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ABSTRACT

Instrumental variables (IV) analysis is an important applied tool for areas such as
healthcare and consumer economics. For IV analysis in high-dimensional settings,
the Generalized Method of Moments (GMM) using deep neural networks offer
an efficient approach. With non-i.i.d. data sourced from scattered decentralized
clients, federated learning is a popular paradigm for training the models while
promising data privacy. However, to our knowledge, no federated algorithm for
either GMM or IV analysis exists to date. In this work, we introduce federated
IV analysis (FEDIV) via federated GMM (FEDGMM). We formulate FEDGMM
as a federated zero-sum game defined by a non-convex non-concave minimax
optimization problem. We characterize the solutions to the federated game using
Stackelberg equilibrium and show that it satisfies client-local equilibria up to a
heterogeneity bias. Thereby, we show that the consistency of federated GMM
estimator across clients closely depends on the heterogeneity bias. Our experiments
demonstrate that the federated framework for IV analysis efficiently recover the
consistent GMM estimators for low and high-dimensional data.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al.,2017) is now an established paradigm for training Machine
Learning (ML) models over decentralized clients, keeping the data local and private. The applications
include important domains such as healthcare (Oh & Nadkarnil [2023)), finance & banking (Long
et al.,|2020), smart cities & mobility (Gecer & Garbinatol 2024), and many others (Ye et al., [2023]).
The scale of FL has also grown large — see the Nature Medicine report by Dayan et al.| (2021) on a
global-scale FL to predict the effectiveness of oxygen administration to COVID-19 patients in the
emergency rooms while maintaining data locality. However, the current popular FL methods have a
crucial limitation due to their standard supervised nature of learning. For example, |[Liang et al.| (2023)
suggests that the hypoxia-inducible factors (HIF) (a protein that controls the rate of transcription of
genetic information from DNA to messenger RNA by binding to a specific DNA sequence) play a
vital role in oxygen consumption at the cellular level. Arguably, the Dayan et al.|(2021))’s approach
may over- or under-estimate the effects of oxygen treatment as it does not accommodate the influence
of HIF levels on oxygen consumption.

A classical approach to address such limitations is Instrumental variables (IV) analysis, which assumes
conditional independence between a confounding variable and the outcome while considering its
causal effect on the treatment variable. IV analysis can very practically apply to training Dayan
et al.| (2021)’s ML model wherein the patients’ HIF levels work as an IV that influences the effective
organ-level oxygen consumption (a treatment variable) but does not directly affect the mortality of the
COVID-19 patients (the outcome). IV analysis has been comprehensively explored in econometrics
(Angrist & Krueger, |2001} /Angrist & Pischke, 2009) with several decades of history, such as works of
Wright (1928) and Reiersgl| (1945). Its efficiency is now accepted for learning even high-dimensional
complex causal relationships, such as those in image datasets (Hartford et al., 2017; Bennett et al.|
2019). Naturally, the growing demand for FL entails designing methods for federated IV analysis,
which, to our knowledge, is yet unexplored.



In the centralized deep learning setting, [Hartford et al.|(2017)) introduced an IV analysis framework,
namely DEEPIV, which uses two stages of neural networks (NN) training — learn the conditional
treatment distribution as a NN-parametrized Gaussian mixture for the treatment prediction and
then train the outcome model. The two-stage process has precursors in applying the least square
regressions in the two phases (Angrist & Pischke, [2009)[4.1.1]. In the same setting, another approach
for IV analysis applies the generalized method of moments (GMM) (Wooldridge, 2001). GMM is
a celebrated estimation approach in social sciences and economics. It was introduced by Hansen
(1982), for which he won a Nobel Prize in Economics (Steif et al., 2014).

Lewis & Syrgkanis|(2018)) employed neural networks for GMM estimation. Their method, called
the adversarial generalized method of moments (AGMM) fit a GMM criterion function over a finite
set of unconditional moments. Similarly, Bennett et al.|(2019) introduced deep learning models to
GMM estimation; they named their method DEEPGMM. DEEPGMM differs from AGMM in using
a weighted norm to define the objective function. The experiments in (Bennett et al.,[2019) showed
that DEEPGMM outperformed AGMM for IV analysis, and both won against DEEPIV. Nonetheless,
to our knowledge, none of these methods has a federated counterpart. Notably, both AGMM and
DEEPGMM translate to a minimax optimization problem corresponding to a smooth zero-sum game.

The zero-sum game formulated for GMM estimation is essentially nonconvex-nonconcave (Bennett
et al.,[2019). Such a game corresponds to a sequential game as it may have differing maximin and
minimax solutions. Unlike Nash equilibrium, the global minimax points — the Stackelberg equilibria —
are guaranteed to exist for nonconvex-nonconcave games. However, finding a global minimax point
is generally NP-hard, necessitating solving for a surrogate local equilibrium (Jin et al.l 2020).

Now, considering the federated version of this problem, a fundamental challenge arises in establishing
that a federated minimax optimization algorithm retrieves a local Stackelberg equilibrium of the
federated zero-sum game. Even if it did, it requires showing that the federated equilibrium translates to
the client-local setting under heterogeneity. Finally, it entails proving that the client-local equilibrium
under heterogeneity is a consistent GMM estimator for its data. In this work, we address these
challenges. Our contributions are summarized as follows:

1. We introduce FEDIV: federated IV analysis. To our knowledge, FEDIV is the first work on IV
analysis in a federated setting.

2. We present FEDDEEPGMM( |- a federated adaptation of DEEPGMM of Bennett et al.[(2019) to
solve FEDIV. FEDDEEPGMM is implemented as a federated smooth zero-sum game.

3. We characterize an approximate local equilibrium solution for federated zero-sum game. We
show that the limit points of a federated gradient descent ascent (FEDGDA) algorithm include the
equilibria of the zero-sum game.

4. We show that an equilibrium solution of the federated game obtained at the server consistently
estimates the moment conditions of every client. An important insight derived from our results is
that the consistency of the GMM-estimators on clients directly depend on the heterogeneity bias.

5. We experimentally validate that even for non-i.i.d. data, FEDDEEPGMM has convergent dynamics
analogous to the centralized DEEPGMM algorithm.

This work focuses on the existence results of federated equilibrium solutions, federated consistent
GMM estimators, and thereby structurally solving the federated IV analysis problem. The existence
of approximate client-local equilibria via federated solution has applications beyond the GMM and
IV analysis, to problems such as federated generative adversarial networks (FedGAN) (Rasouli et al.
2020), where a Nash Equilibrium may not exist (Farnia & Ozdaglar, |2020)). However, the scope of
our discussion does not include FedGAN, or a new federated minimax algorithm, or, for that matter,
the convergence theory and scalability. We leave an open problem to characterize and recover a
federated mixed-strategy Nash equilibrium, which has enormous applications to diverse domains
(Barron| [2024). We compare and contrast our method against related works in Appendix [D}

2 PRELIMINARIES AND MODEL

In this section, we introduce our basic terminologies tailored to a motivating application as described
by Dayan et al.|(2021) in the context of the global-scale federated learning.

Wu et al.{(2023) used FEDGMM as an acronym for federated Gaussian mixture models.



Client-local causal inference. We begin by adapting (Bennett et al.,|2019) for a client-local setting.
Consider a distributed system as a set of N clients [N] with datasets S* = {(z},y;)}}Z;, Vi € [N].
We assume that for a client ¢ € [IN], the treatment and outcome variables a:; and y}, respectively, are

related by the process Y = gi(X*) + €', i € [N].

Referring to (Dayan et al., [2021)), x; and y; represent the clinical features (CBC, D-dimer, oxy-
gen devices, etc.) and the outcome (death, duration of survival over oxygen administration, etc.),
respectively, on a client i € [N].

We assume that each client-local residual €’ has zero mean and finite variance, i.e. E[¢!] =
0,E[(¢)?] < oo. Furthermore, we assume that the treatment variables X are endogenous on
the clients, i.e. E[¢!|X?] # 0, and therefore, g§(X*) # E[Y?|X?]. We assume that the treatment
variables are influenced by instrumental variables Z*,Vi € [N] so that

P(X"Z%) # P(XY). )]
Furthermore, the instrumental variables do not directly influence the outcome variables Y, Vi € [N]:
E[¢!|Z1] = 0. @)

Referring to (Dayan et al., 2021), Z% would represent the HIF levels in the patients on the client
i € [N], which their implementation misses to incorporate.

Federated causal inference function. Note that, assumptions I] [2] are local to the clients, thus,
honour the data-privacy requirements of a federated learning task. In this setting, we aim to discover
a common or global causal response function that would fif the data generation processes of each
client without centralizing the data. More specifically, we learn a parametric function go(.) € G :=
{9(.,0)|0 € ©} expressed as g := g(., 0p) for 6y € O, defined by

1L
g(‘700) = Nzgz(760) (3)
=1

The generalized method of moments (GMM) estimates the parameters of the causal response
function (3) using a certain number of moment conditions. Define the moment function on a client
i € [N] as a vector-valued function f* : RIZl — R™ with components f}, f3, ..., fi,. Based on
equation , we define the moment conditions using parametrized functions { f} 7y Vi€ [N]as

E[f(Z")€'] = 0,¥j € [m], Vi € [N], )

We assume that m moment conditions { f/}", at each client i € [N] are sufficient to identify a
unique federated estimate 0 to 6. With || we define the moment conditions on a client ¢ € [N] as

U(f5:0) =0, ¥j € [m], ®)
where ¥(f%0) = E[fi(Z%)e] = E[f{(Z")(Y? — ¢g'(X*;0))]. In empirical terms, the sample
moments for the i-th client with n; samples are given by

. ) ) 1 & . ) o
Un,(£%50) = En,[f'(2)e'] = — S FZ)Y - g (Xi50)), (6)
v k=1

where ¥y, (f%0) = (¥, (f10), ¥n, (f3;0), ..., ¥n, (fL;0)) is the moment condition vector, and
Un,(f1:0) = =351y [H(Zi) (Y — ¢'(X};0)). Thus, for empirical estimation of the causal
response function g at client i € [N], it needs to satisfy

Un,(f}360) =0, Vi€ [N]and j € [m] at§ = 6. @)
The optimization problem. Equation (7) is reformulated as an optimization problem given by

gggIIQZJni(ff;@),wni(fé;@),~--,wm( 07, ®)

where we use the Euclidean norm ||w||? = w”w. Drawing inspiration from Hansen|(1982), DEEP-
GMM used a weighted norm, which yields minimal asymptotic variance for a consistent estimator



0, to cater to the cases of (finitely) large number of moment conditions. We adapt their weighted
norm |[w||2 = wTC w, to a client-local setting via the positive semi-definite covariance matrix Cj

defined by

N4

[Cal, = S G R — o' (xXE: ) ©)
" k=1

Now considering the vector space )V of real-valued functions f; of Z, ,,(f50) =
(Vn, (f150),¥n, (f5:0), ... tbn, (fi;6)) is a linear operator on V and

7 7 1 l 7
Ca(f', ") = Zf (ZP (ZD(YS = ¢'(X}:0))? (10)
is a bilinear form. With that, for any subset F i C V, we define a function
. . 1 o
W, (0.F,0) = sup i, (7:0) = €577, 1),
fieFi
which leads to the following client-local optimization problem:

MM ¢ arg min ¥, (6, F°, é), (11
0o
where ]:Z = Span({f;}?lzl)? \II"H (evfiv é) = ”djm(fllv 0)7 wny (fév '9)7 e ’wni(fwin; 0)”2’ and the
the weighted norm ||||; defined by equation @])

The zero-sum game for deep generalized method of moments. As the data-dimension grows,
the; functjon class F* is replaced with a class of neural networks of a certain architecture, i.e.
Ft={f"(z,7): 7 € T} with varying weights 7. Similarly, let G* = {g*(x,0) : 6§ € ©} be another
class of neural networks with varying weights §. With that, define
i i RS i 2 (v iy 2
Zf (Zj.7) - 9'(X};0)) — T Z (f(Z, )" (Vi = ¢'(X3;0))” (12)

v k=1

Then for a client 7 , @ is reformulated as the following
6PSMM ¢ arg min sup Ul (9 7). (13)
0c® 71T

Equation (T3] forms a zero-sum game, whose equilibrium solution is shown to be a true estimator to
6o under a set of standard assumptions; see Theorem 2 in (Bennett et al.,[2019).

3 FEDERATED DEEP GMM VIA FEDERATED EQUILIBRIUM SOLUTIONS

3.1 FEDERATED DEEP GENERALIZED METHOD MOMENT (FEDDEEPGMM)

We need to find the global moment estimators for the causal response function to fit data on each
client. Thus, the federated counterpart of equation (3) is given by

P(f;0) == EJE[f(Z2") (Y — ¢' (X' 0)]] = 0, (14)

where the expectation [E; is over the clients. In this work, we consider full client participation. Thus,
for the empirical federated moment estimation, we formulate:

Un(f36) NZ% (f':6 N; Zf@ Zi)(YVi = ¢'(X3:0)) (15)
With that, the federated problem for GMM following (@ is formulated as:
reaDeer MM € arg i |4, (f:0)|17, 16)
€

where ||w||; = wTC(glx is the previously defined weighted-norm with inverse covariance as weights.
We propose FEDDEEPGMM, a “deep” reformulation of the federated optimization problem based
on the neural networks of a given architecture shared among clients and is shown to have the same
solution as the federated GMM problem formulated earlier.



Lemma 1. Let F = span{ fZ | i € [N], j € [m]}. An equivalent objective function for the federated
moment estimation optlmlzatlon problem (16)) is given by:

s 013 = s &S (i)~ Syt ) where

fler i=1
Vi€[N]
B F50) = o S PO =g X0, and ol 1) = - S PO = /(X))

v k=1

The proof of Lemma(l]is given in Appendix [B.1} The federated zero-sum game is then defined by:

(FedDeepGMM arg min sup Up( = Ul 17
0c0 TET N Z
where Ug(@, 7) is defined in equation . The federated DEEPGMM formulation as a zero-sum

game defined by a federated minimax optimization problem (17) provides a framework to recover the
global estimator as a federated equilibrium solution.

Referring to (Dayan et al., [2021)), (FedDeepGMM ¢ the federated GMM estimator that consistently
estimates the moment conditions of the clients under an approximation error as described later in
Definition[3} These moment conditions are then employed on each client to analyse the impact of the
instrumental variable Z°.

3.2 FEDERATED SEQUENTIAL GAMES AND THEIR EQUILIBRIUM SOLUTIONS

As minimax is not equal to maximin in general for a non-convex-non-concave problem, it is important
to model the federated game as a sequential game (Jin et al.,|2020) whose outcome would depend on
what move — maximization or minimization — is taken first. We start with the following assumptions:

Assumption 1. Client-local objective U;Q(O, T) Vi € [N] is twice continuously differentiable for both
6 and 7. Thus, the global objective Uj;(6, 7) is also a twice continuously differentiable function.
Assumption 2 (Smoothness). The gradient of each client’s local objective, VU 5(0’ T), is Lipschitz
continuous with respect to both § and 7. For all ¢ € [N], there exist constants L > 0 such that:
IVeU;(61,71) — VU (82, 72) (01,71) — (62, 72)]], and
IV-UL(61,71) — VU (02,72)|| < L[| (61, 71) — (02, 72)]|,
V(01,71), (02, 72). Thus, U;(6, 7) is L-Lipschitz smooth.

Assumption 3 ( Bounded Gradient Dissimilarity). The heterogeneity of the local gradients with
respect to (w.r.t.) 6 and 7 is bounded as follows:

IVeU5(8,7) — VoUg(0,7)|| < G IV-U5(8.7) = V- Us(0,7)|| < ¢,
where ¢}, (¢ > 0 are the bounds that quantify the degree of gradient dissimilarity at client i € [N].

Assumption 4 (Bounded Hessian Dissimilarity). The heterogeneity in terms of hessian w.r.t.  and
7 is bounded as follows:

IV36U3(0,7) = VieUs(8,7)llo < p V2050, 7) = V2, U0, 7)ls < 05
”ngrUé(e?T) - ngU§(97T)||O' S pé‘ﬁ HV HUl(e T) VQGU (9 T)H(T < p‘r@’

where pj, pt, p4_, and p!, > 0 quantify the degree of hessian dissimilarity at client i € [N] by
spectral norm ||. ||, .

Assumptions 3] and [4] provide a measure of data heterogeneity across clients in a federated setting. In
the special case, when ¢ and p’s are all 0, then the data is homogeneous across clients.

We adopt the Stackelberg equilibrium for pure strategies (Jin et al.,|2020) to characterize the solution
of the minimax federated optimization problem for a non-convex non-concave function U (6, ) for
the sequential game where min-player goes first and the max-player goes second. To avoid ambiguity
between the adjectives of the terms global/local objective functions in federated learning and the
global/local nature of minimax points in optimization, we refer to a global objective as the federated
objective and a local objective as the client’s objective.



Definition 1 (Local minimax point). [Definition 14 of (Jin et al.,|2020)] Let U (6, 7) be a function
defined over © x T and let h be a function satisfying h(0) — 0 as d — 0. There exists a oo, such
that for any 6 € (0, o), and any (0, 7) such that |0 — 0| < ¢ and ||T — 7|| < J, then a point (0, 7) is
a local minimax point of U, if V (0,7) € © x T, it satisfies:

U (0,7) < U(0,7) <

< max
71| TI=7{|<h(5)

U@(G,T/). (18)

With that, the first-order & second-order necessary conditions for local minimax points are as below.

Lemma 2 (Propositions 18, 19, 20 of (Jin et al., [2020)). Under assumption E] any local minimax

point satisfies the following conditions:

* First-order Necessary Condition: A local minimax point (0, 7) satisfies: VoUz(0,7) = 0 and
VTUé(Q,T) =0.

* Second-order Necessary Condition: A local minimax point (0, 7) satisfies: V2 U;(0,7) < 0.
Moreover, if V2 _U;(0,7) < 0, then [V(%(,U(; — V2. U; (VfTUé)—l VEGU‘;} (0,7) = 0.

s Second-order Sufficient Condition: A stationary point (0, 7) that satisfies V2_U;(0,7) < 0, and

Vi,U; — V3.U; (ViTUg)fl VzeUé} (0, 7)>0 guarantees that (0, 7) is a strict local minimax.

Now, in order to define the federated approximate equilibrium solutions, we first define an approximate
local minimax point.

Definition 2 (Approximate Local minimax point). [An adaptation of definition 34 of (Jin et al.|
2020)] Let U (0, 7) be a function defined over © x T and let h be a function satisfying h(d) — 0 as
d — 0. There exists a &y, such that for any 6 € (0, o], and any (0, 7) such that ||0 — 0| < § and
|l7 — 7| <6, then a point (0,7) is an e-approximate local minimax point of U, if it satisfies:
Us(0,7) —e <U;(0,7) <  max  U;(0,71) +e¢, (19)
o(0:7) o(6:7) Tl =7 <h(6) o(0:77)

We aim to achieve approximate local minimax points for every client as a solution of the federated
minimax optimization. With that, we characterize the federated solution as the following.

Definition 3 (£-Approximate Federated Equilibrium Solutions). Let & = {e}V| be the ap-
proximation error vector for clients i € [N|]. Let Ug(&, T) be a function defined over © x T for a

clienti € [N] and Uy(0,7) := + Zf\il U;(G, 7). An E-approximate federated equilibrium point

(0, 7) (that is an e*-approximate local minimax point for each client’s objective Ué ), must follow the

conditions below:

1. &'- First-order Necessary Condition: The point (0,7) must be an & stationary point for every
clienti € [N], ie., |[VoUL(0,7)|| <€, and ||V, UL, 7)] <&

2. Second-Order ' Necessary Condition: The point (0, 7) must satisfy the second-order conditions:

V2,UL0,7) X —£'L, and  [V3,Ui - V3,UL(V2.U5) 7 V2UL (6.7) = <.

3. Second-Order ' Sufficient Condition: An &' stationary point (0, 7) that satisfies V2_U(0,7) <

TT 70

TT 0

) ) ) At N . A~
—e'l, and {VE,GU‘; - VgTUg (V2 Ul) VEQUQE} (0,7) = e'I guarantees that (0,7) is a strict
local minimax point Vi € [N] that satisfies €' approximate equilibrium as in deﬁnition

We now state the main theoretical result of our work in this theorem.

Theorem 1. Under assumptions E] and 4| a minimax solution (é,f') of federated opti-
mization problem that satisfies the equilibrium condition as in definition ' Ué(ém) <
U@(é, 7) < max, |z <n(s) Ug(0, 71), is an E-approximate federated equilibrium solution as
defined in (3| where the approximation error €' for each client i € [N] lies in: max{¢},(l} <
et < min{a — pt, 8 — B'} for pt < «a and B* > B, such that o = ’)\max (VgTUé(é,f')) ‘

6 = Min ([V3aU5 = V3,U5 (V2,U5) " V23] (6,7)) and BY = iy + Lgj,
7 1 2 1 1
Lo [Amax (V2. U} + L%z Pnax (V2 U Amax (V2. Ug)|"

TT§

I S
o (V2,00 T

TTY§




The proof of Theoremﬂ]ls given in Appendix[B.2] Note that when data is homogeneous (i.e., for each
client 4, ¢}, ¢%, pi and B are all zeroes), each client satisfies an exact local minimax equilibrium.

Remark 1. In Theorem|[I] note that if the interval [max{ Ce, ¢t} min{a — pi, B — B'}]is empty,

i.e. max{¢}, ¢t} > min{a — pt, 3 — B}, then no such & exists and (6,7) fails to be a local &
approximate equilibrium point for that clients. It may happen in two cases:

1. The gradient dissimilarity ¢}, ¢’ is too large, indicating high heterogeneity, then (é, 7)- the solution
to the federated objective would fail to become an approximate equilibrium point for the clients. It
is a practical consideration for a federated convergence facing difficulty against high heterogeneity.

2. If a =~ pt or 3 ~ B¢, this indicates that the client’s local curvature structure significantly differs
from the global curvature. In this case, the client’s objective may be flatter or even oppositely
curved compared to the global model, reflecting high heterogeneity.

Now we state the result on the per-client consistency of the FEDGMM estimator.

Theorem 2 (Consistency). [Adaptation of Theorem 2 of (Bennett et al.| 2019)] Let 0, be a
data-dependent choice for the federated objective that has a limit in probability. Let h be a
function satisfying h(6) — 0 as 6 — 0. For each client i € [N, define mi(Q,T,NH) =
Uz = g(X%0)) - ifZ(Z’;T)2(Y1 — g(X%0))% M (0) = sup,crE[mi(0,7,0)] and
n'(€) := infao,0,)>M"(0) — M*(6p) for every e > 0. Fix some 0y, for any 6 € (0, doland any
(8,7) such that |0 — 6| < & and || — 7|| < 8, let (B, ) be a solution that satisfies the approximate
equilibrium for each of the client i € [N] as
sup U} (9,1,7') el —o0,(1) < U’(@n,rn) < inf max 5(9,7/) + "+ 0,(1).

reT 0€O 71:||T1—75 || <h(F)

Then, under similar assumptions as in Assumptions I to 5 of (Bennett et al.}|2019), the global solution
On is a consistent estimator to the true parameter 0y, i.e. 0 —> 0o when the approximate error
el < "T(E)for every € > 0 for each client i € [N].

The assumptions and the proof of Theorem [2]are included in Appendix [B.3]

Remark 2. Theorem[Z] formalizes a tradeoff between data heterogeneity and the con51stency of the
global estimator in federated learmng for each client. If the approximation error €* is large for a
client ¢ € [N], then the solution 0, may fail to consistently estimate the true parameter of client ;.
In contrast, when data across clients have similar distribution (i.e., case for low heterogeneity), the

federated optimal model 6,, is consistent across clients.

3.3 FEDERATED GRADIENT DESCENT ASCENT ALGORITHM AND IT’S LIMIT POINTS

Bennett et al.[(2019) used Optimistic Adam (OADAM), a variant of Adam (Kingmal, |2015) based
stochastic gradient descent ascent (SGDA) algorithm (Daskalakis et al.,|2018)). However, it is known
that a well-tuned SGD outperforms Adam in overparametrized settings (Wilson et al.,[2017). As our
experiments show in Section (4), that gradient descent ascent updates are competitive to OADAM
for minimax optimization in centralized setting. Considering this, we employ an adaptation of the
standard gradient descent ascent algorithm to federated (FEDGDA) setting.

FEDGDA is well-explored in the literature: (Deng & Mahdavi, |2021;|Sharma et al., 2022} Shen et al.}
2024} Wu et al.,|2024)). The clients run the gradient descent ascent algorithm for several local updates
and then the orchestrating server synchronizes them by collecting the model states, averaging them,
and broadcasting it to the clients. A detailed description is included as a pseudocode in Appendix [A]

Similar to (Bennett et al2019), we note that the federated minimax optimization problem is not
convex-concave on (0, 7). The convergence results of variants of FEDGDA (Sharma et al., [2022;
Shen et al., 2024; [Wu et al.,|2024) assume that Ué(ﬁ, 7) is non-convex on 6 and satisfies a u—Polyak
Lojasiewicz (PL) inequality on 7, see assumption 4 in (Sharma et al.| 2022)). PL condition is known
to be satisfied by over-parametrized neural networks (Charles & Papailiopoulos} |2018; |Liu et al.,
2022). The convergence results of FEDGDA will follow (Sharma et al., 2022)). We include a formal
statement in Appendix [A] However, beyond convergence, we primarily aim to show that an optimal
solution will consistently estimate the moment conditions of the clients, which we do next.



For Algorlthmlm Appendix Al let a; = 7 , g = 1) be the learning rates for gradient updates to 0
and 7, respectively. Without loss of generality the FEDGDA updates are:

Ory1 =0 — %7 > Zvew 05,77, anth+1—Tt+77— > Zv Ui .. ,)

i€[N] r=1 ze[N r=1

We call it v-FEDGDA, where + is the ratio of a; to 2. As  — 0 corresponds to FEDGDA-flow,
under the smoothness of Uel’, bounded gradient heterogeneity (assumption [3) and for fixed local
rounds R, FEDGDA-flow becomes:

do

E - = RvTU@(ea T) + O(RCT)

1 R dr
—;RVQU§(97 T) + O <7C9) y and E

We further elaborate on FEDGDA-flow in Appendix[C.1] We aim to find out the relationship between
stable equilibrium and local minimax points of the federated optimization problem. For that, we now
define a strictly linearly stable equilibrium of the y—FEDGDA flow.

PrOpOSItlon 1. Given the Jacobian matrix for ~—FEDGDA flow as J =
RV oU;s(0,7) 1RV LU;z(0,7)
RVTGU 0,71) RV2 U~(9 T)
rium of the y— FEDGDAﬂow if and only if the real parts of all eigenvalues of J are negative, i.e.,
Re(A;) <0 forallj.

), a point (0,7) is a strictly linearly stable equilib-

The proof follows a strategy similar to (Jin et al.| 2020).

Let v-FGDA be the set of strictly linearly stable points of the 7v-FEDGDA flow, and LocMinimax
be the set of local minimax points of the federated zero-sum game. Define

00 — FGDA :=limsupy — FGDA := Ny 50 Uysy, ¥ — FGDA, and

y—00

o0 — FGDA := lirginf'y — FGDA := U 50 Ny ¥ — FGDA.
~y—00

We now state the theorem that establishes that the stable limit points of co-FGD.A are the local
minimax points, up to some degenerate cases.

Theorem 3. Under Assumption LocMinimax C oo—FGDA C oo— FGDA C
LocMinimax U A, where A := {(0,7)|(0,7) is stationary and V2 _U; (0, T) is degenerate}. More-
over, if the hessian V2 _Uj;(0, T) is smooth, then A has measure zero in © x T C R? x RF.

Essentially, Theorem 3| states that the limit points of FEDGDA are the local minimax solutions,
and thereby the equilibrium solution of the federated zero-sum game, up to some degenerate case.
The proof of Theorem [3]is included in Appendix [C.2] Theorems|T} [2] and [3|together complete the
theoretical foundation of the pipeline in our work.

4 EXPERIMENTS

We extend the experimental evaluations of DEEPGMM (Bennett et al., 2019) to a federated setting.
We further discuss this benchmark structure in Appendix [E| More specifically, we evaluate the ability
of FEDDEEPGMM to fit low- and high- dimensional data to demonstrate its convergence. Similar to
DEEPGMM, we assess two scenarios in regards to ((X,Y"), Z):

(a) The instrumental and treatment variables Z and X are both low-dimensional. In this case,
we use 1-dimensional synthetic datasets corresponding to the following functions: (a) Absolute:
g(x) = () = 1(z>0. (c) Linear: go(x) = .

To generate the synthetic data, similar to (Bennett et al.,|2019; Lewis & Syrgkanis| [2018)) we
apply the following generation process:

Y =go(X)+e+9 and X = ZW + 23 ety (20)
(zW, 2@ ~ Uniform([—3, 3]?) ande ~ N(0,1), ~,8 ~N(0,0.1) @1



(b) Z and X are low-dimensional or high-dimensional or both. First, Z and X are generated as
in (20121). Then for high-dimensional data, we map Z and X to an image using the mapping:

Image(x) = Dataset (round (min (max(1.5z + 5,0),9))),

where (round(min(max(1.5z + 5,0),9))) returns an integer between 0 and 9. Essentially, the
function Dataset (.) randomly selects an image following its index. We use datasets FEM-
NIST (Federated Extended MNIST) and CIFAR10 (Caldas et al.| [2018) for images of size
28 x 28 and 3 x 32 x 32, respectively. Thus, we have the following cases: (a) Dataset,:
X = X' Z = Image(Z"%), (b) Datasety: Z = Z'°, X = Image(X'"), and
(c) Datasety ,: Z = Image(Z'°%), X = Image(X'°"), where Dataset takes values
FEMNIST and CIFAR1O0.

We implemented and benchmarked FEDGDA and FEDSGDA to solve the FEDDEEPGMM problem.
For reference, we implemented OADAM, GDA, and SGDA to solve the DEEPGMM in centralized
setting. For high-dimensional scenarios, we implement a CNN architecture to process images,
while for low-dimensional scenarios, we use a multilayer perceptron (MLP). Code is available at
https://anonymous.4open.science/r/FederatedDeepGMM-417C.

= Actual Causal Effect
DeepGMM-OAdam
== DeepGMM-SGDA
= FedDeepGMM-SGDA
== DeepGMM-GDA
= FedDeepGMM-GDA

(a) Absolute (b) Step (c) Linear

Figure 1: Estimated § compared to true ¢ in low-dimensional scenarios

Estimations DEEPGMM- | DEEPGMM- | FDEEPGMM- | DEEPGMM- | FDEEPGMM-
OAdam GDA GDA SGDA SGDA

Absolute 0.03 + 0.01 0.013 + .01 0.4 £0.01 0.009 £ 0.01 0.2 £0.00
Step 0.3 +£0.00 0.03 +0.00 0.04 £0.01 0.112 £ 0.00 0.23 +£0.01
Linear 0.01 + 0.00 0.02 + 0.00 0.01 £ 0.00 0.03 + 0.00 0.04 + 0.00
FEMNIST, | 0.50 =+ 0.00 1.11 £0.01 0.21 £0.02 0.40+£ 0.01 0.19 £ 0.01
FEMNIST, . 0.24 +0.00 0.46 £ 0.09 0.19 £ 0.03 0.14+ 0.02 0.20 &+ 0.00
FEMNIST, | 0.10 +0.00 0.42 +0.01 0.24 £+ 0.01 0.11£ 0.02 0.23 +£0.01
CIFAR10x 0.55 +0.30 0.19 £ 0.01 0.25+ 0.03 0.20 + 0.08 0.22 + 0.08
CIFAR10x, | 040 +0.11 0.24 + 0.00 0.24+ 0.03 0.19 £+ 0.03 0.22 +0.02
CIFARI1O, 0.13+0.03 0.13 £ 0.01 1.70+£ 2.60 0.24 + 0.01 0.52 + 0.60

Table 1: The averaged Test MSE with standard deviation on the low- and high-dimensional scenarios.

Non-i.i.d. data. To set up a non-i.i.d. distribution of data between clients, samples were divided
amongst the clients using a Dirichlet distribution Dirg(«) (Hsu et al.,2019), where « determines the
degree of heterogeneity across S clients. We used Dirg(a)) = 0.3 for each train, test, and validation
samples. Given the non-i.i.d. data, for the low-dimensional scenario, we sample n = 20000 points
for each train, validation, and test set, while, for the high-dimensional scenario, we have n = 20000
for the train set and n = 10000 for the validation and test set.

Hyperparameters. We perform extensive grid-search to tune the learning rate. For FEDSGDA, we
use a minibatch-size of 256. To avoid numerical instability, we standardize the observed Y values
by removing the mean and scaling to unit variance. We perform five runs of each experiment and
present the mean and standard deviation of the results.

Observations and Discussion. In figure (I), we first observe that SGDA and GDA algorithms
perform at par with OADAM to fit the DEEPGMM estimator. It establishes that hyperparameter
tuning is effective. With that, we further observe that the federated algorithms efficiently fit the
estimated function to the true data-generating process even though the data is decentralized and
non-i.i.d. Thus, it shows that the federated algorithm converges effectively. In Table [I] we present
the test mean squared error (MSE) values. In many cases, the federated MSE values are close or
better than the centralized results, which sufficiently demonstrate that our federated implementation
achieves a convergent dynamics. We include additional experimental results in Appendix [E] that
investigate the effects of heterogeneity. These experiments establish the efficacy of our method.


https://anonymous.4open.science/r/FederatedDeepGMM-417C

EXISTENCE OF FEDERATED MIXED-STRATEGY EQUILIBRIUM AND ITS
IMPLICATIONS

In this work, we presented the equilibrium solutions of federated zero-sum games through federated
local minimax solutions for non-convex non-concave minimax optimization problems. The translation
of the federated equilibrium as an approximately consistent GMM estimator for the clients was
obtained through the gradient and Hessian dissimilarities across the clients, see Theorem[I} Theorem[2]
and Definition[3}] We note that our minimax optimization solution provides a federated pure strategy
equilibrium. However, a pure strategy equilibrium can correspond to only full gradients and a full
client participation setting. To elaborate,

* Firstly, with stochastic gradients on the clients, there will be no guarantee of descent (corre-
spondingly, ascent) at an optimization step, which is available only in expectation in this
case. However, in a pure strategy zero-sum game, the minimizing player (correspondingly,
the maximizing player) takes a step to minimize (correspondingly, maximize) the game
objective at each step.

* Secondly, the path to the saddle-point of a player in a pure strategy game should be re-
traceable/deterministic, which can not be possible with minimax optimization with stochastic
gradients and/or partial client participation, considering the true random sampling.

Allowing for stochasticity, whether arising from stochastic gradients or client sampling for each com-
munication round, would necessitate accommodating a distribution over multiple actions. Whereby
the game ceases to be a pure strategy game, as the actions become non-deterministic, essentially,
resulting in a mixed-strategy zero-sum game. It is well understood that, regardless of the analytical
assumptions regarding the objective, mixed strategy solutions for zero-sum games exist

2020).

However, for federated mixed strategy solutions, recovering a GMM estimator for a client is not
immediate. To elaborate, there are no analogous necessary and sufficient conditions — the first-order
and second-order necessary and sufficient conditions that we have for federated pure strategy solutions
in Lemma 2] for the mixed strategy solutions, which would correspond to a distribution over a set of
the global model states synchronized across clients. Therefore, we can not directly apply Theorem [I]
Still, we note here that a federated mixed strategy equilibrium will provide a robust federated GMM
estimator compared to pure-strategy solutions, as it will output a probability distribution over a set of
model states that accounts for the uncertainty across clients.

We leave the algorithm and characterization of a federated mixed strategy equilibrium solution for a
robust federated GMM estimator as an open problem.
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A  FEDERATED GRADIENT DESCENT ASCENT ALGORITHM DESCRIPTION

Algorithm 1 FEDGDA running on a federated learning server to solve the minimax problem

Server Input: initial global estimate 6, 71; constant local learning rate a1, ao; total N clients
Qutput: global model states 6741, 7r41

1: for synchronizationround ¢t = 1,...,7 do

2 server sends 6;, 7 to all clients

3 for each i € [N] in parallel do

4: 9“%0,5,7“%7}

5: for r = 1,2,...,Rdo o _
6: 015 r+1 — ot T avaUz(eé,m th,r)
7 Tt,r+1 Tt r + Oégv Uz (ei,ﬂ TtZ,'r)
8

: end for ' ‘
9: (A0, ATy) + (9;}”1 — 04, T gy — Tt)
10: end for

11: (Al;, A1y) + % Zie[N](Aﬁi,Aﬁ)
122 Oppq < (00 + AOy), 71 (1 + A7)
13: end for

14: return 07 1; 77041

A.1 CONVERGENCE OF FEDGDA

We adapt the proof of Theorem 1 in (Sharma et al.,[2022)) for the SGDA algorithm proposed in
& Mahdavil [2021) for the FEDGDA algorithm [I| for smooth non-convex- PL problems.
Assumption 5 (Polyak t.ojaisiewicz (PL) condition in 7). The function U satisfyies u — PL
condition in 7, u > 0, if for any fixed 6, argmax_, U;(0,7') # ¢ and |V .Uy(0,7)|* >
2p (max, Uz (0,7") — Us(0,7)).

We use the following result about the smoothness of ®(-).

Lemma 3. (Nouiehed et al.||2019) If the function Uy(6, -) satisfies Assumptions@ Iﬂ( L-smoothness
and p-PL condition in 7), then ®(0) is Lo-smooth with Le = kL/2 + L, where k = L/ is the
condition number.

Lemma 4 (One-Step Envelope Descent). (Deng & Mahdavi, |2021) Suppose the local client loss
functions {U;(0,7)} satisfy AssumptionsEI Then the iterates generated by FEDGDA satisfy:

| ZZWU’ 0 i 7h )

2
(6%
B(B141) < 2(0) — V26 - 5 (1 - Loa)

i=1r=1

20[1L2
+
12

where the synchronization error is defined as:

| N R A _
AL i 7 30 (16 = 0 vt = k)

(®(0:) — U(0p, 1)) + 201 L*RAYT

Proof. Using Lemmal[3] ®(-) is Ly = xL/2 + L-smooth, and together with the updating rule, we
have:

L
B(Or41) < D(6:) + (VE(6:), 01 — 1) + - 6r1 — 64|

@(et)—a1<v<1> (6r), ZZV Us(0; s i)> -

’LlT‘l

2

N R .
N GUZ ;rv : )
NZZ
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Using the identity (a,b) = —1[|a — b|*> + 3|la||® + 3||b]|?, we have:

Q(014+1) — 2(0:)

2

N
1 .
Vo) - > VoUi(0s,7)

N R
<_f||v<1>(9t ZZ VoUs(0; 171 ,)|| + a1
i=1r=1 , =1 )
ZZWUZ (0F,.7%, %vag‘(et,n) ZZWU’ (0} . 74,)
=1 i=1r=1

2

i=1r=1
<~ IVRO)|* = 5 (1~ Loay) ’ ZZV U037l + s 96) =7l
=1r=1
R & 2
+a1L2NZZ 260, — 0" + 2|7, — =) (22)
i=1r=1 . )
<~ IVe@)]* - 5 (1~ Loay) szvew 04 7i)
(23)

+ a1 L? [ ¢(0:) — 7el|* + 200 L*RA]T
Using the quadratic growth property of p-PL function Ug(6,-), i.e %HT—@(e)HZ <
max, Ug(0,7") —Uz(0,7), V6,7, where ®(0) := arg max_, Uz(6,7’), we have

P(0r41) — P(6:)

N R
oy 1 oy i
e LR LW ITNES
20, L2
+ 0‘% (®(6:) — U(0;, 7)) + 200 L2RAD™ (24)
O

|2022|) Suppose the local loss functions {U LY satisfy Assumptions and
. Then the

Lemma 5. (ISharma et al.
Further, in Algorithm|l
following inequality holds.

we choose step-sizes ay, ag satisfying az < 1/p, o+ < g

1 T
TZ 9t7Tt))
t=1
2 (I) 91,7’1)) 2L2R 1 L 0,
201 (1 — “NTAYT (1 - anp) == S [VE(6)
azuT t (20 ( azﬂ)+a2)T; ¢+ (1= aap)- ZH )
T, N R 2
+|(1-a L+ Lg)+ asL*a — VoUx(0; ., 7}
[< )G (L L) oo | 25250 w0, )

Proof. Using L-smoothness of U (0, -)

U§(9t+177—t) + <V U”(9t+1,7t),7't+1 - Tt> D) ||Tt+1 - 7't||2 < Ug(9t+177't+1)
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Using the update rule in Algorithm![I]

N R
1 o
Ug(0r+1,7) < Up(Or41, Te41) — a2 <V Us(Or41,71), N Z§VTU§(9§,T,TZ,T)>

N R 2
7 NZZ v UH0; 007 )
o N R
= Ui(0r41, Te1) — HV Ui(Or41,7¢) || - = (1—-asL) ZZ UZ 0} .71,
a e
+ 5 ||VeUa(Orsr,72) = VoUs (01, 70) + VU (01, 70) - ZZ VL UHO; 7 )
v
Ui(Or41, Te41) — HV Ui(Or41,7¢) H — —(1—-oa2l) NZZ U’ Q;T’ i )
+ agL? [|0psy — otH? + ap L2 RAYT, (25)
Note that
, | MR P
[0e1 — 04[] = sz:z—: VoUg(0)0: 70 1) (26)

Also, using Assumption 3]

HVTUé(Gt—',-lyTt)HQ 2 2[1, <Hl72_lXUé(9t+1,7') - U§(9t+1,7't)) = QILL (@(Gt_,_l) - U§(9t+137_t)) .

(27)
Substituting (26), (Z7) in (23), and rearranging the terms, we get
o (®(Op41) — Us(0i41, 7))
N R A 2
< Ui(Org1,Te41) — Uz (0rg1, 72) — (1—asl) ZZ Uz 9§r7 i)
N R ‘ 2
+ al? |a? ZZ VoUL(0i .. 7,)|| | +a2l*RAYT
i=1r=1
== (<I>(0t+1) — U 9t+1a7_t+1 )
N R 2
< (1= aop) (P(Op1) — Ug(Brs1, 7)) — 7 (1—agl) N ;Z:: VUL, 7 )
| N R 4 2
+ o L? i Z Z gUZ 0f i )|| + s LPRAYT. (28)
Next, we bound (®(6y+1) — Uy (0141, 7¢)).
@(014+1) — U011, 7)
= (<I>(9t+1) — @(Qt)) + (@(ﬂt) - Ué‘(et,’rt)) + (Ué(@t,’rt) - Ué(9t+177—t)) (29)
T1 T2

17




T is bounded in Lemmalé—_ll We next bound T5. Using L-smoothness of Uy (-, 7¢),

L
Ui (0, 7¢) + (VoUpy(04,7¢), 0r 1 — 0;) — 3 [6s1 — ;> < Ug(O41,71)
=T = (Ué(@t,Tt) — U"(9t+1>7-t))

<v9U9 9t77_t ZZV9UZ zr’ : )> 2

2

N R )
ZZ VoUs(0; i )

N R 2
- 2 1 7 z i 7 z i
§71 HVGUg(at,Tt)H + sz gU s T ) ZZVGU b T )
i=1r=1 i=1r=1
2 « 1 N o )
< oy ([VRO)|* + || VoUs(0r,7) — VOO ) + - (1 + onL) | VoUL(0; 7! )
2 Ni:lr:l ¢
(a) ) ) e @ 1 L& Lo ’
< au[V0)I" + anl? I =7 @I + G 1+ anl) | £ 35S Va0 i)
201 .2 1 & ?
(07 « ]
< ar [V, + = (2(6:) — U0, 7)) + 71 I+ail) )+ > VU0, ,570)
=1
(30)

where (a) follows from Assumption [2] and Assumption 3]  Also, recall that 7*(0) €
argmax,, Uz(0, 7 . ) follows from the quadratic growth property of u-PL functions. Sub-
stituting the bounds on T7, T, from Lemma ] and (30) respectively, in (28], we get

®(Op41) — Up(Ors1,7e41))

4oy L?
< (1— agp) <1 + = ) (@(975) — Ué(et,Tt»
[ a a 1 LE o . ’
+ (1= azp) —%\\V@(et)nz—?l(l—@al) NZZV@U&(%’WT;T) + 201 L2RA?T
1=1r=1
r N R P
+ (1= agp) |on VOO +7<1+a1L NE_:Z VoUs(0; .7 )
N R 2
a2 7 z i
*7 (1 —asl) Nzg U047 )
N 2
+afas L2 Z VoUs(0;,,7i,)|| +asL?RALT
(0% T
(1 ) (000 00, ) PR
2 N R 1
{(1a2u) (L+ Lg) + s Lax H ZZ VoUy(6; .7 1)
Qg 2 2 0,7
+ (1= azp) |5 [VO(0)|* + 201 L2 RAY }, (31
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where we choose a1 such that (1 — aap1) (1 + 40‘/1%2) < (1 — 0‘2“) This holds if 4‘11L < 2l o

a1 < g¢%. Summing overt =1,...,7T, and rearranging the terms, we get
T
T Z 9t+1) U9(9t+177't+1))
agp 1 2 1« 0,7
< (1—7) ; Ugl0r, 7)) + L2R (204(1 — asps) + az) = > A7

t=1

2
2

N R )
>N VU7

i=1r=1

>

t=1

{(1 - agu) (L + Lo) + asL?a }

+ (1= ap) ——Z Vo))

Nl =
2| =

Rearranging the terms, we get

T (@(Ht) — U§(9t77—t))

2 | ®(01) —Us(01,71) (®(0r41) — Ug(Ors1,7741)) 2L°R 1 I or
< — — + 2001 (1 — agp) + « AV
< i T T oot (2a1( 2/t) + Q) ; ¢

02 9 Ty MR 2
1)L+ L —|—0¢L20¢2} — VoUx(0; ., 7} +(1—

()G 1+ L) +entd]| 2 S 5SS w0+

2(®(6:) — Us(61,m1))  2L2R 1<,
< 2001 (1 — — Y AVT
- aouT + Qo (2en( azp) + az) T tzzl ¢
02 5 Ty MR 2 a I
R e "0 0] E-p D) DA A ) [ LS v
t=1 =1 r=1 t=1

since ®(0r) := arg max, U (07, 7), which concludes the proof. O

Lemma 6. Suppose the local loss functions {U 'Y satisfy Assumptions

E'andEI Further, in Algorithm
1} using bounded gradient assumption, i.e.,

(9 T)|| < G, we choose step-sizes a1, ag <

8RL"
Then, the iterates {0, 1.} generated by Algorlthmlsansfy
or 1 TN R ‘ , . ,
WSS IS ;w 0+ e, = )
<6R(R—1)*[(¢fa? a3) + (of + a3)G?] .

Proof of Lemma[B] We define the separate synchronization errors for ¢ and 7

1 N R ,
AY = NZZHQ — 6%, AI::NZZHTZW—

=1 r=1 i=1r=1

such that Af T = AY + AT. We first bound the - synchronization error AY. Then,

Al = %ZZHH;,T%HQ
i=1r=1

1

||
e
Nt fm:o

ZWU )

(r—1) ZHV9U tJ’ th)HQ'

1 =1

IA
B
=]~
-

s
Il
_

s
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This can be written as

0( ) 1 N R-—1 ) ) R
Al < alﬁz [VoUO; ;.7 )|~ > (r=1)

i=1 j=1 r=j+1

(b) Rfl 2 1 N R-1 )

FLERIAE o S IR

i=1 j=1
(©) (R_1)2 1 & 1 1 ) 2
< oy L 2 Vel

where (a) follows from rewriting the sum, (b) follows since ) 1)< R; and (c) follows

because a positive quantity is being added. Now,

_J+1(

N R
(R-1)° 1 il i i i 2
A <ol S S VeUL6; .7 ) = VoUi(0s,72) + VUi (01, 7) — VoUg (61, 7) + VoUpg (01, 72|

i=1r=1

<a1;1)2;§;§[g|\vwg (0740 =V oUs 0, ) ||” +3 | VoUp 00 7) =V oUs (01, 7) |
+ 36@3@7‘”2 IV oUy 60, 70)|
§6L2af%AaT+3CQ 2R(R2 )2+3a§R(R2_ D 1V6U; (05, 7) || - (32)
Similarly, for the synchronization error A7, we have
(R-1)* 9 2R(R 1)? SR(R

AT < 6L%a3 A%T 4320

—1)?
+ 303 5 )HVTUg(Ht,Tt)HQ. (33)

2 2

5(9, 7')H < G, and adding and ll we obtain

AP <6L%(0f + ad) (R — 1)2A77 +3(¢Ga? + (a)R(R — 1) + 3(af + o) R(R — 1)*G2.

Using bounded gradient assumption, i.e., ‘

For our choice of a; and az, we have 6L2(af + ) (R — 1)? < 1, thus

AJT <6R(R—1)*[(¢GGa + (Cad) + (o +a3)G?] .
Averaging across all the communication rounds ¢ = 1, ..., T proves the lemma.
O

Theorem 4 (Convergence of FEDGDA). Suppose the local loss functions {Ul} satisfy Assumptions
Iland have bounded gradzents and the global function Uy sansﬁesEI Suppose the step-sizes oy, o

are chosen such that oy < SLR, Z—; = 8;2, where Kk = u is the condition number. Then for the

output 07 of Algorithm! 1| the following holds.

[Ve@or)| Z V@ (6,)]|

< 0 (;8?‘?) + O (L’*R(R—1)* [0 (G* + ) + ai(5]), (3d
2

- T Error due to local updates
Error with full synchronization

where ®(0) := max, Uy(0,7) is the envelope function, Ag := ®(01) — ming ®(0). Using oy =

N _ 1 /N
\/ T andal—&# 77, we get

-2 K*Ae G N (02 + ¢+ (3)
[V (br)| §O<m+n R(R—1) 7 .
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Proof. We start by summing the expression in Lemmafjover t = 1,...,T.

1 T 1 T 1 n R ) 2
72 (@(00) - ——fZHVﬂMt — 5 (L= Loan) 7 Y |5 D0 D VeU(6 .73,
t=1 t=1 i=1r=1
20112 1 1
a1 7 2 [®(6) = Upl6r, 7)) + 200 L2RZ S AT. - (35)
r t=1 =
Substituting the bound on %23:1 Af '™ from Lemma and the bound on

LS (®(6:) — U (6e, 7)) from Lemma and rearranging the terms in , we get

1
— (D7) — (O
T( (07) — ©(61))
T
ai 203 L%\ 1
< (M _- (6
<= (5 -t-ewlz) F X Iveer”
>y /4
a 8L2 a? 1|1 & ’
1 1 2 2 z ot i
-5 (1 — Loy — 2o [(1 —QQ/J,)?(L-FL@) + asL al}) T; N;VQU tr,Tm)
>0
2a1L% (2L?R 4o RL*(1 — 1 —
+ { U ( R Ao R aQ“)> +2a1LzR] 7O AT
H % Hog T~
4o L2 (®(01) — Uj(04,
| Ao (®(61) — Uy(6: Tl)). 36)
% T’
(12 — L 2 .
Here o — 21(1H7Z22)L > 9 holds since & < gz.  Also, 1 — Lgay —

u - [(1 — agu) o (L+Ls) + agLQa%f 0 follows from the bounds on a1, a5. Rearranging the

terms in Equation @) and using lemma (6)), we get

1 « 2 _ 4(2(01) — 2(07))
T;HVQ’(@)H < T

+ aimlLQR {1 + 2k% + 4K? } 6R(R—1)*[(af +a3) G* + (] + a3¢?)]
1

Qg
4 dagk? (®(01) — Uy(61,71))
+ -
a1 Q9 T
(@) 4A 16K2A
< =2 L 8I2R [2+26%] 6R(R —1)* [(af + 03) G* + (3¢5 + 032 + )
o T aT
() 4A 16Kx2A
< 189 | 109122 RIR — 12 [(a2 + ) G° + 023 + 03] + L0 20
a1 T T
Ag » Ag
_o (alT 220 LAR(R 1) [(of +03) G+ add] + aggf]) .
A
= 0 (,.;20[‘;) + O (L*K*R(R—1)*[03 (G* + ) + a1(5]) - (since k > 1)
2

Error due to local updates
Error with full synchronization

where, we denote Ag := ®(01) — ming ®(6). (a) follows from 51 < 2oz (b) follows since & > 1

and Ly > L. Therefore, S'i%‘“T"z(L + L) < ‘“" (L + L@) < %, which results in
Equation (34).
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Using az = 4/ 777 and o = 8K2 \/ LT < SKQ , and since k > 1, we get

1 L KQAq) C
IR0 < 0 (St b err- 12 [0 ) ).
t=1

B PROOFS

B.1 PROOF OF LEMMA[I]

Lemma 7 (Restatement of Lemma [1). Let F = span{f} | i € [N], j € [m }} An equivalent
objective function for the federated moment estimation optlmlzatlon problem (I6) is given by:

N
(50015 = s 5D (0 (750) = Co(5 ) where @7
frer =1
Vi€[N]
o o 1 S
U, (f156 Zf (Z)(V = ' (Xi50)), and C(f', ') = — > (F(Z)* (Vi = 9" (X}:0))

v k=1

N i. N i. N i
Proof. Lety = (% Zi:l wm(fl’ 9)7 % 21':1 wni(fw 9); ceey % 21:1 wm( m> 0))
We know that ||v]|? = vTCglv and the associated dual norm is obtained as [|v[|Z = sup, <, vio=
T
v Cy.

Using the definition of the dual norm,

Il = sup vTw

[[v]l« <1

[¥]?= sup v'e
[[o]l« <[l

[¥]?= sup vy (38)
v T Cro<||||2

We now find the equivalent dual optimization problem for (38).

The Lagrangian of the constrained maximization problem (38) is given as
L(v,\) =v "+ MNv Cyv — ||[9]|?), where A < 0.
To maximize £(v, ) w.r.t. v, put ‘g—ﬁ =1 + 2\Cjv = 0 to obtain v = %Cglw.

When ||4|| > 0, v = 0 satisfies Slater’s condition as a strictly feasible interior point of the constraint
v Cyv —||¢||* < 0. Since Cj = 0, the quadratic form v " Cjv is convex in v, and the objective v 1)

is llnear Hence, for this convex optlmlzatlon problem, the Slater s condition applies. Thus, strong

duality holds. Substituting v = —10 —14) in the Lagrangian gives

L0y = 507G+ %Moglw ~ Alw?
2

Hence, the dual becomes ||¢||*> = infi<o {E* (A)}. Thus, the equivalent dual optimization problem

for (38) is given as
. Y2
fot? = jut {-L8E a2} (9)
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Putting 2% = 4/\2 —|[¥||* = 0 gives A = 5. Thus, due to strong duality ||¢)||* = sup, L(v, 3*) =
sup,, v Tw 3 (v Cgv = [[¥]?).
Rewriting it 3 [|¢||? = sup, v ¢ — 10T Cjv and substituting u = 2v
1
4]|? = supu ' — iuTCgu.
u
Using the change of variables u — v
1
]| = supv ' — Z’UTOG“U.
v
Now, we want to find a function form for the optimization problem mentioned above.

Consider a finite-dimensional functional spaces F* = span{f{, fs, ..., f,} for each client i. Hence,

for ft € F!
m
=2 vl
j=1
Since all the clients share the same neural network architecture, we define a global functional space

F as ‘
F = span{f} |i € [N], j € [m]}.
Therefore, v corresponds to fi such that

Y& v; ifc=1
_ i pc i 7 -
= E E v; fj, where v} = {0 oy

e=1j=1
Hence,
1 N m
0T =5 DD vt (f5:0)
i=1 j=1
Y1 _
Z;Zﬂ Z)(Y) — g'(X[:0)).
Similarly,
v CgUZZvavq[Ce]pq
p=1qg=1
o A RN o
=D D vty . — D L ZDFZ)YE - ' (X))
p=1g=1 i=1 " k=1
1.1 .
ZNZFZZUP«# Z1) quf (Zi) (Y — g'(X[:0))°
i=1 """ k=1p=1
AN RS S
=52 2 (21 — ¢ (X 0)°
i=1 " k=1
1< o
= Nzcg(fl,fl)-
i=1
Thus, using the linear isomorphism between R™ and span{f}, fi,..., f:}, using v'e =

LS W (F50) and 0T Cyu = & SN C5(f7, f7), we can write the objective in functional
form as
7, 1 1 L1
[ = sup Z b (F5:60) — L5717
rer NV 4
Vi€[N]
This gives us the desired result.
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B.2 PROOF OF THEOREMI[I]

Theorem 5 (Restatement of Theorem [I). Under assumptions[I} 2} Bl and @] a minimax solution

(é, 7) of federated optimization problem that satisfies the equilibrium condition as in def-

inition ' Ué(é,T) < Ué(é,f') < maXq,|r—#||<n(s) Ug(0,71), is an E-approximate federated

equilibrium solution as defined in|3| where the approximation error e’ for each client i € [N]

lies in: max{¢), ¢} < & < min{a — pL,5 — B'} for p> < « and B* > f, such that

a = ‘)\max (VETUé(é,%)), B = Amin ([vggUé—ngUé (viTUé)‘lvigUg] (é,%)) and
j 1

i i i 1 i 1 2 i
B = pj +Lﬂer\,\max(v3TUg)| + LPTO\A,,,aX(vz,U;‘)\ + L0 e UD) Amax (V2 Ug)"

TV

Proof. The pure-strategy Stackelberg equilibrium for the federated objective is:

U; é,T < U; é,i’ < max U;(0,71/), 40
GO0 SU6.0 < max U671 @0)

We want to show that the €’- approximate equilibrium for each client’s objective Ug also hold
individually.

The first-order necessary condition for (40) to hold is V(;Ué(é, 7) =0 and VTUg(é, 7) = 0. Thus,

HV@U@(@AMA') ’ =0.
Consider
HV@U@(&T)H - vaUé(e,%) — VU0, 7) + ngg(e,%)HQ

- vaUé(é,f)—ng;;(é,%) 2+‘]V9U§(é,f) i
+2(VoUs(8,7) = VoUs(0.7)) - (VoU3(0.7))

Rearranging

oA “ T A A 2 ~ A 2
2<V9U§(9,%)—V9U5(9,%)> (VgUg(e,%)) - HVgUg(G,%) - vaUé(e,%)—vaUg(e,%)’

R 2
2 vaU;(e,%) f‘

’ 2

)ngg(é, )

Using gradient heterogeneity assumption (3) on R.H.S.
2

< (¢)?

< ¢t

vaé(é,ﬂ ~ VoUL(0,7)

Thus, weobtainHVeUg(é,%) < ¢). Similarly, ||V, U%(4,7)

. . . ~ 2 . A
In the special case, when (5 = 0 and (% = 0, thus we will have HV@ U;(0,7) H = HVTUé(G, 7)
0 for all ¢ € [N], which gives VgUé(é, 7)= VTUé(é, 7) = 0 for all clients :.

’ 2

Next, we prove that each client satisfies the second-order necessary condition approximately. Since
(0, 7) satisfy the equilibrium condition , the second-order necessary condition holds for the global
function Uy, i.e. VZ_U;(6,7) < 0. We now prove that VZ_U%(6,7) < 0.

TT 9

Using assumption the hess ian is symmetric.  Thus, VETUé(é,%) < 0 implies
)\max(VfTU(;(QA,%)) < 0, where Apax is the largest eigenvalue of the hessian. Suppose,
Amax (V2. U5(0,7)) = —a, for some o > 0.

We can write V2 U(,7) = V2 UL(8,7) — V2, Us(8,7) + V2, Ujz(0,7).

TT 0 TT 0

Using a corollary of Weyl’s theorem (Horn & Johnson [2012) for real symmetric matrices A and B,
Amax(A + B) < Amax(A) 4+ Amax(B). Hence,

Amax (V2 UH0,7)) < Amax (V2. U0, 7) — V2 U5(0,7)) + Amax (V2 U580, 7)).

TT 0 TT 0
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Thus, Amax(VZ,UL(0,7)) < Amax(VZ,UL0,7) — V2, Us(6, 7)) — .

Since the spectral norm of a real symmetric matrix A is given as |Al, =
max{|Amax (A)]; [Amin (A)[}-
Under hessian heterogeneity assumption 4]

IV2,030,7) = 92,050, 7)o = max { Aua(V2,U3(0,7) — V2, U3(0,7)].
Amin (V2,U4(0,7) = V2,U5(0,7)) |}
<ph.

Thus, we have

Amae (V2 UL, 7) — V2, Us(6,7)) < max { ‘Amax(vz Ui, #) — V2, U, (6, %))‘ ,

TT 6
Auin (V2,030 7) = V2,050, 7))| }
<pl.
Thus, Amax (V2 UL(0,7)) < Amax(V2,UL(0,7) — V2,U5(0,7)) — a < pb — o, where pi > 0.
Hence, . )
VZ,U50,7) % (p — o)L

TT 0

When p. < «, then V2_UL(6,7) < 0.

TT 0

Now, since (6,7) satisfy the equilibrium condition , thus VETUQ(GA, 7) < 0 and the Schur
complement of VfTUé(é, 7) is positive semi-definite. Now when p’. < a it follows from above that

A N -1
VETU(;(G, 7) < 0, hence (V2 UL(0, f')) exists. Now, we need to show that Schur complement of

TT ]

V2,Ui(6,7) is positive semi-definite.

Since, S(0,7) := [V3,Us = V3,U; (V2,U;) ' 92,05 (6.7) = 0.

) ) ) At . . .
Define S% := [Vngg - V3. Us (VETU(;) VzeUé}. We aim to prove Apmin (S%) > 0 to show S°
is positive semidefinite (PSD).
Analogous to the above part, using corollary to Weyl’s theorem, we have

Amin(Si - S) + )\min(S) < )‘min(si)'

Let Amin (S) = 3, where 8 > 0. Moreover, ||S* — S||, = max{|)\max(5i — S)| , |)\min(5i -5)
thus A\pin (ST — S) > —[|S* = 9,.

Thus, we have

|2

. —1(5" = S)lo + B < Amin(S").
We can write S* — S as

S' =8 = (VieUs — VieUp) — [(vaU;i = V5. Up)(V3.U) ' V3Us

TT 0

+ VU (VU (V2Uf = V2aUp) + ViU (V2,U5) ™ = (V2,05) ™) 93,03 .

Hence,
15" = Slls < V36U = VieUgllo + (V3. Uz = V3,Up) (V2.U) " V2,Ujllo
)
+ IV3 U (V2,0 (V2,04 = V20l

T>

+ V3,0 ((92,08) " = (92,U5) 1) V24Ul

T3
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Note that the eigenvalue of (VZ_U%)~lis A ((V2 Ui~ ) = m hence ||(V2 . UH71|, =
TT g

TT 9 TT 9 TT 9

m as V7, U} is negative definite. By Assumption , each client’s function U is L-

TTY§

Lipschitz thus [[V?U¢|, < L. Since the Hessian V2U? is a block matrix of the form:

; Vi Ui V3 Ut
2771 _ 0T~ g
\Y Ug - |:v20Uz v2 Uz:| )

TT 0
The norm of Hessian is at least the norm of one of its components

IVeUslle < L, V5 Uglle < L, [VZUglle < L. V2, Ugllo < L.

TT 0

Thus, each Hessian block is individually bounded by L. Additionally, U is L-Lipschitz too. Using
Assumption 4] bounding T}

Ty = |[(V3,.U; = Vi U)(VZUp) "' V2aUpllo

TT 9
< (V305 = V3,050 - 1 (V209 o - V20Ul
. 1
< Lo o
P (V2. 02)]

Similarly, bounding 75
Ty = ||V5,Us(V7-Up) " (V2Us = V2Up)ll»

TT 9
< IVe-Usllo - 1(V2:U5) " o - 1(V2Us = V3eUp)lo
- 1
<Lp,—m8 ———
= N (VE,UD)]
Lastly we bound T, it is easy to verify that A~! — B~! = A=1 (B - A) B!
Ty = V3,05 (V2,085)7" = (V2.05) ") V24Ul
< IV3:Uslle - (V2. U5) ™" (v2 ) Hlo - IVZ6Usllo
= Ve Ugllo - (V2.U5) "1 (V2.Us = V2, Up)(V2,Up) ™ 1||a IV26Usll o
< IVe-Usllo - 1(V2:U5) " Hlo - IV2:U = V2, Uil - (V2 Ug) " Hlo - IV2Us 0
1
< L*p!
P e (VZ,00) e (V2, U

Usmg bounds for T3, 7> and T3, we can obtain a bound on ||S‘ S|le < B, where B' =
p‘g + Lp@rm + Lp’rOm + L ,07. P (V2 Ul) )\mix(v U- )‘ Consider p =

TT g

max{py, prg, Py, pr}. Hence, BY < pf <1+ K (VT 0D (“ Amxwafvg))' Hence, we
obtain

)\min(Si) 2 _Bi +ﬁ7

where  Apax(5) = ﬁ such that S > 0. Hence, we obtain
V3,Ui — V3. UL (vaU;) VEGU;L] 6,7) = (8 — B)I. When 8 > B, then S is

TT 0

positive semi-definite. When B’ = 0, hence {vg(,Ug ~V2.Ui (v2 Ul)i VQ(,UZ} (6,%) = BI,

thus it will be positive semidefinite. When pL < aand B > B, then the suuficient condition for
¢'-approximate equilibrium is satisfied. And we obtain the result.

Thus, for each client i, any approximation error €° that satisfies:
max{¢}, ¢} < &' <min{a — pt, 3 — B'}.

for pi < aand B' > 3, then (6, 7) is an ’-approximate local equilibrium point for client i. O
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B.3 CONSISTENCY

B.3.1 ASSUMPTIONS

We first state the assumptions that are necessary to establish the consistency of the estimated parame-
ter.

Assumption 6 (Identification). 6 is the unique § € © such that ¢(f%; ) = 0 for all f* € F, where
i€ [n].

Assumption 7 (Absolutely Star Shaped). For every f! € F¢ and |c| < 1, we have cf? € F°.

Assumption 8 (Continuity). For any x, g*(x;6), f‘(x;7) are continuous in 6 and 7, respectively for
all i € [N].

Assumption 9 (Boundedness). Y, supyce |9°(X;0)|, sup,c |f*(Z;7)| are bounded random
variables for all ¢ € [N].

Assumption 10 (Bounded Complexity). F* and G¢ have bounded Rademacher complexities:

2}L Z ]Ebup—zg (Z;7m) = 0, 2}” Z ]Ebup—Zfl (Xk;0) — 0.

cef 141y TETT ce{itq1ym €O

B.3.2 PROOF OF THEOREM[2]

Theorem 6 (Restatement of Theorem . Let 0, be a data-dependent choice for the feder-
ated objective that has a limit in probability. For each client i € [N], define mi(6, 7,0) =
25T = g(X750)) — 1f1(Z25m)2(Y" = g(X":0))%, MY (0) = sup,cq E[m(0,7,0)] and
n'(€) := infao,00)> M (0) — M (6y) for every € > 0. Let (0, 7,,) be a solution that satisfies the
approximate equilibrium for each of the client i € [N] as

sup U (9”,7') —e"—o0,(1) < 93(0”,7”) < inf ma Ué(@,rl) + &'+ 0p(1),

reT 0€0 r1:||71— Tn|\<h(5)

for some 8o, such that for any § € (0, 8], and any 0, 7 such that |0 — || < § and |7 — 7|| < & and
a function h(§) — 0 as 6 — 0. Then, under similar assumptions as in Assumptions 1 to 5 of (Bennett

et al.}|2019), the global solution én is a consistent estimator to the true parameter 0, i.e. én LN 0o

when the approximate error €' < "T(E) for every € > 0 for each client i € [N].

Proof. The proof follows from the result of Bennett et al.| (2019) that established the consistency of
the DEEPGMM estimator.

First, we define the following terms for the ease of analysis:

mi(6,7,0) = F{(Z5m) (V' — g(X136)) — L F(Z5m)A( — g(XT;6))?
MY(0) = Sg)_]E[mi(H,T, 0~)]

M,,(0) = sup E,, [mi(Q,T, 6,)]
TET

Note that 6,, is a data-dependent sequence for the global model. Practically, the previous global
iterate is used as 6. Thus, we can define for the federated setting 0,, = & ZZ 1 0n,. Let’s assume

0, 2 .
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Claim 1: sup, | M,,, () — M*(9)| 2 0.

sSup |an (9) - M1(9)| = sup |sup Em [mi (97 T, én)] — sup E[ml (97 T, é)] ‘
0 0 |TeT TeT

< sup |En,, [mi(8,7,6,)] — E[mi(, T, é)}‘

0,7
< sup Ex, (mi(9,7,0,)] — E[m' (8, r, én)]] (mi(0,7,0,)] — E[m‘(8,, é)]]
< osng |E i(elv T, 02)] - E[mi(alv T, 92)] [ (6‘7 T, gn)] - E[ml(g’ T, é)]’

We will now handle the two terms in the above equation separately.

We will take the first term and call it B;. For mi(ﬁ, T, én), we constitute its empirical counterpart
. - S T A A ) Y ~
mi(0,7,0n) = f1(Zj;7) (Vi = g"(X(:0) — 1.£1(Zfs7)? (Y — ¢' (X[ 0))? and using m;" (60,7, 0;,)
with ghost variables 6/, for symmetrization and €, as k i.i.d. Rademacher random variables , we

obtain

E[B;] =E esgp — ka 01,7,0s) — {mzl(Ql,T, 9%)} H
L7102 [T =1

<E| sup 1Z(m};(91,7,02)m};/(ﬂl,T,Gé))H

01 ,02 ,T ni

- - | .
<E| sup |— ek(mZ 01,7,02) —mt (01,1,0) )
_91792,7' ng Z k( ! 2) ¥ ( ' 2)

Ty

1 )
<2E | sup fZEka(917T792)
91,92,7‘ ni k=1
1 & o . o
<2E lsgup — Zﬁkfl(ZiéT)(YkZ gl(Xii;Q))H
T k=1
bup Zekfl Zk:v -_g (Xkae)) ]
<2E 1y Lticzi + Ly —gicxii0)2
2 Seup n,zek f( k’ ) 2( k g( k> ))
T k=1
1 & 1 Lo iyl gnd
+ -E seup ;Zﬂc ~fiZi;7)! é(Yk*Q (X%:0))
,T (3 k=1
1 & P i
[sup Zekﬂ Zir)|| +E [sup |~ Zemz—gwx,z;e)f]
T g=1
1 - ; 4
sup n; ZekfZ ARED) +ZE 591’15) n—i;ek(Ykz—g’(Xkﬁ)) ]

Using boundedness assumption EI, we consider the mapping from f*(Z};7) and ¢*(X};6) to the
summation terms in the last inequality as Lipschitz functions, hence for any functional class F “ and
L- Lipschitz function ¢, R,,, (¢ o f!) < LR .(F7), where R, (F*) is the Rademacher complexity
of class F*. Hence, E[B1] < L(Ra, (GY) + Ron, (F1)). Using assumptlon E[Bl] — 0. Let B be
a modified value of B, after changlng the j-th Value of X*, Z* and Y values, using assumptlon@on
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boundedness, we obtain the bounded difference inequality:

1 .
sup |B1 _BH S sup | ( (6177— 92) ;’l(9177—792)) |
Xt Z1ing  Y1in, . X, 25, Y] 01,027, X121 Y1im, X}, 25,Y) T
b
S —
n;’

where b is some constant. Using McDiarmid’s Inequality, we have P(|B; — E[B1]| > €) <
2exp (L) And E[B;] — 0, we have B; 2 0.

Now, we will handle Bsy. For that

B, = m'(0,7,0,)] ~ E [m'(6,7,0)]|
—sup B [£1Z5 ) - gX50) - LT - g8,
- B [FZ - g(X50) - {725 X5
= g ]E 71220 = g(X730.))2] —E[£1(Z5 )2 (" - g(x750))?]|
= sup 3 B [£/(25 20 = 07102 + B [£/(Z5 20 - o 0) ]
— E|F(Z5m2 Y - (X5 0)2] ~E (257 - g(X50)7|
< o B [/(Z5 )%,
Here, w,, = ‘(Yi —g(X8,))? — (Y — g(X%:0 \ Due to our assumption, ,, £ @, thus w,, 2 0

due to Slutsky’s and continuous mapping theorem Since, f(Z;7) is uniformly bounded, thus for
some constant b’ > 0, we have

1 1
By < ZSEPNZI |E [wn]]

A
< ZSEPN;]E“C%”

Based on the boundedness assumption, we can verify that w,, is bounded, hence using Lebesgue
Dominated Convergence Theorem, we can conclude that E [|w,|] — 0.

Thus, using the convergence of By and Bs, we have sup, | M,,, (8) — M*(6)| £ 0 for each i € [N].

Claim 2: for every e > 0, we have inf g g,)>c M*(0) > M*(6y).

M (6p) is the unique minimizer of M?(¢). By assumption (6) and (7)), 8, is the unique minimizer
of sup, E[f"(Z%;7)(Y" — ¢*(X;0))] such that sup, E[f*(Z"; 7)(Y" — ¢"(X;0))] = 0. Thus, any
other value of 6 W111 have at least one 7 such that this expectation is strictly positive. M (6y) = 0 and

M(6y) = sup, —5 f/(Z";7)2(Y" — ¢"(X;0))?, the function whose supremum is being evaluated

is non-positive but can be set to zero by assumption (7| . ) by taking the zero function of f?. Let for
any other 6’ # 6, let f*’ be a function in F* such that E[f*(Z)(Y’ — ¢*(X;6))] > 0. If we have
E[f"(Z)2(Y — ¢'(X;6))%] = 0, then M?(#") > 0. Else, consider cfi/ for any ¢ € (0,1). Using
assumption H cfi/ € F*, thus

M) = suppicp B [F(Z)YV - g(X50) — LF(Z)P (Y~ g(X50))?]

< CE[f1(Z)(Y = g(X758)| = SE[£(Z)2 (Y - g(x":6))?]
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This is quadratic in ¢ and is positive when c is sufficiently small, thus M*(8") > 0.

We now prove claim 2 using contradiction. Let us assume claim 2 is false, i.e. for some € > 0,
we have infyepg,,c) M*(6) = M*(6y), where B(6,€)° = {0 | d(6,600) > €}., since b, is the
unique minimizer of M*() by assumption @ Thus, there must exist some sequence (61, 63, ...) in
B(6y, €)¢ such that M*(6,,) — M*(6y). By construction, B(fy, €)¢ is closed and the corresponding
limit parameters 0* = lim,, o 6,, € B(6y, €)¢ must satisfy M*(6*) = M*(6) using assumption
But d(6*,0y) > € > 0, thus 6* # 6y. This contradicts that 6 is the unique minimizer of M*(
hence, claim 2 is true.

>

Claim 3: For the third part, we know that 0,, satisfies the &'- approximate equilibrium condition,
given as:

En, [ml(ém T, én)] —e'< E,, [mi(em Tns

™

E,, [mi(0,71,0,)] + €,

i

n)] <

max
Th||TI=Fn || <h(5)

for a function h(6) — 0 as § — 0 and some dg, such that for any § € (0, dp], and any 6, 7 such that
|16 — 8| < dand ||T — 7| <. Assume that this is true with o,(1), hence

sup By, [’ (0, 7, 0,)] =" —0, (1) < By, [m? (B, 7, 0)] < inf e T En, [m'(0,71,0,)]+¢'40,(1),
T T T —Tn || <

Now, since M,,, (6,,) = sup,E,, [m(0,,7,0y,)]. Hence,

nfo,, max B [ (0,7,00) < infosup, B (0. 77,0,)] = info My, (6) < My (60)
Th|| =70 || <

Thus, we have
My, (0,) — &' — op(1) < E,, [mi(én,%m én)] < My, (60) + &' + 0p(1).
We have proven all three conditions until now. From the first and second condition, since |M,,, (6y) —
M (6)| 25 0, hence M,,,(6,)) < M#(6y) + 2¢* + 0,(1). Hence, we obtain
M (6,) — M'(60) < M'(8,) — My, (8,) + 2" + 0,(1)
< sup [M*(0) — My, (0)] + 25" + 0,(1)
0

< 26"+ 0,(1)

Hence, we obtain
M (0,) = M'(60) — 26" < M'(0,) = My, (0,) + 0p(1)
< sup | M (8) — M, (6)] + 0p(1)
< op(1)

Since, let ' (€) := infa(g.gy)>c M (0) — M?(6o). Hence, whenever d(6,,, 60) > ¢, we have M (0,,) —
M(6y) > n(€). Thus, P[d(0,,,00) > €] < P[M(6,)— M (0y) > n'(e)] = P[M(0,,) — M (6) —

2e' > ni(e) — 2¢]. For every € > 0, we have 1 (¢) > 0 from claim 2, and M*(6,,) — M*(0p) — 2¢* =

0p(1). Thus, n’(e) — 2e* > 0 when &' < ”T(e) We have that for every ¢ > 0 and ' < 79 the

RHS probability converges to 0, thus d(f,,,60) = op(1), hence 0,, converges in probability to 6 for
each client 7 € [N].

O

C LiMmit PoOINTS OF FEDGDA

We first discuss the v- FEDGDA flow.
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C.1 FEDGDA FLow
The FEDGDA updates can be written as
0t+1 :Ht nf— Z Z v9U0 of,Tf (VQUz(GZT,Tt-,T) 7V9U£(9t77't))

ze[N] r=1
+(VoUg(0r, ) — VoUpy(01,71)))

R
) o _
Tev1 = Te H 1y Yo D (VeU(0em) + (V-UR6; 7 y) = VU (60,71))
i€[N] r=1
+(VU(00,7) = Vo Uy(61,72)))

Rearranging the terms and taking the continuous-time limit as  — 0

R
. 9 1 70 , i/ 3 7
%IL% t+ . nH0777 Z Z V9U9 Qt,n (VQU (Gtr,TM) — VeUé(et,Tt))

(V9U~(9t,n) — VU (0s,71)))

T4l — T : irgi i i
}ﬁﬂ%% :}f%ﬁ ;ﬂ; (VU501 70) + (V-U(0; ., 7f ) — VUL (61, 71))

+(VTU5(9t,Tt) - VTUé(Qt,Tt)))

We obtain the gradient flow equations as

@w_ R1 > (VaUpl6(t).m(1) - % > (VU0 (2).74(8) = Voly(00). 7(1)

dt v N
i€[N] i€[N]
- %% > (VoU(0(2). 7(1)) = VoUg(0(t), 7(1))) (1)
1€E[N]
dr 1 1 i i
&~y 3 (TG00 70) + Ry 3 (VU010 70) = U000, 7()
+ R— (VTU;(H(t),T(t)) VTUQ(H(t),T(t))) (42)
i€[N]
Using Assumption 3]
B S (VoU6). 7)) = VU (000), 7)) | < 2
v i€[N] v
R— > (V.Uj (1)) = V-Us(0(1), 7() || < B¢
i€[N]
Thus,
R1 R
—~ (VoU;(0(),7(t)) — VoUg(0(t),7(t))) = O <Ce>
v i€[N]
R% (V-Uz0(1), (1) — VU (0(1), () = O(R¢r)
1€[N]
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Since Ug is Lipschitz smooth by assumption we have

%% ST (VU0 (1), 7 (1) — VoU(0(t), 7(1))|| < L2~ & 2 @7 @) = 00). 7@l

i€[N] ZG[N]

R% Y (VLU (1), 7 (1)) = VU (6(t), 7(1)))|| < LR% > @), (1) = (B(0), 7(1))]-

i€[N] i€[N]

Substituting these bounds into Equations (1)) and #2), we obtain

2% SO0 ) - Va0, =0 | 125 X e — (0,70

i€[N] ZG[N]

R% > (VU8 (1), 7' (1)) = V:Uj(6,7)) = O LR% > 6@, (1) = (6(1), (1))

i€[N] i€[N]

Since the local update follows

R
> VaUL(05(t), 7i(1)),
T(t) = 7(t) + nZVTUé(Gﬁ(t)J}(t)),

Using bounded gradient assumption, i.e. HVgUl( , ))||2 < Gy and ||V U;( ™? < G, forall i,
asn — 0 and R is fixed and finite, the deviation ||(6(t), 7%(t)) — (8(t), 7(t

))|| vanish, leading to
do 1 R
== 7;RV9U§(0(t),T(t)) +0 <7CQ) ;
‘C% = RV, U(0(t), 7(t)) + O(R,).

C.1.1 PROOF OF PrROPOSITION[]

Proposition (Restatement of Proposition[I). Given the Jacobian matrix for v—FEDGDA flow as

_ (~LRV3,U;(0,7) —1RV3,U;0,7)
J‘( BV2,050,1) B2 Uo(0,1) )

a point (0,7) is a strictly linearly stable equilibrium of the v—FEDGDA flow if and only if the real
parts of all eigenvalues of J are negative, i.e., Re(A;) < 0  forall j.

Proof. Considering the FEDGDA dynamics with step size 7, the Jacobian matrix of this dynamic
system is I 4+ nJ. The eigenvalues of J are A, thus the eigenvalues of I + nJ are {1+ nA;}.

By definition, a fixed point z* of a dynamical system w, such that z* = w(z*), is a strict linearly
stable point if the spectral radius p(J(z*)) < 1, where J is the Jacobian matrix of w. Therefore,
(0, 7) is a strict linearly stable point if and only if p(I + nJ) < 1, thatis |1 + nA;| < 1 for all j.
When taking 7 — 0, this is equivalent to Re(A;) < 0 for all j. O
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C.2 PROOF OF THEOREM[3]

Proof. Let A = V32,U;(0,7), B=V2 U;(0,7) and C = V3 U (0, 7). Consider € = % thus for
sufficiently small € (hence a large ), the Jacobian J of FEDGDA for a point (6, 7) is given as:

—eA —eC
Je:R(CT B)'

Using LemmaEl, J. has d; + ds complex eigenvalues {A; };ilz —sl-dz such that

[Aj+epsl=o(e) 1<j<d

. 43
Ajeas — 5] =0(1), 1< j<d, 5

where {1, }?1:1 and {v; }?2:1 are the eigenvalues of matrices R(A—CB~'C") and RB respectively.
We now prove the theorem statement:

LocMinimax C oo — FGDA - oo — FGDA C LocMinimax U
{(6,7)](8, 7) is stationary and V2 _U,(6, 7) is degenerate}.

By definition of lim sup and lim inf, we know that co — FGDA C oo — FGDA.

Now we show LocMinimax C oo — FGDA. Consider a strict local minimax point (6, 7), then by
sufficient condition it follows that:

B <0, and A—-CB7'C' »-0.

Thus, RB < 0, and R(A — CB~'C") »~ 0, where R is always positive. Hence, {Vj};llzl < 0and
{Mj};'1221 < 0. Using equations for some small ¢y < €, Re(A;) < 0 forall j. Thus, (6,7) is a

strict linearly stable point of %-F EDGDA.

Now, we show co — FGDA C LocMinimaxU{(d, 7)|(0, 7) is stationary and V2_Uj(6, 7) is degenerate}.

Consider (0, 7) a strict linearly stable point of %—FEDGDA, such that for some small e,
Re(A;) < O for all j. By equation assuming B! exists

RB <0, and R(A-CB7'C")»o.

Since, R is positive, thus B < 0, and A — CB~'CT > 0. Let’s assume A — CB~'CT has 0 as
an eigenvalue. Thus, there exists a unit eigenvector w such that A — CB~'CTw = 0. Then,

gt —pctw) =k (G ) (Y, 0

Thus, J. has 0 as its eigenvalue, which is a contradiction because for strict linearly stable point
Re(A;) < 0 forall j. Thus, A — CB~'C" - 0. Hence, (0, 7) is a strict local minimax point.

Let G : R? x R* — R be the function defined as: G(6, 7) = det(VZ_U;(0, 7)). Let’s assume that
V2_U;(0, 7) is smooth, thus the determinant function is a polynomial in the entries of the Hessian,
which implies that G is a smooth function. Since VZ_Uj(6, 7) = 0 implies at least one eigenvalue of
V2. U(0,7) is zero, thus det(V2_ Uy (0, 7)) = 0.

‘We aim to show that the set
A= {(0,7) | (0,7) is stationary and det(VZ_U;(0, 7)) = 0}
has measure zero in R? x R¥.

A point ¢ € R? x R* is a regular value of G if for every (6,7) € G~1(q), the differential dG(0, T)
is surjective. Otherwise, q is a critical value.

The differential of G is given by: VG(0,7) = Tr(Adj(V2.Up) V(V2.Up). If
det(V2_Us(6,7)) = 0, then the Hessian V2_Uj is singular. This causes its adjugate matrix to
lose rank, leading to a degeneracy in VG(6, 7), making dG (0, 7) not surjective.
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Thus, every (6, 7) satisfying G(6,7) = 0 is a critical point of G, meaning that 0 is a critical value of
G.

By Sard’s theorem, the set of critical values of a smooth function has measure zero in the codomain.
Since G is smooth, the set of critical values of GG in R has measure zero. In particular, since 0 is a
critical value of G, the set: G=1(0) = {(0,7) | det(V2,U;(0,7)) = 0} has measure zero in R4T*.

Since the set of degenerate V2 U;(6,7) is precisely G~'(0), we conclude that
Lebesgue measure(.A) = 0. Thus, the set of stationary points where the Hessian V2 _Uj(6, 7) is
singular has measure zero in R? x R¥. O

Lemma 8. (Zedek, |1965) Given a polynomial p,(z) := ZZ:o arz®, where a,, # 0, an integer
m > n and a number € > 0, there exists a number § > 0 such that whenever the m + 1 complex
numbers by, 0 < k < m, satisfy the inequalities

b —ar| <6 for0<k<n, and |bp|<d forn+1<k<m,

then the roots By, 1 < k < 'm, of the polynomial g, (z) := ZZZ:O bpz* can be labeled in such a way
as to satisfy, with respect to the zeros ay, 1 < k < n, of p,(2), the inequalities

1Bk —ak| <e forl<k<mn, and |Bi|>1/e forn+1<k<m.

Lemma 9. For any symmetric matrix A € R"*4 B € R%>4% any rectangular matrix C €
R4 *d2 gnd a scalar R, assume that B is non-degenerate. Then, matrix

—cA —eC
“(et )
has d1 + dy complex eigenvalues {A; };-11:1"12 with following form for sufficiently small e:

[Aj+epsl=o(e) 1<j<d
|Aj+d1 7Vj|:0(1)7 1§]§d25

where {%,uj ?1:1 and {%Vj }?2:1 are the eigenvalues of matrices A— CB~'C'T and B respectively.

The proof follows from Lemma [8 by a similar argument as in (Jin et al., 2020) with {y; }?1:1

and {v; };lil as the eigenvalues of matrices R(A — CB~'C ") and RB, respectively, and is thus
omitted.

D RELATED WORK

The federated supervised learning has received algorithmic advancements guided by factors such as
tackling the system and statistical heterogeneities, better sample and communication complexities,
model personalization, differential privacy, etc. An incomplete list includes FEDPROX (Li et al.|
2020), SCAFFOLD (Karimireddy et al.,[2020), FEDOPT (Reddi et al., 2020), LPP-SGD (Chatterjee
et al.,[2024), PFEDME (T Dinh et al., 2020), DP-SCAFFOLD (Noble et al.| |2022)), and others.

By contrast, federated learning with confounders in a causal learning setting is a relatively under-
explored research area. [Vo et al.|(2022a) presented a method to learn the similarities among the data
sources translating a structural causal model (Pearl| 2009) to federated setting. They transform the loss
function by utilizing Random Fourier Features into components associated with the clients. Thereby
they compute individual treatment effects (ITE) and average treatment effects (ATE) by a federated
maximization of evidence lower bound (ELBO). |Vo et al.| (2022b) presented another federated
Bayesian method to estimate the posterior distributions of the ITE and ATE using a non-parametric
approach.

Xiong et al| (2023) presented maximum likelihood estimator (MLE) computation in a federated
setting for ATE estimation. They showed that the federated MLE consistently estimates the ATE
parameters considering the combined data across clients. However, it is not clear if this approach is
applicable to consistent local moment conditions estimation for the participating clients. /Almoddvar
et al.| (2024) applied FedAvg to variational autoencoder (Kingma et al.,|2019) based treatment effect
estimation TEDVAE (Zhang et al.| [2021)). However, their work mainly focused on comparing the
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performance of vanilla FedAvg with a propensity score-weighted FedAvg in the context of federated
implementation of TEDVAE.

Our work differs from the above related works in the following:

(a) we introduce IV analysis in federated setting, and, we introduce federated GMM estimators,
which has applications for various empirical research (Wooldridge, [2001),

(b) specifically, we adopt a non-Bayesian approach based on a federated zero-sum game, wherein
we focus on analysing the dynamics of the federated minimax optimization and characterize the
global equilibria as a consistent estimator of the clients’ moment conditions.

Our work also differs from federated minimax optimization algorithms: |[Sharma et al.[(2022)); Shen
et al.| (2024); |Wu et al.| (2024)); Zhu et al.| (2024), where the motivation is to analyse and improve the
non-asymptotic convergence under various analytical assumptions on the objective functions. We
primarily focus on deriving the equilibrium via the limit points of the federated GDA algorithm.

E BENCHMARK CONSIDERATIONS AND ADDITIONAL EXPERIMENTS

E.1 THE EXPERIMENTAL BENCHMARK DESIGN

As stated, our experiments take the [Bennett et al.| (2019)’s experiments as a centralized-setting
baseline. Therefore, we have used the same synthetic dataset as DEEPGMM, which they use in their
experiments to benchmarks against the baselines therein such as DEEPIV (Hartford et al.|[2017). It is
standard to perform experimental analysis on synthetic datasets for unavailability of ground truth
for causal inference; for example see Section 4.1.1 of |Vo et al.| (2022b)). As the learning process

essentially involves estimating the true parameter 6, by 0, to measure the performance of the learning

procedure, we use the MSE of the estimate § := g(., 0) against the true go averaged over the clients.
Nonetheless, an experimental comparison of our work with recent works on federated Bayesian
methods for causal effect estimations does not apply directly. We discuss that below.

The two works in the domain of federated Bayesian methods for causal effect estimations are
CAUSALRFF (Vo et al.,[2022a)) and FEDCI (Vo et al.,[2022b). The aim of CAUSALRFF (Vo et al.,
20224)) is to estimate the conditional average treatment effect (CATE) and average treatment effect
(ATE), whereas FEDCI (Vo et al., [2022b) aims to estimate individual treatment effect (ITE) and
ATE. For this, (Vo et al.,[2022a) consider a setting of Y, W, and X to be random variables denoting
the outcome, treatment, and proxy variable, respectively. Along with that, they also consider a
confounding variable Z. However, their causal dependency builds on the dependence of each of Y,
W, and X on Z besides dependency of Y on W. Consequently, to compute CATE and ATE, they
need to estimate the conditional probabilities p(w®|z?), p(y*|zt, w?), p(z¢|x?, y¢, w?), p(yt|w?, 2%),
where the superscript ¢ represents a client. Their experiments compare the estimates of CATE and
ATE with the Bayesian baselines (Hill, 2011)), (Shalit et al., 2017), (Louizos et al., 2017), etc. in
a centralized setting without any consideration of data decentralization or heterogeneity native to
federated learning. Further, they compare against the same baselines in a one-shot federated setting,
where at the end of training on separate data sources independently, the predicted treatment effects
are averaged. Similar is the experimental evaluation of (Vo et al., |2022b). Similarly, | Xiong et al.
(2023)) address a fundamentally different causal setting from ours, as they target ATE/ATT estimation
in observational studies under the unconfoundedness assumption ({Y'(0),Y (1)} L W | X), which
implies that treatment assignment W is exogenous given observed covariates X .

By contrast, the setting of IV analysis as in our work does not consider dependency of the outcome
variable Y on the confounder Z, though the treatment variable X could be endogenous and depend on
Z. In our synthetic data generation, an unobserved confounder explicitly enters both the treatment and
outcome equations, inducing correlation between (X') and the residual (Y — go(X)) and therefore
violating unconfoundedness by construction. For us, computing the treatment effects and thereby
comparing it against these works is not direct. Furthermore, it is unclear, if the approach of (Vo
et al.l [2022a)) and (Vo et al 2022b)), where the predicted inference over a number of datasets is
averaged as the final result, would be comparable to our approach where the problem is solved
using a federated maximin optimization with multiple synchronization rounds among the clients.
For us, the federated optimization subsumes the experimental of comparing the average predicted
values after independent training with the predicted value over the entire data. This is the reason that
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our centralized counterpart i.e. DEEPGMM (Bennett et al.l 2019), do not experimentally compare
against the baselines of (Vo et al.,2022a)) and (Vo et al., [2022b)). In summary, for us the experimental
benchmarks were guided by showing the efficient fit of the GMM estimator in a federated setting.

E.2 ADDITIONAL EXPERIMENTS

Dirs(a) =0.1 Dirs(a) =1.0
Estimations FDEEPGMM- FDEEPGMM- FDEEPGMM- FDEEPGMM-
GDA SGDA GDA SGDA
FEMNIST 0.27 + 0.04 0.23 +0.02 0.17 £ 0.01 0.19 £ 0.03
FEMNIST, , 0.21 £0.01 0.24 + 0.04 0.16 £ 0.03 0.18 £ 0.02
FEMNIST, 0.29 £+ 0.02 0.25 £ 0.03 0.20 £ 0.04 0.23 £0.01
CIFAR10x 0.26 £ 0.01 0.27 £ 0.01 0.18 £0.01 0.15 +0.02
CIFAR10x . 0.29 +0.02 0.30 £ 0.01 0.21 £0.02 0.13 £ 0.01
CIFARI10, 1.73 + 0.01 0.67 = 0.02 0.37 £ 0.05 0.35+0.02

Table 2: The averaged Test MSE with standard deviation in the high-dimensional scenarios with
varying levels of heterogeneity.

The experimental results included in Section 4| were conducted setting Dirg(a) = 0.3, which
corresponds to the case wherein a dataset with 10 classes, such as MNIST and CIFAR10, samples
of 3 classes on average will be distributed to each client (Hsu et al., [2019). To further investigate
the effect of heterogeneity on the performance of FEDDEEPGMM, we conducted experiments with
Dirg(a) = 0.1 and Dirg(a) = 1. Dirg(a) = 0.1 would correspond to the case when every client
would have samples from one class on average from a dataset with 10 classes, which represents a
high heterogeneity setting. Whereas, setting Dirg(«) = 1, the data distribution across clients with
regards to samples from different classes becomes roughly uniform representing a near homogeneous
scenario. The experimental results are presented in Table

The results presented in Table indicate that on decreasing Dirg(«) from 0.3 to 0.1, i.e. increasing
heterogeneity, the Test MSE achieved increases marginally. Whereas, on increasing Dirg(«) from
0.3 to 1.0, i.e. decreasing heterogeneity, the Test MSE achieved decreases. This set of observa-
tions corroborate our theoretical insight that the consistency of the GMM estimator depends on
the heterogeneity bias. The change in the MSE values being only marginal can be attributed to
the overparametrized setting offered by the CNN on a small-sized data on each client as well as
hyperparameter tuning.
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