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ABSTRACT

Federated learning (FL) is a distributed machine learning (ML) framework where
multiple clients collaborate to train a model without exposing their private data.
FL involves cycles of local computations and bi-directional communications be-
tween the clients and server. To bolster data security during this process, FL algo-
rithms frequently employ a differential privacy (DP) mechanism that introduces
noise into each client’s model updates before sharing. However, while enhancing
privacy, the DP mechanism often hampers convergence performance. In this pa-
per, we posit that an optimal balance exists between the number of local steps and
communication rounds, one that maximizes the convergence performance within
a given privacy budget. Specifically, we prove the optimal number of local steps
and communication rounds that enhance the convergence bounds of the DP ver-
sion of the ScaffNew algorithm. Our findings reveal a direct correlation between
the optimal number of local steps, communication rounds, and a set of variables,
e.g., the DP privacy budget and other problem parameters, specifically in the con-
text of strongly convex optimization. Furthermore, we provide empirical evidence
to validate our theoretical findings.

1 INTRODUCTION

The recent success of machine learning (ML) can be attributed to the increasing size of both ML
models and their training data without significantly modifying existing well-performing architec-
tures. This phenomenon has been demonstrated in several studies, e.g., Sun et al. (2017); Kaplan
et al. (2020); Chowdhery et al. (2022); Taylor et al. (2022). However, this approach is infeasible
since it needs to store a massive training dataset in a single location.

Federated learning. To address this issue, federated learning (FL) Konečný et al. (2016); Konečný
et al. (2016b;a) has emerged as a distributed framework, where many clients collaborate to train ML
models by sharing only their local updates while keeping their local data for security and privacy
concerns Dwork et al. (2014); Apple (2017); Burki (2019); Viorescu et al. (2017). Two types of FL
include (1) cross-device FL, which leverages millions of edge, mobile devices, and (2) cross-silo FL
where clients are data centers or companies and the client number is very small. Both FL types pose
distinct challenges and are suited for specific use cases Kairouz et al. (2021). While cross-device FL
solves problems over the network of statistically heterogeneous clients with low network bandwidth
in IoT applications Nguyen et al. (2021), cross-silo FL is characterized by high inter-client dataset
heterogeneity in healthcare and bank domains Kairouz et al. (2021); Wang et al. (2021). In this
paper, we focus mainly on cross-silo FL algorithms, which are usually efficient and scalable due to
low communication costs among very few clients at each step.

Differential privacy. Although private data is only kept at each client in FL, clients’ local updates
can still leak a lot of information about their private data, Shokri et al. (2017); Zhu et al. (2019).
This necessitates several tools for ensuring privacy for FL. Privacy-preserving variations of FL algo-
rithms, therefore, have been proposed in the literature, based on the concept of differential privacy
(DP) Dwork et al. (2014) to bind the amount of information leakage. To provide privacy guarantees
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of FL algorithms 1, we can apply DP mechanisms at clients, Terrail et al. (2022); Truex et al. (2020);
Sun et al. (2020); Kim et al. (2021); Geyer et al. (2017); Abadi et al. (2016). These client-level
DP mechanisms enhance privacy by clipping and then injecting noise into clients’ local updates
before they are communicated in each communication round of running DP federated algorithms .
These mechanisms prevent attackers from deducing original data even though they obtain perturbed
gradients.

Privacy-and-utility trade-off. While enhancing privacy, the DP mechanisms exacerbate the con-
vergence performance of DP federated algorithms. This motivates the study of a set of hyper-
parameters for DP federated algorithms that optimally balance privacy and convergence speed. For
instance, Wei et al. (2020) proves that DP-FedProx algorithms have the optimal number of communi-
cation rounds that guarantee the highest convergence performance given a privacy budget. Nonethe-
less, their algorithm requires solving the proximal updates exactly on each local client, and their
convergence and utility are guaranteed under very restrictive assumptions. In particular, the optimal
number of communication rounds exists only for the cases when (1) the client number and privacy
level are high enough, and (2) the Euclidean distance between the client’s local gradient and the
global gradient is sufficiently low (i.e., each client has the same unique minimizer).

Contributions. The goal of this paper is to show the optimal number of local steps and commu-
nication rounds for DP federated learning algorithms for a given privacy budget. Our contributions
are summarized as follows:
· Theoretical guarantees. We analyze the DP version of the ScaffNew algorithm under standard but
non-restrictive assumptions. Our analysis reveals there is an optimal number of local steps and com-
munication rounds each client should take for solving strongly convex problems. Unlike Wei et al.
(2020), we provide an explicit expression for the optimal number of total communication rounds
that achieves the best model performance at a fixed privacy budget.
· Practical performance. We verify our theory in empirical evaluations showing that the optimal
number of local steps and communication rounds exist for DP-FedAvg and DP-ScaffNew. In partic-
ular, these DP algorithms with optimally tuned parameters can achieve almost the same convergence
performance as their non-private algorithms.

2 DP FEDERATED LEARNING ALGORITHM

To show the optimal number of local steps and communication rounds for DP federated algorithms,
we consider the following federated minimization under privacy constraints:

minimize
x∈Rd

[
f(x) :=

1

N

N∑
i=1

fi(x)

]
, (1)

where N is the number of clients, fi(x) is the loss function of ith client based on its own local data,
and x ∈ Rd is a vector storing global model parameters.

Local differential privacy. To quantify information leakage, we use local differential privacy
(local DP) Dwork et al. (2014). Local DP relies on the notion of neighboring sets, where we say that
two federated datasets D and D′ are neighbors if they differ in only one client. Local DP aims to
protect the privacy of each client whose data is being used for learning the ML model by ensuring
that the obtained model does not reveal any sensitive information about them. A formal definition
follows.

Definition 1 (Dwork et al. (2014)). A randomized algorithm A : D → O with domain D and
range O is (ϵ, δ)-differentially private if for all neighboring federated datasets D,D′ ∈ D and for
all events S ⊂ O in the output space of A, we have Pr(A(D) ∈ S) ≤ eϵ · Pr(A(D′) ∈ S) + δ.

DP-FedAvg. DP-FedAvg McMahan et al. (2017) is the DP version of popular FedAvg for solving
equation 1 with formal privacy guarantees. In each communication round t = 0, . . . , T − 1, all the
N clients in parallel update the global model parameters xt based on their local progress with the

1For the detailed review of the DP training methods, we recommend (Ponomareva et al., 2023, Section 4).
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DP mask ∆
(i)
t . Here, all ∆(i)

t are communicated by the all-to-all communication primitive and are
defined by: ∆(i)

t = clip(x(i)t,τ − xt) +N (0, σ2I), where x(i)t,τ is the local model parameter of client
i from running τ stochastic gradient descent steps based on their local data and the current global
model parameters xt. This DP-masked local progress ∆

(i)
t guarantees local DP by two following

steps Abadi et al. (2016); Dwork et al. (2014): (1) all clients clip their local progress x(i)t,τ − xt with
the clipping threshold C > 0 which bounds the influence of each client on the global update, and (2)
each clipped progress is perturbed by independent Gaussian noise with zero mean and variance σ2

that depends on the DP parameters ϵ, δ and the number of communication rounds T . We provide the
full description of DP-FedAvg in Algorithm 1. However, since FedAvg reaches incorrect stationary
points Pathak & Wainwright (2020), we rather consider the DP version of ScaffNew Mishchenko
et al. (2022) that eliminates this issue by adding an extra drift/shift to the local gradient.

To this end, we consider DP-ScaffNew to prove that its optimal choices for local steps and commu-
nication rounds exist. DP-ScaffNew is the DP version of ScaffNew algorithms Mishchenko et al.
(2022), and its pseudocode is in Algorithm 2. Notice that DP-ScaffNew differs from DP-FedAvg
in two places. First, each client in DP-ScaffNew adds the extra correction term h

(i)
t (line 5, 8 and

13, Alg. 2) to remove the client drift caused by local stochastic gradient descent steps. Second, the
number of local steps for DP-ScaffNew is stochastic (line 6, Alg. 2).

To facilitate our analysis, we consider DP-ScaffNew for strongly convex optimization in equation 1.
We assume (A) that each local step is based on the full local gradient, i.e., gi(x

(i)
t ) = ∇fi(x(i)t ),

and (B) that the clipping operator is never active, i.e., the norm of the update is always less than
the clipping value C. Assumption (A) is not essential in learning overparameterized models such
as deep neural networks, consistent linear systems, or classification on linearly separable data. For
these models, the local stochastic gradient converges towards zero at the optimal solution Vaswani
et al. (2019), i.e. gi(x⋆) = 0. Assumption (B) is crucial as the clipping operator introduces non-
linearity into the updates, thus complicating the analysis. However, we show that as the algorithm
converges, the norms of the updates decrease, and clipping is only active for the first few rounds.
Thus, running the algorithm with or without clipping has minimal effect on the convergence, which
can be referred to in Observation 3 in our experimental evaluation section. Further, note that the
results for DP-ScaffNew also apply to DP-FedAvg to learn the overparameterized model. For this
model, each h(i)t converges towards a zero vector, and thus DP-ScaffNew becomes DP-FedAvg.

Now, we present privacy and utility (convergence with respect to a given local (ϵ, δ) DP noise)
guarantees for DP-ScaffNew in Algorithm 2 for strongly convex problems. All the derivations are
deferred to the appendix.

Lemma 1 (Local differential privacy for Algorithm 2, Theorem 1 Abadi et al. (2016)). There exist
constants u, v ∈ R+ so that given the expected number of communication rounds pT , Algorithm 2
is (ϵ, δ)-differentially private for any δ > 0, ϵ ≤ upT if σ2 ≥ vC

2pT ln(1/δ)
ϵ2 .

Using Lemma 1, we obtain the utility guarantee (convergence under the fixed local (ϵ, δ)-DP budget)
for Algorithm 2.

Theorem 1 (Utility for Algorithm 2). Consider the optimization problem in equation 1, where each
fi(x) is µ-strongly convex and L-smooth. Then, the output of Algorithm 2 with 0 < η ≤ 1/L,
0 < p ≤ 1, gi(x) = ∇fi(x), and C > ∥x̂(i)t+1 − xt∥ for i ∈ {1, . . . , N} and t ≥ 0 satisfies
(ϵ, δ)-differentially private and the following: for T ≥ 1,

E[ψT ] ≤ θTψ0 +
2p2

1− θ
· vC

2T ln(1/δ)

ϵ2
, (2)

where θ := max(1 − µη, 1 − p2), ψt := ∥xt − x⋆∥2 + η2

p2 ∥ht − h⋆∥2, xt :=[
(x1t )

⊤, . . . , (xNt )⊤
]⊤

, x⋆ :=
[
(x⋆)⊤, . . . , (x⋆)⊤

]⊤
, ht :=

[
(h1t )

⊤, . . . , (hNt )⊤
]⊤

, and h⋆ :=[
(∇f1(x⋆))⊤, . . . , (∇fN (x⋆))⊤

]⊤
.

Theorem 1 establishes a linear convergence of Algorithm 2 under standard assumptions on objective
functions in equation 1, i.e., the µ-strong convexity and L-smoothness of fi(x). The utility bound
in equation 2 consists of two terms. The first term implies the convergence rate, which depends on
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Figure 1: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 10.

the learning rate η, the strong convexity parameter µ, and the algorithmic parameters p, T . The sec-
ond term is the residual error due to the local (ϵ, δ)−DP noise variance. This error can be decreased
by lowering p, T at the price of worsening the optimization term (the first term). To balance the first
and second terms, Algorithm 2 requires careful tuning of the learning rate η, the probability p, and
the iterations T .

Optimal values of η, p, T for DP-ScaffNew. From equation 2, the fastest convergence rate in the
first term can be obtained by setting the largest step-size η⋆ = 1/L and p⋆ =

√
µ/L, Mishchenko

et al. (2022). Given η⋆ and p⋆, we can find T ⋆ by minimizing the convergence bound in equation 2
by solving:

d

dT
(θTψ0) +

2p2

1− θ
· vC

2 ln(1/δ)

ϵ2
= 0.

We hence obtain η⋆, p⋆, and T ⋆ that minimize the upper-bound in equation 2 in the next corollary.
Corollary 1. Consider Algorithm 2 under the same setting as Theorem 1. Choosing η⋆ = 1/L,
p⋆ =

√
µ/L, and

T ⋆ =
ln

(
ψ0ϵ

2 ln([1−µ/L]−1)
2vC2 ln(1/δ)

)
ln ([1− µ/L]−1)

minimizes the upper-bound for E[ψT ] in equation 2.

To the best of our knowledge, the only result showing the optimal value of local steps and commu-
nication rounds that balance privacy and convergence performance of DP federated algorithms is
Wei et al. (2020). However, our result is stronger than Wei et al. (2020) as we do not impose the
data heterogeneity assumption, the sufficiently large values of the client number N , and the privacy
protection level ϵ. Our result also provides the explicit expression for optimal hyper-parameters for
DP-ScaffNew η⋆, p⋆, T ⋆. Furthermore, from Corollary 1, we obtain the optimal expected number
of local steps and of communication rounds, which are 1/p⋆ and p⋆T ⋆, respectively.

3 EXPERIMENTAL EVALUATION

Finally, we empirically demonstrate that the optimal local steps and communication rounds exist for
DP federated algorithms, which achieve the balance between privacy and convergence performance.
We show this by evaluating DP-FedAvg and DP-ScaffNew, including their non-private versions,
for solving various learning tasks over five publicly available federated datasets. In particular, we
benchmark DP-FedAvg and DP-ScaffNew for learning neural network models to solve (A) mul-
ticlass classification tasks over CIFAR-10 Krizhevsky et al. (2009) and FEMNIST Caldas et al.
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Figure 2: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 10. All local steps are
fixed to the optimal privacy budget.

(2018), (B) binary classification tasks over Fed-IXI Terrail et al. (2022) and Messidor Decencière
et al. (2014), and (C) next word prediction tasks over Reddit Caldas et al. (2018). The summary of
datasets with their associated learning tasks and hyper-parameter settings is fully described in Ta-
ble 1. Furthermore, we implemented DP federated algorithms for solving learning tasks over these
datasets in PyTorch 2.0.1Paszke et al. (2019) and CUDA 11.8 and ran all the experiments on the
computing server with an NVIDIA A100 Tensor Core GPU (40 GB). We shared all source codes
for running DP federated algorithms in our experiments as supplementary materials. These source
codes will be made available later upon the acceptance of this paper.

Please refer to the appendix for details on training, including dataset configuration, model selection,
and hyperparameter tuning.

Evaluation and performance metrics. We collected the results from each experiment from 3
trials and reported the average and standard deviation to evaluate algorithms’ performance.

We measure the following metrics for each experiment. While we collect accuracy as our evaluation
metric for classification and next-word prediction tasks, we use Dice coefficient to evaluate the
performance for segmentation tasks. Given that the value of these metrics falls within the range
[0, 1] and a higher value signifies better performance, we define the test error rate as test error rate =
1− metric, where metric can be accuracy or dice coefficient.

Moreover, to analyze the correlation within our data, we resort to the R2 test. In essence, R2 is a
statistical measure representing the percentage of the data’s variance that our model accounts for.
The R2 values at 0 and 1 imply, respectively, no and perfect explanatory power of the model.

3.1 RESULTS

We now discuss the results of DP-FedAvg and DP-ScaffNew over benchmark datasets under differ-
ent (ϵ, δ)-DP noise and clipping thresholds. We provide the following observations.

Observation 1. The non-trivial optimal number of local steps exist for both DP-FedAvg and DP-
ScaffNew.

We measure the test error rate of DP-FedAvg and DP-ScaffNew with respect to the number of local
steps, given the fixed total iteration number and other hyper-parameters. Figure 1 shows that there is
an optimal number of local steps that enabless DP federated algorithms to achieve the lowest test er-
ror rate. These DP federated algorithms with optimally tuned local steps achieve performance almost
comparable to their non-private algorithms, especially for tasks over most benchmarked datasets
(i.e., FEMNIST and Reddit). Also, notice that the optimal local step exists even for DP-ScaffNew
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Figure 3: The FEMNIST result. The first line is DP-FedAvg, and the second line is DP-ScaffNew.

without the DP noise (when ϵ → +∞). Our results align with theoretical findings for the non-DP
version of DP-ScaffNew Mishchenko et al. (2022), and also with Corollary 1 (which implies that
1/p⋆ represents the optimal number of expected local steps).

Observation 2. There exists a non-trivial optimal number of iterations for DP-FedAvg and DP-
ScaffNew.

Figure 2 shows the optimal number of total iterations T ⋆ exists for DP federated algorithms to
achieve the lowest test error rate, thus validating our findings of Corollary 1. We note that as the total
iteration number T grows, DP-ScaffNew attains poor performance on both the test and train dataset
even in the absence of noise and the clipping operator (black in Figure 2). This phenomenon is not
present in DP-FedAvg. We hypothesize that the issue with DP-ScaffNew arises due to its variance
reduction approach, which employs SVRG-like control variates. Although this type of variance
reduction has demonstrated remarkable theoretical and practical success, it may falter when applied
to the hard non-convex optimization problems frequently encountered during the training of modern
deep neural networks, as observed by Defazio & Bottou (2019).

Observation 3. The optimal number of local steps increases and the optimal total iterations num-
ber decreases as the privacy degree increases.

We observe that as the privacy degree increases (ϵ becomes small), the optimal number of local steps
increases and the optimal total iteration number decreases, as shown in Figure 1 and 2, respectively.
Regarding the number of iterations T , in Corollary 1 we prove this corresponding change with ϵ.
However, with respect to the phenomenon of local steps, there exists a discrepancy with the theory, as
the theory shows that it only relates to the µ and L. This might be attributed to inherent complexities
in the model.

Observation 4. The optimal local steps depend on the clipping threshold, but it does not signifi-
cantly impact performance.

We evaluate the impact of clipping thresholds (at 10, 50, 100) on the local steps for DP federated
algorithms to train over FEMNIST in Figure 3. Additional results over other datasets can be found
in the appendix. As the clipping threshold increases, the optimal local step number tends to increase
but does not impact the test error rate substantially. This is because the increase in C leads to the
utility bound equation 2, which becomes dominated by the second term. To minimize this utility
bound, p and T must become smaller. This implies the larger expected number of local steps 1/p.

We further investigate the clipping effect for DP-FedAvg and DP-ScaffNew. We perform this by
computing the intra-group mean and variance that are evaluated for four different guarantees for
each dataset (where we collect the test error rate against varied local steps), as we show in Figure 4.
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After the R2 test, we find that the optimal local steps linearly depend on the clipping threshold
for DP-ScaffNew, and on the square root of the clipping threshold for DP-FedAvg. Therefore, the
benefit of local steps, given the clipping threshold, is more significant for DP-ScaffNew than DP-
FedAvg. This may be because DP-FedAvg, in contrast to DP-ScaffNew satisfying equation 2, has
an additional error term due to data heterogeneity. Also, this observation on the limited benefit of
local steps for DP-FedAvg aligns with that for FedAvg by Wang & Joshi (2019).
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Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning, 2019.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
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Jakub Konečný, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
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A NOTATIONS

For x, y ∈ Rd, ⟨x, y⟩ := x⊤y is the inner product and ∥x∥ =
√

⟨x, x⟩ is the ℓ2-norm. A continu-
ously differentiable function f : Rd → R is µ-strongly convex if there exists a positive constant µ
such that for x, y ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2,

and has L-Lipschitz continuous gradient if for all x, y ∈ Rd

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥.

Finally, Pr(C) is the probability of event C happening.

B RELATED WORK

Now, we review existing literature closely related to our work in federated learning and differential
privacy.

Federated learning. Two classical algorithms in federated learning include (1) FedAvg, which
updates its ML model by averaging local stochastic gradient updates McMahan et al. (2017), and
(2) FedProx, which computes its ML model by aggregating local proximal updates Li et al. (2020);
Yuan & Li (2022). The convergence of both algorithms has been extensively studied under the
data heterogeneity assumption. These classical algorithms suffer from slow convergence due to the
small step-size range resulting from the high level of data heterogeneity among the clients. Several
other federated algorithms have been developed to enhance the training performance of FedAvg and
FedProx. For example, Proxskip Mishchenko et al. (2022), SCAFFOLD Karimireddy et al. (2020),
FedSplit Pathak & Wainwright (2020) and FedPD Zhang et al. (2021) leverage proximal updates,
variance reduction, operator-splitting schemes, and ADMM techniques, respectively.

Differential privacy. Differential privacy (DP) Dwork et al. (2014) is a standard technique for
characterizing the amount of information leakage. A fundamental mechanism to design DP algo-
rithms is the Gaussian mechanism Dwork et al. (2014), which adds the Gaussian noise to the output
before it is released. The variance of a DP noise is adjusted according to the sensitivity function,
which is upper-bounded by the clipping threshold and the Lipschitz continuity of objective func-
tions. The DP guarantee of running DP algorithms for K steps can be obtained by the (advanced)
composition theorem Dwork et al. (2014). Recent tools such as Rényi Differential Privacy Mironov
(2017) and the moments accountant Abadi et al. (2016) allow to obtain tighter privacy bounds for
the Gaussian mechanism under composition. In the context of FL, many works attempted to de-
velop DP federated learning algorithms with strong client-level privacy and utility guarantees, e.g.,
DP-FedAvg Zhao et al. (2020); McMahan et al. (2017), DP-FedProx Wei et al. (2020), and DP-
SCAFFOLD Noble et al. (2022).

C BENCHMARK DATA PRE-PROCESSING

Datasets. CIFAR-10, a subset of FEMNIST, Fed-IXI, and Messidor, consists of, respectively,
60000 32 × 32 images with 10 objects, 40263 128 × 128 images with 62 classes (10 digits, 26
lowercase, 26 uppercase), 566 T1-weighted brain MR images with binary classes (brain tissue or
no), and 3220 224 × 224 eye fundus images with binary labels (diabetic retinopathy or no). On
the other hand, Reddit comprised 56,587,343 comments on Reddit in December 2017. While we
directly used CIFAR-10 for training the NN model, the rest of the datasets were pre-processed be-
fore the training. All pre-processing details for each data set are in the appendix. Also, we split
the CIFAR-10, FEMNIST, and Reddit datasets equally at random among 5, 6, and 3 clients, respec-
tively, while the raw Fed-IXI and Messidor datasets are split by 3 users (which represent hospitals)
by default.
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Training. We used a two-layer convolutional neural network (CNN) for the multiclass classifica-
tion over CIFAR10 and FEMNIST. For the brain mask segmentation and binary classification, we
employed a 3D-Unet model over Fed-IXI and a VGG-11 model over Messidor. The 3D-Unet model
has the same model parameter tunings and baseline as that in Terrail et al. (2022), but we use group
normalization instead of batch normalization to prevent the leakage of data statistics. Finally, a
2-layer long short-term memory (LTSM) network with an embedding and hidden size of 256 is em-
ployed to predict the next token in a sequence with a maximum length of 10 tokens from the Reddit
data, which is tokenized according to LEAF Caldas et al. (2018). Moreover, the initial weights of
these NN models were randomly generated by default in PyTorch.

Throughout the experiments, we pre-processed FEMNIST, Fed-IXI, Messidor, and Reddit before
training.

Hyper-parameter tunings. We used SGD for every client in the local update steps for DP-FedAvg
and DP-ScaffNew. The learning rate for the local update is fixed at 0.05 for the Reddit dataset
and at 0.01 for the rest of the datasets. The number of local steps for running the algorithms is
selected from the set of all divisors of total iterations. Thus, the number of communication rounds is
always equal to the quotients of the iteration and local step. The total iterations for each dataset are
detailed in Table. 1. For every dataset, we test 4 distinct privacy levels represented by (ϵ, δ) values
of (3.3, 2, 1, 0.5) paired with 10−5, along with 3 different clip thresholds. These parameter settings
are consistent with those used in DP-FedAvg and DP-ScaffNew. Furthermore, Table. 1 provides the
train and test sizes for each client, as well as the batch size during training.

FEMNIST Due to the huge size of the FEMNIST dataset, we randomly sample only 5% of the
samples before they are split equally among the clients.

Fed-IXI For the Fed-IXI dataset, we follow the same pre-processing steps according to the
FLamby software suite Terrail et al. (2022). All scans are geometrically aligned to the MNI template
by the NtiftyReg Modat et al. (2014) and re-oriented using ITK to a common space. Finally, based
on the whole image histogram, we normalized the intensities and resized them from 83 × 44 × 55
to 48× 60× 48.

Messidor For the Messidor dataset, the following pre-processing steps were employed. Initially,
black edges were cropped based on a pixel threshold value of 1. Subsequently, every image was
resized to a standard dimension of 224 × 224. Data augmentation techniques were also integrated,
including random horizontal and vertical flips, alongside a restricted random rotation of 10 degrees.
We also pre-process its class labels for the binary classification task, according to steps explained by
Yan et al. (2023).

Reddit For the Reddit dataset, each text sample is tokenized by using the table provided by
LEAF Caldas et al. (2018).

Clients Train S. Test S. B. Size Iters Clip Task
CIFAR10 5 10000 ± 0 2000 ± 0 64 10K 10,50,100 Classification (10)
FEMNIST 6 6129 ± 1915 684 ± 213 16 10K 10,50,100 Classification (63)
Reddit 3 28750 ± 0 11807 ± 0 64 10K 10,50,100 Language Model
Fed-IXI 3 151 ± 95 38 ± 24 1 400 10,20,50 Brain Mask Segmentation
Messidor 3 300 ± 0 100 ± 0 4 500 10,20,50 Classification (2)

Table 1: Summary of datasets used in the experiments with the indication of client sample variability
(± standard deviation).
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D ALGORITHMS

Algorithm 1 DP-FedAvg
1: Input: Initial point x0 ∈ Rd, the number of communication rounds T ≥ 1, the number of local

steps τ ≥ 1, step-size η > 0, clipping threshold C > 0, DP noise variance σ2

2: for t = 0, 1, . . . , T − 1 do
3: for each client i ∈ {1, 2, . . . , N} in parallel do
4: Set x(i)t,0 = xt
5: for j = 0, . . . , τ − 1 do
6: Compute stochastic gradient gi(x

(i)
t,j)

7: Update x(i)t,j+1 = x
(i)
t,j − ηgi(x

(i)
t,j)

8: end for
9: Compute clip(x

(i)
t,τ − xt) where clip(x) := min

(
1, C

∥x∥

)
x

10: Send ∆
(i)
t = clip(x

(i)
t,τ − xt) +N (0, σ2I)

11: end for
12: Global averaging: xt+1 = xt +

1
N

∑N
i=1 ∆

(i)
t .

13: end for
14: return xT

Algorithm 2 DP-ScaffNew

1: Input: Initial points x0 = x
(1)
0 = . . . = x

(N)
0 ∈ Rd, initial control variates h(1)0 , . . . , h

(N)
0 ∈ Rd

such that
∑N
i=1 h

(i)
0 = 0, number of iterations T ≥ 1, probability p ∈ (0, 1], step-size η > 0,

clipping threshold C > 0, DP noise variance σ2

2: for t = 0, 1, . . . , T − 1 do
3: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p
4: for each client i ∈ {1, 2, . . . , N} in parallel do
5: Compute stochastic gradient gi(x

(i)
t )

6: Update x̂(i)t+1 = x
(i)
t − η[gi(x

(i)
t )− h

(i)
t ]

7: if θt = 1 then
8: Send ∆

(i)
t = clip(x̂

(i)
t+1 − xt) +N (0, σ2I), where clip(x) := min

(
1, C

∥x∥

)
x

9: Global averaging: xt+1 = x
(i)
t+1 = xt +

1
N

∑N
i=1 ∆

(i)
t

10: else
11: Skip Communication: x(i)t+1 = x̂

(i)
t+1, xt+1 = xt

12: end if
13: Compute h(i)t+1 = h

(i)
t + p

η (x
(i)
t+1 − x̂

(i)
t+1)

14: end for
15: end for

E PROOFS

E.1 PROOF OF THEOREM 1

Similarly to (Mishchenko et al., 2022), we first proceed by reformulating equation 1 to

min
x∈Rnd

1

N

N∑
i=1

fi(xi) + ϕ(x),

where x = [x1, x2, . . . , xN ]
⊤ and

ϕ(x) =

{
0 if x1 = x2 = . . . = xN ,

∞ otherwise.

12



Workshop paper at PRIVATE ML @ ICLR 2024

Note that this formulation is equivalent to our original problem equation 1 as it has to be the case
ϕ(x) = 0 for the optimal solution. Furthermore, note that the gradient step with respect to the first
term corresponds to the local step across all the clients, and the proximal step with respect to the
second term is equivalent to the averaging of local variables xi’s that corresponds to the communi-
cation step. Therefore, this reformulation helps us to better facilitate the theoretical analysis in the
federated setup.

In order to solve this equivalent reformulation, we first define useful lifts to Rnd that help us to
simplify the analysis. To get better intuition why these lifts might be useful, note that if x⋆ is
the optimal solution of equation 1 then x⋆ :=

[
(x⋆)⊤, . . . , (x⋆)⊤

]⊤
is the optimal solution of our

reformulation.

First, we define

xt :=
[
(x

(1)
t )⊤, . . . , (x

(N)
t )⊤

]⊤
,

x̂t :=
[
(x̂

(1)
t )⊤, . . . , (x̂

(N)
t )⊤

]⊤
,

x⋆ :=
[
(x⋆)⊤, . . . , (x⋆)⊤

]⊤
,

gt :=
[
(∇f1(x(1)t ))⊤, . . . , (∇f(x(N)

t ))⊤
]⊤

,

ht :=
[
(h

(1)
t )⊤, . . . , (h

(N)
t )⊤

]⊤
,

h⋆ :=
[
(∇f1(x⋆))⊤, . . . , (∇fN (x⋆))⊤

]⊤
.

Also, let A(yt) := ȳt, where ȳt :=
[
(ȳt)

⊤, . . . , (ȳt)
⊤]⊤ and ȳt := 1

N

∑N
i=1 y

(i)
t . By setting

gi(x) = ∇fi(x), and C > ∥x̂(i)t+1 − xt∥ for i ∈ {1, . . . , N} and t ≥ 0, and by following proof
arguments in Mishchenko et al. (2022), Algorithm 2 can be expressed equivalently as:

xt+1 :=

{
A

(
x̂t+1 − η

pht + et

)
with probability p

x̂t+1 otherwise

where x̂t+1 := xt − η(gt − ht), ht+1 := ht+1 +
p
η (xt+1 − x̂t+1) and et ∼ N (0, σ2IN ·d). Define

ψt := ∥xt − x⋆∥2 + (η2/p2)∥ht − h⋆∥2. Then,

E[ψt+1] = pE[T1 + T2] + (1− p)E

[
∥x̂t+1 − x⋆∥2 + η2

p2
∥ht − h⋆∥2

]
, (3)

where T2 :=
∥∥∥ηp (ht − h⋆) + (A(x̂t+1 − η

pht + et)− x̂t+1)
∥∥∥2 and

T1 := ∥A(x̂t+1 − η
pht+ et)−x⋆∥2. Next, we find the upper bound for T1 and T2. Since A(x⋆) =

A(x⋆ − η
ph

⋆), et is the independent noise, and ⟨A(y),y⟩ = ∥A(y)∥2,

E[T1 + T2] ≤E ∥A(x)−A(y)∥2 +E ∥[A(x)− x]− [A(y)− y]∥2 + σ2

=E∥A(ỹt)∥2 +E∥A(ỹt)− ỹt∥2 + σ2

=E∥ỹt∥2 + σ2,

where x := x̂t+1 − η
pht + et, y := x⋆ − η

ph
⋆ and ỹt := [x̂t+1 − x⋆] − η

p [ht − h⋆] + et. By the
fact that et is the independent noise, E[et] = 0 and E∥et∥2 ≤ σ2,

E[T1 + T2] ≤ E∥yt∥2 + 2σ2,

where yt := [x̂t+1 − x⋆] − η
p [ht − h⋆]. Plugging the upper-bound for E[T1 + T2] into equation 3

thus yields

E[ψt+1] ≤ pE∥yt∥2 + (1− p)E

[
∥x̂t+1 − x⋆∥2 + η2

p2
∥ht − h⋆∥2

]
+ 2pσ2.
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Next, by the fact that ∥x− y∥2 = ∥x∥2− 2⟨x, y⟩+ ∥y∥2 with x := x̂t+1−x⋆ and y := η
p [ht−h⋆],

and that x̂t+1 := xt+1 − η(gt − ht),

E[ψt+1] ≤E

[
∥x̂t+1 − x⋆∥2 + η2

p2
∥ht − h⋆∥2

]
− 2ηE⟨x̂t+1 − x⋆,ht − h⋆⟩+ 2pσ2

=E∥x̂t+1 − x⋆ − η[ht − h⋆]∥2 + (1− p2)
η2

p2
E∥ht − h⋆∥2 + 2pσ2

=E∥xt − x⋆ − η[gt − h⋆]∥2 + (1− p2)
η2

p2
E∥ht − h⋆∥2 + 2pσ2.

If each fi(x) is µ-strongly convex and L-smooth, then for η ≤ 1/L

E[ψt+1] ≤(1− µη)E∥xt − x⋆∥2 + (1− p2)
η2

p2
E∥ht − h⋆∥2 + 2pσ2

≤ρE[ψt] + 2pσ2.

where ρ := max(1− µη, 1− p2).

If p ∈ (0, 1], then applying this inequality recursively over t = 0, 1, . . . , T − 1 yields

E[ψT ] ≤ ρTψ0 +
2p

1− ρ
σ2.

Finally, by letting the privacy variance σ2 = pvC
2T ln(1/δ)

ϵ2 for ϵ ≤ uT and δ,B > 0 according to
Lemma 1, we complete the proof.

E.2 PROOF OF COROLLARY 1

If η = 1/L, then max(1− µη, 1− p2) = 1−min(µ/L, p2) := 1− θ. From Theorem 1 we have

E[ψT ] ≤ (1− θ)Tψ0 +
2p2

θ
· vC

2T ln(1/δ)

ϵ2
.

Note that (1 − θ)T ≤ (1 − µ/L)T , while p2/θ = max
(
p2L/µ, 1

)
≥ 1. We hence minimize the

convergence bound by letting p⋆ = argminp
p2

θ =
√

µ
L , which yields

E[ψT ] ≤
(
1− µ

L

)T
ψ0 +

2vC2T ln(1/δ)

ϵ2
.

Next, we find the optimal number of iterations T ⋆ such that

T ⋆ = argminT

(
1− µ

L

)T
ψ0 +

2vC2T ln(1/δ)

ϵ2
.

Since x = exp (ln(x)),

T ⋆ =argminT B(T )

:= exp
(
T ln

(
1− µ

L

))
ψ0 +

2vC2T ln(1/δ)

ϵ2
.

Therefore,
d

dT
B(T ) =

(
1− µ

L

)T
ψ0 · ln

(
1− µ

L

)
+

2vC2 ln(1/δ)

ϵ2
, and

d2

dT 2
B(T ) =

(
1− µ

L

)T
ψ0 · ln

(
1− µ

L

)2

.

Since d2

dT 2B(T ) > 0 for all T ≥ 1, T ⋆ = argminTB(T ) can be found by setting d
dT B(T ) = 0

which yields (
1− µ

L

)T⋆

ψ0 · ln
(
1− µ

L

)
+

2vC2 ln(1/δ)

ϵ2
= 0.

Finally, by using the fact that ln(1− µ/L) = − ln([1− µ/L]−1) and by re-arranging the terms, we
complete the proof.
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Figure 4: Intra-group optimal local values for two dataset groups: CIFAR10, FEMNIST, and Reddit
(Group 1) versus Fed-IXI and Messidor (Group 2).

F RESULT

G ADDITIONAL RESULTS

We use the same problem and hyper-parameter settings as Table 1. In this section, we present
different clip threshold results and more dataset results.
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Figure 5: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 50.

G.1 LOCAL CLIENT UPDATE NORM

We find that the correct shifts ensure that not only does the global update converge to zero, but also
the local updates diminish. Consequently, the clipping becomes active only in the initial rounds. For
overparametrized models, where the optimal shifts are zeros, even FedAvg exhibits this property.

Specifically, we observed that for individual clients—not on average—it typically takes less than
5 communication rounds for the norm of the updates to fall below the clipping threshold. This
phenomenon is concretely illustrated in Figure 10 for the first client in the Fed-IXI dataset, where
we track the gradient norms across individual clients.
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Figure 6: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 100.
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Figure 7: First line: DP-FedAvg, Second line: DP-ScaffNew. Fed-IXI results with fixed iteration
times.
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Figure 8: First line: DP-FedAvg, Second line: DP-ScaffNew. Messidor result with fixed iteration
times.
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Figure 9: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 10. All local step fix
to the optimal of its privacy budget.

17



Workshop paper at PRIVATE ML @ ICLR 2024

Additionally, we compare loss curves with and without gradient clipping. These results suggest that,
particularly in the minimal clipping threshold settings (i.e., the most challenging) of our study, the
impact of clipping on the updates of individual clients is minimal.
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Figure 10: Left. Client 1’s update tensor norm. Right. Loss curve for Client 1 with and without clip
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Figure 11: Optimal number of local steps and iteration times of Mushroom dataset

H LOGISTIC REGRESSION

We use strongly convex logistic regression with closed-formed formulas for strong convexity
and smoothness parameters to mimic our theoretical setup. We experiment with the mushroom
dataset (Chang & Lin, 2011).

Firstly, we showcase that our theoretical predictions for the optimal number of local steps align with
what the theory suggests; see Figure 11. Furthermore, we can see that the optimal value of the local
step is independent of the ϵ as predicted by our theory. Finally, we compare the prediction of the
optimal number of steps T ⋆ with the experiments. As we display in Figure 11, our theory is able to
predict this value with high precision.
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