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Abstract

Empirical risk minimization (ERM) of neural
networks is prone to over-reliance on spurious
correlations and poor generalization on minority
groups. The recent deep feature reweighting tech-
nique (Kirichenko et al., 2023) achieves state-of-
the-art group robustness via simple last-layer re-
training, but it requires held-out group annotations
to construct a group-balanced reweighting dataset.
We examine this impractical requirement and find
that last-layer retraining can be surprisingly ef-
fective without group annotations; in some cases,
a significant gain is solely due to class balanc-
ing. Moreover, we show that instead of using the
entire training dataset for ERM, dependence on
spurious correlations can be reduced by holding
out a small split of the training dataset for class-
balanced last-layer retraining. Our experiments
on four benchmarks across vision and language
tasks indicate that this method improves worst-
group accuracy by up to 17% over class-balanced
ERM on the original dataset despite using no ad-
ditional data or annotations — a surprising and
unexplained result given that the two splits have
equally drastic group imbalance.

1. Introduction

Classification tasks in machine learning often suffer from
spurious correlations: patterns which are predictive of the
target class in the training dataset but irrelevant to the true
classification function. These spurious correlations, often
in conjunction with the target class, create minority groups
which are underrepresented in the training dataset. For
example, in the task of classifying cows and camels, the
training dataset may be biased so that a desert background
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is spuriously correlated with the camel class, creating a mi-
nority group of camels on grass backgrounds (Beery et al.,
2018). Beyond this simple scenario, spurious correlations
have been observed in high-consequence applications in-
cluding medicine (Zech et al., 2018), justice (Chouldechova,
2016), and facial recognition (Liu et al., 2015).

Neural networks trained via the standard procedure of em-
pirical risk minimization (ERM) (Vapnik, 1998), which
minimizes the average training loss, tend to overfit to
spurious correlations and generalize poorly on minority
groups (Geirhos et al., 2020). Even worse, it is possible
for ERM models to rely exclusively on the spurious feature
and incur minority group performance that is no better than
random guessing (Shah et al., 2020). Therefore, maximizing
the model’s group robustness, quantified by its worst accu-
racy on any group, is a desirable objective in the presence
of spurious correlations (Sagawa et al., 2020).

In contrast to more generic distribution shift settings (e.g.,
domain generalization (Koh et al., 2021)), the presence of
spurious correlations enables the improvement of group ro-
bustness merely by addressing model bias (without collect-
ing additional minority group data). The recently proposed
deep feature reweighting (DFR) (Kirichenko et al., 2023; 1z-
mailov et al., 2022) technique efficiently corrects model bias
by retraining the last layer of the neural network, a simple
procedure which achieves state-of-the-art group robustness.
The key hypothesis underlying DFR is that ERM models
which overfit to spurious correlations still learn core features
that correlate with the ground-truth label on all groups, but
they perform poorly because they overweight the spurious
features in the last layer. Ostensibly, retraining the last layer
on a group-balanced reweighting dataset would upweight
the core features and improve worst-group accuracy.

DFR compares favorably to existing methods such as group
distributionally robust optimization (DRO) (Sagawa et al.,
2020), which requires group annotations for the entire train-
ing dataset. However, DFR still necessitates additional held-
out data and group annotations to achieve maximal perfor-
mance (Kirichenko et al., 2023). This requirement limits
its practical application, as the groups are often unknown
ahead of time or difficult to annotate (e.g., due to financial,
privacy, or fairness concerns).
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Our contributions. We examine the performance of last-
layer retraining in the absence of group annotations on four
well-established benchmarks for group robustness across
vision and language tasks.'

First, we show that while group balance is the most impor-
tant factor in DFR performance, in some cases a significant
gain is solely due to class balancing. Therefore, we pro-
pose class-balanced last-layer retraining as a simple but
strong baseline for group robustness without group annota-
tions. Our experiments show that, on average over the four
datasets, this method achieves 94% of DFR worst-group
accuracy compared to 76% without class balancing. More-
over, while class-balanced ERM was recently proposed as a
competitive baseline for worst-group accuracy (Idrissi et al.,
2022), we observe that class-balanced last-layer retraining
renders balancing in the ERM stage optional, as retraining
results in similar performance regardless of ERM balance.

The performance of class-balanced last-layer retraining re-
veals a “free lunch” with practical ramifications. We show
that instead of using the entire training dataset for ERM,
dependence on spurious correlations can be reduced by
holding out a small split of the training dataset for last-layer
retraining. Our results indicate this method improves worst-
group accuracy by up to 17% over class-balanced ERM on
the original dataset despite using no additional data or an-
notations — a surprising and unexplained result given that
the two splits have equally drastic group imbalance.

2. Preliminaries

Setting. We consider classification tasks with input domain
X and target classes )). We assume S is a set of spurious
features such that each sample x € X is associated with
one feature s € S. In conjunction with the target class,
the spurious features partition the dataset into groups G =
Y x S. While the groups may be heavily imbalanced in the
training dataset, we desire a model which is invariant to the
spurious feature and has roughly uniform performance over
G. Therefore, we evaluate worst-group accuracy, i.e., the
minimum accuracy among all groups (Sagawa et al., 2020).

We will often refer to datasets and models as group-balanced
or class-balanced, meaning that in expectation, the dataset
is composed of an equal number of samples from groups
in G or classes in ), respectively. This balance can be
achieved by training on a subset with equal data from each
group/class, or sampling from the data so that each mini-
batch is balanced in expectation (Idrissi et al., 2022). To

"Following previous work in this setting (Sagawa et al., 2020;
Liu et al., 2021; Nam et al., 2022; Kirichenko et al., 2023; Izmailov
et al., 2022), we assume access to a small validation set with group
annotations for model selection. Concurrent research has explored
the removal of this requirement (Lee et al., 2023).

make the latter more concrete, for group balancing we first
sample s ~ Unif(S), then sample  ~ p(-|s) where p is
the training distribution; class balancing is the same with
Y instead of S. We use the minibatch sampling approach
for both class-balanced ERM and class-balanced last-layer
retraining, and we provide a comparison with the subset
method in Appendix A.

Deep feature reweighting. The recently proposed deep fea-
ture reweighting (DFR) (Kirichenko et al., 2023; Izmailov
et al., 2022) method achieves state-of-the-art worst-group
accuracy by performing ERM on the training dataset, then
retraining the last layer of the neural network on a group-
balanced held-out dataset, called the reweighting dataset. In
the original implementation, half the validation set is used to
construct the reweighting dataset: all data from the smallest
group is included and the other groups are randomly down-
sampled to that size. Then, the feature embeddings (i.e., the
outputs of the penultimate layer) of the reweighting dataset
are pre-computed and used to train a logistic regression with
explicit ¢, -regularization. The results are averaged over 10
randomly subsampled reweighting datasets, and a hyperpa-
rameter search is performed over ¢, regularization strength
on the other half of the validation set.

To emphasize practicality and efficiency, our implementa-
tion of DFR has some differences from the original. (i)
Instead of logistic regression, we train the last layer on
the reweighting dataset via minibatch optimization using
SGD and AdamW (Loshchilov & Hutter, 2019) for the vi-
sion and language tasks, respectively. This fits well into
standard training pipelines and avoids pre-computing the
feature embeddings and writing them to disk, which can
be slow and memory-intensive. (ii) To reduce the number
of hyperparameters, we use a fixed-value ¢ regularization
instead of searching over ¢; regularization strength. We
observed similar performance for ¢; and /5 regularization,
which we believe is because /1 -regularized gradients do not
induce sparsity (Langford et al., 2009). (iii) We sample
uniformly at random from the groups in the held-out dataset
(to get group balanced minibatches) instead of averaging
over group-balanced subsets of the data (Idrissi et al., 2022).
We compare the implementations in detail in Appendix A.

Datasets and models. We study four datasets which are
well-established as benchmarks for group robustness across
vision and language tasks, detailed in Appendix B.

o Waterbirds (Welinder et al., 2010; Wah et al., 2011;
Sagawa et al., 2020) is an image classification dataset
where the task is to predict whether a bird is a landbird
or a waterbird. The spurious feature is the image back-
ground: more landbirds are present on land backgrounds
than waterbirds, and vice versa.

e CelebA (Liu et al., 2015; Sagawa et al., 2020) is an image
classification dataset where the task is to predict whether
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Table 1: Last-layer retraining on the held-out dataset. While unbalanced (UB) last-layer retraining decreases perfor-
mance, class-balanced (CB) last-layer retraining is competitive with state-of-the-art methods for group robustness without
group annotations. CB ERM is trained on the combined training and held-out datasets using class-balanced minibatches,
while JTT and RWY-ES only use the training dataset. DFR uses group annotations on the held-out dataset, while Group
DRO-ES requires them for the training dataset. We list the mean and standard deviation over three independent runs.

Method Grou.p Worst-group test accuracy
annotations  werbirds ~ CelebA  CivilComments ~ MultiNLI
Class-balanced ERM X 81.943.4 672456 61.440.7 69.2116
JTT (Liu et al., 2021; Idrissi et al., 2022) X 85.6+0.2 75.617.7 67.8+1.6 67.5+1.0
RWY-ES (Idrissi et al., 2022; Izmailov et al., 2022) X 74.510.0 76.847.7 78.9+1.0 68.040.4
UB last-layer retraining X 88.0+0.8 41.941.4 57.644.2 64.641.0
CB last-layer retraining X 92.610.8 73.T+2.8 80.4410.8 64.741.1
DFR (our impl.) v 92.440.9 87.041.1 81.841.6 70.840.8
DFR (Kirichenko et al., 2023; Izmailov et al., 2022) v 91.140.8 89.440.0 78.840.5 72.640.3
Group DRO-ES (Sagawa et al., 2020; Izmailov et al., 2022) v 90.7+0.6 90.6+1.6 80.4 73.5
a person is blond or not. The spurious feature is gender;
there are more blond women than blond men. * T mEm Retraining with UB ERM features
e CivilComments (Borkan et al., 2019; Koh et al., 2021) is * Retaining with CB ERM features
a text classification dataset where the task is to predict %:Z
whether a comment is toxic or not. The spurious feature %75
is the presence of one of the following categories: male, S0
female, LGBT, black, white, Christian, Muslim, or other %65
religion. More toxic comments contain one of these 260
categories than non-toxic comments, and vice versa. 55
o MultiNLI (Williams et al., 2018; Sagawa et al., 2020) is sol RRRR NSRRI SNSRI me—
a text classification dataset where the task is to predict
whether a pair of sentences is a contradiction, entailment, Figure 1: Class-balanced last-layer retraining ren-

or neither. The spurious feature is a negation in the
second sentence — more contradictions have this property
than entailments or neutral pairs.

We utilize a ResNet-50 (He et al., 2016) pretrained on
ImageNet-1K (Russakovsky et al., 2015) for Waterbirds
and CelebA, and a BERT (Devlin et al., 2019) model pre-
trained on Book Corpus (Zhu et al., 2015) and English
Wikipedia for CivilComments and MultiNLI. We use half
the validation set for feature reweighting (Kirichenko et al.,
2023; Izmailov et al., 2022) and half for model selection
with group annotations (Sagawa et al., 2020; Liu et al., 2021;
Kirichenko et al., 2023; Nam et al., 2022; Izmailov et al.,
2022). See Appendix B for further details.

3. Class-balanced last-layer retraining

In this section, we investigate the necessity of a group-
balanced reweighting dataset for DFR and show that class-
balanced last-layer retraining is a simple but strong baseline
for group robustness without group annotations. To enable
a fair comparison with our implementation of DFR (see
Section 2), class-balanced last-layer retraining follows the
same training procedure, except the reweighting dataset
is constructed by sampling uniformly over the classes )

ders class-balanced ERM optional. We compare class-
balanced (CB) last-layer retraining on the held-out dataset
initialized with unbalanced (UB) or CB ERM features. Con-
trasting with Idrissi et al. (2022), our results suggest that
CB ERM is not necessary for improved group robustness
as long as the last layer alone is retrained with class bal-
ancing. We list the mean and standard deviation over three
independent runs. See Appendix C for detailed results.

instead of the groups G.

In Table 1, we compare unbalanced and class-balanced last-
layer retraining on the held-out dataset against DFR and
other methods not using group annotations. Class balanc-
ing is essential for good performance: on average over the
four datasets, class-balanced last layer retraining achieves
94% of DFR worst-group accuracy — competitive with other
state-of-the-art techniques — compared to 76% without class
balancing. While group balance is still the most important
factor in DFR performance, our results suggest that in some
cases (namely, Waterbirds and CivilComments) a significant
amount of the worst-group accuracy benefit of DFR is solely
due to class balancing.
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Figure 2: A “free lunch” in group robustness. We compare class-balanced (CB) ERM on the entire dataset to splitting the
dataset and performing CB ERM on the first split and CB last-layer retraining on the second. This technique improves worst-
group accuracy on Waterbirds, CelebA, and CivilComments by up to 17% despite using no additional data or annotations.
We believe it underperforms on MultiNLI because there is not enough data in the first split, i.e., ERM performance can still
be improved by collecting more data. We searched over four splits, but holding out 5% of data consistently performed well
overall. We plot the mean and standard deviation over three independent runs. See Appendix C for detailed results.

Moreover, our experiments in Figure | indicate that class-
balanced last layer retraining has similar performance re-
gardless of whether it is initialized with class-unbalanced
or class-balanced ERM features. Contrasting with Idrissi
et al. (2022), this shows that class balancing in the ERM
stage is optional. This result has practical relevance for
expensive models pre-trained without class balancing (e.g.,
large language models), as the benefits of class balancing
can be reaped by simply retraining the last layer instead of
training a new class-balanced ERM model.

4. A “free lunch” in group robustness

Motivated by the promising results of Section 3, where we
performed class-balanced last-layer retraining on a fixed
held-out set (namely, half the validation set), we now ask
how can we best utilize a realistic training dataset? In
particular, practical applications often work with a predeter-
mined data, annotation, and compute budget. Within this
budget, and with no explicit held-out dataset, would one
achieve better group robustness by using the entire dataset
for ERM or by holding out a subset for last-layer retraining?

We investigate this question on our four benchmark datasets
by randomly splitting the initial dataset into two, then per-
forming class-balanced ERM training on the first (larger)
split and class-balanced last-layer retraining on the sec-
ond (smaller) split. Figure 2a illustrates the results of our
experiments on the training dataset and Figure 2b on the
combined training and held-out datasets. In each case, we
perform a hyperparameter search over dataset split propor-
tions: namely 80,/20, 85/15, 90/10, and 95/5 for ERM
and last-layer retraining respectively, where the ERM base-
line corresponds to a 100/0 split. With that said, the 95/5
split consistently performed well overall, and therefore we

recommend holding out 5% of data in practice. Due to a
larger quantity of data, we expect all numbers to be higher in
Figure 2b compared to Figure 2a (especially on Waterbirds,
which has a more group-balanced validation set).

Figure 2 indicates that last-layer retraining on a held-out
dataset split substantially improves worst group accuracy
on Waterbirds, CelebA, and CivilComments. It decreases
performance on MultiNLI, which is the only dataset where
adding held-out data from the same distribution significantly
increases ERM worst-group accuracy compared to DFR.
Specifically, class-balanced ERM achieves 67.4 + 2.4%
worst-group accuracy on the training dataset and 69.2+1.6%
on the combined training and held-out datasets, while our
DFR implementation achieves 70.8 & 0.8%. Therefore, we
hypothesize that last-layer retraining on the second split can
improve group robustness only if there is enough data for
ERM to perform near-optimally on the first split, i.e., if the
performance of ERM on the first split is limited by dataset
bias rather than sample variance.

Based on this hypothesis, our answer to the posed ques-
tion is: if ERM performance is stable when holding out
5% of data, perform last-layer retraining on the held-out
dataset instead of ERM on the initial dataset. We call this
technique a “free lunch” because it improves worst-group
accuracy with no additional data or annotations beyond
ERM. Therefore, we believe this method is especially rele-
vant to practitioners, and it can be easily implemented with
little change to data processing or model training workflows.

A remaining question is why last-layer retraining improves
group robustness; since the training and held-out datasets
have equally drastic group imbalance, it is counterintuitive
that reducing the quantity of data used for ERM and perform-
ing last-layer retraining can increase worst-group accuracy.
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A. Additional experiments

In this section we include the detailed results of additional experiments and ablations.

Table 2: Empirical risk minimization. First, we compare class-unbalanced (CU) and class-balanced (CB) ERM on the
training dataset vs. the combined training and held-out datasets (i.e., the training dataset plus half the validation dataset). We
list the mean and standard deviation over three independent runs. Note that the Waterbirds validation dataset has a different
distribution than the training dataset (and, in particular, is group-balanced), and that MultiNLI is class-balanced a priori.

Held-out dataset Worst-group test accuracy
Method included
Waterbirds  CelebA  CivilComments  MultiNLI
CU ERM X 724410 44.140.9 63.8+6.2 674424
CB ERM X 72.643.2 66.3+3.2 60.242.7 67.4490.4
CU ERM v 81.6+1.5 44.543.4 59.1490.2 69.141.3
CB ERM v 81.943.4 67.245.6 61.440.7 69.241.6

Table 3: Balancing methodology comparison. Next, we compare last-layer retraining on the held-out set with different
balancing methodologies, each initialized with class-balanced ERM features. In “sampling”, we sample from the held-out
dataset at a non-uniform rate so that each minibatch is class- or group-balanced in expectation, while in “subset”, we train
on a random class- or group-balanced subset of the held-out dataset. Specifically, for group-balanced sampling we first
sample s ~ Unif(S), then sample = ~ p(-|s) where p is the training distribution; class-balanced sampling is the same with
Y instead of S. For subset balancing, we keep all data from the smallest group/class and downsample the others uniformly
at random to that size. We list the mean and standard deviation over three independent runs.

Worst-group test accuracy
Waterbirds  CelebA  CivilComments  MultiNLI

Last-layer retraining method

Class-unbalanced 88.010.8 41.941.4 57.644.2 64.6+1.0
Class-balanced sampling 92.640.8 73.T+2.8 80.4+0.8 64.741.1
Class-balanced subset 92.140.0 74.642.0 80.241.4 64.541.3
Group-balanced sampling 92.440.9 87.041.1 81.8+1.6 70.840.8
Group-balanced subset 91.641.0 88.1+1.0 79.241.8 68.3+1.8
DFR (Kirichenko et al., 2023; Izmailov et al., 2022) 91.140.8 89.410.9 78.8+40.5 72.6+0.3

Table 4: Necessity of the held-out dataset. Next, we investigate whether holding out a subset of the training dataset for
class-balanced (CB) last-layer retraining is essential, or if retraining on the entire (previously seen) dataset is also effective.
For retraining on the training dataset, we use the same class-balanced last-layer retraining procedure as the held-out dataset,
but we train for 20 epochs for the vision tasks and 2 epochs for the language tasks. For retraining on the held-out dataset, we
report the best over four splits (i.e., the same numbers as Figure 2). Our results suggest that holding out data is necessary
to achieve maximal worst-group accuracy, though last-layer retraining on the training dataset interestingly prevents the
performance decrease on MultiNLI. We list the mean and standard deviation over three independent runs.

Worst-group test accuracy

Method

Waterbirds CelebA  CivilComments  MultiNLI
CB ERM 72.643.2 66.343.2 60.249.7 67.449.4
CB last-layer retraining on training dataset 71.0+2.5 66.941.4 61.940.8 67.0+1.5

CB last-layer retraining on held-out dataset T7.440.3 73.042.3 77.941.5 63.0+1.5
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Figure 3: Last-layer retraining dataset split ablation. Finally, we compare class-balanced (CB) ERM on the entire dataset
to splitting the dataset and performing CB ERM on the first split and CB last-layer retraining on the second. We plot
worst-group accuracy against the percent of data used for ERM. For example, 90 corresponds to CB ERM on 90% of the
dataset and CB last-layer retraining on the remaining 10%, while 100 corresponds to CB ERM on the entire dataset. This
technique helps on all datasets except MultiNLI — we hypothesize this is because there is not enough data for ERM to
perform statistically optimally. We recommend a 95/5 split in practice, as it does consistently well in our experiments,
performing the best or second-best on each dataset besides Waterbirds. We plot the mean over three independent runs and
leave out error bars for readability.

B. Dataset composition and training details

The detailed composition of the four benchmark datasets we study is listed in Table 5.

Table 5: Dataset composition. We study four well-established benchmarks for group robustness across vision and language
tasks. The class probabilities change dramatically when conditioned on the spurious feature. Note that Waterbirds is the
only dataset that has a distribution shift (in particular, the validation dataset is group-balanced conditioned on the classes)
and MultiNLI is the only dataset which is class-balanced a priori. Probabilities may not sum to 1 due to rounding.

Dataset Group g Training distribution p Data quantity
Class y Spurious s p(y) p(g) D(yls) Train Val Test
landbird land 768 .730 .984 3498 467 2225
Waterbirds landbird water ' .038 .148 184 466 2225
waterbird land 232 .012 .016 56 133 642
waterbird water ' .220 .852 1057 133 642
non-blond female 851 .440 .758 71629 8535 9767
CelebA non-blond male ' 411 .980 66874 8276 7535
blond female 149 141 .242 22880 2874 2480
blond male ) .009 .020 1387 182 180
neutral no identity 887 .551 921 148186 25159 74780
CivilComments neutral identity ' .336 .836 90337 14966 43778
toxic no identity 113 .047 .079 12731 2111 6455
toxic identity ) .066 .164 17784 2944 8769
contradiction  no negation 333 .279 .300 57498 22814 34597
contradiction  negation ' .054 .761 11158 4634 6655
. entailment no negation 327 .352 67376 26949 40496
MultiNLI entailment negation 334 .007 .104 1521 613 886
neither no negation 333 323 .348 66630 26655 39930
neither negation ' .010 .136 1992 797 1148

We utilize a ResNet-50 (He et al., 2016) pretrained on ImageNet-1K (Russakovsky et al., 2015) for the vision tasks and a
BERT (Devlin et al., 2019) model pretrained on Book Corpus (Zhu et al., 2015) and English Wikipedia for the language tasks.
These pretrained models are used as the initialization for ERM on the four datasets we study. We use standard ImageNet
normalization with standard flip and crop data augmentation for the vision tasks, and BERT tokenization for the language
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tasks. Our implementation uses the following packages: NumPy (Harris et al., 2020), PyTorch (Paszke et al., 2017),
Lightning (William Falcon and the PyTorch Lightning maintainers and contributors, 2019), TorchVision (maintainers
& contributors, 2016), Matplotlib (Hunter, 2007), Transformers (Wolf et al., 2020), and Mi 1kshake (LaBonte,
2023).

For ERM and last-layer retraining, we do not vary any hyperparameters; their fixed values are listed in Table 6. For the
dataset split experiments (Section 4), we vary the splits among 80/20, 85/15, 90/10, and 95/5 for ERM and last-layer
retraining respectively, where the ERM baseline corresponds to a 100/0 split. With that said, the 95/5 split did consistently
well, and therefore we recommend holding out 5% of data in practice; see Appendix A for our ablation study.

Table 6: ERM and last-layer retraining hyperparameters. We use standard hyperparameters following previous
work (Sagawa et al., 2020; Idrissi et al., 2022; Kirichenko et al., 2023; Izmailov et al., 2022). For last-layer retrain-
ing, we keep all hyperparameters the same except the number of epochs on CelebA, which we increase to 100.

Dataset Optimizer Initial LR LR schedule Batchsize Weight decay = Epochs

Waterbirds SGD 3x 1073 Cosine 32 1x107* 100

CelebA SGD 3x1073 Cosine 100 1x1074 20

CivilComments AdamW (Loshchilov & Hutter, 2019) 1 x 107> Linear 16 1x107* 10

MultiNLI AdamW (Loshchilov & Hutter, 2019) 1 x 107° Linear 16 1x107* 10
C. Additional tables

In this section, we provide detailed results for Figures 1 and 2.

Table 7: Table for Figure 1. We compare different combinations of ERM and last-layer retraining with or without class
balancing. Notably, class-balanced last-layer retraining enables nearly the same worst-group accuracy whether the ERM
incorporates class-balancing or not. In Figure 1, we only plot the results which use class-balanced last layer retraining (i.e.,
the last two rows of the table). We use the entire held-out set for last-layer retraining, and we list the mean and standard
deviation over three independent runs.

ERM Last-layer retraining Worst-group test accuracy
1 lanci i
class balancing — class balancing W, pid CelebA  CivilComments MuliNLI
X X 87.54+0.7 45419 3 54.7T15.8 64.510.8
v X 88.0+0.8 419414 57.644.2 64.6+1.0
X v 92.310.4 71.1i2.4 78.4i245 64.7i1,1
v v 92.6+0.8 73.7+2.8 80.4+0.8 64.741.1

Table 8: Table for Figure 2. We compare class-balanced (CB) ERM on the entire dataset to splitting the dataset and
performing CB ERM on the first (larger) split and CB last-layer retraining on the second (smaller) split. The results with and
without the held-out dataset correspond to Figure 2a and 2b respectively. We search over four splits and report the best with
respect to worst-group validation accuracy; see Figure 3 for results on each split. We list the mean and standard deviation
over three independent runs.

Held-out dataset Worst-group test accuracy
Method included
Waterbirds  CelebA  CivilComments  MultiNLI
CB ERM X 72.643.2 66.3+3.2 60.242.7 67.449.4
CB last-layer retraining X 7744103 73.0+2.3 779415 63.0+1.5
CB ERM v 81.943.4 67.2156 61.440.7 69.24+1.6
CB last-layer retraining v 85.241.8 77.041.2 T7.7+1.8 65.242.8
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D. Additional related work

Spurious correlations. The performance of empirical risk minimization (ERM) in the presence of spurious correlations has
been extensively studied (Geirhos et al., 2020). In vision, ERM models are widely known to rely on spurious attributes like
background (Sagawa et al., 2020; Xiao et al., 2021), texture (Geirhos et al., 2019), and secondary objects (Rosenfeld et al.,
2018; Shetty et al., 2019; Singla & Feizi, 2022) to perform classification. In language, ERM models often utilize syntactic
or statistical heuristics as a substitute for semantic understanding (Gururangan et al., 2018; Niven & Kao, 2019; McCoy
et al., 2019). This behavior can lead to bias against demographic minorities (Hovy & Sg¢gaard, 2015; Blodgett et al., 2016;
Tatman, 2017; Hashimoto et al., 2018; Buolamwini & Gebru, 2018) or failure in high-consequence applications (Liu et al.,
2015; Chouldechova, 2016; Zech et al., 2018; Oakden-Rayner et al., 2019).

Robustness and group annotations. If group annotations are available in the training dataset, group distributionally
robust optimization (DRO) (Sagawa et al., 2020) can improve robustness by minimizing the worst-group loss, while other
techniques learn invariant or diverse features (Arjovsky et al., 2019; Goel et al., 2021; Zhang et al., 2022a; Xu et al.,
2022). Methods which use only partial group annotations include deep feature reweighting (DFR) (Kirichenko et al., 2023;
Izmailov et al., 2022), which retrains the last layer on a group-balanced held-out set, and spread spurious attribute (Nam
et al., 2022), which performs DRO with group pseudo-labels. However, since the groups are often unknown ahead of time
or difficult to annotate in practice, there has been significant interest in methods which do not utilize group annotations
except for model selection. The bulk of these techniques train one or more auxiliary models to pseudo-label the minority
group (Sohoni et al., 2020; Nam et al., 2020; Yaghoobzadeh et al., 2021; Creager et al., 2021; Kim et al., 2021; 2022; Sohoni
et al., 2022; Zhang et al., 2022b); notably, just train twice (JTT) (Liu et al., 2021) upweights samples misclassified by an
early-stopped model. Other techniques reweight or subsample the classes (Idrissi et al., 2022) or train with robust losses and
regularization (Pezeshki et al., 2021; Yang et al., 2022).

Unlike DFR, our methods utilize no held-out group annotations, and unlike JTT, we do not use an auxiliary model to identify
the minority group, but show that class-balanced last-layer retraining improves worst-group accuracy without explicit group
pseudo-labels. The concurrent work of Qiu ef al. (Qiu et al., 2023) proposed a similar method to ours; while they use a
tunable loss to upweight misclassified samples, our method shows that no tuning or upweighting is required to achieve
similar results. Finally, while our results partially corroborate the findings of Idrissi et al. (2022) that class balancing during
ERM is effective for group robustness, we observe that class-balanced last-layer retraining renders class balancing in the
first ERM stage optional (see Figure 1). We compare our results with previous methods in Table 1.
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