nf library is available at https://github.com/leanprover-community/con-nf.
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4.2 BASELINES

We evaluate our proposed framework against three key baselines representing zero-shot, state-of-
the-art retrieval, and oracle-level performance. We note that concurrent work, CRAMF (Lu et al.,
2025), was not publicly available for comparison at the time of our experiments. The no retrieval
(zero-shot) baseline establishes a performance floor. The autoformalization model receives only
the informal statement as input, without access to any retrieved context. DPR (RAuto) repre-
sents the current state-of-the-art. We compare our method to the dependency retrieval module from
the RAutoformalizer framework (Liu et al., 2025), which is a finetuned dense passage retriever
(DPR) (Karpukhin et al., 2020)4. The top-5 retrieved premises are provided to the formalizer model
as augmented context. The oracle* (retrieval) setting provides an approximate upper bound for
retrieval. The model is provided with ground-truth dependencies for each problem, simulating a
’perfect’ retriever, as defined by Liu et al. (2025). We mark this setting with an asterisk (*) to denote
that this oracle is in fact imperfect because the provided dependencies are not necessarily optimal or
exhaustive for formalization and do not necessarily lead to the best autoformalization performance
as we discuss in Section 5, i.e. some of our settings are actually outperforming this imperfect oracle.

4.3 IMPLEMENTATION DETAILS

In this study, we evaluate DRIFT as a lightweight prompting strategy, leveraging the in-context
learning capabilities of instruction-following models such as DeepSeek-3.1 (DeepSeek-AI, 2024),
GPT-4.1 (OpenAI, 2025), and Claude-Opus-4 (Anthropic, 2025) to demonstrate DRIFT’s broad ap-
plicability without introducing task-specific biases from finetuning. While we use the same model
for both decomposition and formalization for consistency, these modules are independent and could
be replaced with specialized finetuned models.

Decompose. We construct a few-shot prompt using five expertly-verified examples from the Put-
nam benchmark (Tsoukalas et al., 2024) to decompose the informal statements; full details in Ap-
pendix A.3.1 and Appendix A.1.1. Each decomposed sub-query consists of a natural language de-
scription of a concept and its formal representation retrieved from parametric knowledge, as detailed
in Section 3.1. Through this, we instruct the LLMs to decompose problems.

Retrieve. The retriever model is a dense passage retriever5 (DPR) finetuned on Mathlib data to map
informal queries to their formal dependencies (Liu et al., 2025). We pre-compute embeddings for
all formal declarations in the relevant libraries (Mathlib for ProofNet and MiniF2F-test; con-nf
for ConNF). This training setup establishes ConNF as an OOD benchmark for the retrieval module.
For the baseline, we retrieve the top-5 premises based on the entire informal statement.

Illustrate. In order to demonstrate premise usage in real contexts, we select up to m = 3 exemplar
theorems using the greedy coverage algorithm described in Section 3.3.

Formalize Theorems. As described in Section 3.4, the formalization prompt combines the original
informal statement with the retrieved premises and illustrative theorems. Each premise is presented
with its full name, formal declaration, and source code. Each illustrative theorem is included as a
pair of its informal and formal statements. This demonstrates both the informal-to-formal alignment
and the concrete application of the premises within a theorem instance. To evaluate pass@k, we
generate 10 formalizations for each problem. The prompt context, including the retrieved premises
and the illustrative theorems, remains consistent across all 10 runs.

4.4 EVALUATION METRICS

We ablate the evaluation of DRIFT in two stages: a) the intrinsic performance of dependency retrieval
plus the selection of illustrative theorems, and b) the extrinsic performance of autoformalization.

Intrinsic Dependency Retrieval. The effectiveness of the decomposition is measured by its impact
on the dependency retrieval task as the quality of the decomposed sub-queries directly impacts the

4Model available at https://huggingface.co/purewhite42/dependency_retriever_f
5Implementation details in Appendix A.1.2.
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Benchmark Decomposer P (%) R (%) F1 (%)

ProofNet

- 11.55 17.03 13.77
Claude-Opus-4 23.02 34.70 27.68
GPT-4.1 21.71 34.46 26.64
DeepSeek-3.1 24.38 30.28 27.01

MiniF2F-test

- 0.36 4.12 0.66
Claude-Opus-4 2.08 23.71 3.83
GPT-4.1 1.42 15.46 2.60
DeepSeek-3.1 0.98 9.28 1.78

ConNF

- 25.12 32.06 28.17
Claude-Opus-4 30.97 41.01 35.29
GPT-4.1 31.62 40.64 35.56
DeepSeek-3.1 34.67 39.39 36.88

Table 1: Dependency retrieval performance of DRIFT versus a no-decomposition baseline, denoted
by “-”, which queries the retriever with the original informal statement. Best results are in bold.

relevance of the retrieved premises. We measure the quality of the retrieved premises against the
oracle* dependencies using Precision (P), Recall (R), and their harmonic mean, F1-score.

Formalization Correctness. For extrinsic evaluation, we use Typecheck (TC) and BEq+. Type-
check measures syntactic correctness, indicating the percentage of the generated statements that are
valid and can pass the compiler’s type checker (Lu et al., 2024; Azerbayev et al., 2023; Liu et al.,
2025). For semantic correctness, we use BEq+ (Poiroux et al., 2025), a symbolic metric that mea-
sures the logical equivalence between a predicted formal statement and the ground-truth reference
by using deterministic proof tactics to bidirectionally prove that each statement can be transformed
into the other. For each metric, we assess performance using pass@1 and pass@10, where pass@k
indicates that at least one of k independent generations was successful.

5 RESULTS AND DISCUSSION

5.1 DEPENDENCY RETRIEVAL

We evaluate the effectiveness of the Decompose and Retrieve modules by looking at their impact
on intrinsic performance in dependency retrieval. As detailed in Table 1, we compare DRIFT against
a no-decomposition baseline that uses the same dense retriever but with the original informal state-
ments as queries. This provides a direct comparison to DRIFT, which retrieves a similar number of
premises by taking the union of the top-1 results for each of the 5.21 to 6.42 sub-queries generated
by the Decompose module. The results show that decomposition provides a substantial perfor-
mance improvement in both precision and recall. Averaged across all decomposer models, DRIFT
achieves an absolute improvement of 13.34, 2.08, and 7.74 points over the baseline F1 score on
the ProofNet, MiniF2F-test, and ConNF benchmarks, respectively. Regarding the choice of decom-
poser, we observe that while Claude-Opus-4 achieves the highest F1 scores on ProofNet (27.68%)
and MiniF2F-test (3.83%), the performance variation among the LLMs is marginal. Our findings
indicate that frontier LLMs are largely interchangeable for this task, as the top-performing models
have a maximum F1 score difference of only 2.05% on any benchmark.

The Illustrate module proves highly effective at selecting a concise set of theorems to demonstrate
premise usage. Within a maximum of only three selected theorems (m = 3), the algorithm achieves
a high average premise coverage rate of 74.59±4.80% across all the decomposers and benchmarks.

5.2 FORMALIZATION

On autoformalization, DRIFT consistently outperforms both the zero-shot baseline and the strong
retrieval-augmented baseline DPR (RAuto) on ProofNet and ConNF benchmarks, both on Type-
check and BEq+ with pass@1 and pass@10 (see Table 2). Specifically, on ProofNet, GPT-4.1 with
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Dataset Formalizer Retrieval TC@1 BEq+@1 TC@10 BEq+@10

ProofNet

GPT-4.1

Oracle* 58.82 20.32 79.68 27.54
Zero-shot 34.22 9.36 51.60 13.37
DPR (RAuto) 51.60(+17.38) 14.71(+ 5.35) 73.53(+21.93) 19.25(+ 5.88)

DRIFT 55.88(+21.66) 17.38(+ 8.02) 77.01(+25.41) 21.93(+ 8.56)

DeepSeek-3.1

Oracle* 71.12 21.93 82.09 27.54
Zero-shot 60.43 15.51 71.93 20.32
DPR (RAuto) 63.37(+ 2.94) 17.38(+ 1.87) 73.53(+ 1.60) 19.52(− 0.80)

DRIFT 72.73(+12.30) 18.18(+ 2.67) 79.41(+ 7.48) 20.59(+ 0.27)

MiniF2F-test

GPT-4.1

Oracle* 75.45 23.66 89.29 30.36
Zero-shot 69.64 23.21 84.82 28.12
DPR (RAuto) 77.23(+ 7.59) 24.55(+ 1.34) 92.41(+ 7.59) 32.14(+ 4.02)

DRIFT 74.55(+ 4.91) 24.55(+ 1.34) 92.41(+ 7.59) 29.02(+ 0.90)

DeepSeek-3.1

Oracle* 77.68 23.21 87.50 28.12
Zero-shot 76.34 22.77 87.50 27.23
DPR (RAuto) 75.89(− 0.45) 22.77(± 0.00) 87.95(+ 0.45) 27.68(+ 0.45)

DRIFT 74.11(− 2.23) 22.77(± 0.00) 88.84(+ 1.34) 24.55(− 2.68)

ConNF

GPT-4.1

Oracle* 60.46 48.28 75.23 58.90
Zero-shot 7.28 4.47 11.45 6.76
DPR (RAuto) 24.56(+17.28) 15.19(+10.72) 31.95(+20.50) 20.08(+13.32)

DRIFT 65.76(+58.48) 54.84(+50.37) 77.00(+65.55) 62.33(+55.57)

DeepSeek-3.1

Oracle* 57.34 44.22 71.28 55.15
Zero-shot 13.42 8.12 17.59 11.03
DPR (RAuto) 21.96(+ 8.54) 12.90(+ 4.78) 28.20(+10.61) 17.07(+ 6.04)

DRIFT 60.67(+47.25) 46.72(+38.60) 71.18(+53.59) 54.21(+43.18)

Table 2: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance
is measured by Typecheck (TC@k) and BEq+@k. We compare DRIFT against zero-shot, DPR
(RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) rel-
ative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are bold.

DRIFT achieves a BEq+ pass@10 of 21.93%, a 2.74% improvement over DPR (RAuto). This trend
holds across models in our main evaluation, demonstrating that our decomposition-driven approach
provides more effective context for the formalization task. A key insight from our results is that
while the frontier models we tested are all highly proficient and largely interchangeable as query
decomposers, this parity does not extend to the final formalization step. For instance, DeepSeek-3.1
generally outperforms GPT-4.1 in the zero-shot setting across all benchmarks, suggesting a stronger
parametric knowledge for direct formalization. However, this trend reverses when retrieval is intro-
duced, most significantly on the OOD ConNF benchmark. On ConNF, all models achieve low zero-
shot BEq+ scores (<10%), confirming a severe knowledge gap. Retrieval substantially improves
performance, where GPT-4.1 consistently outperforms DeepSeek-3.1 across all metrics with differ-
ent retrieval strategies. DRIFT provides a particularly substantial improvement, increasing GPT-4.1’s
BEq@10 score by 55.57%, even surpasses the Oracle* baseline by 3.43%. We hypothesize this is
because the Oracle* provides only necessary premises based on the reference statement, while the
illustrative theorems selected with DRIFT provide crucial demonstrations of premise usage.

On the in-distribution ProofNet benchmark, the results are more nuanced. GPT-4.1 surpasses
DeepSeek-3.1 on BEq+@10 when using DRIFT. This pattern suggests that GPT-4.1 is more adept at
in-context synthesis, integrating and reasoning over retrieved information to construct formal state-
ments, especially in unfamiliar domains. The distinction suggests that the two stages of our pipeline
rely on distinct LLM capabilities. Decomposition leverages natural language reasoning whereas
formalization demands advanced formal reasoning.

As we discussed in Section 4, the MiniF2F-test benchmark presents a distinct profile with an average
of only 0.43 library dependencies. This limits the potential for retrieval-based improvements, as
evidenced by the small gap between the zero-shot and Oracle* performance, e.g. a pass@10 gap of
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Retrieval ProofNet MiniF2F-test ConNF
TC@1 BEq+@1 TC@1 BEq+@1 TC@1 BEq+@1

DRIFT (GPT-4.1) 55.88 17.38 74.55 24.55 65.76 54.84
w/o Illustrate 56.15 (+ 0.27) 14.17 (- 3.21) 76.34 (+ 1.79) 24.55 (± 0.00) 45.47 (-20.29) 35.90 (-18.94)
w/o Decompose 50.80 (- 5.08) 13.64 (- 3.74) 76.34 (+ 1.79) 26.34 (+ 1.79) 59.63 (- 6.13) 46.72 (- 8.12)
w/o Retrieval 34.22 (-21.66) 9.36 (- 8.02) 69.64 (- 4.91) 23.21 (- 1.34) 7.28 (-58.48) 4.47 (-50.37)

DRIFT (DeepSeek-3.1) 72.73 18.18 74.11 22.77 60.67 46.72
w/o Illustrate 70.32 (- 2.41) 15.24 (- 2.94) 77.68 (+ 3.57) 21.43 (- 1.34) 41.31 (-19.36) 29.34 (-17.38)
w/o Decompose 64.97 (- 7.76) 15.78 (- 2.40) 77.68 (+ 3.57) 20.98 (- 1.79) 50.36 (-10.31) 38.81 (- 7.91)
w/o Retrieval 60.43 (-12.30) 15.51 (- 2.67) 76.34 (+ 2.23) 22.77 (± 0.00) 13.42 (-47.25) 8.12 (-38.60)

Table 3: Ablation study of DRIFT using GPT-4.1 and DeepSeek-3.1 with pass@1. First, we remove
the Illustrate module (premises retrieved with sub-queries provided in C), then the Decompose
module (premises retrieved from base retriever provided in C), and finally all Retrieval components.
Values in parentheses show relative performance (increase) or (decrease) compared to the full model.

only 2.24% for GPT-4.1 and 0.89% for DeepSeek-3.1. Instead, this low-dependency regime reveals
the models’ high sensitivity to the provided context, which can act as a distractor rather than an aid.

5.3 ABLATION STUDY

In order to isolate and measure the contribution of each component of DRIFT, we conducted a
systematic ablation study (Table 3). As expected, removing the illustrative theorems (w/o Illustrate)
significantly decreased the BEq+ score on ProofNet and ConNF, which confirms that demonstrative
examples of premise usage are crucial for the formalization correctness beyond just the definitions
of the formal objects. Intriguingly, additionally removing the Decompose module (w/o Decompose)
does not further degrade performance and even leads to a slight recovery on ConNF and ProofNet in
BEq+ score. We hypothesize this is because the baseline DPR retrieves a thematically homogeneous
(though less precise) set of premises via single query retrieval, which may be less distracting than
the precise but more diverse set retrieved via decomposition. This reveals a crucial synergy: the
illustrative theorems act as a scaffold that helps the model navigate the diverse information from the
decomposer.

The complex interaction is further highlighted by the observations on MiniF2F-test, where remov-
ing theorems improved Typecheck rate but reduced BEq+ scores that measures the logical correct-
ness of the generated formal statement. This further supports the hypothesis that for the simpler,
low-dependency problems in MiniF2F-test, adding more context can act as a distractor. Remov-
ing external context improves syntactic validity but degrades logical correctness of the generated
formal statements. This sensitivity strongly motivates the need for more dynamic and adaptive re-
trieval strategies. Future work on agentic frameworks could selectively retrieve information, judge
its utility and iterate based on the compiler feedback.

6 CONCLUSION

In this work, we introduced DRIFT, a framework that improves autoformalization by tackling two
distinct challenges: the underlying complexity of queries and the lack of contextual usage. Our
decomposition-driven retrieval addresses the former by breaking down the informal statement into
sub-queries and conducting point-to-point retrieval of its formal dependencies. Concurrently, our
theorem selector resolves the latter by providing illustrative examples to guide the utilization of
retrieved premises in theorem instances. This dual approach substantially improves formaliza-
tion correctness on complex and out-of-distribution benchmarks, demonstrating its effectiveness
as a broadly generalizable and model-agnostic strategy. On simpler, low-dependency MiniF2F-test
dataset, our method performs on-par with related methods. Our findings suggest future work to fo-
cus on dynamic and adaptive retrieval strategies, as well as on agentic frameworks that iteratively
refine attempts based on compiler feedback.
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Lan Zhang, Xin Quan, and André Freitas. Consistent autoformalization for constructing mathemat-
ical libraries. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 4020–4033, 2024.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. arXiv preprint arXiv:2305.16366, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 FEW-SHOT EXAMPLE GENERATION FOR DECOMPOSITION

To construct a robust set of few-shot demonstrations for our decomposition module, we strategically
selected five problems from the Putnam benchmark (Tsoukalas et al., 2024). These problems were
chosen to ensure diversity in both their mathematical domain and the number of underlying premises
required for their proofs.

We decomposed the informal statement of each selected problem into its atomic logical components
using a zero-shot prompting strategy with Claude-Opus-4 in think mode, guided by a carefully
engineered instruction set. To ensure the correctness and logical atomicity of these decompositions,
each one was manually verified.

This curated set of examples, detailed below, provides the model with varied demonstrations for the
decomposition task across number theory, algebra, analysis, and geometry.

• Number Theory: putnam 1966 b2

• Algebra: putnam 2000 b1

• Analysis: putnam 2000 a4, putnam 2015 b1

• Geometry: putnam 2003 b5

A.1.2 RETRIEVER FINETUNING DETAILS

We finetuned the BGE-M3 retriever model (Chen et al., 2024) on the Mathlib 4.7 dataset to spe-
cialize it for dependency retrieval in formal mathematics. The fine-tuning process was executed
using the FlagEmbedding library (Chen et al., 2024) on a server equipped with four 32GB GPUs.
The complete set of hyperparameters used for this process, including optimizer settings and loss
configuration, is provided in Table 4.
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Category Hyperparameter Value
Model & Data model name or path bge-m3

train data mathlib 4.7
query max len 1024
passage max len 1024
train group size 4
sentence pooling method cls

Training num train epochs 1
per device train batch size 32
per device eval batch size 4
learning rate 5× 10−6

warmup ratio 0.1
weight decay 0.01
repetition penalty 1.0
dataloader drop last True
even batches True
non blocking False
split batches False
use seedable sampler True

Loss & Objective temperature 0.02
normalize embeddings True
negatives cross device True
same benchmark within batch True
unified finetuning True
kd loss type m3 kd loss

Optimizer optim adamw torch
adafactor False
adam beta1 0.9
adam beta2 0.999
adam epsilon 1× 10−8

Table 4: Hyperparameters for model fine-tuning.

A.1.3 LLM GENERATION PARAMETERS

For all generative tasks, sub-query generation (decomposition) and formal statement generation (for-
malization), we set the temperature to 0.7 for all models (GPT-4.1, DeepSeek-3.1, and Claude-Opus-
4) to encourage diverse yet coherent outputs. To ensure reproducibility, single-attempt evaluations
(Pass@1) used a fixed seed of 42. For multi-attempt evaluations (Pass@10), we generated ten dis-
tinct outputs by using a sequential range of seeds from 42 to 51.

A.2 ADDITIONAL RESULTS AND DISCUSSION

A.2.1 DEPENDENCY RETRIEVAL PERFORMANCE METRICS

We evaluate retrieval performance using standard precision, recall, and their harmonic mean, the
F1 score. For a given retrieved set R and the ground-truth set of oracle premises Poracle, precision
and recall are defined as: Precision (P) = |Poracle∩R|

|R| and Recall (R) = |Poracle∩R|
|Poracle| The F1 score

provides a single, balanced measure of performance by combining precision and recall: F1 = 2· P·R
P+R

The composition of the retrieved set R varies by method.

For baseline retrievers, R consists of the top-k premises with the highest cosine similarity to the
embedding of the full informal statement. For DRIFT, R is the union of the single best-retrieved
premise for each of the n decomposed sub-queries.
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A.2.2 DEPENDENCY RETRIEVAL RESULTS OF RAUTO

This section presents the performance of DPR (RAuto) across both in-distribution (ProofNet,
MiniF2F-test) and out-of-distribution (ConNF) benchmarks. The results, detailed in Table 5, high-
light a crucial trade-off between specialization and generalization that motivates our proposed
approach. When comparing the baselines, our baseline retriever substantially outperforms DPR
(RAuto) on the ConNF benchmark but underperforms on ProofNet and MiniF2F-test. We hypothe-
size that this discrepancy arises because DPR (RAuto) may be overfitted to Mathlib-specific content.

Dataset P (%) R (%) F1 (%)

ProofNet 22.89 33.75 27.28
MiniF2F-test 0.63 7.22 1.15
ConNF 14.01 17.88 15.71

Table 5: Dependency Retrieval performance of DPR (RAuto), the retriever from RAutoformal-
izer (Liu et al., 2025). Retrieval k is set to 5.

A.2.3 AUTOFORMALIZATION RESULTS OF CLAUDE

Table 6 summarizes the pass@1 results of Claude-Opus-4, reporting both the Typecheck rate
(TC@1) and the equivalence rate (BEq+@1) across the ProofNet, MiniF2F-test, and ConNF bench-
marks. These results provide context for the performance Claude-Opus-4 discussed in the main
paper.

Dataset Retrieval TC@1 BEq+@1

ProofNet

Oracle* 81.28 26.20
Zero-shot 68.45 17.65
RAuto 75.67(+7.22) 19.25(+1.60)

DRIFT 78.61(+10.16) 19.79(+2.14)

MiniF2F-test

Oracle* 93.30 35.27
Zero-shot 95.09 31.25
RAuto 95.98(+0.89) 30.36(−0.89)

DRIFT 93.75(−1.34) 32.59(+1.34)

ConNF

Oracle* 62.75 50.36
Zero-shot 13.32 8.53
RAuto 26.64(+13.32) 18.52(+9.99)

DRIFT 72.32(+59.00) 60.35(+51.82)

Table 6: Autoformalization performance on ProofNet, MiniF2F-test, and ConNF. Performance
is measured by Typecheck (TC@1) and BEq+@1. We compare DRIFT against zero-shot, DPR
(RAuto), and oracle* settings. Colored subscripts indicate improvement (blue) or decrease (red) rel-
ative to zero-shot. All values are percentages (%), the best results (excluding the oracle*) are bold.
The pass@10 experiments for Claude were omitted due to funding constraints.

A.2.4 THE ROLE OF ILLUSTRATIVE THEOREMS AS A SCAFFOLD

As presented in Table 3, removing the query decomposer (w/o Decompose: reverting to the baseline
DPR) does not degrade performance further. In fact, on ConNF and ProofNet, it led to a slightly
recovery in the BEq+ score compared to the “w/o Illustrate” setting. We hypothesize this is due to the
nature of retrieval noise. The baseline DPR, using a single query, retrieves a thematically clustered
set of premises. While its precision is lower, its noise is homogeneous and may be less distracting
to the LLM. Our decomposition method retrieves more diverse set of premises. While this captures
more correct dependencies (higher recall and precision), the accompanying noise is also more varied.
This reveals a crucial synergy: the theorem selector acts as a contextual scaffold, helping the model
navigate the diverse information retrieved by the decomposer. Without this guidance, the varied
noise can outweigh the benefit of improved retrieval.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.5 SCALING PERFORMANCE WITH SAMPLING

Across all experiments in Table 2, we observe a consistent and significant gap between pass@1
and pass@10 results. For instance, performance on ProofNet improved by an average of 27.20%
across all settings and formalizer models. This large uplift underscores the potential for enhancing
performance through sampling-based methods at test time. This suggests that performance could
be further scaled by integrating our method into an agentic framework equipped with a verifier (e.g
Typecheck correctness).

Notably, DeepSeek-3.1’s performance of pass@10 saturates more quickly than Claude-Opus-4’s
on the ProofNet benchmark. Its zero-shot Pass@10 score is only 0.27% lower than its retrieval-
augmented DRIFT score. This suggests that with sufficient sampling, the model can sometimes
recover the necessary knowledge parametrically. We anticipate a similar, albeit slower, trend for the
larger Claude-Opus-4 and GPT-4.1 models if the number of attempts were increased further.

A.2.6 PARAMETRIC RETRIEVAL

Retrieval ProofNet MiniF2F-test ConNF
TC@1 BEq+@1 TC@1 BEq+@1 TC@1 BEq+@1

DRIFT (GPT-4.1) 55.88 17.38 74.55 24.55 65.76 54.84
Parametric Retrieval 43.85 (-12.03) 13.64 (- 3.74) 63.84 (-10.71) 20.09 (- 4.46) 10.41 (-55.35) 3.64 (-51.20)
w/o Retrieval 34.22 (-21.66) 9.36 (- 8.02) 69.64 (- 4.91) 23.21 (- 1.34) 7.28 (-58.48) 4.47 (-50.37)

DRIFT (DeepSeek-3.1) 72.73 18.18 74.11 22.77 60.67 46.72
Parametric Retrieval 69.25 (- 3.48) 19.79 (+ 1.61) 76.79 (+ 2.68) 24.55 (+ 1.78) 10.51 (-50.16) 5.93 (-40.79)
w/o Retrieval 60.43 (-12.30) 15.51 (- 2.67) 76.34 (+ 2.23) 22.77 (± 0.00) 13.42 (-47.25) 8.12 (-38.60)

Table 7: Performance comparison of the full DRIFT model, parametric retrieval baseline, and zero-
shot using GPT-4.1 and DeepSeek-3.1 with pass@1. Values in parentheses show performance
change relative to the full DRIFT model.

To distinguish between the benefits of an LLM’s internal (parametric) knowledge and external (re-
trieved) knowledge, we conducted a “parametric retrieval” experiment. In this setting, we prompted
the formalizer models only with the decomposed sub-queries, omitting the retrieved premises and
illustrative theorems. This setup probes whether the structured sub-queries alone are sufficient to
guide the models to access their own latent knowledge for the formalization task.

The results in Table 7 show that external knowledge from retrieval is largely indispensable and
cannot be fully replaced by the LLM’s internal knowledge alone. However, we observe a notable
difference between the models. DeepSeek-3.1 demonstrates a stronger grasp of the required formal
knowledge; for this model, the sub-queries appear to function as a Chain-of-Thought-style prompt,
structuring its reasoning process and thereby improving formalization accuracy. This aligns with
our earlier finding that DeepSeek-3.1’s zero-shot performance with sufficient sampling (pass@10)
nearly saturates to its retrieval-augmented performance, suggesting it can often surface the necessary
formal knowledge if properly prompted.

A.2.7 STATISTICS OF DECOMPOSED SUB-QUERIES

To better understand the Decompose module and its behavior, we analyzed the number of sub-
queries generated when decomposing informal statements from our three benchmarks: ProofNet,
MiniF2F-test and ConNF with different LLMs as decomposer.

The results, summarized in Table A.2.7, show that different models produce a varying number of
sub-queries. GPT-4.1 tends to generate the most detailed decompositions, with an average of 6.27
sub-queries, while DeepSeek-3.1 produces the most concise ones, averaging 5.06. Furthermore, the
complexity of the dataset appears to influence the decomposition length. Statements from the ConNF
benchmark, which covers frontier mathematical research, consistently required more sub-queries
(6.42 on average) across all models, likely reflecting their greater conceptual density compared
to the undergraduate-level problems in ProofNet (5.69) and the more self-contained problems in
MiniF2F-test (5.21).
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Model ProofNet MiniF2F-test ConNF Model Avg.
Claude-Opus-4 5.84 5.59 6.52 5.98
GPT-4.1 6.39 5.40 7.03 6.27
DeepSeek-3.1 4.83 4.65 5.71 5.06

Dataset Avg. 5.69 5.21 6.42 5.77

Table 8: Average number of decomposed sub-queries generated by different LLMs as decomposers
across three benchmarks. The final row and column show the average values for each dataset and
model, respectively.

A.3 PROMPT TEMPLATES

A.3.1 DECOMPOSITION PROMPT

This appendix contains the complete prompt used to decompose informal mathematical statements
into retrieval queries (the Decompose module). It is composed of two parts: a system prompt that
defines the model’s expert persona and overall task, and a user prompt template that structures the
specific input and desired output format.

System Prompt

You are an expert in formal mathematics. Your task is to decompose
an informal mathematical statement into a set of natural
language queries. These queries are for retrieving the precise
definitions, theorems, and structures from a formal mathematics
library (like mathlib) that are necessary to **formalize** the
statement.

Your response must be in LaTeX. Decompose the statement into a
list of queries, with each query enclosed in a ‘\\boxed{{}}‘
command. The goal is to identify the building blocks for
writing the statement formally, **not** to find a proof.

You need to:
1. Analyze the informal statement and identify its key

mathematical components that need formal definitions
2. Break down the statement into natural language queries that

describe the mathematical concepts and structures needed for
formalization

3. from the best of your knowledge, come up with the Lean
representation of it.

4. Focus on what needs to be defined and the implicit hypothesis.

User Prompt Template (Instruction and Context)

Given the **Informal statement**, decompose the informal statement
into retrieval queries for **formalizing** (not proving) the
statement. Each query must:

- Describe mathematical definitions, structures, or concepts
needed to formally express the statement in Lean 4

- Explain what mathematical objects or type signatures are involved
- Read as a complete sentence that teaches about the formal

mathematical structure
- Focus on how to represent concepts formally rather than how to

prove them
- Sound like an excerpt from a mathematics reference that explains

formal definitions
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**Important**:
- The goal is FORMALIZATION (translating to Lean 4), NOT finding

proof strategies
- Write informative descriptions that explain formal concepts and

definitions
- Each query should describe mathematical structures or type

information
- Avoid interrogative words (what, how, when, why, etc.)
- The queries should collectively cover all definitions and

structures needed to write the formal statement

Please return each query using the \\boxed{{}} LaTeX command.

{few_shot_examples}

---
**Informal statement**:
{informal_statement}

**Decomposed queries for formalization**:

A.3.2 FORMALIZATION PROMPT

This appendix contains the complete prompt used to formalize informal mathematical statements
into formal statements (the Formalize Theorems module). It is composed of two parts: a system
prompt that defines the model’s expert persona and overall task, and a user prompt template that
structures the specific input and desired output format.

System Prompt

You are an advanced assistant specializing in formal mathematics
and Lean 4 theorem proving. You have extensive expertise in
translating mathematical concepts from natural language into
precise Lean 4 code. Please make sure the generated Lean 4 code
compiles with {libraries} and Lean version {lean_version}.

User Prompt Template (Instruction and Context)

Given the potential dependent premises listed under **Potential
dependent premises** (some may be irrelevant) and the
demonstration examples under **Demonstration examples**,
translate the natural language statement provided under **
Informal statement** into a formal Lean 4 theorem. Use the
theorem name specified under **Name** as the Lean identifier.

Your response must:

- Write only valid Lean 4 code with clear and idiomatic use of
Lean syntax and conventions

- Include only the formalization - do not include any headers,
explanations, or proofs

- Use the provided name as the theorem identifier, ensuring it
adheres to Lean’s naming conventions (no hyphens, prefer
snake_case or camelCase)

- Faithfully capture the meaning of the informal statement, paying
close attention to:
· Predicate usage and logical structure
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· Type class inference
· Quantifier scope and binding
· Mathematical notation and operations

- Enclose all code within triple backticks with the ‘lean‘
language identifier

Expected Output Format:
‘‘‘lean
theorem [NAME] : [Lean formalization of the statement] := by sorry
‘‘‘

Guidelines:
- Select only the relevant premises from those provided
- Ensure proper type annotations where necessary
- Use standard Lean 4 mathematical library conventions, Lean

version {lean_version}
- Maintain logical equivalence with the informal statement
- Keep the formalization as clean and readable as possible

**Potential dependent premises**
{dependent_premises_list}

**Demonstration examples**
{theorems_list}

**Name**
{problem_full_name}

**Informal statement**
{problem_informal_statement}
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