
Nonparametric Quantile Regression with
ReLU-Activated Recurrent Neural Networks

Hang Yu1,2,∗, Lyumin Wu3,∗, Wen-Xin Zhou4, Zhao Ren5,†

1 National Key Laboratory for Novel Software Technology, Nanjing University, China
2 School of Artificial Intelligence, Nanjing University, China

3 Department of AI and Data Science, The University of Hong Kong, China
4 Department of Information and Decision Sciences, University of Illinois Chicago, USA

5 Department of Statistics, University of Pittsburgh, USA

Abstract

This paper investigates nonparametric quantile regression using recurrent neural
networks (RNNs) and sparse recurrent neural networks (SRNNs) to approximate
the conditional quantile function, which is assumed to follow a compositional
hierarchical interaction model. We show that RNN- and SRNN-based estimators
with rectified linear unit (ReLU) activation and appropriately designed architectures
achieve the optimal nonparametric convergence rate, up to a logarithmic factor,
under stationary, exponentially β-mixing processes. To establish this result, we
derive sharp approximation error bounds for functions in the hierarchical interac-
tion model using RNNs and SRNNs, exploiting their close connection to sparse
feedforward neural networks (SFNNs). Numerical experiments and an empirical
study on the Dow Jones Industrial Average (DJIA) further support our theoretical
findings.

1 Introduction

Quantile regression (QR) [Koenker and Bassett, 1978] provides a flexible framework for estimating
conditional quantiles of a response variable, offering a more comprehensive characterization of the
conditional distribution than least squares regression, which focuses solely on the conditional mean.
By modeling different quantiles, QR reveals how covariate effects vary across the response distribu-
tion, making it particularly valuable when errors are non-normal, heteroscedastic, or when the focus
is on tail behavior. Since its introduction, QR has evolved through a wide range of methodological
developments, including linear QR [Koenker and Bassett, 1978], quantile autoregression [Koenker
and Xiao, 2006], quantile regression forests [Meinshausen, 2006], and quantile boosting [Zheng,
2012], among others. An early step toward integrating neural networks into QR was taken by White
[1992], who established theoretical guarantees for single-layer feedforward networks. Building on
this foundation, subsequent research has focused on multi-layer feedforward neural networks (FNNs)
with ReLU activation functions [Nair and Hinton, 2010]. Assuming that the true conditional quantile
function admits a compositional structure consisting of lower-dimensional component functions,
Shen et al. [2021] derived a sub-optimal convergence rate for ReLU-based FNN estimators in the
presence of heavy-tailed response distributions, which was later refined in a subsequent work [Shen
et al., 2025]. Extending this line of work, Padilla et al. [2022] investigated nonparametric QR using
ReLU-activated sparse feedforward neural networks (SFNNs) with bounded parameters, achieving
optimal convergence rates under Hölder smoothness or Besov-space assumptions on the quantile

∗Equal contribution.
†Correspondence: Zhao Ren <zren@pitt.edu>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

function. More recently, Feng et al. [2024] addressed the problem of covariate shift in nonparametric
QR via ReLU FNNs, obtaining minimax-optimal rates under an adaptive self-calibration condition.

However, FNNs often struggle to capture temporal dynamics and sequential dependencies, thereby
limiting their effectiveness in modeling dependent data. In contrast, recurrent neural networks (RNNs)
[Rumelhart et al., 1986], specifically designed for sequential data, are naturally better suited to such
settings. Their capacity to retain and integrate information across time steps has proven effective in
applications such as time series forecasting, sequence-to-sequence learning [Sutskever et al., 2014],
and modeling long-term dependencies [Hochreiter and Schmidhuber, 1997, Chung et al., 2014].
Motivated by these strengths, we investigate RNNs and their sparse variants (SRNNs) as predictive
function classes and establish their theoretical properties within the framework of nonparametric QR.

Recent studies have investigated the theoretical properties of RNNs in the many-to-one setting.
Several works have established PAC-style generalization guarantees for RNNs [Chen et al., 2020, Tu
et al., 2020, Cheng et al., 2025]. More closely related to our setting are results on their approximation
properties under dependent data. In particular, Jiao et al. [2024] showed that RNNs can attain
the optimal convergence rate in nonparametric regression when the data are stationary and β-
mixing. Building upon these developments, the present study establishes statistical guarantees for the
performance of RNNs in QR, which requires distinct technical tools from those employed in least
squares estimation. In what follows, we formally define the model, outline the main contributions,
and introduce the notation.

Model. Consider sequentially stationary observations {(xt, yt)}nt=1, where any consecutive N
observations share the same joint distribution as Z = ((X1, Y1), . . . , (XN , YN)). Here, Yi ∈ R
denotes the random outcome of interest, and Xi ∈ Rdx is a dx-dimensional covariate vector for
i ∈ [N]. Motivated by the recurrent structure of RNNs, we assume that yt depends on the sequence
of covariates (xt−N+1, . . . ,xt). The formal regularity conditions governing this dependence are
specified in Section 3.2. Given a quantile level τ ∈ (0, 1) of interest, we define the conditional τ -th
quantile of yt (or YN) given xt−N+1, . . . ,xt (or X1, . . . , XN) as

qτ (yt|xt−N+1, . . . ,xt) = f0(xt−N+1, . . . ,xt), xt−N+1, . . . ,xt ∈ Rdx , N ≤ t ≤ n,

where f0 : Rdx×N → R is the unknown conditional quantile function. Equivalently, the relationship
between YN and (X1, . . . , XN) can be expressed in additive form as

YN = f0(X1, . . . , XN) + ϵ, (1.1)

where ϵ denotes the regression error satisfying P(ϵ ≤ 0|X1, . . . , XN) = τ .

A key motivating example is the broad class of nonlinear autoregressive (AR) models with time-
varying conditional variance.
Example (Nonlinear AR Model with Time-varying Conditional Variances). Consider the het-
eroscedastic nonlinear AR model

Wt = ϕ(Wt−1, . . . ,Wt−p) + ϵtσ(Wt−1, . . . ,Wt−q),

where ϕ : Rp → R and σ : Rq → R are unknown functions, {ϵt}∞t=−∞ is a sequence of independently
and identically distributed (i.i.d.) random variables satisfying qτ (ϵt) = 0. The integers p and q denote
the AR order, with p ≤ q. This model conforms to the general formulation in (1.1) by setting N = q,
YN = Wt, and Xi = Wt−(N−i+1) for i ∈ [q]. Under this representation, the conditional quantile
function f0(X1, . . . , XN) is given by ϕ(Wt−1, . . . ,Wt−p).

Contributions. We summarize the main contributions of this work as follows.

• To the best of our knowledge, this work provides the first approximation error bounds for
functions within a hierarchical interaction model [Kohler and Langer, 2021] using both RNNs
and SRNNs. These bounds highlight the ability of such architectures to effectively capture the
complexity inherent in hierarchical interaction structures. Our analysis builds upon the close
connections between SFNNs and SRNNs, as established in Lemma 4 and Lemma 14 of the
supplementary material. In particular, we show that any SRNN can be represented by an SFNN
with a slightly larger but less sparse architecture, and vice versa, indicating that their respective
function classes are comparable in expressive power. This result complements the equivalence
between FNNs and RNNs previously demonstrated by Jiao et al. [2024].

2

• Built upon the established approximation error bounds, we conduct a comprehensive error
analysis for nonparametric QR with weakly dependent data using RNNs and SRNNs. Specif-
ically, we estimate the true conditional quantile function f0 within a hierarchical interaction
model characterized by intrinsic smoothness γ⋆. We show that, for a stationary exponentially
β-mixing sequence of n observations, the empirical risk minimizers based on both RNNs
and SRNNs achieve a convergence rate of n−2γ⋆/(2γ⋆+1) under the squared L2 norm, up to a
logarithmic factor. This rate coincides with the minimax-optimal rate established by Schmidt-
Hieber [2020]. Furthermore, we derive a slower convergence rate for the case of algebraically
β-mixing dependence.

Notations. For two sequences {an} and {bn}, we write an ≳ bn if there exists a constant C > 0,
independent of n, such that an ≥ Cbn. We write an ≲ bn if bn ≳ an. Additionally, we use the
notation an ≍ bn when both an ≲ bn and an ≳ bn hold. For any α ∈ R, let ⌊α⌋ denote the
largest integer that is strictly smaller than α, and ⌈α⌉ denote the smallest integer that is strictly
larger than α. We denote N = {1, 2, . . .}, N0 = N ∪ {0}, and Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
For any N ∈ N, we define [N] as {1, . . . , N}. For any set S, we denote its cardinality by |S|.
For x = (x1, . . . , xd)

⊤ ∈ Rd, we define ∥x∥p = (
∑d

i=1 |xi|p)1/p, ∥x∥∞ = maxi |xi|, ∥x∥0 =∑
i 1(xi ̸= 0). For A = [ai,j] ∈ Rm×n, we define ∥A∥0 =

∑
i

∑
j 1(ai,j ̸= 0) and vec(A) =

(a1,1, . . . , a1,n, . . . , am,1, . . . , am,n)
⊤ ∈ Rmn. Moreover, for any real-valued function h defined on

a domain X , we define ∥h∥∞ = supx∈X |h(x)|. Let PX be a probability measure on X . The Lp

norm of h (1 ≤ p < ∞) with respect to PX is defined as ∥h∥p = (EX∼PX
|h(X)|p)1/p.

2 Methodologies

In this section, we formally define the architectures of RNNs and SRNNs, both employing the
ReLU activation function, σ(x) = max{x, 0}, applied elementwise to vector inputs. Building on
these architectures, we then introduce nonparametric QR estimators based on RNNs and SRNNs,
constructed through empirical risk minimization (ERM) over overlapping subsequences of the data.

2.1 RNNs and SRNNs

An RNN is characterized by the following parameters: the input dimension dx, the output dimension
dy, the width W , and the depth L. Given a time horizon N , an RNN processes an input sequence
X := (x(1), . . . ,x(N)) ∈ Rdx×N sequentially through three types of layers: an input layer p, a
sequence of recurrent layers {rl}Ll=1, and an output layer q. The architecture generates an output
sequence Y := (y(1), . . . ,y(N)) ∈ Rdy×N according to

V0 = p(X) = (Px(1), . . . , Px(N)),

Vl = rl(Vl−1) = (r
(1)
l (Vl−1), . . . , r

(N)
l (Vl−1)), l ∈ [L],

Y = q(VL) = (Qv
(1)
L , . . . , Qv

(N)
L),

where P ∈ RW×dx , Q ∈ Rdy×W , and Vl = (v
(1)
l , . . . ,v

(N)
l) ∈ RW×N for l ∈ [L] ∪ {0}. For each

time step t ∈ [N] and each layer l ∈ [L], the recurrent operation r
(t)
l is defined by

r
(t)
l (Vl−1) := σ(Alr

(t−1)
l (Vl−1) +Blv

(t)
l−1 + cl),

where Al, Bl ∈ RW×W , cl ∈ RW , and r
(0)
l = 0 ∈ RW .

By composing all L+ 2 layers, the overall RNN function rθ can be expressed as

rθ := q ◦ rL ◦ · · · ◦ r1 ◦ p,
where θ = (vec(P)⊤, vec(A1)

⊤, vec(B1)
⊤, c⊤1 , . . . , vec(AL)

⊤, vec(BL)
⊤, c⊤L , vec(Q)⊤)⊤ ∈ Rdθ ,

with dθ = (2W 2 + W)L + W (dx + dy). In the many-to-one RNN setting considered here, the
prediction function corresponds to the final element of the output sequence, denoted by r

(N)
θ .

We define RNN as the class of RNN prediction functions with bounded outputs:

RNN dx,dy(W,L,K) =

{
r
(N)
θ :Rdx×N → Rdy

∣∣∣ sup
X∈Rdx×N ,t∈[N]

∥r(t)θ (X)∥∞ ≤ K

}
.

3

For simplicity, we assume K ≥ 1 throughout and omit it when boundedness is either understood or
not required. Likewise, when the input and output dimensions dx and dy are clear from context, we
denote the class more compactly as RNN (W,L).

Such RNN architectures, particularly those with large width or depth, are often substantially over-
parameterized in practice, which can lead to severe overfitting during training. Introducing sparsity
provides an effective mechanism to mitigate this overparameterization. From a theoretical per-
spective, sparsity reduces the effective hypothesis space, thereby improving generalization bounds.
We now formally define RNN sparsity. For a recurrent layer rl, define its sparsity as T (rl) =
∥Al∥0 + ∥Bl∥0 + ∥cl∥0. For the input and output layers, we set T (p) = ∥P∥0 and T (q) = ∥Q∥0,
respectively. The total sparsity of an RNN rθ is then given by T (rθ) = T (p) + T (q) +

∑L
l=1 T (rl).

Using this notation, we define the class of SRNNs as

SRNN dx,dy(W,L,K, s) =
{
r
(N)
θ | r(N)

θ ∈ RNN dx,dy(W,L,K) with T (rθ) ≤ s
}
,

where s denotes the sparsity budget. SRNNs combine the sequential representation power of RNNs
with the computational and statistical advantages of sparse architectures, making them particu-
larly attractive for both theoretical analysis and practical implementation in resource-constrained
environments.

2.2 Nonparametric quantile regression

As is standard in the QR literature, we begin by imposing regularity conditions on the noise variable
ϵ in (1.1), conditioned on the covariates X1, . . . , XN , as formalized in the following assumption.
Assumption 1. The conditional density of ϵ given X1, . . . , XN , denoted by pϵ|X1,...,XN

, exists and
is continuous over its support. Moreover, it satisfies, almost surely over X1, . . . , XN ,

p ≤ pϵ|X1,...,XN
(0) ≤ sup

u∈R
pϵ|X1,...,XN

(u) ≤ p̄

for constants p̄ ≥ p > 0. In addition, there exists a constant l0 > 0 such that, almost surely over
X1, . . . , XN , |pϵ|X1,...,XN

(u1)− pϵ|X1,...,XN
(u2)| ≤ l0|u1 − u2| for all u1, u2 ∈ R.

This assumption is standard in the literature and has been adopted in prior works such as Belloni and
Chernozhukov [2011], Belloni et al. [2019], and Padilla et al. [2022]. It plays a crucial role in linking
the excess risk to the squared L2 error of the estimators, as established in Theorem 3.

Under Assumption 1, the target function f0 is the unique minimizer of the population check loss

Rτ (f) := E((X1,...,XN)∼Π, YN)[ρτ (YN − f(X1, . . . , XN))],

where Π denotes the joint distribution of X1, . . . , XN and ρτ (u) = (τ − 1(u < 0))u is the check
loss. Hereafter, we assume that the joint distribution Π has compact support on [0, 1]dx×N . Given a
dataset {(xt, yt)}nt=1, we form overlapping subsequences to construct the training sample

S = {((x1, . . . ,xN), yN), ((x2, . . . ,xN+1), yN+1), . . . , ((xn−N+1, . . . ,xn), yn)}.

We then estimate the target function f0 by ERM over a function class F , yielding the estimator

f̂ ∈ argmin
f∈F

Rn(f) :=
1

n−N + 1

n∑
t=N

ρτ (yt − f(xt−N+1, . . . ,xt)). (2.1)

In the sections that follow, we derive error bounds for the cases where F = RNN dx,1(W,L,K)
and F = SRNN dx,1(W,L,K, s), respectively.

3 Statistical Theory

In this section, we begin by introducing the hierarchical interaction model and derive error bounds
for function approximation under this framework using both RNNs and SRNNs. Building on these
results, we first establish oracle-type inequalities and subsequently use them to obtain separate upper
bounds on the L2 error of QR estimators based on RNNs and SRNNs, under the assumption that the
data-generating process satisfies a stationary β-mixing condition.

4

3.1 Approximation error bounds

The theoretical performance of neural networks critically depends on the properties of the underlying
function class. A commonly adopted assumption in nonparametric statistics is that the true regression
function belongs to a Hölder class. We recall its definition below, following [Stone, 1982].
Definition 1 (Hölder Class of Functions Cβ

d (X ,K)). Given a domain X ⊆ Rd, a positive Hölder
smoothness parameter β, and a constant K > 0, the β-Hölder function class is defined as

Cβ
d (X ,K) =

{
f : X → R

∣∣∣∣∣ ∑
α:∥α∥1<β

∥∥∂αf
∥∥
∞ +

∑
α:∥α∥1=r

sup
x,y∈X
x̸=y

∣∣∂αf(x)− ∂αf(y)
∣∣

∥x− y∥s2
≤ K

}
,

where r = ⌊β⌋, s = β − r, ∂α = ∂α1 · · · ∂αd with α = (α1, . . . , αd) ∈ Nd
0 and ∥α∥1 =

∑d
i=1 αi.

Moreover, we refer to γ = β/d as the dimension-adjusted degree of smoothness of Cβ
d (X ,K).

Specifically, any function f ∈ Cβ
d (X ,K) is bounded in magnitude by K. Without loss of generality,

we assume throughout the paper that K ≥ 1. Stone [1982] established that the minimax convergence
rate for estimating a regression function under the L2 norm over the Hölder class Cβ

d (X ,K) is
n−γ/(2γ+1). However, in neural network applications, the input dimension d is often large, resulting
in a small value of the dimension-adjusted smoothness γ, which in turn leads to slow convergence rates.
To mitigate the impact of high dimensionality, we consider a class of functions with a compositional
structure, known as the hierarchical interaction model, which captures intrinsic low-dimensional
structures and allows for more favorable approximation and estimation properties.
Definition 2 (Hierarchical Interaction Model). Let l, d ∈ N be positive integers, and let K ≥ 1.
Suppose P ⊆ [1,∞)× N is a parameter set such that sup(β,t)∈P max{β, t} < ∞. The hierarchical
interaction model Hl

d(P,K) is defined recursively as follows:

(i) A function h : Rd → R belongs to the first-level model H1
d(P,K) if there exist (β, t) ∈ P ,

a function h1 ∈ Cβ
t (Rt,K), and a set of indices {j1, . . . , jt} ⊆ {1, . . . , d} such that h(x) =

h1(xj1 , . . . , xjt) for x = (x1, . . . , xd)
⊤ ∈ Rd.

(ii) For l > 1, a function h belongs to the hierarchical interaction model Hl
d(P,K) if there exist

(β, t) ∈ P , a function hl ∈ Cβ
t (Rt,K), and functions u1, . . . , ut ∈ Hl−1

d (P,K) such that h(x) =
hl(u1(x), . . . , ut(x)) for x ∈ Rd.

In analogy to the Hölder class, we define the intrinsic smoothness of Hl
d(P,K) by

γ⋆ = β⋆/t⋆, where (β⋆, t⋆) = argmin(β,t)∈Pβ/t.

This quantity can be interpreted as the effective smoothness of the least regular component in the
composition. Crucially, it does not depend on the ambient input dimension, thereby mitigating the
curse of dimensionality. Extensive research has established the minimax-optimal convergence rates
for models related to the hierarchical interaction model in nonparametric regression, demonstrating
that these models retain favorable statistical performance even in high-dimensional settings [Bauer
and Kohler, 2019, Schmidt-Hieber, 2020, Kohler and Langer, 2021]. Moreover, the hierarchical
interaction model encompasses a broad class of structured functions, including classical models
such as additive models, single-index models, and other compositionally structured function classes
[Kohler and Langer, 2021].

Based on the preceding definitions, we impose the following assumption on the true quantile function
f0 introduced in (1.1).
Assumption 2. Let K ≥ 1, l ∈ N, and P ⊂ [1,∞) × N satisfy sup(β,t)∈P max{β, t} < ∞. The
true quantile function f0 belongs to the hierarchical interaction model Hl

dx×N (P,K).

The following theorem provides an error bound for approximating functions within a hierarchical
interaction model using RNNs.
Theorem 1. Under Assumption 2, for any W0, L0 ≥ 3, and a probability measure µ on [0, 1]dx×N

that is absolutely continuous with respect to the Lebesgue measure, the following inequality holds

inf
f∈RNNdx,1(W,L,K)

{∫
[0,1]dx×N

|f(x)− f0(x)|2µ(dx)

}1/2

≤ c1(W0L0)
−2γ⋆

,

5

where

W = c2(dx + 1)⌈W0 logW0⌉+ 1 and L = 2c3⌈L0 logL0⌉+ 2N. (3.1)

Here, the positive constants c1–c3 depend on (l, N,P,K).

Theorem 1 establishes the ability of RNNs to approximate hierarchical functions. In contrast, while
Jiao et al. [2024] also explored the approximation capabilities of RNNs, their analysis relied on the
restrictive assumption that the true regression function belongs to a Hölder class. As a result, their
approximation error bounds exhibit a strong dependence on the input dimension. By leveraging the
benefits of the hierarchical interaction model in high dimensions, a more thorough exploration of
the theoretical properties of SRNNs becomes possible. This is particularly relevant as SRNNs are
commonly used in high-dimensional data scenarios. We then present the following theorem, which
provides a result for SRNNs that is not achievable by Jiao et al. [2024].
Theorem 2. Under Assumption 2, for any W0 ≥ sup(β,t)∈P max{(β + 1)t, (K + 1)et}, L0 ≥ 1,
and a probability measure µ on [0, 1]dx×N that is absolutely continuous with respect to the Lebesgue
measure, the following inequality holds

inf
f∈SRNNdx,1(W,L,K,s)

{∫
[0,1]dx×N

|f(x)− f0(x)|2µ(dx)

}1/2

≤ c4

(
W02

−L0 +W−γ⋆

0

)
,

where
W = (dx + 1)c5W0 + 1, L = 2c6L0 + 2N,

s = c7L0W0 + 3(dx + 1)c5W0N+6(c6L0 +N)(dx + 1)c5W0.
(3.2)

Here, the positive constants c4–c7 depend on (l, N,P,K).

The approximation error bound established in Theorem 2 demonstrates the effectiveness of SRNNs in
approximating hierarchical functions. The key distinction between the error bounds in Theorem 1 and
Theorem 2 lies in the construction of the neural networks. Specifically, Theorem 1 is based on RNNs
constructed using the methodology in Theorem 3.3 of Jiao et al. [2023], while Theorem 2 employs
SRNNs constructed through local Taylor approximations, following the approach of Yarotsky [2017].
Importantly, the difference in the resulting error bounds becomes negligible when applied to the
derivation of convergence rates for QR estimators. As demonstrated in Theorem 4 and Theorem 5,
both approximation bounds can be incorporated into oracle inequalities, leading to optimal rates for
estimators based on RNNs and SRNNs, respectively.

3.2 Error bounds for QR estimators

The statistical performance of neural network estimators in regression tasks critically depends on the
distribution of the observed data. Classical statistical theory typically assumes that observations are
i.i.d. In contrast, we consider a more general setting where the observations {(xt, yt)}nt=1 form a
stationary β-mixing sequence. To proceed, we introduce the following definitions.
Definition 3 (Stationarity). A sequence of random vectors {zt}∞t=−∞ is said to be stationary if,
for any given t ∈ Z and m, k ∈ N0, the distribution of the random matrix (zt, zt+1, . . . , zt+m) is
identical to that of (zt+k, zt+k+1, . . . , zt+m+k).
Definition 4 (β-mixing [Bradley, 1983]). Let {zt}∞t=−∞ be a sequence of random vectors. For any
i, j ∈ Z∪{−∞,+∞}, define σj

i = σ(zi, zi+1, . . . , zj) as the σ-algebra generated by zk, i ≤ k ≤ j.
For any a ∈ N, the β-mixing coefficient of the stochastic process {zt}∞t=−∞ is defined as

β(a) = sup
k⩾1

E
B∈σk

−∞

[
sup

A∈σ∞
k+a

|P(A|B)− P(A)|
]
.

We say that {zt}∞t=−∞ is algebraically β-mixing if there exist positive constants β0 and r > 1 such
that β(a) ≤ β0/a

r for all a. Similarly, it is said to be exponentially β-mixing if there exist positive
constants β0, β1 and r such that β(a) ≤ β0 exp(−β1a

r) for all a.

The concept of β-mixing has been extensively studied in the literature [Yu, 1994, Mohri and
Rostamizadeh, 2010, Phandoidaen and Richter, 2020, Jiao et al., 2024]. In particular, a number of

6

procedures have been developed to estimate the mixing rate r [McDonald et al., 2011, 2015]. We
emphasize that our data assumption includes the nonlinear AR model with time-varying conditional
variances, which was not considered in Jiao et al. [2024] due to their differing stationarity assumption
on the sequential observations.

The following theorem presents oracle-type inequalities for the QR estimator when the function class
is specified as RNNs and SRNNs.
Theorem 3. Assume Assumption 1 holds, that {(xt, yt)}nt=1 is a stationary β-mixing sequence,
and ∥f0∥∞ ≤ K for some K ≥ 1. For any positive integer ℓ such that n ≥ 4ℓN , we define
mmax = 2(n−N + 1)/(Nℓ) and mmin = (n−N + 1)/(2Nℓ).

(i) Let F = RNN dx,1(W,L,K) with W,L ≥ 3,

δa = inf
f∈F

∥∥f − f0
∥∥
2
, and δb = WL

√
log(max{W,L}) log(mmax)/mmin.

Then, there exists a constant c8 > 0, such that for any u ≥ 1, the ERM estimator f̂ in (2.1) satisfies
P
(
∥f̂ − f0∥2 ≥ c8

(
δa + δb +

√
u/mmax

))
≲ Nℓe−u+n⌊log2(2K/δb)⌋β((ℓ−1)N+1). (3.3)

(ii) Let F = SRNN dx,1(W,L,K, s) with W,L ≥ 3,

δa = inf
f∈F

∥∥f − f0
∥∥
2
, and δb =

√
sL log(WL2) log(mmax)/mmin.

Then, there exists a constant c9 > 0, such that for any u ≥ 1, the ERM estimator f̂ in (2.1) satisfies
P
(
∥f̂ − f0∥2 ≥ c9

(
δa + δb +

√
u/mmax

))
≲ Nℓe−u+n⌊log2(2K/δb)⌋β((ℓ−1)N+1). (3.4)

Remark 1. To the best of our knowledge, the established oracle inequalities for QR under dependence
represent a new contribution and are technically nontrivial. To place these contributions in context,
we begin with a concise overview of the analytical framework, highlighting the key methodological
innovations that arise at each stage of the analysis.

• Novel decomposition. First, we introduce a donut-shaped decomposition that has not appeared
in the context of nonparametric regression with neural networks. Specifically, we introduce donut-
shaped sets, which allow us to decompose the probability bound P(∥f̂ − f0∥2 > δ⋆) into manageable
components by bounding each term separately, where δ⋆ = c8

(
δa + δb +

√
u/mmax

)
for RNNs and

δ⋆ = c9
(
δa + δb +

√
u/mmax

)
for SRNNs. This decomposition differs from the direct argument

used in Eq. (16) of Jiao et al. [2024], whose analysis of the excess risk critically relies on the squared
loss. To handle the check loss function, we develop the novel decomposition described above.

• Refined blocking technique. Next, we introduce a refined blocking technique to relate the mixing
sequence to its i.i.d. counterparts, which differs from the approach in Jiao et al. [2024]. In Step 2 of
their proof of Theorem 13, part of the data within each partition is discarded to facilitate analysis
under the squared loss. In comparison, our new partitioning procedure, i.e., Figure 2, retains all
observations, thereby enabling a more comprehensive analysis under dependent data. Moreover,
while Lemma 16 in Jiao et al. [2024] plays a central role in their argument, it cannot be directly
applied to our setting. Instead, we employ a probabilistic counterpart, i.e., Lemma 5, to carry out our
analysis.

• Sharper inequality. Finally, we develop a novel and sharp empirical process inequality, i.e.,
Lemma 7, that underpins the tightness of our oracle inequality. One reason the result of Shen
et al. [2021] lacks tightness is that their analysis relies on a non-sharp application of the Bernstein
inequality. To address this limitation, we derive Lemma 7 by building on Theorem 7.3 of Bousquet
[2003] and Corollary 5.1 of Chernozhukov et al. [2014].

For both function classes, the non-asymptotic bound in Theorem 3 comprises three components:
the approximation error δa, the stochastic error δb, and a dependence-adjustment term that accounts
for the discrepancy between dependent and independent sequences. The integer ℓ serves as a key
parameter, commonly introduced in time series analysis [Nobel and Dembo, 1993, Yu, 1994], to
bridge the behavior of mixing sequences and their i.i.d counterparts. By appropriately tuning the
network parameters and selecting ℓ to balance the trade-offs among these components, the ensuing
theorems establish the convergence rates of the corresponding estimators when the target function f0
exhibits a hierarchical interaction structure.

7

Theorem 4. Let RNN dx,1(W,L,K) be the hypothesis class F and assume that the probability
measure Π on [0, 1]dx×N is absolutely continuous with respect to the Lebesgue measure.

(i) Suppose Assumption 1 and Assumption 2 hold and {(xt, yt)}nt=1 is a stationary exponentially
β-mixing sequence. Let W0, L0 ≥ 3 satisfy W0L0 ≍

(
n/(log n)(6+1/r)

)1/(4γ⋆+2)
, and define W

and L according to (3.1). Then, there exists a constant c10 > 0 such that the ERM estimator f̂ in
(2.1) satisfies

P

[
∥f̂ − f0∥2 ≥ c10

((
(log n)(6+1/r)

n

)γ⋆/(2γ⋆+1)

+

√
u(log n)1/r

n

)]
≲

(log n)1/r

eu
+

log n

n
.

An immediate consequence is that ∥f̂ − f0∥2 = Op

(
n−γ⋆/(2γ⋆+1)(log n)(6+1/r)γ⋆/(2γ⋆+1)

)
.

(ii) Suppose Assumption 1 and Assumption 2 hold and {(xt, yt)}nt=1 is a stationary algebraically
β-mixing sequence. Let W0, L0 ≥ 3 satisfy W0L0 ≍

(
n(1−1/r)/(log n)7

)1/(4γ⋆+2)
, and define W

and L according to (3.1). Then, there exists a constant c11 > 0 such that the ERM estimator f̂ in
(2.1) satisfies

P

[
∥f̂ − f0∥2 ≥ c11

((
(log n)7

n1−1/r

)γ⋆/(2γ⋆+1)

+

√
u log n

n1−1/r

)]
≲

n1/r log n

eu
+ (log n)(1−r).

An immediate consequence is that ∥f̂ − f0∥2 = Op

(
n−(1−1/r)γ⋆/(2γ⋆+1)(log n)(7γ

⋆/(2γ⋆+1))
)
.

Theorem 4 shows that the RNN-based QR estimator f̂ , with a suitably chosen network architecture,
achieves the minimax-optimal convergence rate n−2γ⋆/(2γ⋆+1) under the squared L2 norm in a
stationary exponentially β-mixing setting, up to a logarithmic factor. Under stationary algebraically
β-mixing conditions, the convergence rate under squared L2 norm slows to n−(1−1/r)2γ⋆/(2γ⋆+1).
Nevertheless, as r → ∞, the exponent −(1− 1/r)2γ⋆/(2γ⋆ + 1) approaches −2γ⋆/(2γ⋆ + 1) for
fixed γ⋆, indicating that the convergence rate becomes arbitrarily close to the optimal rate. Our
results differ from prior QR studies in two key aspects. First, unlike the FNNs used in previous
works [Shen et al., 2021, 2024], we employ RNNs as the approximating function class. Second,
rather than assuming independent covariates as in Sangnier et al. [2016] and Padilla et al. [2022], we
consider a more general dependence structure, where the sequence {(xt, yt)}nt=1 is stationary and
β-mixing. Furthermore, compared to the convergence rate of RNNs in nonparametric regression [Jiao
et al., 2024], our results capture intrinsic low-dimensional structures of the target function, thereby
achieving optimal performance while circumventing the curse of dimensionality.

The following theorem establishes the convergence rate of the SRNN-based estimator.
Theorem 5. Let SRNN dx,1(W,L,K, s) be the hypothesis class F and assume that the probability
measure Π on [0, 1]dx×N is absolutely continuous with respect to the Lebesgue measure.

(i) Suppose Assumption 1 and Assumption 2 hold and {(xt, yt)}nt=1 forms a stationary exponentially
β-mixing sequence. Let W0 ≥ sup(β,t)∈P max{(β + 1)t, (K + 1)et} and L0 ≥ 3 satisfy W0 ≍
(n/(log n)(4+1/r))1/(2γ

⋆+1) and L0 ≍ log n. Define W , L, and s according to (3.2). Then, there
exists a constant c12 > 0 such that the ERM estimator f̂ in (2.1) satisfies

P

[
∥f̂ − f0∥2 ≥ c12

((
(log n)(4+1/r)

n

)γ⋆/(2γ⋆+1)

+

√
u(log n)1/r

n

)]
≲

(log n)1/r

eu
+

log n

n
.

An immediate consequence is that ∥f̂ − f0∥2 = Op

(
n−γ⋆/(2γ⋆+1)(log n)((4+1/r)γ⋆/(2γ⋆+1))

)
.

(ii) Suppose Assumption 1 and Assumption 2 hold and {(xt, yt)}nt=1 forms a stationary algebraically
β-mixing sequence. Let W0 ≥ sup(β,t)∈P max{(β + 1)t, (K + 1)et} and L0 ≥ 3 satisfy W0 ≍(
n(1−1/r)/(log n)5

)1/(2γ⋆+1)
and L0 ≍ log n. Define W , L, and s according to (3.2). Then, there

exists a constant c13 > 0 such that the ERM estimator f̂ in (2.1) satisfies

P

[
∥f̂ − f0∥2 ≥ c13

((
(log n)5

n1−1/r

)γ⋆/(2γ⋆+1)

+

√
u log n

n1−1/r

)]
≲

n1/r log n

eu
+ (log n)(1−r).

An immediate consequence is that ∥f̂ − f0∥2 = Op

(
n−(1−1/r)γ⋆/(2γ⋆+1)(log n)(5γ

⋆/(2γ⋆+1))
)
.

8

Similar to Theorem 4, under stationary exponentially β-mixing conditions, f̂ attains the minimax-
optimal convergence rate, up to a logarithmic factor. Under algebraic β-mixing, the convergence
rate is slower but approaches the optimal rate as r → ∞ for fixed γ⋆. Compared to Theorem 4,
Theorem 5 imposes more restrictions on the choice of width W and length L of SRNNs, owing to
technical reasons. However, when fixing the length L to be the same for both theorems, Theorem 5
provides guarantees for wider SRNNs. This aligns with the practical setting better because sparsity is
commonly considered for deep and wide neural networks.

4 Numerical Study

In this section, we conduct numerical experiments to evaluate the finite-sample performance of RNN-
and SRNN-based QR estimators in comparison to quantile random forest (QRF) and FNN-based
estimators. All experiments are implemented in Python. The QRF estimator is trained using the
scikit-garden package, and the number of trees is set as 100. For all NN-based estimators, we
employ early stopping to mitigate overfitting, as proposed by [Raskutti et al., 2014]. Specifically,
the dataset is split into training (80%) and validation (20%) sets. At the end of each epoch, the
model’s validation performance is evaluated using the mean check loss, and training is terminated
if the validation loss does not improve for 20 consecutive epochs. For the FNN-based estimator,
we adopt L = 2 hidden layers with widths W1 = W2 = 200, following the architecture in Padilla
et al. [2022]. For the RNN- and SRNN-based estimators, we use L = 3 layers with hidden width
W = 100 and ReLU activation. To induce sparsity, we prune the smallest 40% of parameters and
finetune the remaining weights post-training. The hyperparameters above are fixed throughout the
main experiments, and we further investigate the impact of varying these parameters in Appendix D.
All neural networks are implemented in PyTorch.

We conduct experiments on the following two nonlinear AR models at quantile levels τ = 0.1 and
τ = 0.5 to validate the theoretical results established in our analysis.

• Model 1(SIM1-1):

Yt = (Φ(−Zt)− 0.5)Yt−1 + (Φ(2Zt)− 0.6)Yt−2 + ϵt, (4.1)

Zt =

5∑
i=1

(−1)i−1(Yt−2i + Yt−2i+1),

where Φ(·) is the standard normal distribution function.

• Model 2:
Yt = 0.2h1(Yt−1, . . . , Yt−10) + h2(Yt−1, . . . , Yt−10)ϵt, (4.2)

where

h1(Yt−1, . . . , Yt−10) = cos(2πYt−1) +
1

1 + e−(Yt−2+Yt−3)
+

1

(1 + Yt−4 + Yt−5)4 + 1

+
Yt−6

|Yt−6|+ eYt−7Yt−8
+ cos(πYt−9) cos(πYt−10),

h2(Yt−1, . . . , Yt−10) = sin

(
π(Yt−1 + Yt−2)

2

)
+

ln
(
1 + Y 2

t−3Y
2
t−4Y

2
t−5

)
1 + Y 2

t−3Y
2
t−4Y

2
t−5

+
1

1 + e−(Yt−6+Yt−7+Yt−8)
+ sin(πYt−9) sin(πYt−10).

In the experiments, we examine both light-tailed and heavy-tailed noise distributions: the standard
normal distribution N (0, 1) and a scaled Student’s t-distribution with 2.25 degrees of freedom t2.25,
respectively. Theorem 1 in Chen and Chen [2000] ensures that the data generated from (4.1) and
(4.2) are strictly stationary and exponentially β-mixing. For each model, we generate 110,000 data
points, discard the first 100 as a burn-in period, and split the remaining data by assigning the last
100,000 points to the test set and the rest to the training set. For each trained estimator, we compute
the mean squared error (MSE) on the test set. We perform 500 Monte Carlo repetitions for each
experiment. As shown in Figure 1, the RNN- and SRNN-based estimators exhibit significantly lower
variance and superior overall performance compared to the QRF- and FNN-based estimators.

9

QRF FNN RNN SRNN
0.0

0.2

0.4

0.6 Model 1

(a) ϵ ∼ N (0, 1), τ = 0.1

QRF FNN RNN SRNN
0.0

0.1

0.2
Model 1

(b) ϵ ∼ N (0, 1), τ = 0.5

QRF FNN RNN SRNN

1

2

Model 1

(c) ϵ ∼ t2.25, τ = 0.1

QRF FNN RNN SRNN

0.5

1.0

1.5

2.0 Model 1

(d) ϵ ∼ t2.25, τ = 0.5

QRF FNN RNN SRNN
1.4

1.6

1.8

2.0

2.2 Model 2

(e) ϵ ∼ N (0, 1), τ = 0.1

QRF FNN RNN SRNN

0.05

0.10

0.15 Model 2

(f) ϵ ∼ N (0, 1), τ = 0.5

QRF FNN RNN SRNN

4

6

Model 2

(g) ϵ ∼ t2.25, τ = 0.1

QRF FNN RNN SRNN

0.05

0.10

0.15
Model 2

(h) ϵ ∼ t2.25, τ = 0.5

Figure 1: MSE comparison for Model 1 and Model 2 with different noise distributions and quantile levels.

5 Application

In this section, we conduct experiments on the DJIA dataset3 to empirically validate our approach
under the stationarity assumption. To further assess robustness in nonstationary settings, we provide
a complementary case study on GDP forecasting in Appendix C. Since log-returns of stock prices
are widely regarded as approximately stationary, the DJIA dataset is well-suited for evaluation in
the stationary environment. We partition the data chronologically, allocating the first 19 years for
training and the final year for evaluation. We assess the out-of-sample predictive performance of
RNN-, SRNN-, FNN-, and QRF-based estimators in a 30-business-day-ahead forecasting task, with
implementations following the specifications in Section 4. All models are trained by minimizing the
empirical check loss and evaluated on the test set using the same criterion.

Table 1 presents the mean empirical check loss at five quantile levels. The results show that the
RNN and SRNN estimators consistently outperform FNN and QRF methods at all quantile levels.
Moreover, the SRNNs achieve predictive accuracy comparable to RNNs while inducing sparsity.
These empirical findings are consistent with, and provide validation for, our theoretical results.

Model τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

QRF 0.456 0.698 0.817 0.616 0.365
FNN 0.538 0.735 0.810 0.662 0.404
RNN 0.410 0.640 0.760 0.562 0.306
SRNN 0.406 0.647 0.759 0.561 0.305

Table 1: Out-of-sample prediction errors at different quantiles for DJIA growth analysis.

6 Conclusion

This study investigates the convergence properties of nonparametric quantile regression using RNNs
and SRNNs. Error bounds are derived for the approximation of functions within a hierarchical interac-
tion model using RNNs and SRNNs, respectively. Based on these error bounds, we demonstrate that,
for a stationary, exponentially β-mixing sequence of n observations, the empirical risk minimizers of
both RNN- and SRNN-based methods achieve the optimal convergence rate.

Future research could explore the approximation capabilities of RNNs and SRNNs for nonparametric
quantile process regression. Instead of focusing on a fixed quantile level τ , a useful extension
would involve approximating the entire quantile process indexed by τ ∈ [τL, τU] ⊆ (0, 1), which
complements the results of Shen et al. [2024] using FNNs.

3We use DJIA data from Jan 1, 2000, to Dec 31, 2020, obtained from https://www.investing.com.

10

https://www.investing.com

Acknowledgment

Zhao Ren was supported in part by the National Science Foundation (DMS-2113568) and the National
Institutes of Health (NIGMS R01GM157600). Wen-Xin Zhou was supported in part by the National
Science Foundation (DMS-2401268) and the Australian Research Council Discovery Project Grant
(DP230100147).

References
T. Adrian, N. Boyarchenko, and D. Giannone. Vulnerable growth. American Economic Review, 109

(4):1263–1289, 2019.

M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 2009.

P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension and pseudodimen-
sion bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20(63):
1–17, 2019.

B. Bauer and M. Kohler. On deep learning as a remedy for the curse of dimensionality in nonpara-
metric regression. The Annals of Statistics, 47(4):2261–2285, 2019.

A. Belloni and V. Chernozhukov. ℓ1-penalized quantile regression in high-dimensional sparse models.
The Annals of Statistics, 39(1):82–130, 2011.

A. Belloni, V. Chernozhukov, D. Chetverikov, and I. Fernández-Val. Conditional quantile processes
based on series or many regressors. Journal of Econometrics, 213(1):4–29, 2019.

O. Bousquet. Concentration inequalities for sub-additive functions using the entropy method. In
Stochastic Inequalities and Applications, pages 213–247, 2003.

R. C. Bradley. Absolute regularity and functions of Markov chains. Stochastic Processes and Their
Applications, 14(1):67–77, 1983.

M. Chen and G. Chen. Geometric ergodicity of nonlinear autoregressive models with changing
conditional variances. Canadian Journal of Statistics, 28(3):605–614, 2000.

M. Chen, X. Li, and T. Zhao. On generalization bounds of a family of recurrent neural networks.
In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 1233–1243, 2020.

X. Cheng, K. Huang, and S. Ma. Generalization and risk bounds for recurrent neural networks.
Neurocomputing, 616:128825, 2025.

V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximation of suprema of empirical
processes. The Annals of Statistics, 42(4):1564–1597, 2014.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint, arXiv:1412.3555, 2014.

J. Fan, Y. Gu, and W.-X. Zhou. How do noise tails impact on deep ReLU networks? The Annals of
Statistics, 52(4):1845–1871, 2024.

X. Feng, X. He, Y. Jiao, L. Kang, and C. Wang. Deep nonparametric quantile regression under
covariate shift. Journal of Machine Learning Research, 25(385):1–50, 2024.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Y. Jiao, G. Shen, Y. Lin, and J. Huang. Deep nonparametric regression on approximate manifolds:
Nonasymptotic error bounds with polynomial prefactors. The Annals of Statistics, 51(2):691–716,
2023.

11

Y. Jiao, Y. Wang, and B. Yan. Approximation bounds for recurrent neural networks with application
to regression. arXiv preprint, arXiv:2409.05577, 2024.

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46(1):33–50, 1978.

R. Koenker and Z. Xiao. Quantile autoregression. Journal of the American Statistical Association,
101(475):980–990, 2006.

M. Kohler and S. Langer. On the rate of convergence of fully connected deep neural network
regression estimates. The Annals of Statistics, 49(4):2231–2249, 2021.

D. J. McDonald, C. R. Shalizi, and M. Schervish. Estimating beta-mixing coefficients. In Proceedings
of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), pages
516–524, 2011.

D. J. McDonald, C. R. Shalizi, and M. Schervish. Estimating beta-mixing coefficients via histograms.
Electronic Journal of Statistics, 9(2):2855 – 2883, 2015.

D. J. McDonald, C. R. Shalizi, and M. Schervish. Nonparametric risk bounds for time-series
forecasting. Journal of Machine Learning Research, 18(32):1–40, 2017.

N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research, 7(6):983–999,
2006.

M. Mohri and A. Rostamizadeh. Stability bounds for stationary φ-mixing and β-mixing processes.
Journal of Machine Learning Research, 11(2):789–814, 2010.

V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML), pages 807–814,
2010.

A. Nobel and A. Dembo. A note on uniform laws of averages for dependent processes. Statistics &
Probability Letters, 17(3):169–172, 1993.

O. H. M. Padilla, W. Tansey, and Y. Chen. Quantile regression with ReLU networks: Estimators and
minimax rates. Journal of Machine Learning Research, 23(247):1–42, 2022.

N. Phandoidaen and S. Richter. Forecasting time series with encoder-decoder neural networks. arXiv
preprint, arXiv:2009.08848, 2020.

G. Raskutti, M. J. Wainwright, and B. Yu. Early stopping and non-parametric regression: An optimal
data-dependent stopping rule. Journal of Machine Learning Research, 15(1):335–366, 2014.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

M. Sangnier, O. Fercoq, and F. d’Alché Buc. Joint quantile regression in vector-valued RKHSs. In
Advances in Neural Information Processing Systems 29 (NIPS), pages 3693–3701, 2016.

J. Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU activation
function. The Annals of Statistics, 48(4):1875–1897, 2020.

G. Shen, Y. Jiao, Y. Lin, J. L. Horowitz, and J. Huang. Deep quantile regression: Mitigating the curse
of dimensionality through composition. arXiv preprint, arXiv:2107.04907, 2021.

G. Shen, Y. Jiao, Y. Lin, J. L. Horowitz, and J. Huang. Nonparametric estimation of non-crossing
quantile regression process with deep ReQU neural networks. Journal of Machine Learning
Research, 25(88):1–75, 2024.

G. Shen, R. Dai, G. Wu, S. Luo, C. Shi, and H. Zhu. Deep distributional learning with non-crossing
quantile network. arXiv preprint, arXiv:2504.08215, 2025.

C. H. Song, G. Hwang, J. H. Lee, and M. Kang. Minimal width for universal property of deep RNN.
Journal of Machine Learning Research, 24(121):1–41, 2023.

12

C. J. Stone. Optimal global rates of convergence for nonparametric regression. The Annals of
Statistics, 10(4):1040–1053, 1982.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems 27 (NIPS), pages 3104–3112, 2014.

Z. Tu, F. He, and D. Tao. Understanding generalization in recurrent neural networks. In Proceedings
of the 8th International Conference on Learning Representations (ICLR), 2020.

M. Vidyasagar. Learning and generalisation: with applications to neural networks. Springer Science
& Business Media, 2013.

H. White. Nonparametric estimation of conditional quantiles using neural networks. In Computing
Science and Statistics, pages 190–199, 1992.

D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:
103–114, 2017.

B. Yu. Rates of convergence for empirical processes of stationary mixing sequences. The Annals of
Probability, 22(1):94–116, 1994.

S. Zheng. Qboost: Predicting quantiles with boosting for regression and binary classification. Expert
Systems with Applications, 39(2):1687–1697, 2012.

13

Appendix

The appendix is organized as follows: Appendix A provides the proofs of the main theorems presented
in Section 3. Appendix B contains the proofs of all auxiliary lemmas referenced in Appendix A.
Appendix C presents an additional case study on GDP forecasting that further supports our theoretical
findings. Appendix D provides a sensitivity analysis of the hyperparameters for the SRNNs.

A Proofs of Theorems

We first provide the definition of FNNs for our analysis. An FNN fθ : Rdx → Rdy can be represented
as

fθ(x) := fL ◦ · · · ◦ f1(x), x ∈ Rdx ,

where each feedforward layer fl(x) is defined as

fl(x) =

{
σ(Alx+ bl), l ∈ [L− 1],

Alx+ bl, l = L.

For each layer l, the weight matrix is Al ∈ RWl×Wl−1 and the bias vector is bl ∈ RWl . The initial di-
mension W0 = dx and the final dimension WL = dy correspond to the input and output sizes, respec-
tively. The complete parameter vector θ is defined as θ = (vec(A1)

⊤,b⊤
1 , . . . , vec(AL)

⊤,b⊤
L)

⊤ ∈
R

∑L
l=1 Wl(Wl−1+1). The width W of the network is defined as max{W1, . . . ,WL−1}. We denote

FNN dx,dy(W,L,K) as a class of FNNs with width W , depth L and bounded output, defined as

FNN dx,dy(W,L,K) =

{
fθ : Rdx → Rdy

∣∣∣ sup
x∈Rdx

∥fθ(x)∥∞ ≤ K

}
.

Similar to SRNNs, we define T (fl) = ∥Al∥0 + ∥bl∥0, for l ∈ [L] and define T (fθ) =
∑L

l=1 T (fl)
as the sparsity of the SFNN fθ. Moreover, we define the class of SFNNs as follows

SFNN dx,dy(W,L,K, s) =
{
fθ | fθ ∈ FNN dx,dy(W,L,K) with T (fθ) ≤ s

}
.

To maintain consistent input formatting, if the input to an FNN or SFNN is a sequence X ∈ Rdx×N ,
we first stack its columns into a vector and then use this vector as the input to the neural network,
that is, fθ(X) = fθ(((x

(1))⊤, . . . , (x(N))⊤)⊤). For notational simplicity, the distinction between
representing the input as a sequence X or as its vectorized form is not explicitly made where the
context is unambiguous.

For simplicity, we assume K ≥ 1 throughout and omit it when boundedness is understood or not
required in the notation of the function classes FNN , SFNN , RNN and SRNN .

A.1 Proof of Theorem 1

We first introduce two lemmas: the first establishes an error bound for using FNNs to approximate
functions within a hierarchical interaction model, and the second demonstrates that an FNN can be
represented by an RNN prediction function.
Lemma 1 (Proposition 3.4 in Fan et al. [2024]). Given a hierarchical interaction model Hl

d(P,K),
for any W0, L0 ≥ 3, and a probability measure µ on [0, 1]dx×N that is absolutely continuous with
respect to the Lebesgue measure, the following inequality holds

sup
f0∈Hl

d(P,K)

inf
f̄∈FNNd,1(W,L,K)

{∫
[0,1]dx×N

|f̄(x)− f0(x)|2µ(dx)

}1/2

≤ c14(W0L0)
−2γ⋆

,

where W = c15⌈W0 logW0⌉ and L = c16⌈L0 logL0⌉ . Here, the positive constants c14–c16 depend
on (l,P,K).
Lemma 2 (Proposition 2 in Jiao et al. [2024]). For any FNN f̄ ∈ FNN dx×N,dy(W,L), there exists
an RNN prediction function f ∈ RNN dx,dy ((dx + 1)W + 1, 2L+ 2N) such that

f̄(X) = f(X), X ∈ [0, 1]dx×N .

14

Proof of Theorem 1. Applying Lemma 1 to Hl
dx×N (P,K), there exist positive constants c14–c16

such that

inf
f̄∈FNNdx×N,1(W ′,L′,K)

{∫
[0,1]dx×N

|f̄(x)− f0(x)|2µ(dx)

}1/2

≤ c14(W0L0)
−2γ⋆

,

where W ′ = c15⌈W0 logW0⌉, L′ = c16⌈L0 logL0⌉.

By Lemma 2, we have that for any f̄ ∈ FNN dx×N,1(W
′, L′,K) there exists an RNN prediction

function f ∈ RNN dx,1((dx +1)W ′ +1, 2L′ +2N,K) such that f(X) = f̄(X), X ∈ [0, 1]dx×N .

Combining the two results above, we complete the proof of the theorem.

□

A.2 Proof of Theorem 2

Following a similar line of reasoning as in the proof of Theorem 1, we introduce two key lemmas
that extend Lemma 1 and Lemma 2 to the sparse setting. The first lemma establishes an error bound
for approximating functions under a hierarchical interaction model using SFNNs. The second lemma
shows that an SFNN can be equivalently represented by an SRNN prediction function. Proofs of
these lemmas are deferred to Appendix B.1 and Appendix B.2, respectively.
Lemma 3. Given a hierarchical interaction model Hl

d(P,K), for any W0 ≥ sup(β,t)∈P max{(β +

1)t, (K + 1)et}, L0 ≥ 1, and a probability measure µ on [0, 1]dx×N that is absolutely continuous
with respect to the Lebesgue measure, there exist W , L, s > 0 such that the following inequality
holds

sup
f0∈Hl

d(P,K)

inf
f̄∈SFNNd,1(W,L,K,s)

{∫
[0,1]dx×N

|f̄(x)− f0(x)|2µ(dx)

}1/2

≤ c17

(
W02

−L0 +W−γ⋆

0

)
,

where W = c18W0, L = c19L0 and s = c20L0W0. Here c17–c20 are positive constants depending
on (l,P,K).
Lemma 4. For any SFNN f̄ ∈ SFNN dx×N,1(W,L, s), there exists an SRNN prediction function
f ∈ SRNN dx,1 ((dx +1)W +1, 2L+2N, s+3(dx +1)WN +6(L+N)(dx +1)W) such that

f̄(X) = f(X), X ∈ [0, 1]dx×N .

Proof of Theorem 2. Applying Lemma 3 to Hl
dx×N (P,K), there exist positive constants c17–c20

such that

inf
f̄∈SFNNdx×N,1(W ′,L′,K,s′)

{∫
[0,1]dx×N

|f̄(x)− f0(x)|2µ(dx)

}1/2

≤ c17

(
W02

−L0 +W−γ⋆

0

)
,

where W ′ = c18W0, L′ = c19L0 and s′ = c20L0W0.

Furthermore, Lemma 4 establishes that for any SFNN f̄ ∈ SFNN dx×N,1(W
′, L′,K, s′), there

exists an SRNN prediction function f ∈ SRNN dx,1((dx + 1)W ′ + 1, 2L′ + 2N,K, s′ + 3(dx +
1)W ′N + 6(L′ +N)(dx + 1)W ′) such that f(X) = f̄(X), X ∈ [0, 1]dx×N .

Combining the two results above, we complete the proof of the theorem.

□

A.3 Proof of Theorem 3

As a preparatory step for the proof of Theorem 3, we present the following three lemmas:
Lemma 5 (Lemma 2 in Nobel and Dembo [1993]). Let h be a real-valued Borel measurable function,
and let {zt}∞t=−∞ be a stationary β-mixing sequence of random vectors. We define a block of length

15

L as a sequence of L consecutive vectors from {zt}∞t=−∞. Consider a sequence C consisting of
m such blocks, where the gap between any two consecutive blocks is a + 1. That is, for any two
consecutive blocks in C, the index of the first vector in the second block exceeds the index of the last
vector in the first block by exactly a+ 1. Then for any constant t, the following bound holds∣∣P(h(C) ≥ t)− P(h(C̃) ≥ t)

∣∣ ≤ mβ(a+ 1).

Here C̃ comprises m independent blocks, each drawn from the same distribution as in C.

The lemma above enables us to extend concentration results for i.i.d. data to the setting of β-mixing
data. Similar results can be found in Yu [1994], Vidyasagar [2013], and McDonald et al. [2017].
Lemma 6. Under Assumption 1, for any function f : [0, 1]d×N → [−K,K], the population check
loss function satisfies

c21∥f − f0∥22 ≤ Rτ (f)−Rτ (f0) ≤ c22∥f − f0∥22,

where c21 = min
{
p/(8K), p2/(32Kl0)

}
and c22 = p̄/2.

In the analysis of Theorem 3, we consider a generic function class F . The main difference between
(i) and (ii) lies in the properties of δb, which are determined by whether F = RNN dx,1(W,L,K)
or SRNN dx,1(W,L,K, s). We present a key concentration result for each of these function classes
with their corresponding δb. For any F , we define F(δ) = {f ∈ F | ∥f−f0∥2 ≤ δ}. For convenience,
we denote zt = ((xt−N+1, yt−N+1), . . . , (xt, yt)) and S′ = {zt}nt=N . Additionally, for any f , we
introduce the following notation:

g(f, Z) = ρτ (YN − f(X1, . . . , XN))− ρτ (YN − f0(X1, . . . , XN)). (A.1)

With the above definition, we have the following lemma.
Lemma 7. Let z1, . . . , zn be i.i.d. random vectors drawn from the distribution of Z, and let g
be defined as in (A.1). We choose δb = WL

√
log(max{W,L}) log n/n for RNNs, and δb =

WL
√
log(WL2) log n/n for SRNNs. Then there exists a universal constant c23 > 0 such that

for any δ ≥ δb and 0 ≤ x ≤ nδ2, the following inequality holds uniformly over both F =
RNN dx,1(W,L,K) and F = SRNN dx,1(W,L,K, s)

P

[
sup

f∈F(δ)

∣∣∣∣∣ 1n
n∑

i=1

g(f, zi)− EZ [g(f, Z)]

∣∣∣∣∣ ≥ c23δ

(
δb +

√
x

n

)]
≤ e−x.

Proof of Theorem 3. First, let m = n − N + 1 and, for a given u ≥ 1, define δ⋆ = C(δa + δb +√
2Nℓu/m), where C is given by

C = max
{√

8c22/c21, 32c23/c21

}
≥ 1. (A.2)

Here, the constants c21 and c22 are specified in Lemma 6 and c23 is specified in Lemma 7. We
emphasize that in Theorem 3, both c8 and c9 can be set to 4C. Next, for an integer i ∈ N, we define
the donut-shaped sets as

Di := F(2iδ⋆) \ F(2i−1δ⋆) =
{
f ∈ F : 2i−1δ⋆ < ∥f − f0∥2 ≤ 2iδ⋆

}
.

With the definition of Di, we can write

P
(
∥f̂ − f0∥2 > δ⋆

)
≤

⌊log2(2K/δ⋆)⌋∑
i=1

P
(
f̂ ∈ Di

)
. (A.3)

Therefore, it reduces to bounding each probability P
(
f̂ ∈ Di

)
separately. Following Lemma 6, for

any f ∈ Di, we have

c212
2i−2δ2⋆ ≤ c21∥f − f0∥22 ≤ Rτ (f)−Rτ (f0). (A.4)

We next derive an upper bound of the right-hand side of (A.4). By the definition of δa, there exists
fm ∈ F such that ∥fm − f0∥2 ≤ 2δa. Now, if f̂ ∈ Di, we have

Rτ (f̂)−Rτ (f0)

16

=Rτ (f̂)−Rn(f̂) +
(
Rn(f̂)−Rn(fm)

)
+Rn(fm)−Rτ (fm) +Rτ (fm)−Rτ (f0)

≤Rτ (f̂)−Rn(f̂) +Rn(fm)−Rτ (fm) +Rτ (fm)−Rτ (f0),

where the last inequality follows from the definition of f̂ . By Lemma 6, it follows that Rτ (fm)−
Rτ (f0) ≤ 4c22δ

2
a. For any set S, we denote

∆S(f) =
∑
z∈S

g(f, z)− |S|EZ [g(f, Z)].

Then the earlier inequality can be further bounded as

Rτ (f̂)−Rτ (f0) ≤
1

m

(
∆S′(fm)−∆S′(f̂)

)
+ 4c22δ

2
a. (A.5)

Combining (A.4) and (A.5), we obtain an upper bound of the probability P
(
f̂ ∈ Di

)
as

P
(
f̂ ∈ Di

)
≤ P

(
∃f ∈ Di such that

1

m

(
∆S′(fm)−∆S′(f)

)
≥ c21

4
22iδ2⋆ − 4c22δ

2
a

)
. (A.6)

S ′ = {zt}nt=N , where zt = ((xt−N+1, yt−N+1), . . . , (xt, yt)).

Bj = {bj,i}
mj

i=1, where bj,i = ziN+j , j ∈ {0} ∪ [N − 1].

Ba
j =

{
bj,a+kℓ

}ma
j−1

k=0
, a ∈ [ℓ], j ∈ {0} ∪ [N − 1].

Partition

Partition

Figure 2: Illustration of the Partitioning Procedure. Here, mj =
∣∣Bj

∣∣ and ma
j =

∣∣Ba
j

∣∣. We first
split S′ into N sequences. Each sequence Bj is then partitioned into ℓ equidistant sub-sequences Ba

j .

We next relate the dependent observations to independent observations. We partition S′ into Nℓ
sequences step by step. We first partition it into N equidistant sequences {Bj}N−1

j=0 . For j ∈
{0} ∪ [N − 1], we define Bj := {bj,i}

mj

i=1, where bj,i = ziN+j , j ∈ {0} ∪ [N − 1] and mj = |Bj |.
Let r1 = m mod N denote the remainder. Then, for j < r1, mj = ⌈m/N⌉, and for j ≥ r1,
mj = ⌈m/N⌉ − 1. We continue partitioning each Bj into ℓ equidistant sub-sequences {Ba

j }ℓa=1.

For a ∈ [ℓ], we define Ba
j := {bj,a+kℓ}

ma
j−1

k=0 , where ma
j = |Ba

j |. Let r2 = mj mod ℓ denote the
remainder. Then, for a ≤ r2, we have ma

j = ⌈mj/ℓ⌉, and for a > r2, we have ma
j = ⌈mj/ℓ⌉ − 1.

The detail is shown in Figure 2. With the partition, we have

∆S′(f) =

N−1∑
j=0

ℓ∑
a=1

(∑
b∈Ba

j

g(f,b)−ma
jEZ [g(f, Z)]

)
=

N−1∑
j=0

ℓ∑
a=1

∆Ba
j
(f).

Plugging it into (A.6) and noting that fm ∈ F(2iδ⋆) for all i ≥ 1 (since 2δa ≤ 2iδ⋆ for all i ≥ 1),
we obtain

P
(
f̂ ∈ Di

)
≤P

∃f ∈ Di such that
1

m

N−1∑
j=0

ℓ∑
a=1

(
∆Ba

j
(fm)−∆Ba

j
(f)
)
≥ c21

4
22iδ2⋆ − 4c22δ

2
a


17

≤P
(
∃f ∈ Di such that max

j,a

{
∆Ba

j
(fm)−∆Ba

j
(f)
}
≥ m

Nℓ

(c21
4

22iδ2⋆ − 4c22δ
2
a

))
≤P
(
max
j,a

sup
f∈F(2iδ⋆)

|∆Ba
j
(f)| ≥ m

Nℓ

(c21
8

22iδ2⋆ − 2c22δ
2
a

))
≤P
(
max
j,a

sup
f∈F(2iδ⋆)

|∆Ba
j
(f)| ≥ m

Nℓ

c21
16

22iδ2⋆

)

≤
N−1∑
j=0

ℓ∑
a=1

P
(

sup
f∈F(2iδ⋆)

|∆Ba
j
(f)| ≥ m

Nℓ

c21
16

22iδ2⋆

)
, (A.7)

where the fourth inequality follows from the choice of C in (A.2) and the last inequality follows from
the union bound.

For each Ba
j , we leverage the property of β-mixing to relate it to B̃a

j . The key here is that the
blocks comprising B̃a

j are mutually independent, with each block b̃ containing exactly N elements.
Furthermore, the elements within each block b̃ ∈ B̃a

j are identically distributed to those in the
corresponding block b ∈ Ba

j .

For any j ∈ {0} ∪ [N − 1] and a ∈ [ℓ], we denote ci =
m
Nℓ

c21
16 2

2iδ2⋆ . By Lemma 5, we have∣∣∣∣∣P
(

sup
f∈F(2iδ⋆)

|∆Ba
j
(f)| ≥ ci

)
− P

(
sup

f∈F(2iδ⋆)

|∆B̃a
j
(f)| ≥ ci

)∣∣∣∣∣ ≤ ma
jβ((ℓ− 1)N + 1). (A.8)

For any j ∈ {0} ∪ [N − 1] and a ∈ [ℓ], we next bound the probability

P

(
sup

f∈F(2iδ⋆)

|∆B̃a
j
(f)| ≥ m

Nℓ

c21
16

22iδ2⋆

)

≤P

(
sup

f∈F(2iδ⋆)

|∆B̃a
j
(f)| ≥ ma

j

c21
32

22iδ2⋆

)

≤P

(
sup

f∈F(2iδ⋆)

|∆B̃a
j
(f)| ≥ ma

j

c23
C

22iδ2⋆

)
,

where the first inequality follows that m/(Nℓ) ≥ ma
j /2 and the last inequality follows that c23/C ≤

c21/32.

To this end, we choose δ = 2iδ⋆ and x = 22iu. Since C ≥ 1, we have δ ≥ δb and 0 ≤ x ≤ ma
j δ

2.
Then, Lemma 7 yields

P

(
sup

f∈F(2iδ⋆)

|∆B̃a
j
(f)| ≥ ma

j

c23
C

22iδ2⋆

)

=P

 sup
f∈F(2iδ⋆)

∣∣∣∣∣∣∣
1

ma
j

∑
b∈B̃a

j

g(f,b)− EZ [g(f, Z)]

∣∣∣∣∣∣∣ ≥
c23
C

22iδ2⋆


≤P

 sup
f∈F(2iδ⋆)

∣∣∣∣∣∣∣
1

ma
j

∑
b∈B̃a

j

g(f,b)− EZ [g(f, Z)]

∣∣∣∣∣∣∣ ≥ c23δ

(
δb +

√
2Nℓx

m

)
≤P

 sup
f∈F(2iδ⋆)

∣∣∣∣∣∣∣
1

ma
j

∑
b∈B̃a

j

g(f,b)− EZ [g(f, Z)]

∣∣∣∣∣∣∣ ≥ c23δ

(
δb +

√
x

ma
j

)
≤ exp(−x) = exp(−22iu), (A.9)

where the second inequality follows that m/(Nℓ) ≤ 2ma
j .

18

Combining (A.9) with (A.3), (A.7) and (A.8) implies

P
(
∥f̂ − f0∥2 > δ⋆

)
≤Nℓ

⌊log2(2K/δ⋆)⌋∑
i=1

exp(−22iu) + 2m⌊log2(2K/δ⋆)⌋β((ℓ− 1)N + 1)

≤Nℓ

∞∑
i=1

exp(−iu) + 2n⌊log2(2K/δ⋆)⌋β((ℓ− 1)N + 1)

≲Nℓe−u + n⌊log2(2K/δb)⌋β((ℓ− 1)N + 1),

where the last inequality uses the fact that u ≥ 1. This proves the claim.

□

A.4 Proof of Theorem 4

According to Theorem 1, we obtain

δa = inf
f∈F

∥∥f − f0
∥∥
2
≲ (W0L0)

−2γ⋆

. (A.10)

Recall that

δb =WL

√
2Nℓ log(max{W,L}) log(2m/(Nℓ))

m

≲W0L0 logW0 logL0

√
2Nℓ log(max{W0 logW0, L0 logL0}) logm

m
. (A.11)

We now analyze how these bounds behave under different β-mixing conditions.

• Case 1: Exponentially β-mixing. Recall that for exponentially β-mixing, there exist positive
constants β0, β1, and r such that β(a) ≤ β0 exp(−β1a

r) for all a. By plugging (A.10) and
(A.11) into (3.3), and ℓ ≍ (log n)1/r such that β((ℓ − 1)N + 1) ≲ 1/n2, together with setting
W0L0 ≍ (n/(log n)(6+1/r))1/(4γ

⋆+2), we obtain that there exists a constant c10 > 0 such that

P

[
∥f̂ − f0∥2 ≥ c10

((
(log n)(6+1/r)

n

)γ⋆/(2γ⋆+1)

+

√
(log n)1/ru

n

)]
≲

(log n)1/r

eu
+

log n

n
.

• Case 2: Algebraically β-mixing. Recall that for algebraically β-mixing, there exist positive
constants β0 and r > 1 such that β(a) ≤ β0/a

r for all k. By plugging (A.10) and (A.11) into

(3.3), and choosing ℓ ≍ n1/r log n, together with setting W0L0 ≍
(
n(1−1/r)/(log n)7

)1/(4γ⋆+2)
,

we obtain that there exists a constant c11 > 0 such that

P

[
∥f̂ − f0∥2 ≥ c11

((
(log n)7

n1−1/r

)γ⋆/(2γ⋆+1)

+

√
u log n

n1−1/r

)]
≲

n1/r log n

eu
+ (log n)(1−r).

□

A.5 Proof of Theorem 5

According to Theorem 2, we obtain

δa = inf
f∈F

∥∥f − f0
∥∥
2
≲ W02

−L0 +W−γ⋆

0 . (A.12)

Recall that

δb =

√
2NsLℓ log(WL2) log(2m/(Nℓ))

m
≲

√
2NsL0ℓ log(W0L2

0) logm

m
. (A.13)

19

We now analyze how these bounds behave under different β-mixing conditions.

• Case 1: Exponentially β-mixing. By plugging (A.12) and (A.13) into (3.4), and choos-
ing ℓ ≍ (log n)1/r such that β((ℓ − 1)N + 1) ≲ 1/n2, together with setting W0 ≍
(n/(log n)(4+1/r))1/(2γ

⋆+1), L0 ≍ log n, and s ≍ W0L0, we obtain that there exists a constant
c12 > 0 such that

P

[
∥f̂ − f0∥2 ≥ c12

((
(log n)(4+1/r)

n

)γ⋆/(2γ⋆+1)

+

√
(log n)1/ru

n

)]
≲

(log n)1/r

eu
+

log n

n
.

• Case 2: Algebraically β-mixing. By plugging (A.12) and (A.13) into (3.4), and choosing ℓ ≍
n1/r log n, together with setting W0 ≍

(
n(1−1/r)/(log n)5

)1/(2γ⋆+1)
, L0 ≍ log n, and s ≍ W0L0,

we obtain that there exists a constant c13 > 0 such that

P

[
∥f̂ − f0∥2 ≥ c13

((
(log n)5

n1−1/r

)γ⋆/(2γ⋆+1)

+

√
u log n

n1−1/r

)]
≲

n1/r log n

eu
+ (log n)(1−r).

□

B Proofs of Lemmas

B.1 Proof of Lemma 3

This proof is adapted from Schmidt-Hieber [2020]. In preparation for the proof of Lemma 3, we first
present two auxiliary lemmas that will be useful in the analysis:

Lemma 8 (Theorem 5 in Schmidt-Hieber [2020]). For any function f0 ∈ Cβ
d

(
[0, 1]d,K

)
, W0 ≥

max{(β + 1)d, (K + 1)ed} and L0 ≥ 1, the following inequality holds

inf
f̄∈SFNNd,1(W,L,s)

∥f̄ − f0∥∞ ≤ c24W02
−L0 + c25W0

− β
d ,

where W = c26W0, L = c27L0 and s = c28L0W0. Here, the positive constants c24–c28 depend on
(β, d,K).
Lemma 9. Let f1 ∈ SFNN d1,d2(W1, L1, s1) and f2 ∈ SFNN d′

1,d
′
2
(W2, L2, s2). Their aggrega-

tion and composition satisfy the following properties

Aggregation rule: If L1 = L2 and d1 = d′1, then f = (f1, f2)
⊤ ∈ SFNN d1,d2+d′

2
(W1 +

W2, L1, s1 + s2).

Composition rule: If d2 = d′1, then f = f2 ◦ σ(f1) ∈ SFNN d1,d′
2
(max{W1,W2}, L1 + L2 +

1, s1 + s2).

We omit the proof for Lemma 9 since it is straightforward to obtain the result. We refer readers to
Section 7 in Schmidt-Hieber [2020] for more details.

Proof of Lemma 3. In this lemma, we consider a fixed input domain within [0, 1]d. By the definition of
hierarchical interaction model, for any f0 ∈ Hl

d(P,K), there exists a sequence of functions {gi}li=1
such that

f0 = gl ◦ · · · ◦ g1,
where g1 : [0, 1]t1 → [−K,K]t2 and gi : [−K,K]ti → [−K,K]ti+1 for i = 2, . . . , l. While
this formulation appears slightly different from our original definition of the hierarchical inter-
action model, they are indeed equivalent. Specifically, for each level i = 2, . . . , l, we have
gi = (hi,1, . . . , hi,ti+1

)⊤, where each component function hi,j ∈ Cβi

ti ([−K,K]ti ,K) for j ∈ [ti+1].
Similarly, g1 = (h1,1, . . . , h1,t2)

⊤ with h1,j ∈ Cβ1

t1 ([0, 1]
t1 ,K) for j ∈ [t2]. Here, (βi, ti) ∈ P for

i ∈ [l], t1 ≤ d and tl+1 = 1.

To facilitate the application of Lemma 8, the sequence of functions {gi}li=1 is transformed into
another sequence {h̄i}li=1 as follows

h̄1(x) =
1

2K
g1(x) +

1

2
, ∀x ∈ [0, 1]t1 ,

20

h̄i(x) =
1

2K
gi(2Kx−K) +

1

2
, ∀x ∈ [0, 1]ti ,

h̄l(x) = gl(2Kx−K), ∀x ∈ [0, 1]tl .

Building upon this transformation, it follows that
f0 = h̄l ◦ · · · ◦ h̄1,

where h̄1,j ∈ Cβ1

t1

(
[0, 1]t1 , 1

)
for j ∈ [t2], h̄i,j ∈ Cβi

ti

(
[0, 1]ti , (2K)βi

)
for i = 2, . . . , l − 1 and

j ∈ [ti+1], and h̄l,j ∈ Cβl
tl

(
[0, 1]tl ,K(2K)βl

)
for j ∈ [tl+1].

By Lemma 8, for each i ∈ [l] and j ∈ [ti+1], there exist positive numbers c24, c25, c26, ci27 and c28
and a function f̄i,j ∈ SFNN (Wi, Li, si), such that

∥f̄i,j − h̄i,j∥∞ ≤ c24W02
−L0 + c25W

− βi
ti

0 ,

where Li = c26L0, Wi = ci27W0, and si = c28L0W0. However, f̄i,j may not map into [0, 1]. For
analytical convenience, we further transform it into f̄ ′

i,j defined by

f̄ ′
i,j(x) = min

{
max

{
f̄i,j(x), 0

}
, 1
}
, ∀x.

This transformation can be implemented by adding two additional layers with four parameters to
each f̄i,j . Under this transformation, for each i ∈ [l − 1] and j ∈ [ti+1], there exists a function
f̄ ′
i,j ∈ SFNN (Wi + 2, Li, si + 4), taking values in [0, 1], such that

∥f̄ ′
i,j − h̄i,j∥∞ ≤ c24W02

−L0 + c25W
− βi

ti
0 .

We next construct f̄ , which provides a consistent approximation to f0 via the aggregation and
composition rules in Lemma 9. For i ∈ [l − 1], we aggregate f̄ ′

i,1, . . . , f̄
′
i,ti+1

into a single function

f̄ ′
i defined by f̄ ′

i =
(
f̄ ′
i,1, . . . , f̄

′
i,ti+1

)⊤
, then f̄ ′

i ∈ SFNN (ti+1(Wi + 2), Li + 2, ti+1(si + 4)).

By composition, we construct f̄ = f̄l ◦ σ(f̄ ′
l−1) ◦ · · · ◦ σ(f̄ ′

1) = f̄l ◦ f̄ ′
l−1 ◦ · · · ◦ f̄ ′

1. Then
f̄ ∈ SFNN (W,L, s), with L = 3(l−1)+

∑l
i=1 Li = c29L0, W = maxi ti+1(Wi+2) = c30W0,

and s =
∑l

i=1 ti+1(si + 4) = c31L0W0. The approximation error between f0 and f̄ can then be
bounded as follows

∥f0 − f̄∥∞
=∥h̄l ◦ h̄l−1 ◦ · · · ◦ h̄1 − f̄l ◦ f̄ ′

l−1 ◦ · · · ◦ f̄ ′
1∥∞

≤∥h̄l ◦ h̄l−1 ◦ · · · ◦ h̄1 − h̄l ◦ f̄ ′
l−1 ◦ · · · ◦ f̄ ′

1∥∞ +
∥∥h̄l − f̄l∥∞

≤K(2K)βl∥h̄l−1 ◦ · · · ◦ h̄1 − f̄ ′
l−1 ◦ · · · ◦ f̄ ′

1∥∞ + ∥h̄l − f̄l∥∞

≤K(2K)βl

(
∥h̄l−1 ◦ · · · ◦ h̄1 − f̄ ′

l−1 ◦ · · · ◦ f̄ ′
1∥∞ + ∥h̄l − f̄l∥∞

)
≤K

l−1∏
j=1

(2K)βj+1

(
l−1∑
i=1

∥h̄i − f̄ ′
i∥∞ + ∥h̄l − fl∥∞

)
.

where the second inequality follows from the definition of Hölder smoothness.

Since K
∏l−1

j=1(2K)βj+1 is a constant, it follows that

∥f̄ − f0∥2∞ ≤ c32 max
i∈[l]

(
W02

−L0 +W
− βi

ti
0

)2

≤ c32

(
W02

−L0 +W−γ⋆

0

)2
.

To ensure that the output lies within [−K,K], we define f̄ ′ by f̄ ′ = min{∥f0∥∞/∥f̄∥∞, 1} · f̄ . It
follows that

∥f̄ ′ − f0∥∞ ≤ ∥f̄ ′ − f̄∥∞ + ∥f̄ − f0∥∞ ≤ 2∥f̄ − f0∥∞.

Then, we directly establish the existence of a constant c33 such that{∫
[0,1]dx×N

|f̄(x)− f0(x)|2µ(dx)

}1/2

≤ c33

(
W02

−L0 +W−γ⋆

0

)
.

Choosing c17 = c33, c18 = c29, c19 = c30 and c20 = c31 completes the proof.

□

21

B.2 Proof of Lemma 4

In this subsection, we first formally define the architectures of modified recurrent neural networks
(MRNNs) and their sparse variants (SMRNNs). First, we define a new activation function that
operates on specific components instead of all components. Given an index set I ⊆ N, the modified
activation function σI is defined as

σI(s)i =

{
σ(si) if i ∈ I,

si otherwise.

Using this modified activation function, for any l ∈ [L] we define the modified recurrent operation as

r̃
(t)
l (Vl−1)i :=σI(Ãlr̃

(t−1)
l (Vl−1) + B̃lv

(t)
l−1 + c̃l)i

=

{
σ(Ãlr̃

(t−1)
l (Vl−1) + B̃lv

(t)
l−1 + c̃l)i if i ∈ I,

(Ãlr̃
(t−1)
l (Vl−1) + B̃lv

(t)
l−1 + c̃l)i otherwise.

Here, Ãl, B̃l ∈ RW×W , c̃l ∈ RW , and r̃
(0)
l = 0 ∈ RW .

We denote by MRNN dx,dy(W,L,K, s) the class of neural network functions defined with
the structure of RNNs but composed of modified recurrent layers instead of original recur-
rent layers. It is clear that RNN dx,dy(W,L,K, s) ⊆ MRNN dx,dy(W,L,K, s). Similarly,
SMRNN dx,dy(W,L,K, s) is defined as the class following the structure of SRNNs, also utilizing
modified recurrent layers.

The proof builds on Lemma 10 and Lemma 11, which construct two intermediate representations.
Specifically, Lemma 10 shows that an SFNN can be equivalently expressed as an SMRNN prediction
function, and Lemma 11 further shows that an SMRNN can be represented by an SRNN. Proofs of
these lemmas are deferred to Appendix B.5 and Appendix B.6, respectively.
Lemma 10. For any SFNN f̄ ∈ SFNN dx×N,1(W,L, s), there exists an SMRNN prediction
function f̃ ∈ SMRNN dx,1((dx + 1)W,N + L, s+ 3(dx + 1)WN) such that

f̃(X) = f̄(X), X ∈ [0, 1]dx×N .

Lemma 11. For any SMRNN prediction function f̃ ∈ SMRNN dx,dy(W,L, s), there exists an
SRNN prediction function f ∈ SRNN dx,dy(W + 1, 2L, s+ 6LW) such that

f(X) = f̃(X), X ∈ [0, 1]dx×N .

Proof of Lemma 4. From Lemma 10, we know there exists an SMRNN prediction function f̃ ∈
SMRNN dx,1((dx + 1)W,N + L, s+ 3(dx + 1)WN) such that

f̃(X) = f̄(X), X ∈ [0, 1]dx×N .

Then, applying Lemma 11 to the function f̃ , we obtain an SRNN prediction function f ∈
SRNN dx,1((dx + 1)W + 1, 2L+ 2N, s+ 3(dx + 1)WN + 6(dx + 1)(L+N)W), such that

f(X) = f̃(X), X ∈ [0, 1]dx×N .

This completes the proof.

□

B.3 Proof of Lemma 6

To establish the lower bound, we utilize the Lipschitz continuity of pϵ|X1,...,XN
(·), which implies

that pϵ|X1,...,XN
(u) ≥ p/2 when |u| ≤ p/(2l0). By applying Lemma S6 from the supplementary

materials of Padilla et al. [2022], we derive the following result:

Rτ (f)−Rτ (f0) ≥ min

(
p

4
,
p2

16l0

)
Emin

[
|f(X1 . . . , XN)− f0(X1, . . . , XN)|,

22

(f(X1, . . . , XN)− f0(X1, . . . , XN))2
]
. (B.1)

Furthermore, as both f and f0 are bounded by K, the squared difference satisfies the inequality
(f(X1, . . . , XN)−f0(X1, . . . , XN))2 ≤ 2K|f(X1, . . . , XN)−f0(X1, . . . , XN)|. By incorporating
this result into (B.1) and assuming K ≥ 1, we arrive at the desired lower bound for the excess quantile
risk.

For the upper bound, we have the following decomposition:

ρτ (u− v)− ρτ (u) = −v{τ − 1(u ≤ 0)}+
∫ v

0

{1(u ≤ t)− 1(u ≤ 0)}dt.

Recall that Rτ (f) = E[ρτ (YN − f(X1, . . . , XN))]. Choosing u = ϵ and v = f(X1, . . . , XN) −
f0(X1, . . . , XN), we have

Rτ (f)−Rτ (f0) =E[ρτ (YN − f(X1, . . . , XN))− ρτ (ϵ)]

=E
[∫ f(X1,...,XN)−f0(X1,...,XN)

0

∫ t

0

pϵ|X1,...,XN
(s)dsdt

]
≤ p̄

2
∥f − f0∥22,

where the last inequality follows from Assumption 1.

□

B.4 Proof of Lemma 7

To prove this lemma, we first introduce the definition of the uniform covering number.
Definition 5 (Uniform covering number). Let d ∈ N and F = {f | X → R} be a class of real-valued
functions on X . For ϵ > 0, the uniform covering number of F under the supremum norm is defined
as

Nd(ϵ, ∥ · ∥∞,F) = sup
(x1,...,xd)∈Xd

N(ϵ, ∥ · ∥∞,F|x1,...,xd
),

where F|x1,...,xd
= {(f(x1), . . . , f(xd))

⊤ | f ∈ F} ⊆ Rd and N(ϵ, ∥ · ∥∞,W) is the ϵ-covering
number of a subset W ⊆ Rd under the supremum norm ∥ · ∥∞.

Given the above definition, we next present two lemmas characterizing the covering numbers of
RNNs and SFNNs.
Lemma 12 (RNN covering number bound). Let FN = RNN dx,1(W,L,K). Then we have

logNn

(
ϵ, ∥ · ∥∞,FN

)
≲ W 2L2 logmax{W,L} log

(
Kn

ϵ

)
.

Lemma 13 (SFNN covering number bound). Let FN = SFNN dx,1(W,L,K, s). Then we have

logNn

(
ϵ, ∥ · ∥∞,FN

)
≲ sL log(WL2) log

(
Kn

ϵ

)
.

The following lemma shows that any SRNN can be represented by an SFNN, which will be used to
characterize the covering number of SRNNs.
Lemma 14. For any SRNN prediction function f ∈ SRNN dx,dy(W,L, s), there exists an SFNN
f̄ ∈ SFNN dx×N,dy

(
(2N − 1)W, (N + 1)L+ 2, 2Ns+ 2N2WL

)
such that

f(X) = f̄(X), X ∈ [0, 1]dx×N .

Finally, we provide two technical lemmas that serve as essential components in the proof.
Lemma 15 (Theorem 7.3 in Bousquet [2003]). Let z1, . . . , zn be i.i.d. random vectors drawn from
the distribution of Z, and F be a measurable class of functions such that Ef(Z) = 0 for any f ∈ F .
Assume supf∈F ∥f∥∞ ≤ A and let σ be a positive constant such that σ2 ≥ supf∈F Ef2(Z). Then,
for any x > 0,

P

{
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(zi)

∣∣∣∣∣ ≥ 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(zi)

∣∣∣∣∣
]
+ σ

√
2x

n
+

4Ax

3n

}
≤ e−x. (B.2)

23

Lemma 16 (Corollary 5.1 in Chernozhukov et al. [2014]). Denote S = ([0, 1]d × R)N and let
z1, . . . , zn ∈ S be i.i.d. random vectors drawn from the distribution of Z ∈ S. Let F be a measurable
class of functions S → R, to which a measurable envelope F is attached. Assume that ∥F∥2 < ∞,
and let σ > 0 be any positive constant such that supf∈F Ef2(Z) ≤ σ2 ≤ ∥F∥22. Furthermore, we
assume that there exist constants A ≥ e and ν ≥ 1 such that supQ N(ϵ∥F∥Q2

, ∥ · ∥Q2
,F) ≤ (A/ϵ)ν

for any 0 < ϵ ≤ 1, where the supremum is taken over all n-discrete probability measures Q on S and
N(ϵ, ∥ · ∥Q2 ,F) is the ϵ-covering number of F under the L2(Q) norm. Then,

E

[
sup
f∈F

1√
n

∣∣∣∣∣
n∑

i=1

(f(zi)− Ef(zi))

∣∣∣∣∣
]
≲ σ

√
v log

(
A∥F∥2

σ

)
+

ν∥F̄∥2√
n

log

(
A∥F∥2

σ

)
,

where F̄ = max1≤i≤n F (zi).

Proof of Lemma 7. Recall that F(δ) = {f ∈ F | ∥f − f0∥2 ≤ δ}.

Since ρτ (·) is a Lipschitz function, we have

sup
f∈F(δ)

|g(f, zi)| ≤ sup
f∈F(δ)

|f(xi−N+1, . . . ,xi)− f0(xi−N+1, . . . ,xi)| ≤ 2K.

Therefore, supf∈F(δ) |g(f, zi)− EZg(f, Z)| ≤ 4K =: A. Moreover,

sup
f∈F(δ)

E
[
|g(f, zi)|2

]
≤ sup

f∈F(δ)

E
[
|f(xi−N+1, . . . ,xi)− f0(xi−N+1, . . . ,xi)|2

]
≤ δ2,

which further implies

sup
f∈F(δ)

E[|g(f, zi)− EZg(f, Z)|2] ≤ sup
f∈F(δ)

E[|g(f, zi)|2] ≤ δ2 =: σ2.

Denoting E(δ) = E supf∈F(δ)

∣∣n−1
∑n

i=1 g(f, zi)− EZg(f, Z)
∣∣, Lemma 15 gives

P

{
sup

f∈F(δ)

∣∣∣∣∣ 1n
n∑

i=1

g(f, zi)− EZg(f, Z)

∣∣∣∣∣ ≥ 2E(δ) + σ

√
2x

n
+

4Ax

3n

}
≤ e−x (B.3)

for any x ≥ 0.

Now, we establish an upper bound of the expectation E(δ). We denote Mn(δ) = {g(f, zi) | f ∈
F(δ)}.

• Case 1: F = RNN dx,1(W,L,K) .

Combining the Lipschitz continuity of ρτ (·) and Lemma 12 gives that for any ϵ ∈ (0,K),

logNn (ϵ, ∥ · ∥∞,Mn(δ)) ≤ logNn (ϵ, ∥ · ∥∞,F) ≲ W 2L2 logmax{W,L} log
(
Kn

ϵ

)
.

Also, the Lipschitz property of ρτ (·) implies that F = 2K is an envelope function of Mn(δ). Thus,
for any discrete probability measure Q supported on n points, we have

logNn(ϵ∥F∥2, ∥ · ∥2,Mn(δ)) ≲ W 2L2 logmax{W,L} log
(

n

2ϵ

)
,

where the L2 norm is taken with respect to Q. Applying Lemma 16, we have

E(δ) ≲ σ

√
W 2L2 logmax{W,L}

n
log

(
nK

σ

)
+ 2K

W 2L2 logmax{W,L}
n

log

(
nK

σ

)
≲ δδb + δ2b

for any δ ≥ 1/n. Thus, when δ ≥ δb, we have E(δ) ≲ δδb. By combining this and (B.3), there exists
a universal positive constant c34 > 0 such that

P

[
sup

f∈F(δ)

∣∣∣∣∣ 1n
n∑

i=1

g(f, zi)− EZ [g(f, Z)]

∣∣∣∣∣ ≥ c34 · δ
(
δb +

√
x

n

)]
≤ e−x.

24

holds for any 0 ≤ x ≤ nδ2 and δ ≥ δb.

• Case 2: F = SRNN dx,1(W,L,K, s).

Combining the Lipschitz continuity of ρτ (·), Lemma 13, and Lemma 14 yields that for any ϵ ∈ (0,K)
and s ≍ WL,

logNn (ϵ, ∥ · ∥∞,Mn(δ)) ≤ logNn (ϵ, ∥ · ∥∞,F) ≲ sL log(WL2) log

(
Kn

ϵ

)
.

Also, the Lipschitz property of ρτ (·) implies that F = 2K is an envelope function of Mn(δ). Thus,
for any discrete probability measure Q supported on n points, we have

logNn(ϵ∥f∥2, ∥ · ∥2,Mn(δ)) ≲ sL log(WL2) log

(
n

2ϵ

)
,

where the L2 norm is taken with respect to Q. Applying Lemma 16, we have

E(δ) ≲ σ

√
sL log(WL2)

n
log

(
nK

σ

)
+ 2K

sL log(WL2)

n
log

(
nK

σ

)
≲ δδb + δ2b

for any δ ≥ 1/n. Thus, when δ ≥ δb, we have E(δ) ≲ δδb. By combining this and (B.3), there exists
a universal positive constant c35 > 0 such that

P

[
sup

f∈F(δ)

∣∣∣∣∣ 1n
n∑

i=1

g(f, zi)− EZ [g(f, Z)]

∣∣∣∣∣ ≥ c35 · δ
(
δb +

√
x

n

)]
≤ e−x.

holds for any 0 ≤ x ≤ nδ2 and δ ≥ δb. Choosing c23 = max{c34, c35} completes the proof.

□

B.5 Proof of Lemma 10

For any given SFNN f̄ , we first construct an SMRNN r̃θN+1
such that r̃(N)

θN+1
is equivalent to the

first layer of f̄ . Subsequently, building upon r̃θN+1
, we sequentially construct r̃θN+L

by directly
leveraging the remaining L− 1 layers of f̄ , ensuring that r̃θN+L

is equivalent to f̄ .

Proof of Lemma 10. Our construction begins with a key result for building the initial SMRNN r̃θN+1
.

For any given Ak,1, . . . , Ak,N ∈ R1×dx for k ∈ [W] and a bias vector c ∈ RW , we construct an
SMRNN rθN+1

= rN+1 ◦ rN ◦ · · · ◦ r1 ◦ p : Rdx×N → R(dx+1)W×N of width (dx + 1)W , depth
N + 1. The layers {rl}N+1

l=1 and p are defined explicitly as follows for each t ∈ [N] and l ∈ [N].

r
(t)
l (V) =

A
. . .

A

 r
(t−1)
l (V) +

B1,l

. . .
BW,l


 v(t)

...
v(t)

 ∈ R(dx+1)W ,

r
(t)
N+1(V) = σ(Dv(t) + c̄), p(t)(X) =


Idx

O1,dx

...
Idx

O1,dx

x(t) =


x(t)

0
...

x(t)

0

 ∈ R(dx+1)W ,

where A =

(
Odx,dx Odx,1

O1,dx 1

)
, Bk,l =

(
Idx Odx,1

bk,l 1

)
, bk,l =

∑N
i=1 λi,lAk,i ∈ R1×dx ,

[
λi,j

]
1≤i,j≤N

=
[(

2N−i−j
N−i

)]−1

1≤i,j≤N
, c̄ =

(
c

OdxW,1

)
and Di,j =

{
1 i ∈ [W], j = (dx + 1)i
0 otherwise .

25

Combining Lemma 6 in Song et al. [2023] and Step 2 of the proof of Lemma 8 in Jiao et al. [2024]
gives that rθN+1

constructed above satisfies the following property:

r
(N)
θN+1

(X) =



σ
(∑N

j=1 A1,jx
(j) + c1

)
σ
(∑N

j=1 A2,jx
(j) + c2

)
...

σ
(∑N

j=1 AW,jx
(j) + cW

)
OdxW,1


. (B.4)

In this construction, we have T (p) = Wdx, T (rN+1) ≤ W + dx, and for l ∈ [N]:

T (rl) = W (1 + dx + 1 + ∥bl∥0)
≤ 2W (dx + 1).

We bound the sparsity of rθN+1
by

T (rθN+1
) ≤

N+1∑
l=1

T (rl) + T (p) ≤ 2WN(dx + 1) +Wdx +W + dx. (B.5)

By applying this result to a given SFNN f̄ , parameterized as (vec(B̃1)
⊤, c̃⊤1 , . . . , vec(B̃L)

⊤, c̃⊤L)
⊤,

we proceed to define the corresponding parameters required for initializing the SMRNN r̃θN+1
. Here,

B̃1 ∈ RW×(dxN), B̃l ∈ RW×W for l = 2, . . . , L − 1, B̃L ∈ R1×W , c̃l ∈ RW for l ∈ [L − 1],
and c̃L ∈ Rdy . Specifically, we set c = c̃1, and for each i ∈ [W] and j ∈ [N], we define
Ai,j = (B̃1)i, (j−1)dx+1:jdx

. The notation (B̃1)i, (j−1)dx+1:jdx
refers to the sub-vector of the i-th

row of B̃1 corresponding to entries from column (j − 1)dx + 1 to jdx. By applying these definitions
to the construction described in (B.4), we obtain r̃θN+1

. It then follows from (B.4) that

r̃
(N)
θN+1

(X) =

(
σ
(
B̃1 vec(X) + c̃1

)
OdxW,1

)
.

We next construct the remaining L− 1 layers using the 2-nd to L-th layers of the SFNN f̄ . Define

r̃
(t)
N+l(V) =

{
σ
(
B̄lv

(t) + c̄l
)

l = 2, . . . , L− 1,
B̄lv

(t) + c̄l l = L,
q(V) = (Qv(1), . . . , Qv(N)),

where

B̄l =

(
B̃l OW,dxW

OdxW,W OdxW,dxW

)
for l = 2, . . . , L− 1,

B̄L =

(
B̃L Ody,dxW

O(dx+1)W−dy,W O(dx+1)W−dxW

)
,

c̄l =

(
c̃l

OdxW,1

)
for l = 2, . . . , L− 1,

c̄L =

(
c̃L

O(dx+1)W−dy,1

)
,

Q =
(

Idy Ody,(dx+1)W−dy

)
.

Then SMRNN r̃θN+L
= q ◦ r̃N+L ◦ · · · ◦ r̃N+2 ◦ r̃θN+1

satisfies

r̃
(N)
θN+L

(X) = f̄(X).

Finally, we compute the sparsity of r̃θN+L
,

T (r̃θN+L
) =T (r̃θN+1

) +

L∑
l=2

T (r̃N+l) + T (q)

26

≤2WN(dx + 1) + 2Wdx +

L∑
l=2

(
∥B̃l∥0 + ∥c̃l∥0

)
+ 1

≤3WN(dx + 1) + T (f̄),

where the first inequality follows from (B.5) and dy = 1.

□

B.6 Proof of Lemma 11

Proof of Lemma 11. This proof is adapted from the proof of Lemma 3 in Song et al. [2023]. We
first show that any modified recurrent layer can be represented by the composition of a sequence of
recurrent layers and linear maps. Specifically, for any modified recurrent layer r̃ : Rd×N → Rd×N

satisfying r̃(t)(X) = σI(Ãr̃(t−1)(X) + B̃x(t) + c̃), there exist linear maps p : Rd×N → R(d+1)×N

and q : R(d+1)×N → Rd×N , along with recurrent layers r1, r2 : R(d+1)×N → R(d+1)×N , such that

r̃(X) = q ◦ r2 ◦ r1 ◦ p(X), for X ∈ XN . (B.6)

where X ⊆ Rd is a compact set.

We present the construction of r1, r2, p, q directly as follows. For any t ∈ [N], we choose

p(t)(X) =

(
Id
O1,d

)
x(t) =

(
x(t)

0

)
,

r
(t)
1 (V) = σ

((
B̃

0

)
v(t) +

(
c̃

0

)
+ z01d+1

)
,

r
(t)
2 (V) = σ

(
Ar

(t−1)
2 (V) + v(t) +

(
−z01k

0d+1−k

))
,

q(t)(V) =
(
Id Od,1

)(Ik
Id−k −1d−k

0

)
v(t),

where V ∈ R(d+1)×N , v(t) is the t-th column of V , A =

(
Ã

0

)(Ik
Id−k −1d−k

0

)
,

and z0 = maxt∈[N],i∈[d] supX∈XN

∣∣(Ãr̃(t−1)(X) + B̃x(t) + c̃)i
∣∣.

By the choice of z0, for any t ∈ [N], we have

(r1 ◦ p)(t)(X)

=σ

((
B̃

0

)(
x(t)

0

)
+

(
c̃

0

)
+ z01d+1

)
=

(
z01d + (B̃x(t) + c̃)

z0

)
.

We next prove that our construction satisfies the following property by induction

(r2 ◦ r1 ◦ p)(t)(X) =

 r̃(t)(X)1:k
z01d−k + r̃(t)(X)k+1:d

z0

 , for t ∈ [N]. (B.7)

For t = 1, we have

(r2 ◦ r1 ◦ p)(1)(X)

=σ

(
(r1 ◦ p)(1)(X) +

(
−z01k

0d+1−k

))
=σ

((
(B̃x(1) + c̃) + z01d

z0

)
+

(
−z01k

0d+1−k

))

27

=

 σ(B̃x(1) + c̃)1:k
z01d−k + (B̃x(1) + c̃)k+1:d

z0


=

 r̃(1)(X)1:k
z01d−k + r̃(1)(X)k+1:d

z0

 ,

where the second-to-last equality follows from the choice of z0.

Assuming the induction hypothesis holds for t− 1, we have

(r1 ◦ p)(t)(X) +

(
−z01k

0d+1−k

)
=

 (B̃x(t) + c̃)1:k
z01d−k + (B̃x(t) + c̃)k+1:d

z0

 .

With the above align, we further obtain

(r2 ◦ r1 ◦ p)(t)(X)

=σ

A

 r̃(t−1)(X)1:k
z01d−k + r̃(t−1)(X)k+1:d

z0

+

 (B̃x(t) + c̃)1:k
z01d−k + (B̃x(t) + c̃)k+1:d

z0


=σ

 (Ãr̃(t−1)(X))1:k
(Ãr̃(t−1)(X))k+1:d

0

+

 (B̃x(t) + c̃)1:k
z01d−k + (B̃x(t) + c̃)k+1:d

z0


=

 r̃(t)(X)1:k
z01d−k + r̃(t)(X)k+1:d

z0

 ,

where the last equality follows from the choice of z0.

Thus, we have demonstrated that our construction satisfies (B.7).

By the definition of q, for any t ∈ [N] we have

(q ◦ r2 ◦ r1 ◦ p)(t)(X)

=
(
Id Od,1

)(Ik
Id−k −1d−k

0

) r̃(t)(X)1:k
z01d−k + r̃(t)(X)k+1:d

z0


=r̃(t)(X).

Thus, our construction satisfies (B.6).

Applying (B.6) to any SMRNN r̃θ̃ = q̃◦ r̃L◦· · ·◦ r̃1◦ p̃ with depth L and width W and setting d = W ,
we know that there exist 2L recurrent layers r1, . . . , r2L and 2L linear maps p1, . . . , pL, q1, . . . , qL
such that for any X ∈ [0, 1]dx×N

r̃θ̃(X) =q̃ ◦ r̃L ◦ · · · ◦ r̃1 ◦ p̃(X)

=q̃ ◦ (qLr2Lr2L−1pL) ◦ · · · ◦ (q1r2r1p1) ◦ p̃(X)

=
(
q̃qL
)
◦ r2L ◦ (r2L−1pLqL−1) ◦ · · · ◦ (r3p2q1) ◦ r2 ◦ r1 ◦

(
p1p̃
)
(X).

By setting q = q̃qL, p = p1p̃, r̄2l+1 = r2l+1pl+1ql for l ∈ [L − 1], and rθ = q ◦ r2L ◦ r̄2L−1 ◦
r2L−2 ◦ · · · ◦ r4 ◦ r̄3 ◦ r2 ◦ r1 ◦ p, we obtain

rθ(X) = r̃θ̃(X), for X ∈ [0, 1]dx×N .

It is clear that rθ has depth 2L and width W + 1.

Finally, we analyze the sparsity, for l ∈ [L− 1],

T (r̄2l+1) = T (r2l+1pl+1ql) = T (r2l+1) = ∥B̃l∥0 + ∥c̃l + z01W ∥0 + 1, (B.8)

28

T (r2l) = ∥Al∥0 + (W + 1 + k), (B.9)

∥Al∥0 ≤ ∥Ãl∥0 +W. (B.10)

Combining (B.8), (B.9), and (B.10), we obtain

T (rθ) =T (p1p̃) + T (q̃q1) +

L∑
l=1

T (r2l) + T (r1) +

L−1∑
l=1

T (r̄2l+1)

=T (p1p̃) + T (q̃q1) +

2L∑
l=1

T (rl)

≤T (p1p̃) + T (q̃q1) +

L∑
l=1

(∥Ãl∥0 + ∥B̃l∥0 + ∥c̃l∥0) + 4LW + L

=T (p̃) + T (q̃) +W +

L∑
l=1

T (r̃l) + 4LW + L

≤T (r̃θ̃) + 6LW,

where the first inequality follows from k + 1 ≤ W and ∥c̃l + z01W ∥0 ≤ ∥c̃l∥0 +W .

□

B.7 Proof of Lemma 12

Our covering number bound for RNNs is consistent with Lemma 12 in Jiao et al. [2024], which itself
is based on Theorem 7 in Bartlett et al. [2019]. For completeness, we provide a full proof of the
covering number bound for RNNs.

Proof of Lemma 12. By Lemma 9 in Jiao et al. [2024], we have

FN = RNN dx,1(W,L,K) ⊆ FNN dx×N,1

(
(2N − 1)W, (N + 1)L,K

)
.

Then it follows that

logNn

(
ϵ, ∥ · ∥∞,FN

)
≤ logNn

(
ϵ, ∥ · ∥∞,FNN dx×N,1

(
(2N − 1)W, (N + 1)L,K

))
.

(B.11)

By Theorem 7 in Bartlett et al. [2019], for any W,L,K ≥ 0 we have

logNn

(
ϵ, ∥ · ∥∞,FNN dx×N,1

(
W,L,K

))
≲ W 2L2 logmax{W,L} log

(
Kn

ϵ

)
. (B.12)

Combining (B.11) with (B.12) yields the desired bound and completes the proof.

□

B.8 Proof of Lemma 13

We first present the following lemma and definitions of Vapnik-Chervonenkis dimension and Pseudo-
dimension of a real-valued function class .
Lemma 17 (Lemma 17 in Bartlett et al. [2019]). Suppose W ≤ M and let P1, . . . , PM be polyno-
mials of degree at most D in W variables. Then we have∣∣{(sgn(P1(a)), . . . , sgn(PM (a))) | a ∈ RW

}∣∣ ≤ 2(2eMD/W)W .

Definition 6 (VC-dimension). Let F : Rdx → R be a class of real-valued functions. The VC-
dimension of F , denoted as VCdim(F), is the largest integer m ∈ N for which there exist points
(x1, . . . ,xm) ∈ Rdx×m such that∣∣{(sgn(f(x1)), . . . , sgn(f(xm))

)
| f ∈ F

}∣∣ = 2m.

29

Here, sgn(·) is the sign function defined as

sgn(x) =

{
1, if x > 0,

0, if x ≤ 0.

Furthermore, the quantity

ΠF (m) =
∣∣{(sgn(f(x1)), . . . , sgn(f(xm))

) ∣∣ f ∈ F
}∣∣

is referred to as the growth function of the function class F .
Definition 7 (Pseudo-dimension). Given a real-valued function class F : Rdx → R, the pseudo-
dimension, denoted as Pdim(F) is the largest m ∈ N for which there exist (x1, . . . ,xm) ∈ Rdx×m

and (y1, . . . , ym) ∈ Rm such that for any (b1, . . . , bm) ∈ {0, 1}m, there exists f ∈ F such that for
any i ∈ [m]:

f(xi) ≥ yi ⇐⇒ bi = 1.

Proof of Lemma 13. We prove this bound in three steps. First, we reformulate the problem as
an inequality depending only on the VC-dimension, using the relationships between the pseudo-
dimension, the VC-dimension, and the covering number. Second, we adapt the proof of Theorem 7
in Bartlett et al. [2019] to establish a bound for the growth function of the prediction function class
derived from a sparse neural network with a fixed zero-parameter configuration. Finally, we account
for all possible sparse structures to derive the overall VC-dimension bound for the prediction function
class.

• Step 1: From Covering Number to VC-dimension.

By Theorem 12.2 in Anthony and Bartlett [2009], for any ϵ ∈ (0,K), we have

Nn

(
ϵ, ∥ · ∥∞,FN

)
≤

Pdim(FN)∑
i=1

(
n

i

)(
K

ϵ

)i

.

If n < Pdim(FN), then

Nn

(
ϵ, ∥ · ∥∞,FN

)
≤

n∑
i=1

(
n

i

)(
K

ϵ

)i

=

(
1 +

K

ϵ

)n

≤
(
enK

ϵ

)Pdim(FN)

.

On the other hand, if n ≥ Pdim(FN), then

Nn

(
ϵ, ∥ · ∥∞,FN

)
≤

(
enK

ϵPdim(FN)

)Pdim(FN)

≤
(
enK

ϵ

)Pdim(FN)

.

Thus, we have

logNn

(
ϵ, ∥ · ∥∞,FN

)
≤ Pdim(FN) log

(
enK

ϵ

)
. (B.13)

By Theorem 14.1 in Anthony and Bartlett [2009], there exists a function class FN+1 generated from
the SFNN with width W , length L+ 1 and sparsity s+ 1 such that

Pdim(FN) ≤ VCdim(FN+1). (B.14)

In the remainder of the proof, we restrict our analysis to the case of N for simplicity. The results
obtained can be directly extended to the case of N + 1.

• Step 2: Cardinality Bound for SFNNs with fixed sparsity structure.

First, we formally define the function class generated from the SFNN with a fixed sparsity structure
as follows:

Fξ
N = {fθ ∈ FN | θi = 0 if ξi = 0, ∀i ∈ [M]}.

30

Here, M =
∑L−1

l=1 Wl +
∑L−1

l=0 WlWl+1 is the total number of parameters in the SFNN and
ξ ∈ {0, 1}M is a binary vector satisfying ∥ξ∥0 = s. Each entry of ξ corresponds to an entry of θ in
the SFNN: if ξi = 1, then θi is treated as a free parameter; otherwise, if ξi = 0, θi is fixed to zero.
Thus, Fξ

N represents the subclass of FN constrained by the sparsity pattern specified by ξ.

In this step, we consider a function class Fξ
N with a fixed parameter ξ. Since Fξ

N is a parameterized
function class whose parameter vector has M − s zero entries, any function in Fξ

N can be represented
as g(x, θ′), where θ′ ∈ Rs. Given m ≥ s and x1, . . . ,xm, our goal is to derive an upper bound for
the cardinality of the following set:∣∣{(sgn(g(x1, θ

′)), . . . , sgn(g(xm, θ′))
) ∣∣ θ′ ∈ Rs

}∣∣.
Recall that the ReLU activation function σ(x) = max{x, 0} is a piecewise-defined function. Con-
sequently, g(x, θ′) is also a piecewise-defined function with respect to θ′. To apply Lemma 17, we
partition Rs into disjoint regions S = {I1, . . . , ID}, where Ii ∩ Ij = ∅ for i ̸= j and i, j ∈ [D].
Within each region Ii, for all j ∈ [m], the function g(xj , θ

′) reduces to a polynomial function. We
denote the number of free parameters in the first l layers by slξ . We construct this partition recursively
with the goal for Sl to satisfy the following properties for any l ∈ [L]:

1. If l = 1, then |Sl−1| = 1; otherwise, |Sl−1| ≤ |Sl−2| · 2
(
2eWlml/sl−1

ξ

)sl−1
ξ

.

2. For any I ∈ Sl−1, w ∈ [Wl], and j ∈ [m], the input to the w-th neuron at level l is a
polynomial function fI,w,j of degree at most l, which depends on slξ variables.

We first select S0 = Rs. The input to any neuron at the first layer is an affine function of degree at
most 1, depending on at most s1ξ variables. Consequently, S0 satisfies both required properties.

Given S0, . . . , Sn−1 that satisfy the two properties, we proceed to construct Sn. For any region
I ∈ Sn−1. Since fI,w,j is a polynomial function of degree at most n for each w ∈ [Wn] and j ∈ [m],
we derive the following inequality by applying Lemma 17.

|{sgn(fI,w,j(θ
′)) |w ∈ [Wn], j ∈ [m], θ′ ∈ I}| ≤ 2(2eWnmn/snξ)

snξ .

This result implies that we can partition I into at most 2(2eWlmL/(snξ))
snξ disjoint regions. Within

each region, all these polynomials maintain the same sign. Consequently, for any j ∈ [m] the output
of any neuron at the n-th level remains a polynomial of degree at most n.

We define Sn to be the set of all disjoint regions generated from all I ∈ Sn−1. Since each layer
connecting the n-th and (n+ 1)-th layers can increase the degree by at most one, for any j ∈ [m],
the input to any neuron at the (n+ 1)-th layer is a polynomial of degree at most n+ 1, depending on
at most sn+1

ξ variables. Thus, Sn satisfies both of the required properties. By induction, we have

|SL−1| ≤
L−1∏
l=1

2(2eWlmlslξ)
slξ ≤

L−1∏
l=1

2(2eW ′mlslξ)
slξ ,

where W ′ = max{W,dy}. As implied by Lemma 17, the cardinality of any partition in SL−1 is

bounded by 2
(
2eW ′ml/sLξ

)sLξ . By AM-GM inequality, we obtain

|{sgn(g(x1, θ
′)), . . . , sgn(g(xm, θ′)) | θ′ ∈ Rsξ}|

≤
L∏

l=1

2(2eW ′ml/slξ)
slξ

≤2L
(
2eW ′m

∑L
l=1 l∑L

l=1 s
l
ξ

)∑L
l=1 slξ

. (B.15)

• Step 3: Obtain bound on VCdim(FN).

31

In this step, we consider all possible fixed sparsity structures ξ, of which there are at most
(
M
s

)
≤ Ms.

Summing (B.15) over all such structures yields, for any (x1, . . . ,xm) ∈ Rdx×m,

|{sgn(f(x1)), . . . , sgn(f(xm)) | f ∈ FN}|

≤
∑

∥ξ∥0=s

2L
(
2eW ′m

∑L
l=1 l∑L

l=1 s
l
ξ

)∑L
l=1 slξ

≤ Ms2L max
∥ξ∥0=s

(
2eW ′m

∑L
l=1 l∑L

l=1 s
l
ξ

)∑L
l=1 slξ

. (B.16)

Let ξmax be the sparsity structure that attains the maximum in (B.16):

ξmax = argmax
∥ξ∥0=s

(
2eW ′m

∑L
l=1 l∑L

l=1 s
l
ξ

)∑L
l=1 slξ

.

The upper bound in (B.16) can thus be expressed as Ms2L
(

2eW ′m
∑L

l=1 l∑L
l=1 slξmax

)∑L
l=1 slξmax

.

Choosing m as VCdim(FN), we have

2VCdim(FN) ≤ Ms2L
(
2eW ′VCdim(FN)

∑L
l=1 l∑L

l=1 s
l
ξmax

)∑L
l=1 slξmax

.

By Lemma 18 in Bartlett et al. [2019], we obtain

VCdim(FN) ≤ L+ s log2 M + (

L∑
l=1

slξmax
) log2(2eW

′L2 log2(eWL2))

≲ L+ s log2(W
2L) + Ls log2(2eWL2 log2(eWL2))

≲ sL log(WL2). (B.17)

Finally, to ensure the completeness of this proof, we need to show VCdim(FN) ≥ s. This result
follows directly from Theorem 3 in Bartlett et al. [2019].

Combining (B.13), (B.14), and (B.17), we obtain the desired bound.

□

B.9 Proof of Lemma 14

This proof is adapted from the proof of Lemma 9 in Jiao et al. [2024]. As a first step, we demonstrate
that for any recurrent layer r : RW×N → RW×N satisfying r(t)(X) = σ(Ar(t−1)(X)+Bx(t)+c),
there exists an SFNN f̄ with width (2N − 1)W and length N + 1, such that

f̄(X) =


r(1)(X)
r(2)(X)

...
r(N)(X)

 . (B.18)

Here, X ∈ RW×N . We construct f̄ as f̄ = fN+1 ◦ fN ◦ · · · ◦ f1 with the parameters defined as
follows

Ā1 =



B O · · · O
O I · · · O
O −I · · · O
...

...
. . .

...
O O · · · I
O O · · · −I

 , b̄1 =


c
0
...
0

 ,

32

Āj =



I
. . .

I
I O O
−I O O
A B −B

I
. . .

I


, b̄j =



0
...
0
c
0
...
0


, j = 2, . . . , N,

ĀN+1 =


I −I

I −I
. . .

I −I
I

 , b̄N+1 = 0.

In these block matrices, each block is of size W ×W . Ā1 has 2N − 1 rows and N columns of blocks.
For j = 2, . . . , N , Āj has 2j − 4 identity matrices in the upper left corner and 2N − 2j identity
matrices in the lower right corner, and b̄j has (2j − 2)W zeros above c. ĀN+1 has N rows and
2N − 1 columns of blocks.

We verify that this construction satisfies (B.18) through direct calculation.

f̄(X) = fN+1 ◦ fN ◦ · · · ◦ f1


x(1)

x(2)

...
x(N)



= fN+1 ◦ fN ◦ · · · ◦ fi+1



σ(r(1)(X))
σ(−r(1)(X))

...
σ(r(i−1)(X))
σ(−r(i−1)(X))

r(i)(X)
σ(x(i+1))
σ(−x(i+1))

...
σ(x(N))
σ(−x(N))



= fN+1



σ(r(1)(X))
σ(−r(1)(X))

...
σ(r(N−1)(X))
σ(−r(N−1)(X))

r(N)(X)



=


r(1)(X)
r(2)(X)

...
r(N)(X)

 .

This derivation relies on the property σ(x)− σ(−x) = x, which is applied sequentially across the
last three equalities. Thus, our construction for f̄ satisfies (B.18).

33

Next, we extend this construction to a complete SRNN rθ = q ◦ rL ◦ · · · ◦ r1 ◦ p with width W
and depth L. For an input sequence X ∈ [0, 1]dx×N , we can find SFNNs f̄1, · · · , f̄L with width
(2N − 1)W and length N + 1, as well as layers p̄ and q̄, such that

q̄ ◦ f̄L ◦ · · · ◦ f̄2 ◦ f̄1 ◦ p̄(X) = q̄ ◦ f̄L ◦ · · · ◦ f̄2 ◦ f̄1


p(1)(X)
p(2)(X)

...
p(N)(X)



= q̄ ◦ f̄L ◦ · · · ◦ f̄2


(r1 ◦ p)(1)(X)
(r1 ◦ p)(2)(X)

...
(r1 ◦ p)(N)(X)



= q̄ ◦


(rL · · · r1 ◦ p)(1)(X)
(rL · · · r1 ◦ p)(2)(X)

...
(rL · · · r1 ◦ p)(N)(X)


= (q ◦ rL ◦ · · · r1 ◦ p)(N)(X).

Here, the layer p̄ is constructed to map X to the stacked outputs of p applied to each input x(t), and
the final layer q̄ applies q to the N -th segment of its input vector. Choosing f̄ = q̄◦ f̄L◦· · ·◦ f̄2◦ f̄1◦ p̄
completes the construction.

Finally, we analyze the sparsity

T (f̄) ≤
L∑

i=1

2NT (ri) + 2N2WL+NT (p) +NT (q)

≤ 2NT (rθ) + 2N2WL.

In conclusion, we obtain

f̄ ∈ SFNN dx×N,dy

(
(2N − 1)W, (N + 1)L+ 2, 2Ns+ 2N2WL

)
.

□

C GDP Growth Analysis

Analyzing GDP growth is a cornerstone of economic research, providing crucial insights into an
economy’s overall health and trajectory. Given its capacity to effectively capture and forecast upside
and downside economic risks, QR has become an indispensable tool in GDP growth analysis [Adrian
et al., 2019].

To further evaluate the practical advantages of RNN-based QR estimators under potentially nonstation-
ary settings, we conduct an empirical analysis using real GDP data4. We compare the out-of-sample
prediction performance of RNN-, SRNN-, FNN-, and QRF-based estimators for one-quarter-ahead
GDP forecasting. For all models, the input sequence length is fixed at N = 4, corresponding to four
consecutive quarterly GDP observations xt−3 to xt, representing one year of lagged values. The
target variable yt is the GDP level at time t + 1. All models were implemented according to the
specifications detailed in Section 4.

The dataset is partitioned chronologically, with the most recent 30% reserved for testing. For all
NN-based estimators, the preceding 70% is used for training and validation. During training, 20% of
this subset is held out for validation, and early stopping is applied based on the validation check loss.

4We utilize U.S. GDP growth data from April 1947 to December 2024, accessible at https://fred.
stlouisfed.org/series/A191RL1Q225SBEA.

34

https://fred.stlouisfed.org/series/A191RL1Q225SBEA
https://fred.stlouisfed.org/series/A191RL1Q225SBEA

All models are trained by minimizing the empirical check loss and evaluated on the test set using the
same metric.

Table 2 presents the mean empirical check loss for each model at quantile levels τ = 0.1, 0.25,
0.5, 0.75, and 0.9. The results indicate that the RNN- and SRNN-based estimators consistently
outperform both the FNN and QRF methods across most quantile levels. Furthermore, the SRNN
achieves predictive accuracy comparable to that of the standard RNN while inducing sparsity. This
suggests that the sparse architecture does not compromise performance.

Model τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

QRF 0.849 1.225 1.410 1.246 0.911
FNN 0.867 1.180 1.773 2.505 2.657
RNN 0.835 1.113 1.349 1.154 0.904
SRNN 0.837 1.700 1.211 1.200 0.898

Table 2: Out-of-sample prediction errors at different quantiles for GDP growth analysis.

To assess the robustness of RNN-based estimators in QR in the nonstationary environment, we
extend our analysis to include in-sample estimators, enabling a direct comparison of in-sample and
out-of-sample performance for both RNN and SRNN methods. Adrian et al. [2019] showed that
GDP growth volatility is primarily driven by lower quantiles, while upper quantiles remain relatively
stable over time. Motivated by this, we focus our comparison on quantile levels τ = 0.05, 0.1, and
0.25, where tail behavior is most prominent. For the in-sample predictions, the full dataset is used
for training and validation. The comparative results, shown in Figure 3, reveal a striking alignment
between in-sample and out-of-sample quantile estimates. In these figures, the x-axis represents time,
while the y-axis denotes the GDP growth rate. This consistency is particularly noteworthy, given that
major financial crises (e.g., 2007–2009), which represent substantial tail events, are absent from the
data used for out-of-sample estimation. These findings highlight the reliability and generalizability of
RNN-based QR methods, even under adverse and previously unseen market conditions.

1950 1960 1970 1980 1990 2000 2010

−5

−4

−3

−2

−1

0

1

2

τ=0.05

τ=0.1

τ=0.25

Out-of-sample
 In-sample

Out-of-sample
 In-sample

(a) RNN

1950 1960 1970 1980 1990 2000 2010

−5

−4

−3

−2

−1

0

1

2

τ=0.05

τ=0.1

τ=0.25

Out-of-sample
 In-sample

Out-of-sample
 In-sample

(b) SRNN

Figure 3: In-sample and out-of-sample comparison for RNN and SRNN models.

D Hyperparameter Sensitivity Analysis

In this section, we conduct additional experiments varying network depth L, width W , and pruning
ratio on Model 1 in Section 4 under the t2.25 distribution to assess hyperparameter sensitivity.

We first vary L ∈ {2, 3, 4, 5, 6, 7} and W ∈ {16, 32, 64, 128, 256, 512, 1024}, evaluating each
(L,W) configuration under the same data and training budget. As shown in Table 3, performance
generally improves as both the network depth L and width W increase. When either L or W is small,
the model tends to underfit, leading to worse MSE. In contrast, when both are sufficiently large,
the model achieves its best performance, suggesting that adequate depth and width are essential for
capturing the heavy-tailed characteristics of the t2.25 distribution.

35

L \W 16 32 64 128 256 512 1024

2 0.056 0.054 0.054 0.053 0.060 0.065 0.097
3 0.055 0.051 0.051 0.050 0.054 0.058 0.073
4 0.055 0.050 0.052 0.050 0.051 0.052 0.070
5 0.050 0.050 0.050 0.052 0.050 0.050 0.057
6 0.060 0.050 0.053 0.050 0.049 0.049 0.056
7 0.050 0.050 0.050 0.050 0.049 0.049 0.056

Table 3: SRNN MSE across different L and W .

We next study sparsity while fixing other settings as in Section 4. As reported in Table 4, the
MSE exhibits a non-monotonic trend with respect to the pruning ratio: moderate pruning improves
performance, suggesting an effective regularization effect, whereas aggressive pruning degrades
performance—likely due to the removal of critical parameters. These results indicate an interior
optimum that balances compactness and representational capacity.

Pruning ratio 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MSE 0.046 0.044 0.040 0.039 0.038 0.036 0.038
Table 4: Effect of pruning ratio on SRNN MSE.

36

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately stated the contributions and scope of
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our work focuses on a fixed quantile level. We discuss this limitation of our
results and future direction in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

37

Answer: [Yes]
Justification: All the theoretical results in the paper are accompanied by a full set of
assumptions, with complete and correct proofs included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly disclose all information necessary for reproducing the presented
experimental results, thereby ensuring their reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our experiments are easily reproducible, and we provide all necessary informa-
tion for their re-implementation in the paper. As this paper focuses on theoretical analysis,
the code is not provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provides all details essential for understanding the results in
Section 4, Section 5, Appendix C, and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper reports appropriate information about the statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our experiments utilized relatively small datasets with minimal computational
requirements that can be easily reproduced on standard personal computers, making detailed
specifications of compute resources unnecessary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our paper
conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to its theoretical nature, this paper does not discuss societal impacts.

Guidelines:

40

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not make publicly available any data or models that pose a high risk of
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets used in this study are the DJIA and GDP, both of which are
publicly available.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

41

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t introduce any new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

42

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodologies
	RNNs and SRNNs
	Nonparametric quantile regression

	Statistical Theory
	Approximation error bounds
	Error bounds for QR estimators

	Numerical Study
	Application
	Conclusion
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Proofs of Lemmas
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14

	GDP Growth Analysis
	Hyperparameter Sensitivity Analysis

