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Abstract

Foundation Models have recently emerged as powerful tools in various domains of
AI, showing potential for significant advancements in Brain-Computer Interfaces
(BCIs). However, the initial implementations of Large Brainwave Models (LBMs)
face significant challenges when applied to real-world scenarios, primarily due to
various distribution shifts. This work examines the training process of these LBMs
through a causal reasoning perspective, identifying key challenges that impact
their performance. By doing so, we aim to provide insights that can guide the
development of more robust and effective LBMs for BCI applications.

1 Introduction

Brain-Computer Interface (BCI) technology is revolutionizing human-computer interaction by creat-
ing direct connections between the human brain and computers. This advancement relies on analyzing
brainwaves from electroencephalogram (EEG) recordings using sophisticated signal processing and
machine learning techniques. BCIs have the potential to transform how we interact with our environ-
ment and each other, offering hope for people with disabilities to regain lost functions, augmenting
human abilities, and opening new avenues for entertainment and communication [Irimia et al. (2012),
Torres et al. (2020), Chaudhary et al. (2016), Luu et al. (2017), Biasiucci et al. (2018)].

Traditionally, analyzing brainwaves captured by EEG involved manual feature extraction by neuro-
engineers with extensive expertise in neuroscience and EEG analysis [Bashashati et al. (2007), Handy
(2009), Rao (2013), Nam et al. (2018), McFarland et al. (2006)]. However, hand-crafted features
often struggle to generalize well to data captured in real-world settings, limiting their effectiveness in
practical BCI applications.

The rise of deep learning has reduced the need for manual feature extraction in BCIs, enabling data-
driven approaches and leading to state-of-the-art performance in various BCI paradigms [Lawhern
et al. (2018), Song et al. (2023), Barmpas et al. (2023a), Bakas et al. (2022)]. While deep learning
models have shown promising results, they typically require substantial supervision and task-specific
data collection, which can be time-consuming and resource-intensive.

Foundation Models have recently emerged as a promising approach to address the above mentioned
limitations, showing remarkable results across various domains, particularly in Natural Language
Processing and Computer Vision [Brown et al. (2020), Touvron et al. (2023), Mizrahi et al. (2023)].
Recognizing this potential, researchers have begun to apply similar large-scale models to BCIs,
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which we refer to as Large Brainwave Models (LBMs) [Jiang et al. (2024), Cui et al. (2024), Yuan
et al. (2024), Zhang et al. (2024)]. In the context of BCIs, LBMs offer several potential advantages:
they can leverage knowledge across different brain-related tasks, potentially improve generalization,
reduce the need for task-specific data collection, and create more robust and versatile BCI systems
capable of adapting to various users and environments.

However, applying LBMs to BCIs presents unique challenges due to the nature of brain signals.
These challenges include high inter-subject variability, where brain signals can vary significantly
between individuals; non-stationarity of EEG signals, which can change over time even within the
same individual; and susceptibility to various artifacts and noise sources. Furthermore, the high-
dimensional and temporally dynamic nature of EEG data, with both spatial (multiple electrodes) and
temporal aspects, poses significant challenges for efficient data representation and processing within
these large-scale models. These factors collectively make it particularly challenging for LBMs to
generalize effectively across different subjects, tasks, and recording conditions in BCI applications.

To address these challenges, we propose leveraging causal reasoning, which offers a promising
solution to the limitations encountered by LBMs in BCI applications. Causal reasoning focuses on
understanding cause-effect relationships, potentially allowing us to better model EEG data’s complex
and variable nature. Inspired by work in Representation Learning [Schölkopf et al. (2021)] and
Medical Imaging [Castro et al. (2020)], [Barmpas et al. (2024)] presents a framework to analyze key
challenges in brainwave modeling for BCIs. Our work here expands this framework to encompass
LBMs, aiming to drive significant advancements in BCIs, paving the way for more robust, generaliz-
able, and interpretable brainwave modeling techniques to better account for confounding influences
and reduce the need for task-specific data.

2 Background on Causal Reasoning

[Barmpas et al. (2024)] introduces a causal framework that can break down every BCI paradigm to its
independent components, according to the Principle of Independent causal mechanism [Reichenbach
(1956)], and relies on two core properties:

• The presence of task stimulus: if the brain activity is modulated by the presence of external
stimuli (Exogenous) or without any external stimulus (Endogenous)

• The voluntary engagement of the subject: when the subject willingly generates a particular
brain activation or coactivation pattern (Voluntarily Engaged) or when the subject has no
control of the generated brain activation pattern (Involuntarily Engaged)

Therefore, all BCI paradigms can be categorized using a combination of the above mentioned
categories. For example, P300 speller [Won et al. (2019)] is exogeneous and voluntary engaged
paradigm while seizure detection [Antoniades et al. (2016)] and workload estimation [Kosti et al.
(2018)] are endogeneous and involuntary engaged paradigms.

According to [Barmpas et al. (2024)], the identified variables of interests in a BCI task are: the
observed EEG brainwave signal X, the labelled task Y, the true underlying unobserved BCI-relevant
brain activity Z, the stimulus S, the intention I of the subject and the environment E. For each
category, there is a specific directed acyclic graph (DAG) that represents the causal relations between
the identified variables of interests:

• Voluntarily Engaged - Exogenous: Y → S → Z → X

• Involuntarily Engaged - Exogenous: (Y,S) → Z → X

• Involuntarily Engaged - Endogenous: E → Y → Z → X

• Voluntarily Engaged - Endogenous: I → Y → Z → X

Different distribution shifts can influence different causal sub-modules, leading to sub-optimal
performance of brainwave decoding. These shifts can originate from various sources, including the
experimental setup, the quality and quantity of available EEG data, and the inherent complexities
of the brain itself. For researchers in BCI systems, it is crucial to thoroughly understand these
potential sources of distribution shifts that are linked to the core causal variables. This is essential
when designing deep learning models for brainwave analysis, as it enables the development of more
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robust and accurate decoding systems [e.g. Barmpas et al. (2023b), Barmpas et al. (2022)]. Table 1
summarizes some of the various shifts in brainwave decoding as well as the causal sub-module they
usually affect.

Type Related with Causal Shift to Affects

Stimulus Shift Experimental Settings P (S) Involuntarily Engaged
and Exogenous

Shifts on Subject’s Intention Experimental Settings P (I) Voluntarily Engaged
and Endogenous

Shifts on Environmental Conditions Experimental Settings P (E) Involuntarily Engaged
and Endogenous

Acquisition Shift EEG Data P (X|Z) All Cases

Subject Shift Subjects P (Z|·) All Cases

Class Imbalance Associated Labels P (Y) Exogenous

Table 1: All possible shifts in brainwave decoding for all causal BCI factorization scenarios. Table
adapted from [Barmpas et al. (2024)].

3 Extended Causal Framework for Large Brainwave Model

Over the past decade, advancements in Deep Learning have led to the development of powerful
Generative Large Foundation Model architectures that have achieved remarkable success. These
foundation models have demonstrated great results in various downstream tasks while their capability
to generate highly realistic data further enhances their efficacy and broadens their applicability.

In the field of BCIs, LBM architectures hold tremendous potential for EEG decoding. Early efforts
within the BCI research community have already begun to explore this potential [Jiang et al. (2024),
Cui et al. (2024), Yuan et al. (2024), Zhang et al. (2024)]. These models, with their extensive
self-supervised pre-training on diverse, unlabeled datasets, are capable of capturing complex patterns
and relationships within EEG data, enhancing their generalizability. As BCIs evolve from controlled
laboratory environments to everyday user settings, there is a growing need for deep learning models
that can adapt to a wide variety of consumer-grade devices and remain resilient to signal irregularities.
LBMs offer promising solutions for predicting brain activities, reconstructing missing or corrupted
segments of brain signals, and improving the removal of artifacts or noise from raw EEG data. These
advancements not only enhance the robustness of brainwave decoding models but also pave the way
for the development of fully device-agnostic models—capable of being deployed across a range of
headsets with varying sensor configurations, straight out of the box.

Here, we will investigate these LBMs through the lens of causal reasoning. More specifically, using
the framework described in Section 2, our goal is to identify challenges and possible distribution
shifts that can hurt the generalization and performance of these large models. BCI researchers need
to take into account these challenges when designing large brainwave decoding models. Our analysis
is focused on two key aspects that characterize these large models:

1. Self-supervised pre-training of LBMs
2. Adaptation to downstream tasks
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3.1 Self-Supervised Pre-training

LBMs are distinguished by their pre-training on vast and diverse datasets in a task-agnostic manner,
often leveraging self-supervised learning techniques. This approach equips them with the flexibility
and readiness for fine-tuning across a wide range of downstream tasks, eliminating the need for large,
annotated datasets typically required for supervised learning.

As discussed in [Schölkopf et al. (2021)] and [Barmpas et al. (2024)], pre-training aims to broaden
the diversity of the training set distribution without requiring additional examples from the joint
distribution P(X,Y). The assumption is that pre-training on a large and diverse brainwave dataset,
enables the model to capture valuable information from these varied distributions. This can enhance
the model’s ability to generalize in BCI systems. In contrast, self-supervised learning involves two
key phases: first, training on a large, unlabeled dataset, followed by fine-tuning on a smaller, labeled
set of brainwave data. The primary goal of this approach is to enrich P(X), which is especially
advantageous for anti-causal models, predominantly used in brainwave decoding.

However, training of these LBMs relies on various masking choices and reconstruction capabilities.
In other words, the knowledge captured by these large brainwave models is predominantly based
on their ability to effectively predict masked parts of the input data from other parts. Two main
dimensions can be masked:

1. Temporal dimension: Specific time segments are masked in the EEG time-series
2. Spatial dimension: Specific EEG sensors are masked

Therefore, bad masking choices can heavily affect the generalization properties and performance of
these large models. Employing causal reasoning within the EEG data guided by the causal framework
of [Barmpas et al. (2024)] can facilitate the design of efficient LBMs.

Exogenous. When a BCI paradigm is categorized as exogenous, it means that the brain’s activity is
influenced by external stimuli (S → Z → X). The brain’s response to these stimuli is what enables
the decoding of brainwaves. For example, the P300-speller [Won et al. (2019)] is a type of BCI that
allows users to spell words and sentences by focusing on specific flashing characters. This system
relies on the P300 Event-Related Potential (ERP), a brain response that typically emerges around 300
milliseconds after the presentation of the stimulus mostly in the parietal electrodes.

If, during the training of a LBM, all electrodes — or even just the electrodes relevant to the stimulus
- are masked during the stimulus time segment, the model will be unable to accurately reconstruct
the brainwave patterns associated with the stimulus. This masking deprives the model of essential
information, preventing it from learning the critical features and dynamics necessary for effective
brainwave generation of the stimulus response.

Figure 1: (Left) EEG signals before and after an external stimulus is applied in a P300-speller trial.
Blue denotes the baseline neural activity and red denotes the event-related potential (ERP) response
occurring 300 milliseconds after the stimulus. (Middle) Temporal masking in all electrodes during
the stimulus time segment. (Right) Masking the electrode relevant to the stimulus during the stimulus
time segment.

Endogenous - Voluntarily Engaged. When a BCI paradigm is categorized as endogenous -
voluntarily engaged, it means that the intention I of the subject can be considered the source of the
BCI-relevant neural activation pattern (I → Y → Z → X). The neural patterns during the task is
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what enables the decoding of brainwaves. For example, a Motor-Imagery BCI [Rezaeitabar & Halici
(2017)] is a system that decodes when a user imagines of moving their hands and / or feet with
the main neural activity being concentrated in the motor cortex electrodes. Since these paradigms
are user-driven, their duration can vary significantly, making the application of temporal masking
particularly challenging.

If, during the training of a LBM, all electrodes — or even just the electrodes relevant to the task - are
masked during the task’s duration, the model will be unable to accurately reconstruct the brainwave
patterns associated with the task.

Figure 2: (Left) EEG signals during a Motor-Imagery (MI) trial. Blue denotes the baseline neural
activity and red denotes the neural pattern related to the MI task. (Middle) Masking the electrode
relevant to the MI task during the whole task duration.(Right) Partially masking the electrode relevant
to the MI task during the task duration.

Endogenous - Involuntarily Engaged. When a BCI paradigm is categorized as endogenous -
involuntarily engaged, it means that the brain’s activity is influenced by the environment E (E →
Y → Z → X). These BCI paradigms often involve transitions between different brain states (such as
baseline versus seizure [Antoniades et al. (2016)] or baseline versus drowsiness [Lin et al. (2010)])
that can persist over extended periods and are detectable across all or only specific electrode sites.

If, during the training of a LBM, a large masking time window is used that includes all electrodes —
or even just the electrodes relevant to a state, the model will be unable to accurately reconstruct the
brainwave patterns associated with that state.

Figure 3: (Left) EEG signals before and during a seizure episode. Blue denotes the baseline neural
activity and red denotes the neural pattern related to seizure. (Right) Temporal masking of all
electrodes during the baseline state.

Consequently, choosing an ineffective spatial masking method for each BCI paradigm will prevent
the model from accurately capturing the essential neural activity associated with each causal category.
The variability in timing introduces additional complexity. This variability means that improperly
applied temporal masking can obscure critical neural activity, potentially leading to inaccurate or
incomplete data information.

Therefore, the BCI researcher developing LBMs should:

1. Ensure careful selection and retention of the relevant electrodes during the training phase

2. Carefully consider the timing and duration of masking to ensure that essential temporal
information is preserved
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3.2 Downstream Tasks

The vast majority of BCI models are used for decoding tasks. In other words, given an observed brain
activity X (brainwave), the goal of these models is to predict the performed task Y corresponding
to that particular brainwave pattern, i.e. P(Y|X). Therefore, when used for downstream tasks, these
LBMs are no different (from a causality perspective) than any other deep learning decoding models
(e.g. CNN-based brainwave decoders). Hence, they face the same challenges as described in Table 1
(e.g. inter-subject variability, device acquisition differences).

In downstream tasks, LBMs can adapt seamlessly to new tasks with minimal re-training, often
achieved through the addition of simple, adaptable layers trained on a small amount of target data.
As a result, the causal brainwave framework of [Barmpas et al. (2024)] can be successfully extended
to these large brainwave models and BCI researchers need to take into account the guidelines and
challenges described in [Barmpas et al. (2024)] during the adaptation training phase.

Figure 4: A Motor-Imagery (MI) BCI workflow: Classification of EEG signals into hand and foot
movements. The decoding model can be either a deep MI decoding model or a large brainwave model
in the MI downstream task.

4 Conclusion

In this work, we show that the integration of causal reasoning in the training as well as the adaptation
and inference phase of Large Brainwave Models (LBMs) suggests a promising pathway towards
more robust and generalizable BCI decoding systems. By extending the existing causal brainwave
framework [Barmpas et al. (2024)] to these advanced models, BCI researchers can better navigate the
challenges posed by distribution shifts and masking choices that severely impact these large models’
performance. We showcase that during adaptation and inference these large models suffer from
the distribution shifts as other deep models, while the careful masking selection, both temporal and
spatial, during the training phase are essential for capturing critical neural activity accurately during
training. As BCIs continue to evolve, the application of this causal framework has the potential to
improve BCIs and will be crucial in driving the development of efficient brainwave deep decoding
models.
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