
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INVESTIGATING ADVANCED REASONING OF LARGE
LANGUAGE MODELS VIA BLACK-BOX INTERACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing tasks fall short in evaluating reasoning ability of Large Language Mod-
els (LLMs) in an interactive, unknown environment. This deficiency leads to the
isolated assessment of deductive, inductive, and abductive reasoning, neglecting
the integrated reasoning process that is indispensable for humans discovery of real
world. We introduce a novel evaluation paradigm, black-box interaction, to tackle
this challenge. A black-box is defined by a hidden function that maps a specific
set of inputs to outputs. LLMs are required to unravel the hidden function behind
the black-box by interacting with it in given exploration turns, and reasoning over
observed input-output pairs. Leveraging this idea, we build the ORACLE bench-
mark which comprises 6 types of black-box task and 96 black-boxes. 19 modern
LLMs are benchmarked. o3, a leading LLM from OpenAI, ranks first in 5 of the
6 tasks, achieving over 70% accuracy on most easy black-boxes. But it still strug-
gles with some hard black-box tasks, where its average performance drops below
40%. Further analysis indicates a universal difficulty among LLMs: They lack
the high-level planning capability to develop efficient and adaptive exploration
strategies for hypothesis refinement.

1 INTRODUCTION

Reasoning constitutes a fundamental component of artificial general intelligence (AGI), allowing
systems to solve complex problems, adapt to unknown environment, and make decisions with
human-like cognitive flexibility. With techniques like long chain-of-thought and test-time scaling
(Chen et al., 2025), large language models (LLMs) (OpenAI, 2025b; Anthropic, 2025; Guo et al.,
2025) have demonstrated remarkable reasoning ability in some challenging benchmarks (Cobbe
et al., 2021; Hendrycks et al., 2021). However, skepticism has persistently shadowed the claim that
LLMs possess reasoning ability akin to that of humans.

Charles Peirce’s framework (Peirce, 1934) posits that human’s discovery of unknown environment
is guided by a dynamic reasoning cycle encompassing deduction, induction, and abduction. As
depicted in Figure 1, this cycle begins with forming a hypothesis from observations (abduction),
proceeds to planning to derive new observations (deduction), and concludes with hypothesis refine-
ment against new observations (induction). However, existing reasoning datasets and benchmarks
fall short in placing LLMs in an interactive, unknown environment (Fodor, 2025). This shortcom-
ing leads to evaluating reasoning in an isolated manner, rather than an integrated, holistic process
(Suzgun et al., 2022; Mondorf & Plank, 2024). Some researches (Costarelli et al., 2024; Hu et al.,
2024) employ games to simulate interactive, unknown environments. This approach presents two
key limitations. First, the extensive training data of LLMs raises the possibility that they are already
familiar with the game strategy, compromising the validity of testing reasoning in unknown environ-
ment. Second, it conflates the evaluation of reasoning with other abilities like spatial understanding
and long-context understanding, preventing it from serving as a pure reasoning benchmark.

To address the aforementioned challenge, we introduce black-box interaction, a novel evaluation
paradigm for investigating the integrated, human-like reasoning capability of LLMs, which we term
advanced reasoning. This paradigm models an unknown environment by constructing a black-box
based on specific hidden rules. LLMs are required to uncover the hidden rules behind a black-box
via multiple turns of exploration. Specifically, black-box is defined as a hidden function f : X → Y ,
mapping input X = {x|P (x)} that satisfies predicate P to output Y . LLMs are instructed to interact

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AA

Human

Environment

LLMs

Black-Box

Charles Peirce’s Framework of Humans Reasoning Behavior

The Process of Black-Box Interaction

Exploration Evaluation

Turn 1

plan 1 observation 1

Instructions

What’s the
output for
‘A’?

The output
for ‘A’ is ‘1’.

What’s
the output
for ‘ABC’?

The output
for ‘ABC’ is
‘1 2 3’.

Turn 2

plan 2 observation 2

hypotheses

abduction deduction

Turn 3

What’s the
output for
‘abcdef’?

The output
for ‘abcdef’ is
‘1 2 3 4 5 6’.

plan 3 observation 3

hypotheses

induction deduction

Background
Knowledge

……

Turn 𝑇

plan 𝑇 observation 𝑇

……

theory

induction &
abduction

deduction induction

What’s
the output
for ‘YyZ’?

The output
for ‘YyZ’
is ’25 25 26’.

……

Turn 1 Turn 2 Turn 3 Turn 𝑇…… Turn 1

Question: What’s the
output for ‘DoG’?

4 15
7

Right.
Next
…

Turn 1

(Encrypt ‘ b...z’
to ‘ 2 … ’)

deduction
refinement

Figure 1: Illustration of Charles Peirce’s framework of human reasoning behavior (upper) and an
example of the process of black-box interaction (lower). In this example, the black-box represents
an encryption method that maps English letters to numbers.

with the black-box. The interaction is two-stage: (i) In the exploration stage, LLMs can freely feed
any valid input x to the black-box, and will receive corresponding feedback f(x). (ii) The evaluation
stage starts after reaching given maximum exploration turns. LLMs’ understanding of the black-box
is evaluated by comparing their output with the black-box’s output on a set of unseen test samples.
Figure 1 illustrates the complete process of black-box interaction, where the black-box represents
an encryption method that maps English letters to numbers.

The practical implementation of a black-box only involves mapping inputs to outputs based on hid-
den rules. This simplicity allows it to be generalized across various environments. To facilitate
and accelerate the generalization of black-boxes to any scale, type, and level of difficulty, we de-
sign a fully automated agentic framework for black-box construction. Three LLM-based modules
collaborate to accomplish black-box construction from scratch only with natural language descrip-
tion. It handles everything, including the generation of test samples, black-box code, and interac-
tive interface between LLMs and black-box. Leveraging this framework, we build the ORACLE 1

benchmark, which considers 6 types of black-box task: Code Intent Inference, Circuit Rule In-
ference, Physics System Inference, Encryption Rule Inference, Interactive Puzzle Inference,
Game Strategy Inference. The 6 tasks take code, boolean circuit, mechanical system, encryption
method, interactive puzzle, opponent’s game strategy as black-box respectively. Current benchmark
consists of 96 black-boxes, 51 of them are easy black-boxes and 45 are hard.

We evaluate 19 leading proprietary and open-weight LLMs. Overall, reasoning models perform
better than chat models. OpenAI o3 delivers the best performance, ranking first in 5 out of 6 tasks
under 10 exploration turns and 4 out of 6 tasks under 20 exploration turns. Furthermore, it achieves
an average accuracy exceeding 70% on most easy black-boxes and approximately 40% on most hard
ones. Further analysis reveals a critical and universal weakness of LLMs: They lack the high-level
planning capability required to develop efficient and adaptive exploration strategies. This deficiency
in reasoning prevents effective hypothesis refinement, which consequently compromises the ability
to understand complex black-box mechanisms under limited exploration.

The contributions of this paper can be summarized as follows:

1. We introduce a novel evaluation paradigm, black-box interaction, for investigating ad-
vanced reasoning of LLMs (Section 2). This paradigm addresses several critical concerns
in the field of reasoning dataset and benchmark design (Section 7).

1The name is inspired by some mythologies that an ORACLE only returns “yes” or “no” to questions, thus
challenging the questioner’s intelligence.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2. Leveraging the idea of black-box interaction, we build the ORACLE benchmark which com-
prises 6 types of black-box tasks and a total of 96 black-boxes (Section 3, Appendix G).

3. We propose an effective automated agentic framework which only requires natural lan-
guage description to generate diverse black-boxes (Section 4). The framework greatly fa-
cilitates the scaling of the ORACLE benchmark.

4. Comprehensive experiments and analysis are conducted to investigate the performance and
behavior of LLMs in black-box interaction. We identify that LLMs struggle to develop
efficient and adaptive exploration strategies. (Section 5, Appendix D, E).

2 PRELIMINARIES

We formally define the task setting of evaluating advanced reasoning of LLMs via black-box inter-
action. A complete black-box interaction process comprises two sequential stages: an exploration
stage and an evaluation stage.

Black-Box A black-box is a rule-based system characterized by a hidden function f : X → Y
that maps an input domain X to an output domain Y . The input domain X is a set of elements
X = {x|P (x)} that satisfy a specific predicate P . In some situations, f can be decomposed into a
composition of multiple mappings, resulting in intermediate outputs. We define this more formally
as follows: Let Y0 = X . The composite function f is given by

f = fn ◦ fn−1 ◦ · · · ◦ f1, (1)

where each component function fi : Yi−1 → Yi for i = 1, . . . , n. The intermediate outputs reside
in the sets Y1, . . . ,Yn−1, and the final output codomain is Y = Yn.

Model The model, denoted by M , is a system that processes and generates natural language.
Model M is instructed to interact with the black-box. Its action space is X = {x|P (x)}. We focus
on Transformer-based large language models in the scope of this paper.

Exploration The exploration stage consists of a sequence of interactions between model M and
black-box f over T turns. In each turn t ∈ {1, . . . , T}, the model adaptively generates a query xt ∈
X and submits it to the black-box. It then receives the corresponding feedback yt = f(xt) ∈ Y .
In some scenarios, the model observes intermediate feedback yti ∈ Yi instead of yt. The query xt

is generated based on the history of all previous interactions. Let the history at turn t be Ht−1 =
(x1, y1, . . . , xt−1, yt−1). The model generates the next query as:

xt = M(Ht−1), for t > 1. (2)

The initial query, x1, is generated based on the initial task description provided to the model. Upon
completion, this stage yields a total exploration history HT = (x1, y1, . . . , xT , yT).

Evaluation Following the exploration stage, the model’s reasoning ability is evaluated. This eval-
uation stage runs for K turns, corresponding to the size of a test set Xtest = {x1

test, . . . , x
K
test}. The

test set is disjoint from the set of queries used during exploration, i.e., Xtest ∩ {x1, . . . , xT } = ∅. In
each turn k ∈ {1, . . . ,K}, the model M is given a test sample xk

test and needs to produce a predic-
tion, denoted as ŷk. The black-box then provides feedback by comparing the prediction to the true
output f(xk

test). This feedback is a binary correctness signal, ck = 1(ŷk = f(xk
test)), where 1(·) is

the indicator function. The prediction at turn k is generated as:

ŷk = M(HT , x
1
test, ŷ

1, c1, . . . , xk−1
test , ŷk−1, ck−1, xk

test), for 1 ≤ k ≤ K. (3)

This evaluation setup allows the model to continue to learn and adapt its strategy based on feedback
received on its test-time performance.

3 THE ORACLE BENCHMARK

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

c = a

checkpoint(1)

a, b = b, c

checkpoint(2)

I take {a: int, b: int} as input
and has 2 checkpoints.

Let a=2; b=3
Set a=2; b=3

Wh ’ the values when
checkpoint(1) is visited once?

a=2; b=3; c=2

The input size of circuit is
4. Query in the format of
(𝑥1, 𝑥2, 𝑥3, 𝑥4).

Input wire is (1, 0, 0, 0)

Gates output [y1, y2, y3]: [0, 0, 0]

The system has 1 object.
Out a float value for time t.

t=1.0
The coordinate of
object1 is (4.0, 0.0, 0.0)

t=2.0

(a) Code Intent Inference (CII) (c) Physics System Inference (PSI)(b) Circuit Rule Inference (CRI)

L ’ play rock, paper,
scissors. Choose one
action in each turn.

rock

(d) Encryption Rule Inference (ERI) (f) Game Strategy Inference (GSI)(e) Interactive Puzzle Inference (IPI)

Input wire is (0, 1, 1, 1)

Gates output [y1, y2, y3]: [0, 1, 0]

a=5; b=7. Wh ’ the value
of b when checkpoint(2) is
visited once?

5

Wh ’ the output with
input wire (1, 1, 1, 0)? [1, 0, 0]

Wh ’ coordinate
of object1 in t=1.5?

(6.0, 0.0, 0.0)

Wh ’ the encrypted
string for DoG?

The plaintext must only
contain English letters. I
will output encrypted text.

Aa

1 1

abc

1 2 3

4 15 7

Wh ’ the number?

You need to guess the
number. I will tell you if
your guess is small or big.

4

small

8

small

13

Exploration Exploration Exploration

Exploration Exploration Exploration

Evaluation

rock

I played scissors. Next.

I played paper. Next.

Evaluation Evaluation

EvaluationEvaluationEvaluation
I play paper.

scissors

Black-box: Code that
exchanges the values of
two numbers.

Black-box: A boolean
circuit that performs
AND operation.

Black-box: A ball that
performs uniform linear
motion along x-axis.

𝑥1
𝑥2
𝑥3
𝑥4

AND

AND
AND

𝑥

𝑦𝑧

𝑣 = 4𝑚/𝑠

The coordinate of
object1 is (8.0, 0.0, 0.0)

Black-box: An encryption
method mapping English
letters to numbers.

y1

y3
y2

Black-box: A puzzle that
returns small or big to
query numbers.

𝑓 𝑥 = ቐ
𝑏𝑖𝑛𝑔𝑜, 𝑥 = 13
𝑠𝑚𝑎𝑙𝑙, 𝑥 < 13
𝑏𝑖𝑔, 𝑥 > 13

Plaintext Ciphertext
a,A 1
b,B 2

…
z,Z 26

Black-box: An opponent
player choosing paper,
scissors with equal prob.

ቄ
50% prob

50% prob
:

Figure 2: Examples of 6 different types of black-box tasks in the ORACLE benchmark.

11

21

20

17
15

12

5

6

8 13

11

9

611

6 10
5

6

Easy

…

Figure 3: The composition of
ORACLE benchmark.

The composition of ORACLE benchmark is shown in Figure 3. Each
task consists of a mix of easy and hard black-boxes. The inner ring
of the pie chart indicates the total number of black-boxes for each
task, while the outer ring breaks down these black-boxes into easy
and hard categories. The current benchmark includes 6 tasks and
96 black-boxes (51 easy, 45 hard).

3.1 TASK DESIGN

We reveal the methodology behind the design of 6 different black-
box tasks. In Figure 2, a simple black-box from each task is selected
to facilitate understanding. The examples cover both exploration
and evaluation stages. Detailed implementations of all black-boxes
in the ORACLE benchmark are reported in Appendix G. Some complete black-box interaction cases
are shown in Appendix D.2. Test samples for each task are detailed in Appendix A.2.

Code Intent Inference (CII) A black-box f represents a code algorithm that maps input variables
x to output variables y. Following the definition in Equation (1), f is further decomposed into fi
which is named checkpoint in this task. A checkpoint fi captures the values of all current accessible
variables. These checkpoints are strategically placed where significant changes to variable values
occur. For LLMs, two types of actions are allowed: (i) Assign any valid value x as input variable.
(ii) Ask for the value of accessible variables at selected checkpoint fi. Action (i) must be completed
before action (ii), and action (ii) is formatted in (i, iter), where i is the index of selected checkpoint,
and iter is the visited times of the i-th checkpoint (e.g., within a loop). For example, (3, 2) indicates
the third checkpoint being visited for the second time. The goal of LLMs is to understand the
algorithm. When evaluation starts, LLMs are required to output the value of questioned variable at
certain checkpoint with unseen input variables.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Circuit Rule Inference (CRI) A black-box f represents an acyclic boolean circuit that only con-
tains AND, OR, NOT gates. It maps input wire x which is a fixed number 0/1 bits to circuit gates’
output y. The black-box will first inform the size n of input wire. Then in each turn, LLMs are
supposed to output x = (x1, x2, . . . , xn), xi ∈ {0, 1} as query. After LLMs’ query, the black-box
will return the output of every circuit gate in the format of y = [y1, y2, ..., ym], yi ∈ {0, 1}, where
m is the number of gates and yi is the output of the i-th gate. The goal of LLMs is to understand
the function and composition of circuit. When evaluation starts, LLMs are required to give every
circuit’s output with unseen input wires.

Physics System Inference (PSI) A black-box f represents a classical mechanical system that
maps time point x to objects’ coordinates y. In each turn, LLMs need to assign value x for time
point as input, and the black-box will return the 3-dimensional coordinates y of all objects in the
mechanical system at time x. The goal of LLMs is to understand the mechanical system. When
evaluation starts, LLMs are required to calculate all the objects’ coordinates at unseen time points.

Encryption Rule Inference (ERI) A black-box f represents an encryption process that maps
plaintext x to ciphertext y. LLMs can assign any valid plaintext x as input, and black-box will
return corresponding ciphertext y as output. The goal of LLMs is to understand how the encryption
method works based on the plaintext-ciphertext pairs. When evaluation starts, LLMs are required to
output the corresponding ciphertext given unseen plaintext.

Interactive Puzzle Inference (IPI) A black-box f represents an interactive puzzle with a hidden
answer. The puzzle maps player query x to result y based on the puzzle rule. The LLMs can
interact with the puzzle for multiple turns in the exploration stage. When evaluation starts, LLMs
are required to figure out the right hidden answer of the puzzle.

Game Strategy Inference (GSI) Unlike the IPI task, the GSI task involves a two-player game.
In this setup, LLMs participate as one player, facing a black-box opponent that performs a fixed
game strategy. In this sense, the black-box f represents a strategy that maps game observation x to
action y. Unlike previously introduced tasks, the GSI task requires a model to go beyond simply
understanding the black-box: a model must devise a strategy to outperform it. When evaluation
starts, LLMs will face the same black-box opponent and aim to achieve as higher score as possible.
Since some games are not round-independent, one exploration turn in GSI indicates playing a n-
round game once. Then LLMs will be evaluated in the game with the same number of rounds.

3.2 EVALUATION METRICS

Two metrics, accuracy and turn@shot, are used to measure the reasoning ability of LLMs in black-
box interaction. Following the definitions in Section 2, the accuracy for each black-box is calculated
via acc =

∑K
k=1 c

k/K, where K is the number of test samples and ck measures the correctness
of LLMs’ answer. Specifically, accuracy in GSI task is measured by the ratio of actual score to the
optimal strategy score. Turn@shot consists of two aspects. Turn denotes to the number of interaction
turns for exploration, and shot indicates the number of allowed attempts for each test sample during
evaluation. For example, 20@2 means the exploration stage lasts for 20 turns, and a model has 2
chances to answer each test sample in evaluation. The best model is supposed to achieve the highest
accuracy with the lowest turn@shot.

4 FRAMEWORK FOR AUTOMATIC BLACK-BOX GENERATION

We introduce the agentic framework to generate diverse black-boxes for the ORACLE benchmark.
As illustrated in Figure 4, the framework comprises three LLM-powered modules: a Coding LLM
for initial creation of platform code, a Test LLM for interaction simulation, and a Refinement LLM
for iterative debugging. The framework operates through the following three stages.

Platform Code Generation Platform code refers to the complete code for conducting black-box
interaction, covering the implementation of black-box and interactive interface between LLMs and
black-box. Leveraging the powerful coding capabilities of LLMs, we directly instruct a Coding

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Coding LLM

Test LLM

Refinement LLM

Description of Black-box

- Task overview: You should formalize a
player-blackbox interaction process into
runnable python code …
- Detailed Coding Instructions:

- Write a function named `blackbox`
which iencrypts a-z or A-Z (case-insensitive)
to 1-26. Blank spaces are ignored

- Generate the main function …

Step 1: Generate the platform code of

black-box with description

Step 2: Use a test LLM to simulate

real black-box interaction

Task Introduction

- Task overview: The
user plays the role of
a black-box …
- Goal: You need to
understand …
- Interaction Rules:
You only assign one
string in each turn …
- Output Format: …

Step 3: Debug current code with

interaction log

Generate

Interact

Refine

Interaction Log Task Rule
- The code is
supposed to
simulate this
process: …
- The black-box
function should
implements …

LLM: …
Blackbox: …
LLM: …
Blackbox: …
LLM: …
Blackbox: …
…

Figure 4: The framework for black-box generation, which is used to build the ORACLE benchmark.
All related prompts are detailed in Appendix F.1.

LLM with prompt to generate the platform code. The prompt is twofold, encompassing natural
language description of the black-box and the interaction rule. Since the interaction rule remains
constant for certain type of black-box task, scaling up the benchmark simply involves describing the
new black-boxes in natural language.

Simulation When initial platform code is generated, a Test LLM is used to interact with the black-
box to simulate real interaction scenarios. This simulation covers both exploration and evaluation
stage, and will result in three situations: (i) The platform code contains errors and fails to be exe-
cuted. (ii) The platform code executes, but the black-box functionality is not correctly implemented
as described. (iii) The platform code is correct and the simulation runs successfully as expected. In
either case, an interaction log will be produced when the simulation process ends.

Iterative Debugging A Refinement LLM is used to check the correctness of generated platform
code by combining the interaction log and task rule. The simulation process will result in three
situations as mentioned above. For situation (i), Refinement LLM is instructed to produce revised
platform code based on current code and error messages. For situation (ii), Refinement LLM is first
instructed to figure out the inconsistency between current black-box implementation and its expected
functionality with interaction log and task rule as prompt. Then, it’s instructed to revise current
platform code based on the discovered inconsistency. The simulation step will be conducted again
when the platform code is revised. This iterative debugging process continues until the platform
code is deemed correct by the Refinement LLM (situation (iii)).

The framework design operationalizes two principles from human cognition and software engineer-
ing: (i) Mastery through interaction, akin to learning a game by playing rather than just reading
instructions. (ii) Debugging via runtime feedback, where code is refined based on its observed
behavior rather than static analysis. This interactive, closed-loop process is key to generating high-
fidelity code, and drastically facilitates the construction and scaling of the ORACLE benchmark.

5 EXPERIMENT AND ANALYSIS

5.1 BENCHMARKED MODELS AND BASELINE TEST

We benchmark a series of proprietary and open-weight models. Proprietary LLMs include GPT-
series models (gpt-4o-mini, gpt-4o, gpt-4.1-mini, gpt-4.1, o1, o3-mini, o3, o4-mini), Claude-series
models (claude-3.5-haiku, claude-3.5-sonnet, claude-3.7-sonnet, claude-4-sonnet), Gemini-series
models (gemini-1.5-pro, gemini-2.0-flash, gemini-2.5-flash, gemini-2.5-pro), Qwen-series models
(qwen-plus, qwen-max, qwq-plus). Open-weight LLMs include DeepSeek-series models (deepseek-
v3-671b, deepseek-r1-671b), Llama-series models (llama-4-scout-17b-16e, llama-4-maverick-17b-
128e), Qwen-series models (qwq-32b, qwen3-32b, qwen3-235b-a22b). See Appendix A for a com-
plete list of models and implementation details. Some LLMs can perform extended thinking (i.e.,
reasoning). Both those with and without this capability are tested.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

o4
-m

in
i

cl
au

de
-3

.7
-s

on
ne

t*

cl
au

de
-4

-s
on

ne
t*

cl
au

de
-3

.7
-s

on
ne

t

cl
au

de
-3

.5
-s

on
ne

t

ge
m

in
i-2

.5
-fl

as
h

ge
m

in
i-2

.5
-fl

as
h

*
ge

m
in

i-2
.5

-p
ro

de
ep

se
ek

-r1
cl

au
de

-4
-s

on
ne

t
qw

q-
pl

us o3
o3

-m
in

i
o1

ge
m

in
i-2

.0
-fl

as
h

qw
en

-p
lu

s
*

de
ep

se
ek

-v
3

qw
en

3-
23

5b
*

qw
en

3-
32

b
*

gp
t-4

.1
lla

ma-4
-m

av
er

ick
qw

q-
32

b
qw

en
3-

23
5b

qw
en

-p
lus

gp
t-4

o
qw

en
-m

ax
qw

en
3-

32
b

gp
t-4

.1-
mini

gp
t-4

o-
mini

ge
mini

-1
.5-

pr
o

lla
ma-4

-sc
ou

t
cla

ud
e-3

.5-
ha

iku

0

2

4

6

8

10

Nu
m

be
r o

f T
es

t S
am

pl
es

Baseline Test for Benchmarked Models 12@1
passing line
num_exchange
letter_to_num
uniform_motion

Figure 5: Baseline test for benchmarked models under 12@1. Models superscripted with ∗ indicate
extended thinking enabled. Qualified models are marked in bold.

o3
o4

-m
in

i
ge

m
in

i-2
.5

-p
ro

cla
ud

e-
3.

7-
so

nn
et

*

cla
ud

e-
4-

so
nn

et
*

de
ep

se
ek

-r1
ge

m
in

i-2
.5

-fl
as

h
de

ep
se

ek
-v

3
ge

m
in

i-2
.5

-fl
as

h*

cla
ud

e-
4-

so
nn

et
o3

-m
in

i
qw

en
3-

23
5b

*

qw
en

-p
lu

s*

cla
ud

e-
3.

7-
so

nn
et

cla
ud

e-
3.

5-
so

nn
et

qw
en

3-
32

b* o1
qw

q-
pl

us
ge

m
in

i-2
.0

-fl
as

h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Code Intent Inference (CII) 10@1
Easy
Hard

o3
ge

m
in

i-2
.5

-p
ro

o4
-m

in
i

cla
ud

e-
3.

7-
so

nn
et

*

cla
ud

e-
4-

so
nn

et
*

qw
en

-p
lu

s* o1
de

ep
se

ek
-r1

o3
-m

in
i

qw
en

3-
32

b*

cla
ud

e-
4-

so
nn

et
cla

ud
e-

3.
5-

so
nn

et
qw

en
3-

23
5b

*

qw
q-

pl
us

ge
m

in
i-2

.0
-fl

as
h

de
ep

se
ek

-v
3

ge
m

in
i-2

.5
-fl

as
h*

cla
ud

e-
3.

7-
so

nn
et

ge
m

in
i-2

.5
-fl

as
h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Circuit Rule Inference (CRI) 10@1
Easy
Hard

o3
ge

m
in

i-2
.5

-p
ro

o4
-m

in
i

cla
ud

e-
3.

7-
so

nn
et

*

ge
m

in
i-2

.5
-fl

as
h*

de
ep

se
ek

-r1
qw

en
3-

23
5b

*

qw
en

-p
lu

s*

qw
q-

pl
us

o3
-m

in
i

cla
ud

e-
4-

so
nn

et
* o1

ge
m

in
i-2

.5
-fl

as
h

cla
ud

e-
3.

7-
so

nn
et

qw
en

3-
32

b*

cla
ud

e-
3.

5-
so

nn
et

de
ep

se
ek

-v
3

cla
ud

e-
4-

so
nn

et
ge

m
in

i-2
.0

-fl
as

h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Physics System Inference (PSI) 10@1
Easy
Hard

o4
-m

in
i

o3
-m

in
i

ge
m

in
i-2

.5
-p

ro o3 o1
cla

ud
e-

3.
7-

so
nn

et
*

cla
ud

e-
3.

7-
so

nn
et

cla
ud

e-
3.

5-
so

nn
et

cla
ud

e-
4-

so
nn

et
*

qw
en

3-
23

5b
*

cla
ud

e-
4-

so
nn

et
qw

en
-p

lu
s*

qw
en

3-
32

b*

ge
m

in
i-2

.5
-fl

as
h*

ge
m

in
i-2

.5
-fl

as
h

qw
q-

pl
us

ge
m

in
i-2

.0
-fl

as
h

de
ep

se
ek

-r1
de

ep
se

ek
-v

3

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Encryption Rule Inference (ERI) 10@1
Easy
Hard

o3
o4

-m
in

i
ge

m
in

i-2
.5

-p
ro

qw
en

-p
lu

s*

cla
ud

e-
4-

so
nn

et
*

de
ep

se
ek

-r1
cla

ud
e-

3.
7-

so
nn

et
* o1

o3
-m

in
i

qw
en

3-
23

5b
*

cla
ud

e-
4-

so
nn

et
qw

en
3-

32
b*

ge
m

in
i-2

.5
-fl

as
h*

qw
q-

pl
us

cla
ud

e-
3.

7-
so

nn
et

cla
ud

e-
3.

5-
so

nn
et

de
ep

se
ek

-v
3

ge
m

in
i-2

.5
-fl

as
h

ge
m

in
i-2

.0
-fl

as
h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Interactive Puzzle Inference (IPI) 10@1
Easy
Hard

o3
ge

m
in

i-2
.5

-p
ro

o4
-m

in
i

qw
en

3-
23

5b
*

o3
-m

in
i

ge
m

in
i-2

.5
-fl

as
h*

de
ep

se
ek

-r1 o1
cla

ud
e-

4-
so

nn
et

*

cla
ud

e-
3.

7-
so

nn
et

*

qw
en

3-
32

b*

cla
ud

e-
3.

5-
so

nn
et

cla
ud

e-
3.

7-
so

nn
et

qw
q-

pl
us

cla
ud

e-
4-

so
nn

et
qw

en
-p

lu
s*

ge
m

in
i-2

.5
-fl

as
h

ge
m

in
i-2

.0
-fl

as
h

de
ep

se
ek

-v
3

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Game Strategy Inference (GSI) 1@1
Easy
Hard

Figure 6: Performance of LLMs in six tasks of the ORACLE benchmark 10@1&1@1.

To qualify for the ORACLE benchmark, models must first pass a baseline test that contains 3 black-
boxes from CII, ERI, PSI task, containing a total of 10 test samples. Detailed implementations
of the 3 black-boxes are shown in Figure 2 (a), (c), (d). Turn@shot is set as 12@1, indicat-
ing 12 interaction turns for exploration and 1 chance for answering each test sample. The base-
line test is conducted for three separate times and the averaged performance is reported in Fig-
ure 5. Models must achieve over 80% accuracy to qualify for the ORACLE benchmark. 19 out
of 32 benchmarked models are qualified, including o1, o3-mini, o3, o4-mini, claude-3.5-sonnet,
claude-3.7-sonnet, claude-3.7-sonnet_thinking, claude-4-sonnet, claude-4-sonnet_thinking, gemini-
2.0-flash, gemini-2.5-flash, gemini-2.5-flash_thinking, gemini-2.5-pro, deepseek-v3, deepseek-r1,
qwen-plus_thinking, qwq-plus, qwen3-235b-a22b_thinking, qwen3-32b_thinking.

5.2 OVERALL BENCHMARK RESULT

Two experiment settings, 10@1 and 20@2, are applied for the ORACLE benchmark. Figure 6 and
Figure 7 report results on easy and hard black-boxes per task. Models are ranked by the sum of their
accuracy on easy and hard black-boxes. Generally speaking, models exhibit similar rankings across
6 tasks. o3, o4-mini, gemini-2.5-pro, claude-3.7-sonnet_thinking, and claude-4-sonnet_thinking
achieve competitive performance on all six tasks, and o3 ranks first among all models. When it
comes to open-source models, deepseek-r1 achieves the top overall performance. Latest models
(e.g., gemini-2.5-flash) perform better than old models (e.g., gemini-2.0-flash). Reasoning mod-
els (e.g., claude-4-sonnet_thinking) perform better than conventional chat models (e.g., claude-4-
sonnet). While best performing LLMs boast over 80% accuracy on some easy black-box tasks, they

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

o3
o4

-m
in

i
ge

m
in

i-2
.5

-p
ro

cla
ud

e-
4-

so
nn

et
*

cla
ud

e-
3.

7-
so

nn
et

*

de
ep

se
ek

-r1
qw

en
3-

23
5b

*

o3
-m

in
i

ge
m

in
i-2

.5
-fl

as
h*

cla
ud

e-
3.

7-
so

nn
et

cla
ud

e-
4-

so
nn

et
qw

en
3-

32
b*

qw
en

-p
lu

s*

qw
q-

pl
us

cla
ud

e-
3.

5-
so

nn
et

de
ep

se
ek

-v
3

ge
m

in
i-2

.5
-fl

as
h o1

ge
m

in
i-2

.0
-fl

as
h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Code Intent Inference (CII) 20@2
Easy
Hard

ge
m

in
i-2

.5
-p

ro o3
o4

-m
in

i
qw

en
-p

lu
s*

cla
ud

e-
3.

7-
so

nn
et

*

cla
ud

e-
4-

so
nn

et
*

de
ep

se
ek

-r1 o1
cla

ud
e-

3.
7-

so
nn

et
ge

m
in

i-2
.5

-fl
as

h*

qw
en

3-
23

5b
*

o3
-m

in
i

de
ep

se
ek

-v
3

ge
m

in
i-2

.0
-fl

as
h

cla
ud

e-
4-

so
nn

et
qw

en
3-

32
b*

cla
ud

e-
3.

5-
so

nn
et

qw
q-

pl
us

ge
m

in
i-2

.5
-fl

as
h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Circuit Rule Inference (CRI) 20@2
Easy
Hard

o3
o4

-m
in

i
ge

m
in

i-2
.5

-p
ro

cla
ud

e-
3.

7-
so

nn
et

*

cla
ud

e-
4-

so
nn

et
*

de
ep

se
ek

-r1
qw

en
3-

23
5b

*

o3
-m

in
i

qw
q-

pl
us o1

qw
en

-p
lu

s*

ge
m

in
i-2

.5
-fl

as
h

ge
m

in
i-2

.5
-fl

as
h*

cla
ud

e-
3.

7-
so

nn
et

qw
en

3-
32

b*

cla
ud

e-
3.

5-
so

nn
et

cla
ud

e-
4-

so
nn

et
de

ep
se

ek
-v

3
ge

m
in

i-2
.0

-fl
as

h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Physics System Inference (PSI) 20@2
Easy
Hard

o4
-m

in
i

o3
o3

-m
in

i
ge

m
in

i-2
.5

-p
ro

cla
ud

e-
4-

so
nn

et
*

cla
ud

e-
3.

7-
so

nn
et

* o1
cla

ud
e-

3.
7-

so
nn

et
cla

ud
e-

3.
5-

so
nn

et
qw

en
3-

32
b*

ge
m

in
i-2

.5
-fl

as
h*

ge
m

in
i-2

.5
-fl

as
h

ge
m

in
i-2

.0
-fl

as
h

qw
en

3-
23

5b
*

cla
ud

e-
4-

so
nn

et
de

ep
se

ek
-r1

de
ep

se
ek

-v
3

qw
en

-p
lu

s*

qw
q-

pl
us

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Encryption Rule Inference (ERI) 20@2
Easy
Hard

o3
ge

m
in

i-2
.5

-p
ro

o4
-m

in
i

cla
ud

e-
4-

so
nn

et
*

cla
ud

e-
3.

7-
so

nn
et

*

ge
m

in
i-2

.5
-fl

as
h* o1

de
ep

se
ek

-r1
qw

en
-p

lu
s*

qw
en

3-
32

b*

qw
en

3-
23

5b
*

o3
-m

in
i

cla
ud

e-
4-

so
nn

et
cla

ud
e-

3.
7-

so
nn

et
cla

ud
e-

3.
5-

so
nn

et
qw

q-
pl

us
de

ep
se

ek
-v

3
ge

m
in

i-2
.5

-fl
as

h
ge

m
in

i-2
.0

-fl
as

h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Interactive Puzzle Inference (IPI) 20@2
Easy
Hard

o3
qw

en
3-

23
5b

*

ge
m

in
i-2

.5
-p

ro
cla

ud
e-

4-
so

nn
et

* o1
o3

-m
in

i
cla

ud
e-

3.
7-

so
nn

et
*

ge
m

in
i-2

.5
-fl

as
h*

o4
-m

in
i

qw
en

3-
32

b*

de
ep

se
ek

-r1
cla

ud
e-

4-
so

nn
et

cla
ud

e-
3.

7-
so

nn
et

qw
en

-p
lu

s*

ge
m

in
i-2

.5
-fl

as
h

qw
q-

pl
us

cla
ud

e-
3.

5-
so

nn
et

de
ep

se
ek

-v
3

ge
m

in
i-2

.0
-fl

as
h

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
)

Game Strategy Inference (GSI) 2@1
Easy
Hard

Figure 7: Performance of LLMs in six tasks of the ORACLE benchmark 20@2&2@1.

still struggle with harder ones, where their accuracy is typically less than half that of their perfor-
mance on easy tasks.

5.3 ANALYSIS

CII CRI PSI ERI IPI GSI
20%

10%

0%

10%

20%

30%

40%

50%

In
cr

ea
se

 o
f A

cc
ur

ac
y

Easy Black-box Tasks
LLM
c-4-s*
ds-v3
mean

CII CRI PSI ERI IPI GSI
20%

10%

0%

10%

20%

30%

40%

50%

In
cr

ea
se

 o
f A

cc
ur

ac
y

Hard Black-box Tasks
LLM
c-4-s*
ds-v3
mean

Figure 8: Averaged accuracy
increase of 19 LLMs across 6
tasks when turn@shot is ex-
tended from 10@1&1@1 to
20@2&2@1.

We aim to reveal a key weakness of modern LLMs in black-box
interaction: They struggle to develop efficient and adaptive ex-
ploration strategies. This deficiency in high-level planning high-
lights LLMs’ shortcomings in deductive and inductive reasoning.
To substantiate this claim, we analyze the performance gains from
increased exploration turns, present a comparative experiment, and
examine the exploration behaviors of leading LLMs. Additional
case analysis, ablation study, and weaknesses of LLMs are detailed
in Appendix D, E, and C.4 respectively.

Analysis on performance gains from more exploration Model
performance is expected to increase when exploration turns (from
10 to 20) and evaluation attempts (from 1 to 2) are extended. How-
ever, as shown in Figure 8, the averaged performance of LLMs im-
proves by over 10% in CII, CRI, and IPI tasks, but it shows neg-
ligible improvement in PSI, ERI, and GSI tasks. While the lim-
ited progress on the PSI task is mainly due to the poor computing
ability of LLMs (detailed in Appendix C.4), the lack of improve-
ment on the ERI and GSI tasks highlights a fundamental weakness
of LLMs: They are not good at developing efficient exploration
strategy in some scenarios. We also find the performance gains is
greater for easy black-boxes compared to hard ones, and this phe-
nomenon becomes especially obvious when it comes to less capable
LLMs. An example in Figure 8 indicates that the accuracy increase
of deepseek-v3 remains near zero in hard black-boxes, while claude-4-sonnet_thinking can still ob-
tain great improvement. This suggests advanced models can devise and execute superior exploration
strategies compared to less capable models.

Comparative experiment on adaptive exploration strategy optimization Apart from devel-
oping an efficient strategy, LLMs are supposed to keep optimizing a strategy adaptively based
on instant feedback from black-box to narrow action space and maximize information gained
from each turn, which is called adaptive exploration (Patrascu & Stacey, 1999). However, we
find that even SOTA LLMs still lack a high-level planning ability to optimize exploration strate-
gies. A comparative experiment with two settings is designed for verification. Setting (i): mod-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

o4-mini: (0,0,0,0,0,0,0,0)
o4-mini: (0,0,0,0,0,0,0,0)
o4-mini: (1,0,0,0,0,0,0,0)
o4-mini: (0,1,0,0,0,0,0,0)
o4-mini: (0,0,1,0,0,0,0,0)
o4-mini: (0,0,0,1,0,0,0,0)
o4-mini: (0,0,0,0,0,0,0,1)
o4-mini: (1,1,1,1,1,1,1,1)
o4-mini: (0,0,0,0,1,0,0,0)
o4-mini: (0,0,0,0,0,1,0,0)

……
Final Accuracy: 0%

Setting (i) CRI 10@1

o4-mini: (0,0,0,0,0,0,0,0)
o4-mini: (1,0,0,0,0,0,0,0)
o4-mini: (0,1,0,0,0,0,0,0)
o4-mini: (1,1,0,0,0,0,0,0)
o4-mini: (0,0,1,0,0,0,0,0)
o4-mini: (0,0,0,1,0,0,0,0)
o4-mini: (0,0,0,0,1,0,0,0)
o4-mini: (0,0,0,0,0,1,0,0)
o4-mini: (0,0,0,0,0,0,1,0)
o4-mini: (0,0,0,0,0,0,0,1)

……
Final Accuracy: 0%

gemini-2.5-pro: A
gemini-2.5-pro: a
gemini-2.5-pro: B
gemini-2.5-pro: b
gemini-2.5-pro: C
gemini-2.5-pro: c
gemini-2.5-pro: Z
gemini-2.5-pro: z
gemini-2.5-pro: Hello
gemini-2.5-pro: Apple Bee

……
Final Accuracy: 0%

gemini-2.5-pro: a
gemini-2.5-pro: b
gemini-2.5-pro: c
gemini-2.5-pro: z
gemini-2.5-pro: Hello
gemini-2.5-pro: word
gemini-2.5-pro: book
gemini-2.5-pro: cat
gemini-2.5-pro: in
gemini-2.5-pro: banana

……
Final Accuracy: 0%

Setting (ii) CRI 10@1 Setting (i) ERI 10@1 Setting (ii) ERI 10@1

Figure 9: Cases of exploration behavior under two different settings. Black-box responses and
evaluation stages are neglected. Red text indicates the same exploration behavior.

els will not receive black-box feedback in each turn. Instead, all the queries and correspond-
ing answers will be announced in the last exploration turn; Setting (ii) serves as a control group,
where models will receive instant black-box feedback in each turn. Ideally, model performance
under setting (ii) is supposed to be higher than setting (i), as models can keep optimizing ex-
ploration strategy with instant feedback, but they have to maintain a fixed strategy in setting (i).

g-2.5-pro o3-mini o4-mini
0%

20%

40%

60%

80%

100%
CRI 10@1

Setting(i)+Easy
Setting(ii)+Easy
Setting(i)+Hard
Setting(ii)+Hard

g-2.5-pro o3-mini o4-mini
0%

20%

40%

60%

80%

100%
ERI 10@1

Setting(i)+Easy
Setting(ii)+Easy
Setting(i)+Hard
Setting(ii)+Hard

Figure 10: Model perfor-
mance in CRI 10@1 and ERI
10@1 under two settings.

We select three powerful LLMs, gemini-2.5-pro, o3-mini, and o4-
mini, and evaluate them in two representative tasks, CRI and ERI,
which most challenge models’ ability in optimizing exploration
strategy. Results are shown in Figure 10. The three LLMs exhibit
remarkably consistent performance across the two settings, provid-
ing strong evidence of their inability to optimize exploration strate-
gies effectively. To further investigate the exploration strategy of
LLMs under two different settings, we show some cases of LLMs’
exploration behavior in Figure 9. These cases come from LLMs’ in-
teraction with two easy black-boxes from CRI and ERI task (“Xor
Sequence” and “Zigzag Cipher”, detailed in Appendix G). First,
we find both models adopt inefficient exploration strategies: In the
CRI task, o4-mini employs an exhaustive, in-order strategy. In the
ERI task, gemini-2.5-pro resorts to querying single English letter
or word. Second, both models fail to adaptively optimize explo-
ration strategy. Their reasoning behavior remains largely consis-
tent across two settings, indicating that they cannot effectively ex-
ploit the real-time feedback from the black-box. Consequently, both
models achieve zero accuracy in evaluation.

Building on the analysis above, we categorize the capacity to devise
exploration strategy into three tiers. Tier 1: Model can not develop
a planned exploration strategy, and explore in a random approach.
Tier 2: Model can develop a relatively efficient exploration strat-
egy but fail to optimize it adaptively. Tier 3: Model can adaptively
optimize their exploration strategy based on instant feedback, de-
veloping a nearly optimal approach. Most LLMs operate at Tier 1. Best-performed reasoning LLMs
achieve Tier 2 in some situations. Tier 3 is the domain of human according to Charles Peirce’s the-
ory and primitive human evaluation (Appendix E.7). We have not yet identified any LLM that can
achieve Tier 3 of adaptive strategy planning.

6 RELATED WORK

6.1 MODELING INTERACTIVE ENVIRONMENT

Building interactive environment that simulates real-world settings has always been a heated re-
search topic. Prior works in reinforcement learning build online (Brockman et al., 2016) and offline
(Fu et al., 2020) environment to investigate models’ ability of strategic learning. Recent progress

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

in evaluating LLMs and LLM agents has adopted various methods to model interactive environ-
ment. For example, WebArena (Zhou et al., 2023) creates an environment with fully functional
websites that contain tools and external knowledge bases. Fish et al. (2025) builds stationary and
non-stationary economic environment. Wu et al. (2023); Costarelli et al. (2024); Hu et al. (2024);
Park et al. (2025) employ text games (e.g. Akinator) or video games (e.g. MineCraft) as environment
and evaluate LLMs’ reasoning ability through game-playing. Ma et al. (2024) propose AgentBoard
which contains web, tool, embodied AI, and game tasks as partially observable environments.

6.2 REASONING DATASETS AND BENCHMARKS

Evaluating reasoning ability of LLMs is an active area of research, especially with the recent devel-
opment of reasoning large language models (Chen et al., 2025). In the field of deductive reasoning,
several datasets and benchmarks are developed for measuring complex mathematics (e.g. GSM8k
(Cobbe et al., 2021), MATH (Hendrycks et al., 2021), AIME, AMC23, Omni-MATH (Gao et al.,
2024), FrontierMath (Glazer et al., 2024), OlympiadBench (He et al., 2024)), coding (e.g. Code-
Contests (Li et al., 2022), SWEbench (Jimenez et al., 2023), LiveCodeBench (Jain et al., 2024)), and
logic (e.g. BIGBench Hard (Suzgun et al., 2022), LiveBench (White et al., 2024), ARC (Chollet,
2019), ZebraLogic (Lin et al., 2025)). Datasets for inductive reasoning include DEER (Yang et al.,
2022), ConceptARC (Moskvichev et al., 2023), Mirage (Li et al., 2024), InductionBench (Hua et al.,
2025), Abductive reasoning datasets include ART (Bhagavatula et al., 2020), CauseLogics (He &
Lu, 2024). Some researches like UniADILR (Xia et al., 2025) seek to evaluate deductive, inductive,
and abductive reasoning in one framework.

7 DISCUSSION

The design of black-box interaction can bring additional benefits. First, it addresses the critical
concern of data contamination (Roberts et al., 2023; Deng et al., 2023), which refers to the leakage
of datasets and benchmarks into LLMs’ training data, thus hindering the discrimination of whether
LLMs truly reason or just memorize (Magar & Schwartz, 2022; Zhang et al., 2022; Dziri et al., 2023;
Wu et al., 2024; Balloccu et al., 2024). Black-box interaction naturally generate dynamic context as
input. The inherent invisibility of black-box also ensures zero data contamination, even if LLMs are
highly acquainted with its practical implementation. We also conduct an ablation study (Appendix
E.3) which directly adds relevant knowledge as prompt for verification.

Second, it facilitates the evaluation process. Previous works (Turpin et al., 2023; Hao et al., 2024;
Mondorf & Plank, 2024) find LLMs can generate correct answers with logically incorrect reason-
ing paths. Thus evaluations on most outcome-based datasets and benchmarks (Cobbe et al., 2021;
Hendrycks et al., 2021) become less convincing. In the scenario of black-box interaction, the inter-
action history naturally reflects the reasoning path of LLMs, and an incorrect reasoning path will
not lead to correctness in all test samples. So evaluation on test samples is a reliable approach.

Third, black-box interaction simulates many concrete real-world applications. For example, in the
designed six tasks in the ORACLE benchmark, CII models code reverse engineering or decipher-
ing legacy code via breakpoint debugging. CRI models hardware reverse engineering or integrated
circuit (IC) analysis. PSI models scientific discovery and the scientific method. ERI models crypt-
analysis under the Chosen-Plaintext Attack (CPA) setting. IPI models interactive problem-solving.
GSI models opponent modeling and devising counter-strategies within game-theoretic scenarios.

8 CONCLUSION

We introduce black-box interaction, a novel paradigm for interactively evaluating the advanced rea-
soning of LLMs, and propose the corresponding ORACLE benchmark. This benchmark features 6
task designs and 96 black-boxes to evaluate 19 modern LLMs. The ORACLE benchmark is highly
adaptable, allowing for easy scaling to any scale, task, and difficulty level through the a robust
agentic generation framework. We also provide deep insight into the reasoning behavior and short-
comings of current LLMs in uncovering the hidden rules behind the black-box.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We strive to make sure all the results reported in this paper are reproducible. The source code has
been submitted as supplementary materials.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are only used for polish writing in this paper. Specifically, LLMs
are exclusively used to rewrite individual sentences based on original human text to improve gram-
mar and wording. The authors of this paper are responsible for the contents of their submission.

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024. (Cited on pg. 18)

Anthropic. Claude 3.7 sonnet system card. 2025. (Cited on pg. 1, 18)

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, re-
peat: Data contamination and evaluation malpractices in closed-source llms. arXiv preprint
arXiv:2402.03927, 2024. (Cited on pg. 10, 19)

Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Wen-tau Yih, and Yejin Choi. Abductive commonsense reasoning.
In International Conference on Learning Representations, 2020. (Cited on pg. 10)

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. (Cited on pg. 9)

Arthur W Burks. Peirce’s theory of abduction. Philosophy of science, 13(4):301–306, 1946. (Cited
on pg. 19)

Boxi Cao, Mengjie Ren, Hongyu Lin, Xianpei Han, Feng Zhang, Junfeng Zhan, and Le Sun. Structe-
val: Deepen and broaden large language model assessment via structured evaluation. arXiv
preprint arXiv:2408.03281, 2024. (Cited on pg. 19)

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025. (Cited on
pg. 1, 10)

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019. (Cited
on pg. 10)

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. (Cited on pg. 1, 10, 19)

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025. (Cited on pg. 18)

Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson Cheng,
Wenjie Li, Joshua Clymer, and Arjun Yadav. Gamebench: Evaluating strategic reasoning abilities
of llm agents. arXiv preprint arXiv:2406.06613, 2024. (Cited on pg. 1, 10)

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigat-
ing data contamination in modern benchmarks for large language models. arXiv preprint
arXiv:2311.09783, 2023. (Cited on pg. 10, 19)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of trans-
formers on compositionality. Advances in Neural Information Processing Systems, 36:70293–
70332, 2023. (Cited on pg. 10)

Kuang Tih Fann. Peirce’s theory of abduction. Springer Science & Business Media, 2012. (Cited
on pg. 19)

Sara Fish, Julia Shephard, Minkai Li, Ran I Shorrer, and Yannai A Gonczarowski. Econevals:
Benchmarks and litmus tests for llm agents in unknown environments. arXiv preprint
arXiv:2503.18825, 2025. (Cited on pg. 10)

James Fodor. Line goes up? inherent limitations of benchmarks for evaluating large language
models. arXiv preprint arXiv:2502.14318, 2025. (Cited on pg. 1)

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020. (Cited on pg. 9)

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024. (Cited on pg. 10)

GeminiTeam, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024. (Cited on
pg. 18)

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint
arXiv:2411.04872, 2024. (Cited on pg. 10)

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. (Cited on pg. 1, 18)

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, Zhen Wang, and Zhiting Hu. Llm reasoners: New evaluation,
library, and analysis of step-by-step reasoning with large language models, 2024. (Cited on pg.
10, 19)

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024. (Cited on pg. 10)

Jinwei He and Feng Lu. Causejudger: Identifying the cause with llms for abductive logical reason-
ing. arXiv preprint arXiv:2409.05559, 2024. (Cited on pg. 10)

Kaiyu He, Mian Zhang, Shuo Yan, Peilin Wu, and Zhiyu Chen. Idea: Enhancing the rule learning
ability of large language model agent through induction, deduction, and abduction. In Findings
of the Association for Computational Linguistics: ACL 2025, pp. 13563–13597, 2025. (Cited on
pg. 20)

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021. (Cited on pg. 1, 10, 19)

Lanxiang Hu, Qiyu Li, Anze Xie, Nan Jiang, Ion Stoica, Haojian Jin, and Hao Zhang. Gamearena:
Evaluating llm reasoning through live computer games. arXiv preprint arXiv:2412.06394, 2024.
(Cited on pg. 1, 10, 20)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wenyue Hua, Tyler Wong, Sun Fei, Liangming Pan, Adam Jardine, and William Yang Wang. Induc-
tionbench: Llms fail in the simplest complexity class. arXiv preprint arXiv:2502.15823, 2025.
(Cited on pg. 10)

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle Cai,
Hui Yuan, Runzhe Wang, Yue Wu, Ming Yin, Shange Tang, Yangsibo Huang, Chi Jin, Xinyun
Chen, Chiyuan Zhang, and Mengdi Wang. Math-perturb: Benchmarking llms’ math reasoning
abilities against hard perturbations, 2025. (Cited on pg. 19)

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024. (Cited on pg. 18)

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024. (Cited on pg. 18)

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024. (Cited on
pg. 10, 19)

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023. (Cited on pg. 10)

Eldar Kurtic, Amir Moeini, and Dan Alistarh. Mathador-lm: A dynamic benchmark for mathemat-
ical reasoning on large language models. arXiv preprint arXiv:2406.12572, 2024. (Cited on pg.
19)

Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey. arXiv preprint
arXiv:2502.12289, 2025. (Cited on pg. 19)

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun Zhao, and Kang Liu. S3eval: A synthetic,
scalable, systematic evaluation suite for large language models. arXiv preprint arXiv:2310.15147,
2023. (Cited on pg. 19)

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020. (Cited on pg. 19)

Jiachun Li, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. Mirage: Evaluating and
explaining inductive reasoning process in language models. arXiv preprint arXiv:2410.09542,
2024. (Cited on pg. 10)

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022. (Cited on pg. 10)

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023. (Cited on pg. 19)

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. arXiv
preprint arXiv:2502.01100, 2025. (Cited on pg. 10)

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024. (Cited on pg. 18)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents.
arXiv preprint arXiv:2401.13178, 2024. (Cited on pg. 10)

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. arXiv
preprint arXiv:2203.08242, 2022. (Cited on pg. 10, 19)

Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Christos Thrampoulidis, Leonid Sigal, and Renjie Liao.
Leveraging online olympiad-level math problems for llms training and contamination-resistant
evaluation. arXiv preprint arXiv:2501.14275, 2025. (Cited on pg. 19)

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024. (Cited on pg. 19)

Philipp Mondorf and Barbara Plank. Beyond accuracy: Evaluating the reasoning behavior of large
language models - a survey. In First Conference on Language Modeling, 2024. (Cited on pg. 1,
10, 19)

Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The conceptarc benchmark:
Evaluating understanding and generalization in the arc domain. arXiv preprint arXiv:2305.07141,
2023. (Cited on pg. 10)

OpenAI. Introducing gpt-4.1 in the api. 2025a. (Cited on pg. 18)

OpenAI. Openai o3 and o4-mini system card. 2025b. (Cited on pg. 1, 18)

Dongmin Park, Minkyu Kim, Beongjun Choi, Junhyuck Kim, Keon Lee, Jonghyun Lee, Inkyu
Park, Byeong-Uk Lee, Jaeyoung Hwang, Jaewoo Ahn, et al. Orak: A foundational benchmark
for training and evaluating llm agents on diverse video games. arXiv preprint arXiv:2506.03610,
2025. (Cited on pg. 10)

Relu Patrascu and Deborah Stacey. Adaptive exploration in reinforcement learning. In IJCNN’99.
International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339), vol-
ume 4, pp. 2276–2281. IEEE, 1999. (Cited on pg. 8)

Charles Sanders Peirce. Collected papers of charles sanders peirce, volume 5. Harvard University
Press, 1934. (Cited on pg. 1, 19)

Kun Qian, Shunji Wan, Claudia Tang, Youzhi Wang, Xuanming Zhang, Maximillian Chen, and Zhou
Yu. Varbench: Robust language model benchmarking through dynamic variable perturbation.
arXiv preprint arXiv:2406.17681, 2024. (Cited on pg. 19)

QwenTeam. Qwq-32b: Embracing the power of reinforcement learning. 2025. (Cited on pg. 18)

Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, and Samuel Dooley. To the
cutoff... and beyond? a longitudinal perspective on llm data contamination. In The Twelfth Inter-
national Conference on Learning Representations, 2023. (Cited on pg. 10, 19)

Jiajun Shi, Jian Yang, Jiaheng Liu, Xingyuan Bu, Jiangjie Chen, Junting Zhou, Kaijing Ma, Zhou-
futu Wen, Bingli Wang, Yancheng He, et al. Korgym: A dynamic game platform for llm reasoning
evaluation. arXiv preprint arXiv:2505.14552, 2025. (Cited on pg. 20)

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince,
Sooraj Thomas, et al. Functional benchmarks for robust evaluation of reasoning performance,
and the reasoning gap. arXiv preprint arXiv:2402.19450, 2024. (Cited on pg. 19)

Shichao Sun, Junlong Li, Weizhe Yuan, Ruifeng Yuan, Wenjie Li, and Pengfei Liu. The critique of
critique. arXiv preprint arXiv:2401.04518, 2024. (Cited on pg. 19)

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022. (Cited on
pg. 1, 10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. (Cited on pg. 18)

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952–74965, 2023. (Cited on pg. 10, 19)

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022. (Cited on pg. 19)

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 4, 2024. (Cited on pg. 10, 19)

Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents. arXiv preprint arXiv:2310.01557, 2023. (Cited on pg. 10, 20)

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 1819–1862, 2024. (Cited on pg. 10)

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
reasoning beyond accuracy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 27723–27730, 2025. (Cited on pg. 10)

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024. (Cited on pg. 18)

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik Cambria, Xiaodong Liu, Jianfeng Gao, and
Furu Wei. Language models as inductive reasoners. arXiv preprint arXiv:2212.10923, 2022.
(Cited on pg. 10)

Jiahao Ying, Yixin Cao, Yushi Bai, Qianru Sun, Bo Wang, Wei Tang, Zhaojun Ding, Yizhe Yang,
Xuanjing Huang, and Shuicheng Yan. Automating dataset updates towards reliable and timely
evaluation of large language models. arXiv preprint arXiv:2402.11894, 2024. (Cited on pg. 19)

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
paradox of learning to reason from data. arXiv preprint arXiv:2205.11502, 2022. (Cited on pg.
10)

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via
adaptive reasoning graph. arXiv preprint arXiv:2406.17271, 2024. (Cited on pg. 19)

Qihao Zhao, Yangyu Huang, Tengchao Lv, Lei Cui, Qinzheng Sun, Shaoguang Mao, Xin Zhang,
Ying Xin, Qiufeng Yin, Scarlett Li, et al. Mmlu-cf: A contamination-free multi-task language
understanding benchmark. arXiv preprint arXiv:2412.15194, 2024. (Cited on pg. 19)

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chat-
bot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023. (Cited
on pg. 19)

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023. (Cited on pg. 10)

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Dynamic evaluation of large language models for reasoning tasks, 2024. (Cited on pg. 19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A Implementation Details 18

A.1 Details of LLMs . 18

A.2 Details of ORACLE benchmark . 18

B Additional Related Work 19

B.1 Data Contamination and Dynamic Benchmark . 19

B.2 Evaluation of Reasoning Ability . 19

B.3 Charles Peirce’s Framework of Humans Reasoning Behavior 19

C Additional Discussion 20

C.1 Limitations . 20

C.2 Comparison with Previous Work . 20

C.3 More Task Settings for Black-Box Interaction . 20

C.4 Extra Findings . 21

D Case Study 22

D.1 How Iterative Debugging Works . 22

D.2 How LLMs Interact with the Black-Box . 27

D.3 How LLMs Succeed and Fail . 31

E Ablation Study 42

E.1 The Influence of Temperature . 42

E.2 The Influence of Extended Thinking . 43

E.3 The Influence of Prior Knowledge . 43

E.4 The Influence of Exploration Turns . 44

E.5 The Influence of Reasoning Tokens . 44

E.6 The Influence of Reflective Instruction . 44

E.7 Human Evaluation . 44

F Prompt Details 45

F.1 Prompt for Black-Box Generation . 45

F.2 Prompt for Black-Box Interaction . 51

G Details of Black-Boxes in the ORACLE benchmark 53

G.1 Code Intent Inference (CII) . 54

G.2 Circuit Rule Inference (CRI) . 55

G.3 Physics System Inference (PSI) . 56

G.4 Encryption Rule Inference (ERI) . 59

G.5 Interactive Puzzle Inference (IPI) . 62

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G.6 Game Strategy Inference (GSI) . 64

H Detailed Experimental Results 67

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 1: Model code/API of benchmarked models.

Model Name Model Type API Access
GPT-4o-mini (Hurst et al., 2024) Proprietary gpt-4o-mini-2024-07-18
GPT-4o (Hurst et al., 2024) Proprietary gpt-4o-2024-08-06
GPT-4.1-mini (OpenAI, 2025a) Proprietary gpt-4.1-mini-2025-04-14
GPT-4.1 (OpenAI, 2025a) Proprietary gpt-4.1-2025-04-14
o1 (Jaech et al., 2024) Proprietary o1-2024-12-17
o3-mini (OpenAI, 2025b) Proprietary o3-mini-2025-01-31
o3 (OpenAI, 2025b) Proprietary o3-2025-04-16
o4-mini (OpenAI, 2025b) Proprietary o4-mini-2025-04-16
Claude-3.5-haiku (Anthropic, 2024) Proprietary claude-3-5-haiku-20241022
Claude-3.5-sonnet (Anthropic, 2024) Proprietary claude-3-5-sonnet-20241022
Claude-3.7-sonnet (Anthropic, 2025) Proprietary claude-3-7-sonnet-20250219
Claude-4-sonnet (Anthropic, 2025) Proprietary claude-sonnet-4-20250514
Gemini-1.5-pro (GeminiTeam et al., 2024) Proprietary gemini-1.5-pro
Gemini-2.0-flash (GeminiTeam et al., 2024) Proprietary gemini-2.0-flash
Gemini-2.5-flash (Comanici et al., 2025) Proprietary gemini-2.5-flash
Gemini-2.5-pro (Comanici et al., 2025) Proprietary gemini-2.5-pro
DeepSeek-v3-671b (Liu et al., 2024) Open-weight deepseek-reasoner
DeepSeek-r1-671b (Guo et al., 2025) Open-weight deepseek-chat
Llama-4-scout-17b-16e (Touvron et al., 2023) Open-weight meta-llama/llama-4-scout
Llama-4-maverick-17b-128e (Touvron et al., 2023) Open-weight meta-llama/llama-4-maverick
Qwen-max (Yang et al., 2024) Proprietary qwen-max
Qwen-plus (Yang et al., 2024) Proprietary qwen-plus-latest
Qwen3-235b-a22b (Yang et al., 2024) Open-weight qwen3-235b-a22b
Qwen3-32b (Yang et al., 2024) Open-weight qwen3-32b
QwQ-32b (QwenTeam, 2025) Open-weight qwq-32b
QwQ-plus (QwenTeam, 2025) Proprietary qwq-plus

A IMPLEMENTATION DETAILS

A.1 DETAILS OF LLMS

Some key hyper-parameters of LLMs for results reported in baseline test and ORACLE benchmark
are set as follows: The temperature for all benchmarked models is set as 0. The reasoning ef-
fort for GPT-series LLMs (o1, o3-mini, o3, o4-mini) is set as medium. The token budget for
extended thinking in Claude-series LLMs (claude-3.7-sonnet_thinking, claude-4-sonnet_thinking)
is set as 20000. For Gemini-series LLMs (gemini-2.5-flash_thinking, gemini-2.5-pro), the think-
ing budget is set as dynamic. For Qwen-series LLMs (qwen-plus_thinking, qwen3-32b_thinking,
qwen3-235b-a22b_thinking, qwq-plus), the thinking budget is set as 20000 tokens. For deepseek-
r1, the length of thinking content can not be modified. So full thinking is allowed. The experi-
ments are conducted from 4 July to 19 Aug. All benchmarked models are up-to-date. For open-
weight LLMs like DeepSeek-series models, Llama-series models, Qwen-series models, we directly
call API from https://api.deepseek.com, https://openrouter.ai/api/v1,
https://dashscope.aliyuncs.com/compatible-mode/v1 respectively.

A.2 DETAILS OF ORACLE BENCHMARK

To balance the cost of LLMs, the number of test samples for each black-box task is set as follows:

• Code Intent Inference (CII): The test samples include 5 unique input variable values, each
with 6 or 7 checkpoint questions, totaling 30 or 35 questions.

• Circuit Rule Inference (CRI): Each black-box considers 10 different input wires as test
samples.

• Physics System Inference (PSI): Each black-box considers 6 different time points as test
samples.

• Encryption Rule Inference (ERI): Each black-box considers 8 different plaintext as test
samples.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Interactive Puzzle Inference (IPI): Each black-box considers 6 different puzzle answers as
test samples.

• Game Strategy Inference (GSI): Each black-box considers 4 different game rounds, ranging
from 8 to 15.

Test samples are directly generated by LLMs. However, human rewriting is involved in some cases.
We find LLMs fail to generate valid and good test samples in Code Intent Inference task. In Interac-
tive Puzzle Inference, some test samples involve numerical calculations (e.g., Wordle), which Large
Language Models (LLMs) sometimes struggle with.

B ADDITIONAL RELATED WORK

B.1 DATA CONTAMINATION AND DYNAMIC BENCHMARK

Previous works have highlighted the risks of memorization and contamination during LLM training
and fine-tuning (Roberts et al., 2023; Deng et al., 2023): While LLMs are trained over a huge amount
of data from Internet, static datasets will be inadvertently included, leading to overestimation of
model performance (Magar & Schwartz, 2022; Balloccu et al., 2024). Therefore, researchers begin
to shed light on dynamic benchmarks. Current approaches on building dynamic benchmarks can
be classified into updating benchmark data based on the timestamps of LLM (White et al., 2024;
Jain et al., 2024; Mahdavi et al., 2025) and regenerating benchmark data to reconstruct original
benchmarks. Specifically, the latter approach can be further divided into rule-based reconstruction
(Lei et al., 2023; Zhu et al., 2024; Mirzadeh et al., 2024; Zhao et al., 2024; Kurtic et al., 2024),
LLM-based reconstruction (Ying et al., 2024; Cao et al., 2024; Qian et al., 2024), human-based
reconstruction (Srivastava et al., 2024; Huang et al., 2025), and hybrid reconstruction (Zhang et al.,
2024).

B.2 EVALUATION OF REASONING ABILITY

The growing complexity of reasoning tasks undertaken by LLMs makes their evaluation increas-
ingly difficult. Simply relying on the comparisons between LLM-generated outcomes and ground
truth labels (Cobbe et al., 2021; Hendrycks et al., 2021) becomes insufficient, as LLMs can produce
correct answers with logically incorrect reasoning process (Turpin et al., 2023; Hao et al., 2024;
Mondorf & Plank, 2024). Therefore, researchers turn to evaluate reasoning paths step-by-step. Ex-
isting criteria of metrics can be categorized into groundedness, validity, coherence, and utility (Lee
& Hockenmaier, 2025). Groundedness measures if the step is factually true according to the query
(Lewis et al., 2020). Validity evaluates if a reasoning step contains no errors (Lightman et al., 2023).
Coherence checks if the inputs for a reasoning step are adequately provided by the prior steps (Wang
et al., 2022). Utility measures if a reasoning step contributes to the correct final answer. Besides
leveraging evaluation metrics, LLM-as-a-judge is frequently employed in evaluation (Zheng et al.,
2023; Hao et al., 2024; Sun et al., 2024), which is a fast and cheap alternative to human judgment.

B.3 CHARLES PEIRCE’S FRAMEWORK OF HUMANS REASONING BEHAVIOR

The reasoning behavior of humans can be categorized into deductive reasoning, inductive reasoning,
and abductive reasoning according to Charles Peirce’s framework (Peirce, 1934). Generally speak-
ing, as shown in Figure 1, the reasoning process begins with abduction, where initial observations
spark potential explanatory hypotheses. These hypotheses are applied to derive new observations
via deduction. Then induction works in strengthening or discarding hypotheses by analyzing for-
mer and new observations. This cycle repeats, iteratively refining existing hypotheses until a robust
and generalizable theory is built (Burks, 1946; Fann, 2012). Charles Peirce’s framework reveals the
significance of human reasoning when facing an unknown environment: three aspects of reason-
ing are dynamically intertwined, collectively driving the discovery, verification, and application of
knowledge.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C ADDITIONAL DISCUSSION

C.1 LIMITATIONS

The limitations of this work include: (i) This paper’s scope is limited to investigating the perfor-
mance of LLMs in the ORACLE benchmark, with the evaluation of LLM-based agents reserved for
future research. (ii) Due to the heavy cost of calling LLMs, we don’t evaluate some powerful yet
expensive LLMs (e.g., o3-pro). The ORACLE benchmark also lacks a statistical analysis. (iii) Since
the models that performed well on the ORACLE benchmark are all closed-source, we are unable to
analyze them to determine why they fail to develop efficient and adaptive strategies in black-box
interaction tasks. One possible explanation is that, it’s well-known that the capabilities of an LLM
primarily depend on the base model’s pre-training and the post-training. The former involves next
token prediction given a context, while the latter is an RL training on CoT prompt-based QA pairs.
Neither of these training paradigms involves placing the model in an unknown environment for ex-
ploration. Consequently, the model inherently lacks the ability for strategy optimization through
multi-turn interaction with an environment.

C.2 COMPARISON WITH PREVIOUS WORK

Some previous researches (Wu et al., 2023; Hu et al., 2024; Shi et al., 2025) evaluate LLMs’ ability
of playing text games. Black-box interaction differs from these works in three aspects: First, we
focus on building an interactive, unknown environment with hidden rules and investigating LLMs
behavior in this environment, instead of testing LLMs’ performance in playing specific games. Sec-
ond, some of the text games can be viewed as a subset of Interactive Puzzle Inference in the ORACLE
benchmark, and our proposed black-box interaction approach can easily scale the Interactive Puzzle
Inference task. Third, all chosen text games in previous works are well-known, which increases the
possibility that LLMs are already familiar with the exploration strategy. Black-boxes in Interactive
Puzzle Inference are all modified to avoid this situation (detailed in Appendix G.5).

He et al. (2025) introduced RULEARN benchmark which builds an interactive environment with
unknown rules. There exist three noticeable differences between RULEARN and the ORACLE
benchmark. First, the ORACLE benchmark formalizes the black-box interaction task into distinct
exploration and evaluation stages. In contrast, RULEARN only involves a one-stage multi-turn in-
teraction, thus lacking an analysis of the reasons behind model failure. Second, the three tasks in
RULEARN can be classified as Interactive Puzzle Inference (IPI) task within the ORACLE bench-
mark. In other tasks within the ORACLE benchmark, the model must infer the hidden rule rather than
a hidden answer, which is a more fundamental and challenging task. Furthermore, the black-box in-
teraction concept we propose is highly flexible and generalizable. Its goal is to investigate whether
a model can understand an unknown environment through exploration, thus accommodating a wide
range of task settings beyond the six types in the ORACLE benchmark. In contrast, the task settings
in RULEARN are singular and difficult to generalize.

C.3 MORE TASK SETTINGS FOR BLACK-BOX INTERACTION

In this section, we explore additional potential task settings for black-box interaction. The setting
described in Section 2, which allows for test-time learning, is designed by considering possible
human evaluation and shot numbers in evaluation metrics. A key distinction when involving human
evaluators is the persistence of information. Unlike large language models (LLMs) that can easily
delete messages from their dialogue history, humans retain previously seen content in their memory.
Therefore, all prior test samples must remain part of the dialogue history. While a k-shot evaluation
metric is necessary, we also inform the LLM whether its responses to test samples in its k trials were
correct. More diverse task settings become feasible when human evaluation and shot numbers are
not primary considerations. Their advantages and disadvantages are discussed below.

C.3.1 FROM ALLOWING TEST-TIME EXPLORATION TO NOT ALLOWING

Test-time exploration is forbidden, which means every test sample and LLMs’ answer will be re-
moved from the dialogue history once it’s completed. LLMs only rely on information gained from
the exploration stage.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Advantages: Evaluation and exploration are totally disentangled, which is a clearer ap-
proach.

• Disadvantages: This setting is contradictory to human evaluation.

C.3.2 FROM TEST SAMPLES TO CODE EXPRESSION

Rather than directly providing answers for each test sample, models are now instructed to generate
executable code that expresses their understanding of the black-box, which is then validated against
test samples.

• Advantages: Code expression is a decent way to judge whether LLMs truly understand
the black-box rather than simply pattern matching, which is more fundamental to the core
concept of black-box interaction. More importantly, code allows for checking millions
of test samples quickly and is especially useful for some specific black-boxes. For ex-
amples, in some black-boxes in GSI task that involves a random opponent strategy, code
expression is capable of simulating millions of games to judge whether models truly under-
stand opponent’s strategy. In PSI task, code expression is effective for complicated motion
without analytical solution . We already apply code expression for “Double Pendulum”,
“Harmonic with Friction”, “Ball Air Resistance” black-boxes in the PSI task (detailed in
Appendix G.3).

• Disadvantages: This approach introduce the additional challenge of coding ability of
LLMs, which contradicts to the original of building a pure reasoning benchmark. As the
possibility of a model can answer but fail to write correct code exists. In this setting, k-shot
evaluation is also inapplicable.

C.3.3 FROM FULLY OBSERVABLE TO PARTIALLY OBSERVABLE

In current setting, black-box returns complete state information to models’ query, which makes up of
fully observable black-box interaction. Partially observable black-box interaction only returns part
of black-box information. For example, black-box will only returns values of a subset of variables in
CII task. Partially observable black-box interaction is a harder version of fully observable black-box
interaction.

• Advantages: Partially observable black-box interaction generalizes the current setting and
better reflect real-world scenarios. It further challenges models’ advanced reasoning by
increasing the difficulty of aggregating imperfect information. Exploration turns are also
supposed to be extended, which tests models’ long-context reasoning.

• Disadvantages: Not applicable.

C.3.4 FROM FIXED EXPLORATION TURNS TO DYNAMIC

The goal of models is accurately answer test samples with the fewest possible exploration turns,
rather than given fixed exploration turns.

• Advantages: This setting significantly tests a model’s planning capabilities, requiring the
development of highly effective exploration strategies for strong performance.

• Disadvantages: When exploration strategies become dynamic, comparing model perfor-
mance gets tricky. It’s tough to decide if a model with less exploration but lower accuracy
is better than one with more exploration and higher accuracy.

C.4 EXTRA FINDINGS

Some extra findings during experiments are reported here. First, we find some LLMs, especially
gemini-2.0-flash and gemini-2.5-flash, perform bad in instruction following. Black-box interaction
requires accurate output format. While LLMs are given chances to correct formatting mistakes,
continued disobedience of the specified format results in an invalid interaction turn. Second, the
time cost of black-box interaction is an issue worthy of attention. We find that o4-mini and gemini-
2.5-pro achieve the best balance between accuracy and time cost, while the time cost of qwen-series
models and deepseek-r1 is extremely high.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We have also identified three additional weaknesses of LLMs in tackling black-box interaction tasks.
First, LLMs primarily rely on pattern matching to understand black-box. Prior knowledge is essen-
tial for hypothesis developing and verifying in abductive and inductive reasoning. However, we find
that LLMs rely heavily on prior knowledge and matching black-box function to familiar patterns,
rather than engaging in genuine exploration. This phenomenon is most evident in the CII task where
all black-boxes are famous coding algorithms. LLMs can quickly identify the hidden algorithm with
only few observations over checkpoint output. So despite the difficult setting of CII, LLMs still per-
form well. But when it comes to PSI task where a black-box is a free combination of moving objects,
or ERI task where the black-boxes are variations of well-known encryption algorithms, the perfor-
mance of LLMs becomes relatively low. Notably, almost all models (including o3, gemini-2.5-pro)
fail to beat a simple black-box that plays rock and scissors with equal probability in GSI 2@1 (as
shown in Figure 2 (f)). Second, LLMs struggle in reasoning over dense information. LLMs are
supposed to spend more turns for exploration when the black-box function is complex. They cannot
achieve good performance without the ability to reason over dense information. This weakness is
most evident in “Wordle” and “Quordle” black-boxes in the IPI task. LLMs can easily guess a 11-
letter word in “Wordle” within 10 rounds, but fail to guess four 8-letter words in “Quordle” within
20 rounds. Third, even best-performing reasoning LLMs fall short in basic computing ability. For
example, in a black-box implementing simple harmonic motion in PSI task, gemini-2.5-pro success-
fully identify the motion behavior but fail in correctly calculating the coordinates. Another example
is the “Nerdle” black-box in IPI task which requires LLMs to output a 15-character equation. Most
models fail to calculate if the output only contains 15 characters.

D CASE STUDY

D.1 HOW ITERATIVE DEBUGGING WORKS

The effectiveness of our iterative debugging framework stems from its ability to uncover a wide
range of errors that are often missed in a single-pass generation process. By simulating a full in-
teraction—akin to a human learning a game by playing it—the framework can identify and rectify
several classes of bugs that a programmer might make. These include:

1. Violations of unstated "common-sense" rules: Task descriptions often omit implicit con-
straints, such as the fact that a player’s score or money cannot be negative. Our interactive
process makes these violations apparent, forcing a correction.

2. Misinterpretations of ambiguous language: Natural language can be imprecise. The
framework corrects for misunderstandings, as demonstrated in the example of circuit task
where the term "random" was initially misinterpreted, leading to a non-deterministic im-
plementation instead of a fixed random one.

3. Simple yet critical implementation bugs: This category includes flaws analogous to typos
or logical oversights, such as using an incorrect formula in the example of physics task. It
also includes bugs that cause runtime errors. These are difficult to spot in a static code
review but are readily exposed when the simulation produces incorrect outputs.

Therefore, our framework significantly lowers the natural language description requirements for
platform development. It tolerates ambiguity and allows for the omission of details, even granting
the coding agent the freedom to elaborate on aspects that don’t compromise the platform’s core
functionality. Furthermore, it enhances accuracy by autonomously correcting runtime and other
logical errors. This substantially lowers the costs associated with benchmark construction, fine-
tuning, and scalability.

The following case studies provide concrete examples of how our framework addresses flaws to
produce robust and correct platform code.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

An Example in Circuit Rule Inference Task In this example from the Circuit Rule Inference
Task, the initial natural language description provided to the Coding LLM was: "For input size n=4,
the blackbox contains a random circuit of 8 gates. The circuit is not for some well-known purpose."
The Coding LLM misinterpreted the term "random." While the circuit’s structure was meant to be
random, it needed to be fixed throughout a single interaction session to represent a deterministic
physical device. Instead, the initial code 1 regenerated a new random circuit for every call to the
blackbox function. As shown in Figure 11a and Figure 12, the Test LLM’s interaction quickly
exposed this flaw by providing identical inputs at different rounds and receiving different outputs, a
logical contradiction that the Refinement LLM then used to correct the code 2.

1 # Conical Pendulum Version 1.0
2 def blackbox(circuit_input):
3 """
4 Simulates a random boolean circuit with

4 input wires and 8 gates.↪→
5 Returns the output of each gate as a

list of 0/1 bits.↪→
6 """
7 n = 4 # number of input wires
8 m = 8 # number of gates
9

10 # Randomly construct a circuit, each
gate's inputs come from input wires
or previous gates

↪→
↪→

11 gates = []
12 for i in range(m):
13 gate_type = random.choice(['AND',

'OR', 'NOT'])↪→
14 # For gate i (indexing from 0),

possible sources: input wires
(1..n) or previous gates (1..i)

↪→
↪→

15 inputs = []
16 for idx in range(1, n+1):
17 inputs.append((0, idx))
18 for idx in range(1, i+1):
19 inputs.append((1, idx))
20 if gate_type in ['AND', 'OR']:
21 # Randomly select two inputs
22 choices = random.sample(inputs,

2)↪→
23 input1, input2 = choices[0],

choices[1]↪→
24 gates.append((gate_type,

input1, input2))↪→
25 elif gate_type == 'NOT':
26 # Need one input
27 input1 = random.choice(inputs)
28 gates.append((gate_type,

input1))↪→
29
30 # Simulate the circuit
31 result = simulate_circuit(n, m,

circuit_input, gates)↪→
32 return result

Listing 1: Code of v1 platform
(randomly generate circuit repeatedly)

1 # Conical Pendulum Version 2.0
2 # Circuit parameters
3 N = 4 # number of input wires
4 M = 8 # number of gates
5
6 # Generate the circuit once per run to

ensure deterministic behavior for the
same input

↪→
↪→

7 _CIRCUIT_GATES = []
8 for i in range(M):
9 gate_type = random.choice(['AND', 'OR',

'NOT'])↪→
10 # possible sources: input wires

(0,1..N) or previous gates (1..i)↪→
11 inputs = [(0, idx) for idx in range(1,

N + 1)]↪→
12 for idx in range(1, i + 1):
13 inputs.append((1, idx))
14 if gate_type in ['AND', 'OR']:
15 if len(inputs) < 2:
16 input1, input2 = (0, 1), (0, 2)
17 else:
18 input1, input2 =

random.sample(inputs, 2)↪→
19 _CIRCUIT_GATES.append((gate_type,

input1, input2))↪→
20 else: # NOT
21 input1 = random.choice(inputs)
22 _CIRCUIT_GATES.append((gate_type,

input1))↪→
23
24 def blackbox(circuit_input):
25 """
26 Simulates the fixed random boolean

circuit with 4 input wires and 8
gates.

↪→
↪→

27 Returns the output of each gate as a
list of 0/1 bits.↪→

28 """
29 # Simulate the circuit
30 result = simulate_circuit(N, M,

circuit_input, _CIRCUIT_GATES)↪→
31 return result

Listing 2: Code of v2 platform
(generate circuit only once)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(...Instructions Omitted...)

user: Welcome to the Boolean Circuit Game!
You are interacting with a blackbox circuit with
4 input wires and 8 logic gates. (...) [Round 2/20
| 19 rounds left]

LLM: (0, 0, 0, 1)

user: Gate outputs for your input [0, 0, 0,
1]: 1 1 0 1 1 1 1 1 Please submit your next input
bits for round 3. (...) [Round 10/20 | 11 rounds
left]

LLM: (1, 0, 0, 1)

user: Gate outputs for your input [1, 0, 0,
1]: 1 0 1 0 1 0 0 0 Please submit your next input
bits for round 11. (...) [Round 17/20 | 4 rounds
left]

LLM: (0, 0, 0, 1)

user: Gate outputs for your input [0, 0, 0,
1]: 1 1 1 1 1 0 0 1 Please submit your next input
bits for round 18. [Round 18/20 | 3 rounds left]

LLM: (1, 0, 0, 1)

user: Gate outputs for your input [1, 0, 0,
1]: 0 0 0 0 0 1 1 0 (...)

********Evaluation Starts, You Have 1
Chances for Answering Each Question********
The output format is described in the Evaluation
section previosly. For example: [0, 1, 0, 1] In
this turn, given the input [0, 0, 0, 0], answer the
output of the gates in the format we dicussed
without any text else.

LLM: [0, 0, 1, 0, 1, 0, 0, 0]

user: the answer is wrong when input = [0,
0, 0, 0] Let’s move to next question.

LLM: Ok.

(a) Interaction log (v1 platform)

(...Instruction Omitted...)

user: Welcome to the Boolean Circuit Game!
You are interacting with a blackbox circuit with
4 input wires and 8 logic gates. (...) [Round 2/20
| 19 rounds left]

LLM: (0, 0, 0, 1)

user: Gate outputs for your input [0, 0, 0,
1]: 0 1 0 0 0 1 0 1 Please submit your next input
bits for round 3. (...) [Round 10/20 | 11 rounds
left]

LLM: (1, 0, 0, 1)

user: Gate outputs for your input [1, 0, 0,
1]: 1 0 1 1 0 0 1 0 Please submit your next input
bits for round 11. (...) [Round 17/20 | 4 rounds
left]

LLM: (0, 0, 0, 1)

user: Gate outputs for your input [0, 0, 0,
1]: 0 1 0 0 0 1 0 1 Please submit your next input
bits for round 18. [Round 18/20 | 3 rounds left]

LLM: (1, 0, 0, 1)

user: Gate outputs for your input [1, 0, 0,
1]: 1 0 1 1 0 0 1 0 (...)

********Evaluation Starts, You Have 1
Chances for Answering Each Question********
The output format is described in the Evaluation
section previosly. For example: [0, 1, 0, 1] In
this turn, given the input [0, 0, 0, 0], answer the
output of the gates in the format we dicussed
without any text else.

LLM: [0, 1, 0, 0, 1, 1, 0, 1]

user: the answer is wrong when input = [0,
0, 0, 0] Letś move to next question.

LLM: Ok.

(b) Interaction log (v2 platform)

Figure 11: Black-box interaction log generated using different platform code

- The same input [0, 0, 0, 1] produced two different outputs:
• Round 2 → 1 1 0 1 1 1 1 1
• Round 17 → 1 1 1 1 1 0 0 1
- The same input [1, 0, 0, 1] produced two different outputs:
• Round 10 → 1 0 1 0 1 0 0 0
• Round 18 → 0 0 0 0 0 1 1 0
These contradictions violate the requirement that a fixed combinational circuit must give the same out-
puts for identical inputs.

Figure 12: Logical error figured out by Refinement LLM

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

An Example in Physics System Inference Task This case demonstrates the framework’s ability
to detect and correct subtle but critical bugs in the implementation logic, corresponding to the third
type of error mentioned above. The task is to simulate a conical pendulum, a standard physics prob-
lem. The initial code generated by the Coding LLM 3 contained a flaw in the physical formula for
calculating the angular velocity ω, incorrectly using cos(theta) where tan(theta) was required. This
type of error is analogous to a small logical oversight by a human programmer—it is syntactically
correct but semantically wrong, making it difficult to catch without executing the code and vali-
dating its output. During the simulation phase 13a, the framework discovered that the coordinates
produced by the v1 platform were inconsistent with the expected physical behavior, leading to failed
evaluation checks in 14. The Refinement LLM then correctly identified the erroneous formula as
the root cause and produced the corrected code 4.

1 # Conical Pendulum Version 1.0
2 def blackbox(t):
3 # Conical pendulum parameters
4 length = 5 # m
5 theta = math.radians(30) # 30 degrees

in radians↪→
6 g = 10 # m/s²
7
8 # Calculate motion parameters
9 omega = math.sqrt(g * math.cos(theta) /

length) # angular velocity↪→
10 radius = length * math.sin(theta) #

radius of circular motion↪→
11 z_position = -length * math.cos(theta)

constant z position (negative,
below origin)

↪→
↪→

12
13 # Calculate 3D coordinates
14 x = radius * math.cos(omega * t)
15 y = radius * math.sin(omega * t)
16 z = z_position
17
18 # Round to two decimal places
19 x = round(x, 2)
20 y = round(y, 2)
21 z = round(z, 2)
22
23 object_coordinate = {"object1": (x, y,

z)}↪→
24 return object_coordinate

Listing 3: Code of v1 platform

1 # Conical Pendulum Version 2.0
2 def blackbox(t):
3 # Conical pendulum parameters
4 length = 5 # m
5 theta = math.radians(30) # 30 degrees

in radians↪→
6 g = 10 # m/s²
7
8 # Calculate motion parameters
9 omega = math.sqrt(g * math.tan(theta) /

length) # angular velocity↪→
10 radius = length * math.sin(theta) #

radius of circular motion↪→
11 z_position = -length * math.cos(theta)

constant z position (negative,
below origin)

↪→
↪→

12
13 # Calculate 3D coordinates
14 x = radius * math.cos(omega * t)
15 y = radius * math.sin(omega * t)
16 z = z_position
17
18 # Round to two decimal places
19 x = round(x, 2)
20 y = round(y, 2)
21 z = round(z, 2)
22
23 object_coordinate = {"object1": (x, y,

z)}↪→
24 return object_coordinate

Listing 4: Code of v2 platform

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(...Instructions Omitted...)
Black-box: You have 6 interaction turns to under-
stand the black-box. Now the interaction starts.
Only output the value and DO NOT contain any
unrelated text.
LLM: 0
Black-box: (Current Turn: 1, 5 Turns Remaining)
{‘object1’: (2.5, 0.0, -4.33)}
LLM: 1
Black-box: (Current Turn: 2, 4 Turns Remaining)
{‘object1’: (0.63, 2.42, -4.33)}
LLM: 2
Black-box: (Current Turn: 3, 3 Turns Remaining)
{‘object1’: (-2.18, 1.22, -4.33)}
LLM: 3
Black-box: (Current Turn: 4, 2 Turns Remaining)
{‘object1’: (-1.73, -1.8, -4.33)}
LLM: 4
Black-box: (Current Turn: 5, 1 Turns Remaining)
{‘object1’: (1.31, -2.13, -4.33)}
LLM: 5
Black-box: (Current Turn: 6, 0 Turns Remaining)
{‘object1’: (2.39, 0.73, -4.33)} ********Evalu-
ation Starts, You Have 1 Chances for Answering
Each Question******** Now answer the ques-
tion: What is the coordinate of each object at time
1.5?
LLM: {‘object1’: (-0.78, 2.29, -4.33)}
Black-box: Your answer is wrong. Let’s move to
next question.
LLM: Ok.

(a) Interaction log (v1 platform)

(...Instructions Omitted...)
Black-box: You have 6 interaction turns to under-
stand the black-box. Now the interaction starts.
Only output the value and DO NOT contain any
unrelated text.
LLM: 0
Black-box: (Current Turn: 1, 5 Turns Remaining)
{‘object1’: (2.5, 0.0, -4.33)}
LLM: 1
Black-box: (Current Turn: 2, 4 Turns Remaining)
{‘object1’: (1.19, 2.2, -4.33)}
LLM: 2
Black-box: (Current Turn: 3, 3 Turns Remaining)
{‘object1’: (-1.37, 2.09, -4.33)}
LLM: 3
Black-box: (Current Turn: 4, 2 Turns Remaining)
{‘object1’: (-2.49, -0.21, -4.33)}
LLM: 4
Black-box: (Current Turn: 5, 1 Turns Remaining)
{‘object1’: (-1.01, -2.29, -4.33)}
LLM: 5
Black-box: (Current Turn: 6, 0 Turns Remaining)
{‘object1’: (1.53, -1.97, -4.33)} ********Evalu-
ation Starts, You Have 1 Chances for Answering
Each Question******** Now answer the ques-
tion: What is the coordinate of each object at time
1.5?
LLM: {‘object1’: (0.11, 2.22, -4.33)}
Black-box: Your answer is wrong. Let’s move to
next question.
LLM: Ok.

(b) Interaction log (v2 platform)

Figure 13: Black-box interaction log generated using different platform code

Looking at the interaction log carefully:

Wrong points identified:

1. **Insufficient analysis of the mechanical system**: The assistant fails to properly analyze the
motion pattern. From the coordinates provided:

- t=0: (2.5, 0.0, -4.33)
- t=1: (0.63, 2.42, -4.33)
- t=2: (-2.18, 1.22, -4.33)
- t=3: (-1.73, -1.8, -4.33)
- t=4: (1.31, -2.13, -4.33)
- t=5: (2.39, 0.73, -4.33)

The z-coordinate remains constant at -4.33, and the x,y coordinates trace a circular path, indicating
conical pendulum motion. However, the assistant doesn’t demonstrate understanding of this pattern in
their final prediction.

Figure 14: Logical error figured out by Refinement LLM

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.2 HOW LLMS INTERACT WITH THE BLACK-BOX

An Example in Interactive Puzzle Inference Task

developer: You are an excellent reasoning model. You are very good at understanding the interaction
rules, reasoning over interaction history, thinking step by step, and finally figuring out the working
principle of a system that contains hidden information.
You also strictly follow output format rules. When making queries, you strictly obey querying format.
When answering questions, you strictly obey answer format. You never output anymore unrelated text.

user: 1. Task overview:
- The user plays the role of a puzzle, and you don
’t know what the hidden answer is. You need to guess the hidden answer by interacting with the user in
multiple turns.
2. Goals:
- You need to guess the answer to the puzzle within given interaction turns.
3. User property:
- The user hides the answer which you need to figure out.
4. Interaction rules:
- Rule 0: The user will first tell you the rule of the puzzle, and the interaction format that must be
followed when querying. In each turn, the user will tell *current turn* and *remaining turns*.
- Rule 1: You can ask questions according to the rules of the game and receive corresponding feedback.
If your ask is unavailable, the user will tell you.
- Rule 2: After a series of interactions, you should answer the puzzle in the format specified in the
description.
5. Output format:
- When you ask a question, you should strictly follow query format in the **Description**.
- When you answer the puzzle, you should strictly follow the answer format in the **Description**.
- Refer to the examples in the **Description**. for the correct format.
- If you figure out the right answer before given turns, keep interacting with the puzzle to make sure your
answer is correct.
6. Evaluation:
- When the given number of interactions is reached, you need to give your answer of the puzzle. **You
MUST ONLY output the answer itself in the format mentioned in the description, DO NOT contain more
text.**
Now Let’s Solve the Puzzle wordle.
Description: Wordle is a word-guessing game where players attempt to deduce a hidden 8-letter
word (all uppercase). Each guess provides feedback (1) Correct letter in the correct position, represented
by ‘A‘; (2) Correct letter but misplaced, represented by ‘M‘; (3) Letter not in the word, represented by
‘X‘.
Players iteratively refine guesses using feedbacks until solving the word, typically within limited at-
tempts. After a few times of querying, the player will give an 8-letter uppercase word answer, and he
’ll win if he answers correctly.
OUTPUT the 8-letter uppercase word directly.

LLM: I understand the rules. I will not output any unrelated text! Let us start the interaction.

user: ********A New Puzzle Starts, You can Make 10 Queries Before Answering Each Ques-
tion. And Then You Have 1 Chances for Answering. Output the Value Only.********

LLM: AIRPLANE

user: <Current Turn: 1, 9 Turns Remaining> AXMXMMMM

LLM: ABALONES

user: <Current Turn: 2, 8 Turns Remaining> AXMMXMMX

LLM: ARLENDTC

user: <Current Turn: 3, 7 Turns Remaining> AAMMAXXM

LLM: ARCANELY

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

user: <Current Turn: 4, 6 Turns Remaining> AAAAAAAA

LLM: ARCANELY

user: <Current Turn: 5, 5 Turns Remaining> AAAAAAAA

LLM: ARCANELY

user: <Current Turn: 6, 4 Turns Remaining> AAAAAAAA

LLM: ARCANELY

user: <Current Turn: 7, 3 Turns Remaining> AAAAAAAA

LLM: ARCANELY

user: <Current Turn: 8, 2 Turns Remaining> AAAAAAAA

LLM: ARCANELY

user: <Current Turn: 9, 1 Turns Remaining> AAAAAAAA

LLM: ARCANELY

user: <Current Turn: 10, 0 Turns Remaining> AAAAAAAA********Evaluation Starts, You
Have 1 Chances for Answering, Please Output the Answer DIRECTLY.********

LLM: ARCANELY

user: Your answer is correct.

LLM: Ok.

An Example in Game Strategy Inference Task

developer: You are an excellent reasoning model. You are very good at understanding the interaction
rules with a black-box, reasoning over the interaction history, thinking step by step, and finally guessing
the pattern of the black-box and finding a way to beat it in a game. You also strictly follow output format
rules.

user: 1. Task overview: - The user plays the role of an opponent who takes a fixed strategy in a
game. But you don’t know what the stategy is. You need to guess the hidden stategy of your opponent
by interacting (playing game) with him in multiple turns.
2. Goals: - You have 1 final goal: You need to guess your opponent’s strategy and try to maximize your
score in the game. The score might depend on winning rate, or minimal cost, etc.
3. User property: - The user hides his game strategy which you need to figure out to win the game.
4. Interaction rules: - To finish the goal, you need to interact with the user. The interaction rules are as
follows: - Interaction Rule 0: The user will first tell you the rule of the game, and the interaction format
that must be followed when playing. In each turn, the user will tell *current turn* and *remaining turns*.
- Interaction Rule 1: You can take actions according to the rules of the game and receive corresponding
feedback, such as current game states. If your action is unavailable, the user will tell you. - Interaction
Rule 2: We will first play a few times of the game to familiarize you with the rules and the behavior of
your opponent. In this phase, your actions will not be recorded, and your score does not matter. You can
make use of this phase to explore the game and understand the opponent’s strategy. - Interaction Rule 3:
After the *exploration phase*, you will enter the *evaluation phase*. We will only play the game for 1
final time, and your actions will be recorded. Your score will be calculated based on your actions in this
final game.
5. Output format: - **You must strictly obey the output format rules, DO NOT output any unrelated
text!**:
6. Evaluation: - When the given number of interactions is reached, the game ends and we’ll calculate
your **score**

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Now Let’s Play the Game Load Shoot Defend Scout, the Description Is that In each turn, a player can
choose ‘load‘: gain one bullet, ‘scout‘: see the opponent’s bullet count, ‘shoot x‘: spend ‘x‘ bullets to
attack, or ‘defend y‘: spend ‘y‘ bullets to defend. Then, actions and the gaining points of both players
are revealed, but the specific numerical values ’x’ and ’y’ are kept hidden. Each player starts with
0 bullets and can hold a maximum of 8. ’x’ and ’y’ cannot exceed the number of bullets they have
currently. If one player ‘shoot x‘ and the other ‘defend y‘, the defense succeeds and the player wins 1
point if y>=x, and the shooter wins -1 point. But if y<x, the attacker wins 1 point and the defender
wins -1 point. A Shoot action will always succeed against an opponent who chooses to Load or Scout.
When a simultaneous shoot happens, player with more bullets will win 1 point and the other win -1
point. The same bullets will result in a tie where both players win 0 point. When a simultaneous defend
or scout or load happens, both players win 0 point. If player ‘scout‘, he will receive opponent’s bullet
number. The game lasts for [[total_turns]] turns, both players try to maximize their scores.

LLM: I understand the rules. I will not output any unrelated text! Let us start the interaction.

user: ********Exploration Phase Starts, We wll Play the Game for 1 Times. Your Actions Will
Not Be Recorded, and Your Score Does Not Matter.**********

LLM: Please provide the game rules and the required interaction format so that I can take my
first action in the exploration phase.

user: ***Exploration Round <1/1> Start***

LLM: Ok. I’m ready to play the game. This is round 1 of the exploration phase.

user: Turn 1/8
This is the first turn.
You have 0 bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: load

user: Turn 2/8
In the last turn, you chose ’load’ and the opponent chose ’load’. You gained 0 point(s).
You have 1 bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: I need the complete rules and scoring details to make informed choices. Could you please
provide the game’s description, the available actions, and how points are awarded?

user: Invalid action type. Your action ’I need the complete rules and scoring details to make in-
formed choices. Could you please provide the game’s description, the available actions, and how points
are awarded?’ is not recognized. Please choose from ‘load‘, ‘scout‘, ‘shoot x‘, or ‘defend y‘.

LLM: scout

user: Turn 3/8
In the last turn, you chose ’scout’ and the opponent chose ’load’. You gained 0 point(s).
You have 1 bullets.
Your scout last turn revealed that the opponent had 2 bullets before their action.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: scout

user: Turn 4/8
In the last turn, you chose ’scout’ and the opponent chose ’shoot’. You gained 0 point(s).
You have 1 bullets.
Your scout last turn revealed that the opponent had 2 bullets before their action.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: shoot 1

user: Turn 5/8

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

In the last turn, you chose ’shoot 1’ and the opponent chose ’load’. You gained 1 point(s).
You have 0 bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: load

user: Turn 6/8
In the last turn, you chose ’load’ and the opponent chose ’shoot’. You gained 0 point(s).
You have 1 bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: scout

user: Turn 7/8
In the last turn, you chose ’scout’ and the opponent chose ’load’. You gained 0 point(s).
You have 1 bullets.
Your scout last turn revealed that the opponent had 1 bullets before their action.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: scout

user: Turn 8/8
In the last turn, you chose ’scout’ and the opponent chose ’load’. You gained 0 point(s). You have 1
bullets. Your scout last turn revealed that the opponent had 2 bullets before their action. What is your
action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: defend 1

user: ********Evaluation Phase Starts, We Will Play the Game for 1 Time. Now is the 0 time.
The highest score Will Be Recorded.**********

LLM: I am ready

user: Turn 1/8
This is the first turn. You have 0 bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: load

user: Turn 2/8
In the last turn, you chose ’load’ and the opponent chose ’load’. You gained 0 point(s). You have 1
bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: shoot 1

user: Turn 3/8
In the last turn, you chose ’shoot 1’ and the opponent chose ’load’. You gained 1 point(s). You have 0
bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: load

user: Turn 4/8
In the last turn, you chose ’load’ and the opponent chose ’shoot’. You gained 0 point(s). You have 1
bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: shoot 1

user: Turn 5/8
In the last turn, you chose ’shoot 1’ and the opponent chose ’load’. You gained 1 point(s). You have 0
bullets.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: load

user: Turn 6/8
In the last turn, you chose ’load’ and the opponent chose ’shoot’. You gained 0 point(s). You have 1
bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: shoot 1

user: Turn 7/8
In the last turn, you chose ’shoot 1’ and the opponent chose ’load’. You gained 1 point(s). You have 0
bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: load

user: Turn 8/8
In the last turn, you chose ’load’ and the opponent chose ’load’. You gained 0 point(s). You have 1
bullets.
What is your action? (e.g., ‘load‘, ‘scout‘, ‘shoot 1‘, ‘defend 2‘)

LLM: shoot 1

D.3 HOW LLMS SUCCEED AND FAIL

A Successful Example in Code Intent Inference Task In this case, the black-box code imple-
mented QuickSort, selecting the last element of the interval as the pivot. The LLM quickly identified
this as QuickSort and correctly determined the pivot element.

Black-Box: (Instructions omitted) <Current Turn: 1, 19 Turns Remaining> The black-box takes
[’name’: ’arr’, ’type’: <class ’list’>] as input variables, and has 3 checkpoints.

Gemini-2.5-pro: <think>**Deconstructing a Function: My Initial Approach**Alright, I’m tasked with
understanding this function that takes a list, ‘arr‘, as input and hits three checkpoints along the way. My
gut tells me the best strategy here is to start simple and build complexity. So, I’m thinking, let’s feed it
a very straightforward input: a sorted list. I’m imagining ‘arr‘ will start as ‘[1, 2, 3, 4, 5]‘. This should
allow me to focus on the core logic without any confusing edge cases initially. My immediate next step
is to get a handle on what’s happening at the first checkpoint, specifically at iteration ‘(1, 1)‘. That’s
where I need to start. I’m hoping this will give me a clear picture of the initial setup or the state at the
very beginning of any iterative process the function might employ. Knowing this initial state will be key
to understanding how the function progresses and eventually lands at those critical checkpoints. So I
need to query this state and observe what’s happening with the input array at that initial point.</think>
arr = [1, 2, 3, 4, 5] (1, 1)

Black-Box: <Current Turn: 2, 18 Turns Remaining> Error: Failed to convert [1, 2, 3, 4, 5](1,
1) to list: invalid syntax (<string>, line 2)

Gemini-2.5-pro: <think>**Understanding the Input and Refining My Strategy**Okay, so I got
an error message back after my last attempt, indicating a problem with the parsing of my input. It
looks like my combined assignment and checkpoint request in a single command, ‘arr = [1, 2, 3, 4, 5]‘
and ‘(1, 1)‘, threw the system off. The "invalid syntax" error is a clear indicator that the system can’t
handle them together. Rereading the rules, I realize I need to be more deliberate about the order of
operations and the output format. Rule 4 emphasizes that I need to handle variable assignments (Rule
1) *before* requesting checkpoint values (Rule 2). While the rules don’t explicitly mandate separate
turns, the error suggests it’s the safest and most reliable approach. Therefore, for this round, I’ll focus
solely on assigning a value to ‘arr‘. I’ll keep the input simple and valid – ‘arr = [10, 20, 30]‘. This
should ensure the system receives a clean and understandable variable assignment. The next turn will be
devoted to requesting checkpoint values using the appropriate format. This should minimize the chance
of triggering those parsing issues again.</think> arr = [10, 20, 30]

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Black-Box: <Current Turn: 3, 17 Turns Remaining> Set ’arr’: [10, 20, 30].

Gemini-2.5-pro: <think> </think>

Black-Box: (Instructions omitted) <Current Turn: 1, 19 Turns Remaining> The black-box takes
[’name’: ’num’, ’type’: list[int]] as input variables, and has 5 checkpoints.

Gemini-2.5-pro: <think>**Analyzing the Function’s Behavior**Okay, so I’m given an array,
‘arr‘, and the number of checkpoints, which is 3 in this case. My immediate task is to grasp the
function’s internal workings. I’ve mentally initialized ‘arr‘ as [10, 20, 30] to have some concrete data
to work with. Now, the plan is to use checkpoints to reconstruct the function’s execution flow. By
strategically placing probes, I can see what variables are accessible and how their values evolve. The
first step is checking the first checkpoint. Since the checkpoints are numbered, this likely corresponds
to the beginning of the function’s core loop or main logic. Probing at (1, 1) – the first checkpoint of the
first iteration – will give me the initial state. I anticipate seeing ‘arr‘, as it’s the input. There may also be
some initial loop counter(s) or any initial state variables. This will lay the groundwork for understanding
the process.</think> (1, 1)

Black-Box: <Current Turn: 4, 16 Turns Remaining> [’name=arr, value=[10, 20, 30], type=list’,
’name=p, value=30, type=int’]

Gemini-2.5-pro: <think>**Initial Analysis of the Hidden Code Function**Okay, so I’m pre-
sented with a function and my job is to reverse-engineer its logic. My initial focus is on figuring out
what’s happening with the variables, specifically ‘arr‘ which is a list. The user’s set me up with an
initial array: ‘arr = [10, 20, 30]‘. I’ve got three checkpoints to work with, which I assume represent
significant points in the function’s execution.My first query was at checkpoint 1, iteration 1, to get a
handle on the initial state. The response revealed that ‘arr‘ is unchanged, which makes sense. More
interestingly, a new variable, ‘p‘, popped up, with a value of ‘30‘. And ‘30‘, of course, is the *last*
element in my ‘arr‘. Based on this first data point, my preliminary hypothesis is that this section of code
might be setting up a pivot value, like in a sorting algorithm - perhaps a quicksort implementation. It’s
just the first checkpoint, and I need more data to confirm this, but it’s a logical starting point. I’ll need to
watch what happens to ‘arr‘ and ‘p‘ at subsequent checkpoints. I’m keen to see if my pivot hypothesis
holds.</think> (2, 1)

Black-Box: <Current Turn: 5, 15 Turns Remaining> [’name=arr, value=[10, 20, 30], type=list’,
’name=p, value=30, type=int’, ’name=l, value=[10, 20], type=list’, ’name=r, value=[], type=list’,
’name=i, value=1, type=int’]

Gemini-2.5-pro: <think>**Initial Analysis of the Function**Okay, so I’m trying to understand
this function. It takes a list, ‘arr‘, as input. I’m imagining ‘arr = [10, 20, 30]‘ to get a feel for things.
The user confirmed this input. I’ve got three checkpoints I need to examine.**Checkpoint 1: Identifying
the Pivot**I’ve looked at the first checkpoint, ‘(1, 1)‘. The input is still ‘[10, 20, 30]‘. ‘p‘ is ‘30‘. My
initial thought is that this checkpoint is selecting the last element of the list, ‘arr‘, as the pivot , ‘p‘.
That seems pretty straightforward.**Checkpoint 2: Partitioning the Array**Now, on to checkpoint ‘(2,
1)‘. ‘arr‘ and ‘p‘ are the same as before. Here’s where it gets interesting. I see ‘l‘ is ‘[10, 20]‘ and
‘r‘ is ‘[]‘. So, it looks like it’s partitioning the array. ‘l‘ contains all the elements less than or equal to
the pivot (which are all elements before the pivot), and ‘r‘ contains elements greater than the pivot.
‘i‘ is at 1, which suggests some kind of looping through elements before the pivot is taking place. It
seems to be the loop counter. Given that ‘l‘ has two elements in it, it’s likely gone through at least one
iteration. The array is being partitioned into ‘l‘ and ‘r‘ elements that meet the condition.**Developing a
Hypothesis: Quicksort**Based on this, and before I go further, I’m already starting to suspect this is a
Quicksort algorithm. Let’s look at Checkpoint 3, but let’s look at ‘(2,2)‘ first. To confirm my suspicion,
I need to see how the partitioning logic works in the loop. I’m going to focus on how ‘l‘, ‘r‘, and ‘i‘ are
changing. After that, I’ll examine the first recursive call at checkpoint ‘(3, 1)‘. My working hypothesis
is:1. Checkpoint 1 selects the pivot.2. Checkpoint 2 partitions the array using the pivot.3. Checkpoint
3 is probably where the recursive calls are made, and the array is combined after the recursive calls.
It’ll probably combine ‘l‘ and ‘r‘ after sorting them recursively.I’m now going to query ‘(2, 2)‘ to verify
this.</think> (2, 2)

Black-Box: <Current Turn: 6, 14 Turns Remaining> [’name=arr, value=[10, 20], type=list’,
’name=p, value=20, type=int’, ’name=l, value=[10], type=list’, ’name=r, value=[], type=list’, ’name=i,
value=0, type=int’]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Gemini-2.5-pro: <think>**Analyzing a Quicksort Implementation**Okay, so I’m trying to fig-
ure out this function, and I’m pretty sure it’s Quicksort. Let’s see... I started with ‘arr = [10, 20, 30]‘.*
CP1: It looks like this checkpoint selects the last element of the input array as the pivot (‘p‘). So, if
‘arr‘ is ‘[10, 20, 30]‘, ‘p‘ becomes ‘30‘. Easy enough.* **CP2:** This is where things get interesting.
This is definitely the partitioning step. It takes the array (minus the last element) and partitions it into
two lists: ‘l‘ (elements less than the pivot) and ‘r‘ (elements greater than or equal to the pivot). I’m
pretty confident in that. The ‘i‘ value shown corresponds to the final value of the partitioning loop. It
seems to be the index counter from a loop over the array’s elements, ‘arr[:-1]‘.So, the hypothesis is, it’s
a recursive Quicksort. CP1 selects the pivot, CP2 partitions the array, and then it recursively sorts the
left and right partitions. Let’s see: ‘sort([10, 20, 30])‘ calls ‘sort([10, 20])‘ and then ‘sort([10])‘. And
from those return ‘[10]‘ and ‘[10, 20]‘.To confirm the partitioning loop, let’s look at ‘sort([10])‘. When
the array is just ‘[10]‘, it should also run the partitioning stage but with no actual work, and that should
be CP2, iteration 3. Let’s check the state at (2, 3) to confirm that.If that checks out, I’ll go through
checkpoint 3. I expect that CP3 is the return from the recursive calls, where the parts are assembled
back together to produce the sorted array.</think> (2, 3)

Black-Box: <Current Turn: 7, 13 Turns Remaining> Query iteration 3 exceeds maximum pos-
sible visits 2 for checkpoint 2

Gemini-2.5-pro: <think>**Initial Assessment: Deep Dive into Quicksort Implementation**Okay, so
I’m presented with a black-box function and my task is to reverse-engineer its logic. The game plan is
to feed it inputs, observe its behavior at specific checkpoints, and piece together the algorithm.**Step
1: Unveiling the Pivotal Logic*** **Initial Observations:** My first move was to understand how the
function processes a simple list ‘[10, 20, 30]‘. Checkpoint 1 seemed to involve selecting the last element
as a pivot. That’s a classic quicksort characteristic!* **Checkpoint 2: Partitioning in Action:** I noticed
that Checkpoint 2 partitioned the array into elements less than or equal to the pivot (‘l‘) and those greater
than it (‘r‘). Crucially, the input ‘arr‘ itself kept changing, implying a recursive approach. The fact that
the checkpoint gets hit twice confirms the function is recursive and is following through the first two
calls of the quicksort algorithm* **Checkpoint 3: Confirmation and Refinement:** If I’m right about
Quicksort, Checkpoint 3, if present, would have to occur after the recursive calls are executed.**Step 2:
Refining the Hypothesis: A Recursive Quicksort Model*** **The Quicksort Hypothesis:** Based on
the partitioning behavior and the recursive nature implied by the variable’s state, I’m pretty sure we are
talking about a quicksort! The function seems to be built as follows: 1. Base case: If the array length is
1 or less, return the array. 2. Partitioning: Pick a pivot (seems to be the last element of the array). Split
the array around the pivot element into two arrays, one having values <= pivot and one having values >
pivot. 3. Recursion: recursively apply quicksort to these two partitions. 4. Combine: Concatenate the
sorted ‘l‘, pivot, and sorted ‘r‘ arrays. * This is the algorithm I am hypothesizing. I have accounted for a
Checkpoint 1 before the base case, Checkpoint 2 within the recursive loop and Checkpoint 3 after the
recursive functions are called, and result is built.* **Variable Analysis:** * ‘arr‘: the current slice of the
input array under consideration in the current recursive call * ‘p‘: The current pivot, taken from the last
element of arr * ‘l‘ and ‘r‘: two lists partitioning ‘arr‘ at each level of recursion * ‘i‘: It’s not clear what
this variable is, and it’s making me scratch my head. I have traced it but not found a relationship.**Step
3: Verification - Testing the Model*** I am now ready to test my quicksort hypothesis by examining
checkpoint 1 one more time by querying ‘(1, 2)‘. And then by examining checkpoint 3 to see if its
characteristics fit.I’m feeling confident, let’s see what the data shows!</think> (1, 2)

Black-Box: <Current Turn: 8, 12 Turns Remaining> [’name=arr, value=[10, 20], type=list’,
’name=p, value=20, type=int’]

Gemini-2.5-pro: <think>**Function Analysis and Hypothesis**I’m working with a function
that takes a list (‘arr‘) as input and uses a series of checkpoints to help understand its behavior. From
my initial queries and observations, I’ve hypothesized that this function is implementing the Quicksort
algorithm.**Checkpoint Locations and Purpose*** **Checkpoint 1:** I believe this checkpoint is
located just after checking for the base case (when the list has one or zero elements) and right after
the pivot element (‘p‘) is chosen. It allows me to see the initial state of the list before the partitioning
process.* **Checkpoint 2:** This checkpoint appears to be within the partitioning loop. It helps me to
observe the partitioning of the list into sub-lists ‘l‘ (elements less than the pivot) and ‘r‘ (elements greater
than or equal to the pivot). I can also see the current state of the loop counter ‘i‘.* **Checkpoint 3:**
This checkpoint is trickier. Based on the flow of Quicksort, it *should* be located after the recursive
calls, where the sorted sub-lists are combined with the pivot to produce the sorted list at that level of
recursion. I expect to see something like ‘l_sorted + [p] + r_sorted‘.**Testing and Confirmation** I’m
planning to confirm my hypothesis with additional tests. I intend to:1. Use a new test case with ‘arr =

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

[30, 10, 20]‘ to observe the partitioning and recursion in a more complex scenario.2. Use the ‘[10, 20,
30]‘ array to query the third checkpoint (‘C3‘), as I have determined that it can be visited at least once
and possibly more.**Reasoning for Turn**Currently the turn is 8. I am going to try query ‘(3,1)‘ as a
final confirmation.</think> (3, 1)

Black-Box: <Current Turn: 9, 11 Turns Remaining> [’name=arr, value=[10, 20], type=list’,
’name=p, value=20, type=int’, ’name=l, value=[10], type=list’, ’name=r, value=[], type=list’, ’name=i,
value=0, type=int’, ’name=s, value=[10, 20], type=list’]

Gemini-2.5-pro: <think>**Analysis of a Hidden Sorting Algorithm**Okay, so I’m diving into
this "hidden code function" and trying to crack its secrets. I’ve been feeding it different arrays and
observing how it behaves at specific "checkpoints". So far, it’s looking like a classic algorithm... and
I’m pretty sure it’s **Quicksort**.**Here’s what I’ve figured out:*** **Pivot Selection:** The function
picks the last element of the input array (‘arr‘) as a "pivot" (‘p‘). This happens at Checkpoint 1.*
Partitioning: Inside a loop (Checkpoint 2), the function compares other elements to the pivot. It
seems to be building two sub-lists: ‘l‘ (elements less than or equal to the pivot) and ‘r‘ (elements greater
than the pivot).* **Recursive Calls:** Once the loop is done, it recursively calls itself on the sub-lists
‘l‘ and ‘r‘ (Checkpoint 3). The core of Quicksort is here: the algorithm sorts these two smaller lists
and then combines them with the pivot in the middle. The recursion keeps going until the lists are
empty or single-element lists, which are already sorted.**My current hypothesis is that the function
essentially implements Quicksort. It partitions the array around a pivot, recursively sorts the partitions,
and then combines them.**To verify my hunch, I need to see it in action with a more complex array.
My predicted call stack is as follows: ‘quicksort([3, 1, 4, 2])‘, then ‘quicksort([1])‘, ‘quicksort([3,4])‘
and lastly ‘quicksort([3])‘ and ‘quicksort([])‘. This will confirm how the partitioning and recursive steps
work. I’m going to start testing and logging the checkpoint numbers as I go.</think> arr = [3, 1, 4, 2]

Black-Box: <Current Turn: 10, 10 Turns Remaining> Set ’arr’: [3, 1, 4, 2].

Gemini-2.5-pro: <think>**Understanding the Quicksort Algorithm**Alright, let’s break down
this function. Based on the previous interactions and tracing a new test case, I’m pretty sure it’s
implementing the quicksort algorithm. It’s a classic, but let’s be thorough.First, I see the input is an
array, ‘arr‘. The core logic seems to involve a pivot element, ‘p‘, which is picked from the array. In the
first example with ‘[10, 20, 30]‘, it was the last element, so I’ll assume that’s the general rule. Then, it
partitions the rest of the array into two lists: ‘l‘ containing elements less than the pivot and ‘r‘ containing
elements greater than or equal to the pivot.The key is recursion. The function calls itself on ‘l‘ and ‘r‘,
presumably sorting those sub-arrays. Finally, it combines the sorted ‘l‘, the pivot ‘p‘, and the sorted
‘r‘ to produce the final sorted output. It looks like the base case is when the array has one element or
fewer.Now, with ‘arr = [3, 1, 4, 2]‘, I can start the thought process with an expectation that the pivot
‘p‘ is 2. Then, the function will partition it with ‘l = [1]‘ and ‘r = [3, 4]‘. The rest of the reasoning is
that the base case will come quickly for ‘[1]‘, resulting in a return of ‘[1]‘. Then a recursive call will
occur to ‘[3, 4]‘. Following the logic with these examples, I will be able to verify that the algorithm will
return ‘[3, 4]‘. And finally, combining all the components with the proper order should give me the final
expected result, which is ‘[1, 2, 3, 4]‘.To confirm my understanding, I’ll use the check points to confirm
my expectations and that I have the correct understanding of this algorithm. Let’s see if my hypothesis
holds water by making some queries.</think> (1, 1)

Black-Box: <Current Turn: 11, 9 Turns Remaining> [’name=arr, value=[3, 1, 4, 2], type=list’,
’name=p, value=2, type=int’]

Gemini-2.5-pro: <think>**Analyzing a Hidden Sorting Function**Okay, here’s what I’ve pieced
together about this function so far. My initial goal was to decipher the logic behind a piece of code that
takes a list (‘arr‘) as input and uses three "checkpoints" to process it. By stepping through the execution
with the example ‘[10, 20, 30]‘, a pattern started to emerge.**Initial Observations:*** **Checkpoint
1**: This appears to be the entry point for some kind of recursive or iterative routine. The "pivot" (‘p‘)
is selected – it seems to be the last element of the input array.* **Checkpoint 2**: This is where the
partitioning happens. The array (excluding the pivot) is divided into two lists: ‘l‘ containing elements
less than or equal to the pivot, and ‘r‘ containing elements greater than the pivot. I also noted the
seemingly confusing counter ‘i‘. However, tracing through it showed me it’s an internal loop counter for
the partition itself.* **Checkpoint 3**: This must be the combining step. This combines the recursively
sorted ‘l‘, appends ‘p‘, then appends the recursively sorted ‘r‘, effectively rebuilding a sorted version
of the array. The variable ‘s‘ seems to hold the result of this combine operation.**The Quicksort
Hypothesis:**Based on these observations, I’m pretty confident that this function implements the
Quicksort algorithm.* It selects a pivot (the last element).* It partitions the array around that pivot.* It

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

recursively sorts the partitions.* It combines the sorted partitions with the pivot.**Confirmation through
Tracing:**I’m verifying my hypothesis with a new input: ‘[3, 1, 4, 2]‘. This will give me further
confirmation:1. First call to the function, with ‘p=2‘. It should partition into ‘l=[1]‘ and ‘r=[3,4]‘.2.
Next, it will recursively call itself to sort both partitions.This analysis shows a clear recursive pattern,
with the central process being the "partitioning around a pivot" step that is the hallmark of Quicksort. I
am looking forward to seeing how the program works now I have a better idea of how it is intended to
work.</think> (2, 1)

Black-Box: <Current Turn: 12, 8 Turns Remaining> [’name=arr, value=[3, 1, 4, 2], type=list’,
’name=p, value=2, type=int’, ’name=l, value=[1], type=list’, ’name=r, value=[3, 4], type=list’, ’name=i,
value=2, type=int’]

Gemini-2.5-pro: (1, 2)

Black-Box: <Current Turn: 13, 7 Turns Remaining> [’name=arr, value=[3, 4], type=list’, ’name=p,
value=4, type=int’]

Gemini-2.5-pro: (2, 2)

Black-Box: <Current Turn: 14, 6 Turns Remaining> [’name=arr, value=[3, 4], type=list’, ’name=p,
value=4, type=int’, ’name=l, value=[3], type=list’, ’name=r, value=[], type=list’, ’name=i, value=0,
type=int’]

Gemini-2.5-pro: (3, 1)

Black-Box: <Current Turn: 15, 5 Turns Remaining> [’name=arr, value=[3, 4], type=list’, ’name=p,
value=4, type=int’, ’name=l, value=[3], type=list’, ’name=r, value=[], type=list’, ’name=i, value=0,
type=int’, ’name=s, value=[3, 4], type=list’]

Gemini-2.5-pro: <think>**Okay, let’s break this down. My understanding of the function is
solid, but I need to refine the checkpoint definitions based on the interaction history.**It seems we’re
dealing with a recursive function that is most likely a Quicksort implementation. The input ‘arr‘ is a list,
and the key is figuring out the flow. I believe the function works as follows:1. **Partitioning:** It takes
the last element of the input array ‘arr‘ as a *pivot* (‘p‘). It then divides the remaining elements into
two sub-lists: ‘l‘ (elements less than or equal to ‘p‘) and ‘r‘ (elements greater than ‘p‘). This partitioning
is done in a loop, and the index ‘i‘ is the last index in that loop.2. **Recursion:** It recursively sorts the
‘l‘ and ‘r‘ sub-lists using the same function.3. **Combination:** After the recursive calls, it combines
the sorted ‘l‘, the pivot ‘p‘, and the sorted ‘r‘ to return the completely sorted list. The Checkpoint 3
shows this combination step.**Checkpoint Definitions (Revised):*** **Checkpoint 1:** Occurs at the
start of each recursive call. It shows the current ‘arr‘ being processed and the identified *pivot* (‘p‘).*
Checkpoint 2: Occurs after the partitioning loop, showing the separated lists ‘l‘ and ‘r‘ after the
split of the input array, and the last value of the loop index ‘i‘.* **Checkpoint 3:** Shows the final
combined sorted sub-array ‘s‘ after the recursive calls on ‘l‘ and ‘r‘ have completed. This usually
happens in the *returning* phase of the recursion.Now, I want to confirm my hypothesis with a slightly
more complex input, ‘arr = [5, 2, 8, 2, 5, 1]‘, and trace the execution path precisely. I’ll focus on these
queries to trace the flow of this execution:* **Turn 17:** I will query ‘(1, 3)‘. Which should give me
the details of the third recursive call and also, I’ll see what the pivot will be.* **Turn 18:** Query ‘(2,
3)‘ This will test my understanding of partition and loop indexing. I expect to see the state of ‘l‘, ‘r‘,
and ‘i‘ after the partitioning of a particular recursive step.* **Turn 19:** Then I’ll check ‘(3, 1)‘. I will
verify how the results are combined by seeing a sorted sub-array.This sequence will trace the flow of the
algorithm. After these interactions, I will know for sure if my hypothesis is true.</think> arr = [5, 2, 8,
2, 5, 1]

Black-Box: <Current Turn: 16, 4 Turns Remaining> Set ’arr’: [5, 2, 8, 2, 5, 1].

Gemini-2.5-pro: <think>**Analyzing a Black-Box Sorting Function: My Quicksort Hypothe-
sis**Okay, so the user wants me to figure out what this black-box function does. I’ve already tested it
with a couple of lists: ‘[10, 20, 30]‘ and ‘[3, 1, 4, 2]‘. Based on the checkpoint data, I’m starting to think
this is a **quicksort implementation**. Let me walk through my thought process.**Early Observations
and Hypotheses**With ‘[10, 20, 30]‘, it’s been pretty clear that the function is recursively called. At
checkpoint ‘(2, 2)‘, I see it partitioning the data based on a pivot element (the last element of the list,
‘30‘, then ‘20‘). ‘l‘ contains elements less than or equal to the pivot, ‘r‘ contains elements greater. At
‘(3, 1)‘, it appears that the partitioned subarrays ‘l‘ and ‘r‘ are getting sorted and recombined.Looking

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

at ‘[3, 1, 4, 2]‘, the partitioning logic is reconfirmed with last element ‘2‘ as the pivot, with the correct
partition of ‘l=[1]‘ and ‘r=[3, 4]‘. The recursive calls strongly suggest a divide-and-conquer approach.
The checkpoints give some interesting insights into the function’s internal state.The last elements of ‘arr‘
are used as the pivot, partitioning the subarrays into smaller components. Checkpoint ‘(3, 1)‘ always
seems to recombine sorted partitions. The algorithm looks like this: ‘sorted_l + [pivot] + sorted_r‘. That
makes me think, "aha! Quicksort!".**Confirmation with a New Input**I’m now quite certain that this
is a quicksort implementation. However, to cement this, I need to test a more complex example. Let’s
see what happens with ‘arr = [5, 2, 8, 2, 5, 1]‘.The recursive calls and partitioning look correct, and if I
trace it, the sorted result aligns perfectly with how a quicksort would function. Partitioning at ‘1‘ should
give the appropriate results. Then with pivot ‘5‘, ‘l‘ should give the other result. That should recurse,
and then the algorithm joins everything together.* The pivot will be ‘1‘ initially.* That will give ‘l = []‘
and ‘r = [5, 2, 8, 2, 5]‘ and we continue.**Further Probing**To nail it down, I can verify the function’s
state at key points in the algorithm’s execution:* At checkpoint ‘(1, 3)‘, which corresponds to the initial
recursive call on a smaller array.To confirm the partitioning logic, I’ll then probe at checkpoint ‘(2, 3)‘
within this call.This should give me the exact state of the ‘l‘, ‘r‘, and ‘p‘.So, to summarize: the function
is, in all likelihood, a quicksort. And my next query will test my hypothesis.</think> (1, 3)

Black-Box: <Current Turn: 17, 3 Turns Remaining> [’name=arr, value=[5, 2, 2], type=list’,
’name=p, value=2, type=int’]

Gemini-2.5-pro: (3, 3)

Black-Box: <Current Turn: 18, 2 Turns Remaining> [’name=arr, value=[5, 2, 8, 2, 5, 1], type=list’,
’name=p, value=1, type=int’, ’name=l, value=[], type=list’, ’name=r, value=[5, 2, 8, 2, 5], type=list’,
’name=i, value=4, type=int’, ’name=s, value=[1, 2, 2, 5, 5, 8], type=list’]

Gemini-2.5-pro: <think>**Initial Analysis: Decoding the Code**My task is to understand a
piece of code that behaves like a reasoning engine, specifically a function signature with three
checkpoints to inspect. The function processes a list (‘arr‘) and I need to deduce its logic through
mental simulation and analysis. I’ll need to pay close attention to the state of the variables at each
checkpoint.**Experiment 1: A Walkthrough with ‘arr = [10, 20, 30]‘**First, I start with an array ‘[10,
20, 30]‘. Checkpoint 1 reveals that a pivot (‘p‘) is selected, which is always the last element of the input
array. At Checkpoint 2, a partitioning occurs, creating lists ‘l‘ (elements <= pivot) and ‘r‘ (elements
> pivot) – a common pattern in sorting algorithms. I notice this checkpoint is within a loop.The code
then recursively calls itself on the ‘l‘ and ‘r‘ sub-arrays, indicating a divide-and-conquer strategy, such
as you might use in recursion. Further probing reveals that Checkpoint 3 appears after the recursive
calls complete, combining the sorted ‘l‘, the pivot, and the sorted ‘r‘ into a single, potentially sorted list.
This gives the impression of Quicksort.**Formalizing the Hypothesis: Quicksort in Action**Based on
this, I formulate a hypothesis: The code is a Quicksort implementation. Here’s how I think it works.1.
It selects a pivot.2. It partitions the array based on the pivot.3. It recursively sorts the partitions.4. It
combines sorted partitions.I refine the model further, clarifying the logic behind the loop’s partitioning
within the context of Quicksort algorithm.**Experiment 2: Testing the Quicksort Hypothesis with ‘arr =
[3, 1, 4, 2]‘**I apply my refined understanding to the array ‘[3, 1, 4, 2]‘. Following the execution flow,
my predictions for the variables at the checkpoints accurately reflect the traces provided. I see how the
partitioning occurs, how sub-problems are divided and conquered, and how the results are merged. This
strengthens my hypothesis of it being Quicksort.**Experiment 3: Delving Deeper with ‘arr = [5, 2, 8,
2, 5, 1]‘**To further validate, I use the example ‘[5, 2, 8, 2, 5, 1]‘. By tracking the execution carefully,
I encounter a discrepancy in the provided checkpoint traces. I re-examine my logic, focusing on the
nesting of recursive calls. I see that the checkpoint variables are correct, but there’s a problem with the
presentation or capturing of the variables. I deduce the visit counts.Now, the picture is clear.**Final
Confirmation: Quicksort Unveiled**My analysis confirms that this function implements the Quicksort
algorithm. It selects the last element as the pivot, partitions the array recursively, and merges the sorted
sub-arrays. I am ready to specify one last query: I choose Checkpoint 2 for a subproblem (‘[5, 2, 2]‘), at
‘(2,3)‘. This further deepens my confidence in the logic.By systematically examining, and reevaluating
I have successfully understood the function.</think> (2, 3)

Black-Box: <Current Turn: 19, 1 Turns Remaining> [’name=arr, value=[5, 2, 2], type=list’,
’name=p, value=2, type=int’, ’name=l, value=[2], type=list’, ’name=r, value=[5], type=list’, ’name=i,
value=1, type=int’]

Gemini-2.5-pro: (3, 3)

Black-Box: <Current Turn: 20, 0 Turns Remaining> [’name=arr, value=[5, 2, 8, 2, 5, 1], type=list’,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

’name=p, value=1, type=int’, ’name=l, value=[], type=list’, ’name=r, value=[5, 2, 8, 2, 5], type=list’,
’name=i, value=4, type=int’, ’name=s, value=[1, 2, 2, 5, 5, 8], type=list’]********Evaluation Starts,
You Have 2 Chances for Answering Each Question******** Now answer the question: When the input
variables of the blackbox are ’arr’: [22, 47, 11, 38], what’s the value for p at checkpoint (1, 1)?

Gemini-2.5-pro: ... (Gemini succeeds in all test samples.)

A Failure Example in Encryption Rule Inference Task This case adapted Bacon’s cipher, seg-
menting the alphabet from A to Z and from a to z. The LLM discovered the segmentation pattern
near the maximum number of turns. However, because it did not explore the pattern of uppercase
letters, the final solution was completely incorrect. This example illustrates that LLMs may fail to
make a high-level plan when completing tasks. In this task, if the large language model could query
strings longer than one character at a time, this task would be easily accomplished.

Black-Box: (Instructions omitted) You have 20 interaction turns to understand the black-box. Now the
interaction starts. Only output the value and DO NOT contain any unrelated text.

Gemini-2.5-pro: <think>**The Deduction Begins** Okay, so the user wants me to crack a
string transformation rule. I’ve got twenty tries, which should be more than enough. The output must
be English letters and spaces, so it’s probably not anything too wild. I need to figure out what happens
when I input a string, then adapt my guess based on the transformed output. I’m thinking, "Let’s keep it
simple at first." A single letter seems like a smart way to start. "a". Let’s see what happens.</think> a

Black-Box: <Current Turn: 1, 19 Turns Remaining> xxxxx

Gemini-2.5-pro: <think>**My Initial Analysis of the String Transformation**Okay, so I’m pre-
sented with a string transformation puzzle. The objective is clear: to deduce the underlying rule within
20 turns. My first clue is a single-character input, "a," which magically transforms into "xxxxx." This is
a significant jump in length, which immediately sparks several hypotheses. My expert intuition, honed
by years of pattern recognition, kicks in. Let’s break this down:* **Substitution Cipher?** Possibly,
but why five "x"s? A direct one-to-one mapping seems unlikely.* **Position-Based?** Perhaps it’s tied
to the letter’s alphabetical order. ’a’ is the first letter, but I don’t see an obvious link to five repetitions.*
Keyboard Layout? Unlikely. There’s no immediately apparent connection between "a" and "x"
on a standard keyboard.* **Other Codes?** Morse code and binary representations don’t provide any
meaningful insights in this instance.* **Arbitrary Mapping?** The most likely scenario, at this point,
appears to be an arbitrary rule. The mapping is so specific, I need another sample to identify a pattern.
To test this, I’ll submit "b" as the next input, trying to confirm my initial hypothesis. If I’m right, every
character is transformed into "xxxxx". Otherwise, I’ll need to explore alternative scenarios.</think> b

Black-Box: <Current Turn: 2, 18 Turns Remaining> xxxxy

Gemini-2.5-pro: <think>**Decoding the String Transformation** Okay, I’m diving into this
string transformation puzzle. The goal is to figure out the rule within 20 turns, which seems reasonable.
The first two input-output pairs are a great starting point. Turn 1: ‘a‘ becomes ‘xxxxx‘. Turn 2:
‘b‘ becomes ‘xxxxy‘. I see a pattern! Both outputs are five characters long. The letters ’a’ and ’b’
map to different sequences of ’x’ and ’y’, differing only in the last position. Initially, I considered a
simple cipher, but the fixed length of the output and the binary nature of the ’x’ and ’y’ sequence is
what triggered me. Could this be a binary encoding? Let’s assign ’x’ as 0 and ’y’ as 1. Under this
assumption, ’a’ (index 0) becomes ‘00000‘ (xxxxx) and ’b’ (index 1) becomes ‘00001‘ (xxxxy). This
is very interesting! My hypothesis is that the input letter’s position in the alphabet (starting from 0) is
being converted to a 5-bit binary representation, where ’x’ is 0 and ’y’ is 1. Let’s test this! If my theory
holds, then ’c’ should translate to ‘00010‘ (xxxyx) and ’d’ to ‘00011‘ (xxxyy). This is a promising
direction. I’ll test it out with ’c’ on the next turn. I also need to start thinking about the edge cases.
What about uppercase letters, spaces, or multiple characters? It is likely that multiple characters are
concatenated. It will be important to confirm the single letter rule before getting too far ahead.</think> c

Black-Box: <Current Turn: 3, 17 Turns Remaining> xxxyx

Gemini-2.5-pro: <think>**Unraveling the Transformation** Okay, so I’m presented with a
string transformation challenge. The goal is to figure out the rule. I’ve got 20 turns, which seems

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

reasonable. The user’s going to give me an input string, and I’ll respond with a transformed string.
It has to be English letters and spaces, easy enough. Alright, here’s what I’ve got so far. "a" became
"xxxxx," "b" became "xxxxy," and "c" became "xxxyx." Hmm, all 5 characters long and composed of
"x" and "y." My expert intuition is tingling... this feels like a binary mapping. Let’s see if that holds up.
If I consider "x" as 0 and "y" as 1:* "xxxxx" translates to 00000 -> 0 (the index of ’a’ in the alphabet,
0-indexed)* "xxxxy" translates to 00001 -> 1 (the index of ’b’ in the alphabet, 0-indexed)* "xxxyx"
translates to 00010 -> 2 (the index of ’c’ in the alphabet, 0-indexed) Bingo! It’s starting to click. I
hypothesize that the transformation works like this: 1. Take the input character and find its 0-indexed
position in the alphabet (a=0, b=1, c=2, and so on). 2. Convert that position number into its 5-bit binary
representation. 3. Replace the ’0’s with ’x’ and the ’1’s with ’y’. Let’s put this theory to the test. If I
give "d" as input, its index is 3. The 5-bit binary of 3 is 00011. Therefore, the output should be "xxxyy".
Here goes nothing... I’m submitting "d" as my input to test it!</think> d

Black-Box: <Current Turn: 4, 16 Turns Remaining> xxxyy

Gemini-2.5-pro: <think>**Initial Assessment and Hypothesis Formation**Okay, so I’ve been
given a challenge: figure out a string transformation rule with a limited number of attempts. I’m already
4 turns in, so I need to be efficient. The user is providing me with the transformed outputs, so it’s a
good starting point for pattern recognition.Initially, I observed that the output strings are consistently
five characters long and contain only ’x’ and ’y’. This immediately made me think of binary encoding,
where ’x’ could represent 0 and ’y’ could represent 1. I started by re-examining the provided examples
with this hypothesis in mind.Analyzing the first few transformations (a, b, c, d), I noticed a correlation
between the input character’s index in the alphabet and the resulting binary number. ’a’ (index 0)
becomes ‘00000‘, ’b’ (index 1) becomes ‘00001‘, and so on. This led me to formulate my hypothesis:
I must be converting the character’s index to a 5-bit binary representation, where ’x’ represents 0 and
’y’ represents 1.**Refining the Hypothesis and Testing**This pattern seemed very consistent. If this
is indeed a pattern, then the expected output for ’e’ (index 4) would be ‘xxyxx‘, which is the binary
representation of 4. Now, I need to test that this still works and think about multiple characters. The
instruction stated "string". This implies that the rule is applied character by character, then concatenated,
if the input is more than one character.I need to confirm this before moving on, or I will waste my
remaining turns. Let me test this theory!</think> e

Black-Box: <Current Turn: 5, 15 Turns Remaining> xxyxx

Gemini-2.5-pro: <think>**Unraveling the String Transformation**Okay, here’s what I’ve got
so far. The user wants me to crack a hidden string transformation rule. I’m limited to lower-
case/uppercase English letters and spaces as input, and I get the transformed string back. I’ve got 20
turns, so I need to be efficient.So far, I’ve seen these transformations: ’a’ -> ‘xxxxx‘, ’b’ -> ‘xxxxy‘,
’c’ -> ‘xxxyx‘, ’d’ -> ‘xxxyy‘, and ’e’ -> ‘xxyxx‘. The output is always five characters long, consisting
of ’x’ and ’y’. This suggests a potential binary encoding. ’x’ could be 0, and ’y’ could be 1.Let’s
convert the outputs to binary: ’a’ is 0, ’b’ is 1, ’c’ is 2, ’d’ is 3, and ’e’ is 4. This reveals a promising
pattern! It seems to be encoding the position of the letter in the alphabet, starting from zero, as a 5-bit
binary number.’a’ (0th letter) is 00000. ’b’ (1st letter) is 00001. ’c’ (2nd letter) is 00010, and so on.The
rule likely involves:1. Determining the 0-based index of the lowercase letter (a=0, b=1, ... z=25).2.
Converting that index to a 5-bit binary number.3. Mapping 0 to ’x’ and 1 to ’y’.To test this, I’ll submit
’f’. ’f’ is the 6th letter, so the index is 5. 5 in 5-bit binary is 00101, which translates to ’xxyxy’. Let’s
see if this pattern holds.</think> f

Black-Box: <Current Turn: 6, 14 Turns Remaining> xxyxy

Gemini-2.5-pro: <think>**Unveiling the Transformation: A Binary Approach**Okay, so I’m
on a mission to crack this code, and I’m down to 14 turns now. Let’s see... I’ve got a handle on the
initial pattern. It seems pretty clear: the output is a 5-character string of ’x’ and ’y’, which immediately
screams "binary" to me.My initial observations from the given examples are solid evidence:* ‘a‘ ->
‘xxxxx‘ (0 in binary)* ‘b‘ -> ‘xxxxy‘ (1 in binary)* ‘c‘ -> ‘xxxyx‘ (2 in binary)* ‘d‘ -> ‘xxxyy‘ (3 in
binary)* ‘e‘ -> ‘xxyxx‘ (4 in binary)* ‘f‘ -> ‘xxyxy‘ (5 in binary)So, it seems the process goes like this:
grab the input character, determine its position in the alphabet (starting with 0 for ’a’), translate that
position into a 5-bit binary number, and then swap ’0’ for ’x’ and ’1’ for ’y’.Now, I’m confident enough
to move forward, but I have a lot of questions.My immediate next step is to test ’g’, which should
translate to index 6, or ‘00110‘, which should be ‘xxyyx‘.Beyond that, I’m already formulating my test
cases to cover all the bases. I’m especially curious about:* **Uppercase letters.** Are they treated the
same as lowercase?* **Non-alphabetic characters.** Will spaces and other characters be handled, and
how?* **Multi-character strings.** Do they combine? Only the first character, or something else?This

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

is just the beginning, but this initial hypothesis feels solid enough to pursue. Time to confirm and refine
my strategy.</think> g

Black-Box: <Current Turn: 7, 13 Turns Remaining> xxyyx

Gemini-2.5-pro: <think>**The Decoding Process: A Binary Transformation**Okay, here’s the
task: figure out how one string gets turned into another. Hmm, each output is always five characters
long, consisting only of ’x’ and ’y’. Interesting. Let’s start with the provided examples and look
for a pattern.* "a" becomes "xxxxx"* "b" becomes "xxxxy"* "c" becomes "xxxyx"* "d" becomes
"xxxyy"* "e" becomes "xxyxx"* "f" becomes "xxyxy"* "g" becomes "xxyyx"Aha! It seems like
there’s a connection to binary representation. If we assume ’x’ is a ’0’ and ’y’ is a ’1’, we can
convert the letters to binary numbers, so ’a’ is 0, ’b’ is 1, ’c’ is 2, and so on.Let’s test this hypothesis
thoroughly.* ’a’ (0th letter): 0 in binary is 00000. "xxxxx" fits perfectly.* ’b’ (1st letter): 1 in
binary is 00001. "xxxxy" - spot on.* ’c’ (2nd letter): 2 in binary is 00010. "xxxyx" confirms it.*
’d’ (3rd letter): 3 in binary is 00011. "xxxyy" - absolutely!* ’e’ (4th letter): 4 in binary is 00100.
"xxyxx" is accurate.* ’f’ (5th letter): 5 in binary is 00101. "xxyxy" seems true.* ’g’ (6th letter):
6 in binary is 00110. "xxyyx" holds the answer!The rule is quite evident now. For each lowercase
letter input, do the following:1. Find the zero-based index of the letter in the alphabet (a=0, b=1,
etc.).2. Convert this index to its 5-bit binary form.3. Substitute ’0’ with ’x’ and ’1’ with ’y’.4.
Combine these five-character binaries for all the letters in the input.Let’s validate it, "h" (7th letter)
should transform to "xxyyy" (7 in binary is 00111), and I am expecting a positive match here.</think> h

Black-Box: <Current Turn: 8, 12 Turns Remaining> xxyyy

Gemini-2.5-pro: <think>**Analyzing and Testing a Binary Encoding System**Okay, so I’m
presented with this interesting problem. The task is to map single lowercase letters to 5-character strings
consisting of ’x’ and ’y’. My initial observations based on the provided examples are pretty clear: ’x’
appears to represent 0 and ’y’ represents 1. It seems like a binary encoding system. I’ve already tested
this hypothesis from ’a’ through ’h’, and it checks out beautifully. The output for each letter aligns
perfectly with the 5-bit binary representation of (letter’s position in the alphabet - 1). For instance, ’a’
is the first letter (position 1), so 1-1 = 0, and the binary representation of 0 is ‘00000‘, which translates
to ‘xxxxx‘.Now, I need to expand my analysis. ’i’ is next. Its position is 9, so 9-1=8, which has a
binary of ‘01000‘, mapping to ‘xyxxx‘. I’ll test that immediately to confirm. I’m also curious about
other elements. What will happen to uppercase letters, spaces, or even multiple characters? I need to
test that.My next steps: I’m planning to input ’i’ and then ’p’, and then ’q’ to further validate the base
hypothesis. Then, I’ll start testing edge cases: uppercase letters (’A’), spaces, and the concatenation of
letters like ’ab’, and finally ’z’. I’ll also try a few multi-character words like ’hello’ and ’WORLD’ to
explore those edge cases. I’m even curious to know how it treats spaces in multiple character strings.
So I’ll input something like "a b" and "Try Me". I will update my thoughts based on the input I am
given.</think> i

Black-Box: <Current Turn: 9, 11 Turns Remaining> xyxxx

Gemini-2.5-pro: <think>**Initial Assessment and Pattern Recognition**I’ve been tasked with
uncovering a hidden transformation rule. I’ve received nine input-output pairs so far. Initially, I
observed that the outputs were consistently five characters long, comprised of only ’x’ and ’y’.
This strongly suggested a binary encoding of some kind.**Hypothesis Formulation: Initial Binary
Mapping**I started by associating each input letter with its corresponding numerical position in the
alphabet. Then I converted those numbers into binary, assuming ’x’ was ’0’ and ’y’ was ’1’. My first
mapping attempted to use the standard alphabet index (a=1, b=2, etc.).**Iteration and Refinement:
0-Indexed Alphabet**The initial hypothesis failed. I quickly realized that I needed to shift my
approach. Then I tried 0-indexing the alphabet (a=0, b=1, c=2...), and the mapping finally fell into
place. It was a straightforward 5-bit binary conversion where ’x’ represents 0 and ’y’ represents 1.
This worked perfectly for the given inputs.**Testing and Expanding the Scope**With a potential rule
identified, I now need to confirm that it holds up across the board. I’m now thinking about things
like uppercase characters, spaces, and multi-character strings. I have a plan to test ’j’ (lower case),
’z’ (lower case), ’A’ (upper case), a space, and a multi-character string.**Focused Testing and Next
Steps**My strategy is to validate the 0-indexed binary encoding for lowercase letters with the ’j’
and ’z’ test cases. After that, I will test for case-sensitivity and how multi-character strings are han-
dled. I intend to use ’A’, a space, and ’ab’ to continue the exploration. The multi-character case might
be simply concatenated or it could be some different process entirely. I will adapt accordingly.</think> j

Black-Box: <Current Turn: 10, 10 Turns Remaining> xyxxy

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Gemini-2.5-pro: <think>Initial Assessment and Hypothesis Formation**Alright, I’m diving into
this puzzle with ten turns remaining. The task is clear: decipher a hidden rule that transforms an
input string into an output string. The inputs are simple: lowercase or uppercase letters and spaces,
and the outputs are restricted to the letters ’x’ and ’y’.Reviewing the provided examples, a pattern
emerges: the output strings are always five characters long, a classic indicator of binary encoding. My
initial hypothesis is that each lowercase input letter is being converted to its corresponding numerical
position in the alphabet (starting with 0 for ’a’). This number is then likely converted into a five-bit
binary representation, where ’x’ represents 0 and ’y’ represents 1.**Verification and Refinement**Let’s
test this hypothesis. ’a’ is the first letter (index 0) and the output is ’xxxxx’ (00000 in binary). ’b’
is the second letter (index 1) and the output is ’xxxxy’ (00001 in binary). The pattern holds. This
reinforces my initial thinking.The rule seems to be as follows: For each character in the input string,
its alphabetical index (0-based) is converted to a 5-bit binary string, and then ’x’ is substituted for
’0’, ’y’ for ’1’.**Extending the Hypothesis and Testing**Now, I need to expand the hypothesis to
address other possibilities. What about uppercase letters? Are they treated the same as lowercase, or
differently? And how are spaces handled? What about multi-character strings? Based on the pattern,
I expect the outputs to be concatenated, so an input like "ab" should result in "xxxxxxxxxxy".I’m
focusing now on confirming the pattern using a lowercase letter that I haven’t seen before. I’m going
to test the letter ’k’. If my hypothesis is correct, ’k’ (the 11th letter) should map to index 10, which
in 5-bit binary is 01010 (’yxyxy’).Therefore, I’m going to input ’k’ to confirm the hypothesis.</think> k

Black-Box: <Current Turn: 11, 9 Turns Remaining> xyxyx

Gemini-2.5-pro: <think>**Initial Hypothesis: Binary Encoding**Okay, I’m deep into this. The
user wants me to figure out a string transformation rule, and I’m down to the wire with only 9 turns
left! Based on the first 11 turns, I’ve got a solid hypothesis. Each input letter is being converted to a
5-character string of ’x’ and ’y’. It looks like a binary encoding scheme. ’x’ is acting as a 0, and ’y’ is a
1. I’ve mapped the letters to their 0-based alphabetical index, then to their 5-bit binary representation.
This works perfectly so far: ‘a‘ is 00000 (’xxxxx’), ‘b‘ is 00001 (’xxxxy’), and so on.**Testing and
Refining**Now, I need to solidify this. My next input will be ‘l‘. Since ‘l‘ is the 11th letter, its binary
equivalent is 01011. So, I expect the output to be ’xyxyy’. I’ve got to confirm this.After ‘l‘ and before I
can make a decision, I need to consider other cases and input:* I’ll test ‘z‘ (the 26th letter) to make sure
this pattern holds across the alphabet. It should be 11001, so I anticipate the output ‘yyxxy‘.* I need to
check for case sensitivity. I’ll use ‘A‘ and ‘B‘ next. If it’s case-sensitive, ‘A‘ could be the 27th character.
I’ll test for ‘A‘ and predict the outcome, then for ‘B‘ next. If it’s case-insensitive, then ‘A‘ and ‘a‘
should be the same.* Then, I’ll test how spaces are handled with a space character.* Finally, I’ll see how
multi-character strings are processed, like "ab", and "a b". It’s likely only the first character is processed,
considering the constant 5-character output. It could be a direct transformation of the first character, or
maybe they combine somehow. I’ll get more clarity there.Alright, the next input is ‘l‘. Let’s see if my
hypothesis holds water. I’m ready to move onto further tests if this prediction is confirmed!</think> l

Black-Box: <Current Turn: 12, 8 Turns Remaining> xyxyy

Gemini-2.5-pro: <think>**Analysis of the String Transformation Rule**Okay, so I’m being
tasked with deducing a hidden rule for transforming single-letter inputs into 5-character strings
composed of ’x’ and ’y’. I’ve got 20 turns, and I’ve already used 12. Let’s see...My initial observations
are as follows: the input is a single lowercase letter and the output is a string of length 5, consistently.
Furthermore, the inputs I’ve been given are alphabetically ordered (a, b, c, etc.) and I’ve noted a
corresponding pattern in the ’x’ and ’y’ sequence.I immediately recognized a potential connection to
binary representation. If I treat ’x’ as 0 and ’y’ as 1, the outputs look like binary representations of
numbers. For instance:* ’a’ (input 0) -> 00000 (’xxxxx’)* ’b’ (input 1) -> 00001 (’xxxxy’)* ’c’ (input
2) -> 00010 (’xxxyx’)The hypothesized rule is:1. Take the input lowercase letter and determine its
0-indexed position in the alphabet (a=0, b=1, c=2, ...).2. Convert this position number into a 5-digit
binary string, padding with leading zeros if necessary.3. Replace ’0’ with ’x’ and ’1’ with ’y’.To test
this hypothesis and confirm my thought process, I need to test a few examples:I predict the input ’m’
(index 12) should become ’xyyxx’. Next, I will evaluate case-sensitivity. Specifically I will test how
the transformations respond to ’A’. Finally, I will test for different character cases.If it works, I will
also consider multi-character strings. If I treat each character individually, then "ab" will become
"xxxxxxxxxxy".I am ready to move forward.</think> m

Black-Box: <Current Turn: 13, 7 Turns Remaining> xyyxx

Gemini-2.5-pro: n

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Black-Box: <Current Turn: 14, 6 Turns Remaining> xyyxx

Gemini-2.5-pro: <think>**Reasoning Through the String Transformation Rule**My primary
goal is to decipher the hidden rule governing the transformation of input letters into 5-character strings
of ’x’ and ’y’. I have a total of 20 attempts, and I’ve already utilized 14 turns. The data presents a clear
pattern: a single lowercase letter as input yields a 5-character string output. My approach involves a
meticulous analysis of the established input-output pairings to uncover the underlying logic. My initial
investigation involved mapping the output strings to binary representations, where ’x’ equates to 0 and
’y’ to 1. This initial analysis suggested a connection between the input letter’s alphabetical position
(0-based index) and the decimal equivalent of the binary output. For instance, ’a’ (index 0) mapped to
’xxxxx’ (0 in decimal), and ’b’ (index 1) mapped to ’xxxxy’ (1 in decimal).This pattern held until the
input ’n’. ’n’ (index 13) generated the output ’yxxyy’, which translates to 19 in decimal. This presented
a deviation from the established sequence. For the preceding letters, the decimal value matched the input
letter’s index. Initially, I thought that I misread or incorrectly transcribed the given outputs. However,
after careful re-reading and cross-referencing, the output for ’n’ was confirmed to be ’yxxyy’.To address
this anomaly, I reevaluated my understanding of the data. I hypothesized a piecewise function: for letter
indices less than 13, the output’s decimal value would be equal to the index. For indices 13 or greater,
there appeared to be an addition to create the output decimal value. Based on my analysis, I suspect the
output decimal number for input values greater than or equal to 13 would be equal to the index plus 6.To
further test this, I plan to feed in ’o’, which would be equivalent to 14, to see if the system performs as
expected, and produces 20, or yxxyx (10100) as the output. If this test is successful, the rule will have
been identified. Otherwise, it will require returning to the drawing board for more analysis.</think> o

Black-Box: <Current Turn: 15, 5 Turns Remaining> yxyxx

Gemini-2.5-pro: <think>**Analyzing the String Transformation Rule**My initial approach in-
volved straightforward binary representation, converting the letter’s index in the alphabet to a 5-bit
binary string, and mapping ’0’ to ’x’ and ’1’ to ’y’. This worked perfectly for ’a’ through ’m’, producing
a neat binary sequence. However, this straightforward approach failed for letters ’n’ and ’o’, leading
me to reconsider. I hypothesized a Baconian cipher, but the inconsistencies ruled that out. Instead, I
noticed a pattern shift at the letter ’n’. It seemed that letters ’n’ onward needed an adjustment to their
binary representation. This led me to propose a revised rule: add 6 to the letter’s index *if* the index
is 13 or greater (i.e., ’n’ through ’z’), *then* convert to 5-bit binary, and finally replace 0s and 1s with
x’s and y’s.I now plan to input ’p’ to test my split-point hypothesis, and then I will try uppercase ’N’
to confirm case-insensitivity or if there are separate rules for upper vs lower case. After that, I will test
for a space character, and then a multi-character string to see how concatenation or other processing of
longer strings is handled.</think> p

Black-Box: <Current Turn: 16, 4 Turns Remaining> yxyxy

Gemini-2.5-pro: <think>**My Current Thought Process:**Okay, I’ve got a good handle on
this. The user wants me to crack a code, and I’m down to the wire with only 4 turns left! I’ve been
through a lot of dead ends, but I think I’ve figured out the core mechanism. It’s a two-stage process:
first, a transformation based on the input letter’s position, and then Baconian cipher encoding.Originally,
I thought it was a simple binary representation. But that didn’t hold up. Then I considered Morse code,
but that didn’t quite fit either. Finally, the Baconian cipher popped into my head, which uses sequences
of ’A’ and ’B’, which I can easily translate into ’x’ and ’y’.Here’s my current thinking:1. **Letter
Position & Transformation:** If the input is ’a’ through ’m’ (or ’A’ through ’M’), it directly translates
to its uppercase equivalent. Letters ’n’ through ’z’ (or ’N’ through ’Z’) are *shifted* six places forward
in the alphabet.2. **Baconian Encoding:** Then, the *transformed* letter is encoded using the distinct
Baconian cipher. Think of "a" as "x" and "b" as "y".My plan to prove the theory: I will feed it "q,"
which I expect to result in "yxyyx." Then "A", expecting to get "xxxxx" as my output. After that, I will
feed a space character to analyze how this might work. Finally, I’ll test a string that includes both, using
"an" as my final test, I expect this to result in "xxxxxyxxyy". I have to make these tests count with the
limited turns I have left! I’m pretty sure I have this now. Wish me luck!</think> q

Black-Box: <Current Turn: 17, 3 Turns Remaining> yxyyx

Gemini-2.5-pro: <think>**Initial Assessment & Hypothesis Formation**Alright, the task is
clear: decipher a rule that transforms lowercase letters (and potentially more) into sequences of "x" and
"y". The initial data provides a sequence of inputs and outputs, clearly showing a pattern. My initial
instinct is to treat the "x" and "y" sequence as binary code, but the straightforward mapping seems to

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

break down at "n". This necessitates a deeper dive.**Pattern Recognition & Refinement**Focusing on
the output and its binary interpretation, I’ve tentatively established a rule: Each input is converted to
a number, converted to 5-bit binary, and then each 0 becomes "x" and each 1 becomes "y". However,
a direct correspondence to alphabetical position fails. The anomaly at "n" forces a reevaluation. The
letter ’n’ triggers something different.**Decoding the Anomaly & Rule Discovery**After revisiting
the output of ’n’, I’m noticing a distinct change in the binary mapping. It became clear that there
are two groups. Letters "a" through "m" follow one rule (position - 1), while letters "n" through
"z" follow another (position + 5).So now, for a letter ’c’* If ’c’ is between ’a’ and ’m’ (inclusive):
Value = position(c) - 1.* If ’c’ is between ’n’ and ’z’ (inclusive): Value = position(c) + 5.Convert the
resulting value to a 5-bit binary, then map it to ‘x‘ and ‘y‘.**Testing the Hypothesis & Planning Future
Steps**I’m feeling confident about this revised rule. I need to validate it across different scenarios
before I can declare victory. I have 3 turns left.Turn 18: Testing with ’r’ to confirm the ‘position + 5‘
rule. Expected output is ‘yxyyy‘.Turn 19: Testing the edge case with an uppercase ’A’.Turn 20: Testing
a string of characters (ab).</think> r

Black-Box: <Current Turn: 18, 2 Turns Remaining> yxyyy

Gemini-2.5-pro: s

Black-Box: <Current Turn: 19, 1 Turns Remaining> yyxxx

Gemini-2.5-pro: <think>**My Analytical Journey to Decoding the String Transformation
Rule**Alright, the user wants me to crack a hidden rule. I’ve been given twenty turns, and I’ve
carefully analyzed the interaction history. Here’s how my mind worked through the problem:**Initial
Observations and Hypothesis:**First, I noticed the outputs are always five characters long, a mix of ’x’
and ’y’. This felt like a binary code right away, with ’x’ representing zero and ’y’ representing one. I
mapped the first few inputs to their potential binary equivalents, seeing a clear progression: ’a’ is zero,
’b’ is one, ’c’ is two, and so on. But, I hit a snag when I reached ’n’. The pattern broke down.**Deeper
Dive & Baconian Cipher Consideration:**This prompted a reevaluation. The initial binary hypothesis
wasn’t completely right. I considered a Baconian cipher, which uses combinations of ’A’ and ’B’,
which is similar to my ’x’ and ’y’. I looked at the standard cipher, but the expected outputs didn’t
perfectly match the user history. This led me to dive deeper into variations and to another more concrete
method.**Refining the Mapping and the Alphabet Position:**I decided to map the number of letters +
1 (letter -1). This approach worked, until letter n. I then observed that the letters changed the behavior
starting from ‘n‘.**Piecewise Function and Final Hypothesis:**I realized I’m dealing with a piecewise
function. A key insight came when I looked at the sequence of outputs starting from ’n’. It seemed like
the later letters were being shifted in some way. I formulated my piecewise function: For letters ’a’
to ’m’ the value is (pos - 1). For letters ’n’ to ’z’ the value is (pos + 5). The value is then converted
to a binary five-digit string with x=0, and y=1.**Test & Conclusion**Based on this, I concluded that
uppercase letters are also subject to this function. Spaces are more difficult to ascertain, but my best bet
is that they are ignored or have their own ‘x/y‘ representation. The core pattern, however, is clear: a
character-based rule. Each lowercase or uppercase letter maps to a binary number and x/y combinations.
I can now submit my final guess - input ’t’ - confident in my decoding of the rule!</think> t

Black-Box: <Current Turn: 20, 0 Turns Remaining> yyxxy ********Evaluation Starts, You
Have 2 Chances for Answering Each Question******** Now answer the question: What’s the output
of the blackbox when the input plaintext is ’Diversity is key’?"

Gemini-2.5-pro: ... (Gemini fails in all the test samples.)

E ABLATION STUDY

E.1 THE INFLUENCE OF TEMPERATURE

We explore the influence of temperature t to the ORACLE benchmark. Gemini-2.5-flash, deepseek-
v3, claude-4-sonnet are selected for experiment. Gemini-2.5-flash and deepseek-v3 have a temper-
ature range of 0 to 2, while claude-4-sonnet’s temperature range is 0 to 1. The difference of model
performance between gemini-2.5-flash (t = 0), deepseek-v3 (t = 0), claude-4-sonnet (t = 0) and
gemini-2.5-flash (t = 1), deepseek-v3 (t = 1), claude-4-sonnet (t = 0.5) is reported in Table 2. We
find that LLMs’ performance in the ORACLE benchmark is only slightly affected by temperature.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

E.2 THE INFLUENCE OF EXTENDED THINKING

Table 2: The difference of accuracy between
gemini-2.5-flash (t = 0), deepseek-v3 (t = 0),
claude-4-sonnet (t = 0) and gemini-2.5-flash
(t = 1), deepseek-v3 (t = 1), claude-4-sonnet
(t = 0.5) in ORACLE 20@2&2@1.

Setting gemini-2.5-flash deepseek-v3 claude-4-sonnet

C
II Easy 6.5% 1.9% -4.2%

Hard -2.7% -9.3% 0.0%

C
R

I Easy 4.9% 27.1% 3.1%
Hard 2.7% 3.0% 0.8%

PS
I Easy 6.4% -1.3% -6.4%

Hard 4.2% -2.1% -8.3%

E
R

I Easy -2.3% -3.4% 0.0%
Hard 0.0% 0.0% 0.0%

IP
I Easy -3.3% -3.3% -10.0%

Hard 0.0% 0.0% -2.8%

G
SI Easy -6.1% 4.9% 4.7%

Hard -6.0% -13.5% 4.6%

Extended thinking is a technique that al-
lows for test-time chain of thought to im-
prove reasoning ability, and has been widely
adopted in SOTA reasoning LLMs. We ex-
plore extended thinking in the context of black-
box interaction. Baseline test first confirms
that certain LLMs (e.g., qwen3-32b, qwen3-
235b) cannot achieve qualified standards of the
ORACLE benchmark without extended think-
ing. In the ORACLE benchmark, three rep-
resentative models, claude-3.7-sonnet, claude-
4-sonnet, gemini-2.5-flash, and corresponding
thinking versions are picked to elaborate the
improvement of extended thinking. As shown
in Table 3, models that incorporate extended
thinking achieve higher scores across nearly all
scenarios. The extended thinking capability
of claude-4-sonnet also shows greater improve-
ment compared to claude-3.7-sonnet. These observations evidence that reasoning LLMs with ex-
tended thinking outperforms conventional LLMs in the ORACLE benchmark, highlighting its ef-
fectiveness in improving deductive, inductive, and abductive reasoning of LLMs during black-box
interaction.

Table 3: Increase of accuracy with extended thinking in
ORACLE 20@2&2@1.

Setting claude-3.7-sonnet claude-4-sonnet gemini-2.5-flash

C
II Easy 10.0% 13.4% 4.8%

Hard 8.7% 18.7% 15.1%

C
R

I Easy 12.0% 14.0% 10.0%
Hard 8.0% 19.0% 20.0%

PS
I Easy 21.8% 26.9% 12.0%

Hard 25.0% 22.9% 9.0%

E
R

I Easy 6.8% 19.3% 0.0%
Hard 0.0% 1.4% -6.2%

IP
I Easy 23.3% 23.3% 60.0%

Hard 22.2% 25.0% 30.6%

G
SI Easy 7.9% 18.7% 21.3%

Hard 14.6% 16.0% 7.4%

The degree of extended reasoning in
modern LLMs can be adjusted. For
instance, OpenAI’s o-series models al-
low users to modify the reasoning ef-
fort to low, medium, or high. Sim-
ilarly, Claude-series models offer the
ability to change the maximum to-
kens allocated for extended thinking.
We explore whether the degree of ex-
tended reasoning will influence the
model performance in the ORACLE
benchmark. Three models, o4-mini,
o3-mini, claude-4-sonnet_thinking, are
picked in this ablation experiment. Two
different settings are applied: For o-series models, we evaluate model performance with low and
medium reasoning effort. For claude-4-sonnet_thinking, we evaluate model performance with 2000
and 20000 thinking tokens. Results are shown in Table 4, which evidence that more extended think-
ing can significantly lead to accuracy increase in most scenarios.

E.3 THE INFLUENCE OF PRIOR KNOWLEDGE
Table 4: Increase of accuracy with the degree
of extended thinking from low to medium in
ORACLE 20@2&2@1.

Setting o4-mini o3-mini claude-4-sonnet∗

C
II Easy 25.2% 15.2% 8.7%

Hard 25.0% 15.2% 26.5%

C
R

I Easy 20.3% 43.7% 14.0%
Hard 20.2% 21.0% 27.0%

PS
I Easy 14.1% 6.4% 15.4%

Hard 12.5% 10.4% 2.1%

E
R

I Easy 36.4% 38.6% 17.0%
Hard 16.7% 11.1% -1.3%

IP
I Easy 16.7% 30.0% 6.7%

Hard 25.0% 13.9% 2.8%

G
SI Easy 14.3% 11.1% -9.6%

Hard 10.8% 12.5% 4.6%

To verify the claim that black-box interaction evalu-
ates pure reasoning ability instead of memorization
of knowledge, we perform an ablation study of the
influence of prior knowledge. Relevant prior knowl-
edge is explicitly added in the input instruction, and
we obsever whether the performance is improved or
not. Two representative tasks, CRI 10@1 and ERI
10@1, are selected and the results are shown in Ta-
ble 5. As shown in the results, adding background
knowledge explicitly will not lead to better perfor-
mance for both reasoning and non-reasoning mod-
els. The key factor for achieving a high score is the
model’s strong reasoning ability.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

E.4 THE INFLUENCE OF EXPLORATION TURNS

Table 5: Model performance with and without
prior knowledge in CRI 10@1 and ERI 10@1.

Setting gemini-2.5-pro gemini-2.5-flash

C
R

I

Easy, w/ knowledge 50.0% 22.0%
Easy, w/o knowledge 62.0% 20.0%
Hard, w/ knowledge 30.0% 11.0%
Hard, w/o knowledge 37.0% 10.0%

E
R

I

Easy, w/ knowledge 38.6% 4.6%
Easy, w/o knowledge 30.7% 3.4%
Hard, w/ knowledge 5.6% 0.0%
Hard, w/o knowledge 8.3% 0.0%

We analyze the performance of LLMs under
fewer and more exploration turns. Due to the
high cost of calling LLMs, we explored the re-
sults of four models under the 5@1 and 30@2
settings. The results are shown in Table 6.
We can draw several conclusions from the ad-
ditional experiment: (1). Generally speaking,
more turns will not lead to significant accu-
racy increase for LLMs in most situations. (2).
Accuracy can be affected by random fluctua-
tion. (3). Surprisingly, in some cases (e.g.,
gemini-2.5-pro in ERI Easy), model perfor-
mance surges when interaction turns are extended to 30. It’s similar to an "aha moment". We
leave it to future work to analyze. But compared to human performance, it’s still inefficient.

E.5 THE INFLUENCE OF REASONING TOKENS

Table 6: Model performance and average reasoning to-
kens in CRI 10@1, ERI 10@1 and CRI 30@2, ERI 30@2.

Setting o3 gemini-2.5-pro gemini-2.5-flash∗ deepseek-v3

C
II

Easy 5@1 66.15% 60.82% 38.18% 48.18%
Hard 5@1 52.22% 28.02% 19.60% 16.34%
Easy 30@2 92.94% 88.96% 66.88% 69.91%
Hard 30@2 74.21% 55.48% 41.59% 31.35%

C
R

I

Easy 5@1 24.00% 30.00% 14.00% 26.00%
Hard 5@1 14.00% 17.00% 4.00% 10.00%
Easy 30@2 72.00% 88.00% 44.00% 46.00%
Hard 30@2 44.00% 58.00% 37.00% 31.00%

PS
I

Easy 5@1 38.46% 58.97% 28.21% 19.23%
Hard 5@1 20.83% 20.83% 16.67% 4.17%
Easy 30@2 67.95% 70.51% 55.13% 17.95%
Hard 30@2 47.91% 50.00% 45.83% 12.50%

E
R

I

Easy 5@1 52.27% 23.86% 6.82% 2.27%
Hard 5@1 11.11% 11.11% 1.39% 0%
Easy 30@2 68.18% 55.68% 6.82% 6.82%
Hard 30@2 19.44% 2.78% 0% 0%

IP
I

Easy 5@1 46.67% 53.44% 30.00% 26.67%
Hard 5@1 33.33% 19.44% 13.89% 2.78%
Easy 30@2 100.00% 100.00% 90.00% 50.00%
Hard 30@2 80.56% 63.89% 38.89% 0%

We analyze if better models achieve
success through superior strategy or
simply more computation. We add
an experiment that shows average rea-
soning tokens per turn. The exper-
iments encompassed three representa-
tive tasks: CRI, ERI, and PSI. These
were evaluated under two distinct set-
tings: 10@1 and 30@2, and the results
are presented in Table 7. Two conclu-
sions can be drawn from the results.
First, Strong models can achieve suc-
cess through superior strategy. But de-
veloping this strategy will cost lots of
reasoning tokens. Second, Weak mod-
els cannot develop a good strategy, even
with lots of reasoning tokens. This
elaborates the fundamental gap of rea-
soning ability between strong and weak
models.

E.6 THE INFLUENCE OF REFLECTIVE INSTRUCTION

Table 7: Model performance and average reason-
ing tokens in CRI 10@1, ERI 10@1 and CRI
30@2, ERI 30@2.

Setting gemini-2.5-pro gemini-2.5-flash∗ o4-mini

C
R

I

Easy 10@1 62.0% / 11700.9 24.0% / 9010.3 48.0% / 6619.4
Hard 10@1 37.0% / 11844.7 17.0% / 12072.3 22.0% / 6220.8
Easy 30@2 88.0% / 7619.4 44.0% / 7423.8 72.0% / 7654.3
Hard 30@2 58.0% / 10206.8 37.0% / 9839.2 44.0% / 8747.6

E
R

I

Easy 10@1 30.7% / 6464.8 6.8% / 1856.1 56.8% / 7203.6
Hard 10@1 8.3% / 8208.4 0.0% / 1873.7 12.5% /7878.6
Easy 30@2 55.7% / 3002.2 6.8% / 728.9 68.2% / 6001.1
Hard 30@2 2.8% / 5513.5 0% / 475.5 19.4% / 7776.4

PS
I

Easy 10@1 57.7% / 6460.7 38.5% / 5025.6 59.0% / 2320.0
Hard 10@1 38.6% / 7411.9 37.5% / 5316.0 27.1% / 3354.6
Easy 30@2 70.5% / 5160.2 55.1% / 2531.3 68.0% / 3502.7
Hard 30@2 50.0% / 6256.8 45.8% / 3055.6 47.9% / 5360.3

We study whether explicitly instructing LLMs
to reflect prior feedback and keep an efficient
exploration strategy at the end of each turn will
improve their performance or not. The spe-
cific instruction prompt is “Keep an efficient
exploration strategy by reflecting on prior feed-
back”. We pick gemini-2.5-pro, gemini-2.5-
flash_thinking, o3 in CRI and ERI task under
10@1. The results are shown in Table 8. They
indicate that the LLM’s lack of an efficient and
adaptive exploration strategy is a fundamen-
tal flaw, which cannot be compensated for by
Chain-of-Thought prompting.

E.7 HUMAN EVALUATION

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Table 8: Model performance with and without
feedback reflection in CRI 10@1 and ERI 10@1.

Setting gemini-2.5-pro gemini-2.5-flash∗ o3

C
R

I

Easy, w/ Reflection 66.0% 18.0% 58.0%
Easy, w/o Reflection 62.0% 24.0% 64.0%
Hard, w/ Reflection 34.0% 12.0% 21.0%
Hard, w/o Reflection 37.0% 17.0% 24.0%

E
R

I

Easy, w/ Reflection 25.0% 9.1% 33.0%
Easy, w/o Reflection 30.7% 6.8% 26.1%
Hard, w/ Reflection 13.9% 0.0% 2.8%
Hard, w/o Reflection 8.3% 0.0% 15.3%

In this part, we show human performance in the
ORACLE benchmark. It is worth noting that
many black-box tasks are both time-consuming
and challenging for humans. Due to cost con-
straints, for certain tasks, we merely randomly
selected a few black boxes for testing (e.g., for
easy black-boxes in CII we pick 3 black-boxes,
abbreviated as CII Easy (3)). The human partic-
ipants involved in the testing were undergradu-
ate and graduate students from the departments
of Mathematics, Physics, and Computer Sci-
ence at several top-tier universities. The results are in Table 9. In the process of human evalua-
tion, we summarized the following findings: (1). Except for the Code Intent Inference task, humans
achieved performance significantly surpassing the best-performing models on the other five cate-
gories of tasks. (2). During the black-box interaction process, humans demonstrated the ability to
formulate highly effective adaptive and efficient exploration strategies, which enabled them to solve
some black-box problems in around five turns.

F PROMPT DETAILS

F.1 PROMPT FOR BLACK-BOX GENERATION

Table 9: Comparison of human performance and SOTA
LLM performance in the ORACLE benchmark 10@1 and
20@2

Setting Human 10@1 SOTA LLM 10@1 Human 20@2 SOTA LLM 20@2

C
II Easy (3) 96% 78% 100% 98%

Hard (2) 3% 53% 21% 76%

C
R

I Easy (3) 67% 70% 100% 93%
Hard (3) 67% 47% 67% 83%

PS
I Easy (all) 100% 62% 100% 65%

Hard (5) 100% 27% 100% 13%

E
R

I Easy (all) 100% 64% 100% 61%
Hard (3) 67% 0% 67% 13%

IP
I Easy (all) 100% 83% 100% 98%

Hard (all) 100% 36% 100% 67%

G
SI Easy (all) 88% 79% 98% 83%

Hard (4) 65% 35% 100% 52%

We report prompts used in the black-
box generation framework in this
part. Specifically, there are two types
of prompts, prompt for coding LLM
which generates black-box code (de-
noted as Description of Black-box
in Figure 4), prompt for refinement
LLM which helps check and cor-
rect black-box code (denoted as Task
Rule in Figure 4). Recall the frame-
work for black-box generation in
Section 4, there are two types of er-
rors during simulation, code that is
non-executable and code that incor-
rectly implements black-box. For
non-executable code, we directly instruct Refinement LLM to modify current code with error mes-
sages. As to executable code, we first instruct Refinement LLM to judge whether the code correctly
implements black-box according to simulated interaction log. If there exist errors and inconsisten-
cies, Refinement LLM is then instructed to modify code based on concluded mistake and original
request. Corresponding prompts are shown below.

Prompt for Refinement LLM when code fails to be executed
You need to fix running errors of a code.
- The code is as follows:
{current_code}
- This above code has the following running errors:
{running_errors}
- You need to think step by step and output the revised correct code. **Make sure the output code is
runnable, DO NOT output any other text**.

Prompt for Refinement LLM to detect whether current code correctly implements black-box
- Here is an interaction log:
{interaction_log}
- The interaction log is supposed to follow the given rules:
{taskintro}

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

and the black-box function implements {algorithm}, {description}.
- You need to read the log carefully and identify whether the log matches the given rule and correctly
implements the black-box function. Neglect the wrong answer from the assistant because it’s not a part of
the judgment. Neglect the replies from the assistant and **focus on the replies from the user**. Output
"correct" if you think it’s correct, **DO NOT output any other text**. If you think the interaction logs
do not satisfy the given request, output the wrong points clearly but do not contain revised code.

Prompt for Refinement LLM to modify current code
- The code is as follows:
{current_code}
- This above code is supposed to implement this function:
{request}
- However, the current code does not meet the above requirements and has the following mistakes:
{mistake}
- Your task is to revise current code according to known mistakes. Make sure the output code is runnable,
DO NOT output any other text.

F.1.1 CODE INTENT INFERENCE (CII)

Prompt for Coding LLM
- Task overview:
You should formalize a player-blackbox interaction process into runnable python code. Generally speak-
ing, you need to focus on three things:

- Generate the function of a blackbox, which implements a specific algorithm.
- Generate the function of a platform, which parses player output and get blackbox output.
- Generate the main function which is responsible for the interaction between player and blackbox.

- Detailed Coding Instructions:
- Before starting, we list all the related packages. You need to import them at the beginning of pro-

gramme:
- ‘import os‘
- ‘import sys‘
- current_path = os.path.abspath(__file__)
- ‘oracle_path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(current_path))))‘
- ‘if oracle_path not in sys.path:‘
- ‘ sys.path.insert(0, oracle_path)‘
- ‘from ckpt import get_local_variables, check_query_validity, get_ckpt_numbers,

get_function_params, capture_print‘
- ‘from eva_models import ReasoningLLM‘
- ‘import re‘

- Generate the code of a blackbox:
- First insert ‘get_local_variables.counters = ‘ and ‘get_local_variables.max_visits = ‘ inside the

function to initialize.
- Write a function named ‘blackbox‘. It implements algorithm. The description of this algorithm is

that description. The input variables of this function should be the simplest (e.g. you can get the length
of a list through len() function, so you don’t need an additional variable n as imput). **Note that you
must write Type Hints for all the input variables!**

- Apart from the original function input variables, 2 additional parameters ‘idx=0, iter=0‘ must be
added to the function input variables.

- There’s a python function ‘get_local_variables(idx)‘ that can get the result of all local variables.
You need to assert it to the ‘blackbox‘ function in the places where local variables are changed in the
runtime. But do not insert too many checkpoints. ‘idx‘ refers to the times ‘get_local_variables‘ is
inserted. For example, when first inserted, add ‘get_local_variables(1)‘, when second inserted, add
‘get_local_variables(2)‘, and so forth.

- At the end of this function, add ‘check_query_validity(idx, iter)‘.
- **DO NOT return any values.**
- **Use meaningless variable names like a, t, s, num, arr, etc. Make sure the names of variables do

not leak any potential information.**
- Generate the code of a platform:

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

- Write a function named ‘platform‘, which takes ‘player_output‘ as function input variable and
print ‘blackbox_output‘. Use ‘@capture_print‘ as Decorator for this function. **Note the function Only
use ‘print‘, DO NOT use ‘return‘!**

- The code should first parse ‘player_output‘ and then get the result of corresponding ‘black-
box_output‘. To correctly parse ‘player_output‘, you need to pay special attention to its format. There
are **only 3 conditions** for ‘player_output‘:

- Condition 1: If the ‘player_output = ”‘, call ‘params = get_function_params(blackbox)‘ and
‘num_ckpt = get_ckpt_numbers(blackbox, get_local_variables)‘ orderly to get the names and types of
all variables, and the total number of checkpoints. Then ‘print(f’The black-box takes params as input
variables, and has num_ckpt checkpoints.’)‘.

- Condition 2: If the ‘player_output‘ follows this format: "variable_name_1 = value_1;
variable_name_2 = value_2; ..." (e.g. arr = [1, 5, 2]; n = 3), First split ‘player_output‘, then
change the type of value from string to its real type for each variable_name. Call ‘params_info =
get_function_params(blackbox)‘ to get the names and types of all variables. ‘params_info‘ is a List like
this ‘[’name’: ’arr’, ’type’: <class ’list’>, ’name’: ’n’, ’type’: <class ’int’>]‘. Check if variable_name
is in ‘params_info‘. If not, set ‘print(’Error: The variable name is not in the function parameters’)‘. If
yes, change the type of value from string to its real type, and record ‘variable_name_1: value_1, vari-
able_name_2: value_2‘ in a global dict ‘vars‘. When new variable value is assigned, dict ‘vars‘ needs to
be updated. Set ‘print(f’Set vars.’)‘

- Condition 3: If the ‘player_output‘ follows this format: "(‘idx‘, ‘iter‘)", set ‘blackbox(**vars,
idx, iter)‘.

- Remember to tackle with unexpected errors:
- If ‘player_output‘ is not in the above-mentioned 3 conditions, the function should print output

format rules.
- Some other possible errors. Remember to use ‘print‘ instead of ‘return‘.

- Generate the main code:
- The main function takes some input variables ‘main(model_family, model_name, task, eva_mode,

n_runs, difficulty, task_id, failure_num, output_dir, max_turns, version, mode, thinking_mode)‘.
- First, the main code need to instantiate ‘ReasoningLLM‘ class through ‘player = Reason-

ingLLM(model_family, model_name, task, eva_mode, n_runs, difficulty, task_id, thinking_mode,
mode)‘.

- Then, call ‘blackbox_output = platform(player_output, max_turns)‘ and ‘player_output =
player.normal_output(blackbox_output)‘ iteratively in a ‘for‘ loop with ‘max_turns‘ iterations. When
‘blackbox_output = platform(player_output)‘ is first called, set it as ‘player_output = ”‘. Add string
‘f’<Current Turn: i+1, max_turns-(i+1) Turns Remaining>’‘ before each ‘blackbox_output‘, will ‘i‘ is
the index in the loop.

- When the loop exits, call ‘player.evaluate(failure_num, version)‘ and
‘player.save_history(output_dir, version)‘.

- Finish the main function.
- Add ‘if __name__ == "__main__":‘, ‘args = sys.argv[1:]‘, ‘main(args[0], args[1], args[2],

args[3], int(args[4]), args[5], args[6], int(args[7]), args[8], int(args[9]), int(args[10]), args[11],
bool(eval(args[12])))‘ at the end of this programme to make it runnable.
- Tips: DO NOT include other text output. Make sure the output is runnable. Code and think step by
step.

F.1.2 CIRCUIT RULE INFERENCE (CRI)

Prompt for Coding LLM
Boolean Circuit Family Implementation Task
Definitions and Background
In our task: - A **boolean circuit** is an acyclic computational structure with fixed 0/1 bit inputs,
composed of AND/OR/NOT logic gates. Each gate receives inputs either from input wires or from
outputs of other gates. - The task is to write the code of the game platform. The player will use the
platform to gain information with the circuit, and try to guess the function of the circuit.
Task Overview
Your objective is to formalize a player-blackbox interaction process into runnable Python code. Focus
on implementing three key components:
1. **Circuit Function**: Implement a function that constructs the circuit according to the language
description, given the input wires and returns the output of each gate.
2. **Main Function**: Implement the core interaction loop between the LLM player and the blackbox.
Detailed Coding Instructions

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Required Imports Begin by importing these packages: “‘python im-
port os import sys current_path = os.path.abspath(__file__) oracle_path =
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(current_path)))) if oracle_path
not in sys.path: sys.path.insert(0, oracle_path) from ckpt import simulate_circuit from eva_models
import ReasoningLLM import re “‘
Circuit Generator Function Implement ‘blackbox(circuit_input)‘ where: - ‘circuit_input‘ are the 0/1
bits of the input wires - Returns ‘gate_output‘ describing the 0/1 bits of each gate output - The circuit’s
purpose is algorithm - Construction details: description - In ‘blackbox‘, you should construct ‘gates‘,
and then use ‘simulate_circuit‘ to generate the response (see Interface Details section) - **Important**:
Verify that your gate construction achieves the stated goal and follows the description exactly
Main Function Implement ‘main(model_family, model_name, task, eva_mode, n_runs, difficulty,
task_id, failure_num, output_dir, max_turns, version, mode, thinking_mode)‘ where: 1. Instantiate the
‘ReasoningLLM‘ class: “‘python player = ReasoningLLM(model_family, model_name, task, eva_mode,
n_runs, difficulty, task_id, thinking_mode, mode) “‘
2. Create an interaction loop for ‘max_turns‘ iterations: - Call ‘player_output =
player.normal_output(blackbox_output)‘ to send the message ‘blackbox_output‘ to the player,
and get the player’s output. - ‘blackbox_output‘ should append the remain rounds for interaction. -
For the first iteration, ‘blackbox_output‘ should be a prompt telling player the game begin. - For every
‘player_output‘, try to parse it into a 0/1 list as ‘circuit_input‘ - If the parsing succeeds, ‘blackbox_output
= platform(circuit_input)‘ in the next iteration, otherwise ‘blackbox_output‘ should remind the player
follows the format.
3. After the loop completes: - ‘player_output = player.normal_output(blackbox_output)‘ to
give the last answer of the player. - Call ‘player.evaluate(failure_num, version)‘ - Call
‘player.save_history(output_dir, version)‘
4. Add an entry point at the end of the program: “‘python if __name__ == "__main__": args =
sys.argv[1:] main(args[0], args[1], args[2], args[3], int(args[4]), args[5], args[6], int(args[7]), args[8],
int(args[9]), int(args[10]), args[11], bool(eval(args[12]))) “‘
Circuit Details
- ‘AND‘ and ‘OR‘ gates always require exactly two inputs - ‘NOT‘ gates always require exactly one
input - A gate’s output or an input wire can be used as input to multiple other gates without restriction
- Circuits must be acyclic: for the i-th gate, all inputs must come from either input wires or outputs of
gates with indices smaller than i - The index of the gate is from 1 to m, where m is the number of gates.
Interface Details
Use ‘simulate_circuit(n, m, input, gates)‘ as follows:
“‘python ”’ Returns a list of the gates’ outputs, or a string containing an error message Parameters: n:
number of input wires m: number of gates input: list of input values (0 or 1) gates: list of tuples, each
tuple contains gate type and its inputs - gate type: ’AND’, ’OR’, ’NOT’ - inputs: (0, i) means the input
wire i (1, j) means the output of gate j Note that every index begins from 1 (i, j>=1)
Examples: - (’AND’, (0, 1), (0, 2)) means AND gate taking input wires 1 and 2 - (’NOT’, (1, 3)) means
NOT gate taking the output of gate 3
Example usage:
gates = [(’AND’, (0, 1), (0, 2)), (’AND’, (0, 3), (1, 1)), (’OR’, (0, 4), (1, 2)), (’NOT’, (1, 3)), (’NOT’,
(0, 5))]
input = [1, 1, 0, 1, 0]
simulate_circuit(5, 5, input, gates) # Returns [1, 0, 1, 0, 1] ”’ def simulate_circuit(n, m, input_wires,
gates) -> str | list: # Implementation details omitted “‘
Development Tips - Focus only on producing runnable code without additional text output - Ver-
ify your implementation step-by-step - Ensure the circuit generator correctly implements the specified
algorithm - Validate that the platform function properly handles all input formats

F.1.3 PHYSICS SYSTEM INFERENCE (PSI)

Prompt for Coding LLM
- Task overview: You should formalize a player-blackbox interaction process into runnable python code.
Generally speaking, you need to focus on two things: - Generate the function of a blackbox, which im-
plements an encryption algorithm. - Generate the main function which is responsible for the interaction
between player and blackbox.
- Detailed Coding Instructions: - Before starting, we list all the related packages.
You need to import them at the beginning of programme: - ‘import os‘ - ‘im-
port sys‘ - ‘import math‘ - ‘current_path = os.path.abspath(__file__)‘ - ‘oracle_path =
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(current_path))))‘ - ‘if oracle_path

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

not in sys.path:‘ - ‘ sys.path.insert(0, oracle_path)‘ - ‘from eva_models import ReasoningLLM‘ - ‘from
scipy.integrate import solve_ivp‘ - ‘import numpy as np‘
- Generate the code of a blackbox: - Write a function named ‘blackbox‘. It implements algorithm. The
detailed description is that description. - You need to first build a 3-dimensional coordinate for this
mechanical system. However you only consider algorithm as 2-dimensional, but return 3-dimensional
coordinate. - You need to figure out how the objects’ location changes over time, namely calculating x(t),
y(t), z(t) based on physics knowledge. If analytical solution does not exist, use ‘solve_ivp‘ to calculate
numerical solution. - The function tasks only one variable as input, which is ‘t: float‘, and return only
one variable ‘object_coordinate‘, which is a dict that contains 3-dimensional coordinate of all the objects
in the black-box. The objects are named ‘object1‘, ‘object2‘, etc., and ‘object_coordinate‘ is formatted
in ‘"object1": (x, y, z), "object2": (x, y, z), ...‘. All coordinates are approximated to two decimal places.
- Generate the main code: - The main function takes some input variables ‘main(model_family,
model_name, task, eva_mode, n_runs, difficulty, task_id, failure_num, output_dir, max_turns, version,
mode, thinking_mode)‘. - First, the main code need to instantiate ‘ReasoningLLM‘ class through
‘player = ReasoningLLM(model_family, model_name, task, eva_mode, n_runs, difficulty, task_id,
thinking_mode, mode)‘. - Then, call ‘player_output = player.normal_output(blackbox_output)‘ and
‘blackbox_output = black(player_output)‘ iteratively in a ‘for‘ loop with ‘max_turns+1‘ iterations. When
‘player_output = player.normal_output(blackbox_output)‘ is first called, set ‘blackbox_output‘ as ‘black-
box_output = f’You have max_turns interaction turns to understand the black-box. Now the interaction
starts. Only output the value and DO NOT contain any unrelated text.’‘ first. Besides the situation that
‘blackbox_output‘ is first called, add string ‘f’<Current Turn: i+1, max_turns-(i+1) Turns Remaining>
’‘ before each ‘blackbox_output‘. ‘i‘ is the index in the loop. In the last iteration of the loop, after
‘player_output = player.normal_output(blackbox_output)‘ is called, add ‘continue‘ subsequently to exit.
- When the loop exits, call ‘player.evaluate(failure_num, version)‘ and ‘player.save_history(output_dir,
version)‘. - Finish the main function.
- Add ‘if __name__ == "__main__":‘, ‘args = sys.argv[1:]‘, ‘main(args[0], args[1], args[2],
args[3], int(args[4]), args[5], args[6], int(args[7]), args[8], int(args[9]), int(args[10]), args[11],
bool(eval(args[12])))‘ at the end of this programme to make it runnable.
- Tips: DO NOT include other text output. Make sure the output is runnable. Code and think step by
step.

F.1.4 ENCRYPTION RULE INFERENCE (ERI)

Prompt for Coding LLM
- Task overview: You should formalize a player-blackbox interaction process into runnable python code.
Generally speaking, you need to focus on two things: - Generate the function of a blackbox, which im-
plements an encryption algorithm. - Generate the main function which is responsible for the interaction
between player and blackbox.
- Detailed Coding Instructions: - Before starting, we list all the related pack-
ages. You need to import them at the beginning of programme: - ‘import
os‘ - ‘import sys‘ - ‘current_path = os.path.abspath(__file__)‘ - ‘oracle_path =
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(current_path))))‘ - ‘if oracle_path
not in sys.path:‘ - ‘ sys.path.insert(0, oracle_path)‘ - ‘from eva_models import ReasoningLLM‘
- Generate the code of a blackbox: - Write a function named ‘blackbox‘. It implements algorithm. The
description of this algorithm is that description. - The function tasks only one variable as input, which
is ‘plaintext‘, and return only one variable ‘ciphertext‘. Both ‘plaintext‘ and ‘ciphertext‘ only contains
English letters.
- Generate the main code: - The main function takes some input variables ‘main(model_family,
model_name, task, eva_mode, n_runs, difficulty, task_id, failure_num, output_dir, max_turns, version,
mode, thinking_mode)‘. - First, the main code need to instantiate ‘ReasoningLLM‘ class through ‘player
= ReasoningLLM(model_family, model_name, task, eva_mode, n_runs, difficulty, task_id, think-
ing_mode, mode)‘. - ‘blackbox_output‘ is first as ‘blackbox_output = f’You have max_turns interaction
turns to understand the black-box. Now the interaction starts. Only output the value and DO NOT con-
tain any unrelated text.’‘. - Then, call ‘player_output = player.normal_output(blackbox_output)‘, ‘black-
box_output = f’<Current Turn: i+1, max_turns-(i+1) Turns Remaining> ’ + blackbox(player_output)‘,
iteratively in a ‘for‘ loop with ‘max_turns+1‘ iterations. ‘i‘ is the index in the loop. - When the loop ex-
its, call ‘player.evaluate(failure_num, version)‘ and ‘player.save_history(output_dir, version)‘. - Finish
the main function.
- Add ‘if __name__ == "__main__":‘, ‘args = sys.argv[1:]‘, ‘main(args[0], args[1], args[2],
args[3], int(args[4]), args[5], args[6], int(args[7]), args[8], int(args[9]), int(args[10]), args[11],
bool(eval(args[12])))‘ at the end of this programme to make it runnable.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

- Tips: DO NOT include other text output. Make sure the output is runnable. Code and think step by
step.

F.1.5 INTERACTIVE PUZZLE INFERENCE (IPI)

Prompt for Coding LLM
- Task overview: You should formalize a player-blackbox interaction process into runnable python code.
Generally speaking, you need to focus on 3 things: - Generate the function of a blackbox, which im-
plements a interactive puzzle. You need to check the validity of the player’s queries and give feedback
according to the truth. - Generate a boolean format checking function, which checks the answers format
when the player tries to give answers. - Generate the main function which calls some essential functions.
- Detailed Coding Instructions: - Before starting, we list all the related pack-
ages. You need to import them at the beginning of programme: - ‘import
os‘ - ‘import sys‘ - ‘current_path = os.path.abspath(__file__)‘ - ‘oracle_path =
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(current_path))))‘ - ‘if oracle_path
not in sys.path:‘ - ‘ sys.path.insert(0, oracle_path)‘ - ‘from eva_models import ReasoningLLM‘
- Generate the code of a blackbox: - Write a function named ‘blackbox‘. It implements algorithm. The
description of this algorithm is that description. - Note That ‘blackbox‘ just answers every query and
does not include other functions. - The function takes 2 variables as input, which is ‘truth‘ and ‘query‘,
and return some feedback according to above description. Note that ‘truth‘ is a string that represents the
correct answer (i.e. the player will answer it finally) and ‘query‘ is a string that represents the player’s
query. - If ‘query‘ doesn’t follow correct format, please give some correcting advice as a ‘str‘ using
‘return‘.
- Generate the boolean format checking function - Write a function named ‘check_answer_format‘. It
is used to check whether answer format matches ‘truth‘ according to above description. - The function
takes only 1 variable as input, which is ‘answer‘, and return True / False. - Note that answer will be
given directly as the description above. Do not assume ‘answer‘ including any other text.
- Generate the main code: - The main function takes some input variables ‘main(model_family,
model_name, task, eva_mode, n_runs, difficulty, task_id, failure_num, output_dir, max_turns, ver-
sion, mode, thinking_mode)‘. - First, the main code need to instantiate ‘ReasoningLLM‘ class
through ‘player = ReasoningLLM(model_family, model_name, task, eva_mode, n_runs, difficulty,
task_id, thinking_mode, mode)‘. - Then, call ‘player.evaluate(failure_num, version, max_turns)‘ and
‘player.save_history(output_dir, version)‘ to evaluate and save logs. - Finish the main function. - Only
contain above code in the main function, do not include any other code.
- Add ‘if __name__ == "__main__":‘, ‘args = sys.argv[1:]‘, ‘main(args[0], args[1], args[2],
args[3], int(args[4]), args[5], args[6], int(args[7]), args[8], int(args[9]), int(args[10]), args[11],
bool(eval(args[12])))‘ at the end of this programme to make it runnable.
- Tips: DO NOT include other text output. Make sure the output is runnable. Code and think step by
step.

F.1.6 GAME STRATEGY INFERENCE (GSI)

Prompt for Coding LLM
- Task overview: You should formalize a player-blackbox interaction process into runnable python code.
Generally speaking, you need to focus on 3 things: - Generate the function of a blackbox, which im-
plements a interactive puzzle. You need to check the validity of the player’s queries and give feedback
according to the truth. - Generate a boolean format checking function, which checks the answers format
when the player tries to give answers. - Generate the main function which calls some essential functions.
- Detailed Coding Instructions: - Before starting, we list all the related pack-
ages. You need to import them at the beginning of programme: - ‘import
os‘ - ‘import sys‘ - ‘current_path = os.path.abspath(__file__)‘ - ‘oracle_path =
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(current_path))))‘ - ‘if oracle_path
not in sys.path:‘ - ‘ sys.path.insert(0, oracle_path)‘ - ‘from eva_models import ReasoningLLM‘
- Generate the code of a blackbox: - Write a function named ‘blackbox‘. It implements {algorithm}. The
description of this algorithm is that {description}. - Note That ‘blackbox‘ just answers every query and
does not include other functions. - The function takes 2 variables as input, which is ‘truth‘ and ‘query‘,
and return some feedback according to above description. Note that ‘truth‘ is a string that represents the
correct answer (i.e. the player will answer it finally) and ‘query‘ is a string that represents the player’s

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

query. - If ‘query‘ doesn’t follow correct format, please give some correcting advice as a ‘str‘ using
‘return‘.
- Generate the boolean format checking function - Write a function named ‘check_answer_format‘. It
is used to check whether answer format matches ‘truth‘ according to above description. - The function
takes only 1 variable as input, which is ‘answer‘, and return True / False. - Note that answer will be
given directly as the description above. Do not assume ‘answer‘ including any other text.
- Generate the main code: - The main function takes some input variables ‘main(model_family,
model_name, task, eva_mode, n_runs, difficulty, task_id, failure_num, output_dir, max_turns, ver-
sion, mode, thinking_mode)‘. - First, the main code need to instantiate ‘ReasoningLLM‘ class
through ‘player = ReasoningLLM(model_family, model_name, task, eva_mode, n_runs, difficulty,
task_id, thinking_mode, mode)‘. - Then, call ‘player.evaluate(failure_num, version, max_turns)‘ and
‘player.save_history(output_dir, version)‘ to evaluate and save logs. - Finish the main function. - Only
contain above code in the main function, do not include any other code.
- Add ‘if __name__ == "__main__":‘, ‘args = sys.argv[1:]‘, ‘main(args[0], args[1], args[2],
args[3], int(args[4]), args[5], args[6], int(args[7]), args[8], int(args[9]), int(args[10]), args[11],
bool(eval(args[12])))‘ at the end of this programme to make it runnable.
- Tips: DO NOT include other text output. Make sure the output is runnable. Code and think step by
step.

F.2 PROMPT FOR BLACK-BOX INTERACTION

We report initial instructions (i.e., task introduction) for benchmarked LLMs in different black-box
tasks. Prompts are written in markdown style.

F.2.1 CODE INTENT INFERENCE (CII)

1. Task overview: - The user plays the role of a code function, but you don’t know what the function
is. You need to understand the detailed working principle of this function by interacting with user in
multiple turns.
2. Goals: - By interacting with the user within given interaction turns, you need to understand how the
code function operates in every checkpoint.
3. User property: - The code function takes some variables as input. - The code function has some
checkpoints. You can specify ‘(idx, iter)‘ to get the value of accessible intermediate variables: - ‘idx‘:
int is the index of checkpoint (i.e. the idx-th checkpoint). - ‘iter‘: int is the number of visited times
(i.e. checkpoint will be visited multiple times in loop). - Example: ‘(2, 3)‘ means getting the value of
accessible variables when the 2-nd checkpoint is visited for the 3-rd time.
4. Interaction rules: - Rule 0: The user will first tell you the *type* and *name* of all the function
input variables, the *total number of checkpoints*. In each turn, the user will tell *current turn* and
remaining turns. - Rule 1: You can assign or re-assign any values to the input variables freely, but
they must match the variable types (e.g. if num is int, you can’t assign a float number to it). DO NOT
assign ‘idx‘ and ‘iter‘ in this stage. - Rule 2: You can ask for the value of accessible variables at ‘idx‘
checkpoint in ‘iter‘ iteration. The user will return the variable names and values. - The interaction order
matters: You are free to implement Interaction Rule 1, 2 at any time, **but you must make sure Rule 1
is implemented before Rule 2.**
5. Output format: - **You must strictly obey the output format rules, DO NOT output any unrelated
text!**: - According to Interaction Rule 1, when you want to assign values to input variables, output
"variable_name_1 = value_1; variable_name_2 = value_2; ..." (e.g. arr = [1, 5, 2, 9]; k = 3) - According
to Interaction Rule 2, when you want to ask for accessible variables in ‘idx‘ checkpoint in ‘iter‘ iteration,
output "(‘idx‘, ‘iter‘)" (e.g. (1, 2)). **Note the minimal number for ‘idx‘ and ‘iter‘ is 1.**
6. Evaluation: - When the given number of interactions is reached, several questions on the variable
value at certain checkpoint will be presented. **You MUST ONLY output the value, DO NOT contain
any other text.**

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

F.2.2 CIRCUIT RULE INFERENCE (CRI)

0. Definitions: A ’circuit’ means a boolean circuit with no circle, whose input wires are a fixed number
of 0/1 bits, and consisted of ‘AND‘/‘OR‘/‘NOT‘ gates. For each gates, the input are input wires or the
output of other gates.
1. Task overview: You are presented with a platform containing a circuit. Your task is to discover the
structure of this circuit by interacting with the platform over multiple turns.
2. Goals: You have one final goal: You need to know output of circuit gates given every input.
3. Interaction Process: To finish the goal, you need to interact with the platform. The interaction process
is as follows: - The platform will first provide you with the input sizes n - In each turn, you can ask the
platform for the outputs of every circuit gates with a given input size x = (x1, x2, ..., xn), xi ∈ {0, 1}.
- Each turn after you ask the platform, you will receive the circuit’s gate output in the following format:
[y1, y2, ..., ym], yi ∈ {0, 1}, where m is the number of gates, yi is the output of the i-th gate.
4. Output format in Interaction: **You must strictly obey the output format rules, DO NOT output any
unrelated text!**: Format your queries as: (x_1, x_2, ... , x_n). For example, if you what to now the
output of circuit given input x = (0, 1, 1), you should output: (0, 1, 1).
5. Evaluation: After reaching the maximum number of allowed interactions, you will be tested on your
understanding of the circuit family: - You will be given input x = (x1, x2, ..., xn) and you should
answer the output of each gate [y1, y2, ..., ym]. - Your construction should specify the exact connections
and gate types in Cn.
6. Circuit Details - ‘AND‘ and ‘OR‘ gates always have exactly two inputs, and ‘NOT‘ gatea always have
one input. - There are no restrictions on how many times a gate’s output or an input wire can be used as
input to other gates. - Every circuit in the circuit family contains no loops, For the i-th gate, all inputs
must come from either input wires or outputs of gates with indices smaller than i.

F.2.3 PHYSICS SYSTEM INFERENCE (PSI)

1. Task overview: - The user plays the role of a classical mechanical system, but you don’t know what it
is. You need to understand how this classical mechanical system operates by interacting with the user in
multiple turns.
2. Goal: - By interacting with the user within given interaction turns, you need to understand how the
mechanical system operates.
3. User property: - The user will remind you the remaining number of turns in each turn. - The user
takes time ‘t: float‘ as input. - The user return the 3-dimensional coordinate ‘(x, y, z)‘ of each object in
time ‘t‘.
4. Interaction rules: - Rule 1: You need to assign a value of ‘t‘. You can only assign one ‘t‘ in each turn.
Make sure the assigned ‘t‘ is a one-digit decimal. - Rule 2: You will receive the user response, which is
3-dimensional coordinate ‘(x, y, z)‘ of each object in time ‘t‘, after you assign specific ‘t‘.
5. Output format: - You must strictly obey the output format rules: When you want to assign value for ‘t‘,
only output the value. DO NOT output any unrelated text or symbols like "Let’s input", "I’ll try". -
If you understand the mechanical system before reaching given interaction turns, keep interacting with
the user to make sure you don’t miss any details. DO NOT output text like "I understand the pattern".
6. Evaluation: - When the given number of interactions is reached, you need to calculate the 3-
dimensional coordinate ‘(x, y, z)‘ of each object at time ‘t‘ with the format of ‘"object1": (x, y, z),
"object2": (x, y, z), ...‘. All coordinates are approximated to two decimal places.

F.2.4 ENCRYPTION RULE INFERENCE (ERI)

1. Task overview: - The user transforms one string into another based on a fixed rule, but you don’t know
what the fixed rule is. You need to figure out this rule by interacting with the user in multiple turns.
2. Goal: - By interacting with the user within given interaction turns, you need to understand the fixed
rule of transforming one string into another.
3. User property: - The user will remind you the remaining number of turns in each turn. - The user will
output transformed string in each turn.
4. Interaction rules: - Rule 1: You must only assign one string in each turn. You can assign any string
freely, but make sure the string **only contains uppercase or lowercase English letters (A-Z, a-z) and
blank space**. Then you will receive corresponding transformed string from the user.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

5. Output format: - You must strictly obey the output format rules: **Only output the string**. DO
NOT output any unrelated text or symbols like "Let’s input", "I’ll try", "/ n". - If you understand the
transforming rule before reaching given interaction turns, keep interacting with the user to make sure
you don’t miss any details. DO NOT output text like "I understand the pattern".
6. Evaluation: - When the given number of interactions is reached, you will be given several test strings
and you need to output corresponding transformed string. **You MUST ONLY output the value, DO
NOT contain any other text.**

F.2.5 INTERACTIVE PUZZLE INFERENCE (IPI)

1. Task overview: - The user plays the role of a puzzle, and you don’t know what the hidden answer is.
You need to guess the hidden answer by interacting with the user in multiple turns.
2. Goals: - You need to guess the answer to the puzzle within given interaction turns.
3. User property: - The user hides the answer which you need to figure out.
4. Interaction rules: - Rule 0: The user will first tell you the rule of the puzzle, and the interaction format
that must be followed when querying. In each turn, the user will tell *current turn* and *remaining
turns*. - Rule 1: You can ask questions according to the rules of the game and receive corresponding
feedback. If your ask is unavailable, the user will tell you. - Rule 2: After a series of interactions, you
should answer the puzzle in the format specified in the description.
5. Output format: - When you ask a question, you should strictly follow query format in the **Descrip-
tion**. - When you answer the puzzle, you should strictly follow the answer format in the **Descrip-
tion**. - Refer to the examples in the **Description**. for the correct format. - If you figure out the
right answer before given turns, keep interacting with the puzzle to make sure your answer is correct.
6. Evaluation: - When the given number of interactions is reached, you need to give your answer of the
puzzle. **You MUST ONLY output the answer itself in the format mentioned in the description, DO
NOT contain more text.**
Now Let’s Solve the Puzzle algorithm.
Description: description.

F.2.6 GAME STRATEGY INFERENCE (GSI)

1. Task overview: - The user plays the role of an opponent who takes a fixed strategy in a game. But you
don’t know what the stategy is. You need to guess the hidden stategy of your opponent by interacting
(playing game) with him in multiple turns.
2. Goals: - You have 1 final goal: You need to guess your opponent’s strategy and try to maximize your
score in the game. The score might depend on winning rate, or minimal cost, etc.
3. User property: - The user hides his game strategy which you need to figure out to win the game.
4. Interaction rules: - To finish the goal, you need to interact with the user. The interaction rules are as
follows: - Interaction Rule 0: The user will first tell you the rule of the game, and the interaction format
that must be followed when playing. In each turn, the user will tell *current turn* and *remaining turns*.
- Interaction Rule 1: You can take actions according to the rules of the game and receive corresponding
feedback, such as current game states. If your action is unavailable, the user will tell you. - Interaction
Rule 2: We will first play a few times of the game to familiarize you with the rules and the behavior of
your opponent. In this phase, your actions will not be recorded, and your score does not matter. You can
make use of this phase to explore the game and understand the opponent’s strategy. - Interaction Rule 3:
After the *exploration phase*, you will enter the *evaluation phase*. We will only play the game for 1
final time, and your actions will be recorded. Your score will be calculated based on your actions in this
final game.
5. Output format: - **You must strictly obey the output format rules, DO NOT output any unrelated
text!**:
6. Evaluation: - When the given number of interactions is reached, the game ends and we’ll calculate
your **score**
Now Let’s Play the Game {algorithm}, the Description Is that {description}.

G DETAILS OF BLACK-BOXES IN THE ORACLE BENCHMARK

We introduce the detailed implementation of black-boxes in each task. The definition of easy and
hard black-boxes are based on two factors: human understanding of black-box difficulty and the

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

black-box’s inherent difficulty. The designers ranked the black-box difficulty of each task based on
a partial order relationship. They ultimately discussed and collectively determined the sets for easy
and hard tasks. In the beginning of each subsection, we detail the basis for the difficulty division.

G.1 CODE INTENT INFERENCE (CII)

In the context of CII tasks, easy black-boxes represent simple algorithms, while hard black-boxes en-
compass more complex algorithms and problem-specific programs. We instruct LLM to use mean-
ingless letters as variable names (e.g., a, b), so the variable name will not result in the leakage of
code intent.

(Easy 1) Quicksort Recursion This code implements the quick sort algorithm using recursion to
sort an array of integers. Always choose the last number in the list as pivot.

(Easy 2) Most Frequent Char Given a string, find the character that appears most frequently. If
there are multiple characters with the same frequency, return the one that appears first in the string.
The input string can contain letters, digits, and punctuation marks. The output should be a single
character that is the most frequent in the input string.

(Easy 3) KMP The Knuth-Morris-Pratt (KMP) algorithm is used for substring search. It prepro-
cesses the pattern to create a longest prefix-suffix (LPS) array, which is then used to skip unnecessary
comparisons in the text. This allows for efficient searching of a pattern within a text string.

(Easy 4) High Precision Divide Simulate high-precision division a/b (including floating-point
results), without using any floating-point numbers in the code. Keep to 4 decimal places.

(Easy 5) High Precision Add This algorithm performs addition of very large integers. By simu-
lating the columnar addition, it adds digits from the least significant (rightmost) position, handling
carries.

(Easy 6) Fib Recursion Give n, it returns the n-th number in the Fibonacci sequence using recur-
sion.

(Easy 7) Factorial Recursion Given an integer n, return the factorial of n using recursion. The
factorial of n (denoted as n!) is the product of all positive integers less than or equal to n.

(Easy 8) Exgcd The Extended Euclidean Algorithm computes the greatest common divisor (GCD)
of two integers and also finds the coefficients (x, y) such that ax+ by = gcd(a, b).

(Easy 9) Coins for Fowls You have m coins and you want to buy exactly n fowls. Each rooster
costs 5 coin, each hen costs 3 coins, and each chick costs 1 coin. This code solves how many
Roosters, Hens, and Chicks can you buy.

(Easy 10) Bubble Sort Bubble sort is a sorting algorithm that repeatedly steps through the list,
compares adjacent elements and swaps them if they are in the wrong order. The pass through the list
is repeated until the list is sorted.

(Easy 11) Random Algebraic Operations Perform basic algebraic operations on three input int
numbers a, b, c. First, calculate d = a + b + c. Then, calculate e = a × b − c. Finally, calculate
f = (e+ d− 10)/2.

(Hard 1) Sieve of Eratosthenes Implement the Sieve of Eratosthenes algorithm to find all prime
numbers up to a given limit.

(Hard 2) Mergesort Recursion Merge sort is a divide-and-conquer algorithm that sorts an array
by recursively splitting it into halves, sorting each half, and then merging the sorted halves back
together.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

(Hard 3) Manacher Use Manacher’s algorithm to find the longest palindromic substring in a
given string. The algorithm works by transforming the input string to handle even-length palin-
dromes and then expanding around potential centers to find the longest palindrome efficiently.

(Hard 4) Heapsort Heap sort is a comparison-based sorting algorithm that uses a binary heap
data structure. It first builds a max heap from the input data, then repeatedly extracts the maximum
element from the heap and rebuilds the heap until all elements are sorted.

(Hard 5) Complex Random Algebraic Operations Perform basic algebraic operations on four
input int numbers a, b, c, d. First, calculate e = a × b + c × d. If this value is greater than 50,
e = e − 10, else e = e + 10. Then, calculate f = e2 − a − b − c − d. If f is odd, f = (f − 1)/2,
else f = f/2. Finally, calculate g = f − a.

(Hard 6) Arithmetic Slices A sequence is defined as an arithmetic progression if it contains at
least three elements and the difference between any two consecutive elements is constant. Given an
integer array, return the number of all arithmetic subsequences within the array.

G.2 CIRCUIT RULE INFERENCE (CRI)

Black-boxes in CRI task represents a boolean circuit without circle, whose input wires are a fixed
number of 0/1 bits, and consisted of ”AND“/”OR“/”NOT“ gates. Easy black-boxes are typically
formatted in sequence structure and implement basic function (e.g., xor), while some hard black-
boxes are formatted in tree structure and implement advanced function (e.g., add).

(Easy 1) Swap For input size n = 9, let the first 4 output gates are the last 4 input wires, and last
5 output gates are first 5 input wires. Notice that we use b[i]=a[j] and a[j] to implement copy.

(Easy 2) Random Small For input size n = 4, we construct a circuit of 8 gates without nothing
restriction. The circuit is not for some well-known purpose.

(Easy 3) Consequence For input size n = 8, we construct a circuit output whether there are two
consecutive input wires are both 1. Let input wires are a[i], b[i] = a[i-1] and a[i], s[i] = b[i] or s[i-1].

(Easy 4) Xor Sequence For input size n = 8, we construct a circuit calculate prefix XOR. Notice
that a xor b = (a and (not b)) or ((not a) and b), s[i] = s[i-1] xor a[i].

(Easy 5) Palindrome For input size n = 8, let a[i] be the input wires, and we construct a circuit
check whether the input wires form a palindrome and a[1..4] = a[5..8]. b[i] = a[i] and a[n-i+1], c[i]
= a[i] or a[n-i+1], d[i] = b[i] or (not c[i]), e[i] = a[i] and a[i+n/2], f[i] = a[i] or a[i+n/2], g[i] = e[i] or
(not f[i]), s[i] = s[i-1] and d[i] and g[i].

(Hard 1) Random Big For input size n = 7, we construct a circuit of 16 gates without nothing
restriction. The circuit is not for some well-known purpose.

(Hard 2) Greater For input size n = 6, we construct a circuit to check whether the number of
input 1 wires is greater than or equal to the number of 0 wires. If number of 1 is greater or equal,
there must be three input wires are 1. Let the input be a[1..6], c[1..20] be whether there are three 1
wires. For example, c[1] = a[1] and a[2] and a[3], c[2] = a[1] and a[2] and a[4], ..., c[20] = a[4] and
a[5] and a[6]. The result is c[1] or ... or c[20].

(Hard 3) Path For input size n = 9, it can be treated as a 4×4 adjacent matrix G of a 3 nodes
directed graph, where the diagnol is not important. We should construct a circuit that compute
whether there are paths between every pair of nodes. Because every possible path has length less
than 2, G’[i][j] = OR (G[i][k] and G[k][j]). Then G’ is the result. Notice that G[i][i]=1 no matter
what the input is.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

(Hard 4) Matrixmul For input size n = 9, it can be treated as a 3×3 matrix M in field Z2.
Calculate the matrix square M2. Notice that M2[i][j] = XOR (M[i][k] and M[k][j]). a xor b = (a and
(not b)) or (b and (not a)).

(Hard 5) Count For input size n = 7, we construct a circuit to count how many input wires are
1. Construct a subcircuit of add 0/1: x’[0] = x[0] xor input, y[0] = x[0] and input, x’[1] = x[1] xor
y[0], y’[1] = x[1] and y[0], x’[2] = x[2] xor y[1]. Copy the subcircuit n times. Notice that a xor b =
(not a and b) or (not b and a).

(Hard 6) Arbitrary For input size n = 7 and an arbitrary function f : Z7
2 → Z2. We can

construct a circuit to compute f . Let f(x1) = 1, f(x2) = 1, ... f(xk) = 1. f(x) = (x = x1) or (x =
x2) or ... or (x = xk), (x = y) can be construct by ((x[1] and y[1]) or not(x[1] and y[1])) and ((x[2]
and y[2]) or not(x[2] and y[2])) and ... We choose x1, x2, ..., x8 without any particular pattern and
construct the circuit according to that.

(Hard 7) And Tree For an input size of n = 8, we construct a circuit with n − 1 gates. The
circuit forms a tree structure, where each gate has two children and the outuput is the AND of its
two children. The last gate outputs the AND of all input wires. The second-to-last gate outputs the
AND of input wires with indices [1, n/2], while the third-to-last gate outputs the AND of input wires
with indices [n/2+1, n]. The last gate outputs the AND of the results from the second-to-last and
third-to-last gates...

(Hard 8) Add For input size n = 10, let the input wires be a[i], we construct a circuit to com-
pute a[2]a[3]a[4]... + a[1], which means add the first bit to the binary number of the last n-1 bits.
result[i]=a[n-i+1] xor b[i-1], b[i]=a[n-i+1] and b[i-1], b[0]=1.

(Hard 9) Consequence k For input size n = 10, we construct a circuit output whether there four
two consecutive input wires are both 1 (we should treat the input wires as a circle, which means x[8]
x[9] x[10] x[1] are also consecutive. Let s[i] = x[i] and x[next(i)], s’[i] = s[i] and s[next(next(i))],
where next(i) = i mod 10 +1. s’[i] checks whether there is consecutive 1 begins at i.

(Hard) Compare 10 For input size n = 10 (x1, ...x5, y1, ..., y5), we construct a circuit for com-
pare x and y. That is, we compare (x1, y1)(x2, y2) . . . (x5, y5) in order. a > b can be construct by
(a and (not b)).

G.3 PHYSICS SYSTEM INFERENCE (PSI)

Easy black-boxes contain the most basic classical mechanics laws governing the fundamental mo-
tion of one or two objects, while hard black-boxes contain two or more objects with more compli-
cated mechanics laws. Although the motion trajectories of most objects in the implemented black
box are one-dimensional or two-dimensional, for the sake of universality, we still performed three-
dimensional modeling for all object trajectories. In some cases (Double Pendulum, Harmonic with
Friction, Ball Air Resistance), equations of motion do not have analytical solutions. In these situa-
tions, we instruct LLMs to output code containing numerical solutions for the differential equations.
Then we compare black-box output with code output on test samples.

(Easy 1) Two Balls Collision Type 1 Two balls, A and B, are on an infinitely long, smooth plane.
Ball A has a mass of 5 kg, and Ball B has a mass of 2 kg. Ball A starts from the origin and moves
uniformly along the x-axis at a speed of 4 m/s. Ball B is placed at rest 10 m from the origin. When
the two balls collide, they bounce off each other completely elastically.

(Easy 2) Two Balls Collision Type 2 Two balls, A and B, are on an infinitely long, smooth plane.
Ball A has a mass of 4 kg, and Ball B has a mass of 2 kg. Ball A starts from the origin and moves
uniformly along the x-axis at a speed of 3 m/s. Ball B is placed at 12 m from the origin and come
to Ball A at a speed of 5 m/s. When the two balls collide, they bounce off each other completely
elastically.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

(Easy 3) Simple Harmonic Type 1 A simple harmonic oscillator is a system that experiences a
restoring force proportional to the displacement from its equilibrium position. The system contains
one object. The mass of the object is 1 kg. The spring constant is 100 N/m. The initial displacement
from the equilibrium position is 0.2 m (spring in contracted state). The system is horizontal and the
object is support by smooth ground without friction. The system is released from rest and do not
consider any air resistance. The coordinate origin is set at the equilibrium position of the oscillator.

(Easy 4) Simple Harmonic Type 2 A simple harmonic oscillator is a system that experiences a
restoring force proportional to the displacement from its equilibrium position. The system contains
one object. The mass of the object is 1 kg. The spring constant is 100 N/m. The initial displacement
from the equilibrium position is 0.2 m (spring in contracted state). The system is vertical and the
gravity is 10 m/s2. The system is released from rest and do not consider any air resistance. The
coordinate origin is set at the initial position of the oscillator.

(Easy 5) Oblique Projectile Motion An oblique projectile motion system is a scenario where an
object is projected at an angle from a very high point and falls under the influence of gravity. The
system contains one object. The mass of the object is 2 kg. The initial height from which the object
is projected is infinite, meaning it starts at a very high altitude. The initial horizontal velocity of
the object is 10 m/s, and the initial vertical velocity is 10 m/s. The simulation does not consider air
resistance. The coordinate origin is set at the initial position. Gravity g is 10 m/s2.

(Easy 6) Pendulum A pendulum is a weight suspended from a pivot so that it can swing freely.
The system contains one object. The initial angle of the pendulum is 60 degree. The length of the
pendulum is 2 meters. The acceleration due to gravity is 10 m/s2. Do not take air resistance into
account. The pendulum is released from rest. The coordinate origin is set at the pivot point of the
pendulum.

(Easy 7) Elliptical Planetary Orbits An elliptical planetary orbit is a path followed by a planet
around a star, where the orbit is an ellipse. The system contains one object which is the planet. The
mass of the planet is 9 × 1024 kg and the mass of the star is 8 × 1029 kg. The periapsis is 6 × 1010
m and the apoapsis is 9 × 1010 m. The simulation does not consider any other forces except for the
gravitational force between the planet and the star. The coordinate origin is set at the center of the
star. G equals to 6.7 × 10−11 Nm2/kg2.

(Easy 8) Cycloid A cycloid is the curve traced by a fixed point on the circumference of a circle
as it rolls along a straight line without slipping. The system contains one object which is the fixed
point. The radius of the circle is 1 m. The circle moves in a uniform speed of 1 m/s. The coordinate
origin is set at the fixed point where the circle starts rolling.

(Easy 9) Conical Pendulum A conical pendulum is a pendulum that moves in a circular path
while swinging at an angle. The system contains one object which is the pendulum bob. The mass
of the pendulum bob is 2 kg. The length of the pendulum is 5 m. The angle between the string and
the vertical is 30 degrees. The simulation does not consider air resistance. The coordinate origin is
set at the point where the string is attached to the ceiling. Gravity g is 10 m/s2.

(Easy 10) Free Fall to the Ground Type 1 A free fall system is a scenario where an object
falls under the influence of gravity until it collides with the ground, and then bounces. The system
contains one object. The mass of the object is 5 kg. The initial height from which the object is
dropped is 10 m. The ground is modeled as a surface that can completely deform elastically upon
impact, meaning it will return to its original shape after the collision. The simulation does not
consider air resistance. The coordinate origin is set at the ground level. Gravity g is 10 m/s2.

(Easy 11) Free Fall Infinite Height An object is dropped from an infinite height. The acceleration
due to gravity is 10 m/s2. The object falls freely under the influence of gravity. Do not take air
resistance into account. The coordinate origin is set at the point where the object is dropped.

(Easy 12) Horizontal Projectile Motion A horizontal projectile motion system is a scenario
where an object is projected horizontally from a very high point and falls under the influence of

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

gravity. The system contains one object. The mass of the object is 2 kg. The initial height from
which the object is projected is infinite, meaning it starts at a very high altitude. The initial horizon-
tal velocity of the object is 10 m/s. The simulation does not consider air resistance. The coordinate
origin is set at the initial position. Gravity g is 10 m/s2.

(Easy 13) Free Fall to the Ground Type 2 A free fall system is a scenario where an object
falls under the influence of gravity until it collides with the ground, and then bounces. The system
contains one object. The mass of the object is 5 kg. The initial height from which the object is
dropped is 20 m. The ground is modeled as a surface that deform inelastically upon impact. The
coefficient of restitution is 0.6. The simulation does not consider air resistance. The coordinate
origin is set at the ground level. Gravity g is 10 m/s2.

(Hard 1) Boat in River A rectangular river is 2000 m long and 20 m wide. The river’s flow
velocity is proportional to the distance from the river banks, with the velocity being 0 at both banks
and 10 m/s at the center of the river. A boat travels from one bank to the other perpendicular to the
current at a constant relative speed of 2 m/s. At a point 5 m from the bank, due to a malfunction,
the boat immediately turns around and heads back towards the original bank perpendicular to the
current at a speed of 1 m/s.

(Hard 2) Block Released from Incline Plane An inclined plane with an angle of 30 degrees and
a mass of 10 kg is placed on a smooth horizontal surface. A wooden block with a mass of 5 kg
is placed at a perpendicular height of 8 m on the inclined plane. There is no friction between the
wooden block and the inclined plane. In the initial state, the wooden block’s coordinates are (0, 0,
8) and the inclined plane’s coordinates are (0, 0, 0). The system is released from rest. After the
wooden block separates from the inclined plane, both the wooden block and the inclined plane will
move along the smooth horizontal surface. g = 10 m/s2.

(Hard 3) Three Balls Collision There are three balls, A, B, and C, with masses of 4 kg, 3 kg, and
2 kg, respectively. Their initial positions are at 0 m, 10 m, and 20 m, and their initial velocities are 3
m/s, 3 m/s, and -4 m/s. The plane is 30 m long with walls at both ends. The collisions between the
balls and between the balls and the walls are all perfectly elastic. The plane is perfectly smooth.

(Hard 4) Harmonic with Friction A harmonic oscillator with friction is a system that experi-
ences a restoring force proportional to the displacement from its equilibrium position, along with a
damping force proportional to the velocity. The system contains one object. The mass of the object
is 1 kg. The spring constant is 100 N/m. The initial displacement from the equilibrium position is 1
m (spring in contracted state). The system is horizontal and the object is supported by ground with
dynamic friction coefficient 0.1, gravity equals to 10. The system is released from rest and do not
consider any air resistance. The coordinate origin is set at the equilibrium position of the oscillator.
The simulation time begins from 0 s to 100 s with a time step of 0.1 s.

(Hard 5) Double Pendulum A double pendulum is a mechanical system that consists of two
pendulums attached end to end. The first pendulum is attached to a fixed pivot, and the second
pendulum is attached to the free end of the first pendulum. The system contains two objects. The
first object weighs 1 kg and attached to a fixed pivot with a 1 meter rigid rod. The first object weighs
1 kg and attached to the first object with a 1 meter rigid rod. The initial angle of the first pendulum
is 45 degrees, and the initial angle of the second pendulum is 45 degrees. The acceleration due to
gravity is 10 m/s2. Do not take air resistance into account. The coordinate origin is set at the pivot
point of the first pendulum. The simulation time begins from 0 s to 100 s with a time step of 0.1 s.
The system is released from rest.

(Hard 6) Ball Air Resistance A 2 kg ball is thrown vertically upward from a horizontal surface
with an initial velocity of 15 m/s. The air resistance is given by f=0.1v2, where v is the ball’s
velocity. After reaching its highest point, the ball keeps falling as there’s no ground. g = 10 m/s2.

(Hard 7) Two Balls Collision Type 3 Two balls, A and B, are on a 20 m, smooth plane with walls
on each side. Ball A has a mass of 5 kg, and Ball B has a mass of 3 kg. Ball A starts from one side
of the plane and moves uniformly along the plane at a speed of 4 m/s. Ball B starts from the other

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

side of the plane and moves towards Ball A at a speed of 6 m/s. When the two balls collide, the
collision is inelastic and the coefficient of restitution e = 0.8. When the balls collide with the walls,
they bounce off elastically.

(Hard 8) Bullet A 2000 g object, 60m in length, slides on a horizontal surface with a coefficient
of friction of 0.1. Its initial speed is 15 m/s. A 50 g bullet is flying horizontally at 400 m/s. After
1.5 seconds, the bullet horizontally embeds into the object. During the bullet’s passage through the
object, it experiences a resistive force f = 0.2v, where v is the bullet’s instantaneous velocity. When
the bullet go through the object, it continues horizontal uniform flight. Neglect the bullet’s vertical
drop. Use g = 10 m/s2.

G.4 ENCRYPTION RULE INFERENCE (ERI)

For every letter, its plaintext and ciphertext correspond in all cases for most of the easy black-boxes.
Some easy black-boxes (e.g. Zigzag Cipher and Curve Cipher) change the order of plaintext via spe-
cific algorithm. For hard black-boxes, the encrypted letters barely retain their original frequencies,
which adds difficulty in decryption.

(Easy 1) 01248 Encryption Type 2 For characters A-Z or a-z (case-insensitive), each letter is
assigned a value from 1 to 26 (a/A=1, b/B=2, etc.). This value is then broken down into the sum of
combinations of 1, 2, 4, 8. Use larger numbers first to sum. Then calculate the amount of 1, 2, 4,
8 separately and convert it to a four-digits number where the ones, tens, hundreds, and thousands
places represent the amounts of 1, 2, 4, 8, respectively. For example, C=1+2=0011, j=2+8=1010,
Z=2+8+8+8=3010. Black space is replaced by 0.

(Easy 2) Backpack Encryption It uses a superincreasing sequence as private key. The plaintext
is a string of letters. The encryption process is as follows: Convert each letter to a binary value:
a/A=00000, b/B=00001, ..., z/Z=11001. The public key is set as {34, 51, 58, 11, 35}. The ciphertext
is obtained by summing the products of each public key element and its corresponding digit in the
binary representation. For example, the letter ‘c’ is encrypted to (0× 34) + (0× 51) + (0× 58) +
(1× 11) + (0× 35) = 11. Output the ciphertext as a string of numbers, separated by commas.

(Easy 3) Caesar Cipher Caesar cipher is a type of substitution cipher in which each letter in the
plaintext is shifted 8 places down the alphabet. For example, A(a) would be replaced by I(i), B(b)
would become J(j), and so on. For letters at the end of the alphabet, the shift wraps around to the
beginning. For example, Y(y) would become G(g). Only take letters A-Z and a-z (case-sensitive)
into account. Blank spaces are ignored.

(Easy 4) ADHXZ Encryption ADHXZ is a method of encryption that uses a 5×5 grid to encrypt.
The encryption is case-insensitive and follows this replacement rule: ‘a/A=AH, b/B=AA, c/C=XH,
d/D=DA, e/E=ZH, f/F=HD, g/G=XA, h/H=DD, i/I=XD, j/J=XD, k/K=DZ, l/L=AX, m/M=ZA,
n/N=HZ, o/O=DH, p/P=AZ, q/Q=HA, r/R=ZD, s/S=HX, t/T=AD, u/U=XX, v/V=HH, w/W=ZX,
x/X=XZ, y/Y=ZZ, z/Z=DX’. Black spaces are kept.

A D H X Z
A b/B t/T a/A l/L p/P
D d/D h/H o/O z/Z k/K
H q/Q f/F v/V s/S n/N
X g/G i/I/j/J c/C u/U x/X
Z m/M r/R e/E w/W y/Y

(Easy 5) Bacon Cipher This variant of Bacon’s cipher is a method of encoding text using a binary
system. Each letter of the alphabet is represented by a unique combination of five letters, either
‘X’(‘x’) or ‘Y’(‘y’). ‘X’(‘x’) indicates 0 and ‘Y’(‘y’) indicates 1. The encryption is case-sensitive,
meaning uppercase letters will be replaced by ‘X’, ‘Y’, and lowercase letters will be replaced by
‘x’, ‘y’. The first thirteen letters of the alphabet, namely ‘A’ to ‘M’ will be replaced by ‘XXXXX’
to ‘XYYXX’, while the last thirteen letters, namely ‘N’ to ‘Z’ will be replaced by ‘YXXYY’ to
‘YYYYY’. Blank spaces are ignored.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

(Easy 6) Zigzag Cipher Write the letters of plaintext in a zigzag path, moving downwards and
then upwards across the 3 rows. Imagine writing on 3 parallel lines: when you reach the bottom
row, move back up, and when you reach the top row, move back down, repeating this pattern until
all plaintext characters are written. Spaces are ignored. After writing, read the characters from left
to right, row by row, to form the ciphertext. For example, the zigzag path for ‘HELLO WORLD’ is

H O L
E L W R D

L O

So it’s encrypted as ‘HOLELWRDLO’.

(Easy 7) Fibonacci Encryption Fibonacci cipher is a method of encryption that uses the Fibonacci
sequence to determine the shift of each letter in the plaintext. Suppose each letter is represented by
a=0, b=1, ..., z=25, A=26, B=27, ..., Z=51. The value of each encrypted letter is its value in plaintext
plus a shift number from the Fibonacci sequence and then modulo 52. The Fibonacci sequence
starts with 1 and 1, and each subsequent number is the sum of the two preceding ones. The first few
numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, ... For example, if the plaintext is ‘HELLO’, the
first letter ‘H’ is shifted by 1 (the first Fibonacci number), resulting in ‘I’. The second letter ‘E’ is
shifted by 1 (the second Fibonacci number), resulting in ‘F’. The third letter ‘L’ is shifted by 2 (the
third Fibonacci number), resulting in ‘N’. The fourth letter ‘L’ is shifted by 3 (the fourth Fibonacci
number), resulting in ‘O’. The fifth letter ‘O’ is shifted by 5 (the fifth Fibonacci number), resulting
in ‘T’. Therefore, the ciphertext is ‘IFNOT’. Keep the blank space in the ciphertext.

(Easy 8) Index Shift Encryption Index shift encryption is a method of encryption that uses the
index of each letter in the plaintext to determine the shift for each letter. The index of first letter is
0. Suppose the letters are represented by a=0, b=1, ..., z=25, A=26, B=27, ..., Z=51. The value of
each letter in ciphertext equals its value in plaintext plus a shift number (i.e. the number of index)
and then modulo 52. Then convert the value to the corresponding letter. Keep the blank spaces in
the ciphertext.

(Easy 9) Curve Cipher There is a table with 999 rows and 6 columns. Each letter in plaintext is
sequentially filled into the table row by row. Blank spaces are ignored. Uppercase and lowercase
are kept. When all the plaintext letters are filled into the table, the ciphertext is generated by reading
letters in the table in a zigzag manner, beginning from the last letter in the last available column
(e.g. begin from ‘t’ in the 2-th column for ‘at’ and begin from ‘i’ in the 6-th column for ‘beautiful’).
When reaching the top row, move back down, and when reaching the bottom row, move back up,
repeating this pattern until all the letters are read. Letters in the same column are written together
and letters in different columns are separated by blank space. For example, if the plaintext is ‘Hello
World’, the table will be like

H e l l o W
o r l d

And the ciphertext is supposed to be ‘W o dl ll re Ho’.

(Easy 10) 01248 Encryption Type 1 For characters A-Z or a-z (case-insensitive), the encryption
is done by first replacing each character with a number based on its position in the alphabet, namely,
a/A=1, b/B=2, ..., z/Z=26. Each number in 1 to 26 is replaced by the sum of combinations of 1, 2,
4, 8. Black space is replaced by 0. For example, 3 is replaced by 12, 10 is replaced by 28, 20 is
replaced by 488. The replacement follows two rule: (1). Use larger numbers first to make sure the
encrypted number has the fewest digits (e.g. use 18 for 9 instead of 1224). (2). Put small number in
the front. (e.g. use 18 instead of 81). According to the above rules, string ‘Hello World’ is encrypted
to ‘814484812480124881248288484’.

(Easy 11) Substitution Encryption Simple substitution cipher is a method of encryption where
each letter in the plaintext is replaced by a letter with a fixed relationship to it. The detailed corre-
sponding relationship is as follows: Each letter in ‘abcdefghijklmnopqrstuvwxyz’ will be replaced
by ‘phqgiumeaylnofdxjkrcvstzwb’. The process is case-sensitive, meaning uppercase will keep as

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

uppercase and lowercase will keep as lowercase. If the plaintext contains blank spaces, keep them
in the ciphertext.

(Hard 1) Sequential Feedback Cipher Sequential feedback cipher encrypts letter in the plaintext
one by one in a sequential order. Each letter in the alphabet is assigned a value A=0, B=1, ..., Z=25,
a=26, b=27, ..., z=51. The initial hidden letter is set as ‘b’. For each letter in the plaintext, the
shift number is the value of previous encrypted letter. And for the first letter, the shift number is the
value of initial hidden letter. The ciphertext for each letter is its original value plus the shift number
and then modulo 52. For example, the letter ‘A’ in plaintext ‘At’ will be encrypted to ‘b’ because
(27 + 0) mod 52 = 27. The letter ’t’ will be encrypted to ’U’ because (45 + 27) mod 52 = 20.
Blank spaces are kept in the ciphertext.

(Hard 2) RSA Encryption The public key for RSA is set as (e, n) = (13, 713), and the private
key is set as (d, n) = (1117, 713). The plaintext is a string of letters. The encryption process is as
follows: First, convert each letter to its corresponding integer value: a/A=1, b/B=2, ..., z/Z=26. This
procedure is case-insensitive. Then, split the plaintext into blocks with a size of 2. Calculate the
value of each block in hexavigesimal. For example, the value of ‘HE’ is 8× 26 + 5 = 213. Finally,
perform traditional RSA algorithm to each block. Blank spaces in plaintext are ignored. Output the
ciphertext as a string of integers, separated by commas.

(Hard 3) Frequency Encryption For each letter in the plaintext, its ciphertext is affected by
the frequency of letters before it in the plaintext. Suppose we have plaintext P = p1p2...pn and
the initial hidden keyword p0 is set as ‘H’. A-Z and a-z are represented by numerical values 0-
25 and 26-51 respectively. For letters pi(i ≥ 1), the value for encrypted letter ci is calculated as
ci = (pi + shifti) mod 52, where shifti is the value of the letter that has the highest frequency in
p0p1...pi−1. If several letters have the same frequency, choose the letter according to the following
preference order: ‘A’≻‘B’≻...≻‘Z’≻‘a’≻‘b’≻...≻‘z’. Keep the blank spaces in the ciphertext.

(Hard 4) Dynamic Curve Cipher There is a table with 999 rows and k columns, where k =
(l mod 3) + 3, and l is the number of letters in the plaintext. Each letter in plaintext is sequentially
filled into the table row by row. Blank spaces are ignored. Uppercase and lowercase are kept. When
all the plaintext letters are filled into the table, the ciphertext is generated by reading letters in the
table in a zigzag manner, beginning from the last letter in the last available column (e.g. begin from
‘t’ in the 2-th column for ‘at’ and begin from ‘l’ in the 3-th column for ‘beautiful’). When reaching
the top row, move back down, and when reaching the bottom row, move back up, repeating this
pattern until all the letters are read. Letters in the same column are written together and letters in
different columns are separated by blank space. For example, if the plaintext is ‘Hello World’, the
ciphertext is supposed to be ’rl lo dWe Hol’.

(Hard 5) Vigenere Encryption Vigenere cipher is a method of encryption that uses a keyword
‘MEMORY’ to encrypt the plaintext. Each letter in the plaintext is shifted by a number of positions
determined by the corresponding letter in the keyword. The keyword is repeated to match the length
of the plaintext. For example, if the plaintext is ‘HELLOWORLD’, then the keyword is repeated
as ‘MEMORYMEMO’. The first letter ‘H’ is shifted by ‘M’ (12 positions), resulting in ‘T’. The
second letter ‘E’ is shifted by ‘E’ (4 positions), resulting in ‘I’. The encryption is case-insensitive.
Both uppercase and lowercase letters will be treated as uppercase. Keep the blank space in the
ciphertext.

(Hard 6) Hill Cipher The hill cipher is a polygraphic substitution cipher based on linear algebra.
Each letter is first mapped into a number (a/A=0, b/B=1, ..., z/Z=25). The hill cipher uses matrix

multiplication to encrypt blocks of text. The key is a 2 × 2 square matrix K =

(
3 5
1 2

)
, and the

plaintext is divided into blocks with a length of 2. If the last block is fewer than 2 letters, use ‘x’
to fill. Each block is represented as a 2-D vector, and the encryption is performed by multiplying
the key matrix with the plaintext vector modulo 26. The resulting vector is then converted back to
letters. The encryption process is case-insensitive. Output the ciphertext in lowercase style. For
example, ‘Hi’ will be encrypted to ‘jx’. Keep the blank spaces in the ciphertext.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

(Hard 7) Positional Keyword Cipher This method uses a keyword ‘Jackal’ to determine how
each letter in the plaintext is shifted. Each letter of the alphabet is assigned a value A=0, B=1, ...,
Z=25, a=26, b=27, ..., z=51. Write the keyword repeatedly above the plaintext, matching each letter
of the plaintext with a letter from the keyword. Black spaces are kept. For example, if plaintext
is ‘Hello World’, then the corresponding keyword for matching is ‘Jacka lJack’. For each letter,
calculate the sum of the value of plaintext and keyword, then modulo 52 to get the value of the ci-
phertext letter. Finally, translate the value to corresponding letter. Since the keyword is repeated, the
same letter in the plaintext will be paired with different letters of the keyword at different positions,
leading to different ciphertext letters.

(Hard 8) Compositional Encryption It’s an encryption method that undergoes polyalphabetic
substitution, affine transformation, and fixed permutation. The encryption process follows: For each
English letter Pi in the plaintext: (1). Letter to Number Conversion: Convert Pi to its corresponding
number pi (a/A=0, ..., z/Z=25). (2). Get Keyword Character: Let the keyword be K with length
Lk. Take the j = (i mod Lk))-th character Kj from the keyword and convert it to its numerical
value kj . The keyword K is set as ‘LOVE’. (3). Polyalphabetic Substitution: Calculate s1,i =
(pi + kj) mod 26. (4). Affine Transformation: Calculate s2,i = (3× s1,i +10) mod 26. (5). Fixed
Permutation: Generate a permutation table Ptable and use it to find s3,i = Ptable[s2,i]. (6). Number
to Letter Conversion: Convert s3,i back to its corresponding letter Ci. (7). Keep Blank Spaces:
Keep the blank spaces in the ciphertext.

(Hard 9) Playfair Cipher Playfair is a method of encryption. It encrypts pairs of letters using
a 5 × 5 grid of letters constructed from a keyword ‘SECURITY’. The keyword is used to fill the
grid, and the remaining letters of the alphabet are filled in order, skipping any letters already in the
keyword. The letter ‘J’ is combined with ‘I’. To encrypt, locate each letter pair in the grid: If they
are in the same row, replace them with letters to their right; If they are in the same column, replace
them with letters below; If they form a rectangle, replace them with letters on the same row but at
the opposite corners. If a pair consists of two identical letters, insert a filler letter ‘X’ between them.
If the plaintext has an odd number of letters, append a filler letter ‘X’ at the end. The ciphertext is
case-sensitive and blank spaces are considered.

G.5 INTERACTIVE PUZZLE INFERENCE (IPI)

Easy black-boxes in IPI task are puzzles with simple rules and limited action space, while hard
black-boxes have more complex rules and a much larger range of actions to choose from.

(Easy 1) Three Arms Bandit In the 3-Arm Bandit problem, there are 3 slot machines named
‘Bandit A’, ‘Bandit B’, and ‘Bandit C’. Each machine has a probability of winning, which is un-
known to you. The player’s goal is to discover the better bandit by choosing which machine to play
over a series of rounds. You can choose either ‘Bandit A’, ‘Bandit B’, or ‘Bandit C’ in each round,
and you will receive a reward (such as ‘Reward: 0’ or ‘Reward: 1’) based on the machine’s winning
probability. After a series of rounds, player need to answer ‘Bandit A’, ‘Bandit B’ or ‘Bandit C’ to
indicate which bandit they believe has the higher winning probability.

(Easy 2) Single Battleship Single Battleship is a simplified version of the classic Battleship game.
In this game, the player has to guess the location of a single 1×5 battleship on a 9×9 grid. The player
will make guesses by specifying coordinates on the grid, in the form of ‘(x, y)’, from ‘(1, 1)’ to ‘(9,
9)’, and the game will provide feedback on whether the guess ‘hits‘ or ‘misses’ the battleship. After
a series of guesses, the player will provide the coordinates of the battleship in the format ‘Row X’
or ‘Column Y’, where ‘X’ and ‘Y’ are integers from 1 to 9, since a battleship must be placed either
horizontally or vertically and occupies a whole row or column.

(Easy 3) Wordle Wordle is a word-guessing game where players attempt to deduce a hidden 8-
letter word (all uppercase). Each guess provides feedback (1).Correct letter in the correct position,
represented by ‘A’. (2).Correct letter but misplaced, represented by ‘M’. (3). Letter not in the word,
represented by ‘X’. Players iteratively refine guesses using feedback until solving the word, typically
within limited attempts. After a few times of querying, the player will give an 8-letter uppercase
word answer, and he’ll win if he answers correctly. Output the 8-letter uppercase word directly.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

(Easy 4) Heavy Coin In the Heavy Coin puzzle, there are 100 coins, named ‘Coin 1’, ‘Coin 2’,
..., ‘Coin 100’. Among these coins, one is heavier than the others. The task is to identify the heavy
coin using a balance scale. The balance scale has two properties: (1).It can compare the weight of
two groups of coins at a time. But it only returns balance or imbalance, without giving which side
is heavier. (2).It will lie once in a random turn in every 10 interactions. When it lies, it will return
the opposite of the truth. Player must make queries with the same format of this example: ‘Left:
Coin 1, Coin 2, Coin 3; Right: Coin 4, Coin 5, Coin 6’. The balance scale will return ‘Balance’ if
both sides are balanced or ‘Imbalance’ if one side is heavier. After a series of queries, the player
need to identify the heavy coin among the 100 coins in the form of ‘Heavy Coin X’, where ‘X’ is
the number of the heavy coin.

(Easy 5) Number Guessing In the Number Guessing game, the player will try to guess a secret
integer that is randomly chosen from [0, 100]. The player will make guesses in the form of ‘Number
X’ (such as ‘Number 10’). And after each guess, the player will receive feedback indicating whether
the absolute value of guess minus ground truth number is ‘Greater than 15’ or ‘Less than or equal to
15’. If the absolute value is ‘Greater than 15’, the player will receive ‘Far’, else if the absolute value
is ‘Less than or equal to 15’, the player will receive ‘Close’. After a series of guesses, the player
needs to answer with the correct number they believe is the secret integer in the form of ‘Number
X’.

(Hard 1) Heavy Light Coins In the Heavy Light Coins puzzle, there are 152 coins, named ‘Coin
1’, ‘Coin 2’, ..., ‘Coin 152’. Among these coins, one is heavier than the others, and another one is
lighter than the others. If the normal coin weighs 1, then the heavy coin weighs 1.1 and the light
coin weighs 0.9. The task is to identify the heavy coin and the light coin using a balance scale. The
balance scale can compare the weight of two groups of coins at a time. For example, player can
make queries like ‘Left: Coin 1, Coin 2, Coin 3; Right: Coin 4, Coin 5, Coin 6’. The balance scale
will return ‘Left’ if the left side is heavier, ‘Right’ if the right side is heavier, or ‘Equal’ if both sides
are balanced. After a series of queries, the player need to identify the heavy coin and the light coin
among the 152 coins in the form of ‘Heavy Coin X; Light Coin Y’, where ‘X’ and ‘Y’ is the number
of the heavy coin and the light coin.

(Hard 2) Wordle Hard Wordle is a word-guessing game where players attempt to deduce a hid-
den 11-letter word (all uppercase). Each guess provides feedback (1).Correct letter in the correct
position, represented by ‘A’. (2).Correct letter but misplaced, represented by ‘M’. (3).Letter not in
the word, represented by ‘X’. Players iteratively refine guesses using feedback until solving the
word, typically within limited attempts. After a few times of querying, the player will give an 11-
letter uppercase word answer, and he’ll win if he answers the correct word. Output the 11-letter
uppercase word directly.

(Hard 3) Nerdle Nerdle is a math-based puzzle game where players guess a hidden equation
consisting of numbers and operators. Here we guarantee that the length of the equation is 15,
including digits (0-9) and operators (+, -, *, /, =). For example, truth can be ‘10002*3+6=30012’.
In each turn, player can guess a length 15 valid equation (such as ‘1+1+1+1=50’ is invalid since this
is not correct, and ‘1+1+1+1=4’ is invalid since length is only 9). Each guess provides feedback:
(1) Correct digit/operator in the correct position, represented by ‘A’; (2) Correct digit/operator but
misplaced, represented by ‘M’; (3) Digit/operator not in the equation, represented by ‘X’. Players
iteratively refine guesses using feedback until solving the equation, within limited attempts. After a
few turns of querying, the player will give a 15-character valid equation answer.

(Hard 4) Nuts and Bolts There are 8 bolts and 8 nuts of different sizes, named ‘Bolt 1’, ..., ‘Bolt’
and ‘Nut 1’ ... ‘Bolt 8’, where each bolt exactly matches one nut. We know that ‘Bolt 1’ is smaller
than ‘Bolt 2’, ‘Bolt 2’ is smaller than ‘Bolt 3’, and so on. The goal is to find the matching nut for
each bolt. In each turn, the player can make a query of 3 bolt-but pairs in the form of ‘Bolt X1,
Nut Y1; Bolt X2, Nut Y2; Bolt X3, Nut Y3’, which returns ‘small’, ‘large’ or ‘equal’ to represent
whether the nut is too small, too large, or a match for the bolt, for example ‘small; small; large’.
After a series of queries, the player must answer a permutation of the nuts, such as ‘Nut 1, Nut 3,
Nut 2, Nut 5, Nut 4, Nut 6, Nut 7, Nut 8’, which represents the order of nuts that match the bolts

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

from ‘Bolt 1’ to ‘Bolt 8’. The player will win if they correctly identify the matching nuts for all
bolts.

(Hard 5) Battleship Battleship is a strategic guessing game where the player attempts to figure
out the location of 3 hidden ships on a 7×7 grid. 3 ships are 1×3, 1×4 and 1×5 respectively, and we
use ‘AAA’, ‘BBBB’ and ‘CCCCC’ to represent them. The player will make guesses by specifying
coordinates on the grid, in the form of ‘(x, y)’, from ‘(1, 1)’ to ‘(7, 7)’, and the game will provide
feedback on whether the guess ‘hits’ or ‘misses’ any ships. Besides the ships, there are two 1x1
bombs denoted as ‘O’. When the coordinate is bomb, the game will also provide ‘hits‘. Note that
the player can only know whether a ship or a bomb is attacked, but not which ship or bomb it is.
After a series of guesses, the player need to distinguish the bombs and provide the coordinates of the
ships by drawing a grid with ‘A’, ‘B’ and ‘C’ representing the ships, and ‘.’ representing empty water
cells. The grid must be 7x7 in size, and the ships must be placed either horizontally or vertically.
For example:

..AAA..

.......

......C

.BBBB.C

......C

......C

......C

is a valid answer. The player must ensure that the ships do not overlap and that they fit within the
grid boundaries. The player will win if they correctly identify the locations of all three ships within
the allowed number of turns.

(Hard 6) Quordle Quordle is a word-guessing game where players attempt to deduce four hidden
8-letter words (all uppercase) simultaneously. Each guess provides feedback for each word: (1).Cor-
rect letter in the correct position, represented by ‘A’. (2).Correct letter but misplaced, represented by
‘M’. (3).Letter not in the word, represented by ‘X’. Players iteratively refine guesses using feedback
until solving all four words, within limited attempts. In each turn, players ask a single 8-letter up-
percase word, and will receive corresponding answer made up of ‘AMX’ for the four words. After
a few times of querying, the player will give four 8-letter uppercase words answers, separated by
commas. He will win if all four words are correct.

G.6 GAME STRATEGY INFERENCE (GSI)

Easy black-boxes in GSI are typically with fixed game strategy or games with easy rules, while hard
black-boxes are with dynamic game strategy or games with difficult rules. Winning a round of game
will gain one point. A tie will gain zero point and a loss will cost one point. Such design of score
eliminates gain from randomness in a game. The expectation of a trivial strategy is supposed to
achieve zero point. In real-world scenarios with a finite number of game rounds, an LLM’s strategy
can sometimes result in a negative score. When this happens, we consider it a trivial strategy and
assign it a score of zero.

(Easy 1) Load Shoot Defend Defender In each turn, a player can choose ‘load‘: gain one bullet,
‘scout‘: see the opponent’s bullet count, ‘shoot x‘: spend ‘x‘ bullets to attack, or ‘defend y‘: spend
‘y‘ bullets to defend. Then, actions and the gaining points of both players are revealed, but the
specific numerical values ’x’ and ’y’ are kept hidden. Each player starts with 0 bullets and can hold
a maximum of 8. ’x’ and ’y’ cannot exceed the number of bullets they have currently. If one player
‘shoot x‘ and the other ‘defend y‘, the defense succeeds and the player wins 1 point if y≥x, and
the shooter wins -1 point. But if y<x, the attacker wins 1 point and the defender wins -1 point.
A Shoot action will always succeed against an opponent who chooses to Load or Scout. When a
simultaneous shoot happens, player with more bullets will win 1 point and the other win -1 point.
The same bullets will result in a tie where both players win 0 point. When a simultaneous defend
or scout or load happens, both players win 0 point. If player ‘scout‘, he will receive opponent’s
bullet number. The game lasts for [total_turns] turns, both players try to maximize their scores. The

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

black-box plays the role of an opponent with the following strategy: Cycle through ‘load‘, ‘load‘,
‘defend 2‘, ‘load‘, ‘defend 1‘,...

(Easy 2) RPS7 Cycle Rock, paper, scissors, fire, water, air, sponge is a hand game where players
simultaneously choose between rock, paper, scissors, fire, water, air, sponge. Rock triumphs over
three opponents: it smashes Scissors, crushes Sponge, and puts out Fire. Paper also defeats three:
it covers Rock, floats on Water, and fans Air. Scissors have three victories: they cut Paper, shred
Sponge, and can create a spark to start a Fire. Fire is victorious against three as well: it melts
Scissors, burns Paper, and scorches Sponge. Water overcomes three challengers: it erodes Rock,
extinguishes Fire, and rusts Scissors. Air has three wins: it blows out Fire, erodes Rock, and evap-
orates Water. Finally, Sponge defeats its three foes: it soaks up Water, cleans Paper (rendering it
useless), and utilizes its pockets to contain Air. In the game, two players repeat [total_turns] times,
each time the winner gets 1 point, the loser gets -1 point, and if they are tied, 0 point each. The
goal is to maximize total scores. The black-box plays the role of an opponent with the following
strategy: cycling through ‘rock‘, ‘paper‘, ‘scissors‘, ‘fire‘, ‘water‘, ‘air‘, ‘sponge‘ in order, starting
with ‘rock‘.

(Easy 3) RPS7 Random Rock, paper, scissors, fire, water, air, sponge is a hand game where
players simultaneously choose between rock, paper, scissors, fire, water, air, sponge. Rock triumphs
over three opponents: it smashes Scissors, crushes Sponge, and puts out Fire. Paper also defeats
three: it covers Rock, floats on Water, and fans Air. Scissors have three victories: they cut Paper,
shred Sponge, and can create a spark to start a Fire. Fire is victorious against three as well: it
melts Scissors, burns Paper, and scorches Sponge. Water overcomes three challengers: it erodes
Rock, extinguishes Fire, and rusts Scissors. Air has three wins: it blows out Fire, erodes Rock, and
evaporates Water. Finally, Sponge defeats its three foes: it soaks up Water, cleans Paper (rendering
it useless), and utilizes its pockets to contain Air. In the game, two players repeat [total_turns] times,
each time the winner gets 1 point, the loser gets -1 point, and if they are tied, 0 point each. The goal
is to maximize total scores. The black-box plays the role of an opponent with the following strategy:
choose ‘rock‘, ‘paper‘, ‘air‘ with the same probability.

(Easy 4) Anti RPS Random Here we focus on a reversed version of Rock, Paper, Scissors. Rock,
Paper, Scissors is a hand game where players simultaneously choose between rock, paper, or scis-
sors, with rock crushing scissors, scissors cutting paper, and paper covering rock to determine the
winner. In the Anti Rock, Paper, Scissors game, the winning rules are exactly opposite to the origi-
nal ones. So scissors beat rock, paper beats scissors, and rock beats paper. In the game, two players
repeat [total_turns] times, each time the winner gets 1 point, the loser gets -1 point, and if they are
tied, 0 point each. The goal is to maximize total scores. The black-box plays the role of an opponent
with the following strategy: choose ‘rock‘ and ‘scissors‘ with the same probability.

(Easy 5) RPS7 Beat Last Rock, paper, scissors, fire, water, air, sponge is a hand game where
players simultaneously choose between rock, paper, scissors, fire, water, air, sponge. Rock triumphs
over three opponents: it smashes Scissors, crushes Sponge, and puts out Fire. Paper also defeats
three: it covers Rock, floats on Water, and fans Air. Scissors have three victories: they cut Paper,
shred Sponge, and can create a spark to start a Fire. Fire is victorious against three as well: it
melts Scissors, burns Paper, and scorches Sponge. Water overcomes three challengers: it erodes
Rock, extinguishes Fire, and rusts Scissors. Air has three wins: it blows out Fire, erodes Rock, and
evaporates Water. Finally, Sponge defeats its three foes: it soaks up Water, cleans Paper (rendering it
useless), and utilizes its pockets to contain Air. In the game, two players repeat [total_turns] times,
each time the winner gets 1 point, the loser gets -1 point, and if they are tied, 0 point each. The
goal is to maximize total scores. The black-box plays the role of an opponent with the following
strategy: The first time you play a stone. And then each time you choose an action that can beat
your opponent’s last round action.

(Easy 6) RPS7 Imitate Last Rock, paper, scissors, fire, water, air, sponge is a hand game where
players simultaneously choose between rock, paper, scissors, fire, water, air, sponge. Rock triumphs
over three opponents: it smashes Scissors, crushes Sponge, and puts out Fire. Paper also defeats
three: it covers Rock, floats on Water, and fans Air. Scissors have three victories: they cut Paper,
shred Sponge, and can create a spark to start a Fire. Fire is victorious against three as well: it

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

melts Scissors, burns Paper, and scorches Sponge. Water overcomes three challengers: it erodes
Rock, extinguishes Fire, and rusts Scissors. Air has three wins: it blows out Fire, erodes Rock, and
evaporates Water. Finally, Sponge defeats its three foes: it soaks up Water, cleans Paper (rendering
it useless), and utilizes its pockets to contain Air. In the game, two players repeat [total_turns] times,
each time the winner gets 1 point, the loser gets -1 point, and if they are tied, 0 point each. The goal
is to maximize total scores. The black-box plays the role of an opponent with the following strategy:
first choose ‘fire‘, second choose ‘air‘, and then imitate your opponent’s behavior the time before
last.

(Hard 1) Comparing Cards Smart Comparing Cards is a game where two players play a card at
the same time and compare the number. Initially, both players have [total_cards] cards, numbered
from 1 to [total_cards]. In each turn, both players choose a card on his hand to play at the same time,
in the form of ‘card x‘, where ‘x‘ is the number on the card between 1 and [total_cards], and this
card must be available. The player with the higher number wins the turn and earns 1 point, while the
other player earns -1 point. If both players play the same number, then both players earn 0 points.
The game lasts for [total_cards] turns, both players try to maximize their scores. The black-box
plays the role of an opponent with the following strategy: First choose the card with median value.
If the opponent plays a card smaller than that, play accordingly to the order of ’median-1, median-2,
..., 1, median+1, median+2, ..., the highest value’. Else if the opponent plays a card larger than that,
play accordingly to the order of ’median+1, median+2, ..., the highest value, median-1, median-2,
..., 1’.

(Hard 2) Comparing Cards Slice Comparing Cards is a game where two players play a card at
the same time and compare the number. Initially, both players have [total_cards] cards, numbered
from 1 to [total_cards]. In each turn, both players choose a card on his hand to play at the same time,
in the form of ‘card x‘, where ‘x‘ is the number on the card between 1 and [total_cards], and this
card must be available. The player with the higher number wins the turn and earns 1 point, while the
other player earns -1 point. If both players play the same number, then both players earn 0 points.
The game lasts for [total_cards] turns, both players try to maximize their scores. The black-box
plays the role of an opponent with the following strategy: All the cards are arranged in ascending
order and divided equally into four piles, named a, b, c, and d, from smallest to largest. The cards
are played in the following sequence: Randomly select and play cards from pile b, one at a time,
until pile b is empty. Randomly select and play cards from pile d, one at a time, until pile d is empty.
Randomly select and play cards from pile a, one at a time, until pile a is empty. Randomly select
and play cards from pile c, one at a time, until pile c is empty.

(Hard 3) Load Shoot Defend Smart In each turn, a player can choose ‘load‘: gain one bullet,
‘scout‘: see the opponent’s bullet count, ‘shoot x‘: spend ‘x‘ bullets to attack, or ‘defend y‘: spend
‘y‘ bullets to defend. Then, actions and the gaining points of both players are revealed, but the
specific numerical values ’x’ and ’y’ are kept hidden. Each player starts with 0 bullets and can hold
a maximum of 8. ’x’ and ’y’ cannot exceed the number of bullets they have currently. If one player
‘shoot x‘ and the other ‘defend y‘, the defense succeeds and the player wins 1 point if y>=x, and
the shooter wins -1 point. But if y<x, the attacker wins 1 point and the defender wins -1 point.
A Shoot action will always succeed against an opponent who chooses to Load or Scout. When a
simultaneous shoot happens, player with more bullets will win 1 point and the other win -1 point.
The same bullets will result in a tie where both players win 0 point. When a simultaneous defend
or scout or load happens, both players win 0 point. If player ‘scout‘, he will receive opponent’s
bullet number. The game lasts for [total_turns] turns, both players try to maximize their scores. The
black-box plays the role of an opponent with the following strategy: if the max turn is lower than
10, ‘load‘ in the first 3 turns. Else, ‘load‘ in the first 6 turns. If the opponent does not shoot in your
‘load‘ turns, keep ‘load‘ until your opponent shoot first or you have 8 bullets . Then you keep ‘shoot
2‘ until you don’t have enough bullets. Then ‘load‘ until your opponent shoot first again. Then you
keep ‘shoot 2‘ until you don’t have enough bullets, keep cycling this process.

(Hard 4) RPS7 Mapping Rock, paper, scissors, fire, water, air, sponge is a hand game where
players simultaneously choose between rock, paper, scissors, fire, water, air, sponge. Rock triumphs
over three opponents: it smashes Scissors, crushes Sponge, and puts out Fire. Paper also defeats
three: it covers Rock, floats on Water, and fans Air. Scissors have three victories: they cut Paper,

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

shred Sponge, and can create a spark to start a Fire. Fire is victorious against three as well: it
melts Scissors, burns Paper, and scorches Sponge. Water overcomes three challengers: it erodes
Rock, extinguishes Fire, and rusts Scissors. Air has three wins: it blows out Fire, erodes Rock, and
evaporates Water. Finally, Sponge defeats its three foes: it soaks up Water, cleans Paper (rendering it
useless), and utilizes its pockets to contain Air. In the game, two players repeat [total_turns] times,
each time the winner gets 1 point, the loser gets -1 point, and if they are tied, 0 point each. The
goal is to maximize total scores. The black-box plays the role of an opponent with the following
strategy: When last turn your opponent played ‘rock‘, play ‘fire‘. When last turn your opponent
played ‘paper‘, play ‘water‘. When last turn your opponent played ‘scissors‘, play ‘air‘. When last
turn your opponent played ‘fire‘, play ‘sponge‘. When last turn your opponent played ‘water‘, play
‘rock‘. When last turn your opponent played ‘air‘, play ‘paper‘. When last turn your opponent
played ‘sponge‘, play ‘scissors‘.

(Hard 5) Load Shoot Defend Attacker In each turn, a player can choose ‘load‘: gain one bullet,
‘scout‘: see the opponent’s bullet count, ‘shoot x‘: spend ‘x‘ bullets to attack, or ‘defend y‘: spend
‘y‘ bullets to defend. Then, actions and the gaining points of both players are revealed, but the
specific numerical values ’x’ and ’y’ are kept hidden. Each player starts with 0 bullets and can hold
a maximum of 8. ’x’ and ’y’ cannot exceed the number of bullets they have currently. If one player
‘shoot x‘ and the other ‘defend y‘, the defense succeeds and the player wins 1 point if y>=x, and
the shooter wins -1 point. But if y<x, the attacker wins 1 point and the defender wins -1 point.
A Shoot action will always succeed against an opponent who chooses to Load or Scout. When a
simultaneous shoot happens, player with more bullets will win 1 point and the other win -1 point.
The same bullets will result in a tie where both players win 0 point. When a simultaneous defend
or scout or load happens, both players win 0 point. If player ‘scout‘, he will receive opponent’s
bullet number. The game lasts for [total_turns] turns, both players try to maximize their scores. The
black-box plays the role of an opponent with the following strategy: Cycle through ‘load‘, ‘load‘,
‘shoot 2‘ and ‘load‘, ‘shoot 1‘. i.e. repeat ‘load‘, ‘load‘, ‘shoot 2‘, ‘load‘, ‘shoot 1‘, ‘load‘, ‘load‘,
‘shoot 2‘, ...

(Hard 6) Load Shoot Defend Balance In each turn, a player can choose ‘load‘: gain one bullet,
‘scout‘: see the opponent’s bullet count, ‘shoot x‘: spend ‘x‘ bullets to attack, or ‘defend y‘: spend
‘y‘ bullets to defend. Then, actions and the gaining points of both players are revealed, but the
specific numerical values ’x’ and ’y’ are kept hidden. Each player starts with 0 bullets and can hold
a maximum of 8. ’x’ and ’y’ cannot exceed the number of bullets they have currently. If one player
‘shoot x‘ and the other ‘defend y‘, the defense succeeds and the player wins 1 point if y>=x, and
the shooter wins -1 point. But if y<x, the attacker wins 1 point and the defender wins -1 point.
A Shoot action will always succeed against an opponent who chooses to Load or Scout. When a
simultaneous shoot happens, player with more bullets will win 1 point and the other win -1 point.
The same bullets will result in a tie where both players win 0 point. When a simultaneous defend
or scout or load happens, both players win 0 point. If player ‘scout‘, he will receive opponent’s
bullet number. The game lasts for [total_turns] turns, both players try to maximize their scores. The
black-box plays the role of an opponent with the following strategy: keep cycling ‘load‘, ‘load‘,
‘shoot 1‘, ‘defend 1‘,...

H DETAILED EXPERIMENTAL RESULTS

We report detailed model performance of 19 benchmarked LLMs in 6 tasks in table form separately.
The order of black-boxes remains the same as Section G.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Table 10: Detailed model performance in the ORACLE benchmark 10@1&1@1.

Models CII CRI PSI ERI IPI GSI
Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

qwq-plus 37.45% 18.65% 30.00% 11.00% 48.72% 12.50% 3.41% 0.00% 43.33% 0.00% 28.18% 23.24%
qwen-plus∗ 44.20% 30.08% 48.00% 14.00% 50.00% 12.50% 3.41% 0.00% 70.00% 16.67% 31.06% 16.76%
qwen3-32b∗ 51.56% 16.03% 34.00% 12.00% 34.62% 6.25% 3.41% 0.00% 50.00% 5.56% 35.97% 26.02%

qwen3-235b∗ 49.05% 26.51% 32.00% 9.00% 47.44% 16.67% 5.68% 0.00% 46.67% 13.89% 58.76% 32.50%
o4-mini 77.23% 36.35% 48.00% 21.00% 61.54% 25.00% 63.64% 15.28% 80.00% 33.33% 62.68% 32.92%
o3-mini 56.71% 18.89% 36.00% 10.00% 32.05% 25.00% 38.64% 9.72% 46.67% 13.89% 54.73% 31.78%

o3 74.11% 52.14% 64.00% 24.00% 60.26% 43.75% 26.14% 15.28% 83.33% 36.11% 79.43% 43.95%
o1 36.02% 24.76% 44.00% 18.00% 34.62% 20.83% 21.59% 6.94% 40.00% 22.22% 51.14% 25.43%

gemini-2.5-pro 72.77% 39.29% 54.00% 23.00% 53.85% 41.67% 17.05% 1.39% 73.33% 33.33% 61.60% 46.76%
gemini-2.5-flash∗ 54.98% 21.83% 20.00% 13.00% 41.03% 31.25% 3.41% 0.00% 30.00% 19.44% 42.19% 36.46%
gemini-2.5-flash 57.27% 27.22% 20.00% 10.00% 28.21% 18.75% 3.41% 0.00% 13.33% 2.78% 14.08% 22.18%
gemini-2.0-flash 38.18% 14.52% 18.00% 18.00% 6.41% 6.25% 2.27% 0.00% 10.00% 2.78% 16.42% 19.17%

deepseek-r1 45.71% 39.05% 44.00% 17.00% 53.85% 16.67% 1.14% 0.00% 53.33% 19.44% 52.60% 25.33%
deepseek-v3 58.74% 19.76% 24.00% 12.00% 19.23% 2.08% 1.14% 0.00% 16.67% 0.00% 17.58% 10.13%

claude-4-sonnet∗ 64.03% 26.35% 44.00% 19.00% 43.59% 12.50% 5.68% 0.00% 53.33% 30.56% 47.59% 27.84%
claude-4-sonnet 53.33% 23.17% 32.00% 13.00% 15.38% 2.08% 4.55% 0.00% 43.33% 13.89% 32.27% 17.33%

claude-3.7-sonnet∗ 68.66% 27.22% 52.00% 12.00% 48.72% 35.42% 22.73% 5.56% 40.00% 27.78% 39.96% 25.47%
claude-3.7-sonnet 46.93% 22.54% 18.00% 12.00% 33.33% 10.42% 9.09% 0.00% 30.00% 5.56% 41.52% 14.75%
claude-3.5-sonnet 51.73% 16.51% 26.00% 17.00% 24.36% 12.50% 6.82% 0.00% 26.67% 5.56% 38.51% 20.98%

Table 11: Detailed model performance in the ORACLE benchmark 20@2&2@1.

Models CII CRI PSI ERI IPI GSI
Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

qwq-plus 62.60% 38.89% 34.00% 12.00% 48.72% 14.58% 3.41% 0.00% 60.00% 2.78% 25.93% 18.30%
qwen-plus∗ 61.13% 42.30% 70.00% 30.00% 43.59% 18.75% 3.41% 0.00% 76.67% 22.22% 38.99% 16.29%
qwen3-32b∗ 67.88% 37.62% 50.00% 10.00% 29.49% 16.67% 6.82% 0.00% 83.33% 13.89% 38.46% 38.36%

qwen3-235b∗ 77.10% 34.76% 56.00% 16.00% 47.44% 22.92% 4.55% 0.00% 76.67% 16.67% 62.82% 51.40%
o4-mini 92.60% 58.02% 76.00% 35.00% 64.10% 35.42% 61.36% 16.67% 86.67% 44.44% 55.11% 23.21%
o3-mini 75.11% 34.76% 52.00% 19.00% 41.03% 29.17% 43.18% 11.11% 76.67% 16.67% 49.50% 34.22%

o3 90.52% 74.84% 84.00% 47.00% 65.38% 37.50% 51.14% 5.56% 96.67% 66.67% 82.51% 54.79%
o1 45.28% 24.84% 62.00% 17.00% 42.31% 20.83% 12.50% 0.00% 83.33% 30.56% 49.92% 34.11%

gemini-2.5-pro 88.05% 57.30% 84.00% 52.00% 65.38% 31.25% 26.14% 16.67% 96.67% 44.44% 60.77% 41.02%
gemini-2.5-flash∗ 71.90% 35.08% 44.00% 31.00% 35.90% 16.67% 6.82% 0.00% 80.00% 36.11% 52.83% 26.89%
gemini-2.5-flash 60.48% 23.81% 34.00% 11.00% 35.90% 22.92% 6.82% 0.00% 20.00% 5.56% 31.48% 19.51%
gemini-2.0-flash 39.61% 5.87% 44.00% 21.00% 0.00% 2.08% 4.55% 1.39% 13.33% 2.78% 17.96% 16.39%

deepseek-r1 73.77% 43.73% 70.00% 27.00% 50.00% 31.25% 3.41% 0.00% 63.33% 41.67% 45.71% 24.58%
deepseek-v3 70.48% 23.17% 44.00% 21.00% 20.51% 6.25% 3.41% 0.00% 40.00% 0.00% 20.54% 14.34%

claude-4-sonnet∗ 84.03% 48.33% 56.00% 41.00% 55.13% 27.08% 23.86% 1.39% 83.33% 41.67% 62.97% 36.27%
claude-4-sonnet 71.99% 34.44% 42.00% 22.00% 28.21% 4.17% 4.55% 0.00% 60.00% 16.67% 44.31% 20.28%

claude-3.7-sonnet∗ 78.66% 46.59% 64.00% 34.00% 56.41% 37.50% 18.18% 0.00% 80.00% 38.89% 49.54% 32.36%
claude-3.7-sonnet 69.18% 37.30% 52.00% 26.00% 34.62% 12.50% 11.36% 0.00% 56.67% 16.67% 41.61% 17.78%
claude-3.5-sonnet 64.42% 33.65% 36.00% 20.00% 34.62% 10.42% 7.95% 0.00% 60.00% 8.33% 32.69% 8.73%

Table 12: Detailed model performance on CII task in the ORACLE benchmark 10@1.

Models Easy Black-Box in CII Hard Black-Box in CII
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6

qwq-plus 0.23 0.54 0 0.3 0.33 0.11 0.2 0.9 0.47 0.43 0.6 0 0.14 0.2 0.26 0.09 0.43
qwen-plus∗ 0.53 0.43 0.37 0.43 0.27 0.11 0.37 0.97 0.4 0.89 0.63 0.4 0.4 0 0.17 0.29 0.33
qwen3-32b∗ 0.37 0.63 0 0.43 0.3 0.09 0.3 0.87 0.57 0.66 0.66 0.2 0.31 0.3 0.37 0.29 0.33

qwen3-235b∗ 0.5 0.46 0.54 0.53 0.5 0.43 0.07 0.97 0.3 0.63 0.74 0.06 0.23 0.1 0.11 0.23 0.23
o4-mini 0.97 0.91 0.54 0.87 0.8 0.66 0.83 0.97 0.63 0.6 0.71 0.37 0.4 0.23 0.23 0.31 0.63
o3-mini 0.57 0.77 0.69 0.33 0.23 0.37 0.9 0.53 0.5 0.89 0.46 0.2 0.09 0.17 0.03 0.29 0.37

o3 0.93 0.8 0.29 0.77 0.87 0.54 1 0.93 0.57 0.74 0.71 0.54 0.49 0.5 0.51 0.29 0.8
o1 0.8 0.11 0.26 0 0.03 0.49 0.3 0.5 0.1 0.77 0.6 0.4 0.34 0.13 0.2 0.14 0.27

gemini-2.5-pro 0.73 0.77 0.63 0.57 0.77 0.4 0.97 0.87 0.73 0.86 0.71 0.63 0.31 0.23 0.26 0.26 0.67
gemini-2.5-flash∗ 0.27 0.66 0.23 0.47 0.47 0.49 1 0.6 0.53 0.66 0.69 0 0.31 0.2 0.23 0.2 0.37
gemini-2.5-flash 0.57 0.8 0.29 0.57 0.6 0 1 0.63 0.73 0.46 0.66 0.23 0.37 0.2 0.26 0.14 0.43
gemini-2.0-flash 0.13 0.34 0.46 0.53 0.3 0.57 0 0.53 0.3 0.57 0.46 0.09 0.54 0.07 0 0.14 0.03

deepseek-r1 0.07 0.11 0.43 0.33 0.53 0.49 0.43 0.73 0.5 0.86 0.54 0.46 0.29 0.27 0.37 0.23 0.73
deepseek-v3 0.7 0.57 0.34 0.6 0.6 0.66 0.8 0.67 0.47 0.6 0.46 0.11 0.29 0.03 0.34 0.14 0.27

claude-4-sonnet∗ 0.67 0.91 0.69 0.53 0 0 1 1 0.5 0.94 0.8 0.34 0.37 0.23 0.37 0.03 0.23
claude-4-sonnet 0.43 0.6 0.26 0.5 0.43 0.51 1 0.53 0.57 0.57 0.46 0.23 0.46 0.27 0.17 0 0.27

claude-3.7-sonnet∗ 0.37 0.77 0.57 0.57 0.67 0.51 0.93 0.97 0.77 0.89 0.54 0.09 0.34 0.1 0.26 0.51 0.33
claude-3.7-sonnet 0.13 0.57 0.57 0.53 0.5 0.57 0.33 0.53 0.5 0.46 0.46 0.31 0.23 0.1 0.2 0.14 0.37
claude-3.5-sonnet 0.3 0.34 0.34 0.5 0.33 0.54 0.97 0.5 0.63 0.57 0.66 0.23 0.23 0.13 0.26 0.14 0

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Table 13: Detailed model performance on CII task in the ORACLE benchmark 20@2.

Models Easy Black-Box in CII Hard Black-Box in CII
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6

qwq-plus 0.34 0.94 0.83 0.53 0.37 0.23 0.43 0.97 0.5 0.97 0.77 0.37 0.6 0.2 0.34 0.29 0.53
qwen-plus∗ 0.2 0.91 0.43 0.53 0.8 0.34 0.53 1 0.4 0.8 0.77 0.51 0.63 0.3 0.37 0.29 0.43
qwen3-32b∗ 0.43 0.94 0.86 0.57 0.67 0.51 0.27 0.97 0.6 0.86 0.8 0.34 0.53 0.27 0.29 0.43 0.4

qwen3-235b∗ 0.6 0.46 0.89 0.63 0.87 0.6 0.9 1 0.77 1 0.77 0.34 0.5 0.27 0.23 0.31 0.43
o4-mini 0.77 0.94 1 0.9 1 0.91 1 1 0.8 0.91 0.94 0.31 0.93 0.3 0.54 0.46 0.93
o3-mini 0.37 0.86 0.83 0.63 0.7 0.66 1 0.9 0.6 0.91 0.8 0.6 0.43 0.37 0.2 0.29 0.2

o3 0.66 1 1 0.9 1 0.77 1 1 0.8 0.83 1 0.74 1 0.67 0.77 0.34 0.97
o1 0.63 0.69 1 0.2 0 0 0.13 0.87 0.07 0.83 0.57 0.43 0.57 0.03 0.11 0.31 0.03

gemini-2.5-pro 0.94 0.94 0.94 0.63 0.97 0.57 1 0.93 0.87 0.94 0.94 0.69 0.77 0.3 0.46 0.43 0.8
gemini-2.5-flash∗ 0.46 0.97 0.43 0.63 0.83 0.43 1 0.8 0.9 0.74 0.71 0 0.5 0.3 0.34 0.43 0.53
gemini-2.5-flash 0.46 0 0.49 0.6 0.9 0.43 1 0.73 0.73 0.63 0.69 0 0.63 0.17 0.46 0.17 0
gemini-2.0-flash 0.14 0.71 0 0.53 0.4 0.43 0.13 0.63 0.4 0.51 0.46 0.09 0.03 0.03 0 0.2 0

deepseek-r1 0.74 0.91 0.54 0.83 0.97 0.37 0.8 0.73 0.67 0.8 0.74 0.49 0.77 0.37 0.6 0.17 0.23
deepseek-v3 0.6 0.77 0.54 0.7 0.8 0.66 1 0.67 0.7 0.71 0.6 0.26 0.5 0.23 0.26 0.14 0

claude-4-sonnet∗ 0.74 0.94 0.91 0.67 0.9 0.63 1 0.9 0.83 0.91 0.8 0.51 0.77 0.33 0.34 0.14 0.8
claude-4-sonnet 0.63 0.91 0.86 0.63 0.6 0.51 1 0.67 0.73 0.71 0.66 0.37 0.53 0.2 0.29 0.14 0.53

claude-3.7-sonnet∗ 0.43 0.94 0.89 0.6 0.9 0.57 1 0.97 0.9 0.66 0.8 0.49 0.5 0.2 0.37 0.77 0.47
claude-3.7-sonnet 0.54 0.69 0.71 0.63 0.8 0.66 1 0.7 0.73 0.46 0.69 0.51 0.63 0.17 0.29 0.17 0.47
claude-3.5-sonnet 0.6 0.66 0.6 0.7 0.6 0.71 1 0.63 0.47 0.46 0.66 0.43 0.57 0.13 0.31 0.14 0.43

Table 14: Detailed model performance on CRI task in the ORACLE benchmark 10@1.

Models Easy Black-Box in CRI Hard Black-Box in CRI
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

qwq-plus 0.5 0.7 0.3 0 0 0.2 0 0.3 0 0 0 0.4 0 0.2 0
qwen-plus∗ 1 0.6 0.7 0.1 0 0.1 0.1 0.3 0.1 0.1 0 0.7 0 0 0
qwen3-32b∗ 0.8 0.6 0.1 0 0.2 0 0.1 0.5 0.1 0.1 0 0.4 0 0 0

qwen3-235b∗ 0.8 0.7 0.1 0 0 0 0 0.2 0.1 0 0 0.6 0 0 0
o4-mini 0.6 0.8 0.8 0 0.2 0 0.1 0.4 0 0.1 0 1 0 0.5 0
o3-mini 0.9 0.6 0.1 0 0.2 0.4 0 0.3 0 0 0 0.2 0 0.1 0

o3 0.9 0.9 0.6 0.6 0.2 0.2 0.1 0.5 0 0.1 0 0.7 0.2 0.6 0
o1 0.8 0.8 0.4 0 0.2 0.2 0 0.5 0.1 0.2 0 0.8 0 0 0

gemini-2.5-pro 0 0.9 1 0.5 0.3 0.1 0 0.4 0.1 0.2 0 1 0.2 0.3 0
gemini-2.5-flash∗ 0 0.8 0.1 0.1 0 0.2 0 0.5 0 0.1 0 0.4 0.1 0 0
gemini-2.5-flash 0 0.8 0.2 0 0 0.1 0 0.3 0 0.2 0 0.4 0 0 0
gemini-2.0-flash 0 0 0.2 0.1 0.6 0.1 0.3 0.5 0 0.4 0.2 0.2 0 0.1 0

deepseek-r1 0.9 0.7 0.3 0.1 0.2 0 0.1 0.4 0.2 0.2 0 0.4 0 0.4 0
deepseek-v3 0 0.1 0.5 0.2 0.4 0.2 0.1 0.6 0.2 0 0 0.1 0 0 0

claude-4-sonnet∗ 0.9 0.9 0.1 0.2 0.1 0.2 0.1 0.4 0.1 0.2 0 0.5 0.3 0.1 0
claude-4-sonnet 0.9 0.5 0 0 0.2 0.1 0.2 0.4 0.1 0.2 0 0.3 0 0 0

claude-3.7-sonnet∗ 0.7 0.9 0.4 0 0.6 0.1 0 0.5 0 0.2 0 0.3 0.1 0 0
claude-3.7-sonnet 0 0.5 0.2 0 0.2 0.1 0.1 0.5 0.2 0.3 0 0 0 0 0
claude-3.5-sonnet 0 0.7 0.3 0.1 0.2 0.1 0.1 0.5 0.2 0.3 0 0.5 0 0 0

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Table 15: Detailed model performance on CRI task in the ORACLE benchmark 20@2.

Models Easy Black-Box in CRI Hard Black-Box in CRI
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

qwq-plus 0.9 0.7 0.1 0 0 0 0 0.4 0 0 0 0.8 0 0 0
qwen-plus∗ 1 0.9 1 0.1 0.5 0.7 0.3 0.7 0 0.2 0 1 0 0.1 0
qwen3-32b∗ 0.9 0.6 0.7 0.1 0.2 0.1 0 0.4 0 0 0 0.5 0 0 0

qwen3-235b∗ 1 0.9 0.6 0 0.3 0 0 0.5 0.1 0.1 0 0.8 0 0.1 0
o4-mini 1 1 1 0.3 0.5 0.8 0.1 0.5 0 0.3 0 1 0.1 0.7 0
o3-mini 1 1 0.5 0 0.1 0.6 0 0.4 0 0 0 0.9 0 0 0

o3 1 1 1 0.8 0.4 0.8 0.3 0.8 0.2 0.3 0 1 0.3 0.9 0.1
o1 1 1 0.6 0 0.5 0.4 0 0.6 0.1 0.1 0 0.4 0 0.1 0

gemini-2.5-pro 1 1 1 1 0.2 0.9 0.5 0.5 0.2 0.3 0 1 0.7 1 0.1
gemini-2.5-flash∗ 0.2 0.9 0.9 0 0.2 0.6 0.3 0.2 0.2 0.2 0 0.6 0.7 0.3 0
gemini-2.5-flash 0 1 0.7 0 0 0 0.3 0.3 0 0.2 0.1 0.2 0 0 0
gemini-2.0-flash 0.1 1 0.3 0.2 0.6 0.3 0.5 0.5 0 0.3 0.3 0.1 0 0 0.1

deepseek-r1 1 1 1 0.1 0.4 0.1 0.1 0.5 0.2 0.3 0 1 0 0.5 0
deepseek-v3 1 0.4 0.2 0.2 0.4 0.4 0.1 0.6 0.2 0.1 0 0.4 0 0.3 0

claude-4-sonnet∗ 1 1 0.4 0.1 0.3 0.6 0.2 0.5 0.2 0.2 0.1 0.9 0.7 0.7 0
claude-4-sonnet 0.1 1 0.4 0.4 0.2 0.4 0.1 0.5 0.1 0.4 0.1 0.6 0 0 0

claude-3.7-sonnet∗ 1 1 0.7 0.1 0.4 0.7 0.2 0.5 0 0.5 0.3 1 0.2 0 0
claude-3.7-sonnet 0.6 1 0.4 0.4 0.2 0.4 0.2 0.5 0.2 0.7 0.1 0.5 0 0 0
claude-3.5-sonnet 0 1 0.4 0.2 0.2 0.3 0.3 0.5 0 0.4 0.2 0.3 0 0 0

Table 16: Detailed model performance on PSI task in the ORACLE benchmark 10@1.

Models Easy Black-Box in PSI Hard Black-Box in PSI
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8

qwq-plus 1 1 0.33 0 1 0 0.17 0 0 0.17 1 1 0.67 0 0 0.33 0 0 0 0.67 0
qwen-plus∗ 1 0.83 0 0 1 0 0.33 0 0.17 0.17 1 1 1 0.17 0.17 0 0.33 0 0 0 0.33
qwen3-32b∗ 1 0 0.17 0 1 0 0 0 0 0 1 1 0.33 0 0.17 0 0.33 0 0 0 0

qwen3-235b∗ 1 0.67 0.33 0 1 0 0 0.17 0 0 1 1 1 0 0.5 0 0.5 0 0 0 0.33
o4-mini 1 0.33 0.33 1 1 0.17 0.33 0 0.83 1 0.83 1 0.17 0 0.5 0.67 0.17 0 0 0.67 0
o3-mini 0.17 0 0.17 0 1 0.17 0.33 0 0 0.17 1 1 0.17 0 0.17 0.5 0.5 0 0.17 0 0.67

o3 1 0.83 0.33 0 1 0.17 0.5 0.67 0.33 0.17 1 1 0.83 0.5 0.67 0.5 0.67 0 0.17 0.17 0.83
o1 0.17 0.5 0.17 0.17 1 0.17 0.33 0 0 0 0.83 1 0.17 0 0.5 0.5 0.33 0 0.17 0 0.17

gemini-2.5-pro 1 1 0.33 0 1 0.17 0.17 0.17 0.17 0.17 1 1 0.83 0.33 0.83 0.5 0.67 0 0.33 0 0.67
gemini-2.5-flash∗ 0.33 0.67 0.17 0 0.83 0.17 0.17 0 0 0.17 1 1 0.83 0.17 0.67 0.33 0.67 0 0.17 0 0.5
gemini-2.5-flash 0 0.17 0 0.17 0.33 0 0.17 0.17 0 0.17 1 1 0.5 0.17 0.67 0.33 0.17 0 0 0 0.17
gemini-2.0-flash 0.33 0 0.17 0 0.17 0 0.17 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0

deepseek-r1 0.83 1 0 0 1 0 0 0.33 0.67 0.17 1 1 1 0 0 0.5 0.17 0 0 0.33 0.33
deepseek-v3 0.17 0 0 0.33 0 0 0 0 0 0 1 1 0 0 0.17 0 0 0 0 0 0

claude-4-sonnet∗ 0.83 0.33 0 0 0 1 0.33 0.17 0.17 0.17 1 1 0.67 0 0.17 0.33 0.33 0 0 0 0.17
claude-4-sonnet 0.17 0 0 0 0.17 0 0 0 0 0 0.83 0.83 0 0 0 0 0.17 0 0 0 0

claude-3.7-sonnet∗ 0.83 0.33 0.17 0 1 0.17 0.33 0.33 0.17 0.17 1 1 0.83 0.17 0.67 0.5 0.67 0 0.17 0 0.67
claude-3.7-sonnet 0.33 0.17 0 0.17 0.33 0.17 0.17 0.17 0.17 0.17 1 1 0.5 0 0.17 0 0.33 0 0 0 0.33
claude-3.5-sonnet 0.33 0.17 0 0.17 0.33 0 0 0 0 0 0.83 1 0.33 0 0.33 0 0.33 0 0 0 0.33

Table 17: Detailed model performance on PSI task in the ORACLE benchmark 20@2.

Models Easy Black-Box in PSI Hard Black-Box in PSI
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8

qwq-plus 0.5 1 1 0 0.83 0 0.33 0 0 0.17 0.83 1 0.67 0 0 0 0.67 0 0 0.17 0.33
qwen-plus∗ 0.17 0 0 0.17 1 0 0.67 0.67 0 0.5 1 1 0.5 0.17 0.5 0.33 0.33 0 0 0 0.17
qwen3-32b∗ 0.67 0.5 0 0.17 1 0 0.17 0 0 0 0 1 0.33 0 0 0.33 0.33 0 0 0 0.67

qwen3-235b∗ 0.83 0.17 1 0.17 1 0 0.17 0 0 0.5 1 1 0.33 0.17 0.17 0.5 0.67 0 0 0 0.33
o4-mini 0.83 1 0.17 0 1 0 0.5 0.83 0.17 0.83 1 1 1 0 0.83 0.83 0.67 0 0 0 0.5
o3-mini 0.67 0 0.17 0.17 1 0 0 0.5 0.33 0.33 1 1 0.17 0 1 0.17 0.67 0 0 0 0.5

o3 1 1 0.17 0.17 1 0 0.5 1 0.5 0.33 1 1 0.83 0 0.83 0.67 0.67 0 0 0 0.83
o1 0.33 0.83 0.17 0.17 1 0.17 0.5 0.17 0.17 0 1 1 0 0 0.17 0.5 0.33 0 0 0 0.67

gemini-2.5-pro 1 1 0.17 0.17 1 0 0.33 0.5 0.33 1 1 1 1 0 0 0.5 0.83 0 0.33 0 0.83
gemini-2.5-flash∗ 0.83 0.17 0.17 0.17 0.5 0.17 0.17 0.17 0 0.17 1 1 0.17 0 0 0.33 0.83 0 0 0 0.17
gemini-2.5-flash 0.5 0.33 0.17 0.5 0.17 0.17 0.17 0 0 0.17 1 1 0.5 0.17 0.5 0.33 0.67 0 0 0 0.17
gemini-2.0-flash 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0

deepseek-r1 1 1 0.17 0 1 0 0.17 0 0.33 0 0.83 1 1 0.5 0.67 0 0.67 0 0 0 0.67
deepseek-v3 0.17 0 0 0 0.17 0 0.17 0.17 0 0.17 0.83 1 0 0 0.17 0.17 0.17 0 0 0 0

claude-4-sonnet∗ 1 0.5 0.33 0.17 1 0.17 0.33 0.33 0.17 0.33 1 1 0.83 0 0.5 0.33 0.67 0 0 0 0.67
claude-4-sonnet 0.33 0 0.17 0.17 0.17 0.17 0.17 0 0 0.17 1 1 0.33 0 0 0 0.17 0 0 0 0.17

claude-3.7-sonnet∗ 1 0.67 0.17 0.17 1 0.17 0.33 0.5 0.17 0.17 1 1 1 0.33 0.67 0.5 0.83 0 0 0 0.67
claude-3.7-sonnet 0.33 0.17 0.17 0.17 0.5 0.17 0.17 0.17 0.17 0.17 0.83 1 0.5 0.33 0 0.17 0.33 0 0 0 0.17
claude-3.5-sonnet 0.33 0.33 0.17 0.17 0.5 0.17 0.33 0 0.17 0 0.83 1 0.5 0.17 0 0 0.5 0 0 0 0.17

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

Table 18: Detailed model performance on ERI task in the ORACLE benchmark 10@1.

Models Easy Black-Box in ERI Hard Black-Box in ERI
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9

qwq-plus 0.13 0 0.13 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0
qwen-plus∗ 0.13 0 0.13 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0
qwen3-32b∗ 0 0.13 0.38 0 0 0 0 0 0 0.13 0.13 0 0 0 0 0 0 0 0 0

qwen3-235b∗ 0.25 0 0 0 0 0 0.13 0.13 0 0 0 0 0 0 0 0 0 0 0 0
o4-mini 0.25 0.25 0.75 0 0 1 0.75 1 0.75 1 1 0 0 0 0 0 0 1 0.5 0
o3-mini 0.25 0 0.25 0.38 0 0.88 0.13 0.13 0.75 1 1 0 0 0 0 0 0 1 0 0

o3 0.13 0 1 0.38 0 0 0.38 1 1 0.75 1 0 0 0 0 0 0 0 0.5 0
o1 0 0.38 0 0 0 0.75 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0

gemini-2.5-pro 0.875 1 0.25 0.13 0 0 0.13 0.5 0.13 1 0.38 0 0 0.13 0.13 0.5 0 0 0 0
gemini-2.5-flash∗ 0.25 0 0 0 0 0 0 0 0.38 0.13 0 0 0 0 0 0 0 0 0 0
gemini-2.5-flash 0.13 0 0 0 0 0 0.13 0.13 0 0.38 0 0 0 0 0 0 0 0 0 0
gemini-2.0-flash 0.25 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0.13 0 0 0 0 0

deepseek-r1 0 0 0 0 0 0.25 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0
deepseek-v3 0.25 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0

claude-4-sonnet∗ 0.25 0.13 0.38 0.75 0 0 0.13 0 0.13 0.13 0.75 0 0 0 0.13 0 0 0 0 0
claude-4-sonnet 0.25 0 0 0 0 0 0.13 0.13 0 0 0 0 0 0 0 0 0 0 0 0

claude-3.7-sonnet∗ 0.25 0 0.38 0.63 0 0 0.13 0 0.38 0.13 0.13 0 0 0 0 0 0 0 0 0
claude-3.7-sonnet 0.25 0 0 0 0 0 0.13 0 0.25 0.63 0 0 0 0 0 0 0 0 0 0
claude-3.5-sonnet 0.25 0 0 0 0 0 0.13 0 0.38 0.13 0 0 0 0 0 0 0 0 0 0

Table 19: Detailed model performance on ERI task in the ORACLE benchmark 20@2.

Models Easy Black-Box in ERI Hard Black-Box in ERI
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9

qwq-plus 0.13 0 0.13 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0
qwen-plus∗ 0.13 0 0.13 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0
qwen3-32b∗ 0.13 0 0.13 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0

qwen3-235b∗ 0.25 0 0.13 0 0 0 0.13 0.13 0 0 0 0 0 0 0 0 0 0 0 0
o4-mini 0.75 0.5 0.25 1 0 1 0.75 0.63 0.88 0.25 1 0.13 0 0.13 0.13 1 0 0 0 0
o3-mini 0 0.38 0.25 0.88 0 0.25 0.75 0.75 0 0 1 0 0 0.13 0 0.75 0 0 0 0

o3 0.5 0.13 0.25 0 0 0.38 0.75 0.88 0 0 0 0 0 0 0.38 1 0 0 0 0
o1 0 0 0 0.5 0 0 0.13 0 0 1 0.75 0 0 0 0 0 0 0.63 0 0

gemini-2.5-pro 0.88 0 0.13 0.13 0 0.38 0.25 0.13 0 0 0 0 0 0.13 0 0 0 0 0 0
gemini-2.5-flash∗ 0.13 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
gemini-2.5-flash 0 0 0.25 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0
gemini-2.0-flash 0 0 0 0 0 0 0.13 0 0 0.13 0 0 0 0 0 0 0 0 0 0

deepseek-r1 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0
deepseek-v3 0 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0

claude-4-sonnet∗ 0 0 0.13 0.13 0 0 0.25 0.13 0 0 0 0 0 0 0 0 0 0 0 0
claude-4-sonnet 0.13 0 0.25 0 0 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0

claude-3.7-sonnet∗ 0.25 0 0.13 0.13 0 0 0.13 0.13 0.75 0.75 0.25 0.13 0.13 0 0 0 0 0.25 0 0
claude-3.7-sonnet 0 0 0.25 0 0 0 0 0 0.13 0 0.63 0 0 0 0 0 0 0 0 0
claude-3.5-sonnet 0 0 0.25 0 0 0 0 0 0.13 0 0.38 0 0 0 0 0 0 0 0 0

Table 20: Detailed model performance on IPI task in the ORACLE benchmark 10@1.

Models Easy Black-Box in IPI Hard Black-Box in IPI
1 2 3 4 5 1 2 3 4 5 6

qwq-plus 0.17 0.83 0.67 0 0.5 0 0 0 0 0 0
qwen-plus∗ 0.67 1 0.67 0.5 0.67 0 0.83 0 0.17 0 0
qwen3-32b∗ 0.17 1 0.83 0 0.5 0 0 0 0.33 0 0

qwen3-235b∗ 0.17 0.83 0.5 0.5 0.33 0.17 0.5 0 0.17 0 0
o4-mini 0.17 1 0.83 1 1 0 1 0.17 0.83 0 0
o3-mini 0 0.67 0.67 0.33 0.67 0 0.17 0 0.67 0 0

o3 0.17 1 1 1 1 0.33 1 0.17 0.67 0 0
o1 0.17 0.67 0.67 0.17 0.33 0 0.5 0 0.83 0 0

gemini-2.5-pro 0.33 0.83 0.83 0.83 0.83 0.5 1 0.17 0.33 0 0
gemini-2.5-flash∗ 0.17 0.5 0.5 0 0.33 0 0.67 0 0.5 0 0
gemini-2.5-flash 0.17 0.33 0.17 0 0 0 0 0 0.17 0 0
gemini-2.0-flash 0.17 0.33 0 0 0 0 0 0 0.17 0 0

deepseek-r1 0.33 0.67 1 0.33 0.33 0 0.67 0.17 0.33 0 0
deepseek-v3 0.17 0.67 0 0 0 0 0 0 0 0 0

claude-4-sonnet∗ 0.33 0.83 0.5 0.83 0.17 0 1 0 0.83 0 0
claude-4-sonnet 0.67 0.83 0.67 0 0 0 0 0 0.83 0 0

claude-3.7-sonnet∗ 0.33 0.67 0.17 0.83 0 0 0.67 0 1 0 0
claude-3.7-sonnet 0.5 0.83 0.17 0 0 0 0 0 0.33 0 0
claude-3.5-sonnet 0.17 0.83 0.33 0 0 0 0 0 0.33 0 0

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

Table 21: Detailed model performance on IPI task in the ORACLE benchmark 20@2.

Models Easy Black-Box in IPI Hard Black-Box in IPI
1 2 3 4 5 1 2 3 4 5 6

qwq-plus 1 1 0 0.67 0.33 0 0 0 0.17 0 0
qwen-plus∗ 1 1 0.5 0.83 0.5 0.5 0.67 0 0.17 0 0
qwen3-32b∗ 0.83 1 0.83 1 0.5 0 0.17 0 0.67 0 0

qwen3-235b∗ 1 1 0.5 1 0.33 0.5 0.33 0 0.17 0 0
o4-mini 1 0.83 0.83 1 0.67 0.5 1 0.33 0.83 0 0
o3-mini 1 1 0.67 1 0.17 0 0.5 0 0.5 0 0

o3 1 1 1 1 0.83 0.83 1 1 1 0.17 0
o1 1 1 0.5 0.83 0.83 0.5 0.5 0 0.83 0 0

gemini-2.5-pro 1 1 1 1 0.83 1 1 0.17 0.5 0 0
gemini-2.5-flash∗ 0.83 1 0.67 1 0.5 0.5 0.5 0.17 1 0 0
gemini-2.5-flash 0.67 0.17 0 0 0.17 0 0 0 0.33 0 0
gemini-2.0-flash 0.33 0.17 0 0 0.17 0 0 0 0.17 0 0

deepseek-r1 1 1 0.33 0.5 0.33 0.83 0.67 0 0.83 0.17 0
deepseek-v3 0.83 0.67 0 0 0.5 0 0 0 0 0 0

claude-4-sonnet∗ 1 1 0.83 0.33 1 0.5 1 0 1 0 0
claude-4-sonnet 1 1 0 0 1 0 0 0 1 0 0

claude-3.7-sonnet∗ 1 1 0.67 0.5 0.83 0.17 0.83 0 1 0.33 0
claude-3.7-sonnet 0.83 0.83 0 0.33 0.83 0 0.17 0 0.83 0 0
claude-3.5-sonnet 1 1 0.17 0.17 0.67 0 0 0 0.5 0 0

Table 22: Detailed model performance on GSI task in the ORACLE benchmark 1@1.

Models Easy Black-Box in GSI Hard Black-Box in GSI
1 2 3 4 5 6 1 2 3 4 5 6

qwq-plus 0.27 0.65 0 0.39 0.11 0.27 0.33 0.68 0 0.39 0 0
qwen-plus∗ 0.75 0.85 0.82 0.20 0.74 0.16 0.34 0.58 0.25 0.42 0 0.36
qwen3-32b∗ 0.32 0.44 0.31 0.45 0.18 0.16 0.15 0.14 0 0.52 0 0.19

qwen3-235b∗ 0.08 0.69 0.50 0.48 0.28 0.14 0.47 0.29 0 0.47 0 0.34
o4-mini 0.76 0.84 1 0.58 0.26 0.32 0.41 0.45 0.42 0.38 0.1 0.22
o3-mini 0.82 0.82 0.83 0.36 0 0.46 0.33 0.54 0.23 0.7 0.11 0

o3 0.94 0.91 0.93 0.71 0.79 0.49 0.49 0.33 0.70 0.4 0.21 0.51
o1 0.41 0.70 0.71 0.97 0.09 0.19 0.44 0.33 0 0.46 0.20 0.11

gemini-2.5-pro 0.42 0.68 0.70 0.34 0.93 0.63 0.39 0.52 0.64 0.60 0.2 0.46
gemini-2.5-flash∗ 0.38 0.36 0.48 0.33 0.58 0.39 0.31 0.13 0.6 0.33 0.38 0.44
gemini-2.5-flash 0.17 0.35 0 0.24 0.07 0.02 0 0.25 0.42 0.66 0 0
gemini-2.0-flash 0 0.06 0.28 0.32 0.02 0.30 0 0.15 0 1 0 0

deepseek-r1 0.49 0.58 0.79 0.42 0.50 0.36 0.47 0.25 0.19 0.48 0.05 0.08
deepseek-v3 0.06 0.03 0.29 0.25 0.30 0.12 0.16 0.29 0.16 0 0 0

claude-4-sonnet∗ 0.24 0.28 0.40 0.55 0.58 0.43 0.31 0.21 0.38 0.13 0.22
claude-4-sonnet 0.43 0.14 0.24 0.67 0.17 0.30 0.24 0.41 0 0.27 0 0.12

claude-3.7-sonnet∗ 0.38 0.46 0.47 0.53 0.30 0.26 0.41 0.29 0 0.3 0.09 0.44
claude-3.7-sonnet 0.35 0 0.73 0.88 0.02 0.52 0.04 0.33 0.08 0.14 0 0.3
claude-3.5-sonnet 0.22 0.17 1 0.83 0.06 0.03 0.19 0.29 0.13 0.25 0 0.41

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

Table 23: Detailed model performance on GSI task in the ORACLE benchmark 2@1.

Models Easy Black-Box in GSI Hard Black-Box in GSI
1 2 3 4 5 6 1 2 3 4 5 6

qwq-plus 0.45 0.61 0 0.26 0.13 0.11 0.43 0.34 0 0.33 0 0
qwen-plus∗ 0.64 0.70 0.85 0.56 0.69 0.32 0.38 0.68 0.43 0.80 0.33 0.46
qwen3-32b∗ 0.63 0.68 0 0.53 0.30 0.20 0.25 0.42 0 0 0.13 0.19

qwen3-235b∗ 0.44 0.36 0.68 0.43 0.14 0.26 0.47 0.68 0.08 0.90 0.05 0.12
o4-mini 0.72 0.76 0.77 0.76 0.21 0.10 0.37 0.31 0.21 0.27 0 0.23
o3-mini 0.5 0.62 0.88 0.59 0.15 0.22 0.49 1 0.13 0.26 0.06 0.12

o3 1 0.97 0.76 0.79 0.82 0.62 0.48 0.61 0.44 0.45 0.54 0.76
o1 0.18 0.68 0.89 1 0.05 0.20 0.58 0.74 0 0.29 0 0.44

gemini-2.5-pro 0.69 0.5 0.58 0.5 0.85 0.53 0.82 0.62 0.13 0.52 0.05 0.33
gemini-2.5-flash∗ 0.71 0.5 0.82 0.75 0.10 0.29 0.14 0.46 0 0.75 0.19 0.07
gemini-2.5-flash 0.24 0.81 0 0.57 0.09 0.18 0 0.15 0.06 0.71 0.15 0.10
gemini-2.0-flash 0 0.27 0.10 0.39 0.04 0.27 0 0.2 0.17 0.62 0 0

deepseek-r1 0.63 0.51 0.48 0.40 0.31 0.41 0.50 0.37 0.08 0.48 0 0.05
deepseek-v3 0.04 0.5 0.48 0 0.15 0.07 0.26 0.23 0.13 0.25 0 0

claude-4-sonnet∗ 0.88 0.78 0.27 0.81 0.56 0.48 0.61 0.45 0.25 0.12 0.13 0.62
claude-4-sonnet 0.49 0.17 0.55 0.78 0.36 0.30 0.18 0.28 0.3 0.26 0 0.2

claude-3.7-sonnet∗ 0.35 0.56 0.46 0.79 0.42 0.39 0.56 0.5 0.19 0.29 0 0.4
claude-3.7-sonnet 0.33 0.28 0.73 0.78 0 0.37 0.14 0.18 0.1 0.14 0 0.51
claude-3.5-sonnet 0.13 0.15 0.63 0.92 0.08 0.04 0.14 0.18 0 0 0 0.21

73

	Introduction
	Preliminaries
	The Oracle Benchmark
	Task Design
	Evaluation Metrics

	Framework for Automatic Black-Box Generation
	Experiment and Analysis
	Benchmarked Models and Baseline Test
	Overall Benchmark Result
	Analysis

	Related Work
	Modeling Interactive Environment
	Reasoning Datasets and Benchmarks

	Discussion
	Conclusion
	Implementation Details
	Details of LLMs
	Details of Oracle benchmark

	Additional Related Work
	Data Contamination and Dynamic Benchmark
	Evaluation of Reasoning Ability
	Charles Peirce's Framework of Humans Reasoning Behavior

	Additional Discussion
	Limitations
	Comparison with Previous Work
	More Task Settings for Black-Box Interaction
	Extra Findings

	Case Study
	How Iterative Debugging Works
	How LLMs Interact with the Black-Box
	How LLMs Succeed and Fail

	Ablation Study
	The Influence of Temperature
	The Influence of Extended Thinking
	The Influence of Prior Knowledge
	The Influence of Exploration Turns
	The Influence of Reasoning Tokens
	The Influence of Reflective Instruction
	Human Evaluation

	Prompt Details
	Prompt for Black-Box Generation
	Prompt for Black-Box Interaction

	Details of Black-Boxes in the Oracle benchmark
	Code Intent Inference (CII)
	Circuit Rule Inference (CRI)
	Physics System Inference (PSI)
	Encryption Rule Inference (ERI)
	Interactive Puzzle Inference (IPI)
	Game Strategy Inference (GSI)

	Detailed Experimental Results

