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ABSTRACT

Instrumental variables (IV) analysis is an important applied tool for areas such as
healthcare and consumer economics. For IV analysis in high-dimensional settings,
the Generalized Method of Moments (GMM) using deep neural networks offers
an efficient approach. With non-i.i.d. data sourced from scattered decentralized
clients, federated learning is a popular paradigm for training the models while
promising data privacy. However, to our knowledge, no federated algorithm for
either GMM or IV analysis exists to date. In this work, we introduce federated
IV analysis (FEDIV) via federated GMM (FEDGMM). We formulate FEDGMM
as a federated zero-sum game defined by a non-convex non-concave minimax
optimization problem. We characterize the solutions to the federated game using
Stackelberg equilibrium and show that it satisfies client-local equilibria up to a
heterogeneity bias. Thereby, we show that the consistency of the federated GMM
estimator across clients closely depends on the heterogeneity bias. Our experiments
demonstrate that the federated framework for IV analysis efficiently recovers the
consistent GMM estimators for low and high-dimensional data.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is now an established paradigm for training Machine
Learning (ML) models over decentralized clients, keeping the data local and private. The applications
include important domains such as healthcare (Oh & Nadkarni, 2023), finance & banking (Long
et al., 2020), smart cities & mobility (Gecer & Garbinato, 2024), and many others (Ye et al., 2023).
The scale of FL has also grown large – see the Nature Medicine report by Dayan et al. (2021) on a
global-scale FL to predict the effectiveness of oxygen administration to COVID-19 patients in the
emergency rooms while maintaining data locality. However, the current popular FL methods have a
crucial limitation due to their standard supervised nature of learning. For example, Liang et al. (2023)
suggests that the hypoxia-inducible factors (HIF) (a protein that controls the rate of transcription of
genetic information from DNA to messenger RNA by binding to a specific DNA sequence) play a
vital role in oxygen consumption at the cellular level. Arguably, the Dayan et al. (2021)’s approach
may over- or under-estimate the effects of oxygen treatment as it does not accommodate the influence
of HIF levels on oxygen consumption.

A classical approach to address such limitations is Instrumental variables (IV) analysis, which assumes
conditional independence between a confounding variable and the outcome while considering its
causal effect on the treatment variable. IV analysis can very practically apply to training Dayan
et al. (2021)’s ML model wherein the patients’ HIF levels work as an IV that influences the effective
organ-level oxygen consumption (a treatment variable) but does not directly affect the mortality of the
COVID-19 patients (the outcome). IV analysis has been comprehensively explored in econometrics
(Angrist & Krueger, 2001; Angrist & Pischke, 2009) with several decades of history, such as works of
Wright (1928) and Reiersøl (1945). Its efficiency is now accepted for learning even high-dimensional
complex causal relationships, such as those in image datasets (Hartford et al., 2017; Bennett et al.,
2019). Naturally, the growing demand for FL entails designing methods for federated IV analysis,
which, to our knowledge, is yet unexplored.
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In the centralized deep learning setting, Hartford et al. (2017) introduced an IV analysis framework,
namely DEEPIV, which uses two stages of neural networks (NN) training – learn the conditional
treatment distribution as a NN-parametrized Gaussian mixture for the treatment prediction and
then train the outcome model. The two-stage process has precursors in applying the least square
regressions in the two phases (Angrist & Pischke, 2009)[4.1.1]. In the same setting, another approach
for IV analysis applies the generalized method of moments (GMM) (Wooldridge, 2001). GMM is
a celebrated estimation approach in social sciences and economics. It was introduced by Hansen
(1982), for which he won a Nobel Prize in Economics (Steif et al., 2014).

Lewis & Syrgkanis (2018) employed neural networks for GMM estimation. Their method, called
the adversarial generalized method of moments (AGMM) fit a GMM criterion function over a finite
set of unconditional moments. Similarly, Bennett et al. (2019) introduced deep learning models to
GMM estimation; they named their method DEEPGMM. DEEPGMM differs from AGMM in using
a weighted norm to define the objective function. The experiments in (Bennett et al., 2019) showed
that DEEPGMM outperformed AGMM for IV analysis, and both won against DEEPIV. Nonetheless,
to our knowledge, none of these methods has a federated counterpart. Notably, both AGMM and
DEEPGMM translate to a minimax optimization problem corresponding to a smooth zero-sum game.

The zero-sum game formulated for GMM estimation is essentially nonconvex-nonconcave (Bennett
et al., 2019). Such a game corresponds to a sequential game as it may have differing maximin and
minimax solutions. Unlike Nash equilibrium, the global minimax points – the Stackelberg equilibria –
are guaranteed to exist for nonconvex-nonconcave games. However, finding a global minimax point
is generally NP-hard, necessitating solving for a surrogate local equilibrium (Jin et al., 2020).

Now, considering the federated version of this problem, a fundamental challenge arises in establishing
that a federated minimax optimization algorithm retrieves a local Stackelberg equilibrium of the
federated zero-sum game. Even if it did, it requires showing that the federated equilibrium translates to
the client-local setting under heterogeneity. Finally, it entails proving that the client-local equilibrium
under heterogeneity is a consistent GMM estimator for its data. In this work, we address these
challenges. Our contributions are summarized as follows:

1. We introduce FEDIV: federated IV analysis. To our knowledge, FEDIV is the first work on IV
analysis in a federated setting.

2. We present FEDDEEPGMM1 – a federated adaptation of DEEPGMM of Bennett et al. (2019) to
solve FEDIV. FEDDEEPGMM is implemented as a federated smooth zero-sum game.

3. We characterize an approximate local equilibrium solution for federated zero-sum game. We
show that the limit points of a federated gradient descent ascent (FEDGDA) algorithm include the
equilibria of the zero-sum game.

4. We show that an equilibrium solution of the federated game obtained at the server consistently
estimates the moment conditions of every client. An important insight derived from our results is
that the consistency of the GMM-estimators on clients directly depend on the heterogeneity bias.

5. We experimentally validate that even for non-i.i.d. data, FEDDEEPGMM has convergent dynamics
analogous to the centralized DEEPGMM algorithm.

This work focuses on the existence results of federated equilibrium solutions, federated consistent
GMM estimators, and thereby structurally solving the federated IV analysis problem. The existence
of approximate client-local equilibria via federated solution has applications beyond the GMM and
IV analysis, to problems such as federated generative adversarial networks (FedGAN) (Rasouli et al.,
2020), where a Nash Equilibrium may not exist (Farnia & Ozdaglar, 2020). However, the scope of
our discussion does not include FedGAN, or a new federated minimax algorithm, or, for that matter,
the convergence theory and scalability. We leave an open problem to characterize and recover a
federated mixed-strategy Nash equilibrium, which has enormous applications to diverse domains
(Barron, 2024). We compare and contrast our method against related works in Appendix D.

2 PRELIMINARIES AND MODEL

Client-local causal inference. We model our basic terminologies after (Bennett et al., 2019)
for a client-local setting. Consider a distributed system as a set of N clients [N ] with datasets
Si = {(xij , yij)}

ni
j=1, ∀i ∈ [N ]. We assume that for a client i ∈ [N ], the treatment and outcome

1Wu et al. (2023) used FEDGMM as an acronym for federated Gaussian mixture models.
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variables xij and yij , respectively, are related by the process Y i = gi0(X
i) + ϵi, i ∈ [N ]. We assume

that each client-local residual ϵi has zero mean and finite variance, i.e. E[ϵi] = 0,E[(ϵi)2] <
∞. Furthermore, we assume that the treatment variables Xi are endogenous on the clients, i.e.
E[ϵi|Xi] ̸= 0, and therefore, gi0(X

i) ̸= E[Y i|Xi]. We assume that the treatment variables are
influenced by instrumental variables Zi, ∀i ∈ [N ] so that

P (Xi|Zi) ̸= P (Xi). (1)

Furthermore, the instrumental variables do not directly influence the outcome variables Y i, ∀i ∈ [N ]:

E[ϵi|Zi] = 0. (2)

Federated causal inference function. Note that, assumptions 1, 2 are local to the clients, thus,
honour the data-privacy requirements of a federated learning task. In this setting, we aim to discover
a common or global causal response function that would fit the data generation processes of each
client without centralizing the data. More specifically, we learn a parametric function g0(.) ∈ G :=
{g(., θ)|θ ∈ Θ} expressed as g0 := g(., θ0) for θ0 ∈ Θ, defined by

g(., θ0) =
1

N

N∑
i=1

gi(., θ0). (3)

The generalized method of moments (GMM) estimates the parameters of the causal response
function (3) using a certain number of moment conditions. Define the moment function on a client
i ∈ [N ] as a vector-valued function f i : R|Z| → Rm with components f i1, f

i
2, . . . , f

i
m. Based on

equation (2), we define the moment conditions using parametrized functions {f ij}mj=1 ∀i ∈ [N ] as

E[f ij(Zi)ϵi] = 0,∀j ∈ [m], ∀i ∈ [N ], (4)

We assume that m moment conditions {f ij}mj=1 at each client i ∈ [N ] are sufficient to identify a
unique federated estimate θ̂ to θ0. With (4), we define the moment conditions on a client i ∈ [N ] as

ψ(f ij ; θ) = 0, ∀j ∈ [m], (5)

where ψ(f i; θ) = E[f i(Zi)ϵi] = E[f i(Zi)(Y i − gi(Xi; θ))]. In empirical terms, the sample
moments for the i-th client with ni samples are given by

ψni
(f i; θ) = Eni

[f i(Z)ϵi] =
1

ni

ni∑
k=1

f i(Zik)(Y
i
k − gi(Xi

k; θ)), (6)

where ψni(f
i; θ) =

(
ψni(f

i
1; θ), ψni(f

i
2; θ), . . . , ψni(f

i
m; θ)

)
is the moment condition vector, and

ψni
(f ij ; θ) = 1

ni

∑ni

k=1 f
i
j(Z

i
k)(Y

i
k − gi(Xi

k; θ)). Thus, for empirical estimation of the causal
response function gi0 at client i ∈ [N ], it needs to satisfy

ψni(f
i
j ; θ0) = 0, ∀ i ∈ [N ] and j ∈ [m] at θ = θ0. (7)

The optimization problem. Equation (7) is reformulated as an optimization problem given by

min
θ∈Θ
∥ψni(f

i
1; θ), ψni(f

i
2; θ), . . . , ψni(f

i
m; θ)∥2, (8)

where we use the Euclidean norm ∥w∥2 = wTw. Drawing inspiration from Hansen (1982), DEEP-
GMM used a weighted norm, which yields minimal asymptotic variance for a consistent estimator θ̃,
to cater to the cases of (finitely) large number of moment conditions. We adapt their weighted norm
∥w∥2

θ̃
= wTC−1

θ̃
w, to a client-local setting via the covariance matrix Cθ̃ defined by

[
Cθ̃
]
jl
=

1

ni

ni∑
k=1

f ij(Z
i
k)f

i
l (Z

i
k)(Y

i
k − gi(Xi

k; θ̃))
2. (9)

Now considering the vector space V of real-valued functions fi of Z, ψni(f
i; θ) =(

ψni
(f i1; θ), ψni

(f i2; θ), . . . , ψni
(f im; θ)

)
is a linear operator on V and

Cθ̃(f
i, hi) =

1

ni

ni∑
k=1

f i(Zik)h
i(Zik)(Y

i
k − gi(Xi

k; θ̃))
2 (10)
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is a bilinear form. With that, for any subset F i ⊂ V , we define a function

Ψni(θ,F i, θ̃) = sup
fi∈Fi

ψni(f
i; θ)− 1

4
Cθ̃(f

i, f i),

which leads to the following client-local optimization problem:

θGMM ∈ argmin
θ∈Θ

Ψni(θ,F i, θ̃), (11)

where F i = span({f ij}mj=1), Ψni
(θ,F i, θ̃) = ∥ψni

(f i1; θ), ψni
(f i2; θ), . . . , ψni

(f im; θ)∥2
θ̃
, and the

the weighted norm ∥∥θ̃ defined by equation (9).

The zero-sum game for deep generalized method of moments. As the data-dimension grows,
the function class F i is replaced with a class of neural networks of a certain architecture, i.e.
F i = {f i(z, τ) : τ ∈ T } with varying weights τ . Similarly, let Gi = {gi(x, θ) : θ ∈ Θ} be another
class of neural networks with varying weights θ. With that, define

U i
θ̃
(θ, τ) :=

1

ni

ni∑
k=1

f i(Zik, τ)
(
Y ik − gi(Xi

k; θ)
)
− 1

4ni

ni∑
k=1

(
f i(Zik, τ)

)2 (
Y ik − gi(Xi

k; θ)
)2

(12)

Then for a client i , (11) is reformulated as the following

θDGMM ∈ argmin
θ∈Θ

sup
τ∈T

U i
θ̃
(θ, τ). (13)

Equation (13) forms a zero-sum game, whose equilibrium solution is shown to be a true estimator to
θ0 under a set of standard assumptions; see Theorem 2 in (Bennett et al., 2019).

3 FEDERATED DEEP GMM VIA FEDERATED EQUILIBRIUM SOLUTIONS

3.1 FEDERATED DEEP GENERALIZED METHOD MOMENT (FEDDEEPGMM)

We need to find the global moment estimators for the causal response function to fit data on each
client. Thus, the federated counterpart of equation (5) is given by

ψ(f ; θ) = Ei[E[f i(Zi)(Y ik − gi(Xi; θ)]] = 0, (14)

where the expectation Ei is over the clients. In this work, we consider full client participation. Thus,
for the empirical federated moment estimation, we formulate:

ψn(f ; θ) =
1

N

N∑
i=1

ψni
(f i; θ) =

1

N

N∑
i=1

1

ni

ni∑
k=1

f i(Zik)(Y
i
k − gi(Xi

k; θ)) (15)

With that, the federated problem for GMM following (11) is formulated as:

θFedDeepGMM ∈ argmin
θ∈Θ
∥ψn(f ; θ)∥2θ̃, (16)

where ∥w∥θ̃ = w⊤C−1

θ̃
x is the previously defined weighted-norm with inverse covariance as weights.

We propose FEDDEEPGMM, a “deep” reformulation of the federated optimization problem based
on the neural networks of a given architecture shared among clients and is shown to have the same
solution as the federated GMM problem formulated earlier.
Lemma 1. Let F = span{f ij | i ∈ [N ], j ∈ [m]}. An equivalent objective function for the federated
moment estimation optimization problem (16) is given by:

∥ψN (f ; θ)∥2θ̃ = sup
fi∈F
∀i∈[N ]

1

N

N∑
i=1

(
ψni

(f i; θ)− 1

4
Cθ̃(f

i; f i)

)
, where

ψni
(f i; θ) :=

1

ni

ni∑
k=1

f i(Zik)(Y
i
k − gi(Xi

k; θ)), and Cθ̃(f
i, f i) :=

1

ni

ni∑
k=1

(f i(Zik))
2(Y ik − gi(Xi

k; θ̃))
2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

The proof of Lemma 1 is given in Appendix B.1. The federated zero-sum game is then defined by:

θ̂FedDeepGMM ∈ argmin
θ∈Θ

sup
τ∈T

Uθ̃(θ, τ) :=
1

N

N∑
i=1

U i
θ̃
(θ, τ), (17)

where U i
θ̃
(θ, τ) is defined in equation (12). The federated DEEPGMM formulation as a zero-sum

game defined by a federated minimax optimization problem (17) provides a framework to recover the
global estimator as a federated equilibrium solution.

3.2 FEDERATED SEQUENTIAL GAMES AND THEIR EQUILIBRIUM SOLUTIONS

As minimax is not equal to maximin in general for a non-convex-non-concave problem, it is important
to model the federated game as a sequential game (Jin et al., 2020) whose outcome would depend on
what move – maximization or minimization – is taken first. We start with the following assumptions:
Assumption 1. Client-local objective U i

θ̃
(θ, τ) ∀i ∈ [N ] is twice continuously differentiable for both

θ and τ . Thus, the global objective Uθ̃(θ, τ) is also a twice continuously differentiable function.

Assumption 2 (Smoothness). The gradient of each client’s local objective,∇U i
θ̃
(θ, τ), is Lipschitz

continuous with respect to both θ and τ . For all i ∈ [N ], there exist constants L > 0 such that:

∥∇θU iθ̃(θ1, τ1)−∇θU
i
θ̃
(θ2, τ2)∥ ≤ L∥(θ1, τ1)− (θ2, τ2)∥, and

∥∇τU iθ̃(θ1, τ1)−∇τU
i
θ̃
(θ2, τ2)∥ ≤ L∥(θ1, τ1)− (θ2, τ2)∥,

∀(θ1, τ1), (θ2, τ2). Thus, Uθ̃(θ, τ) is L-Lipschitz smooth.
Assumption 3 ( Bounded Gradient Dissimilarity). The heterogeneity of the local gradients with
respect to (w.r.t.) θ and τ is bounded as follows:

∥∇θU iθ̃(θ, τ)−∇θUθ̃(θ, τ)∥ ≤ ζ
i
θ ∥∇τU iθ̃(θ, τ)−∇τUθ̃(θ, τ)∥ ≤ ζ

i
τ ,

where ζiθ, ζ
i
τ ≥ 0 are the bounds that quantify the degree of gradient dissimilarity at client i ∈ [N ].

Assumption 4 (Bounded Hessian Dissimilarity). The heterogeneity in terms of hessian w.r.t. θ and
τ is bounded as follows:

∥∇2
θθU

i
θ̃
(θ, τ)−∇2

θθUθ̃(θ, τ)∥σ ≤ ρ
i
θ, ∥∇2

ττU
i
θ̃
(θ, τ)−∇2

ττUθ̃(θ, τ)∥σ ≤ ρ
i
τ ,

∥∇2
θτU

i
θ̃
(θ, τ)−∇2

θτUθ̃(θ, τ)∥σ ≤ ρ
i
θτ , ∥∇2

τθU
i
θ̃
(θ, τ)−∇2

τθUθ̃(θ, τ)∥σ ≤ ρ
i
τθ,

where ρiθ, ρ
i
τ , ρ

i
θτ , and ρiτθ ≥ 0 quantify the degree of hessian dissimilarity at client i ∈ [N ] by

spectral norm ∥.∥σ .

Assumptions 3 and 4 provide a measure of data heterogeneity across clients in a federated setting. In
the special case, when ζ and ρ’s are all 0, then the data is homogeneous across clients.

We adopt the Stackelberg equilibrium for pure strategies (Jin et al., 2020) to characterize the solution
of the minimax federated optimization problem for a non-convex non-concave function Uθ̃(θ, τ) for
the sequential game where min-player goes first and the max-player goes second. To avoid ambiguity
between the adjectives of the terms global/local objective functions in federated learning and the
global/local nature of minimax points in optimization, we refer to a global objective as the federated
objective and a local objective as the client’s objective.
Definition 1 (Local minimax point). [Definition 14 of (Jin et al., 2020)] Let U(θ, τ) be a function
defined over Θ× T and let h be a function satisfying h(δ)→ 0 as δ → 0. There exists a δ0, such
that for any δ ∈ (0, δ0], and any (θ, τ) such that ∥θ− θ̂∥ ≤ δ and ∥τ − τ̂∥ ≤ δ, then a point (θ̂, τ̂) is
a local minimax point of U , if ∀ (θ, τ) ∈ Θ× T , it satisfies:

Uθ̃(θ̂, τ) ≤ Uθ̃(θ̂, τ̂) ≤ max
τ ′:∥τ ′−τ̂∥≤h(δ)

Uθ̃(θ, τ ′). (18)

With that, the first-order & second-order necessary conditions for local minimax points are as below.
Lemma 2 (Propositions 18, 19, 20 of (Jin et al., 2020)). Under assumption 1, any local minimax
point satisfies the following conditions:
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• First-order Necessary Condition: A local minimax point (θ, τ) satisfies: ∇θUθ̃(θ, τ) = 0 and
∇τUθ̃(θ, τ) = 0.

• Second-order Necessary Condition: A local minimax point (θ, τ) satisfies: ∇2
ττUθ̃(θ, τ) ⪯ 0.

Moreover, if ∇2
ττUθ̃(θ, τ) ≺ 0, then

[
∇2
θθUθ̃ −∇2

θτUθ̃
(
∇2
ττUθ̃

)−1∇2
τθUθ̃

]
(θ, τ) ⪰ 0.

• Second-order Sufficient Condition: A stationary point (θ, τ) that satisfies ∇2
ττUθ̃(θ, τ) ≺ 0, and[

∇2
θθUθ̃ −∇2

θτUθ̃
(
∇2
ττUθ̃

)−1∇2
τθUθ̃

]
(θ, τ)≻0 guarantees that (θ, τ) is a strict local minimax.

Now, in order to define the federated approximate equilibrium solutions, we first define an approximate
local minimax point.
Definition 2 (Approximate Local minimax point). [An adaptation of definition 34 of (Jin et al.,
2020)] Let U(θ, τ) be a function defined over Θ× T and let h be a function satisfying h(δ)→ 0 as
δ → 0. There exists a δ0, such that for any δ ∈ (0, δ0], and any (θ, τ) such that ∥θ − θ̂∥ ≤ δ and
∥τ − τ̂∥ ≤ δ, then a point (θ̂, τ̂) is an ε-approximate local minimax point of U , if it satisfies:

Uθ̃(θ̂, τ)− ε ≤ Uθ̃(θ̂, τ̂) ≤ max
τ ′:∥τ ′−τ̂∥≤h(δ)

Uθ̃(θ, τ ′) + ε, (19)

We aim to achieve approximate local minimax points for every client as a solution of the federated
minimax optimization. With that, we characterize the federated solution as the following.
Definition 3 (E-Approximate Federated Equilibrium Solutions). Let E = {εi}Ni=1 be the ap-
proximation error vector for clients i ∈ [N ]. Let U i

θ̃
(θ, τ) be a function defined over Θ × T for a

client i ∈ [N ] and Uθ̃(θ, τ) :=
1
N

∑N
i=1 U

i
θ̃
(θ, τ). An E-approximate federated equilibrium point

(θ̂, τ̂) (that is an εi-approximate local minimax point for each client’s objective U i
θ̃
), must follow the

conditions below:

1. εi- First-order Necessary Condition: The point (θ̂, τ̂) must be an εi stationary point for every
client i ∈ [N ], i.e., ∥∇θU iθ̃(θ̂, τ̂)∥ ≤ ε

i, and ∥∇τU iθ̃(θ̂, τ̂)∥ ≤ ε
i.

2. Second-Order εi Necessary Condition: The point (θ̂, τ̂) must satisfy the second-order conditions:

∇2
ττU

i
θ̃
(θ̂, τ̂) ⪯ −εiI, and

[
∇2
θθU

i
θ̃
−∇2

θτU
i
θ̃

(
∇2
ττUθ̃

)−1∇2
τθU

i
θ̃

]
(θ̂, τ̂) ⪰ εiI.

3. Second-Order εi Sufficient Condition: An εi stationary point (θ, τ) that satisfies∇2
ττU

i
θ̃
(θ̂, τ̂) ≺

−εiI , and
[
∇2
θθU

i
θ̃
−∇2

θτU
i
θ̃

(
∇2
ττU

i
θ̃

)−1

∇2
τθU

i
θ̃

]
(θ̂, τ̂) ≻ εiI guarantees that (θ̂, τ̂) is a strict

local minimax point ∀i ∈ [N ] that satisfies εi approximate equilibrium as in definition 2.

We now state the main theoretical result of our work in this theorem.
Theorem 1. Under assumptions 1, 2, 3 and 4, a minimax solution (θ̂, τ̂) of federated opti-
mization problem (17) that satisfies the equilibrium condition as in definition 1: Uθ̃(θ̂, τ) ≤
Uθ̃(θ̂, τ̂) ≤ maxτ ′:∥τ ′−τ̂∥≤h(δ) Uθ̃(θ, τ ′), is an E-approximate federated equilibrium solution as
defined in 3, where the approximation error εi for each client i ∈ [N ] lies in: max{ζiθ, ζiτ} ≤
εi ≤ min{α − ρiτ , β − Bi} for ρiτ < α and Bi > β, such that α :=

∣∣∣λmax

(
∇2
ττUθ̃(θ̂, τ̂)

)∣∣∣,
β := λmin

([
∇2
θθUθ̃ −∇2

θτUθ̃
(
∇2
ττUθ̃

)−1∇2
τθUθ̃

]
(θ̂, τ̂)

)
and Bi := ρiθ + Lρiθτ

1
|λmax(∇2

ττU
i
θ̃
)| +

Lρiτθ
1

|λmax(∇2
ττU

i
θ̃
)| + L2ρiτ

1
|λmax(∇2

ττU
i
θ̃
)·λmax(∇2

ττUθ̃)|
.

The proof of Theorem 1 is given in Appendix B.2. Note that when data is homogeneous (i.e., for each
client i, ζiθ, ζiτ , ρiτ and Bi are all zeroes), each client satisfies an exact local minimax equilibrium.

Remark 1. In Theorem 1, note that if the interval [max{ζiθ, ζiτ},min{α − ρiτ , β − Bi}] is empty,
i.e. max{ζiθ, ζiτ} > min{α − ρiτ , β − Bi}, then no such εi exists and (θ̂, τ̂) fails to be a local εi
approximate equilibrium point for that clients. It may happen in two cases:

1. The gradient dissimilarity ζiθ, ζ
i
τ is too large, indicating high heterogeneity, then (θ̂, τ̂)- the solution

to the federated objective would fail to become an approximate equilibrium point for the clients. It
is a practical consideration for a federated convergence facing difficulty against high heterogeneity.
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2. If α ≈ ρiτ or β ≈ Bi, this indicates that the client’s local curvature structure significantly differs
from the global curvature. In this case, the client’s objective may be flatter or even oppositely
curved compared to the global model, reflecting high heterogeneity.

Now we state the result on the per-client consistency of the FEDGMM estimator.

Theorem 2 (Consistency). [Adaptation of Theorem 2 of (Bennett et al., 2019)] Let θ̃n be a
data-dependent choice for the federated objective that has a limit in probability. Let h be a
function satisfying h(δ) → 0 as δ → 0. For each client i ∈ [N ], define mi(θ, τ, θ̃) :=

f i(Zi; τ)(Y i − g(Xi; θ)) − 1
4f

i(Zi; τ)2(Y i − g(Xi; θ̃))2, M i(θ) = supτ∈T E[mi(θ, τ, θ̃)] and
ηi(ϵ) := infd(θ,θ0)≥ϵM

i(θ) −M i(θ0) for every ϵ > 0. Fix some δ0, for any δ ∈ (0, δ0]and any
(θ, τ) such that ∥θ− θ̂∥ ≤ δ and ∥τ − τ̂∥ ≤ δ, let (θ̂n, τ̂n) be a solution that satisfies the approximate
equilibrium for each of the client i ∈ [N ] as

sup
τ∈T

U i
θ̃
(θ̂n, τ)− εi − op(1) ≤ U i

θ̃
(θ̂n, τ̂n) ≤ inf

θ∈Θ
max

τ ′:∥τ ′−τ̂n∥≤h(δ)
U i
θ̃
(θ, τ ′) + εi + op(1).

Then, under similar assumptions as in Assumptions 1 to 5 of (Bennett et al., 2019), the global solution
θ̂n is a consistent estimator to the true parameter θ0, i.e. θ̂n

p−→ θ0 when the approximate error
εi < ηi(ϵ)

2 for every ϵ > 0 for each client i ∈ [N ].

The assumptions and the proof of Theorem 2 are included in Appendix B.3.

Remark 2. Theorem 2 formalizes a tradeoff between data heterogeneity and the consistency of the
global estimator in federated learning for each client. If the approximation error εi is large for a
client i ∈ [N ], then the solution θ̂n may fail to consistently estimate the true parameter of client i.
In contrast, when data across clients have similar distribution (i.e., case for low heterogeneity), the
federated optimal model θ̂n is consistent across clients.

3.3 FEDERATED GRADIENT DESCENT ASCENT ALGORITHM AND IT’S LIMIT POINTS

Bennett et al. (2019) used Optimistic Adam (OADAM), a variant of Adam (Kingma, 2015) based
stochastic gradient descent ascent (SGDA) algorithm (Daskalakis et al., 2018). However, it is known
that a well-tuned SGD outperforms Adam in overparametrized settings (Wilson et al., 2017). As our
experiments show in Section (4), that gradient descent ascent updates are competitive to OADAM
for minimax optimization in centralized setting. Considering this, we employ an adaptation of the
standard gradient descent ascent algorithm to federated (FEDGDA) setting.

FEDGDA is well-explored in the literature: (Deng & Mahdavi, 2021; Sharma et al., 2022; Shen et al.,
2024; Wu et al., 2024). The clients run the gradient descent ascent algorithm for several local updates
and then the orchestrating server synchronizes them by collecting the model states, averaging them,
and broadcasting it to the clients. A detailed description is included as a pseudocode in Appendix A.

Similar to (Bennett et al., 2019), we note that the federated minimax optimization problem (17) is not
convex-concave on (θ, τ). The convergence results of variants of FEDGDA (Sharma et al., 2022;
Shen et al., 2024; Wu et al., 2024) assume that Uθ̃(θ, τ) is non-convex on θ and satisfies a µ−Polyak
Łojasiewicz (PL) inequality on τ , see assumption 4 in (Sharma et al., 2022). PL condition is known
to be satisfied by over-parametrized neural networks (Charles & Papailiopoulos, 2018; Liu et al.,
2022). The convergence results of FEDGDA will follow (Sharma et al., 2022). We include a formal
statement in Appendix A. However, beyond convergence, we primarily aim to show that an optimal
solution will consistently estimate the moment conditions of the clients, which we do next.

For Algorithm 1 in Appendix A, let α1 = η
γ , α2 = η be the learning rates for gradient updates to θ

and τ , respectively. Without loss of generality the FEDGDA updates are:

θt+1 = θt − η
1

γ

1

N

∑
i∈[N ]

R∑
r=1

∇θU iθ̃(θ
i
t,r, τ

i
t,r) and τt+1 = τt + η

1

N

∑
i∈[N ]

R∑
r=1

∇τU iθ̃(θ
i
t,r, τ

i
t,r)

We call it γ-FEDGDA, where γ is the ratio of α1 to α2. As η → 0 corresponds to FEDGDA-flow,
under the smoothness of U i

θ̃
, bounded gradient heterogeneity (assumption 3) and for fixed local
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rounds R, FEDGDA-flow becomes:
dθ

dt
= − 1

γ
R∇θUθ̃(θ, τ) +O

(
R

γ
ζθ

)
, and

dτ

dt
= R∇τUθ̃(θ, τ) +O(Rζτ ).

We further elaborate on FEDGDA-flow in Appendix C.1. We aim to find out the relationship between
stable equilibrium and local minimax points of the federated optimization problem. For that, we now
define a strictly linearly stable equilibrium of the γ−FEDGDA flow.
Proposition 1. Given the Jacobian matrix for γ−FEDGDA flow as J =(
− 1
γR∇

2
θθUθ̃(θ, τ) − 1

γR∇
2
θτUθ̃(θ, τ)

R∇2
τθUθ̃(θ, τ) R∇2

ττUθ̃(θ, τ)

)
, a point (θ, τ) is a strictly linearly stable equilib-

rium of the γ−FEDGDA flow if and only if the real parts of all eigenvalues of J are negative, i.e.,
Re(Λj) < 0 for all j.

The proof follows a strategy similar to (Jin et al., 2020).

Let γ-FGDA be the set of strictly linearly stable points of the γ-FEDGDA flow, and LocMinimax
be the set of local minimax points of the federated zero-sum game. Define

∞−FGDA := lim sup
γ→∞

γ −FGDA := ∩γ0>0 ∪γ>γ0 γ −FGDA, and

∞−FGDA := lim inf
γ→∞

γ −FGDA := ∪γ0>0 ∩γ>γ0 γ −FGDA.

We now state the theorem that establishes that the stable limit points of ∞-FGDA are the local
minimax points, up to some degenerate cases.
Theorem 3. Under Assumption 1, LocMinimax ⊂ ∞−FGDA ⊂ ∞−FGDA ⊂
LocMinimax ∪ A, where A := {(θ, τ)|(θ, τ) is stationary and ∇2

ττUθ̃(θ, τ) is degenerate}. More-
over, if the hessian ∇2

ττUθ̃(θ, τ) is smooth, then A has measure zero in Θ× T ⊂ Rd × Rk.

Essentially, Theorem 3 states that the limit points of FEDGDA are the local minimax solutions,
and thereby the equilibrium solution of the federated zero-sum game, up to some degenerate case.
The proof of Theorem 3 is included in Appendix C.2. Theorems 1, 2, and 3 together complete the
theoretical foundation of the pipeline in our work.

4 EXPERIMENTS

We extend the experimental evaluations of DEEPGMM (Bennett et al., 2019) to a federated setting.
We further discuss this benchmark structure in Appendix E. More specifically, we evaluate the ability
of FEDDEEPGMM to fit low- and high- dimensional data to demonstrate its convergence. Similar to
DEEPGMM, we assess two scenarios in regards to ((X,Y ), Z):

(a) The instrumental and treatment variables Z and X are both low-dimensional. In this case,
we use 1-dimensional synthetic datasets corresponding to the following functions: (a) Absolute:
g0(x) = |x|, (b) Step: g0(x) = 1{x≥0}, (c) Linear: g0(x) = x.
To generate the synthetic data, similar to (Bennett et al., 2019; Lewis & Syrgkanis, 2018) we
apply the following generation process:

Y = g0(X) + e+ δ and X = Z(1) + Z(2) + e+ γ (20)

(Z(1), Z(2)) ∼ Uniform([−3, 3]2) and e ∼ N (0, 1), γ, δ ∼ N (0, 0.1) (21)

(b) Z and X are low-dimensional or high-dimensional or both. First, Z and X are generated as
in (20,21). Then for high-dimensional data, we map Z and X to an image using the mapping:

Image(x) = Dataset (round (min (max(1.5x+ 5, 0), 9))) ,

where (round(min(max(1.5x+ 5, 0), 9))) returns an integer between 0 and 9. Essentially, the
function Dataset (.) randomly selects an image following its index. We use datasets FEM-
NIST (Federated Extended MNIST) and CIFAR10 (Caldas et al., 2018) for images of size
28 × 28 and 3 × 32 × 32, respectively. Thus, we have the following cases: (a) Datasetz:
X = X low, Z = Image(Z low), (b) Datasetx: Z = Z low, X = Image(X low), and
(c) Datasetx,z: Z = Image(Z low), X = Image(X low), where Dataset takes values
FEMNIST and CIFAR10.
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We implemented and benchmarked FEDGDA and FEDSGDA to solve the FEDDEEPGMM problem.
For reference, we implemented OADAM, GDA, and SGDA to solve the DEEPGMM in centralized
setting. For high-dimensional scenarios, we implement a CNN architecture to process images,
while for low-dimensional scenarios, we use a multilayer perceptron (MLP). Code is available at
https://anonymous.4open.science/r/FederatedDeepGMM-417C.

Actual Causal Effect
DeepGMM-OAdam
DeepGMM-SGDA
FedDeepGMM-SGDA
DeepGMM-GDA
FedDeepGMM-GDA

(a) Absolute (b) Step (c) Linear
Figure 1: Estimated ĝ compared to true g in low-dimensional scenarios

Estimations DEEPGMM-
OAdam

DEEPGMM-
GDA

FDEEPGMM-
GDA

DEEPGMM-
SGDA

FDEEPGMM-
SGDA

Absolute 0.03 ± 0.01 0.013 ± .01 0.4 ± 0.01 0.009 ± 0.01 0.2 ± 0.00
Step 0.3 ± 0.00 0.03 ± 0.00 0.04 ± 0.01 0.112 ± 0.00 0.23 ± 0.01
Linear 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.04 ± 0.00
FEMNISTx 0.50 ± 0.00 1.11 ± 0.01 0.21 ± 0.02 0.40± 0.01 0.19 ± 0.01
FEMNISTx,z 0.24 ± 0.00 0.46 ± 0.09 0.19 ± 0.03 0.14± 0.02 0.20 ± 0.00
FEMNISTz 0.10 ± 0.00 0.42 ± 0.01 0.24 ± 0.01 0.11± 0.02 0.23 ± 0.01
CIFAR10x 0.55 ± 0.30 0.19 ± 0.01 0.25± 0.03 0.20 ± 0.08 0.22 ± 0.08
CIFAR10x,z 0.40 ± 0.11 0.24 ± 0.00 0.24± 0.03 0.19 ± 0.03 0.22 ± 0.02
CIFAR10z 0.13 ± 0.03 0.13 ± 0.01 1.70± 2.60 0.24 ± 0.01 0.52 ± 0.60

Table 1: The averaged Test MSE with standard deviation on the low- and high-dimensional scenarios.
Non-i.i.d. data. To set up a non-i.i.d. distribution of data between clients, samples were divided
amongst the clients using a Dirichlet distribution DirS(α) (Hsu et al., 2019), where α determines the
degree of heterogeneity across S clients. We used DirS(α) = 0.3 for each train, test, and validation
samples. Given the non-i.i.d. data, for the low-dimensional scenario, we sample n = 20000 points
for each train, validation, and test set, while, for the high-dimensional scenario, we have n = 20000
for the train set and n = 10000 for the validation and test set.

Hyperparameters. We perform extensive grid-search to tune the learning rate. For FEDSGDA, we
use a minibatch-size of 256. To avoid numerical instability, we standardize the observed Y values
by removing the mean and scaling to unit variance. We perform five runs of each experiment and
present the mean and standard deviation of the results.
Observations and Discussion. In figure (1), we first observe that SGDA and GDA algorithms
perform at par with OADAM to fit the DEEPGMM estimator. It establishes that hyperparameter
tuning is effective. With that, we further observe that the federated algorithms efficiently fit the
estimated function to the true data-generating process even though the data is decentralized and
non-i.i.d. Thus, it shows that the federated algorithm converges effectively. In Table 1 we present
the test mean squared error (MSE) values. In many cases, the federated MSE values are close or
better than the centralized results, which sufficiently demonstrate that our federated implementation
achieves a convergent dynamics. We include additional experimental results in Appendix E that
investigate the effects of heterogeneity. These experiments establish the efficacy of our method.

AN OPEN PROBLEM

In this work, we characterized the equilibrium solutions of federated zero-sum games in consideration
of local minimax solutions for non-convex non-concave minimax optimization problems. Regardless
of the analytical assumptions over the objective, the mixed strategy solutions for zero-sum games
exist. However, unlike the pure strategy solutions, where the standard heterogeneity considerations
over gradients and Hessians across clients, translates a local minimax solution for the federated
objective to approximate local solutions for the clients, it is not immediate how a mixed strategy
solution as a probability measure can be translated to that for clients. It leaves an interesting open
problem to characterize the mixed startegy solutions for federated zero-sum games.
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A FEDERATED GRADIENT DESCENT ASCENT ALGORITHM DESCRIPTION

Algorithm 1 FEDGDA running on a federated learning server to solve the minimax problem (17)
Server Input: initial global estimate θ1, τ1; constant local learning rate α1, α2; total N clients
Output: global model states θT+1, τT+1

1: for synchronization round t = 1, . . . , T do
2: server sends θt, τt to all clients
3: for each i ∈ [N ] in parallel do
4: θit,1 ← θt, τ it,1 ← τt
5: for r = 1, 2, . . . , R do
6: θit,r+1 = θit,r − α1∇θfi(θit,r, τ it,r)
7: τ it,r+1 = τ it,r + α2∇τfi(θit,r, τ it,r)
8: end for
9: (∆θit,∆τt)← (θit,R+1 − θt, τ it,R+1 − τt)

10: end for
11: (∆θt,∆τt)← 1

N

∑
i∈[N ](∆θ

i
t,∆τ

i
t )

12: θt+1 ← (θt +∆θt), τt+1 ← (τt +∆τt)
13: end for
14: return θT+1; τT+1

We adapt the proof of Theorem 1 in (Sharma et al., 2022) for the SGDA algorithm proposed in (Deng
& Mahdavi, 2021) for the FEDGDA algorithm 1 for smooth non-convex- PL problems.
Assumption 5 (Polyak Łojaisiewicz (PL) condition in τ ). The function Uθ̃ satisfyies µ − PL
condition in τ , µ > 0, if for any fixed θ, argmaxτ ′ Uθ̃(θ, τ

′) ̸= ϕ and ∥∇τUθ̃(θ, τ)∥2 ≥
2µ
(
maxτ ′ Uθ̃(θ, τ

′)− Uθ̃(θ, τ)
)
.

Theorem 4. Let the local loss functions U i
θ̃

for all i ∈ {1, 2, . . . , N} satisfy assumption 2 and 3. The
federated objective function satisfies assumption 5. Suppose α2 ≤ 1

8LR , α1

α2
≤ 1

8κ2 , where κ = L
µ

is the condition number. Let θ̄T+1 is drawn uniformly at random from {θt}T+1
t=1 , then the following

holds:

∥∇Φ̃(θ̄T+1)∥2 ≤ O
(
κ2
[

∆Φ̃

α2R(T + 1)

])
+O

(
κ2(R− 1)2[α2

2ζ
2
τ + α2

1ζ
2
θ ]
)
,

where ∇Φ̃(.) := maxτ Uθ̃(., τ) is the envelope function, ∆Φ̃ := Φ̃(θ0) − minθ Φ̃(θ), and

ζθ := 1
N

∑N
i=1 ζ

i
θ, ζτ := 1

N

∑N
i=1 ζ

i
τ . Using α1 = O

(
1
κ2

√
N

R(T+1)

)
, α2 = O

(√
N

R(T+1)

)
,

∥∇Φ̃(θ̄T+1)∥2 can be bounded as

O

(
κ2∆Φ̃√

NR(T + 1)
+ κ2(R− 1)2

NR(ζ2θ + ζ2τ )

R(T + 1)

)
.

Although the original assumption uses the supremum of average squared deviations, say ζ ′θ and ζ ′τ , we
use per-client dissimilarity bounds ζiθ, ζ

i
τ and upper bound their quantity as ζ ′θ

2 ≤ 1
N

∑N
i=1(ζ

i
θ)

2 :=

ζθ
2 and ζ ′τ

2 ≤ 1
N

∑N
i=1(ζ

i
τ )

2 := ζτ
2. Since there is no stochasticity, we used the bounded variance

σ = 0. For details, refer to proof of Theorem 1 in (Sharma et al., 2022).

B PROOFS

B.1 PROOF OF LEMMA 1

Lemma 3 (Restatement of Lemma 1). Let F = span{f ij | i ∈ [N ], j ∈ [m]}. An equivalent
objective function for the federated moment estimation optimization problem (16) is given by:

∥ψN (f ; θ)∥2θ̃ = sup
fi∈F
∀i∈[N ]

1

N

N∑
i=1

(
ψni(f

i; θ)− 1

4
Cθ̃(f

i; f i)

)
, where (22)

14
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ψni(f
i; θ) :=

1

ni

ni∑
k=1

f i(Zik)(Y
i
k − gi(Xi

k; θ)), and Cθ̃(f
i, f i) :=

1

ni

ni∑
k=1

(f i(Zik))
2(Y ik − gi(Xi

k; θ̃))
2.

Proof. Let ψ = ( 1
N

∑N
i=1 ψni(f

i
1; θ),

1
N

∑N
i=1 ψni(f

i
2; θ), . . . ,

1
N

∑N
i=1 ψni(f

i
m; θ)).

We know that ∥v∥2 = v⊤C−1

θ̃
v and the associated dual norm is obtained as ∥v∥∗ = sup∥v∥≤1 v

⊤v =

v⊤Cθ̃v.

Using the definition of the dual norm,

∥ψ∥ = sup
∥v∥∗≤1

v⊤ψ

∥ψ∥2 = sup
∥v∥∗≤∥ψ∥

v⊤ψ

∥ψ∥2 = sup
v⊤Cθ̃v≤∥ψ∥2

v⊤ψ. (23)

We now find the equivalent dual optimization problem for (23).

The Lagrangian of the constrained maximization problem (23) is given as

L(v, λ) = v⊤ψ + λ(v⊤Cθ̃v − ∥ψ∥
2), where λ ≤ 0.

To maximize L(v, λ) w.r.t. v, put ∂L∂v = ψ + 2λCθ̃v = 0 to obtain v = −1
2λC

−1

θ̃
ψ.

When ∥ψ∥ > 0, v = 0 satisfies the Slater’s condition as a strictly feasible interior point of the
constraint v⊤Cθ̃v − ∥ψ∥2 ≤ 0. Thus, strong duality holds. Substituting v = −1

2λC
−1

θ̃
ψ in the

Lagrangian gives

L∗(λ) =
−1
2λ
ψ⊤C−1

θ̃
ψ +

1

4λ
ψ⊤C−1

θ̃
ψ − λ∥ψ∥2

= −∥ψ∥
2

4λ
− λ∥ψ∥2.

Hence, the dual becomes ∥ψ∥2 = infλ<0 {L∗(λ)}. Thus, the equivalent dual optimization problem
for (23) is given as

∥ψ∥2 = inf
λ<0

{
−∥ψ∥

2

4λ
− λ∥ψ∥2

}
. (24)

Putting ∂L
∂λ = ∥ψ∥2

4λ2 −∥ψ∥2 = 0 gives λ = −1
2 . Thus, due to strong duality ∥ψ∥2 = supv L(v, −1

2 ) =

supv v
⊤ψ − 1

2 (v
⊤Cθ̃v − ∥ψ∥2).

Rewriting it 1
2∥ψ∥

2 = supv v
⊤ψ − 1

2v
⊤Cθ̃v and substituting u = 2v

∥ψ∥2 = sup
u
u⊤ψ − 1

4
u⊤Cθ̃u.

Using change of variables u→ v

∥ψ∥2 = sup
v
v⊤ψ − 1

4
v⊤Cθ̃v.

Now, we want to find a function form for the optimization problem mentioned above.

Consider a finite-dimensional functional spaces F i = span{f i1, f i2, . . . , f im} for each client i. Hence,
for f i ∈ F i

f i =

m∑
j=1

vjf
i
j .

Since all the clients share the same neural network architecture, we define a global functional space
F as

F = span{f ij | i ∈ [N ], j ∈ [m]}.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Therefore, v corresponds to f i such that

f i =

N∑
c=1

m∑
j=1

vijf
c
j , where vij =

{
vj if c = i

0 if c ̸= i

Hence,

v⊤ψ =
1

N

N∑
i=1

m∑
j=1

vjψni(f
i
j ; θ)

=
1

N

N∑
i=1

1

ni

ni∑
k=1

f i(Zik)(Y
i
k − gi(Xi

k; θ)).

Similarly,

v⊤Cθ̃v =

m∑
p=1

m∑
q=1

vpvq[Cθ̃]pq

=

m∑
p=1

m∑
q=1

vpvq
1

N

N∑
i=1

1

ni

ni∑
k=1

f ip(Z
i
k)f

i
q(Z

i
k)(Y

i
k − gi(Xi

k; θ̃))

=
1

N

N∑
i=1

1

ni

ni∑
k=1

m∑
p=1

vpf
i
p(Z

i
k)

m∑
q=1

vqf
i
q(Z

i
k)(Y

i
k − gi(Xi

k; θ̃))
2

=
1

N

N∑
i=1

1

ni

ni∑
k=1

(f i(Zik))
2(Y ik − gi(Xi

k; θ̃))
2

=
1

N

N∑
i=1

Cθ̃(f
i, f i).

Thus, applying the Riesz Representation theorem using the representations v⊤ψ =
1
N

∑N
i=1 ψni(f

i; θ) and v⊤Cθ̃v = 1
N

∑N
i=1 Cθ̃(f i, f i), we can write the objective in functional

form as

∥ψ∥2 = sup
fi∈F
∀i∈[N ]

1

N

N∑
i=1

(
ψni

(f i; θ)− 1

4
Cθ̃(f

i, f i)

)
.

This gives us the desired result.

B.2 PROOF OF THEOREM 1

Theorem 5 (Restatement of Theorem 1). Under assumptions 1, 2, 3 and 4, a minimax solution
(θ̂, τ̂) of federated optimization problem (17) that satisfies the equilibrium condition as in def-
inition 1: Uθ̃(θ̂, τ) ≤ Uθ̃(θ̂, τ̂) ≤ maxτ ′:∥τ ′−τ̂∥≤h(δ) Uθ̃(θ, τ ′), is an E-approximate federated
equilibrium solution as defined in 3, where the approximation error εi for each client i ∈ [N ]
lies in: max{ζiθ, ζiτ} ≤ εi ≤ min{α − ρiτ , β − Bi} for ρiτ < α and Bi > β, such that

α :=
∣∣∣λmax

(
∇2
ττUθ̃(θ̂, τ̂)

)∣∣∣, β := λmin

([
∇2
θθUθ̃ −∇2

θτUθ̃
(
∇2
ττUθ̃

)−1∇2
τθUθ̃

]
(θ̂, τ̂)

)
and

Bi := ρiθ + Lρiθτ
1

|λmax(∇2
ττU

i
θ̃
)| + Lρiτθ

1
|λmax(∇2

ττU
i
θ̃
)| + L2ρiτ

1
|λmax(∇2

ττU
i
θ̃
)·λmax(∇2

ττUθ̃)|
.

Proof. The pure-strategy Stackelberg equilibrium for the federated objective is:

Uθ̃(θ̂, τ) ≤ Uθ̃(θ̂, τ̂) ≤ max
τ ′:∥τ ′−τ∗∥≤h(δ)

Uθ̃(θ, τ ′), (25)

We want to show that the ϵi- approximate equilibrium for each client’s objective U i
θ̃

also hold
individually.
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The first-order necessary condition for (25) to hold is ∇θUθ̃(θ̂, τ̂) = 0 and ∇τUθ̃(θ̂, τ̂) = 0. Thus,∥∥∥∇θUθ̃(θ̂, τ̂)∥∥∥2 = 0.

Consider ∥∥∥∇θUθ̃(θ̂, τ̂)∥∥∥2 =
∥∥∥∇θUθ̃(θ̂, τ̂)−∇θU iθ̃(θ̂, τ̂) +∇θU iθ̃(θ̂, τ̂)∥∥∥2

=
∥∥∥∇θUθ̃(θ̂, τ̂)−∇θU iθ̃(θ̂, τ̂)∥∥∥2 + ∥∥∥∇θU iθ̃(θ̂, τ̂)∥∥∥2

+ 2
(
∇θUθ̃(θ̂, τ̂)−∇θU

i
θ̃
(θ̂, τ̂)

)⊤ (
∇θU iθ̃(θ̂, τ̂)

)
Rearranging

2
(
∇θU iθ̃(θ̂, τ̂)−∇θUθ̃(θ̂, τ̂)

)⊤ (
∇θU iθ̃(θ̂, τ̂)

)
−
∥∥∥∇θU iθ̃(θ̂, τ̂)∥∥∥2 =

∥∥∥∇θUθ̃(θ̂, τ̂)−∇θU iθ̃(θ̂, τ̂)∥∥∥2∥∥∥∇θU iθ̃(θ̂, τ̂)∥∥∥2 − 2
(
∇θUθ̃(θ̂, τ̂)

)⊤ (
∇θU iθ̃(θ̂, τ̂)

)
=
∥∥∥∇θUθ̃(θ̂, τ̂)−∇θU iθ̃(θ̂, τ̂)∥∥∥2

Using gradient heterogeneity assumption (3) on R.H.S.∥∥∥∇θUθ̃(θ̂, τ̂)−∇θU iθ̃(θ̂, τ̂)∥∥∥2 ≤ (ζiθ)
2

Thus, we obtain
∥∥∥∇θU iθ̃(θ̂, τ̂)∥∥∥ ≤ ζiθ. Similarly,

∥∥∥∇τU iθ̃(θ̂, τ̂)∥∥∥ ≤ ζiτ .

In the special case, when ζiθ = 0 and ζiτ = 0, thus we will have
∥∥∥∇θU iθ̃(θ̂, τ̂)∥∥∥2 =

∥∥∥∇τU iθ̃(θ̂, τ̂)∥∥∥2 =

0 for all i ∈ [N ], which gives ∇θU iθ̃(θ̂, τ̂) = ∇τU
i
θ̃
(θ̂, τ̂) = 0 for all clients i.

Next, we prove that each client satisfies the second-order necessary condition approximately. Since
(θ̂, τ̂) satisfy the equilibrium condition (25), the second-order necessary condition holds for the global
function Uθ̃, i.e. ∇2

ττUθ̃(θ̂, τ̂) ⪯ 0. We now prove that ∇2
ττU

i
θ̃
(θ̂, τ̂) ⪯ 0.

Using assumption 1, the hess ian is symmetric. Thus, ∇2
ττUθ̃(θ̂, τ̂) ⪯ 0 implies

λmax(∇2
ττUθ̃(θ̂, τ̂)) ≤ 0, where λmax is the largest eigenvalue of the hessian. Suppose,

λmax(∇2
ττUθ̃(θ̂, τ̂)) = −α, for some α ≥ 0.

We can write ∇2
ττU

i
θ̃
(θ̂, τ̂) = ∇2

ττU
i
θ̃
(θ̂, τ̂)−∇2

ττUθ̃(θ̂, τ̂) +∇2
ττUθ̃(θ̂, τ̂).

Using a corollary of Weyl’s theorem (Horn & Johnson, 2012) for real symmetric matrices A and B,
λmax(A+B) ≤ λmax(A) + λmax(B). Hence,

λmax(∇2
ττU

i
θ̃
(θ̂, τ̂)) ≤ λmax(∇2

ττU
i
θ̃
(θ̂, τ̂)−∇2

ττUθ̃(θ̂, τ̂)) + λmax(∇2
ττUθ̃(θ̂, τ̂)).

Thus, λmax(∇2
ττU

i
θ̃
(θ̂, τ̂)) ≤ λmax(∇2

ττU
i
θ̃
(θ̂, τ̂)−∇2

ττUθ̃(θ̂, τ̂))− α.

Since the spectral norm of a real symmetric matrix A is given as ∥A∥σ =
max{|λmax(A)|, |λmin(A)|}.
Under hessian heterogeneity assumption 4

∥∇2
ττU

i
θ̃
(θ̂, τ̂)−∇2

ττUθ̃(θ̂, τ̂)∥σ = max
{∣∣λmax(∇2

ττU
i
θ̃
(θ, τ)−∇2

ττUθ̃(θ, τ))
∣∣ ,∣∣λmin(∇2

ττU
i
θ̃
(θ, τ)−∇2

ττUθ̃(θ, τ))
∣∣}

≤ ρiτ .

By definition of the spectral norm ∥∇2
ττU

i
θ̃
(θ̂, τ̂) − ∇2

ττUθ̃(θ̂, τ̂)∥σ = λmax(∇2
ττU

i
θ̃
(θ̂, τ̂) −

∇2
ττUθ̃(θ̂, τ̂)),

λmax(∇2
ττU

i
θ̃
(θ̂, τ̂)−∇2

ττUθ̃(θ̂, τ̂)) ≤ max
{∣∣∣λmax(∇2

ττU
i
θ̃
(θ̂, τ̂)−∇2

ττUθ̃(θ̂, τ̂))
∣∣∣ ,∣∣∣λmin(∇2

ττU
i
θ̃
(θ̂, τ̂)−∇2

ττUθ̃(θ̂, τ̂))
∣∣∣}

≤ ρiτ .
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Thus, λmax(∇2
ττU

i
θ̃
(θ̂, τ̂)) ≤ λmax(∇2

ττU
i
θ̃
(θ̂, τ̂) − ∇2

ττUθ̃(θ̂, τ̂)) − α ≤ ρiτ − α, where ρiτ ≥ 0.
Hence,

∇2
ττU

i
θ̃
(θ̂, τ̂) ⪯ (ρiτ − α)I.

When ρiτ ≤ α, then ∇2
ττU

i
θ̃
(θ̂, τ̂) ⪯ 0.

Now, since (θ̂, τ̂) satisfy the equilibrium condition (25), thus ∇2
ττUθ̃(θ̂, τ̂) ≺ 0 and the Schur

complement of ∇2
ττUθ̃(θ̂, τ̂) is positive semi-definite. Now when ρiτ < α, it follows from above that

∇2
ττU

i
θ̃
(θ̂, τ̂) ≺ 0, hence

(
∇2
ττU

i
θ̃
(θ̂, τ̂)

)−1

exists. Now, we need to show that Schur complement of

∇2
ττU

i
θ̃
(θ̂, τ̂) is positive semi-definite.

Since, S(θ̂, τ̂) :=
[
∇2
θθUθ̃ −∇2

θτUθ̃
(
∇2
ττUθ̃

)−1∇2
τθUθ̃

]
(θ̂, τ̂) ≻ 0.

Define Si :=
[
∇2
θθU

i
θ̃
−∇2

θτU
i
θ̃

(
∇2
ττU

i
θ̃

)−1

∇2
τθU

i
θ̃

]
. We aim to prove λmin(S

i) ≥ 0 to show Si

is positive semidefinite (PSD).

Analogous to the above part, using corollary to Weyl’s theorem, we have
λmin(S

i − S) + λmin(S) ≤ λmin(S
i).

Let λmin(S) = β, where β ≥ 0. Moreover, ∥Si − S∥σ = max
{∣∣λmax(S

i − S)
∣∣ , ∣∣λmin(S

i − S)
∣∣},

thus λmin(S
i − S) ≥ −∥Si − S∥σ .

Thus, we have
−∥(Si − S)∥σ + β ≤ λmin(S

i).

We can write Si − S as

Si − S = (∇2
θθU

i
θ̃
−∇2

θθUθ̃)−
[
(∇2

θτU
i
θ̃
−∇2

θτUθ̃)(∇
2
ττU

i
θ̃
)−1∇2

τθU
i
θ̃

+∇2
θτUθ̃(∇

2
ττU

i
θ̃
)−1(∇2

τθU
i
θ̃
−∇2

τθUθ̃) +∇
2
θτUθ̃

(
(∇2

ττU
i
θ̃
)−1 − (∇2

ττUθ̃)
−1
)
∇2
τθUθ̃

]
.

Hence,
∥Si − S∥σ ≤ ∥∇2

θθU
i
θ̃
−∇2

θθUθ̃∥σ + ∥(∇2
θτU

i
θ̃
−∇2

θτUθ̃)(∇
2
ττU

i
θ̃
)−1∇2

τθU
i
θ̃
∥σ︸ ︷︷ ︸

T1

+ ∥∇2
θτUθ̃(∇

2
ττU

i
θ̃
)−1(∇2

τθU
i
θ̃
−∇2

τθUθ̃)∥σ︸ ︷︷ ︸
T2

+ ∥∇2
θτUθ̃

(
(∇2

ττU
i
θ̃
)−1 − (∇2

ττUθ̃)
−1
)
∇2
τθUθ̃∥σ︸ ︷︷ ︸

T3

.

Note that the eigenvalue of (∇2
ττU

i
θ̃
)−1is λ

(
(∇2

ττU
i
θ̃
)−1
)
= 1

λ(∇2
ττU

i
θ̃
)
, hence ∥(∇2

ττU
i
θ̃
)−1∥σ =

1
|λmax(∇2

ττU
i
θ̃
)| as ∇2

ττU
i
θ̃

is negative definite. By Assumption 2, each client’s function U i is L-

Lipschitz thus ∥∇2U i
θ̃
∥σ ≤ L. Since the Hessian ∇2U i

θ̃
is a block matrix of the form:

∇2U i
θ̃
=

[
∇2
θθU

i
θ̃
∇2
θτU

i
θ̃

∇2
τθU

i
θ̃
∇2
ττU

i
θ̃

]
,

The norm of Hessian is at least the norm of one of its components
∥∇2

θθU
i
θ̃
∥σ ≤ L, ∥∇2

θτU
i
θ̃
∥σ ≤ L, ∥∇2

τθU
i
θ̃
∥σ ≤ L, ∥∇2

ττU
i
θ̃
∥σ ≤ L.

Thus, each Hessian block is individually bounded by L. Additionally, U is L-Lipschitz too. Using
Assumption 4, bounding T1

T1 = ∥(∇2
θτU

i
θ̃
−∇2

θτUθ̃)(∇
2
ττU

i
θ̃
)−1∇2

τθU
i
θ̃
∥σ

≤ ∥(∇2
θτU

i
θ̃
−∇2

θτUθ̃)∥σ · ∥(∇
2
ττU

i
θ̃
)−1∥σ · ∥∇2

τθU
i
θ̃
∥σ

≤ Lρiθτ
1

|λmax(∇2
ττU

i
θ̃
)|
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Similarly, bounding T2

T2 = ∥∇2
θτUθ̃(∇

2
ττU

i
θ̃
)−1(∇2

τθU
i
θ̃
−∇2

τθUθ̃)∥σ
≤ ∥∇2

θτUθ̃∥σ · ∥(∇
2
ττU

i
θ̃
)−1∥σ · ∥(∇2

τθU
i
θ̃
−∇2

τθUθ̃)∥σ

≤ Lρiτθ
1

|λmax(∇2
ττU

i
θ̃
)|

Lastly we bound T3, it is easy to verify that A−1 −B−1 = A−1 (B −A)B−1

T3 = ∥∇2
θτUθ̃

(
(∇2

ττU
i
θ̃
)−1 − (∇2

ττUθ̃)
−1
)
∇2
τθUθ̃∥σ

≤ ∥∇2
θτUθ̃∥σ · ∥(∇

2
ττU

i
θ̃
)−1 − (∇2

ττUθ̃)
−1∥σ · ∥∇2

τθUθ̃∥σ
= ∥∇2

θτUθ̃∥σ · ∥(∇
2
ττU

i
θ̃
)−1(∇2

ττUθ̃ −∇
2
ττU

i
θ̃
)(∇2

ττUθ̃)
−1∥σ · ∥∇2

τθUθ̃∥σ
≤ ∥∇2

θτUθ̃∥σ · ∥(∇
2
ττU

i
θ̃
)−1∥σ · ∥∇2

ττUθ̃ −∇
2
ττU

i
θ̃
∥σ · ∥(∇2

ττUθ̃)
−1∥σ · ∥∇2

τθUθ̃∥σ

≤ L2ρiτ
1

|λmax(∇2
ττU

i
θ̃
) · λmax(∇2

ττUθ̃)|

Using bounds for T1, T2 and T3, we can obtain a bound on ∥Si − S∥σ ≤ Bi, where Bi =
ρiθ + Lρiθτ

1
|λmax(∇2

ττU
i
θ̃
)| + Lρiτθ

1
|λmax(∇2

ττU
i
θ̃
)| + L2ρiτ

1
|λmax(∇2

ττU
i
θ̃
)·λmax(∇2

ττUθ̃)|
. Consider ρi =

max{ρiθ, ρiτθ, ρiθτ , ρiτ}. Hence, Bi ≤ ρi
(
1 + L

λmax(∇2
ττU

i
θ̃
)

(
2 + 1

λmax(∇2
ττUθ̃

))
. Hence, we

obtain
λmin(S

i) ≥ −Bi + β,

where λmax(S) = β such that β ≥ 0. Hence, we obtain[
∇2
θθU

i
θ̃
−∇2

θτU
i
θ̃

(
∇2
ττU

i
θ̃

)−1

∇2
τθU

i
θ̃

]
(θ̂, τ̂) ⪰ (β − Bi)I . When β ≥ Bi, then Si is

positive semi-definite. When Bi = 0, hence
[
∇2
θθU

i
θ̃
−∇2

θτU
i
θ̃

(
∇2
ττU

i
θ̃

)−1

∇2
τθU

i
θ̃

]
(θ̂, τ̂) ⪰ βI ,

thus it will be positive semidefinite. When ρiτ < α and β > Bi, then the suuficient condition for
εi-approximate equilibrium is satisfied. And we obtain the result.

Thus, for each client i, any approximation error εi that satisfies:

max{ζiθ, ζiτ} ≤ εi ≤ min{α− ρiτ , β −Bi}.

for ρiτ < α and Bi > β, then (θ̂, τ̂) is an εi-approximate local equilibrium point for client i.

B.3 CONSISTENCY

B.3.1 ASSUMPTIONS

We first state the assumptions that are necessary to establish the consistency of the estimated parame-
ter.

Assumption 6 (Identification). θ0 is the unique θ ∈ Θ such that ψ(f i; θ) = 0 for all f i ∈ F , where
i ∈ [n].

Assumption 7 (Absolutely Star Shaped). For every f i ∈ F i and |c| ≤ 1, we have cf i ∈ F i.
Assumption 8 (Continuity). For any x, gi(x; θ), f i(x; τ) are continuous in θ and τ , respectively for
all i ∈ [N ].

Assumption 9 (Boundedness). Y i, supθ∈Θ |gi(X; θ)|, supτ∈T |f i(Z; τ)| are bounded random
variables for all i ∈ [N ].

Assumption 10 (Bounded Complexity). F i and Gi have bounded Rademacher complexities:

1

2ni

∑
ξi∈{−1,+1}ni

E sup
τ∈T

1

ni

ni∑
k=1

ξif
i(Zk; τ)→ 0,

1

2ni

∑
ξi∈{−1,+1}ni

E sup
θ∈Θ

1

ni

ni∑
k=1

ξig
i(Xk; θ)→ 0.
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B.3.2 PROOF OF THEOREM 2

Theorem 6 (Restatement of of Theorem 2). Let θ̃n be a data-dependent choice for the feder-
ated objective that has a limit in probability. For each client i ∈ [N ], define mi(θ, τ, θ̃) :=

f i(Zi; τ)(Y i − g(Xi; θ)) − 1
4f

i(Zi; τ)2(Y i − g(Xi; θ̃))2, M i(θ) = supτ∈T E[mi(θ, τ, θ̃)] and
ηi(ϵ) := infd(θ,θ0)≥ϵM

i(θ)−M i(θ0) for every ϵ > 0. Let (θ̂n, τ̂n) be a solution that satisfies the
approximate equilibrium for each of the client i ∈ [N ] as

sup
τ∈T

U i
θ̃
(θ̂n, τ)− εi − op(1) ≤ U i

θ̃
(θ̂n, τ̂n) ≤ inf

θ∈Θ
max

τ ′:∥τ ′−τ̂n∥≤h(δ)
U i
θ̃
(θ, τ ′) + εi + op(1),

for some δ0, such that for any δ ∈ (0, δ0], and any θ, τ such that ∥θ − θ̂∥ ≤ δ and ∥τ − τ̂∥ ≤ δ and
a function h(δ)→ 0 as δ → 0. Then, under similar assumptions as in Assumptions 1 to 5 of (Bennett
et al., 2019), the global solution θ̂n is a consistent estimator to the true parameter θ0, i.e. θ̂n

p−→ θ0

when the approximate error εi < ηi(ϵ)
2 for every ϵ > 0 for each client i ∈ [N ].

Proof. The proof follows from the result of Bennett et al. (2019) that established the consistency of
the DEEPGMM estimator.

First, we define the following terms for the ease of analysis:

mi(θ, τ, θ̃) = f i(Zi; τ)(Y i − g(Xi; θ))− 1

4
f i(Zi; τ)2(Y i − g(Xi; θ̃))2

M i(θ) = sup
τ∈T

E[mi(θ, τ, θ̃)]

Mni(θ) = sup
τ∈T

Eni [m
i(θ, τ, θ̃n)]

Note that θ̃n is a data-dependent sequence for the global model. Practically, the previous global
iterate is used as θ̃. Thus, we can define for the federated setting θ̃n = 1

N

∑N
i=1 θ̃ni . Let’s assume

θ̃n
p−→ θ̃.

Claim 1: supθ |Mni
(θ)−M i(θ)| p−→ 0.

sup
θ
|Mni(θ)−M i(θ)| = sup

θ

∣∣∣∣sup
τ∈T

Eni [m
i(θ, τ, θ̃n)]− sup

τ∈T
E[mi(θ, τ, θ̃)]

∣∣∣∣
≤ sup

θ,τ

∣∣∣Eni
[mi(θ, τ, θ̃n)]− E[mi(θ, τ, θ̃)]

∣∣∣
≤ sup

θ,τ

∣∣∣Eni
[mi(θ, τ, θ̃n)]− E[mi(θ, τ, θ̃n)]

∣∣∣+ sup
θ,τ

∣∣∣E[mi(θ, τ, θ̃n)]− E[mi(θ, τ, θ̃)]
∣∣∣

≤ sup
θ1,θ2,τ

∣∣Eni
[mi(θ1, τ, θ2)]− E[mi(θ1, τ, θ2)]

∣∣+ sup
θ,τ

∣∣∣E[mi(θ, τ, θ̃n)]− E[mi(θ, τ, θ̃)]
∣∣∣

We will now handle the two terms in the above equation separately.

We will take the first term and call it B1. For mi(θ, τ, θ̃n), we constitute its empirical counterpart
mi
k(θ, τ, θ̃n) = f i(Zik; τ)(Y

i
k −gi(Xi

k; θ))− 1
4f

i(Zik; τ)
2(Y ik −gi(Xi

k; θ̃))
2 and usingmi

k
′
(θ, τ, θ̃′n)

with ghost variables θ̃′n for symmetrization and ϵk as k i.i.d. Rademacher random variables , we
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obtain

E[B1] = E

[
sup
θ1,θ2,τ

∣∣∣∣∣ 1ni
ni∑
k=1

mi
k(θ1, τ, θ2)− E

[
mi
k

′
(θ1, τ, θ

′
2)
]∣∣∣∣∣
]

≤ E

[
sup
θ1,θ2,τ

∣∣∣∣∣ 1ni
ni∑
k=1

(
mi
k(θ1, τ, θ2)−mi

k

′
(θ1, τ, θ

′
2)
)∣∣∣∣∣
]

≤ E

[
sup
θ1,θ2,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵk

(
mi
k(θ1, τ, θ2)−mi

k

′
(θ1, τ, θ

′
2)
)∣∣∣∣∣
]

≤ 2E

[
sup
θ1,θ2,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵkm
i
k(θ1, τ, θ2)

∣∣∣∣∣
]

≤ 2E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵkf
i(Zik; τ)(Y

i
k − gi(Xi

k; θ))

∣∣∣∣∣
]

+
1

2
E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵkf
i(Zik; τ)

2(Y ik − gi(Xi
k; θ̃))

2

∣∣∣∣∣
]

≤ 2E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵk

(
1

2
f i(Zik; τ)

2 +
1

2
(Y ik − gi(Xi

k; θ))
2

)∣∣∣∣∣
]

+
1

2
E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵk

(
1

2
f i(Zik; τ)

4 +
1

2
(Y ik − gi(Xi

k; θ̃))
4

)∣∣∣∣∣
]

≤ E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵkf
i(Zik; τ)

2

∣∣∣∣∣
]
+ E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵk(Y
i
k − gi(Xi

k; θ))
2

∣∣∣∣∣
]

+
1

4
E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵkf
i(Zik; τ)

4

∣∣∣∣∣
]
+

1

4
E

[
sup
θ,τ

∣∣∣∣∣ 1ni
ni∑
k=1

ϵk(Y
i
k − gi(Xi

k; θ̃))
4

∣∣∣∣∣
]

Using boundedness assumption 9, we consider the mapping from f i(Zik; τ) and gi(Xi
k; θ̃) to the

summation terms in the last inequality as Lipschitz functions, hence for any functional class F i and
L- Lipschitz function ϕ,Rni

(ϕ ◦ f i) ≤ LRni
(F i), whereRni

(F i) is the Rademacher complexity
of class F i. Hence, E[B1] ≤ L(Rni

(Gi) +Rni
(F i)). Using assumption 10, E[B1]→ 0. Let B′

1 be
a modified value of B, after changing the j-th value of Xi, Zi and Y i values, using assumption 9 on
boundedness, we obtain the bounded difference inequality:

sup
X1:ni

,Z1:ni
,Y1:ni

,X′
j ,Z

′
j ,Y

′
j

|B1 −B′
1| ≤ sup

θ1,θ2,τ,X1:ni
,Z1:ni

,Y1:ni
,X′

j ,Z
′
j ,Y

′
j

| 1
ni

(
mi
j(θ1, τ, θ2)−mi′

j (θ1, τ, θ2)
)
|

≤ b

ni
,

where b is some constant. Using McDiarmid’s Inequality, we have P (|B1 − E[B1]| ≥ ϵ0) ≤
2 exp

(
−2niϵ

2
0

c2

)
. And E[B1]→ 0, we have B1

p−→ 0.
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Now, we will handle B2. For that

B2 = sup
θ,τ

∣∣∣E [mi(θ, τ, θ̃n)
]
− E

[
mi(θ, τ, θ̃)

]∣∣∣
= sup

θ,τ

∣∣∣∣E [f i(Zi; τ)(Y i − g(Xi; θ))− 1

4
f i(Zi; τ)2(Y i − g(Xi; θ̃n))

2

]
− E

[
f i(Zi; τ)(Y i − g(Xi; θ))− 1

4
f i(Zi; τ)2(Y i − g(Xi; θ̃))2

]∣∣∣∣
= sup

θ,τ

1

4

∣∣∣E [f i(Zi; τ)2(Y i − g(Xi; θ̃n))
2
]
− E

[
f i(Zi; τ)2(Y i − g(Xi; θ̃))2

]∣∣∣
= sup

θ,τ

1

4

∣∣∣E [f i(Zi; τ)2(Y i − g(Xi; θ̃n))
2
]
+ E

[
f i(Zi; τ)2(Y i − g(Xi; θ̃))2

]
− E

[
f i(Zi; τ)2(Y i − g(Xi; θ̃))2

]
− E

[
f i(Zi; τ)2(Y i − g(Xi; θ̃))2

]∣∣∣
≤ 1

4
sup
τ

∣∣E [f i(Zi; τ)2ωn]∣∣
Here, ωn =

∣∣∣(Y i − g(Xi; θ̃n))
2 − (Y i − g(Xi; θ̃))2

∣∣∣. Due to our assumption, θ̃n
p−→ θ̃, thus ωn

p−→ 0

due to Slutsky’s and continuous mapping theorem. Since, f i(Z; τ) is uniformly bounded, thus for
some constant b′ > 0, we have

B2 ≤
b′

4
sup
τ

1

N

N∑
i=1

|E [ωn]|

≤ b′

4
sup
τ

1

N

N∑
i=1

E [|ωn|]

Based on the boundedness assumption, we can verify that ωn is bounded, hence using Lebesgue
Dominated Convergence Theorem, we can conclude that E [|ωn|]→ 0.

Thus, using the convergence of B1 and B2, we have supθ |Mni
(θ)−M i(θ)| p−→ 0 for each i ∈ [N ].

Claim 2: for every ϵ > 0, we have infd(θ,θ0)≥ϵM
i(θ) > M i(θ0).

M i(θ0) is the unique minimizer of M i(θ). By assumption (6) and (7), θ0 is the unique minimizer
of supτ E[f i(Zi; τ)(Y i − gi(X; θ))] such that supτ E[f i(Zi; τ)(Y i − gi(X; θ))] = 0. Thus, any
other value of θ will have at least one τ such that this expectation is strictly positive. M(θ0) = 0 and
M(θ0) = supτ − 1

4f
i(Zi; τ)2(Y i − gi(X; θ))2, the function whose supremum is being evaluated

is non-positive but can be set to zero by assumption (7) by taking the zero function of f i. Let for
any other θ′ ̸= θ0, let f i′ be a function in F i such that E[f i(Z)(Y i − gi(X; θ′))] > 0. If we have
E[f i′(Z)2(Y i − gi(X; θ̃))2] = 0, then M i(θ′) > 0. Else, consider cf i′ for any c ∈ (0, 1). Using
assumption (7), cf i′ ∈ F i, thus

M i(θ′) = supfi∈Fi E
[
f i(Zi)(Y i − g(Xi; θ′))− 1

4f
i(Zi)2(Y i − g(Xi; θ̃))2

]
≤ cE

[
f i

′
(Zi)(Y i − g(Xi; θ′))

]
− c2

4 E
[
f i

′
(Zi)2(Y i − g(Xi; θ̃))2

]
This is quadratic in c and is positive when c is sufficiently small, thus M i(θ′) > 0.

We now prove claim 2 using contradiction. Let us assume claim 2 is false, i.e. for some ϵ > 0,
we have infθ∈B(θ0,ϵ)M

i(θ) = M i(θ0), where B(θ0, ϵ)c = {θ | d(θ, θ0) ≥ ϵ}., since θ0 is the
unique minimizer of M i(θ) by assumption (6). Thus, there must exist some sequence (θ1, θ2, . . . ) in
B(θ0, ϵ)c such that M i(θn)→M i(θ0). By construction, B(θ0, ϵ)c is closed and the corresponding
limit parameters θ∗ = limn→∞ θn ∈ B(θ0, ϵ)c must satisfy M i(θ∗) =M i(θ0) using assumption (8).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

But d(θ∗, θ0) ≥ ϵ > 0, thus θ∗ ̸= θ0. This contradicts that θ0 is the unique minimizer of M i(θ);
hence, claim 2 is true.

Claim 3: For the third part, we know that θ̂n satisfies the εi- approximate equilibrium condition,
given as:

Eni
[mi(θ̂n, τ, θ̃n)]− εi ≤ Eni

[mi(θ̂n, τ̂n, θ̃n)] ≤ max
τ ′:∥τ ′−τ̂n∥≤h(δ)

Eni
[mi(θ, τ ′, θ̃n)] + εi,

for a function h(δ)→ 0 as δ → 0 and some δ0, such that for any δ ∈ (0, δ0], and any θ, τ such that
∥θ − θ̂∥ ≤ δ and ∥τ − τ̂∥ ≤ δ. Assume that this is true with op(1), hence

sup
τ

Eni
[mi(θ̂n, τ, θ̃n)]−εi−op(1) ≤ Eni

[mi(θ̂n, τ̂n, θ̃n)] ≤ inf
θ

max
τ ′:∥τ ′−τ̂n∥≤h(δ)

Eni
[mi(θ, τ ′, θ̃n)]+εi+op(1),

.

Now, since Mni
(θ̂n) = supτEni

[mi(θ̂n, τ, θ̃n)]. Hence,

infθ max
τ ′:∥τ ′−τ̂n∥≤h(δ)

Eni [m
i(θ, τ ′, θ̃n) ≤ infθsupτEni [m

i(θ, τ ′, θ̃n)] = infθMni(θ) ≤Mni(θ0)

Thus, we have

Mni(θ̂n)− εi − op(1) ≤ Eni [m
i(θ̂n, τ̂n, θ̃n)] ≤Mni(θ0) + εi + op(1).

We have proven all three conditions until now. From the first and second condition, since |Mni
(θ0)−

M i(θ0)|
p−→ 0, hence Mni

(θ̂n) ≤M i(θ0) + 2εi + op(1). Hence, we obtain

M i(θ̂n)−M i(θ0) ≤M i(θ̂n)−Mni
(θ̂n) + 2εi + op(1)

≤ sup
θ
|M i(θ̂)−Mni

(θ̂)|+ 2εi + op(1)

≤ 2εi + op(1)

Hence, we obtain

M i(θ̂n)−M i(θ0)− 2εi ≤M i(θ̂n)−Mni
(θ̂n) + op(1)

≤ sup
θ
|M i(θ̂)−Mni(θ̂)|+ op(1)

≤ op(1)

Since, let ηi(ϵ) := infd(θ,θ0)≥ϵM
i(θ)−M i(θ0). Hence, whenever d(θ̂n, θ0) ≥ ϵ, we haveM i(θ̂n)−

M i(θ0) ≥ ηi(ϵ). Thus, P[d(θ̂n, θ0) ≥ ϵ] ≤ P[M i(θ̂n)−M i(θ0) ≥ ηi(ϵ)] = P[M i(θ̂n)−M i(θ0)−
2εi ≥ ηi(ϵ)−2εi]. For every ϵ > 0, we have ηi(ϵ) > 0 from claim 2, andM i(θ̂n)−M i(θ0)−2εi =

op(1). Thus, ηi(ϵ) − 2εi > 0 when εi < ηi(ϵ)
2 . We have that for every ϵ > 0 and εi < ηi(ϵ)

2 , the
RHS probability converges to 0, thus d(θ̂n, θ0) = op(1), hence θ̂n converges in probability to θ0 for
each client i ∈ [N ].

C LIMIT POINTS OF FEDGDA

We first discuss the γ- FEDGDA flow.
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C.1 FEDGDA FLOW

The FEDGDA updates can be written as

θt+1 = θt − η
1

γ

1

N

∑
i∈[N ]

R∑
r=1

(
∇θUθ̃(θt, τt) + (∇θU iθ̃(θ

i
t,r, τ

i
t,r)−∇θU iθ̃(θt, τt))

+(∇θU iθ̃(θt, τt)−∇θUθ̃(θt, τt))
)

τt+1 = τt + η
1

N

∑
i∈[N ]

R∑
r=1

(
∇τUθ̃(θt, τt) + (∇τU iθ̃(θ

i
t,r, τ

i
t,r)−∇τU iθ̃(θt, τt))

+(∇τU iθ̃(θt, τt)−∇τUθ̃(θt, τt))
)

Rearranging the terms and taking the continuous-time limit as η → 0

lim
η→0

θt+1 − θt
η

= lim
η→0
− 1

γ

1

N

∑
i∈[N ]

R∑
r=1

(
∇θUθ̃(θt, τt) + (∇θU iθ̃(θ

i
t,r, τ

i
t,r)−∇θU iθ̃(θt, τt))

+(∇θU iθ̃(θt, τt)−∇θUθ̃(θt, τt))
)

lim
η→0

τt+1 − τt
η

= lim
η→0

1

N

∑
i∈[N ]

R∑
r=1

(
∇τUθ̃(θt, τt) + (∇τU iθ̃(θ

i
t,r, τ

i
t,r)−∇τU iθ̃(θt, τt))

+(∇τU iθ̃(θt, τt)−∇τUθ̃(θt, τt))
)

We obtain the gradient flow equations as

dθ

dt
= −R

γ

1

N

∑
i∈[N ]

(
∇θUθ̃(θ(t), τ(t))

)
− R

γ

1

N

∑
i∈[N ]

(
∇θU iθ̃(θ

i(t), τ i(t))−∇θU iθ̃(θ(t), τ(t))
)

− R

γ

1

N

∑
i∈[N ]

(
∇θU iθ̃(θ(t), τ(t))−∇θUθ̃(θ(t), τ(t)))

)
, (26)

dτ

dt
= R

1

N

∑
i∈[N ]

(
∇τUθ̃(θ(t), τ(t))

)
+R

1

N

∑
i∈[N ]

(
∇τU iθ̃(θ

i(t), τ i(t))−∇τU iθ̃(θ(t), τ(t))
)

+R
1

N

∑
i∈[N ]

(
∇τU iθ̃(θ(t), τ(t))−∇τUθ̃(θ(t), τ(t))

)
. (27)

Using Assumption 3∥∥∥∥∥∥Rγ 1

N

∑
i∈[N ]

(∇θU iθ̃(θ(t), τ(t))−∇θUθ̃(θ(t), τ(t)))

∥∥∥∥∥∥ ≤ R

γ
ζθ∥∥∥∥∥∥R 1

N

∑
i∈[N ]

(∇τU iθ̃(θ(t), τ(t))−∇τUθ̃(θ(t), τ(t)))

∥∥∥∥∥∥ ≤ Rζτ
Thus,

R

γ

1

N

∑
i∈[N ]

(∇θU iθ̃(θ(t), τ(t))−∇θUθ̃(θ(t), τ(t))) = O
(
R

γ
ζθ

)
R

1

N

∑
i∈[N ]

(∇τU iθ̃(θ(t), τ(t))−∇τUθ̃(θ(t), τ(t))) = O(Rζτ )
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Since U i
θ̃

is Lipschitz smooth by assumption 2, we have∥∥∥∥∥∥Rγ 1

N

∑
i∈[N ]

(∇θU iθ̃(θ
i(t), τ i(t))−∇θU iθ̃(θ(t), τ(t)))

∥∥∥∥∥∥ ≤ LRγ 1

N

∑
i∈[N ]

∥(θi(t), τ i(t))− (θ(t), τ(t)∥,

∥∥∥∥∥∥R 1

N

∑
i∈[N ]

(∇τU iθ̃(θ
i(t), τ i(t))−∇τU iθ̃(θ(t), τ(t)))

∥∥∥∥∥∥ ≤ LR 1

N

∑
i∈[N ]

∥(θi(t), τ i(t))− (θ(t), τ(t))∥.

Substituting these bounds into Equations (26) and (27), we obtain

R

γ

1

N

∑
i∈[N ]

(∇θU iθ̃(θ
i(t), τ i(t))−∇θU iθ̃(θ, τ)) = O

LR
γ

1

N

∑
i∈[N ]

∥(θi(t), τ i(t))− (θ(t), τ(t)∥

 ,

R
1

N

∑
i∈[N ]

(∇τU iθ̃(θ
i(t), τ i(t))−∇τU iθ̃(θ, τ)) = O

LR 1

N

∑
i∈[N ]

∥(θi(t), τ i(t))− (θ(t), τ(t))∥

 .

Since the local update follows

θi(t) = θ(t)− η

γ

R∑
j=1

∇θU iθ̃(θ
i
j(t), τ

i
j(t)),

τ i(t) = τ(t) + η

R∑
j=1

∇τU iθ̃(θ
i
j(t), τ

i
j(t)),

Using bounded gradient assumption, i.e. ∥∇θU iθ̃(θ, τ))∥
2 ≤ Gθ and ∥∇τU iθ̃(θ, τ))∥

2 ≤ Gτ for all i,
as η → 0 and R is fixed and finite, the deviation ∥(θi(t), τ i(t))− (θ(t), τ(t))∥ vanish, leading to

dθ

dt
= − 1

γ
R∇θUθ̃(θ(t), τ(t)) +O

(
R

γ
ζθ

)
,

dτ

dt
= R∇τUθ̃(θ(t), τ(t)) +O(Rζτ ).

C.2 PROOF OF THEOREM 3

Proof. Let A = ∇2
θθUθ̃(θ, τ),B = ∇2

ττUθ̃(θ, τ) and C = ∇2
θτUθ̃(θ, τ). Consider ϵ = 1

γ , thus for
sufficiently small ϵ (hence a large γ), the Jacobian J of FEDGDA for a point (θ, τ) is given as:

Jϵ = R

(
−ϵA −ϵC
C⊤ B

)
.

Using Lemma 5, Jϵ has d1 + d2 complex eigenvalues {Λj}d1+d2j=1 such that

|Λj + ϵµj | = o(ϵ) 1 ≤ j ≤ d1
|Λj+d1 − νj | = o(1), 1 ≤ j ≤ d2,

(28)

where {µj}d1j=1 and {νj}d2j=1 are the eigenvalues of matricesR(A−CB−1C⊤) andRB respectively.

We now prove the theorem statement:

LocMinimax ⊂ ∞−FGDA ⊂ ∞−FGDA ⊂ LocMinimax ∪
{(θ, τ)|(θ, τ) is stationary and ∇2

ττUθ̃(θ, τ) is degenerate}.
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By definition of lim sup and lim inf , we know that∞−FGDA ⊂ ∞−FGDA.

Now we show LocMinimax ⊂ ∞−FGDA. Consider a strict local minimax point (θ, τ), then by
sufficient condition it follows that:

B ≺ 0, and A−CB−1C⊤ ≻ 0.

Thus, RB ≺ 0, and R(A−CB−1C⊤) ≻ 0, where R is always positive. Hence, {νj}d1j=1 < 0 and
{µj}d2j=1 < 0. Using equations 28, for some small ϵ0 < ϵ, Re(Λj) < 0 for all j. Thus, (θ, τ) is a
strict linearly stable point of 1

ϵ -FEDGDA.

Now, we show∞−FGDA ⊂ LocMinimax∪{(θ, τ)|(θ, τ) is stationary and ∇2
ττUθ̃(θ, τ) is degenerate}.

Consider (θ, τ) a strict linearly stable point of 1
ϵ -FEDGDA, such that for some small ϵ,

Re(Λj) < 0 for all j. By equation 28, assuming B−1 exists

RB ≺ 0, and R(A−CB−1C⊤) ⪰ 0.

Since, R is positive, thus B ≺ 0, and A−CB−1C⊤ ⪰ 0. Let’s assume A−CB−1C⊤ has 0 as
an eigenvalue. Thus, there exists a unit eigenvector w such that A−CB−1C⊤w = 0. Then,

Jϵ · (w,−B−1C⊤w)⊤ = R

(
−ϵA −ϵC
C⊤ B

)
·
(

w
−B−1C⊤w

)
= 0.

Thus, Jϵ has 0 as its eigenvalue, which is a contradiction because for strict linearly stable point
Re(Λj) < 0 for all j. Thus, A−CB−1C⊤ ≻ 0. Hence, (θ, τ) is a strict local minimax point.

Let G : Rd × Rk → R be the function defined as: G(θ, τ) = det(∇2
ττUθ̃(θ, τ)). Let’s assume that

∇2
ττUθ̃(θ, τ) is smooth, thus the determinant function is a polynomial in the entries of the Hessian,

which implies that G is a smooth function. Since∇2
ττUθ̃(θ, τ) = 0 implies at least one eigenvalue of

∇2
ττUθ̃(θ, τ) is zero, thus det(∇2

ττUθ̃(θ, τ)) = 0.

We aim to show that the set

A = {(θ, τ) | (θ, τ) is stationary and det(∇2
ττUθ̃(θ, τ)) = 0}

has measure zero in Rd × Rk.

A point q ∈ Rd × Rk is a regular value of G if for every (θ, τ) ∈ G−1(q), the differential dG(θ, τ)
is surjective. Otherwise, q is a critical value.

The differential of G is given by: ∇G(θ, τ) = Tr
(
Adj(∇2

ττUθ̃) · ∇(∇2
ττUθ̃)

)
. If

det(∇2
ττUθ̃(θ, τ)) = 0, then the Hessian ∇2

ττUθ̃ is singular. This causes its adjugate matrix to
lose rank, leading to a degeneracy in ∇G(θ, τ), making dG(θ, τ) not surjective.

Thus, every (θ, τ) satisfying G(θ, τ) = 0 is a critical point of G, meaning that 0 is a critical value of
G.

By Sard’s theorem, the set of critical values of a smooth function has measure zero in the codomain.
Since G is smooth, the set of critical values of G in R has measure zero. In particular, since 0 is a
critical value of G, the set: G−1(0) = {(θ, τ) | det(∇2

ττUθ̃(θ, τ)) = 0} has measure zero in Rd+k.

Since the set of degenerate ∇2
ττUθ̃(θ, τ) is precisely G−1(0), we conclude that

Lebesgue measure(A) = 0. Thus, the set of stationary points where the Hessian ∇2
ττUθ̃(θ, τ) is

singular has measure zero in Rd × Rk.

Lemma 4. (Zedek, 1965) Given a polynomial pn(z) :=
∑n
k=0 akz

k, where an ̸= 0, an integer
m ≥ n and a number ϵ > 0, there exists a number δ > 0 such that whenever the m + 1 complex
numbers bk, 0 ≤ k ≤ m, satisfy the inequalities

|bk − ak| < δ for 0 ≤ k ≤ n, and |bk| < δ for n+ 1 ≤ k ≤ m,

then the roots βk, 1 ≤ k ≤ m, of the polynomial qm(z) :=
∑m
k=0 bkz

k can be labeled in such a way
as to satisfy, with respect to the zeros αk, 1 ≤ k ≤ n, of pn(z), the inequalities

|βk − αk| < ϵ for 1 ≤ k ≤ n, and |βk| > 1/ϵ for n+ 1 ≤ k ≤ m.
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Lemma 5. For any symmetric matrix A ∈ Rd1×d1 , B ∈ Rd2×d2 , any rectangular matrix C ∈
Rd1×d2 and a scalar R, assume that B is non-degenerate. Then, matrix

R

(
−ϵA −ϵC
C⊤ B

)
has d1 + d2 complex eigenvalues {Λj}d1+d2j=1 with following form for sufficiently small ϵ:

|Λj + ϵµj | = o(ϵ) 1 ≤ j ≤ d1
|Λj+d1 − νj | = o(1), 1 ≤ j ≤ d2,

where { 1
Rµj}

d1
j=1 and { 1

Rνj}
d2
j=1 are the eigenvalues of matrices A−CB−1C⊤ and B respectively.

The proof follows from Lemma 4 by a similar argument as in (Jin et al., 2020) with {µj}d1j=1

and {νj}d2j=1 as the eigenvalues of matrices R(A−CB−1C⊤) and RB, respectively, and is thus
omitted.

D RELATED WORK

The federated supervised learning has received algorithmic advancements guided by factors such as
tackling the system and statistical heterogeneities, better sample and communication complexities,
model personalization, differential privacy, etc. An incomplete list includes FEDPROX (Li et al.,
2020), SCAFFOLD (Karimireddy et al., 2020), FEDOPT (Reddi et al., 2020), LPP-SGD (Chatterjee
et al., 2024), PFEDME (T Dinh et al., 2020), DP-SCAFFOLD (Noble et al., 2022), and others.

By contrast, federated learning with confounders in a causal learning setting is a relatively under-
explored research area. Vo et al. (2022a) presented a method to learn the similarities among the data
sources translating a structural causal model (Pearl, 2009) to federated setting. They transform the loss
function by utilizing Random Fourier Features into components associated with the clients. Thereby
they compute individual treatment effects (ITE) and average treatment effects (ATE) by a federated
maximization of evidence lower bound (ELBO). Vo et al. (2022b) presented another federated
Bayesian method to estimate the posterior distributions of the ITE and ATE using a non-parametric
approach.

Xiong et al. (2023) presented maximum likelihood estimator (MLE) computation in a federated
setting for ATE estimation. They showed that the federated MLE consistently estimates the ATE
parameters considering the combined data across clients. However, it is not clear if this approach is
applicable to consistent local moment conditions estimation for the participating clients. Almodóvar
et al. (2024) applied FedAvg to variational autoencoder (Kingma et al., 2019) based treatment effect
estimation TEDVAE (Zhang et al., 2021). However, their work mainly focused on comparing the
performance of vanilla FedAvg with a propensity score-weighted FedAvg in the context of federated
implementation of TEDVAE.

Our work differs from the above related works in the following:

(a) we introduce IV analysis in federated setting, and, we introduce federated GMM estimators,
which has applications for various empirical research (Wooldridge, 2001),

(b) specifically, we adopt a non-Bayesian approach based on a federated zero-sum game, wherein
we focus on analysing the dynamics of the federated minimax optimization and characterize the
global equilibria as a consistent estimator of the clients’ moment conditions.

Our work also differs from federated minimax optimization algorithms: Sharma et al. (2022); Shen
et al. (2024); Wu et al. (2024); Zhu et al. (2024), where the motivation is to analyse and improve the
non-asymptotic convergence under various analytical assumptions on the objective functions. We
primarily focus on deriving the equilibrium via the limit points of the federated GDA algorithm.

E BENCHMARK CONSIDERATIONS AND ADDITIONAL EXPERIMENTS

E.1 THE EXPERIMENTAL BENCHMARK DESIGN

As stated, our experiments take the Bennett et al. (2019)’s experiments as a centralized-setting
baseline. Therefore, we have used the same synthetic dataset as DEEPGMM, which they use in their
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experiments to benchmarks against the baselines therein such as DEEPIV (Hartford et al., 2017). It is
standard to perform experimental analysis on synthetic datasets for unavailability of ground truth
for causal inference; for example see Section 4.1.1 of Vo et al. (2022b). As the learning process
essentially involves estimating the true parameter θ0 by θ̂, to measure the performance of the learning
procedure, we use the MSE of the estimate ĝ := g(., θ̂) against the true g0 averaged over the clients.
Nonetheless, an experimental comparison of our work with recent works on federated Bayesian
methods for causal effect estimations does not apply directly. We discuss that below.

The two works in the domain of federated Bayesian methods for causal effect estimations are
CAUSALRFF (Vo et al., 2022a) and FEDCI (Vo et al., 2022b). The aim of CAUSALRFF (Vo et al.,
2022a) is to estimate the conditional average treatment effect (CATE) and average treatment effect
(ATE), whereas FEDCI (Vo et al., 2022b) aims to estimate individual treatment effect (ITE) and
ATE. For this, (Vo et al., 2022a) consider a setting of Y , W , and X to be random variables denoting
the outcome, treatment, and proxy variable, respectively. Along with that, they also consider a
confounding variable Z. However, their causal dependency builds on the dependence of each of Y ,
W , and X on Z besides dependency of Y on W . Consequently, to compute CATE and ATE, they
need to estimate the conditional probabilities p(wi|xi), p(yi|xi, wi), p(zi|xi, yi, wi), p(yi|wi, zi),
where the superscript i represents a client. Their experiments compare the estimates of CATE and
ATE with the Bayesian baselines (Hill, 2011), (Shalit et al., 2017), (Louizos et al., 2017), etc. in
a centralized setting without any consideration of data decentralization or heterogeneity native to
federated learning. Further, they compare against the same baselines in a one-shot federated setting,
where at the end of training on separate data sources independently, the predicted treatment effects
are averaged. Similar is the experimental evaluation of (Vo et al., 2022b).

By contrast, the setting of IV analysis as in our work does not consider dependency of the outcome
variable Y on the confounder Z, though the treatment variable X could be endogenous and depend
on Z. For us, computing the treatment effects and thereby comparing it against these works is
not direct. Furthermore, it is unclear, if the approach of (Vo et al., 2022a) and (Vo et al., 2022b),
where the predicted inference over a number of datasets is averaged as the final result, would be
comparable to our approach where the problem is solved using a federated maximin optimization with
multiple synchronization rounds among the clients. For us, the federated optimization subsumes the
experimental of comparing the average predicted values after independent training with the predicted
value over the entire data. This is the reason that our centralized counterpart i.e. DEEPGMM (Bennett
et al., 2019), do not experimentally compare against the baselines of (Vo et al., 2022a) and (Vo et al.,
2022b). In summary, for us the experimental benchmarks were guided by showing the efficient fit of
the GMM estimator in a federated setting.

E.2 ADDITIONAL EXPERIMENTS

DirS(α) = 0.1 DirS(α) = 1.0
Estimations FDEEPGMM-

GDA
FDEEPGMM-
SGDA

FDEEPGMM-
GDA

FDEEPGMM-
SGDA

FEMNISTx 0.27 ± 0.04 0.23 ± 0.02 0.17 ± 0.01 0.19 ± 0.03
FEMNISTx,z 0.21 ± 0.01 0.24 ± 0.04 0.16 ± 0.03 0.18 ± 0.02
FEMNISTz 0.29 ± 0.02 0.25 ± 0.03 0.20 ± 0.04 0.23 ± 0.01
CIFAR10x 0.26 ± 0.01 0.27 ± 0.01 0.18 ± 0.01 0.15 ± 0.02
CIFAR10x,z 0.29 ± 0.02 0.30 ± 0.01 0.21 ± 0.02 0.13 ± 0.01
CIFAR10z 1.73 ± 0.01 0.67 ± 0.02 0.37 ± 0.05 0.35 ± 0.02

Table 2: The averaged Test MSE with standard deviation in the high-dimensional scenarios with
varying levels of heterogeneity.

The experimental results included in Section 4 were conducted setting DirS(α) = 0.3, which
corresponds to the case wherein a dataset with 10 classes, such as MNIST and CIFAR10, samples
of 3 classes on average will be distributed to each client (Hsu et al., 2019). To further investigate
the effect of heterogeneity on the performance of FEDDEEPGMM, we conducted experiments with
DirS(α) = 0.1 and DirS(α) = 1. DirS(α) = 0.1 would correspond to the case when every client
would have samples from one class on average from a dataset with 10 classes, which represents a
high heterogeneity setting. Whereas, setting DirS(α) = 1, the data distribution across clients with
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regards to samples from different classes becomes roughly uniform representing a near homogeneous
scenario. The experimental results are presented in Table 2.

The results presented in Table 2 indicate that on decreasing DirS(α) from 0.3 to 0.1, i.e. increasing
heterogeneity, the Test MSE achieved increases marginally. Whereas, on increasing DirS(α) from
0.3 to 1.0, i.e. decreasing heterogeneity, the Test MSE achieved decreases. This set of observa-
tions corroborate our theoretical insight that the consistency of the GMM estimator depends on
the heterogeneity bias. The change in the MSE values being only marginal can be attributed to
the overparametrized setting offered by the CNN on a small-sized data on each client as well as
hyperparameter tuning.
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