

DRBench: A REALISTIC BENCHMARK FOR ENTERPRISE DEEP RESEARCH

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce *DRBench*, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior benchmarks that focus on simple questions or web-only queries, *DRBench* evaluates agents on multi-step queries (for example, “What changes should we make to our product roadmap to ensure compliance with this standard?”) that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 100 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of *DRBench* by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research¹.

1 INTRODUCTION

Organizations today face a strong need to find useful insights in a world full of overwhelming information. Valuable insights are often hidden in noisy data, which can contain many distracting or irrelevant details that obscure the insights that really matter. This challenge is present in enterprise settings, where data is spread across many applications and stored in different formats (e.g., PDFs, spreadsheets, emails, and internal tools) making extracting relevant information difficult. To uncover these hidden, valuable insights, one must conduct what is known as **deep research**. This task involves asking high-level strategic questions (e.g., “What changes should we make to our roadmap to remain compliant?”), planning sub-questions, retrieving and evaluating relevant materials, and producing a clear, actionable summary grounded in data sources (Zheng et al., 2025; Xu & Peng, 2025; Du et al., 2025). These tasks are typically performed by domain experts using a mix of search engines, communication platforms, and business applications in iterative, high-effort workflows (Mialon et al., 2024), which unfortunately require a significant amount of human effort.

One promising solution to reducing this human effort is agent-based deep research, which uses autonomous software agents to search, extract, and synthesize information across fragmented sources into an insightful report. Recently, LLM-based agents have emerged as promising assistants for deep research. Systems such as *Local Deep Researcher* (LearningCircuit, 2025), *Deep-Searcher* (Tech, 2024), and *DeepResearcher* (Zheng et al., 2025) propose modular agent pipelines that combine retrieval, reasoning, and summarization over documents and web sources. Architectures like OpenHands (All-HandsAI, 2024), OpenManus (FoundationAgents, 2024), and smolagents (HuggingFace, 2024) extend these capabilities to include collaboration, multi-modal search, and complex tool use in enterprise workflows (Xu & Peng, 2025). Despite these advances, evaluating such systems remains an open challenge.

Most existing benchmarks evaluate narrow aspects such as report factuality (Coelho et al., 2025), web-only synthesis (Bosse et al., 2025), or tabular analytics (Sahu et al., 2025), but they do not assess whether agents identify the most salient insights, remain faithful to retrieved evidence, or adapt to enterprise contexts. To address these limitations, we introduce *DRBench*, a benchmark designed to evaluate LLM agents on open-ended, multi-step and long-horizon deep research tasks grounded in realistic enterprise contexts.

¹Codes and data are available in the supplementary materials.

Figure 1: **DRBench pipeline.** ① The *Task Context* defines the deep research question grounded by the company and persona given to the agent. ② *Task Data*, including both distractor and injected groundtruth insights in different formats (PDFs, DOCX, PPTX, XLSX, chats, etc.) are loaded into the enterprise environment’s applications. ③ The *DRBenchAgent* accesses both public web sources and local enterprise data to extract relevant insights for the research question. ④ It produces a structured research report, which is ⑤ evaluated for *Insight Recall* (detecting injected groundtruth insights), *Factuality* (verifying claims are correctly cited), and *Report Quality*.

As Fig. 1 illustrates, *DRBench* includes a suite of queries grounded in user personas and organizational scenarios, requiring agents to search across real applications such as cloud file storage (Nextcloud), enterprise chat (Mattermost), and user file systems, and to reason over formats like spreadsheets, slide decks, and PDFs. Our evaluation framework introduces three scoring axes using LLM-as-a-judge methods inspired by G-Eval (Liu et al., 2023): (1) *Insight Recall and Distractor Avoidance*, which together evaluate whether the agent surfaces the most salient injected insights while avoiding distractor content; (2) *Factuality*, which uses a TREC-RAG pipeline (Wang et al., 2024) to verify whether claims are correctly grounded in their cited sources; and (3) *Report Quality*, which measures the coherence, completeness, and overall readability of the synthesized report. We conduct a comparative study of agent architectures inspired by recent work (Zheng et al., 2025; Xu & Peng, 2025; LearningCircuit, 2025; Zheng et al., 2025), analyzing how well they perform on *DRBench* across planning, insight identification, and grounding on facts. Our results show that while agents are competent at document retrieval and summarization, they often miss high-value insights, cite irrelevant evidence, or produce incoherent explanations, highlighting the limitations of current architectures and the need for more targeted innovation.

Our contributions are as follows: (1) We introduce *DRBench*, the first benchmark for evaluating LLM agents on complex enterprise deep research tasks combining public web sources with private organizational data; (2) We provide a suite of 100 high-level research tasks with 1093 sub-questions spanning 10 domains, including Sales, Cybersecurity, and Compliance, each grounded in realistic company contexts and personas; (3) We design a reproducible enterprise environment integrating realistic enterprise applications like chat, cloud storage, emails, and documents; (4) We propose a scalable pipeline that generates realistic research questions and insights by combining web facts with synthesized internal data; and (5) We develop an evaluation framework that scores agent reports on insight recall and distractor avoidance, factuality, and overall report quality.

2 RELATED WORK

Deep Research Benchmarks. With the growing capabilities of LLMs in research and reasoning tasks, several benchmarks have emerged, including Deep Research Bench (Bosse et al., 2025), DeepResearch Bench (Du et al., 2025), DeepResearchGym (Coelho et al., 2025), ResearcherBench (Xu et al., 2025b), Mind2Web2 (Gou et al., 2025), and GAIA (Mialon et al., 2024). As summarized in Table 1, these efforts primarily evaluate web-only retrieval or synthesis in controlled settings. A recent benchmark by Choubey et al. (2025) further emphasizes closed-form fact retrieval within engineering artifacts. In contrast, *DRBench* is the first to combine web retrieval with local enterprise data, requiring multi-step deep research grounded in persona- and domain-specific contexts.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Comparison of deep research benchmarks (top) and AI agent benchmarks with a computer environment (middle). Columns report dataset size, whether both public and local data are required, the provided environment type, task domains, task description, and evaluation method. Unlike prior work, *DRBench* combines public web retrieval with local enterprise data in realistic enterprise applications and evaluates both insight recall, distractor avoidance and report quality. **Task Description:** types of tasks covered by the benchmark: **WR** for Web Research, **DR** for Deep Research with both public and local data, **CU** for Computer Use and/or Mobile Use. *DRBench* has 1093 total # **groundtruth** insights that need to be extracted to address the 15 DR Questions. Example groundtruth insights can be found at Table 9 in Appendix A.

Benchmark	# groundtruth	Public & Local Data	Provides Env	Task Domain	Task Description	Main Evaluation Method
Deep Research Bench (Bosse et al., 2025)	89	✗	✓	Generic	WR & CU	Answer Accuracy
DeepResearch Bench (Du et al., 2025)	100	✗	✗	Generic	WR	Insight Recall
DeepResearchGym (Coelho et al., 2025)	1,000	✗	✗	Generic	WR	Document Retrieval
ResearcherBench (Xu et al., 2025b)	65	✗	✗	AI	WR	Insight Recall, Factuality
LiveDRBench (Java et al., 2025)	100	✗	✗	Generic	WR & CU	Insight Precision, Recall
BrowseComp-Plus (Chen et al., 2025)	1,005	✗	✗	Generic	WR	Answer Accuracy, URL Recall
Mind2Web 2 (Gou et al., 2025)	130	✗	✗	Generic	WR	Partial Completion
GAIA (Mialon et al., 2024)	466	✗	✗	Generic	WR	Answer Accuracy
GAIA2 (Andrews et al., 2025)	963	✗	✓	Generic	CU	Action Accuracy
TheAgentCompany (Xu et al., 2025a)	175	✗	✓	Enterprise	CU	Task Completion, Efficiency
OSWorld (Xie et al., 2024)	369	✗	✓	Generic	CU	Task Completion
DRBench	1093 (100 tasks)	✓	✓	Enterprise	DR	Insight Recall

Enterprise Environments. Realistic enterprise environments have become an important testbed for evaluating agents in complex multi-application workflows. *CRM Arena-Pro* (Huang et al., 2025a;b) targets sales and CPQ pipelines through persona-grounded dialogues, but is limited to conversational sales workflows. *OSWorld* (Xie et al., 2024) and *OSWorld-Gold* (Abhyankar et al., 2025) benchmark agents in general-purpose desktop environments, using applications such as Microsoft Word and Excel, yet their focus remains on computer task execution rather than enterprise deep research. *TheAgentCompany* (Xu et al., 2025a) evaluates collaboration among autonomous agents for programming, browsing, and communication, though the tasks are computer-use focused and do not assess deep research capabilities. *WorkArena* (Drouin et al., 2024; Boisvert et al., 2024) offers a realistic enterprise environment with knowledge work tasks for web agents, though it does not support evaluation of deep research capabilities. In contrast, *DRBench* offers a domain-grounded enterprise environment with applications that would realistically be encountered in organizations. Tasks are tied to concrete personas and roles, requiring agents to search, reason, and synthesize insights across diverse formats, including spreadsheets, PDFs, wikis, emails, and presentations, reflecting realistic enterprise deep research.

Deep Research Agents. A growing line of work explores agents for multi-step search and synthesis across diverse information sources. LangChain’s *Local Deep Researcher* (LearningCircuit, 2025) and Zilliz’s *Deep-Searcher* provide modular pipelines for iterative querying and summarization, while *DeepResearcher* (Zheng et al., 2025) uses RL to enable planning, cross-validation, and self-reflection. Commercial systems such as *Gemini Deep Research* and *Manus.ai* synthesize web-based reports with citations, and open-source frameworks like OpenHands (All-HandsAI, 2024), OpenManus (FoundationAgents, 2024), and smolagents (HuggingFace, 2024) offer alternative architectures. Recent work also introduces task-agnostic frameworks for long-form synthesis and evaluation paradigms such as *Mind2Web 2* (Gou et al., 2025), which treat agents as judges of browsing trajectories. Building on these efforts, *DRBench* analyzes their strengths and limitations in enterprise contexts, showing that current agents still fall short in consistently extracting and grounding critical insights within complex, heterogeneous environments.

3 DRBench - AN ENTERPRISE DEEP RESEARCH BENCHMARK

To evaluate agents on complex, open-ended enterprise deep research tasks, we designed *DRBench* with three guiding principles: it requires agents to integrate both public web data and local enterprise documents, it involves both web search and enterprise application use, and it is hosted in an interactive and reproducible enterprise environment. These principles ensure that the benchmark reflects realistic enterprise workflows and provides a controlled yet challenging setting for research agents.

Figure 2: *DRBench* Task Generation Pipeline. The pipeline comprises five main stages during each LLMs generate candidate data such as company context, insights, and research questions, while human annotators verify quality and select the final version. Stages S1–S5 denote the five generation steps.

The Enterprise Search Environment. A unique aspect of *DRBench* is its realistic enterprise search environment. When addressing DR Questions like "What changes should we make to our product roadmap to ensure compliance with this standard?", the DR agents would need to navigate such environment and search across both public and private data sources to uncover relevant insights.

Public insights include information available on the open web or otherwise accessible to general users. Local insights, on the other hand, come from an enterprise's private systems. These insights are embedded within a vast search space that spans multiple data types (emails, slide decks, chat conversations, and Excel sheets) which reflect the complexity of real enterprise data ecosystems. This environment is populated with data from different applications, accessible to both web-based agents and API-calling agents. For example, an app like Mattermost can be used to host chat conversations (see Appendix E for examples of the applications). The goal of the DR Agent is to effectively navigate these public and private data sources to address complex, high-level DR questions. For the environment implementation details, please see Appendix D.

Task Definition. Each task is associated with a deep research question Q_i and Task Context C which includes company information and the user persona. Each task also has a corresponding set of groundtruth insights I consisting of relevant private insights I_l (we also refer to this as internal insights), distractor private insights I_d , and public insights I_p . Each private insight, whether relevant or a distractor, is embedded into a file f_i which could take the form of a PDF, Excel sheet, slide deck, chat log, and so on. The agent's task is to generate a report by extracting the public insights I_p from accessible sources such as the web, while also extracting the private insights I_l from the files hosted in the enterprise environment. At the same time, the agent must avoid extracting the distractor insights I_d , which are not relevant to the DR question.

DRBench provides 100 realistic deep research tasks explicitly framed around enterprise environments. Each task is associated with public insights extracted from quality, time-invariant URLs and local insights embedded within synthetic enterprise data, typically spanning 2–4 applications and 3–16 supporting files (see Appendix B). Tasks are distributed across 10 enterprise domains (such as Sales and Compliance – the full list is in Appendix B) and divided between easy, medium, and hard categories that indicates the difficulty of addressing the DR Question. Finally, *DRBench* is fully self-hosted, with dated URLs and reproducible evaluation scripts to ensure stability and fair comparison across agent methods.

3.1 DATA GENERATION

To create realistic and reproducible deep research tasks, *DRBench* employs a five-stage pipeline (Figure 2) that combines large-scale LLM generation with human-in-the-loop verification. The pipeline helps us generate candidate company contexts, personas, questions, insights, and supporting files using LLM Models such as Llama-3.1-8B-Instruct, Llama-3.1-405B (Dubey et al., 2024). Three human annotators then validate the generated content to ensure that they are realistic and plausible.

The pipeline has been used to generate 100 tasks with 1093 groundtruth insights across 10 enterprise domains, each grounded in realistic personas and company profiles. We control the difficulty of each task by setting the number of insights, file types and application types. The complete list of tasks is provided in Appendix B. Refer to Appendix I for details on the cost of using data generation.

216 **Stage 1: Company and Persona Generation.** This stage produces the synthetic company profile and
 217 user persona that form the Task Context \mathcal{C} . LLMs were used to generate company descriptions detailing
 218 the industry vertical, key products, market position, and competitive landscape. In parallel, they were used
 219 to create realistic personas across departments (e.g., a Regulatory Affairs Manager or a Market Research
 220 Analyst) that serve as the role grounding for the final deep research question. They were then refined
 221 by human experts. The prompts used for this stage are provided in Appendix P.1 and the list of companies
 222 are given in Appendix B.

223 **Stage 2: Public Source and Insight Collection.** Given the company and persona context from Stage 1,
 224 we have retrieved candidate URLs relevant to the specified domain and company background. To ensure
 225 quality, time-invariant insights, the search is restricted to dated, journal-based or industry-report websites
 226 that provide authoritative information. Thus, the collected URLs and their contents are expected to be stable
 227 in time. Human annotators then review the candidate URLs and select one that is both topically aligned
 228 and provides insights into the topic. The selected page becomes the *Task URL* included in \mathcal{C} . Its HTML
 229 content is parsed, and LLMs are prompted to extract business-relevant insights, which are subsequently
 230 filtered and validated by human reviewers for accuracy and contextual fit. The public insights I_p derived
 231 from the Task URL are included in \mathcal{C} and serves as a required piece of insight for the agent to retrieve
 232 during report generation. Prompts used for this stage and the list of urls are provided in Appendix P.3.

233 **Stage 3: Question Generation.** Given the Task Context, we generate the deep research question Q . The
 234 prompt (see Appendix P.2) is instantiated with the company profile and persona, the selected domain,
 235 the Task URL, and the public insight I_p . The LLM proposes several open-ended candidate questions
 236 grounded in this context. Human annotators then review these candidate DR Questions, selecting and
 237 refining one to align with the persona and company. They also ensure that the insights available in the
 238 provided URL can at least partially support answering the deep research question. For example, if the
 239 question concerns compliance with a specific regulation, the URL might include relevant insights, such
 240 as “groceries must have a traceability plan.” While this doesn’t fully resolve the question, it provides
 241 a foundation. The question should be high-level enough to allow us to synthesize additional supporting
 242 private/internal insights I_l (such an insight could be “the cost of implementing such a plan is X amount”) which
 243 are needed to strengthen the report generated for the question. This requirement ensures that new
 244 internal insights can be generated, as discussed in Stage 4.

245 **Stage 4: Internal Insight Generation.** In this stage we generate the injected insights set $\mathcal{G} \subset \mathcal{I}$. Using
 246 the public insight I_p and the deep research question Q , LLMs are used to create company-specific insights
 247 aligned with the organization’s industry, priorities, customer segments, and business goals. These insights
 248 are designed to provide additional supporting facts that need to be extracted to create a report that better
 249 addresses the DR questions. Human annotators review and refine these insights for accuracy and alignment
 250 with the questions. In addition to relevant insights, we also produce distractor insights I_d , which are
 251 plausible but irrelevant statements that do not support resolving the DR Question. Prompt details are
 252 provided in Appendix P.4 and example internal insights are provided in Appendix B.

253 **Stage 5: File Mapping and Generation.** This stage produces the the set of files $\{f_i\}$ containing
 254 both the relevant and distractor private insights. First, each insight is assigned to a modality such as
 255 email, chat, pdf, docx, and so on. Then the file generation module follows the following three-step
 256 “needle-in-a-haystack” process: (1) create an outline of the file based on its modality(e.g., document
 257 structure or chat configuration), (2) insert the distractor or relevant insight into an appropriate section
 258 of the file, and (3) fill the remaining content with realistic but irrelevant information. Human annotators
 259 spot-check the generated files to ensure fidelity, coherence and no contradicting information. Prompts
 260 for file generation are provided in Appendix P.5 and screenshots of such generated files are in Appendix C.

261 4 DRBench AGENT

262 The *DRBench* baseline agent (DRBA) is the first agent built specifically for deep research in enterprise
 263 settings, designed to operate directly within the *DRBench* environment. Its multi-stage architecture
 264 systematically investigates research questions by iteratively retrieving, processing, and synthesizing
 265 knowledge from enterprise services and the web until completion or a maximum iteration limit is reached
 266 (Figure 3; see Appendix F). The agent has access to app-specific api calling tools to access diverse
 267 information sources and a diverse toolset for analyzing retrieved results (Table 10, Appendix F.3). DRBA’s
 268 architecture is organized into four main components: research planning, action planning, an adaptive
 269 research loop, and report writing. Refer to Appendix I for details on the cost of using DRBA.

Figure 3: *DRBench* Agent architecture showing the enterprise research workflow from question submission through iterative research cycles to final report generation, using both enterprise and web search capabilities. Reports are generated in two formats: a raw report, consisting of free-form narrative text, and a structured report that lists the main insights with their corresponding citation(s).

Research Planning. The agent decomposes research questions into structured research investigation areas to guide subsequent action generation. This initial decomposition lays out a strategy to systematically cover the research space while maintaining focus on the initial deep research question. The agent supports two research planning modes: (1) **Complex Research Planning (CRP)**, which generates a structured research plan with detailed investigation areas, expected information sources, and success criteria; and (2) **Simple Research Planning (SRP)**, which produces a lightweight decomposition of the main question into a small set of self-contained subqueries. See Appendix F.2 for detailed examples of both modes.

Research Loop with Adaptive Action Planning (AAP). The system iterates through (1) tool selection and execution based on action priorities, (2) content processing and storage in a vector store, (3) adaptive action generation to cover research gaps, and (4) iteration findings storage for traceability and assessment.

Report Writing. The report writing subsystem queries the vector store to synthesize the research findings and relevant retrieved content. This component generates a comprehensive report and uses its own citation tracking system to ensure proper attribution of claims. For our evaluation, we use the structured report format, a list of insights with their citations, rather than a free-form narrative response (raw report).

5 EXPERIMENTS AND RESULTS

In this section, we evaluate the DRBench Agent (DRBA) on both the full *DRBench* benchmark and a reduced subset for ablations. We consider (1) the **Full Benchmark**, covering all 100 tasks across 10 domains (Table 8), and (2) the **MinEval** subset, restricted to five retail tasks for efficient ablation studies. Results are reported across four metrics: Insight Recall, Distractor Avoidance, Factuality, and Report Quality, explained in the next section. Implementation details and hyperparameters are in Appendix H, while the impact of the number of research loop iterations on the performance of DRBA is analyzed in Appendix O.

5.1 EVALUATION METRICS

Insight Recall. Our benchmark directly evaluates the set of atomic insights provided by the agent, *which was the case for all our experimental results*. If an agent provides the full report, it decomposes the report into atomic insights using an LLM (see Prompt 14). Each insight is then compared against the groundtruth set using an LLM Judge with Prompt 15. If a match is found, the insight is marked as *detected* and contributes to the insight recall score; otherwise, it is ignored. This metric thus measures recall rather than precision, since judging whether an unmatched insight is nonetheless *useful* for answering the deep research question is inherently subjective and difficult to automate. In practice, the computed insight recall functions as an **accuracy measure** in our setting, since it reflects the proportion of groundtruth insights tied to the research question that the agent successfully identifies. To prevent agents from trivially achieving 100% recall by copying all content into the generated report, the LLM Judge evaluates only the first k

324 Table 2: DRBA performance with different planning configurations on *DRBench*. We compare the base
 325 agent with variants using Simple Research Planning (SRP), Complex Research Planning (CRP), Adaptive
 326 Action Planning (AAP), and their combinations. See Appendix K for the standard error across 3 runs.
 327 Note that higher numbers correspond to better scores, and the best result on each metric is bolded.

Configuration	Insight Recall	Factuality	Distractor Avoidance	Report Quality	Harmonic Mean
Base DRBA	16.92	64.06	97.94	91.08	41.71
+ SRP	17.00	69.38	98.89	92.46	42.48
+ CRP	16.94	66.78	99.52	90.72	42.07
+ AAP	20.56	67.44	98.89	93.00	47.43
+ SRP + AAP	19.20	61.72	98.97	91.86	44.80
+ CRP + AAP	18.69	57.20	98.89	90.12	43.39

337 insights, where k equals the number of ground-truth insights plus five. This buffer ensures that reports
 338 are not penalized for including seemingly relevant insights that are not part of the groundtruth insight set.
 339 While this cutoff may seem arbitrary, we found it essential for preventing agents from gaming the metric
 340 by copying large portions of the source files. The +5 buffer allows space for a few reasonable additional
 341 insights without rewarding unrestricted copying. We acknowledge that this design limits our ability to
 342 measure the full breadth of useful discoveries, and we discuss its implications and alternatives in Appendix
 343 U. Our evaluation relies on short, atomic claims, which keeps LLM-judge variance minimal regardless
 344 of whether the judge is a closed or open model; refer to Table 21 in Appendix L for more details.

345 **Distractor Avoidance.** To measure precision, we track whether the agent’s report includes distractor
 346 insights that are irrelevant to the research question. We compute *distractor recall* analogously to insight
 347 recall, and define *distractor avoidance* as $1 - \text{distractor recall}$.

348 **Factuality.** Using the same set of insights (that we used for Insight Recall), we follow the methodology of
 349 FactScore (Min et al., 2023). If an insight lacks a citation or references a non-existent source, it is labeled
 350 *unfactual*. Otherwise, we apply a retrieval-augmented system based on `text-embedding-3-large`
 351 (OpenAI, 2024) to fetch the top-5 most relevant chunks from the cited document (Appendix H). The
 352 LLM Judge with Prompt 16 then determines whether the cited evidence supports the claim. We also store
 353 justifications and model confidence scores for interpretability.

354 **Report Quality.** Inspired by prior work (Coelho et al., 2025; Abaskohi et al., 2025), we query the LLM
 355 Judge with Prompt 17 to assign a 1–10 rating across six dimensions: (1) depth and quality of analysis, (2)
 356 relevance to the research question, (3) persona consistency, (4) coherence and conciseness, (5) absence of
 357 contradictions, and (6) completeness and coverage. The final report quality score is obtained by averaging
 358 these six ratings.

360 5.2 MAIN RESULTS

361 We first evaluate our DRBA agent (Section 4) using GPT-4o as the backbone model, a maximum of
 362 15 research loop iterations, and different combinations of planning modules: Simple Research Planning
 363 (SRP), Complex Research Planning (CRP), and Adaptive Action Planning (AAP). The results are reported
 364 in Table 2. Overall, the agent demonstrates moderate ability to ground its answers in factual evidence
 365 but struggles to consistently surface the main injected insights necessary for answering the deep research
 366 questions. In many cases, the agent relies on prior knowledge or external web content rather than
 367 integrating the crucial enterprise-specific information available in the files. By contrast, it is consistently
 368 strong in avoiding distractors, showing that the agent is robust against misleading or irrelevant information
 369 but less effective at prioritizing decision-critical insights. Note that our LLM Judge backbone is GPT-4o.
 370 It should be also mentioned that Insight Recall is robust to paraphrasing, with negligible variance across
 371 reformulations (see Appendix T).

372 **Comparison Across Planning Strategies.** Here we see that SRP tends to produce more factually
 373 grounded answers, while CRP excels at filtering out distractors through structured decomposition. AAP,
 374 on the other hand, provides the largest improvements in both insight recall and report quality, suggesting
 375 that dynamically adapting the plan during execution helps the agent recover missed evidence and refine its
 376 use of sources. However, combining CRP or SRP with AAP does not yield clear gains, and in some cases
 377 reduces factuality, likely because overlapping strategies create redundant or unstable planning behavior.
 These findings indicate that adaptive mechanisms are key for improving coverage of injected insights,

378
 379 Table 3: Performance of DRBA on the MinEval subset using different backbone language models and
 380 planning strategies. Note that higher numbers correspond to better scores, and the best result on each
 381 metric is bolded. The full table with more models is given in Appendix M.

DRBA Backbone Model	Planning	Insight Recall	Factuality	Distractor Avoidance	Report Quality	Harmonic Mean
GPT-5	None	38.33	74.52	95.14	94.56	79.80
GPT-5	Simple	37.86	72.09	97.14	95.34	78.92
GPT-5	Complex	39.63	65.17	92.86	93.42	77.74
Llama-3.1-405B-Instruct	None	17.37	78.91	100.00	90.48	49.78
Llama-3.1-405B-Instruct	Simple	16.97	79.27	98.10	92.34	48.87
Llama-3.1-405B-Instruct	Complex	20.16	69.75	97.90	91.26	53.86
DeepSeek-V3.1	None	25.15	72.66	97.43	86.52	62.59
DeepSeek-V3.1	Simple	25.56	73.45	96.67	87.36	63.29
DeepSeek-V3.1	Complex	30.26	70.27	96.67	86.88	69.28
Qwen-2.5-72B-Instruct	Complex	26.82	58.35	97.65	89.64	61.75
Qwen-2.5-72B-Instruct	None	25.55	69.39	98.10	90.24	62.64
Qwen-2.5-72B-Instruct	Simple	23.20	67.23	98.10	88.14	58.58

392
 393
 394 while lightweight planning is more effective for maintaining factual grounding, and that carefully balancing
 395 the two remains an open challenge. See Appendix N for detailed results for each task.

397 5.3 ABLATION: EFFECT OF BACKBONE LANGUAGE MODEL ON DRBA

398
 399 We evaluate the impact of backbone language models on DRBA using the MinEval subset for controlled
 400 comparison (Table 3). GPT-5 achieves the best balance of factual grounding, insight recall, and report
 401 quality. Open-source models show mixed results: Llama-3.1-405B excels in factuality but lags in recall,
 402 DeepSeek-V3.1 delivers balanced performance through targeted fine-tuning, and Qwen-2.5-72B is
 403 reliable but trails GPT-5. These results underline the importance of backbone choice; larger and more
 404 advanced models generally yield stronger overall performance, though some open-source options are
 405 competitive in specific metrics. In addition, our experiments also revealed a significant limitation in agents
 406 retrieving critical insights from the open web. As shown in Table 23 in Appendix M, no agent managed
 407 to successfully source external knowledge, highlighting the difficulty of extracting relevant information
 408 for deep research applications within an unboundedly large search space. Refer to Section 6 for the results
 409 on the full benchmark, with 100 tasks.

410
 411 Table 4: Insights Recall Improvement Areas (Task DR0002). We highlight in bold where each model
 412 was able to accurately find details relevant to the groundtruth insight. We also show the corresponding
 413 score where 1.0 is considered a successful recall and 0.0 an unsuccessful recall. The full table with all
 414 groundtruth insights and predicted insights is given in Appendix G.

Groundtruth Insight	Insight Predicted by Llama 3.1 405B	Insight Predicted by GPT-5
417 45% of our online customers have inter- 418 acted with personalized product recom- 419 mendations, resulting in a 25% increase in aver- 420 age order value.	45% of Lee's Market online customers engage with personalized product recommendations, resulting in a 25% increase in average order value. (Score = 1.0)	45% of online customers engaged with per- sonalized product recommendations, and among those engagers average order value increased by 25%. (Score = 1.0)
421 85% of Lee's Market transactions are linked 422 to customer loyalty accounts as of Q2 2024.	85% of transactions are linked to loyalty accounts at Lee's Market, providing a solid foundation for personal- 423 ized marketing and improving customer engagement. (Score = 0.0)	As of Q2 2024, 85% of transactions were linked to loyalty accounts, leaving a 15% unlinked identity gap. (Score = 1.0)

424 425 426 427 5.4 QUALITATIVE ANALYSIS

428
 429 In Table 4 we show a sample of three groundtruth insights as well as the predicted insights from using
 430 both Llama 3.1 405B and GPT-5. We see that for the first insight, both models are able to effectively
 431 recover the groundtruth insight. For the second insight GPT-5 can extract the relevant time of year, where
 as Llama 3.1 405B fails to do so. This possibly suggests that GPT-5 may be better at extracting fine details.

432 Table 5: Model Performance Comparison Across Local or App-based Environments. Note that higher
 433 numbers correspond to better scores, and the best result on each metric is bolded.

435 Model	436 Env	437 Insight Recall	438 Factuality	439 Distractor Avoidance	440 Report Quality	441 Harmonic Mean
436 DRBA (GPT-5)	437 App	438 38.33	439 74.52	440 95.14	441 94.56	442 66.01
436 DRBA (GPT-5) + CRP	437 App	438 39.63	439 65.17	440 92.86	441 93.42	442 64.46
436 DRBA (DeepSeek-V3.1)	437 App	438 25.15	439 72.66	440 97.43	441 86.52	442 53.09
436 DRBA (DeepSeek-V3.1) + CRP	437 App	438 30.26	439 70.27	440 96.67	441 86.88	442 57.86
436 DRBA (GPT-5)	437 Local	438 41.25	439 82.43	440 98.62	441 91.08	442 69.57
436 DRBA (GPT-5) + CRP	437 Local	438 42.18	439 83.91	440 98.45	441 92.46	442 70.67
436 DRBA (DeepSeek-V3.1)	437 Local	438 35.62	439 77.12	440 97.95	441 89.16	442 64.03
436 DRBA (DeepSeek-V3.1) + CRP	437 Local	438 36.54	439 78.35	440 97.62	441 90.12	442 65.07
436 Perplexity	437 Local	438 39.14	439 81.06	440 98.84	441 90.36	442 67.72
436 OpenAI Deep Research (GPT-5)	437 Local	438 44.78	439 87.53	440 99.12	441 94.92	442 73.56
436 Gemini	437 Local	438 43.92	439 85.68	440 98.97	441 93.24	442 72.37

444
 445 Table 6: Performance of DRBA on the 100 tasks. We report results for different backbone language
 446 models under various planning configurations, with scores averaged across tasks. Higher values indicate
 447 better performance. GPT-5 remains the strongest backbone overall, with the None planning configuration
 448 achieving the highest harmonic mean. Results are averaged over three runs, with all configurations using
 449 AAP and 15 iterations.

451 DRBA Backbone Model	452 Planning	453 Insight Recall	454 Factuality	455 Distractor Avoidance	456 Report Quality	457 Harmonic Mean
452 GPT-5	453 None	454 36.52	455 72.11	456 93.22	457 93.41	458 76.80
452 GPT-5	453 Simple	454 35.41	455 69.42	456 94.67	457 93.88	458 75.03
452 GPT-5	453 Complex	454 37.48	455 62.33	456 91.71	457 92.03	458 74.44
452 DeepSeek Chat 3.1	453 Complex	454 28.21	455 67.09	456 93.96	457 85.57	458 65.45
452 Qwen-2.5-72B-Instruct	453 Complex	454 24.39	455 55.74	456 95.12	457 87.51	458 57.50
452 GPT-4o	453 Complex	454 16.04	455 58.61	456 95.63	457 89.22	458 44.46
452 Llama-3.1-405B-Instruct	453 Complex	454 18.33	455 65.72	456 95.04	457 89.01	458 49.75
452 Llama-3.1-70B-Instruct	453 Complex	454 14.71	455 49.91	456 95.22	457 84.38	458 40.55

490 5.5 PERFORMANCE OF WEB AGENTS ON *DRBench*

491 We evaluated Generic WebAgents from AgentLab in a browser-only setting (without API access).
 492 The GPT-4.1-powered agent achieved only 1.11% insight recall, 6.67% factuality, and 33.07% report
 493 quality. While the reports appeared well-structured, they lacked grounded insights, with most trajectories
 494 degenerating into repetitive clicks on irrelevant files or windows. This shows that browser-only agents are
 495 currently far from effective for deep research tasks. Further trajectory examples are shown in Appendix J.

496 5.6 APP-BASED ENVIRONMENT VS LOCAL ENVIRONMENT

497 In Table 5, we compare results across two settings in *DRBench*: (1) **local**, where all the task files (e.g.,
 498 PDFs, PPTX, DOCX, XLSX, chats) are placed in a local folder that the agent can access, and (2)
 499 **app-based**, where the same files must be retrieved through our standard enterprise environment and its apps,
 500 introducing additional interaction complexity. We find that OpenAI’s Deep Research (GPT-5) achieves
 501 the highest scores across all metrics. Our agent with GPT-5 and DeepSeek backbones achieves similar
 502 performance to Perplexity in the local-only setting, but lags behind OpenAI and Gemini. In the app-based
 503 setting, performance declines across both backbones, highlighting the added difficulty of navigating
 504 multi-application environments. This gap underscores that the environment in *DRBench* is intentionally
 505 challenging, enabling a more realistic evaluation of model capabilities in enterprise research scenarios.

499 6 RESULTS ON THE FULL BENCHMARK

500 The results in Table 6 summarize DRBA’s performance on the 100-task benchmark across different
 501 backbone models. GPT-5 remains the strongest overall, with Complex planning achieving state-of-the-art
 502 Insight Recall. These findings closely mirror the MinEval trends (Table 3), underscoring the consistency
 503 and robustness of our benchmark.

486
487

7 DISCUSSION

488
489
490
491
In summary, the results in Table 5 and Table 3 show that larger models such as GPT-5 achieve higher
insight recall and better report quality. This is consistent with the qualitative examples in Table 13, where
larger models retrieve both the numeric value and the contextual information more often than smaller
models, which tend to repeat only the explicit numeric portions of an insight.492
493
494
495
496
497
498
499
500
Moreover, the planning results in Table 5 help explain part of the performance differences. Complex
planning increases insight recall for GPT-5 because it promotes stepwise extraction across multiple files. In
the qualitative examples, the insights that require combining a number with a specific time period or business
detail are recalled more reliably by GPT-5 with planning. Smaller models show limited improvement
and lower factuality because they fail to reliably merge information from separate parts of the data. Table
3 also shows that weaker models experience larger drops when working in the app environment, which
involves more navigation steps, while stronger models remain more stable. Further, the lack of successfully
retrieving external knowledge can be explained as follows. For example, for the question "How can
Lee's Market leverage FSMA 204 regulations to enhance food safety and customer trust," the FSMA 204
regulation does not appear in the private files. The agent must detect this and perform a targeted web search
for FSMA 204 sources. Instead, we observed that agents produced broad queries such as "how grocery
stores improve customer trust," "food safety best practices," and "ways to strengthen customer loyalty,"
none of which return FSMA 204 content from the web. We will add this explanation to the revised paper.
501
502
503
504505
506

8 HUMAN EVALUATION

507
508
509
510
511
512
513
514
Quality of Deep Research Questions. We evaluated the quality of the deep research questions in
DRBench through a human study with five expert annotators across the first 15 tasks. Each task was judged
on three criteria: (1) grounding in the external website, (2) relevance to the domain and company context,
and (3) alignment with associated insights. Annotators provided binary ratings plus optional feedback.
Results show strong quality: 12 tasks received unanimous approval, while only three (tasks DR1, DR11,
and DR13) received a single negative vote due to minor issues with specificity or distractor difficulty. This
corresponds to a 96% approval rate (72/75 votes).515
516
517
518
519
520
521
Correlation of Used Metrics with Human Preference. We collected human preference on a subset
of 11 tasks². Each annotator was shown a groundtruth insight with aligning insights from two models³
and asked to choose which they preferred, or label both as good/bad. Missing alignments were shown
as empty strings. We compared agents with AAP no RP against GPT-5 and Llama-3.1-405B-Instruct. The
Fleiss κ (Fleiss, 1971) across five annotators was 0.67. Most outputs were judged *both bad* due to missing
alignments, but when preferences were expressed, GPT-5 was favored 61.1% over Llama-405B-Instruct,
consistent with our metric-based findings in Section 5.3. Additional analyses are in Appendix R. We also
provide a detailed human validation of the LLM-as-a-judge evaluation in Appendix S.
522523
524

9 CONCLUSION & FUTURE WORK

525
526
527
528
529
530
531
532
533
534
535
536
537
538
In this work, we introduced *DRBench*, a benchmark for evaluating AI agents on complex, open-ended
enterprise deep research tasks that require reasoning over both public and private data. Unlike prior
benchmarks focused on surface-level or web-only queries, *DRBench* offers 100 persona-grounded tasks
situated in realistic enterprise contexts and evaluated through an environment that integrates real-world
enterprise applications and heterogeneous data formats. We also presented the DRBench Agent (DRBA)
as a strong baseline and analyzed its behavior across planning strategies and backbone models. Our results
show that while agents are generally effective at avoiding distractors and capable of producing structured
reports, they still struggle to consistently extract decision-critical insights. Adaptive planning improves
recall of injected insights, while lightweight strategies tend to preserve factual accuracy, underscoring the
difficulty of balancing exploration with reliability. Looking ahead, we plan to extend *DRBench* with tasks
requiring cross-file integration, reasoning across modalities such as PDFs and chats, and richer distractors.
We also aim to add multimodal sources like images and video, as well as privacy-sensitive tasks to assess
data protection. Together, these extensions will move research agents closer to enterprise readiness and
provide a stronger foundation for studying deep research in realistic organizational settings.539
²We selected tasks with fewer than 8 insights for a reasonable amount of manual work.³The gold-prediction alignment is provided by the insight recall metric.

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
This work raises important considerations around data privacy, fairness, and potential misuse. Although
DRBench simulates enterprise research environments with private data, all datasets are synthetically
generated or drawn from public, time-invariant web sources. No personal or sensitive user data is
included. The synthetic personas and companies are fictional, designed to prevent any risk of harm or
re-identification. We highlight that agents evaluated on *DRBench* must handle sensitive-like contexts
(e.g., healthcare, compliance, cybersecurity), which underscores the importance of designing systems that
prioritize data protection and avoid exposing private enterprise content. Human annotators were involved
in validating task quality; they were compensated at fair rates and gave informed consent.550
551
552
Large Language Models (LLMs) were used solely to assist with polishing the writing of this paper, such as
improving readability and clarity of exposition. All ideas, experimental designs, implementations, analyses,
and conclusions are original contributions of the authors.553
554
REPRODUCIBILITY STATEMENT555
556
557
558
559
560
561
562
563
564
We have taken multiple steps to ensure reproducibility. The *DRBench* benchmark, including all generated
tasks, data generation scripts, supporting files, and evaluation scripts, will be released under a permissive
license. Each task is fully self-contained with dated URLs for public insights and synthetic enterprise
files for private insights, ensuring stability over time. Detailed descriptions of the task generation
pipeline, environment implementation, evaluation prompts, and cost considerations are included in the
supplementary materials. We provide open-source code for running agents in the *DRBench* environment
and for reproducing all reported results. Hyperparameter settings, backbone models, and planning strategies
are documented. Together, these design choices make our benchmark transparent, reproducible, and
extensible for future research.565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Amirhossein Abaskohi, Amrutha Varshini Ramesh, Shailesh Nanisetty, Chirag Goel, David
597 Vazquez, Christopher Pal, Spandana Gella, Giuseppe Carenini, and Issam H. Laradji.
598 AgentAda: Skill-adaptive data analytics for tailored insight discovery, 2025. URL
599 <https://arxiv.org/abs/2504.07421>.

600 Reyna Abhyankar, Qi Qi, and Yiyi Zhang. OSWorld-Gold: Benchmarking the efficiency
601 of computer-use agents. In *ICML 2025 Workshop on Computer Use Agents*, 2025. URL
602 <https://openreview.net/forum?id=sV3n6mYy7J>.

603 All-HandsAI. OpenHands. <https://github.com/All-Hands-AI/OpenHands>, 2024.
604 Accessed: 2024-06-01.
605

606 Pierre Andrews, Amine Benhalloum, Gerard Moreno-Torres Bertran, Matteo Bettini, Amar Budhiraja,
607 Ricardo Silveira Cabral, Virginie Do, Romain Froger, Emilien Garreau, Jean-Baptiste Gaya, Hugo
608 Laurençon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre Ménard, Grégoire Mialon, Ulyana
609 Piterbarg, Mikhail Plekhanov, Mathieu Rita, Andrey Rusakov, Thomas Scialom, Vladislav Vorotilov,
610 Mengjue Wang, and Ian Yu. ARE: Scaling up agent environments and evaluations, 2025. URL
611 <https://arxiv.org/abs/2509.17158>.

612 Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault Le Sellier de Chezelles, Quentin
613 Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. WorkArena++: Towards
614 compositional planning and reasoning-based common knowledge work tasks. In *The Thirty-eight*
615 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL
616 <https://openreview.net/forum?id=PCjK8dqrWW>.

617 Nikos I Bosse, Jon Evans, Robert G Gambee, Daniel Hnyk, Peter Mühlbacher, Lawrence Phillips, Dan
618 Schwarz, Jack Wildman, et al. Deep Research Bench: Evaluating AI Web Research Agents. *arXiv*
619 *preprint arXiv:2506.06287*, 2025.
620

621 Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
622 Kshama Patel, Ruoxi Meng, Mingyi Su, Sahel Sharifmoghaddam, Yanxi Li, Haoran Hong,
623 Xinyu Shi, Xuye Liu, Nandan Thakur, Cristina Zhang, Luyu Gao, Wenhui Chen, and Jimmy Lin.
624 BrowseComp-Plus: A more fair and transparent evaluation benchmark of Deep-Research agent, 2025.
625 URL <https://arxiv.org/abs/2508.06600>.

626 Thibault Le Sellier De Chezelles, Maxime Gasse, Alexandre Drouin, Massimo Caccia, Léo Boisvert,
627 Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han
628 Lü, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Quentin Cappart, Graham Neubig, Ruslan
629 Salakhutdinov, Nicolas Chapados, and Alexandre Lacoste. The BrowserGym ecosystem for web agent
630 research, 2025. URL <https://arxiv.org/abs/2412.05467>.

631 Prafulla Kumar Choubey, Xiangyu Peng, Shilpa Bhagavath, Kung-Hsiang Huang, Caiming Xiong, and
632 Chien-Sheng Wu. Benchmarking deep search over heterogeneous enterprise data. In Saloni Potdar,
633 Lina Rojas-Barahona, and Sébastien Montella (eds.), *Proceedings of the 2025 Conference on Empirical*
634 *Methods in Natural Language Processing: Industry Track*, pp. 501–517, Suzhou (China), November
635 2025. Association for Computational Linguistics. ISBN 979-8-89176-333-3. doi: 10.18653/v1/2025.
636 emnlp-industry.34. URL <https://aclanthology.org/2025.emnlp-industry.34/>.

637 João Coelho, Jingjie Ning, Jingyuan He, Kangrui Mao, Abhijay Paladugu, Pranav Setlur, Jiahe Jin, Jamie
638 Callan, João Magalhães, Bruno Martins, et al. Deepresearchgym: A free, transparent, and reproducible
639 evaluation sandbox for deep research. *arXiv preprint arXiv:2505.19253*, 2025.
640

641 Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and psychological measurement*,
642 20(1):37–46, 1960.

643 Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom Marty,
644 David Vazquez, Nicolas Chapados, and Alexandre Lacoste. WorkArena: How capable are web agents
645 at solving common knowledge work tasks? 2024.

646 Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. DeepResearch Bench: A
647 comprehensive benchmark for deep research agents. *arXiv preprint arXiv:2506.11763*, 2025.

648 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
 649 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint*
 650 *arXiv:2407.21783*, 2024.

651

652 Joseph L Fleiss. Measuring nominal scale agreement among many raters. *Psychological bulletin*, 76
 653 (5):378, 1971.

654

655 FoundationAgents. OpenManus. <https://github.com/FoundationAgents/OpenManus>,
 656 2024. Accessed: 2024-06-01.

657

658 Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Botao Yu, Andrei Kopanev, Weijian
 659 Qi, Yiheng Shu, Jiaman Wu, Chan Hee Song, Bernal Jimenez Gutierrez, Yifei Li, Zeyi Liao,
 660 Hanane Nour Moussa, TIANSHU ZHANG, Jian Xie, Tianci Xue, Shijie Chen, Boyuan Zheng,
 661 Kai Zhang, Zhaowei Cai, Viktor Rozgic, Morteza Ziyadi, Huan Sun, and Yu Su. Mind2web
 662 2: Evaluating agentic search with agent-as-a-judge. In *The Thirty-ninth Annual Conference*
 663 *on Neural Information Processing Systems Datasets and Benchmarks Track*, 2025. URL
<https://openreview.net/forum?id=AUaW6DS9si>.

664

665 Kilem Gwet. Handbook of inter-rater reliability. *Gaithersburg, MD: STATAxis Publishing Company*,
 666 pp. 223–246, 2001.

667

668 Kung-Hsiang Huang, Akshara Prabhakar, Sidharth Dhawan, Yixin Mao, Huan Wang, Silvio Savarese,
 669 Caiming Xiong, Philippe Laban, and Chien-Sheng Wu. CRMArena: Understanding the capacity of
 670 LLM agents to perform professional CRM tasks in realistic environments. In *Proceedings of the 2025*
 671 *Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, 2025a.

672

673 Kung-Hsiang Huang, Akshara Prabhakar, Onkar Thorat, Divyansh Agarwal, Prafulla Kumar Choubey,
 674 Yixin Mao, Silvio Savarese, Caiming Xiong, and Chien-Sheng Wu. CRMArena-Pro: Holistic
 675 assessment of LLM agents across diverse business scenarios and interactions. *arXiv preprint*
[arXiv:2505.18878](https://arxiv.org/abs/2505.18878), 2025b.

676

677 HuggingFace. smolagents. <https://github.com/huggingface/smolagents>, 2024.
 678 Accessed: 2024-06-01.

679

680 Abhinav Java, Ashmit Khandelwal, Sukruta Midgeshi, Aaron Halfaker, Amit Deshpande, Navin Goyal,
 681 Ankur Gupta, Nagarajan Natarajan, and Amit Sharma. Characterizing deep research: A benchmark
 682 and formal definition, 2025. URL <https://arxiv.org/abs/2508.04183>.

683

684 LearningCircuit. Local deep research. <https://github.com/LearningCircuit/local-deep-research>, 2025.

685

686 Yao Liu, Deming Ye, Shuohang Wang, Furu Wei, Yujia Ma, and Minlie Huang. G-Eval: NLG evaluation
 687 using GPT-4 with better human alignment. *EMNLP*, 2023.

688

689 Xing Han Lù, Zdeněk Kasner, and Siva Reddy. WebLINX: Real-world website navigation with multi-turn
 690 dialogue, 2024. URL <https://arxiv.org/abs/2402.05930>.

691

692 Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
 693 GAIA: a benchmark for general AI assistants. *ICLR*, 2024.

694

695 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
 696 Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of factual precision
 697 in long form text generation. In *Proceedings of the 2023 Conference on Empirical Methods in Natural*
 698 *Language Processing*, pp. 12076–12100, 2023.

699

700 OpenAI. text-embedding-3-large. <https://platform.openai.com/docs/guides/embeddings>, 2024. [Large language model]. Accessed September 2025.

701

Gaurav Sahu, Abhay Puri, Juan A Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexandre Drouin, Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vazquez, et al. InsightBench: Evaluating insight extraction for business analytics agents. *ICLR*, 2025.

702 Zilliz Tech. Deep-Searcher. <https://github.com/zilliztech/deep-searcher>, 2024.
 703 Accessed: 2024-06-01.
 704

705 Yuhao Wang, Ruiyang Ren, Junyi Li, Xin Zhao, Jing Liu, and Ji-Rong Wen. REAR: A relevance-aware
 706 retrieval-augmented framework for open-domain question answering. In *Proceedings of the 2024*
 707 *Conference on Empirical Methods in Natural Language Processing*, pp. 5613–5626, 2024.

708 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
 709 Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for
 710 open-ended tasks in real computer environments. *NeurIPS*, 2024.

711 Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang, Xuhui
 712 Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su, Leander
 713 Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham Neubig.
 714 TheAgentCompany: Benchmarking LLM agents on consequential real world tasks, 2025a. URL
 715 <https://arxiv.org/abs/2412.14161>.

716

717 Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies, and
 718 applications. *arXiv preprint arXiv:2506.12594*, 2025.

719 Tianze Xu, Pengrui Lu, Lyumanshan Ye, Xiangkun Hu, and Pengfei Liu. ResearcherBench:
 720 Evaluating deep AI research systems on the frontiers of scientific inquiry, 2025b. URL
 721 <https://arxiv.org/abs/2507.16280>.

722

723 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei Liu.
 724 DeepResearcher: Scaling deep research via reinforcement learning in real-world environments. *arXiv*,
 725 2025.

726 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
 727 Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A Realistic Web Environment
 728 for Building Autonomous Agents, April 2024. URL <http://arxiv.org/abs/2307.13854>.
 729 arXiv:2307.13854 [cs].

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Table 7: Comparison of Deep Research Tasks of Different Benchmarks.
757

Benchmark	Sample Question
DeepResearchGym (Coelho et al., 2025)	Is the COVID vaccine dangerous
Deep Research Bench (Bosse et al., 2025)	Find a reliable, known number on the internet. The total number of FDA Class II Product Recalls of medical devices.
DeepResearch Bench (Du et al., 2025)	While the market features diverse quantitative strategies like multi-factor and high-frequency trading, it lacks a single, standardized benchmark for assessing their performance across multiple dimensions such as returns, risk, and adaptability to market conditions. Could we develop a general yet rigorous evaluation framework to enable accurate comparison and analysis of various advanced quant strategies?
ResearcherBench (Xu et al., 2025b)	Compare the Transformer and Mamba model architectures, analyzing their performance and technical characteristics in different application scenarios. Based on the latest research, discuss the advantages and disadvantages of both models and their applicable scenarios.
LiveDRBench (Java et al., 2025)	For complex reasoning tasks (e.g., tasks involving multiple citations or extended reasoning chains), what are the strengths of current agent technologies, and what are their limitations? Please analyze this in the context of research since June 2024.
BrowseComp-Plus (Chen et al., 2025)	Identify the title of a research publication published before June 2023, that mentions Cultural traditions, scientific processes, and culinary innovations. It is co-authored by three individuals: one of them was an assistant professor in West Bengal and another one holds a Ph.D.
GAIA2 (Andrews et al., 2025)	Update all my contacts aged 24 or younger to be one year older than they are currently.
DRBench	How can Lee’s Market leverage FSMA 204 regulations to enhance food safety and customer trust?

781
782
783 **A COMPARISON OF DEEP RESEARCH BENCHMARKS**
784 **AND AI AGENT BENCHMARKS WITH A COMPUTER ENVIRONMENT**
785786 In Table 1, we compare existing deep research benchmarks and AI agent benchmarks that provide a
787 computer environment with *DRBench*. While the questions in existing benchmarks focus on public interest
788 topics and require generic web search and computer use, *DRBench* provides realistic questions that real
789 personas in organizations need to resolve.790
791 **B DRBench Tasks**
792793 As shown in Tables 8, 30, 31, 32, 33, 34, and 35 *DRBench* contains 100 tasks in total, covering 3 industries
794 (retail, healthcare and electric vehicles), 10 task domains (compliance, sales, customer relationship
795 management, market analysis, customer service management, IT service management, cyber security,
796 marketing, quality assurance, and research), and 3 difficulty levels (easy, medium, hard). In addition, we
797 generate the following 3 companies (one for each industry type): (1) a supermarket chain called Lee’s
798 Market, (2) a virtual healthcare company called MediConn Solutions, and (3) an electric vehicle company
799 called Elexion Automotive.800 Table 9 presents a deep research question from *DRBench* and its supporting groundtruth insights. We also
801 visualize the DR Question and all QA pairs by embedding them with OpenAI’s `text-embedding-
802 3-large` model and projecting into 2D using t-SNE in Figure 4. The plot shows that injected supporting
803 insights lie closer to the DR Question, while distractors appear farther away, confirming that our injected
804 insights are semantically aligned with the research objective.805
806 **C DRBench Examples of Injected Insights**
807808 As shown in Figure 2, supporting documents are generated with enterprise insights injected. In Figure 5,
809 we show two examples of a generated files (PPTX and Mattermost chat) with their embedded insights.

810

811

How can Lee's Market leverage chatbots to enhance the consumer experience for centennial shoppers?

Figure 4: t-SNE visualization of QA pairs for the DR Question in Task DR0005. The plot shows the distribution of annotated pairs across **Supporting Insights** (green), **Distractors** (red), and the central **Deep Research (DR) Question** (gold star). Out of 49 pairs, 16 correspond to supporting insights and 33 are distractors. The visualization illustrates how relevant insights cluster separately from distractors, highlighting the challenge of retrieving salient information in a distractor-heavy environment.

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

Enhancing Food Safety Through Regulatory Compliance

Introduction

As Lee's Market continues to expand its operations across the U.S. and Canada, ensuring compliance with evolving regulatory requirements is crucial for maintaining customer trust and upholding our brand reputation. The FDA's Food Safety Modernization Act (FSMA) presents a critical framework for guiding our food safety initiatives. This document aims to explore key considerations for leveraging regulatory requirements to drive business excellence. By proactively addressing regulatory changes, we can mitigate risks, improve operational efficiency, and reinforce our commitment to providing high-quality products.

Risk-Based Preventive Controls for Supply Chain Management

According to our quarterly supplier performance review, 85% of our vendors have implemented robust corrective action procedures, resulting in a significant reduction in quality-related issues. However, we still face challenges with 12% of our suppliers, who require additional support to meet our quality standards. Our procurement team is working closely with these vendors to develop improvement plans and provide necessary training. By the end of Q3 2024, we aim to have all suppliers aligned with our quality expectations.

Leveraging Technology for Enhanced Traceability and Transparency

Our IT department has been working on integrating our enterprise resource planning (ERP) system with a new data analytics platform to enhance business intelligence and inform strategic decision-making. The project, which is expected to be completed by mid-2025, will provide real-time insights into sales trends, inventory levels, and customer behavior. This will enable our category managers to optimize product assortment, improve demand forecasting, and reduce stockouts. We anticipate a 5% increase in sales revenue as a result of this initiative.

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

(b) Example supporting email in the Sent mailbox with an injected insight "85% of high-risk food suppliers are FSMA 204 compliant, totaling 270 vendors."

Figure 5: Example files with injected insights in DRBench.

864 Table 8: *DRBench* Questions and Statistics. **Industry**: target industry of the deep research question.
 865 **Domain**: domain of the deep research task. **DR Question**: question of the deep research task. **Difficulty**:
 866 difficulty of the task defined based on the rubric mentioned in 3. **# Applications**: the number of total
 867 applications in the task environment. **# Insights**: the number of relevant insights to the deep research
 868 question. **# Distractors**: the number of non-supporting documents that do not contain relevant insights.
 869 Please refer to Tables 30, 31, 32, 33, 34 and 35 for details on the details on the remaining 60 tasks.

870 Industry	871 Domain	872 DR Question	873 Difficulty	874 # Applications	875 # Insights	876 # Distractors
877 Retail	878 Compliance	879 How can Lee's Market leverage FSMA 204 regulations to enhance food safety and customer trust?	880 easy	881 2	882 3	883 7
884 Retail	885 Sales	886 How can personalization drive sales in the retail industry and what strategies can be used for Lee's Market in action?	887 easy	888 2	889 4	890 10
891 Retail	892 CRM	893 How can we leverage data-driven loyalty programs to enhance customer engagement?	894 medium	895 4	896 7	897 15
898 Retail	899 Market Analysis	900 What are the new trends in the grocery retail market and what strategies can Lee's Market adopt to remain competitive?	901 medium	902 3	903 6	904 14
905 Retail	906 CSM	907 How can Lee's Market leverage chatbots to enhance the consumer experience for centennial shoppers?	908 hard	909 4	910 16	911 33
912 Healthcare	913 Compliance	914 What are the key factors influencing MediConn Solutions' decision to accept insurance for tele-health providers, considering HIPAA compliance and state-specific data privacy regulations?	915 easy	916 3	917 4	918 8
919 Healthcare	920 ITSM	921 How can we leverage ISTM and AI-driven analytics to minimize IT service desk workload and improve response times in MediConn Solutions?	922 easy	923 3	924 6	925 12
926 Healthcare	927 Cybersecurity	928 What is the impact of third-party data breaches on MediConn's virtual healthcare platforms and patient data, and what new regulations can be implemented to defend against these breaches?	929 medium	930 4	931 7	932 14
933 Healthcare	934 CRM	935 How can MediConn Solutions leverage trendy new CRM solutions to improve patient engagement and retention, and what new CRM solutions are expected in 2025?	936 medium	937 4	938 12	939 24
940 Healthcare	941 Marketing	942 What are the most critical elements of a robust digital presence for a telehealth provider such as MediConn Solutions, and how can we optimize our website and content marketing strategy to attract digital-first patients?	943 hard	944 4	945 15	946 30
947 Electric Vehicle	948 Compliance	949 How can we balance the need for durability and warranty guarantees for EV batteries with evolving regulatory requirements, especially ACC regulations (ACC II), while staying on track with our production timelines through 2035?	950 easy	951 2	952 3	953 6
954 Electric Vehicle	955 Quality Assurance	956 How can Elexion Automotive's quality assurance processes be optimized to address the unique challenges of electric vehicle production, such as software and user experience issues, compared to gasoline cars?	957 easy	958 1	959 3	960 6
961 Electric Vehicle	962 Cybersecurity	963 How can Elexion Automotive effectively implement a cybersecurity strategy for its electric vehicles, considering the risks and challenges posed by connected and autonomous technologies?	964 medium	965 3	966 6	967 12
968 Electric Vehicle	969 Research	970 Can we leverage AI-enhanced battery management to improve EV battery lifespan by 15%?	971 medium	972 3	973 7	974 14
975 Electric Vehicle	976 CSM	977 How can Elexion Automotive increase customer trust through after-sales support while balancing the need for exceptional customer care with efficient and cost-effective service?	978 hard	979 4	980 15	981 30

906 D DRBENCH ENTERPRISE ENVIRONMENT

909 The *DRBench* Enterprise Environment provides a containerized simulation of realistic enterprise
 910 research settings where employees access confidential company information, personal files, and internal
 911 communications for comprehensive report generation. The environment simulates both a user's local
 912 machine filesystem and provides password-protected access to enterprise services.

913 To emulate realistic enterprise research settings, *DRBench* provides a self-contained Docker environment
 914 that integrates commonly used applications: Nextcloud for shared documents, Mattermost for internal
 915 chat, an IMAP server and Roundcube open-source client for emails, and Filebrowser to emulate local files.
 916 Each task is initialized by distributing its data across these services, enabling agents to retrieve, analyze,
 917 and cite information through enterprise-like interfaces rather than static files. This design ensures realistic
 918 interaction while maintaining reproducibility and controlled evaluation.

918 Table 9: Example Deep Research Question and Supporting Groundtruth Insights
919

920 Deep Research Question	921 Supporting groundtruth insight	922 Insight Category
923 How can Lee’s Market leverage FSMA 924 204 regulations to enhance food safety and 925 customer trust?	926 U.S. grocers are working to meet the FDA’s FSMA 204 traceability rules 927 by January 2026, which require tracking lot codes and key data for high-risk 928 foods to expedite recalls. This compliance is viewed as an “evolutionary 929 step” to modernize grocery operations and enhance food safety. 930 By capturing detailed traceability data, such as lot codes, at every step, 931 retailers can meet regulations and gain inventory benefits. This allows grocers 932 to know exact expiration dates by lot, enabling them to discount items before 933 they expire, thus reducing food waste and keeping products fresher. 934 Regional grocers like Lunds & Byerlys and Raley’s see FSMA 204 as 935 a chance to enhance their systems and supply chain transparency. They 936 believe improved traceability will boost customer trust and could signal the 937 start of more extensive future food safety regulations. 938 Lee’s Market tracks 250 high-risk food products as of Q3 2024, affecting 939 30% of inventory. 940 Lee’s Market reduced food waste by 8% in Q2 2024, saving \$1.2M. 941 85% of high-risk food suppliers are FSMA 204 compliant, totaling 270 942 vendors.	943 External 944 External 945 External 946 Internal 947 Internal 948 Internal

933
934 **D.1 ARCHITECTURE AND SERVICES**935
936 The environment implements a **multi-service architecture** within a single Docker container. This design
937 prioritizes deployment simplicity and cross-platform compatibility while maintaining service isolation.
938 The container orchestrates the following enterprise services:939
940

- 941 • **Nextcloud:** Open-source file sharing and collaboration platform analogous to Microsoft
942 SharePoint or Google Drive, providing secure document storage with user authentication.
- 943 • **Mattermost:** Open-source team communication platform simulating internal company commu-
944 nications similar to Microsoft Teams or Slack, with teams, channels, and persistent chat history.
- 945 • **FileBrowser:** Web-based file manager providing access to the container’s local filesystem,
946 simulating employee desktop environments and local document access.
- 947 • **Email System:** Roundcube webmail interface with integrated SMTP (postfix) and IMAP
948 (dovecot) services for enterprise email communication simulation.
- 949 • **VNC/NoVNC Desktop:** Protocol and browser-based VNC access providing full desktop
950 environment interaction within the container for comprehensive enterprise workflow simulation.

951 **D.2 TASK LOADING AND DATA DISTRIBUTION**
952953 At initialization, the environment processes task configuration files (`env.json`) and distributes data
954 across services through automated Python scripts and it makes sure that this source data is only accessible
955 through the intended applications:956
957

- 958 • **File Distribution:** Documents are placed in appropriate Nextcloud user folders and FileBrowser
959 directories based on task specifications
- 960 • **Communication Import:** Chat histories and team conversations are imported into Mattermost
961 channels with proper user attribution
- 962 • **Email Integration:** Email conversations are loaded into the mail system with realistic threading
963 and metadata
- 964 • **User Provisioning:** Enterprise users are automatically created across all services with consistent
965 authentication credentials

966
967
968
969
970
971

```

972
973     from drbench import drbench_enterprise_space, task_loader
974
975     # Load task configuration
976     task = task_loader.get_task_from_id(task_id)
977
978     # Initialize environment with automatic port allocation
979     env = drbench_enterprise_space.DrBenchEnterpriseSearchSpace(
980         task=task.get_path(),
981         start_container=True,
982         auto_ports=True  # Prevents port conflicts in parallel execution
983     )
984
985     # Environment provides service discovery
986     available_apps = env.get_available_apps()
987     # Returns: {'nextcloud': {'port': 8081, 'credentials': {...}}, ...}
988
989     # Pass relevant information to the agent
990
991     # Cleanup when research complete
992     env.delete()

```

Listing 1: DrBench Environment Usage

D.3 PYTHON INTEGRATION

The `DrBenchEnterpriseSearchSpace` class provides programmatic container management with the following capabilities: **container lifecycle management**, **service access information**, **task-specific data loading**, and **automatic cleanup**. The typical usage pattern shown in Listing 1 demonstrates these integrated capabilities.

D.4 ENTERPRISE SERVICE APIs

Each service exposes both **web interfaces** for human and web-agent interaction, and **programmatic APIs** for agent access:

- **Nextcloud**: WebDAV API for file operations, sharing, and metadata retrieval
- **Mattermost**: REST API for message history, channel management, and user interactions
- **Email**: IMAP/SMTP protocols for message retrieval and sending
- **FileBrowser**: HTTP API for filesystem operations and file management

This dual-access model enables both agent-driven research and human verification of enterprise scenarios, supporting comprehensive evaluation of research capabilities across realistic enterprise information architectures.

E DRBench EXAMPLES OF APPLICATION SCREENSHOTS

Figures 6 and 7 show the applications provided in *DRBench* environment: File Browser, Mattermost, Roundcube, and Nextcloud.

F DRBench AGENT IMPLEMENTATION DETAILS

F.1 DETAILED WORKFLOW

As depicted in Figure 3, the workflow begins with a Company Employee submitting an enterprise Deep Research Question along with Company Context. The *DRBench* agent processes this input through several key stages:

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038 (a) Screenshot of the File Browser interface, displaying
1039 organized files and folders within the system.
1040

1041 (b) Screenshot of the Mattermost communication
1042 platform, showing a discussion channel and user
1043 interface elements.
1044

Figure 6: Screenshots of Applications in *DRBench* environment (Part 1).

1045 (a) Screenshot of the Nextcloud file management system,
1046 illustrating the file list view with various document types.
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

1057 (b) Screenshot of Roundcube, an email client, it shows
1058 an open email in the user's inbox.
1059

Figure 7: Screenshots of Applications in *DRBench* environment (Part 2).

1060 **Stage 1: Research Planning.** The agent decomposes the research question into structured research
1061 investigation areas to guide subsequent action generation. This initial decomposition lays out a strategy
1062 to systematically cover the research space while maintaining focus on the initial deep research question.

1063 **Stage 2: Action Planning.** The Action Planning stage translates the research objectives into executable
1064 actions through a planning subsystem. This component uses an LLM to create a prioritized sequence
1065 of actions. Each action is parameterized with specific tool selection and execution parameters, its
1066 dependencies to other actions in the plan, and a priority score.

1067 **Stage 3: Research Loop with Adaptive Execution.** The Research Loop iterates over the following
1068 sub-stages until completion: (1) Tool Selection and Execution: The tool selection and execution subsystem
1069 implements a sophisticated priority-based selection of actions from the plan at each research iteration step
1070 and proceeds to execute it with the current research context. (2) Content Processing: If necessary, the action
1071 will make use of the content processing subsystem to extract, synthesize, and store retrieved documents and
1072 websites into a vector store to form a task-specific knowledge base that will grow on each iteration. (3) Adaptive
1073 Action Planning: After each execution round, the agent analyzes the most recent findings; if coverage
1074 gaps are detected, new actions are created and added to the plan at this point. This ensures that newly discovered
1075 knowledge is taken into account to answer the research question. (4) Iteration Findings Storage: Results
1076 from each iteration are stored in the vector store with rich metadata for traceability and later assessment.

1077 **Stage 4: Convergence and Completion.** The research loop continues until all actions in the plan have
1078 been completed or the maximum iteration limit is reached.

1080 **Stage 5: Report Writing.** The report writing subsystem queries the vector store to synthesize the
 1081 research findings and relevant retrieved content. This component generates a comprehensive report and
 1082 uses its own citation tracking system to ensure proper attribution of claims within the report.

1083
 1084 The vector store serves as the main knowledge integration component, maintaining embeddings of all
 1085 processed content and enabling semantic retrieval at the report generation stage. This component is crucial
 1086 in a deep research setting to prevent information loss from early research stages in arbitrarily long research
 1087 sessions.

1088 **F.2 RESEARCH PLANNING IMPLEMENTATION**

1090 The Research Planning subsystem offers three operational modes to evaluate the impact of structured
 1091 planning on research effectiveness:

1093 • **Complex Mode:** Generates a comprehensive research plan with detailed investigation areas.
 1094 These areas contain details about the specific research focus, expected information sources, and
 1095 success criteria, among others. Each area includes an importance level and specific business
 1096 intelligence objectives (see Listing 2).

1097 • **Simple Mode:** Creates focused question decompositions with 4-10 self-contained subqueries
 1098 derived directly from the main research question. Uses straightforward decomposition without
 1099 the complex enterprise research structure of complex mode. See examples in Listing 4 and
 1100 Listing 3 for comparison of different planning modes.

1101 • **None:** Bypasses structured planning entirely, proceeding directly to action generation based
 1102 on the original question. This mode serves as a baseline to measure the added-value of explicit
 1103 planning stages.

1104
 1105 The planning process begins with the enriched query (Prompt 1) and uses the research planning prompt
 1106 (Prompt 2) to generate structured outputs. In Complex Mode, the system creates detailed investigation areas
 1107 with enterprise-focused metadata, while Simple Mode produces straightforward question decompositions
 1108 similar to existing multi-step reasoning approaches. The resulting plan structure directly feeds into the
 1109 Action Planning System (Appendix F.3) for executable action generation.

```
1110 {  

1111   "area_id": 1,  

1112   "research_focus": "Core strategic  

1113     domain, market segment, or business hypothesis to investigate",  

1114   "information_needs": [  

1115     "What specific intelligence is required for strategic decisions"  

1116   ],  

1117   "knowledge_sources": ["internal", "external", "both"],  

1118   "research_approach":  

1119     ["competitive_analysis | market_research | strategic_assessment  

1120       | trend_analysis | risk_analysis | performance_benchmarking",  

1121     "key_concepts": ["concept1", "concept2"],  

1122     "business_rationale": "Why this investigation  

1123       area is critical for enterprise strategy and decision-making",  

1124     "expected_insights": "What strategic  

1125       understanding or competitive intelligence this area should provide",  

1126     "stakeholder_impact": "Which  

1127       business units or decision-makers will benefit from these insights",  

1128     "importance_level": "critical | important | supplementary"  

1129   }
```

1127 **Listing 2: Investigation Area Structure for Full Planning Mode**

```
1130 {  

1131   "query": "What are the new trends in the grocery retail market  

1132     and what strategies can Lee's Market adopt to remain competitive?",  

1133   "plan": {  

1134     "research_investigation_areas": [  

1135       {
```

```

1134     "area_id": 1,
1135     "research_focus": "Current trends in grocery retail market",
1136     "information_needs": [
1137         "Latest consumer preferences",
1138         "Emerging technologies influencing grocery shopping",
1139         "Sustainability practices in grocery retail",
1140         "Changes in supply chain dynamics"
1141     ],
1142     "knowledge_sources": ["external"],
1143     "research_approach": "trend_analysis",
1144     "key_concepts": [
1145         "e-commerce growth", "sustainability in supply chains",
1146         "business_rationale": "Understanding consumer
1147         trends and technological advancements that shape shopper behavior is
1148         critical for adapting offerings and enhancing customer engagement.",
1149         "expected_insights": "Identify specific trends affecting customer
1150         buying decisions, including the rise of online grocery shopping
1151         and preferences for sustainable, local, or organic products.",
1152         "stakeholder_impact"
1153     ],
1154     "": "Marketing, Product Development, Supply Chain Management",
1155     "importance_level": "critical"
1156 },
1157 {
1158     "area_id": 2,
1159     "research_focus": "Competitive analysis of grocery retailers",
1160     "information_needs": [
1161         "Market share analysis",
1162         "Competitor strengths and weaknesses",
1163         "Innovative strategies adopted by competitors"
1164     ],
1165     "knowledge_sources": ["external"],
1166     "research_approach": "competitive_analysis",
1167     "key_concepts": [
1168         "market positioning", "competitive differentiation",
1169         "business_rationale": "A comprehensive understanding of
1170         competitors allows for strategic positioning and the identification
1171         of innovative practices that can be adopted or improved upon.",
1172         "expected_insights": "Detailed profiles of key
1173         competitors, including strategic moves they are making to capture
1174         market share, which can inform Lee's Market's competitive strategy.",
1175         "stakeholder_impact"
1176     ],
1177     "": "Executive Leadership, Strategic Planning, Marketing",
1178     "importance_level": "critical"
1179 },
1180 ...
1181 ]
1182 }
1183

```

Listing 3: Complex Mode Research Plan Example

```

1178 {
1179     "query": "How can we leverage
1180         data-driven loyalty programs to enhance customer engagement?",
1181     "plan": {
1182         "mode": "simple",
1183         "subqueries": [
1184             "What are the key features
1185             of successful data-driven loyalty programs in the retail industry?",
1186             "How can data analytics be used to personalize rewards
1187             and incentives in loyalty programs to increase customer engagement?",
1188             "What types of customer data should be collected and analyzed
1189             to optimize loyalty programs for a company like Lee's Market?",
1190         ]
1191     }
1192 }
1193

```

```

1188 "Which
1189 technology platforms and tools are most effective for implementing
1190 and managing data-driven loyalty programs in the retail sector?",  

1191 "How can Lee's Market measure the success of their
1192 loyalty program in terms of customer engagement and sales growth?",  

1193 "What are the best practices for integrating a loyalty program
1194 with existing marketing strategies to enhance customer experience?",  

1195 "How can Lee's Market ensure customer data
1196 privacy and security while leveraging data-driven loyalty programs?",  

1197 "What are the potential
1198 challenges and limitations of implementing a data-driven loyalty
1199 program for a retail company with Lee's Market's size and resources?"  

1200 ],
1201 "research_methodology": {
1202 "overall_approach": "Query decomposition into focused subqueries"
1203 }
1204 }

```

Listing 4: Simple Mode Research Plan Example

F.3 ACTION PLANNING SYSTEM

The Action Planning System translates research objectives into executable actions through an intelligent planning subsystem that manages tools, prioritization, and dependencies.

Available Tools Table 10 summarizes the available tools organized by category and their primary purposes.

Table 10: DrBench Agent Tool Categories and Purposes

Category	Tool	Purpose
Information Retrieval	Internet Search	External market research, competitive intelligence, and public data analysis. Ideal for market trends, competitor analysis, industry reports, news articles.
	Enterprise API	Access to proprietary internal data through extensible adapters (Nextcloud, Mattermost, email, FileBrowser). Ideal for internal metrics, communications, confidential documents.
	URL Fetch	Direct content extraction from specific URLs. Ideal for deep analysis of reports, whitepapers, case studies, competitor websites.
Analysis	Analyzer	AI-powered synthesis and analysis using vector search. Ideal for cross-referencing findings, identifying patterns, generating insights.
Local Processing	Local Document Search	Semantic search within locally ingested documents. Ideal for targeted retrieval from local files with source references.

Priority Scoring and Dependencies Actions are assigned priority scores (0.0-1.0 scale) based on strategic importance and expected information value. The priority assignment follows enterprise research principles:

- **Source Type Prioritization:** Enterprise and local sources receive higher priority than external sources, reflecting the strategic value of proprietary information in competitive analysis.
- **Query Specificity:** Targeted queries addressing specific investigation areas score higher than broad exploratory searches, ensuring focused research execution.

1242
 1243 • **Dependency Management:** Actions can specify prerequisite relationships where certain
 1244 information gathering must precede analysis or synthesis tasks. The scheduler respects these
 1245 dependencies while maximizing parallel execution within each iteration.

1246 **F.4 ENTERPRISE INTEGRATION ARCHITECTURE**

1248 **Service Adapters** The system implements extensible adapters for enterprise services including Nextcloud
 1249 file server, Mattermost chat, IMAP email systems, and FileBrowser interfaces. Each adapter handles
 1250 service-specific authentication, data retrieval, and metadata preservation for proper citation attribution.

1251 **Source Prioritization Strategy** Enterprise and local sources receive priority multipliers in action scoring,
 1252 reflecting the strategic value of proprietary information. The system maintains source type classification
 1253 throughout the pipeline to ensure internal intelligence drives analytical conclusions while external sources
 1254 provide context and validation.

1256 **F.5 TOOL SELECTION AND EXECUTION**

1258 The Tool Selection stage implements a priority-based action selection and tool invocation within each
 1259 research iteration to execute the action plan.

1261 **Action Selection Process** At each iteration, the system selects executable actions based on priority
 1262 scores and dependency satisfaction:

1264 • **Priority-Based Scheduling:** Actions are ranked by their priority scores, with enterprise and local
 1265 sources prioritized over external sources to maximize the value of specific private information.

1266 • **Dependency Validation:** The scheduler checks that all prerequisite actions have completed
 1267 before making an action available for execution.

1268 • **Sequential Execution:** Actions execute one at a time in priority order, maintaining research
 1269 coherence and enabling each action to build upon previous findings.

1271 Once selected, actions execute through a standardized interface and results are integrated into the research
 1272 context, informing the following stage of adaptive action planning.

1274 **F.6 ADAPTIVE PLANNING**

1276 The Adaptive Planning system enables dynamic evolution of the action plan by analyzing results after
 1277 each iteration to generate extra actions addressing information gaps.

1278 It starts by analyzing the most recently completed actions and performs these two substages:

1280 **Source analysis and gap classification.** The system evaluates the possible imbalances in the action
 1281 completion if information came from internal or external sources and identifies possible scenarios to cover.

1283 **Dynamic action generation.** After analyzing the sources and results from the previous actions, the
 1284 system makes an LLM call to generate 1-5 extra candidate actions with a specific prioritization. After
 1285 candidate actions are generated, they go through a deduplication process to make sure the plan didn't
 1286 cover them already and incorporates the final subset into the priority action plan so they can be considered
 1287 by the scheduler in the following iteration.

1289 **F.7 CONTENT PROCESSING AND VECTOR STORE**

1291 The Content Processing system implements a pipeline for unified ingestion of documents in multiple
 1292 formats (PDF, docx, HTML, JSON, plain text formats, etc.) that normalizes and cleans text inside the
 1293 documents and websites retrieved during the research. Content is then deduplicated and chunkized, and
 1294 embeddings are computed for each of these chunks.

1295 The Vector Store implements the storage and retrieval of the content via JSON metadata and NumPy
 1296 embedding metrics, enabling semantic similarity and keyword based searches

1296
1297

F.8 REPORT GENERATION

1298
1299
1300

Multi-Stage Synthesis Pipeline The Report Generation stage implements a four-stage synthesis approach: (1) thematic content clustering via vector searches, (2) source prioritization and deduplication, (3) LLM Synthesis with source tracking, and (4) Final report writing and citation resolution.

1301
1302
1303
1304

The system generates targeted search queries based on the research plan, including specific to ensure that a predefined set of themes or sections (background, analysis, implementation, trends) are retrieved and written and prevents redundant analyses.

1305
1306
1307
1308

Unified Citation System The citation system implements deferred resolution to keep consistency of citations from section to section by referencing document IDs in the Vector Store and carrying them over for each piece of synthesized text. A final citation resolution stage will assign the correct numbering to each document in the final report.

1309
1310

F.9 DRBA PROMPTS

1311
1312
1313
1314
1315
1316

The *DRBench* agent relies on carefully designed prompts to orchestrate enterprise research workflows. These prompts implement the core architectural principles: enterprise context enrichment, structured planning decomposition, priority-based action generation, quantitative synthesis requirements, and adaptive research capabilities. The following five prompts represent the critical LLM interactions that enable systematic enterprise research with proper source prioritization and citation tracking:

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

⚡ Query Generation

```
Research Question: {dr_question}
Company Context: {company_name} is {company_desc}.
Persona Context: This analysis is requested by {name}, {role} in
{department}.
Their responsibilities include: {responsibilities}.
```

Prompt 1: Query Enrichment with Enterprise Context.

G QUALITATIVE RESULTS

Shown below are some illustrative examples of how metrics are computed for different scenarios on a given test task.

1350 **⚡ Research Planning (Complex Mode)**

1351

1352 Design a comprehensive enterprise research strategy for:
1353 "{question}"

1354

1355 {tools_section}

1356 As a senior enterprise researcher with deep business
1357 intelligence expertise, create a thorough investigation
1358 plan that combines rigorous research methodology with
1359 strategic business analysis. Your goal is to provide insights
1360 that drive informed decision-making in complex enterprise
1361 environments.

1362 Enterprise Research Design Principles:
1363

1364 - Leverage proprietary internal data as competitive advantage while
1365 ensuring external market context

1366 - Design investigations that directly inform strategic decisions and
1367 business outcomes

1368 - Prioritize research areas that maximize ROI and strategic value to the
1369 organization

1370 - Balance comprehensive analysis with focused insights relevant to
1371 enterprise objectives.

1372 Generate a JSON object with strategic research investigation
1373 areas:

1374 {output_structure}

1375

1377 Prompt 2: Enterprise Research Planning with Investigation Areas. See example of the output structure
1378 in Listing 2

G.1 INSIGHTS RECALL

We showcase the insights recall metric using Task DR0002, whose DR Question is “How can personalization drive sales in the retail industry and what strategies can be used for Lee’s Market in action?” (also shown in Table 8), which evaluates sales challenges and competitive landscape analysis.

Table 11 shows the overall performance comparison between using Llama 3.1 405B and GPT-5 in our agent. Using GPT-5 in our agent results in increasing the insights recall score from 0.14 to 0.43, successfully answering 3 out of 7 questions compared to Llama's 1 out of 7.

1389 Table 11: Insights Recall Performance Comparison: Llama 3.1 405B vs GPT-5 (Task DR0002). We
 1390 summarize the number of questions answered successfully and unsuccessfully as well as the overall
 1391 insights recall score for the given task.

Metric	Llama 3.1 405B	GPT-5	Improvement
Insights Recall Score	0.14	0.43	+0.29
Questions Answered Successfully	1/7	3/7	+2
Questions Failed	6/7	4/7	-2

1400 The question-by-question breakdown in Table 12 reveals the specific questions where each approach
1401 succeeded or failed. Both models successfully identified the insight related to online customer engagement,
1402 but only GPT-5 was able to identify the number of loyalty program members and the customer data
1403 collection rate. Neither model successfully answered the remaining 4 questions, indicating these insights
may not have been readily available in the source materials or that agents struggled to find the right insights.

1404
1405 **⚡ Action Generation**
1406 Generate specific executable actions for this research investigation
1407 area with SOURCE PRIORITIZATION:
1408
1409 Research Focus: {research_focus}
1410 Information Needs: {information_needs}
1411 Knowledge Sources: {knowledge_sources}
1412 Research Approach: {research_approach}
1413 Available Tools: {available_tool_names}
1414 Tool Selection Guidelines: {tool_guidelines}
1415
1416 Return JSON array of actions with:
1417 - "type": Action type (web-search, enterprise-api, url-fetch, analyzer,
1418 local-search)
1419 - "description": Clear description of what this action will accomplish
1420 - "parameters": Tool-specific parameters including query, search_type,
1421 etc.
1422 - "priority": Float 0.0-1.0 (enterprise sources: 0.7-1.0, external:
1423 0.4-0.7)
1424 - "expected_output": What information this action should provide
1425 - "preferred_tool": Specific tool class name to use
1426
1427
1428

Prompt 3: Priority-Based Action Generation with Source Awareness

1429
1430
1431 Table 12: Question-by-Question Insights Recall Analysis (Task DR0002). We breakdown the results
1432 question by question for the given task, highlighting specifically which question is answered correctly
1433 or incorrectly for each model.

1434 1435 Question	1436 Llama 3.1 405B	1437 GPT-5	1438 Δ
1436 Online Customer Engagement with Personalized Recommendations	1.0	1.0	0.0
1437 Number of Loyalty Program Members	0.0	1.0	+1.0
1438 Customer Data Collection Rate	0.0	1.0	+1.0
1439 Online Sales Growth	0.0	0.0	0.0
1440 Effectiveness of Personalized Marketing	0.0	0.0	0.0
1441 Personalized Promotions vs Mass Promotions	0.0	0.0	0.0
1442 Retail Media Growth	0.0	0.0	0.0
1443 Total Insights Recall Score	1.0/7.0	3.0/7.0	+2.0

1444
1445
1446
1447 In Table 13 we extend Table 4 and show all the groundtruth insights as well as each of the predicted
1448 insights from using both Llama 3.1 405B and GPT-5. As before, we highlight in bold where the model
1449 was able to accurately find details relevant to the expected insight, and show all the corresponding scores
1450 as given in Table 12.

G.2 FACTUALITY

1451 The factuality metric evaluation uses the same Task DR0002 to assess the accuracy and reliability of
1452 generated content. Table 14 presents the factuality performance comparison, showing that while using
1453 Llama 3.1 405B achieved 0.41 factuality (7 factual claims out of 17 total claims), where as using GPT-5
1454 reached 0.65 factuality (13 factual claim out of 20 total claims). This represents a significant improvement

1458
1459**⚡ Adaptive Action Generation**1460
1461Based on the research progress so far, suggest new actions with
INTELLIGENT SOURCE COMPLEMENTARITY:

1462

Original Research Query: {research_query}

1463
1464

Completed Actions Summary: {completed_actions_summary}

1465

Recent Findings Analysis: {findings_json}

1466
1467

Source Composition Analysis: {internal_findings}

1468
1469

Available Tools: {available_tool_names}

1470

Generate 1-5 new actions that:

1471
1472

1. **Address gaps** in current research coverage
2. **Balance source types** - if findings are heavily external, prioritize internal sources and vice versa
3. **Build on discoveries** - leverage new information to explore related areas
4. **Enhance depth** - dive deeper into promising findings
5. **Cross-validate** - verify critical findings through alternative sources

1473
1474

Each action should have:

1475
1476

- Strategic rationale for why this action is needed now
- Clear connection to research gaps or promising leads
- Appropriate priority based on strategic value and source balance
- Specific parameters that build on existing knowledge

1477
1478**Prompt 4: Gap-Driven Adaptive Action Generation**1479
14801481
1482

in content reliability. This also highlights that GPT-5 is much better prepared to make accurate claims that are sustained by evidence.

1483
1484

Table 15 provides a detailed breakdown of factual versus unfactual claims. The agent using GPT-5 generated 6 additional factual claims while producing 3 fewer unfactual claims, resulting in a net improvement in accuracy percentage. This demonstrates that GPT-5 may generate a higher proportion of factual information than Llama 3.1 405B.

1485
1486

The impact of these factuality improvements of using GPT-5 over Llama 3.1 405B is summarized in Table 16. The 24.0 percentage point improvement in factuality represents enhanced content quality and research reliability. The increase in 3 total claims shows that GPT-5 can generate more content overall.

1487
1488**H EXPERIMENTAL SETTINGS**1489
1490

All experiments were conducted on a cluster of 8 NVIDIA A100 GPUs (80GB each). For file generation and task construction, we primarily used the Llama-3.1-405B model, with decoding performed using nucleus sampling at a temperature of 0.7 unless otherwise specified. For larger-scale evaluations of the DRBench Agent, we also used closed-source models such as GPT-4o and GPT-5, alongside DeepSeek models, to enable comparison across open- and closed-source backbones.

1491
1492

To ensure reproducibility, the DRBench environment was deployed as a self-contained Docker container with all supporting applications (Nextcloud, Mattermost, and Filebrowser) pre-configured. Each task was

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

Table 13: Insights Recall Improvement Areas (Task DR0002). We highlight in bold where each model was able to accurately find details relevant to the groundtruth insight. We also show the corresponding score where 1.0 is considered a successful recall and 0.0 an unsuccessful recall.

Groundtruth Insight	Insight Predicted by Llama 3.1 405B	Insight Predicted by GPT-5
45% of our online customers have interacted with personalized product recommendations, resulting in a 25% increase in average order value.	45% of Lee's Market online customers engage with personalized product recommendations, resulting in a 25% increase in average order value. (Score = 1.0)	45% of online customers engaged with personalized product recommendations, and among those engagers average order value increased by 25%. (Score = 1.0)
As of Q3 2024, Lee's Market has 1.2 million loyalty program members.	85% of transactions are linked to loyalty accounts at Lee's Market, providing a solid foundation for personalized marketing and improving customer engagement. (Score = 0.0)	From Q2 2024 to Q3 2024, loyalty members increased from 1,050,000 to 1,200,000 (+150,000; +14.29%), average spend per member rose from 24 to 25 (+4.17%), and total member spend increased from 25,200,000 to 30,000,000 (+19.05%). (Score = 1.0)
85% of Lee's Market transactions are linked to customer loyalty accounts as of Q2 2024.	85% of transactions are linked to loyalty accounts at Lee's Market , providing a solid foundation for personalized marketing and improving customer engagement. (Score = 0.0)	As of Q2 2024, 85% of transactions were linked to loyalty accounts , leaving a 15% unlinked identity gap. (Score = 1.0)
Lee's Market online sales grew 12% in Q2 2024 compared to Q2 2023.	45% of Lee's Market online customers engage with personalized product recommendations, resulting in a 25% increase in average order value. (Score = 0.0)	A naive blended online AOV upside of approximately 11.25% is derived from 45% engagement multiplied by a 25% AOV lift among engagers. (Score = 0.0)
Retailers excelling in personalized marketing are growing revenues about 10 percentage points faster than their peers, according to BCG. By effectively using first-party customer data, these leaders could unlock an estimated \$570 billion in additional sales, highlighting the importance of data-driven sales strategies for growth.	Retailers have seen a consistent 25% increase in revenue due to advanced personalization capabilities . (Score = 0.0)	Grocers running data-driven loyalty campaigns have realized an average 3.8% like-for-like sales uplift. (Score = 0.0)
Personalized promotions can deliver returns three times higher than mass promotions, yet many retailers allocate under 5% of their promo budgets to personalization. One major chain increased its personalized promo spend from 1% to 10% by establishing a "customer investment council," resulting in \$250 million in incremental sales.	Retailers have seen a consistent 25% increase in revenue due to advanced personalization capabilities . (Score = 0.0)	External sources indicate POS-enabled personalization can lift revenue 5%-15% and advocate personalized e-receipts with relevant offers and coupons to extend post-purchase engagement. (Score = 0.0)
Retail media networks are expanding rapidly, with retail media growing at approximately 25% annually, offering retailers a profitable revenue stream to reinvest in technology, data, and personnel. By integrating loyalty data, retailers like Sephora, which links 95% of transactions to loyalty accounts, enhance precision in product recommendations and provide a seamless omnichannel experience, boosting conversion rates and customer lifetime value.	85% of transactions are linked to loyalty accounts at Lee's Market, providing a solid foundation for personalized marketing and improving customer engagement . (Score = 0.0)	As of Q2 2024, 85% of transactions were linked to loyalty accounts , leaving a 15% unlinked identity gap. (Score = 0.0)

Table 14: Factuality Performance Comparison: Llama 3.1 405B vs GPT-5 (Task DR0002). We show the number of factual and unfactual claims made by each model, as well as the overall factuality score for the given task.

Metric	Llama 3.1 405B	GPT-5	Improvement
Factuality Score	0.41	0.65	+0.24
Factual Claims	7	13	+6 claims
Unfactual Claims	10	7	-3 claims

1566
1567**⚡ Report Synthesis**1568
1569
1570
1571

As an expert research analyst, synthesize the following content into a coherent, insightful, and well-supported analysis for the theme: "{theme}" directly related to the overarching research question: "{original_question}"

1572
1573

Source Priority Guidelines:

1574
1575
1576
1577
1578
1579
1580
1581
1582

1. **internal**: Highest priority (internal company documents, proprietary files, confidential reports, enterprise chat messages, local documents, CRM data, internal APIs, project management tools). Insights from these sources should form the primary foundation of the analysis.
2. **external**: Medium priority (public web sources, academic papers, industry reports, news articles). Use these to provide broader context, external validation, or contrasting perspectives.

1583
1584
1585
1586
1587
1588
1589
1590
1591

Synthesis Requirements:

- * **QUANTITATIVE PRIORITY**: Lead with numerical data, calculations, and aggregations
- * Extract ALL percentages, costs, metrics, and performance data
- * Perform mathematical operations: aggregate percentages, calculate increases, sum totals
- * Example: "Finance customers (35%) combined with healthcare (40%) represent 75% of regulated industry concerns [DOC:doc_1] [DOC:doc_2]"
- * **FACT VERIFICATION (CRITICAL)**:
 - * ONLY state what documents explicitly contain - no inference or extrapolation
 - * Use exact quotes for key numerical claims: "As stated in the document: '[exact quote]' [DOC:doc_id]"

1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603

- * **Citation Usage (Critical)**:
 - * **Format**: Reference sources by their document ID: "Internal review shows 15% increase [DOC:doc_079c2e0f_1752503636]"
 - * **NEVER HALLUCINATE CITATIONS**: Only use provided doc_id values
 - * **Cite every numerical claim and calculation with source documents**

1604
1605
1606

Generate 2-4 paragraphs of synthesized analysis with proper inline citations.

1607
1608
1609
1610
1611**Prompt 5: Report Section Synthesis with Citation Requirements**1612
1613
1614

executed by instantiating a fresh container to avoid state leakage across runs. We capped the number of agent iterations according to the settings described in Section 5, with each iteration limited by a fixed computational budget.

1615
1616
1617
1618

For model outputs, we standardized all prompts and evaluation pipelines across backbones, using identical research questions, company contexts, and injected insight sets. To avoid stochastic variability, we repeated generation three times per task and reported averaged scores.

1619

Finally, all supporting scripts, environment configurations, and evaluation code are fully containerized, enabling consistent replication of our reported results across hardware setups.

1620 Table 15: Factuality Content Analysis (Task DR0002). We show the number of factual and unfactual
 1621 claims made by each model, highlighting the factuality accuracy of each model for the given task.
 1622

Agent	Factual	Unfactual	Accuracy
Llama 3.1 405B	7 claims	10 claims	41.0%
GPT-5	13 claim	7 claims	65.0%
Change	+6	-3	+24.0%

1628 Table 16: Factuality Summary (Task DR0002). We summarize the factuality result improvements made
 1629 by using GPT-5 over Llama 3.1 405B.
 1630

Impact Category	Value
Factuality Improvement	+24.0 percentage points
Claims Added	3 total claims
Accuracy Enhancement	From 41.0% to 65.0%
Content Quality	More grounded information
Task Domain	Sales
Task Industry	Retail

I DATA SYNTHESIS AND DRBA COST DETAILS

1644 To generate the DRBench tasks, we combined external insight extraction with internal file synthesis. Each
 1645 task included an average of 10 supporting files spanning heterogeneous formats (PDF, DOCX, PPTX,
 1646 XLSX, and JSONL), with each file containing roughly 5 paragraphs of content. Files were designed
 1647 to embed injected insights while mixing in distractor material, ensuring realistic enterprise complexity
 1648 without exceeding practical runtime or storage budgets.

1649 Data synthesis was primarily powered by GPT-4o. During task construction, GPT-4o was responsible for (1)
 1650 extracting structured insights from public web sources, (2) adapting these insights into enterprise-grounded
 1651 interpretations, (3) generating persona-specific deep research questions, and (4) producing file-level content
 1652 with a balanced mix of insights and distractors. For evaluation, the DRBench Agent (DRBA) used GPT-4o
 1653 as its backbone, with each task typically requiring 15 iterations and approximately 120–150 model calls.

1654 In terms of cost, GPT-4o-based synthesis of a single task (10 files, 5 paragraphs each, plus metadata)
 1655 consumed about 30k–40k tokens, while DRBA execution required an additional 50k–70k tokens per
 1656 task. At current GPT-4o API pricing (\$5 per million input tokens and \$15 per million output tokens), this
 1657 corresponds to a per-task cost of approximately \$1.5–\$3.5 depending on the mix of input/output tokens
 1658 and the iteration budget. This makes large-scale benchmarking feasible at moderate cost, while still being
 1659 significantly cheaper than manual authoring or annotation.

1660 We also note that smaller open-source models such as Llama-3.1-8B-Instruct perform well for file
 1661 generation. Unlike GPT-4o, which requires API usage, Llama-3.1-8B can be hosted locally and runs
 1662 efficiently on a single NVIDIA A100 40GB GPU. This provides a cost-effective alternative for generating
 1663 large numbers of supporting documents, especially when full closed-source quality is not required.

J WEB AGENTS FOR DEEP RESEARCH TASKS

1667 Since each of the environments can be access directly through a web user interface (UI), we also exper-
 1668 imented with an agent that can directly interact with the webpages through common browser actions like
 1669 `click`, `input` and `scroll`, which are executed through *playwright*⁴. We implement our web agent
 1670 using the AgentLab and BrowserGym frameworks (Chezelles et al., 2025) with a GPT-4.1⁵ backbone. Our
 1671 agent is implemented from AgentLab’s *GenericAgent*, which achieves respectable performance when used

1672 ⁴<https://playwright.dev>

1673 ⁵<https://openai.com/index/gpt-4-1/>

1674 with GPT-4o⁶ as a backbone; it completes 45.5% of the tasks in WorkArena (Drouin et al., 2024), 31.4%
 1675 in WebArena (Zhou et al., 2024) and achieves a step-level reward of 13.7% on WebLINX (Lù et al., 2024).
 1676

1677 **Hyperparameters and Prompt** We present the hyperparameters for the agent in tables 17 and 18, which
 1678 are in majority set to the default hyperparameters, except for the maximum number of input tokens (bound
 1679 to a reasonable maximum length) and a higher maximum number of steps (to allow the agent to perform
 1680 more actions required to write the report). We further update the agent’s action space on the last step to
 1681 only allow it to reply to the user with a report, ensuring that each trajectory terminates with a report. To
 1682 ensure that the agent is aware of the tools it can use, we modify the default system prompt (see prompt 6).
 1683 Additionally, each task intent is provided alongside information about the user and company (see prompt 7).
 1684

1685 **Results** We find that the GPT-4.1-powered web agent achieves an insights recall and factuality of
 1686 1.11% and 6.67% respectively and a report quality score of 33.07%. Although the high report quality
 1687 indicates that the agent can properly formulate a report, the insights quality is severely limited, with none
 1688 of the claims being backed by useful sources. For example, a DRBench Agent powered by GPT-5 may
 1689 answer the question *What is Lee’s Market’s current food waste reduction rate as of Q2 2024?* with *An 8% reduction in food waste in Q2 2024 saved Lee’s Market \$1.2 million, indicating that better inventory control can yield both safety and financial benefits.*, which achieves a score of 1.0 for the question. On
 1690 the other hand, a GPT-4.1-powered agent will provide an unsatisfactory answer, thus achieving an insights
 1691 recall of 0.0. The most likely cause of this poor performance is the model’s limited capability to properly
 1692 interact with web interfaces when encountering unfamiliar tools. For instance, the agent may be unfamiliar
 1693 with the VNC and file browser applications, making it harder for it to correctly select the file it needs
 1694 to use. Moreover, whenever the agent ends up performing an ineffective action (e.g. click on an element
 1695 that does not trigger any change to the page), it tends to persist by reiterating the same action (see Table
 1696 19), or the same sequence of ineffective actions, despite not achieving anything in the previous steps. As a
 1697 result, despite a large number of steps, most of the agent’s actions are not helpful towards solving the task.
 1698

1699 Table 17: Web Agents Boolean Hyperparameters
 1700

1701	1702	Value	Flags
1703	1704	True	vision_support, use_ax_tree, use_tabs, use_focused_element, use_error_logs, use_history, use_action_history, use_screenshot, use_som, extract_visible_tag, extract_clickable_tag, use_thinking, use_concrete_example, use_abstract_example, use_hints, be_cautious, add_missparsed_messages
1705	1706	False	use_html, use_past_error_logs, use_think_history, use_diff, filter_visible_elements_only, filter_with_bid_only, filter_som_only, multiaction, strict, long_description, individual_examples, use_plan, use_criticise, use_memory, enable_chat

1714
 1715 **K STANDARD ERROR**
 1716

1717 Restricting to the MinEval subset, we average the results on each task across 3 different runs in Table
 1718 20. We give both the means and standard errors for the insight recall, factuality, distractor avoidance, and
 1719 report quality.
 1720

1721 **L EVALUATING LLM JUDGE SENSITIVITY ACROSS MODEL TYPES**
 1722

1723 Across models, replacing the GPT-4o judge with Llama-3.1-405B yields only minor differences in
 1724 evaluation outcomes (Table 21). This stability arises from the design of our evaluation protocol: almost all
 1725 metrics, insight recall, factuality, and distractor avoidance—are computed through a claim-based marking
 1726 strategy after breaking the model output into short, atomic statements. Large language models are highly
 1727

⁶<https://openai.com/index/hello-gpt-4o/>

1728

1729

1730

1731

1732 **⚡ Web Agents System Prompt**

1733

1734 You are an agent trying to solve a web task based on the content of the
 1735 page and user instructions. You can interact with the page and explore,
 1736 and send messages to the user. Each time you submit an action it will
 1737 be sent to the browser and you will receive a new page.

1738 You will be solving tasks that involve Deep Research, by
 1739 navigating websites and web apps with information useful
 1740 solving the task. You will need to gather insights from
 1741 data contained in the services provided and the internet
 1742 to complete your report. You have a maximum of 50 steps
 1743 to complete the task. Before the end, you must use the
 1744 action `{send.msg.to.user}`, which should contain a final Deep
 1745 Research report detailing everything the user needs to
 1746 know.

1747 You must sustain your claims in files, chats, or emails
 1748 from the enterprise environment or in websites you
 1749 searched. You must provide a citation (or an inline
 1750 citation, that works too) with the source of those claims
 1751 (e.g. << add citation examples from the documentation
 1752 >>). Do not make up citations if you haven't retrieved its
 1753 content.

1754 Here are some expected agent behavior:

1755 ****Enterprise Environment Interaction:****

- 1756 - Access Nextcloud files, Mattermost chats, emails, VNC desktop,
 1757 etc.
- 1758 - Extract relevant information from multiple sources
- 1759 - Navigate complex enterprise data landscapes

1760 ****Report Requirements:****

- 1761 - Synthesize findings into comprehensive research
 1762 report
- 1763 - Include proper citations for all claims (flexible format -
 1764 auto-normalized)
- 1765 - Draw meaningful insights and conclusions
- 1766 - Ground all statements in available evidence

1767 ****Citation Format (Flexible - Auto-Normalized):****

- 1768 - Files: 'quarterly_report.pdf', 'shared/budget-analysis.xlsx',
 1769 'Analysis document (reports/analysis.docx)'
- 1770 - URLs: Direct links or '[Article Title] (<https://example.com>)'
- 1771 - Emails: 'Email from alice@company.com on Jan 20,
 1772 2025'
- 1773 - Chat: 'Mattermost message from john.doe in Compliance team, General
 1774 channel'

1775 If you need navigate the internet (outside of the designated websites),
 1776 you can use the browser inside noVNC Desktop.

1777

1778

1779

1780

1781

Prompt 6: Extended instructions given to the Deep Research web agent.

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Table 18: Web Agents Non-Boolean Hyperparameters

Parameter	Value
chat_model.model_name	gpt-4.1
chat_model.max_total_tokens	32768
chat_model.max_input_tokens	28672
chat_model.max_new_tokens	4096
chat_model.temperature	0
action.action_set.subsets	webarena
action.action_set.retry_with_force	true
flags.max_prompt_tokens	28672
flags.max_trunc_itr	20
env.max_steps	50

⚡ Web Agents Task Intent Prompt

How can Lee's Market leverage FSMA 204 regulations to enhance food safety and customer trust?

Here is some information about the user:

ID: MNG0003

First name: John

Last name: Doe

...

Justification: As a regulatory affairs manager, John

...

Here is some information about the company:

Name: Lee's Market

Annual revenue: \$500M - \$600M

...

Target markets: Asian communities in the U.S. and ...

Prompt 7: Web Agents Task Intent Prompt

Table 19: Web Agents tends to get stuck on cycles of actions, and are unable to backtrack or to restart with a different application.

9. I have been repeatedly clicking on the “shared” folder (bid ‘194’) ... To proceed with the research on personalization strategies for Lee’s Market, I should open the “shared” folder to look for...

click('194')

10. I have clicked on the “shared” folder multiple times ... I will try clicking on the “shared” folder again to see if it opens and displays its contents.

click('190')

11. I have been repeatedly clicking on the “shared” folder (bid ‘194’) ... To proceed, I should try clicking on the “shared” folder again to attempt to open it and view any files ...

click('194')

12. I have navigated to the “shared” folder, but I have not yet opened it ... The next logical step is to open the “shared” folder to look for any relevant documents ...

click('194')

consistent on such simple yes/no judgments, leading to minimal variance across judges. The only metric with larger fluctuations is report quality, which is the only non-binary, holistic score. Overall, these results indicate that our findings are robust to the choice of LLM judge.

1836 Table 20: DRBA performance with different planning configurations on MinEval. We compare the base
 1837 agent with variants using Simple Research Planning (SRP), Complex Research Planning (CRP), Adaptive
 1838 Action Planning (AAP), and their combinations. Scores are reported for insight recall, factuality, distractor
 1839 avoidance, report quality, and the overall harmonic mean.

Configuration	Insight Recall	Factuality	Distractor Avoidance	Report Quality	Harmonic Mean
Base DRBA	.188 ± .038	.665 ± .09	.981 ± .01	.912 ± .004	.448
+ SRP	.137 ± .04	.622 ± .11	1.00 ± .00	.901 ± .006	.365
+ CRP	.154 ± .03	.705 ± .05	1.00 ± .00	.917 ± .004	.400
+ AAP	.197 ± .03	.604 ± .08	.995 ± .39	.928 ± .005	.454
+ SRP + AAP	.142 ± .04	.504 ± .10	.990 ± .39	.906 ± .007	.359
+ CRP + AAP	.188 ± .05	.691 ± .03	1.00 ± .00	.923 ± .006	.453

1848 Table 21: Comparison of MinEval results when switching the LLM judge from GPT-4o to Llama-3.1-405B.
 1849 Metrics show minimal variance in factuality and distractor avoidance, moderate variance in insight recall,
 1850 and largest variance in report quality.

Model	Judge	Insight Recall	Factuality	Distractor Avoidance	Report Quality
GPT-5	GPT-4o	39.63	65.17	92.86	93.42
	Llama-3.1-405B	38.92	65.11	92.40	91.83
DeepSeek Chat 3.1	GPT-4o	30.26	70.27	96.67	86.88
	Llama-3.1-405B	29.54	69.98	96.22	85.10
Qwen 2.5 72B	GPT-4o	26.82	58.35	97.65	89.64
	Llama-3.1-405B	26.11	58.12	97.20	87.45
GPT-4o	GPT-4o	17.31	60.84	98.33	91.62
	Llama-3.1-405B	16.85	60.31	98.05	89.82
Llama 3.1 405B	GPT-4o	20.16	69.75	97.90	91.26
	Llama-3.1-405B	19.72	69.42	97.55	89.51

M COMPLEX MODEL ABLATION RESULTS

1867 Extending our discussion in Section 5.3 to more GPT and Llama models in Table 22, we see that the
 1868 smaller GPT-5-mini model lags behind but still outperforms earlier closed-source backbones such as
 1869 GPT-4o and GPT-4o-mini, particularly in terms of harmonic mean. In addition, smaller variants of Llama
 1870 degrade metric results further. This further substantiates the claim that larger and more advanced models
 1871 tend to offer a better balance between recall, factuality, and overall report quality.

N QUANTITATIVE RESULTS PER TASK

1875 We show a detailed breakdown of the insights recall in Table 24, factuality in Table 25, distractor avoidance
 1876 in Table 26 and report quality in Table 27 on the MinEval subset for a variety of models.

O EFFECT OF NUMBER OF ITERATIONS

1881 We next analyze the effect of varying the number of research loop iterations when using DRBA with
 1882 GPT-5 as the backbone language model. Results for both the baseline configuration without explicit
 1883 planning and the complex planning setup are shown in Table 28. Overall, increasing the iteration budget
 1884 does not guarantee consistent improvements. With no planning, performance initially drops when the
 1885 agent executes more iterations, as additional exploration often introduces noise and distracts from key
 1886 insights. However, with a larger budget the agent partially recovers, suggesting that a small number of
 1887 additional iterations can help refine factual grounding, while excessive exploration reduces focus.

1888 For the complex planning setting, higher iterations improve certain metrics such as factuality, but this
 1889 comes at the cost of lower insight recall and reduced overall balance. This indicates that while more steps
 allow the agent to verify citations more carefully, they can also lead to fragmented reasoning and overfitting

1890 Table 22: Performance of DRBA on the MinEval subset using different backbone language models and
 1891 planning strategies. Scores are reported for insight recall, factuality, distractor avoidance, report quality,
 1892 and harmonic mean. Note that higher numbers corresponds to better scores, and the best result on each
 1893 metric is bolded.

Model	Planning	Insight Recall	Factuality	Distractor Avoidance	Report Quality	Harmonic Mean
GPT-5	None	38.33	74.52	95.14	94.56	79.80
GPT-5	Simple	37.86	72.09	97.14	95.34	78.92
GPT-5	Complex	39.63	65.17	92.86	93.42	77.74
GPT-5-mini	None	25.68	58.76	96.51	84.48	60.21
GPT-5-mini	Simple	28.37	58.96	95.81	85.74	63.73
GPT-5-mini	Complex	26.57	51.07	94.48	86.28	58.89
GPT-4o	None	17.53	65.43	99.05	92.58	48.47
GPT-4o	Simple	20.37	62.35	98.57	93.12	53.06
GPT-4o	Complex	17.31	60.84	98.33	91.62	47.35
GPT-4o-mini	None	13.75	46.68	99.05	84.72	38.33
GPT-4o-mini	Simple	13.67	55.59	97.14	85.86	39.39
GPT-4o-mini	Complex	13.08	48.95	97.14	86.04	37.28
GPT-OSS-120B	None	22.40	29.24	97.14	84.24	44.82
GPT-OSS-120B	Simple	17.42	27.48	97.14	84.36	38.38
GPT-OSS-120B	Complex	18.31	38.92	98.1	85.44	44.14
Llama-3.1-405B-Instruct	None	17.37	78.91	100.00	90.48	49.78
Llama-3.1-405B-Instruct	Simple	16.97	79.27	98.10	92.34	48.87
Llama-3.1-405B-Instruct	Complex	20.16	69.75	97.90	91.26	53.86
Llama-3.1-70b-Instruct	None	18.54	64.64	96.70	85.32	50.08
Llama-3.1-70b-Instruct	Simple	16.28	69.43	97.62	84.96	46.41
Llama-3.1-70b-Instruct	Complex	17.02	52.82	98.10	86.16	45.46
DeepSeek-V3.1	None	25.15	72.66	97.43	86.52	62.59
DeepSeek-V3.1	Simple	25.56	73.45	96.67	87.36	63.29
DeepSeek-V3.1	Complex	30.26	70.27	96.67	86.88	69.28
Qwen-2.5-72B-Instruct	Complex	26.82	58.35	97.65	89.64	61.75
Qwen-2.5-72B-Instruct	None	25.55	69.39	98.10	90.24	62.64
Qwen-2.5-72B-Instruct	Simple	23.20	67.23	98.10	88.14	58.58

1919 Table 23: Total average Insight Recall scores per model and insight source type computed on all the
 1920 results available for each model running in Complex Research Plan mode. Insights embedded in enterprise
 1921 sources are more easily retrieved by DRBA in all the models.

Model	Enterprise Fact	External Fact
gpt-5	0.597	0.0
deepseek-chat-v3.1	0.472	0.0
gpt-5-mini	0.444	0.0
qwen-2.5-72b-instruct	0.417	0.0
llama-3.1-405b-instruct	0.347	0.0
gpt-oss-120b	0.333	0.0
gpt-4o-mini	0.194	0.0
llama-3.1-70b-instruct	0.194	0.0
gpt-4o	0.182	0.0

1935 to peripheral evidence. The best overall performance emerges at moderate iteration counts, highlighting
 1936 the importance of carefully tuning the iteration budget rather than simply scaling up the number of steps.

P DATA GENERATION PROMPTS

P.1 COMPANY AND PERSONA DATA GENERATION

1943 In this section we give the prompts used for company generation 8 and persona generation 9.

1944 Table 24: Mean and standard error of the insight recall metric for the first five tasks, obtained from three
 1945 runs of on *DRBench* our agent (DRBA) using 15 iterations across different backbone models.
 1946

Configuration	Plan	DR0001	DR0002	DR0003	DR0004	DR0005
GPT-5	None	.222 ± .056	.429 ± .000	.467 ± .033	.519 ± .098	.281 ± .035
GPT-5	Simple	.222 ± .056	.381 ± .048	.533 ± .033	.370 ± .098	.386 ± .046
GPT-5	Complex	.278 ± .056	.381 ± .126	.567 ± .067	.370 ± .037	.386 ± .046
GPT-5-mini	None	.111 ± .056	.286 ± .000	.367 ± .033	.222 ± .064	.298 ± .018
GPT-5-mini	Simple	.222 ± .056	.286 ± .082	.333 ± .033	.296 ± .074	.281 ± .063
GPT-5-mini	Complex	.000 ± .000	.381 ± .126	.367 ± .067	.370 ± .098	.211 ± .053
GPT-4o	None	.111 ± .056	.238 ± .048	.167 ± .033	.185 ± .074	.175 ± .018
GPT-4o	Simple	.167 ± .000	.333 ± .048	.300 ± .000	.148 ± .037	.070 ± .018
GPT-4o	Complex	.111 ± .056	.238 ± .095	.300 ± .100	.111 ± .000	.105 ± .000
GPT-4o-mini	None	.000 ± .000	.095 ± .048	.267 ± .033	.185 ± .037	.140 ± .035
GPT-4o-mini	Simple	.056 ± .056	.190 ± .048	.167 ± .067	.148 ± .074	.123 ± .018
GPT-4o-mini	Complex	.000 ± .000	.190 ± .048	.267 ± .033	.074 ± .037	.123 ± .018
GPT-OSS-120B	None	.111 ± .111	.143 ± .000	.433 ± .033	.222 ± .000	.211 ± .030
GPT-OSS-120B	Simple	.056 ± .056	.143 ± .000	.367 ± .033	.148 ± .098	.158 ± .061
GPT-OSS-120B	Complex	.000 ± .000	.190 ± .048	.333 ± .067	.111 ± .064	.281 ± .063
Llama-3.1-405B-Instruct	None	.167 ± .000	.143 ± .000	.233 ± .088	.185 ± .074	.140 ± .035
Llama-3.1-405B-Instruct	Simple	.222 ± .056	.190 ± .048	.167 ± .033	.111 ± .064	.158 ± .053
Llama-3.1-405B-Instruct	Complex	.111 ± .056	.238 ± .048	.300 ± .058	.148 ± .098	.211 ± .030
Llama-3.1-70B-Instruct	None	.167 ± .000	.381 ± .048	.200 ± .000	.074 ± .037	.105 ± .030
Llama-3.1-70B-Instruct	Simple	.056 ± .056	.286 ± .082	.200 ± .058	.185 ± .098	.088 ± .046
Llama-3.1-70B-Instruct	Complex	.167 ± .000	.238 ± .048	.267 ± .033	.074 ± .074	.105 ± .000
DeepSeek-V3.1	None	.167 ± .000	.286 ± .082	.300 ± .058	.259 ± .037	.246 ± .046
DeepSeek-V3.1	Simple	.278 ± .056	.238 ± .048	.333 ± .033	.148 ± .074	.281 ± .046
DeepSeek-V3.1	Complex	.167 ± .000	.095 ± .048	.600 ± .058	.370 ± .037	.281 ± .035
Qwen-2.5-72B-Instruct	None	.222 ± .056	.238 ± .048	.400 ± .058	.259 ± .037	.158 ± .061
Qwen-2.5-72B-Instruct	Simple	.111 ± .056	.333 ± .048	.333 ± .088	.259 ± .037	.123 ± .018
Qwen-2.5-72B-Instruct	Complex	.167 ± .096	.143 ± .082	.400 ± .058	.333 ± .000	.298 ± .076

⚡ Company Generation Prompt

1979 Generate a realistic company structure for {company_name} in the
 1980 {industry} industry.

1981 Company size: {size} ({employee_range} employees)

1982 The company should focus on this domain {domain}

1983 EXTERNAL INSIGHTS: {external_insights}

1984 Return ONLY a valid JSON object with this structure:
 1985 {output_structure}

1986 Make it realistic for the {industry} industry.

1991 Prompt 8: Company Generation Prompt Template.

P.2 QUESTION GENERATION

1994 In this section we give the prompt used to generate our deep research questions 10.

1998 Table 25: Mean and standard error of the factuality metric for the first five tasks, obtained from our agent
 1999 (DRBA) using 15 iterations across different backbone models.

2001	Configuration	Plan	DR0001	DR0002	DR0003	DR0004	DR0005
2002	GPT-5	None	.761 ± .072	.504 ± .075	.866 ± .007	.833 ± .019	.762 ± .077
2003	GPT-5	Simple	.714 ± .050	.384 ± .076	.848 ± .034	.812 ± .070	.846 ± .029
2004	GPT-5	Complex	.730 ± .060	.291 ± .094	.782 ± .012	.782 ± .064	.674 ± .121
2005	GPT-5-mini	None	.585 ± .045	.297 ± .119	.705 ± .039	.704 ± .067	.647 ± .098
2006	GPT-5-mini	Simple	.647 ± .120	.299 ± .056	.624 ± .041	.694 ± .028	.683 ± .020
2007	GPT-5-mini	Complex	.309 ± .126	.381 ± .161	.699 ± .047	.692 ± .111	.472 ± .114
2008	GPT-4o	None	.792 ± .150	.490 ± .110	.827 ± .056	.570 ± .058	.593 ± .204
2009	GPT-4o	Simple	.485 ± .262	.512 ± .131	.813 ± .041	.693 ± .139	.614 ± .121
2010	GPT-4o-mini	Simple	.475 ± .166	.653 ± .097	.704 ± .037	.542 ± .110	.406 ± .020
2011	GPT-4o	Complex	.828 ± .043	.265 ± .133	.800 ± .000	.690 ± .128	.459 ± .235
2012	GPT-4o-mini	None	.611 ± .056	.429 ± .092	.622 ± .062	.481 ± .209	.191 ± .046
2013	GPT-4o-mini	Complex	.557 ± .030	.324 ± .169	.580 ± .075	.642 ± .119	.344 ± .144
2014	GPT-OSS-120B	None	.144 ± .099	.150 ± .035	.386 ± .040	.337 ± .117	.445 ± .051
2015	GPT-OSS-120B	Simple	.074 ± .074	.128 ± .072	.410 ± .090	.311 ± .155	.451 ± .080
2016	GPT-OSS-120B	Complex	.368 ± .061	.178 ± .078	.564 ± .064	.400 ± .076	.435 ± .190
2017	Llama-3.1-405B-Instruct	None	.852 ± .087	.726 ± .158	.803 ± .028	.820 ± .066	.745 ± .022
2018	Llama-3.1-405B-Instruct	Simple	.802 ± .125	.638 ± .202	.800 ± .074	.892 ± .035	.832 ± .083
2019	Llama-3.1-405B-Instruct	Complex	.789 ± .053	.392 ± .154	.792 ± .055	.771 ± .073	.745 ± .100
2020	Llama-3.1-70B-Instruct	None	.618 ± .109	.431 ± .160	.684 ± .104	.812 ± .021	.687 ± .073
2021	Llama-3.1-70B-Instruct	Simple	.608 ± .173	.681 ± .069	.800 ± .069	.826 ± .067	.557 ± .143
2022	Llama-3.1-70B-Instruct	Complex	.588 ± .082	.286 ± .108	.686 ± .011	.522 ± .270	.559 ± .240
2023	DeepSeek-V3.1	None	.860 ± .014	.518 ± .085	.818 ± .041	.679 ± .095	.757 ± .057
2024	DeepSeek-V3.1	Simple	.696 ± .041	.531 ± .086	.922 ± .056	.769 ± .035	.754 ± .082
2025	DeepSeek-V3.1	Complex	.581 ± .042	.657 ± .024	.838 ± .050	.774 ± .053	.662 ± .098
2026	Qwen-2.5-72B-Instruct	None	.674 ± .077	.493 ± .109	.866 ± .002	.741 ± .060	.696 ± .060
2027	Qwen-2.5-72B-Instruct	Simple	.806 ± .049	.540 ± .174	.741 ± .074	.724 ± .101	.550 ± .148
2028	Qwen-2.5-72B-Instruct	Complex	.626 ± .114	.396 ± .056	.723 ± .053	.587 ± .139	.586 ± .055

2030

2031

⚡ Persona Generation Prompt

2032

2033 Generate `{persona_count}` diverse employee personas for `{company_name}` in
 2034 the `{industry}` industry.

2035

2036

The personas should focus on this domain: `{domain}`

2037

2038

Create diverse roles across seniority levels: Junior, Mid, Senior, Executive

2039

2040

Return ONLY a valid JSON array with this exact format:
`{output_structure}`

2041

2042

Make personas realistic with appropriate responsibilities for their
 2043 roles.

2044

2045

2046

Prompt 9: Persona Generation Prompt.

2047

2048

2049

P.3 PUBLIC SOURCE AND INSIGHT COLLECTION

2050

2051

In this section we give the prompt used to generate external insights 11. The URLs used for external insight extraction and deep research question creation can be found in Table 29.

2052 Table 26: Mean and standard error of the distractor avoidance metric for the first five tasks, obtained from
 2053 three runs of on *DRBench* our agent (DRBA) using 15 iterations across different backbone models.
 2054

2055 Configuration	2056 Plan	2057 DR0001	2058 DR0002	2059 DR0003	2060 DR0004	2061 DR0005
2056 GPT-5	2057 None	2058 $.857 \pm .000$	2059 $.900 \pm .058$	2060 $1.00 \pm .000$	2061 $1.00 \pm .000$	2062 $1.00 \pm .000$
2057 GPT-5	2058 Simple	2059 $.857 \pm .000$	2060 $1.00 \pm .000$	2061 $1.00 \pm .000$	2062 $1.00 \pm .000$	2063 $1.00 \pm .000$
2058 GPT-5	2059 Complex	2060 $.905 \pm .048$	2061 $.900 \pm .058$	2062 $.933 \pm .000$	2063 $.905 \pm .024$	2064 $1.00 \pm .000$
2059 GPT-5-mini	2060 None	2061 $.905 \pm .048$	2062 $.967 \pm .033$	2063 $.978 \pm .022$	2064 $.976 \pm .024$	2065 $1.00 \pm .000$
2060 GPT-5-mini	2061 Simple	2062 $.857 \pm .000$	2063 $.933 \pm .033$	2064 $1.00 \pm .000$	2065 $1.00 \pm .000$	2066 $1.00 \pm .000$
2061 GPT-5-mini	2062 Complex	2063 $.857 \pm .000$	2064 $.867 \pm .133$	2065 $1.00 \pm .000$	2066 $1.00 \pm .000$	2067 $1.00 \pm .000$
2062 GPT-4o	2063 None	2064 $.952 \pm .048$	2065 $1.00 \pm .000$	2066 $1.00 \pm .000$	2067 $1.00 \pm .000$	2068 $1.00 \pm .000$
2063 GPT-4o	2064 Simple	2065 $.952 \pm .048$	2066 $1.00 \pm .000$	2067 $1.00 \pm .000$	2068 $.976 \pm .024$	2069 $1.00 \pm .000$
2064 GPT-4o	2065 Complex	2066 $.952 \pm .048$	2067 $1.00 \pm .000$	2068 $1.00 \pm .000$	2069 $.964 \pm .036$	2070 $1.00 \pm .000$
2065 GPT-4o-mini	2066 None	2067 $.952 \pm .048$	2068 $1.00 \pm .000$	2069 $1.00 \pm .000$	2070 $1.00 \pm .000$	2071 $1.00 \pm .000$
2066 GPT-4o-mini	2067 Simple	2068 $.857 \pm .000$	2069 $1.00 \pm .000$	2070 $1.00 \pm .000$	2071 $1.00 \pm .000$	2072 $1.00 \pm .000$
2067 GPT-4o-mini	2068 Complex	2069 $.857 \pm .000$	2070 $1.00 \pm .000$	2071 $1.00 \pm .000$	2072 $1.00 \pm .000$	2073 $1.00 \pm .000$
2068 GPT-OSS-120B	2069 None	2070 $.857 \pm .000$	2071 $1.00 \pm .000$	2072 $1.00 \pm .000$	2073 $1.00 \pm .000$	2074 $1.00 \pm .000$
2069 GPT-OSS-120B	2070 Simple	2071 $.857 \pm .000$	2072 $1.00 \pm .000$	2073 $1.00 \pm .000$	2074 $1.00 \pm .000$	2075 $1.00 \pm .000$
2070 GPT-OSS-120B	2071 Complex	2072 $.905 \pm .048$	2073 $1.00 \pm .000$	2074 $1.00 \pm .000$	2075 $1.00 \pm .000$	2076 $1.00 \pm .000$
2071 Llama-3.1-405B-Instruct	2072 None	2073 $1.00 \pm .000$	2074 $1.00 \pm .000$	2075 $1.00 \pm .000$	2076 $1.00 \pm .000$	2077 $1.00 \pm .000$
2072 Llama-3.1-405B-Instruct	2073 Simple	2074 $.905 \pm .048$	2075 $1.00 \pm .000$	2076 $1.00 \pm .000$	2077 $1.00 \pm .000$	2078 $1.00 \pm .000$
2073 Llama-3.1-405B-Instruct	2074 Complex	2075 $.952 \pm .048$	2076 $.967 \pm .033$	2077 $1.00 \pm .000$	2078 $.976 \pm .024$	2079 $1.00 \pm .000$
2074 Llama-3.1-70B-Instruct	2075 None	2076 $.905 \pm .048$	2077 $1.00 \pm .000$	2078 $.978 \pm .022$	2079 $.952 \pm .048$	2080 $1.00 \pm .000$
2075 Llama-3.1-70B-Instruct	2076 Simple	2077 $.905 \pm .048$	2078 $1.00 \pm .000$	2079 $1.00 \pm .000$	2080 $.976 \pm .024$	2081 $1.00 \pm .000$
2076 Llama-3.1-70B-Instruct	2077 Complex	2078 $.905 \pm .048$	2079 $1.00 \pm .000$	2080 $1.00 \pm .000$	2081 $1.00 \pm .000$	2082 $1.00 \pm .000$
2077 DeepSeek-V3.1	2078 None	2079 $.905 \pm .048$	2080 $.967 \pm .033$	2081 $1.00 \pm .000$	2082 $1.00 \pm .000$	2083 $1.00 \pm .000$
2078 DeepSeek-V3.1	2079 Simple	2080 $.857 \pm .000$	2081 $1.00 \pm .000$	2082 $1.00 \pm .000$	2083 $.976 \pm .024$	2084 $1.00 \pm .000$
2079 DeepSeek-V3.1	2080 Complex	2081 $.905 \pm .048$	2082 $1.00 \pm .000$	2083 $1.00 \pm .000$	2084 $.929 \pm .000$	2085 $1.00 \pm .000$
2080 Qwen-2.5-72B-Instruct	2081 None	2082 $1.00 \pm .000$	2083 $1.00 \pm .000$	2084 $1.00 \pm .000$	2085 $.905 \pm .024$	2086 $1.00 \pm .000$
2081 Qwen-2.5-72B-Instruct	2082 Simple	2083 $.952 \pm .048$	2084 $1.00 \pm .000$	2085 $1.00 \pm .000$	2086 $.952 \pm .024$	2087 $1.00 \pm .000$
2082 Qwen-2.5-72B-Instruct	2083 Complex	2084 $.952 \pm .048$	2085 $1.00 \pm .000$	2086 $.978 \pm .022$	2087 $.952 \pm .048$	2088 $1.00 \pm .000$

P.4 INTERNAL INSIGHT GENERATION

2087 In this section we give the prompts to generate both internal insights 12 and internal distractors 13.
 2088

P.5 FILE GENERATION

2091 In this section we give the prompts used for generating each of the file types used in our tasks, which
 2092 we list as follows:

- 2093 • **PDF:** Prompts 18, 19, and 20
- 2094 • **Excel:** Prompts 21, 22, and 23
- 2095 • **Powerpoint:** Prompts 24, 25, and 26
- 2096 • **Email:** Prompts 27, 28, and 29
- 2097 • **Chat:** Prompts 30, 31, 29, and 33

Q EVALUATION PROMPTS

2103 In this section we give the prompts for decomposing reports into atomic insights 14, computing insight
 2104 recall 15, computing factuality 16, and computing report quality 17. These prompts are discussed in detail
 2105 in Section 5.1.

Table 27: Mean and standard error of the report quality metric for the first five tasks, obtained from three runs of *DRBench* with 15 iterations across different backbone models.

Configuration	Plan	DR0001	DR0002	DR0003	DR0004	DR0005
GPT-5	None	.936 ± .008	.918 ± .004	.924 ± .005	.909 ± .001	.927 ± .009
GPT-5	Simple	.942 ± .000	.927 ± .008	.936 ± .006	.915 ± .002	.933 ± .007
GPT-5	Complex	.948 ± .007	.921 ± .001	.940 ± .008	.922 ± .009	.929 ± .008
GPT-5-mini	None	.892 ± .002	.884 ± .007	.879 ± .004	.891 ± .000	.886 ± .005
GPT-5-mini	Simple	.901 ± .009	.889 ± .002	.887 ± .001	.895 ± .008	.892 ± .003
GPT-5-mini	Complex	.896 ± .001	.882 ± .006	.884 ± .003	.889 ± .009	.890 ± .001
GPT-4o	None	.927 ± .000	.911 ± .003	.903 ± .001	.918 ± .009	.909 ± .002
GPT-4o	Simple	.934 ± .008	.919 ± .000	.911 ± .009	.923 ± .001	.916 ± .000
GPT-4o	Complex	.929 ± .009	.914 ± .002	.905 ± .000	.920 ± .008	.913 ± .009
GPT-4o-mini	None	.886 ± .004	.874 ± .008	.861 ± .007	.872 ± .002	.879 ± .006
GPT-4o-mini	Simple	.893 ± .002	.881 ± .005	.867 ± .004	.878 ± .001	.884 ± .003
GPT-4o-mini	Complex	.889 ± .003	.877 ± .006	.864 ± .005	.875 ± .000	.882 ± .004
GPT-OSS-120B	None	.872 ± .007	.861 ± .001	.849 ± .009	.858 ± .006	.866 ± .008
GPT-OSS-120B	Simple	.878 ± .006	.867 ± .009	.854 ± .008	.863 ± .004	.872 ± .007
GPT-OSS-120B	Complex	.874 ± .007	.863 ± .000	.851 ± .008	.860 ± .005	.869 ± .006
Llama-3.1-405B-Instruct	None	.914 ± .000	.903 ± .003	.897 ± .001	.909 ± .008	.902 ± .002
Llama-3.1-405B-Instruct	Simple	.921 ± .008	.910 ± .001	.904 ± .000	.915 ± .009	.908 ± .000
Llama-3.1-405B-Instruct	Complex	.917 ± .009	.906 ± .002	.899 ± .001	.911 ± .008	.905 ± .001
Llama-3.1-70B-Instruct	None	.889 ± .003	.877 ± .007	.869 ± .005	.881 ± .001	.873 ± .004
Llama-3.1-70B-Instruct	Simple	.895 ± .002	.883 ± .005	.874 ± .004	.886 ± .000	.878 ± .003
Llama-3.1-70B-Instruct	Complex	.891 ± .003	.879 ± .006	.871 ± .005	.883 ± .001	.875 ± .004
DeepSeek-V3.1	None	.884 ± .004	.872 ± .008	.864 ± .006	.876 ± .002	.869 ± .005
DeepSeek-V3.1	Simple	.890 ± .003	.878 ± .006	.870 ± .005	.881 ± .001	.874 ± .004
DeepSeek-V3.1	Complex	.886 ± .004	.874 ± .007	.866 ± .006	.878 ± .002	.871 ± .005
Qwen-2.5-72B-Instruct	None	.901 ± .001	.889 ± .005	.881 ± .002	.893 ± .009	.885 ± .003
Qwen-2.5-72B-Instruct	Simple	.908 ± .000	.896 ± .003	.888 ± .001	.899 ± .008	.891 ± .002
Qwen-2.5-72B-Instruct	Complex	.904 ± .001	.892 ± .004	.884 ± .002	.895 ± .009	.888 ± .003

Table 28: Effect of the number of research loop iterations on the performance of DRBA with GPT-5 as the backbone model, on MinEval.

Planning Method	# Iterations	Insight Recall	Factuality	Distractor Avoidance	Report Quality	Harmonic Mean
None	15	39.45	72.65	93.14	94.56	66.20
None	30	28.80	69.03	98.57	96.12	57.34
None	50	37.10	78.84	100.00	93.48	66.30
Complex	15	44.44	62.51	90.95	93.12	66.41
Complex	30	31.61	73.94	94.38	94.76	60.32
Complex	50	38.16	66.05	94.38	92.64	63.76

R HUMAN PREFERENCE EVALUATION

We calculate a human score for model a task t as:

$$S_{a,t} = \frac{1}{n} \sum_{i=1}^n s_{a,i}, \text{ where } s_{a,i} = \begin{cases} 1, & \text{if human_choice is } a \text{ or "both good"} \\ 0, & \text{otherwise} \end{cases}$$

, where n is the number of groundtruth insights in task t , $s_{a,i}$ is the human score of model a on insight i . Figure8 shows that the insight recall metric is on par with human decision.

Table 29: Public URLs For Deep Research Task Creation.

Industry	Domain	Reference
Retail	Compliance	Grocers on FSMA-204 Compliance (GroceryDive) ↗
Retail	CRM	Grocery Loyalty & Inflation (EagleEye) ↗
Retail	Market Analysis	Grocery Trends Outlook 2025 (GroceryDive) ↗
Retail	ITSM	Retail IT Optimization (Thirdera) ↗
Retail	CSM	Chatbots & Grocery Interactions (GroceryDoppio) ↗
Retail	Knowledge Mgmt	Retail Knowledge Management (Knowmax) ↗
Retail	Sales	Personalization in Action (BCG) ↗
Retail	Cybersecurity	Retail Cybersecurity Threats (VikingCloud) ↗
Retail	Public Relations	Walmart CSR Strategy (SunriseGeek) ↗
Healthcare	Compliance	Telehealth Regulations (HealthcareDive) ↗
Healthcare	CRM	Future of Healthcare CRM (WTT Solutions) ↗
Healthcare	Market Analysis	Future of Telehealth (CHG Healthcare) ↗
Healthcare	ITSM	Healthcare ITSM (Topdesk) ↗
Healthcare	CSM	Patient Engagement Tech (TechTarget) ↗
Healthcare	Knowledge Mgmt	Knowledge Mgmt in Healthcare (C8Health) ↗
Healthcare	Sales	Sales for Digital Health (Medium) ↗
Healthcare	Marketing	Marketing Telehealth Services (MarketingInsider) ↗
Healthcare	Cybersecurity	Healthcare Cybersecurity 2024 (AHA) ↗
Automobiles	Compliance	Evolving EV Regulations (WardsAuto) ↗
Automobiles	CRM	Salesforce Automotive Cloud (TechTarget) ↗
Automobiles	CSM	EV Aftersales Support (EVReport) ↗
Automobiles	Sales	Tesla vs Dealerships (TheWeek) ↗
Automobiles	Research	AI for EV Optimization (Here.com) ↗
Automobiles	Cybersecurity	Cybersecurity Risks in Cars (HelpNetSecurity) ↗
Automobiles	Quality Assurance	EV Quality Issues (GreenCars) ↗
Automobiles	Asset Mgmt	Digital Twins in Autos (RTInsights) ↗
Automobiles	Market Analysis	Global EV Outlook 2024 (IEA) ↗

Figure 8: Comparison of Human Scores and Insight Recall Scores. As can be seen the human evaluation results are aligned with our automated evaluation.

2214
2215**⚡ Deep Research Question Generation Prompt**2216
2217

Generate 3 Deep Research (DR) questions for the following business context:

2218

Persona: {persona_name} - {persona_role}
Department: {persona_department}
Responsibilities: {persona_responsibilities}
Company: {company_name} ({company_industry})
Domain: {domain}

2223

External Insights: {external_insights}

2225

Generate 3 Deep Research questions that:

2226

1. Are appropriate for the persona's role and department
2. Require analysis of the provided internal insights
3. Consider the external market context ...

2229

Each question should be 1 sentence of 15 words max, in plain english, and end with a question mark. Do not include any preamble or explanation - return only the JSON array.

2233

Return ONLY a valid JSON array with this structure:
{output_structure}

2236

2237

2238

Prompt 10: Deep Research Question Generation Prompt Template. Subquestions are generated to help human annotators select good DR questions.

2241

2242

⚡ External Insight Extraction Prompt

2244

You will be given a report (with url, and date). Based on the report, generate 3 external insights that summarize important findings, trends, or takeaways from the report.

2248

2249
2250Output Format
{output_structure}

2251

Url: {url}
Industry: {industry}
Domain: {domain}
Company Information: {company_information}

2255

Important notes

2256

Focus only on insights that are external and grounded in the report. Insights should be concise, factual, and directly tied to the retail industry context.

2259

2260

2261

Prompt 11: External Insight Extraction Prompt.

2262

2263

2264

S HUMAN VALIDATION OF THE LLM-AS-A-JUDGE EVALUATION

2265

2266

2267

To validate the reliability of our LLM-as-a-judge evaluation protocol, we conducted an additional human study. Specifically, we recruited four human evaluators and asked them to determine, for each predicted

2268

⚡ Internal Supporting Insight Generation Prompt

2269

2270

2271

2272

2273

2274

2275

Based on the Deep Research (DR) Question, external market insights, company context, and previous internal insights, generate 3 specific QA pair that an expert data scientist would need to get in order to address the DR Question.

2276

Company: {company.name} - {company.description}

2277

Industry: {industry}

2278

Company Size: {company.size} ({employee_count})

2279

Annual Revenue: {annual_revenue}

2280

Persona Context: {persona_context}

2281

DR Question: {dr_question}

2282

External Market Context (for inspiration): {external_context}

2283

QA History: {qa.list}

2284

Insight Requirements:

2285

- Use the DR Question as the central theme for the answer.

2286

- Draw inspiration and supporting details from the other internal insights and external insights provided.

2287

- Include QUANTITATIVE DATA in the answer: metrics, percentages, dollar amounts, timeframes, KPIs.

2288

Specific Question Instructions

2289

- the specific question should be a question that would be a step towards resolving the DR Question {additional_question_instructions}

2290

Answer Instructions

2291

- the answer should be 12 words max and minimum 5 words {additional_answer_instructions}

2292

Justification Instructions

2293

- the justification should directly explain how the specific_question, answer pair help address the DR Question in 15 words max

2294

Misc Instructions

2295

- the filename should be 3 words max with dashes in between, do not mention the file type in the filename

2296

- use the example below as inspiration but do not use it directly

2297

Return ONLY a valid JSON object with this exact structure:

2298

{output_structure}

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

Prompt 12: Internal Supporting Insight Generation Prompt Template. *specific_questions* and *justification* help human annotators to select good insights.

insight, whether it appeared in the corresponding ground truth insight list. We then compared the human judgments against the LLM-as-a-judge decisions used in our benchmark.

Across 264 evaluated insights, we observed over **91.3% agreement** between the human annotators and the LLM-based judge. We further measured inter-rater alignment using Cohen's κ (Cohen, 1960), obtaining a score of **0.683**, which indicates *substantial agreement* (Gwet, 2001). These results confirm that our LLM-as-a-judge setup closely aligns with human judgment and provides a reliable and scalable evaluation mechanism for insight recall.

2322

2323 **⚡ Internal Distractor Insight Generation Prompt**

2324 Based on the Deep Research (DR) Question, external

2325 market insights, company context, and previous internal

2326 insights, generate 3 specific QA pairs that are DISTRACTOR

2327 questions

2328 - these should be questions that an expert data scientist might

2329 ask about the company but are NOT relevant to addressing the DR

2330 Question.

2331 Company: {company.name} - {company.description}

2332 Industry: {industry}

2333 Company Size: {company_size} ({employee_count})

2334 Annual Revenue: {annual_revenue}

2335 Persona Context: {persona_context}

2336 DR Question: {dr_question}

2337 External Market Context (for inspiration): {external_context}

2338 QA History: {qa_list}

2339 DISTRACTOR Requirements:

2340 - Generate questions that are plausible for this

2341 company and industry but DO NOT help address the DR

2342 Question.

2343 - The questions should be about the company's operations, metrics, or

2344 business but tangential to the DR Question.

2345 - Include QUANTITATIVE DATA in the answer: metrics, percentages, dollar

2346 amounts, timeframes, KPIs.

2347 - Focus on different business areas that are NOT central to the

2348 DR Question (e.g. if DR Question is about pricing, ask about HR

2349 metrics).

2350 Specific Question Instructions

2351 - the specific question should be a plausible business

2352 question for this company but NOT related to the DR

2353 Question

2354 - the specific_question should lead to a quantitative answer and should

2355 be dated such as Q3 of 2025, the question should contain a date like Q2

2356 of 2024

2357 - the specific_question should be 10 words max

2358 - make sure to be different from any question in the

2359 qa_list

2360 - choose business areas like: HR metrics, facility costs, IT

2361 infrastructure, compliance, training, etc. that are UNRELATED to the

2362 DR Question

2363 - make sure to be different from any question in the QA

2364 History

2365 Answer Instructions {answer_instructions}

2366 Justification Instructions

2367 - the justification should explain why this specific_question

2368 is NOT relevant to addressing the DR Question in 15 words

2369 max

2370 Misc Instructions {misc_instructions}

2371

2372 Return ONLY a valid JSON object with this exact structure:

2373 {output_structure}

2374 Prompt 13: Internal Distractor Insight Generation Prompt. *specific_questions* and *justification* help human

2375 annotators to select good insights.

2376
2377**⚡ Breaking Report into Insights Prompt**2378
2379

Please break down the following report text into insight claims. Each insight claim should be:

2380

1. A single insight, that might include multiple statements and claims
2. Independent and self-contained
3. Each claim can have more than one sentence, but should be focused on a single insight
4. Support each insight with citations from the report text following these specific rules: {rules}
5. Citations should be in one of these formats (various formats will be automatically normalized): {citation_formats}
6. Do not include general summaries, opinions, or claims that lack citation, just the sentences that are facts.
7. Each claim should be a concise but complete sentence.

2381

Report text: {report_text}

2382

Output format: Please return the insight claims as a JSON array. For example: {output_structure}

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

Prompt 14: Insight Extraction Prompt.

T ROBUSTNESS OF INSIGHT RECALL TO PARAPHRASING

2407

A potential concern is whether our Insight Recall metric is overly sensitive to wording differences and fails to recognize paraphrased or partially reworded insights. Our evaluation protocol, however, is designed to focus on the presence of key factual elements rather than exact lexical similarity. The LLM-as-a-judge prompt explicitly assesses whether the *core facts* of an insight appear in the predicted report, independent of phrasing.

2408

To evaluate robustness, we selected the ground truth insight and then generated three paraphrased versions. For example for the following insight:

2409

“Lee’s Market tracks 250 high-risk food products as of Q3 2024, affecting 30 percent of inventory.”

2410

We generated the following three paraphrased versions:

2411

- “As of Q3 2024, Lee’s Market is monitoring 250 high-risk food items, which account for about 30 percent of its inventory.”
- “Lee’s Market tracks 250 high-risk foods in Q3 2024, representing roughly 30 percent of what it stocks.”
- “In Q3 2024, Lee’s Market has 250 high-risk products under tracking, making up 30 percent of its inventory.”

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

All paraphrased forms produced the same recall outcome, demonstrating that the judge consistently recognizes equivalent factual content.

We further tested paraphrase robustness across 10 reports, generating multiple paraphrase variants per insight and evaluating Insight Recall over 4 runs. The observed variance was 0.0017, indicating extremely low sensitivity to rewording. This confirms that Insight Recall reliably captures factual equivalence rather than surface-level phrasing differences.

2430

⚡ Insight Recall Prompt

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

Your goal is to check if one of the Predicted Insights extracted from a report is a groundtruth insight. You must be STRICT and pay attention to every small detail.

Instructions:

- * Evaluate if the Predicted Insights contain sufficient information to derive a groundtruth insight.
- * Select the insight that most closely matches the groundtruth insight. Select one and only one insight.
- * Answer of yes or no where:
 - yes: Selected insight contains comprehensive information to fully derive the expected insight
 - no: Selected insight lacks the necessary information, misses key details, or has significant gaps
- * Be STRICT - do not answer yes for partial matches, vague similarities, or general information.

However, no exact wording is required and paraphrasing is acceptable.

- * IMPORTANT: Only consider details given in the groundtruth insight when answering yes or no. Don't expect anything more than what is given in the groundtruth insight.
- * Focus on factual accuracy, completeness, and specificity.

Predicted Insights: {claims_text}

Groundtruth Insight: {gold_insight}

Return a valid json dictionary with the following structure:
{output_structure}

Ensure only a json dictionary is returned, and return nothing else.

Prompt 15: Insight Recall Scoring Prompt.

U INSIGHT LIMIT DESIGN AND LIMITATIONS

We chose the “groundtruth + five” limit because existing works, including Mind2Web 2 and DeepResearcher, do not provide mechanisms to prevent agents from achieving perfect recall by copying large sections of the source files. Our early experiments showed that without this constraint, several agents achieved near-100% recall simply by extracting entire documents.

The +5 buffer allows agents to report a small number of additional insights that may reasonably arise during deep research, since it is difficult to guarantee that the groundtruth dataset contains every relevant insight. However, this design also limits our ability to reward legitimate novel insight discovery. As the community develops more robust metrics for insight coverage and novelty, DRBench can readily incorporate them.

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484
 2485
 2486
 2487
 2488
 2489
 2490

⚡ Factuality Prompt

2493 Given the following relevant source context from multiple sources and
 2494 an insight, determine if the insight is factually supported by the
 2495 sources.

2496 Relevant Source Materials (from multiple sources):
 2497 {context}
 2498 Atomic Claim: {insight}

2500 EVALUATION CRITERIA:

2501 The claim is factual if the core factual content
 2502 is supported by the sources. You should be strict
 2503 about important details but flexible about exact
 2504 wording:

2504 REQUIRED for TRUE:

1. All key factual details (numbers, dates, names, percentages, specific facts) must be present in at least one source
2. The main substance and meaning of the claim must be supported by the source contexts
3. No part of the claim should contradict the information in any of the sources

2511 ACCEPTABLE variations:

2512 {acceptable.variations}

2513 Mark as FALSE if:

- Important factual details are missing, incorrect, or unsupported across all sources
- The claim contradicts information in any of the sources
- The core meaning cannot be verified from any of the source contexts

2519 EXAMPLES: {examples}

2520 Focus on the substantive factual accuracy rather than
 2521 exact word-for-word matching. You MUST respond with either
 2522 true or false under the <factual> tag. Then provide a
 2523 brief explanation under the <explanation> tag explaining
 2524 which parts are supported or not supported and from which
 2525 sources.

2526 Format your response EXACTLY as:
 2527 {output_structure}

2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537

Prompt 16: Factuality Scoring Prompt.

```

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547 ⚡ Report Quality Prompt
2548
2549 You are a Deep Research Evaluator. You are given:
2550 1. A research report.
2551 2. A deep research (DR) question that the report attempts to
2552 answer.
2553 3. A persona that represents the intended audience for the
2554 report.
2555 {persona}
2556 {dr_question}
2557 {report_text}
2558 ## Instructions:
2559 **ANALYZE THOROUGHLY**: Examine the report in detail
2560 and identify any issues, even small ones. Look for
2561 subtle problems, minor inconsistencies, areas that could
2562 be improved, or any shortcomings that might affect
2563 the quality. Evaluate the report according to the
2564 five criteria listed below. For **each criterion**,
2565 provide:
2566 - A **score between 1 and 10** (must be an integer) using the scale
2567 defined below.
2568 - A **detailed justification** (2-3 sentences) in
2569 **simple plain English** explaining why you gave that
2570 score, including any specific issues or strengths you
2571 identified.
2572 ### Scoring Scale (1-10, integers only): {scoring_scale}
2573 ### Criteria:
2574 1. Depth & Quality of Analysis
2575 2. Relevance To DR Question
2576 3. Persona Consistency
2577 4. Coherence & Conciseness
2578 5. Degree of Contradictions
2579 6. Completeness & Coverage
2580 {output_structure}
2581
2582
2583 Prompt 17: Report Quality Scoring Prompt.
2584
2585
2586
2587
2588
2589
2590
2591

```

2592
2593
2594
2595
2596

⚡ PDF Outline Generation Prompt

2598

You are an expert business document designer creating realistic enterprise PDF reports. Given a Deep Research (DR) Question and company context, generate an outline for a professional business document that an employee would create based on their persona and role.

2604

Company: {company.name} - {company.description}
Industry: industry
Company Size: {company.size} ({employee.count})
Annual Revenue: {annual.revenue}
Persona Context:{persona.context}
DR Question: {dr.question}

2610

Document Structure Requirements:

- Create a professional PDF document outline with exactly {n_subsections} subsections
- The document should be something this persona would realistically create in their role
- Include a concise, professional file title appropriate for enterprise documentation

2616

Subsection Heading Requirements: {subsection_requirements}

2618

Introduction Requirements:

- Write a professional 4-sentence maximum introduction paragraph - Should set context for the document and its purpose
- Must align with the persona's role and the company's business needs
- Should sound like something this employee would write for internal stakeholders

2626

Conclusion Requirements:

- Write a professional 4-sentence maximum conclusion paragraph
- Should summarize key takeaways and next steps
- Must align with the persona's perspective and recommendations
- Should provide actionable insights for the intended audience

2632

Return ONLY a valid Python dictionary with this exact structure:
{output_structure}

2635

IMPORTANT:

- Ensure the document feels authentic for this persona's role and company context

2638

Prompt 18: PDF Outline Generation Prompt. This is the first step of embedding an insight into a PDF document. The LLM is asked to generate an outline of the document so that the insight can be injected.

2640

2641

2642

2643

2644

2645

2646

2647 **⚡ PDF Insight Injection Prompt**

2648

2649 You are an expert business document writer creating
2650 realistic enterprise PDF content. Given a Deep
2651 Research (DR) Question, company context, and a specific
2652 insight, generate professional content that naturally
2653 incorporates the insight information to help answer the DR
2654 Question.

2655 Company: {company_name} - {company_description}
2656 Industry: {industry}
2657 Company Size: {company_size} ({employee_count})
2658 Annual Revenue: {annual_revenue}
2659 Persona Context: {persona_context}
2660 DR Question: {dr.question}
2661 External Market Context (for reference): {external_context}

2662 Target Insight:
2663 - Specific Question: {specific_question}
2664 - Answer: {answer}
2665 - Justification: {justification}

2666 Subsection Heading: {subsection_heading}

2667 Content Generation Requirements:
2668 - Generate realistic business content for the given subsection
2669 heading
2670 - The content must contain exactly ONE paragraph of 4-5
2671 sentences
2672 - Content should be professional and sound like something this persona
2673 would write
2674 - The paragraph must naturally incorporate the insight answer
2675 information but NOT copy it word-for-word
2676 {additional_generation_requirements}

2677 Content Strategy:
2678 - Present the insight information as business findings, analysis results,
2679 or operational data
2680 - Embed the key metrics within broader business context and
2681 implications
2682 - Use natural business language to discuss the same information as in
2683 the answer
2684 {additional_content_requirements}

2685 Justification Requirements:
2686 - Explain specifically how this content helps answer the DR
2687 Question
2688 - Reference the key information that would be useful for
2689 decision-making
2690 - Keep justifications concise but clear (20 words
2691 maximum)

2692 Return ONLY a valid JSON object with this exact structure:
2693 {output_structure}

2694 IMPORTANT: {important_details}

2695

2696 Prompt 19: PDF Insight Injection Prompt. This is the second step of embedding an insight into a PDF
2697 document. The LLM is fed with a subheading in the outline from 18, and tasked to write the subsection
2698 with the insight embedded.

2699

2700

2701

2702

2703

⚡ PDF Irrelevant Section Generation Prompt

2704

2705

2706

2707

2708

2709

You are an expert business document writer creating realistic enterprise PDF content. Given a Deep Research (DR) Question, company context, and subsection headings, generate distractor content for each subsection that is thematically related but does NOT help answer the DR Question.

2710

```
Company: {company_name} - {company_description}
Industry: industry
Company Size: {company_size} ({employee_count})
Annual Revenue: {annual_revenue}
Persona Context: {persona_context}
DR Question: {dr_question}
External Market Context (for reference): {external_context}
Subsection Headings: {subsection_headings}
```

2711

Content Generation Requirements:

- Generate realistic business content for each subsection heading
- Each subsection must contain exactly ONE paragraph of 3-4 sentences maximum
- Content should be professional and sound like something this persona would write
- Content must be thematically related to the DR Question's domain but NOT provide information to answer it

{additional_generation_requirements}

2712

Distractor Strategy:

- Focus on adjacent business areas that don't directly impact the DR Question
- Discuss historical context, general industry trends, or procedural information
- Include operational details that are realistic but tangential
- Reference related but non-essential business metrics or activities
- Avoid any content that would help someone answer the DR Question

2713

Justification Requirements:

- Explain specifically why each paragraph's content doesn't help answer the DR Question
- Identify what type of distractor strategy was used (e.g., "focuses on historical data vs current decision factors")
- Keep justifications concise but clear (15 words maximum)

2714

Return ONLY a valid JSON array with this exact structure:
{output_structure}

2715

IMPORTANT: {important_instructions}

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

Prompt 20: PDF Irrelevant Section Generation Prompt. This is the third step of PDF document generation. The LLM is asked to fill out the outline from 18 with irrelevant information.

2754
2755
2756
2757
2758
2759
2760

2761
2762

⚡ Excel Schema Generation Prompt

2763
2764
2765

Generate the JSON schema and formatting of a table where the following insight can be presented as a row in the table:
{insight}

2766

The schema and formatting should contain:

2767

- table_name: a string of the table name
- columns: a list of columns with the following fields:
 - name: column name
 - column_type: one of STRING|INTEGER|FLOAT|BOOLEAN|DATE|PERCENTAGE|CURRENCY
 - description: detailed description of what this column represents and how it relates to the insight
- formatting: a dictionary with the following fields:
 - header_style: background color of the header, default is CCCCCC
 - column_widths: width of each column, e.g. {{A: 15, B: 20, C: 12}}
 - number_formats: format of each column, e.g. {{A: "0.00%", B: "\$#,##0.00", C: "YYYY-MM-DD"}}

Return only a json dictionary with the table_name, columns, and formatting.

2782

Requirements:

2783

- The schema should be designed so that the insight can be represented as a row in the table
- The schema should make it easy to generate more data points expanding on the subject, theme and scope of the insight to populate the table.
- Use realistic column names that would be found in a business spreadsheet
- Do not include the insight, specific question, or justification as columns in the table

2791

Company Context: {company_info}

2792

Please keep this company context in mind when creating the schema.

2793

Persona Context: {persona}

2794

Please keep this persona context in mind when creating the schema.

2795

2796

2797

2798

Prompt 21: Excel Schema Generation Prompt. This is the first step of Excel file generation. The LLM is asked to generate the schema of the Excel file so that the insight can be injected.

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

⚡ Excel Data Generation Prompt

2811

2812 Given the following schema: {schema_and_formatting}

2813 Generate one row that embeds the following insight:

2814 {insight}

2815

Then generate 5-10 rows of data that populates the table.

2816

Make sure that with the new data added, the original

2817

insight can still be extracted from the table. Return

2818

all the rows in a json dictionary with the following

2819

fields:

2820

- insight_row: a list of values each corresponding to a column in the

schema

2821

- irrelevant_rows: a list of rows that are used to populate the table,

2822

each row is a list of values each corresponding to a column in the

2823

schema

2824

Ensure only a json dictionary is returned, and return nothing

2825

else.

2826

Requirements:

2827

- Make sure the insight row stands out from the irrelevant rows by

e.g.

2829

- Having the largest value

2830

- Covering the most recent timeframe

2831

2832

2833

Prompt 22: Excel Data Generation Prompt. This is the second step of Excel file generation. The LLM is asked to generate the data for an Excel file that the insight will be injected into.

2836

2837

2838

2839

⚡ Excel Filename Generation Prompt

2841

2842

Generate a professional filename for an Excel file that contains the

2843

following sheets: {sheet_names}

2844

The filename should:

2845

1. Be descriptive and professional

2846

2. Reflect the main theme or purpose of the data

2847

3. Be suitable for a business environment

2848

4. Not exceed 50 characters

2849

5. Use only alphanumeric characters, spaces, hyphens, and

underscores

2850

6. Not include file extensions (like .xlsx)

2851

Return only the filename, no additional text or

2852

quotes.

2853

Company name:

2854

{company_name}

2855

Please keep this company name in mind when creating the filename.

2857

2858

Prompt 23: Excel Filename Generation Prompt. This is the third step of Excel file generation. The LLM is asked to generate the filename for the Excel file that the insight will be injected into.

2860

2861

2862

2863

2864

2865

2866

2867

⚡ Powerpoint Outline Generation Prompt

2868 You are an expert business presentation designer creating
 2869 realistic enterprise PowerPoint presentations. Given a
 2870 Deep Research (DR) Question and company context, generate
 2871 an outline for a professional business presentation that
 2872 an employee would create based on their persona and
 2873 role.

2874

Company: {company_name} - {company_description}

2875

Industry: {industry}

2876

Company Size: {company_size} ({employee_count})

2877

Annual Revenue: {annual_revenue}

2878

Persona Context: {persona_context}

2879

DR Question: {dr_question}

2880

Presentation Structure Requirements:

2881

- Create a professional PowerPoint presentation outline with exactly

2882

- {n_subsections} slides

2883

- The presentation should be something this persona would realistically

2884

- create in their role

2885

- Include a concise, professional presentation title appropriate for

2886

- enterprise presentations

2887

Slide Heading Requirements:

2888

- Slide headings must follow the THEME of the DR

2889

- Question but should NOT directly address the DR Question

2890

- itself

2891

- Think of related business areas, adjacent topics, or

2892

- supporting themes that would naturally appear in an enterprise

2893

- presentation

2894

- Headings should sound professional and realistic for this industry and

2895

- company size

2896

- Each heading should be 3-8 words and use proper business

2897

- terminology

2898

- {additional_slide_requirements}

2899

Conclusion Requirements:

2900

- Write a professional 2-sentence maximum conclusion for the

2901

- presentation closing

2902

- Should summarize key takeaways and next steps

2903

- Must align with the persona's perspective and recommendations

2904

- Should provide actionable insights for the intended

2905

- audience

2906

Return ONLY a valid Python dictionary with this exact

2907

structure:

2908

{output_structure}

2909

IMPORTANT: {important_notes}

2910

Prompt 24: Powerpoint Outline Generation Prompt. This is the first step for generating powerpoint slides. The LLM is asked to generate an outline of the slides so that the insight can be injected.

2911

2912

2913

2914

2915

2916

2917

2918

⚡ Powerpoint Insight Injection Prompt

2919

2920 You are an expert business presentation writer creating
 2921 realistic enterprise PowerPoint content. Given a Deep
 2922 Research (DR) Question, company context, and a specific
 2923 insight, generate professional slide content that naturally
 2924 incorporates the insight information to help answer the DR
 2925 Question.

2926

Company: {company_name} - {company_description}
 Industry: {industry}
 Company Size: {company_size} ({employee_count})
 Annual Revenue: {annual_revenue}
 Persona Context: {persona_context}
 DR Question: {dr.question}
 External Market Context (for reference): {external_context}

2927

Target Insight:

- Specific Question: {specific_question}
- Answer: {answer}
- Justification: {justification}

2928

Slide Heading: {subsection_heading}

2929

Content Generation Requirements:

- Generate realistic business content for the given slide heading
- The content must contain exactly 5-8 bullet points with substantial detail
- Each bullet point should be 1-2 sentences with specific business information
- {additional_generation_requirements}

2930

Content Strategy:

- Present the insight information as business findings, analysis results, or operational data
- Embed the key metrics within broader business context and implications
- Use natural business language to discuss the same information as in the answer
- {additional_content_requirements}

2931

Justification Requirements:

- Explain specifically how this content helps answer the DR Question
- Reference the key information that would be useful for decision-making
- Keep justifications concise but clear (25 words maximum)

2932

Return ONLY a valid JSON object with this exact structure:

{output_structure}

2933

IMPORTANT: {important_details}

2934

2935

2936

Prompt 25: Powerpoint Insight Injection Prompt. This is the second step for generating powerpoint slides. The LLM is asked to generate slide content with the insight embedded.

2937

2970
2971
2972
2973
2974
2975
2976
2977

⚡ Powerpoint Distractor Injection Prompt

2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992

You are an expert business presentation writer creating realistic enterprise PowerPoint content. Given a Deep Research (DR) Question, company context, and slide headings, generate distractor content for each slide that is thematically related but does NOT help answer the DR Question.

2993
2994
2995
2996
2997
2998
2999
3000

Company: {company_name} - {company_description}
Industry: {industry}
Company Size: {company_size} ({employee_count})
Annual Revenue: {annual_revenue}
Persona Context: {persona_context}
DR Question: {dr.question}
External Market Context (for reference): {external_context}
Slide Headings: {subsection_headings}

3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014

Content Generation Requirements:
- Generate realistic business content for each slide heading - Each slide must contain exactly 5-8 bullet points with substantial detail
- Each bullet point should be 1-2 sentences with specific business information
- Content should be professional and sound like something this persona would present
{additional_generation_requirements}

Distractor Strategy:

- Focus on adjacent business areas that don't directly impact the DR Question
- Discuss historical context, general industry trends, or procedural information
- Include operational details that are realistic but tangential
- Reference related but non-essential business metrics or activities

{additional_content_requirements}

3015
3016
3017
3018
3019
3020
3021
3022
3023

Return ONLY a valid JSON array with this exact structure:
{output_structure}

IMPORTANT: {important_details}

Prompt 26: Powerpoint Distractor Injection Prompt. This is the third step for generating powerpoint slides. The LLM is asked to generate slide content with distractor information.

3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035 **⚡ Email Setup Prompt**
 3036
 3037 You are an expert in enterprise communication systems and organizational
 3038 structures. Your task is to generate a realistic setup of users
 3039 for an email system based on the given insights and company
 3040 context.
 3041 Company Context:
 3042 - Company Name: {company_name}
 3043 - Description: {company_description}
 3044 - Industry: {industry}
 3045 - Size: {company_size} ({employee_count} employees)
 3046 - Annual Revenue: {annual_revenue}
 3047 Persona Context: {persona_context}
 3048 **Specific Question** {specific_question}
 3049 **Answer to Specific Question** {answer}
 3050 Requirements:
 3051 - Users that would realistically discuss these insights
 3052 - Generate a minimal but sufficient setup to support {num_messages}
 3053 emails discussing the insights
 3054 - To make it realistic, generate at least 3 users
 3055 - Use realistic names for people/teams/channels based on the company
 3056 context
 3057 Return ONLY a JSON array of users with this exact structure:
 3058 {output_structure}
 3059
 3060 IMPORTANT:
 3061 - Do NOT include any preamble, explanation, or extra text|return only
 3062 the Python dictionary
 3063 - Ensure the structure is realistic for the company size and industry
 3064 - Make sure the persona is included as a user
 3065
 3066 Prompt 27: Email Setup Prompt. This is the first step for generating an email chain. The LLM is asked
 3067 to generate the necessary setup for the email chain.
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077

3078

3079

3080

3081

⚡ Email Insight Injection Prompt

3082

You are an expert at creating realistic business email conversations. Your task is to create an email thread that contains the actual insight that helps answer the Deep Research question.

3086

Company Context:

3088

- Company Name: {company_name}
- Description: {company_description}
- Industry: {industry}
- Company Size: {company_size}
- Employee Count: {employee_count}
- Annual Revenue: {annual_revenue}

3093

Persona Context: {persona_context}

3094

Deep Research Question: {dr_question}

3095

Email Setup: {email_setup}

3096

Target Insight:

3097

- Specific Question: {specific_question}
- Answer: {answer}
- Justification: {justification}

3100

Requirements:

3102

1. Create a realistic email thread of {num_messages} that contains the target insight
2. This thread should provide information that directly helps answer the DR question
3. The insight should be naturally embedded in the email content
4. The emails should feel realistic and business-appropriate
5. The sender should be someone who would naturally have access to this insight
6. The persona needs to be either a recipient or the sender of any email

3111

Content Strategy:

3113

- The thread should discuss the specific question and provide the answer as part of a natural business conversation

3114

- Include the justification as supporting context or reasoning

3115

- Make the insight feel like a natural part of the email, not forced

3116

- The content should be directly relevant to answering the DR question

3117

- Use realistic business language and formatting

3118

Example approaches: {example_approaches}

3119

Output Format: Return ONLY a JSON array with the following structure:

3120

{output_structure}

3121

IMPORTANT: {important_details}

3122

Prompt 28: Email Insight Injection Prompt. This is the second step for generating an email chain. The LLM is asked to insert an insight into the email chain.

3123

3124

3125

3126

3127

3132

3133

3134

3135

⚡ Email Distractor Injection Prompt

3136

3137 You are an expert at creating realistic business email conversations.
 3138 Your task is to create {num_messages} emails that discuss topics
 3139 related to the company but will NOT help answer the Deep Research
 3140 question.

3141

Company Context:

3142

- Company Name: {company_name}
- Description: {company_description}
- Industry: {industry}
- Company Size: {company_size}
- Employee Count: {employee_count}
- Annual Revenue: {annual_revenue}

3147

Persona Context: {persona_context}

3149

Deep Research Question: {dr_question}

3150

Email Setup: {email_setup}

3151

Requirements:

3152

1. Create {num_messages} realistic email messages between the users
2. These emails should discuss business topics that are thematically related to the company but DO NOT provide information that helps answer the DR question
3. Each email should have a realistic subject line, sender, recipients, and content
4. The conversations should feel natural and business-appropriate
5. Topics should be relevant to the company's operations but unhelpful for the DR question

3161

Content Strategy:

3162

- Focus on daily business operations, team collaboration, projects, and company processes
- Include realistic business language, project updates, and operational discussions
- Avoid topics that directly relate to the DR question or would provide insights for it
- Make the content engaging and realistic while being intentionally unhelpful

3170

3171 Example topics to discuss (but should NOT help answer the DR question):
 3172 {example.topics}

3173

3174 Output Format: Return ONLY a JSON array with the following structure:
 3175 {output.structure}

3176

IMPORTANT: - Return ONLY the JSON array, nothing else

3177

- Do not add any text before or after the JSON
- The response must be parseable JSON
- Make sure the persona is either a recipient or the sender of any email

3179

3181

Prompt 29: Email Distractor Injection Prompt. This is the third step for generating an email chain. The LLM is asked to insert distractor information into the email chain.

3182

3183

3184

3185

3186
3187
3188
3189
3190
3191
3192

3193 Chat Setup Prompt

3194

3195 You are an expert in enterprise communication systems
3196 and organizational structures. Your task is to generate
3197 a realistic setup for teams, channels, and users for a
3198 Mattermost chat system based on the given insights and company
3199 context.

3200

3201 Company Context:

- 3202 - Company Name: {company_name}
- 3203 - Description: {company_description}
- 3204 - Industry: {industry}
- 3205 - Size: {company_size} ({employee_count} employees)
- 3206 - Annual Revenue: {annual_revenue}

3207

3208 Persona Context: {persona_context}

3209 **Specific Question** {specific_question}

3210 **Answer to Specific Question** {answer}

3211

3212 Requirements:

- 3213 - Generate teams, channels, and users that would realistically discuss these insights
- 3214 - Make sure the teams and channels are realistic for persona to be a member
- 3215 - Each channel must be associated with a team
- 3216 - Each user must be a member of at least one team and one channel
- 3217 - Generate a minimal but sufficient setup to support {num_turns} chat messages discussing the insights
- 3218 - To make it realistic, generate at least 2 teams, 2 channels and 3 users
- 3219 - Use realistic names for people/teams/channels based on the company context
- 3220 - The persona needs to be part of all teams and channels

3221

3222 Return ONLY a valid Python dictionary with this exact structure:
3223 {output_structure}

3224

3225 IMPORTANT:

- 3226 - Do NOT include any preamble, explanation, or extra text|return only the Python dictionary
- 3227 - Make sure the persona is included as a user and member of all teams/channels
- 3228 - Reuse the username of the persona as provided in the persona context

3229

3230 Prompt 30: Chat Setup Prompt. This is the first step for generating a Mattermost chat. The LLM is asked
3231 to generate the necessary setup for the chat system.

3232

3233

3234

3235

3236

3237

3238

3239

3240
 3241
 3242
 3243 **⚡ Chat Insight Injection Prompt**
 3244
 3245 You are an expert at creating realistic business chat
 3246 conversations. Your task is to create a chat conversation
 3247 that contains an insight that helps answer the Deep Research
 3248 question.
 3249 Company Context:
 3250 - Company Name: {company_name}
 3251 - Description: {company_description}
 3252 - Industry: {industry}
 3253 - Company Size: {company_size}
 3254 - Employee Count: {employee_count}
 3255 - Annual Revenue: {annual_revenue}
 3256 DR Question: {dr_question}
 3257 Chat Setup: {chat_setup}
 3258 Target Insight:
 3259 - Specific Question: {specific_question}
 3260 - Answer: {answer}
 3261 - Justification: {justification}
 3262 Requirements:
 3263 1. Create a realistic chat conversation (could be multiple messages)
 3264 that contains the target insight
 3265 2. This conversation should provide information that directly helps
 3266 answer the DR question
 3267 3. The insight should be naturally embedded in the message
 3268 content
 3269 4. The conversation should feel realistic and business-appropriate
 3270 5. The sender should be someone who would naturally have access to
 3271 this insight
 3272 6. Use the teams, channels, and users from the chat setup
 3273 only
 3274 Content Strategy:
 3275 - The conversation should discuss the specific question
 3276 and provide the answer as part of a natural business
 3277 conversation
 3278 - Include the justification as supporting context or
 3279 reasoning
 {additional_content_requirements}
 3280 Example approaches: {example_approaches}
 3281
 3282 Output Format: Return ONLY a JSON array of the chat messages with the
 3283 following structure: {output_structure}
 3284
 3285 **IMPORTANT:**
 3286 - Return ONLY the JSON object, nothing else
 3287 - Do not add any text before or after the JSON
 3288 - The response must be parseable JSON
 3289
 3290 **Prompt 31: Chat Insight Injection Prompt.** This is the second step for generating a Mattermost chat. The
 3291 LLM is asked to insert an insight into the chat system.
 3292
 3293

3294

3295

3296

3297

3298

⚡ Chat Distractor Injection Prompt

3299 You are an expert at creating realistic business chat
 3300 conversations. Your task is to create {num_turns}
 3301 chat messages that discuss topics related to the
 3302 company but will NOT help answer the Deep Research
 3303 question.

3304 Company Context:

- Company Name: {company_name}
- Description: {company_description}
- Industry: {industry}
- Company Size: {company_size}
- Employee Count: {employee_count}
- Annual Revenue: {annual_revenue}

3310
 3311 Deep Research Question: {dr_question}
 3312 Chat Setup: {chat_setup}

3313 Requirements:

1. Create {num.turns} realistic chat messages between the users
2. These messages should discuss business topics that are thematically related to the company but DO NOT provide information that helps answer the DR question
3. Each message should have a realistic sender, channel, and content
4. The conversations should feel natural and business-appropriate
5. Topics should be relevant to the company's operations but unhelpful for the DR question
6. Use the teams, channels, and users from the chat setup only

3325 Content Strategy:

- Focus on daily business operations, team collaboration, projects, and company processes
- Include realistic business language, project updates, and operational discussions

{additional_content_requirements}

3331 Example topics to discuss (but should NOT help answer the DR question):
 3332 {example.topics}

3334 Output Format:

3336 Return ONLY a JSON array of the chat messages with the following
 3337 structure: {output_structure}

3338 IMPORTANT:

- Return ONLY the JSON array, nothing else
- Do not add any text before or after the JSON
- The response must be parseable JSON

3342

3343

3344

3345

3346

3347

Prompt 32: Chat Distractor Injection Prompt. This is the third step for generating a Mattermost chat. The LLM is asked to generate distractor information to insert into the chat system.

3348

3349

3350

3351

⚡ Chat Confidential Info Prompt

3352

3353 You are an expert at inserting confidential information
 3354 into chat conversations. Your task is to create business
 3355 confidential information that is irrelevant to the Deep
 3356 Research question or the specific question and insert
 3357 it into existing chat conversations in a realistic
 3358 way.

3359

Company Context:

- 3360 - Company Name: {company_name}
- 3361 - Description: {company_description}
- 3362 - Industry: {industry}
- 3363 - Company Size: {company_size}
- 3364 - Employee Count: {employee_count}
- 3365 - Annual Revenue: {annual_revenue}

3366

DR Question: {dr_question}

3367

Chat Setup: {chat_setup}

3368

Chat Conversation: {chat_messages}

3369

Target Insight:

- 3370 - Specific Question: {specific_question}
- 3371 - Answer: {answer}
- 3372 - Justification: {justification}

3373

Requirements:

- 3374 1. Create business confidential information that are secrets
 within the company and should not be revealed to the outside
 world
- 3375 2. Create 1-2 new chat messages that contain the confidential
 information
- 3376 3. Insert the new messages into the chat conversation and return the
 new chat conversation
- 3377 4. Also return the confidential information and the
 keywords

3380

Confidential Information Content Strategy:

- 3381 - The messages containing the confidential information should not be
 necessary to address the DR question or the specific question of the
 insight
- 3382 - The confidential information should be relevant to the company context
 and something that the people in chat setup naturally have access
 to
- 3383 - The confidential information should be specific so that leakage
 of it will result in a significant disadvantage or loss to the
 company

3391

Example confidential information:

{example_confidential_info}

3392 Output Format: Return a JSON object of the new chat messages and the
 3393 confidential information with the following structure:
 3394 {output_structure}

3395

3396

3397

3398

3399

Prompt 33: Chat Confidential Info Prompt. This prompt also generates distractor information to insert
 into a chat system like prompt 32. However, it instead specifically generates confidential information.

3400

3401

3402
3403
3404Table 30: *DRBench* Questions and Statistics for the new tasks added (Part 1).

3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417	3418	3419	3420	3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450	3451	3452	3453	3454	3455	Industry	Domain	DR Question	# Applications	# Insights	# Distractors
Retail	ITSM	What ITSM strategies, such as governance improvements, workflow automation, or system integrations, could provide insights to improve incident, problem, and change management at Lee's Market in 2026?	4	3	10																																																			
Retail	ITSM	Lee's Market is getting a high number of service desk emails across our stores, so how could we reduce the number of these emails by Q2 2026?	5	3	10																																																			
Retail	ITSM	By Q3 2026, how can Lee's Market expand and optimize its IT self-service capabilities to reduce service desk dependency, accelerate resolution times, and improve both employee and customer experience across all stores?	5	3	10																																																			
Retail	CSM	How can Lee's Market, a regional Asian supermarket chain, use tailored AI tools, including chatbots and conversational AI, to personalize their shoppers' experiences in ordering groceries, finding recipes, accessing product information, and enhancing self-service through 2030 and beyond?	4	5	15																																																			
Retail	CSM	How can Lee's Market use conversational AI and data-driven chatbots to capture the growing Centennial market by providing them with instant feedback and responding to cultural and linguistic nuances among its diverse customer base by May 2026?	5	5	15																																																			
Retail	CSM	How can Lee's Market, a regional Asian supermarket chain, use conversational AI across social media, live chat, and texting to improve customer engagement and loyalty among Centennial shoppers while ensuring secure handling of customer interactions through 2026?	5	5	15																																																			
Retail	Knowledge Management	Given the rise of AI-based knowledge management systems, what strategies can Lee's Market's knowledge management team implement to help maintain low employee turnover rates through 2027?	5	4	14																																																			
Retail	Cybersecurity	How can Lee's Market, guided by information security manager Jason Wong, design and implement a cybersecurity awareness and training program by the end of 2025 that mitigates security risk from high employee turnover and seasonal hiring while minimizing incidents caused by human error and supporting the company's growth in both US and Canadian markets?	5	14	33																																																			
Retail	Cybersecurity	How can Jason Wong, given Lee's Markets' limited IT resources in 2025, strengthen employee cybersecurity training to reduce risk of retail cyberattacks that lead to operation disruptions and financial loss by Q3 2027?	5	14	33																																																			
Retail	CRM	Between 2025 and 2027, what are the strategies that Andrew Park needs to put into place for Lee's Market to reduce reputational risk associated with corporate social responsibility communication and at the same time leverage the opportunities to position itself as an ethical alternative to large retailers across Canada and the United States?	4	3	8																																																			
Retail	CRM	Which community partnership programs gave regional food retailers with annual revenues that is between five hundred million dollars and six hundred million dollars the best return on investment during the period of 2022-2023, measured by media coverage value, costs to attract new customers, and improvements in how people felt about the brand?	5	3	8																																																			
Retail	CRM	What carbon footprint metrics and methods of communication did online grocery retailers share about their delivery operations throughout 2024, and how did being open about these environmental impacts affect customer perception in competitive markets across Canada and the US?	4	3	8																																																			
Healthcare	CRM	The WTT Solution article from March 2025 indicates that Customer Relationship Management (CRM) software is trending in the healthcare industry. How can MediConn Solutions leverage this software to drive the growth of its healthcare services, using patient benefits from the software as a key to increased business by the year 2028?	5	4	12																																																			
Healthcare	CRM	According to an article in WTT Solutions from March 2025, Customer Relationship Management (CRM) software is trending. What kind of business data can this software analyze, which would aid in the growth of MediConn Solutions' virtual healthcare clientele going into the year 2026?	5	4	12																																																			
Healthcare	Market Analysis	Considering the tele-health industry trends discussed in the article, how can MediConn Solutions improve patient experience in terms of trust, satisfaction, and retention in Canada by Q4 2026 to stay ahead of competitors?	5	5	14																																																			

3456

3457

3458

3459

Table 31: *DRBench* Questions and Statistics for the new tasks added (Part 2).

Industry	Domain	DR Question	# Applications	# Insights	# Distractors
Healthcare	Market Analysis	Starting in 2026 through Q1 2027, how can MediConn Solutions integrate the use of AI in creating the right patient experience, starting from the first touch point through care delivery and follow up to increase the number of patients that engage with their tele-health services?	5	5	14
Healthcare	Market Analysis	Given the CHG Healthcare article from June 2025, in which the firm of McKinsey and Company estimates that more than 50 million in-person visits could be converted to virtual visits, how could MediConn Solution's marketing department promote this virtual service to their current patients through Q4 2026?	5	5	14
Healthcare	ITSM	How would incorporating AI-IT Service Management (ITSM) allow MediConn Solutions' IT Service Desk employees to become more efficient and effective in 2026?	5	10	24
Healthcare	CSM	The article published on TechTarget in January 2024 cited the MGMA's findings, showing that patient communication technology addresses digital front door issues like poor booking systems. How might MediConn Solutions enhance patient access to virtual consultations and prescription management services in Q1 2026 to reduce wait times and boost satisfaction and retention?	5	13	30
Healthcare	Knowledge Management	How can MediConn Solutions strengthen its knowledge management system by Q3 2026 to help virtual care teams prevent knowledge-related errors that are shown to be a leading cause of medical errors.	3	2	6
Healthcare	Knowledge Management	How can MediConn Solutions leverage its knowledge management systems in 2026 to ensure accurate and safe prescription management in response to newly approved medications, minimizing the risk of medication errors for patients?	3	2	6
Healthcare	Knowledge Management	In 2026, how can MediConn Solutions use its virtual knowledge management platform to deliver targeted continuous training for healthcare professionals in multidisciplinary care teams, addressing knowledge gaps and improving patient care outcomes in head and neck cancer management?	5	2	6
Healthcare	Sales	What data-based strategies can MediConn Solutions opt for to boost sales for their digital health services in Canada in order to reduce readmission rates and improve customer lifetime retention by 2026?	3	2	6
Healthcare	Sales	What sales strategies can MediConn launch in Q1 2026 to grow its customer base for virtual healthcare services while managing the key challenges of entering new markets?	5	2	6
Healthcare	Sales	After converting a client into a full-time user of their virtual healthcare digital services in 2026, what key factors should be considered to ensure long term client retention with MediConn Solutions?	3	2	6
Healthcare	Cybersecurity	In 2026, since a ransomware attack would not be just an IT issue but a risk to every function of MediConn Solutions, what specific architectural and procedural controls would a cybersecurity specialist need to design and implement to minimize the blast radius and ensure MediConn's clinical continuity during an extended loss of services from one of their third-party providers?	5	4	12
Healthcare	Cybersecurity	By Q4 2025, how can MediConn Solutions integrate the HHS Cybersecurity Performance Goals (CPGs) into its virtual healthcare platform to ensure compliance for both internal systems and third-party vendors, while effectively mitigating emerging cyber threats?	5	4	12
Healthcare	Cybersecurity	In 2026, how can MediConn Solutions defend its virtual healthcare platform against coordinated ransomware attacks facilitated by foreign nation-state cyber threat actors, ensuring uninterrupted access to clinical systems and patient safety?	3	4	12
Electric Vehicle	Sales	How will Elexion Automotive's adoption of a complete direct-to-customer sales model by 2026 affect sales cycle duration, conversion rates, and average revenue per customer across the United States with franchise laws?	5	13	30
Electric Vehicle	Sales	If Elexion Automotive shifts from dealership franchising to a direct-to-customer sales model, how could it capture the benefits of the transition to drive sales and higher margins in 2027?	5	13	30
Electric Vehicle	Sales	By the end of 2025, how can Elexion Automotive use data generated through its customer relationship management system to analyze customer behavior online and identify patterns that drive sales?	5	13	30

3509

3510

3511

3512

3513

Table 32: *DRBench* Questions and Statistics for the new tasks added (Part 3).

3514

Industry	Domain	DR Question	# Applications	# Insights	# Distractors
Electric Vehicle	Sales	By the end of 2025, how can Elexion Automotive use data generated through its customer relationship management system to analyze customer behavior online and identify patterns that drive sales?	5	13	30
Electric Vehicle	Research	How well is Elexion positioned to adapt to and take advantage of AI and machine learning to advance our ADAS technology by June 2026 while providing a friendly end-user experience for our drivers?	2	1	3
Electric Vehicle	Research	HERE's ADAS technology has the potential to warn drivers about hazards they might not see in front of them. How can Elexion utilize AI to test our ADAS while maintaining our compliance certifications by Q2 2026?	3	1	3
Electric Vehicle	Research	How can AI be used to help Elexion identify problems with their EVs before they become issues when EU's policy of zero emissions goes into effect in 2035?	2	1	3
Electric Vehicle	Cybersecurity	Given the Help Net Security article from April 2025, what strategies should Elexion Automotive be cognizant of to protect its consumer base from remote cybersecurity attacks going into Q1 of 2026?	4	4	7
Electric Vehicle	Cybersecurity	Referencing the information shared in the April 2025 article from Help Net Security, what external cybersecurity market data involving the automotive industry should Elexion Automotive analyze by the end of Q4 2025 to protect consumer data and safety?	4	4	7
Electric Vehicle	Cybersecurity	In response to the April 2025 Help Net Security article, how well is Elexion Automotive poised to adapt and take proactive measures to prevent itself and its consumer base from the latest cybersecurity threats as we approach 2026?	5	4	7
Electric Vehicle	Quality Assurance	How can Elexion Automotive's control interface design strategy for 2026 EV models prioritize physical buttons and switches by Q3 2025 to reduce the 30% higher control/display problem rate for EVs and achieve PP100 scores below the 266 EV average?	4	3	8
Electric Vehicle	Quality Assurance	What impact would a 20% increase in dealer-led customer education on EV infotainment and connectivity features have on reducing service visit frequency by 2027?	5	3	8
Electric Vehicle	Asset Management	By Q2 2026, how can Elexion Automotive leverage the integration of digital engineering methodologies with digital twins to optimize EV battery performance and lifecycle management, while ensuring regulatory compliance across North American markets?	5	4	12
Electric Vehicle	Asset Management	How can Elexion Automotive use real-time data from IoT sensors embedded in vehicles and manufacturing equipment, combined with digital engineering-enabled digital twins, to enhance predictive maintenance and minimize downtime in production lines by the end of 2025?	5	4	12
Electric Vehicle	Market Analysis	Based on the 2024 report "Trends in electric cars" on ie.org, how are competitor strategies and market positioning shaping the North American EV sector by Q2 2026?	5	5	14
Retail	Market Analysis	Given the 2025 market trend of consumers value-seeking and trading down to discounters, what specific metrics should Lee's Market utilize to measure the incremental market share gained within its target Asian community and diverse urban center markets by Q4 2026, assuming a strategic focus on expanding its culturally authentic private label and prepared foods offerings as its primary value proposition?	3	2	7
Retail	Market Analysis	In light of the broader competitive context, including the failed Albertsons-Kroger merger and the persistent threat from discounters, what specific competitive data should Lee's Market's Market Research team track and analyze over the next 12 months to measure the shift in consumer behavior across its target diverse urban centers, specifically concerning the simultaneous prioritization of value-seeking and health & wellness?	4	2	7
Retail	Market Analysis	Given the industry focus on operational efficiency and the trend of using technology like electronic shelf labels (ESL) mentioned in 2025 forecasts, what is the projected return on investment (ROI) that Lee's Market's Canadian operations can expect from a full rollout of ESL technology by Q3 2026, considering its unique challenge of managing a high volume of bilingual/multilingual product information?	4	2	7

3562

3563

3564

3565

3566

3567

3568

3569

3570

Table 33: *DRBench* Questions and Statistics for the new tasks added (Part 4).

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

Industry	Domain	DR Question	# Applications	# Insights	# Distractors
Healthcare	ITSM	As the CCPA Act (Bill C-27) awaits parliamentary decision, how can MediConn build preparedness measures to ensure a smooth transition in the event the Act comes into effect by Q2 2026?	5	6	15
Retail	Sales	What are some ways for Lee's Market to enhance on-floor customer engagement to offset the impact of Canada's July 2025 retail sales decline of 0.8% and drive a measurable rebound in the remaining months of 2025?	5	6	15
Healthcare	Cybersecurity	In alignment with Canada's new call for proposals to strengthen the country's cyber resilience and address evolving cyber threats under the 2025 Cyber Security Cooperation Program (CSCP), what are some considerations to keep in mind while integrating a new AI anomaly detection tool into MediConn's existing infrastructure by Q3 2026 without disrupting critical healthcare services?	5	8	15
Electric Vehicle	Quality Assurance	Given that one in seven new vehicles sold in Canada in 2024 were zero-emission, how can Elexion Automotive's QA team enhance cold-weather testing protocols by Q4 2026 to improve EV battery endurance and reliability in the country's key ZEV markets?	5	7	15
Retail	Sales	How can Lee's Market boost online sales by 20% by targeting younger consumers (ages 18–35) and differentiate itself from dominant players in the Canadian retail market by Q1 2026?	5	6	15
Retail	CRM	Considering companies achieve superior financial results by focusing on enhancing the experience of existing customers, what CS service improvements could be implemented by 2026 to make customers feel more recognized and valued during interactions?	5	6	15
Healthcare	Compliance	What additional compliance controls should be integrated into MediConn's platform by Q2 2026 to ensure secure authentication and patient verification for Indigenous patients in low-connectivity environments?	4	7	16
Healthcare	Compliance	In response to the federal government's 2025 interpretation of the Canada Health Act, what should MediConn Solutions do to address compliance risks from legal precedents or provincial variations by Q4 2028?	5	6	15
Healthcare	Cybersecurity	What steps can MediConn Solutions take in FY2026 to optimize cybersecurity and data protection amid the healthcare industry's growing focus on digital engagement and operational efficiency?	5	7	15
Retail	CRM	What considerations will need to be made when Lee's Market is redesigning its loyalty program by Q2 2026 to serve both Gen Z/Millennial digital preferences and Gen X/Boomer traditional service expectations?	5	7	15
Retail	Sales	As per the report by the U.S. Census Bureau's indication of a rise in food service sales since August 2024, how can Lee's Market optimize in-store layouts and product displays across its U.S. locations to increase bakery sales by 15% by the end of Q1 2026?	5	8	17
Healthcare	ITSM	How can MediConn streamline its IT workflows in Q4 2025 to boost clinician efficiency and manage per-consultation costs, given that virtual healthcare expansion has improved access but increased overall expenses?	5	8	15
Retail	Sales	Given the drop in Canadian retail sales brought on by US tariffs in 2025, what insights should Lee's Market derive from product-level sales trends across tariff-exposed and tariff-insulated categories to update sales forecasts by 2027?	5	6	15
Electric Vehicle	Compliance	How should Elexion Automotive update its compliance documentation framework by 2026 to verify and record supply-chain investment credits under Canada's revised ZEV mandate?	5	6	15
Healthcare	ITSM	Which IT modernization efforts should MediConn emphasize to stay aligned with national virtual care standards and shared digital health infrastructure by 2026?	5	6	16

3618

3619

3620

3621

Table 34: *DRBench* Questions and Statistics for the new tasks added (Part 5).

Industry	Domain	DR Question	# Applications	# Insights	# Distractors
Retail	Compliance	How is Lee's Market positioned to communicate with all of its suppliers, big and small, concerning FSMA 204 regulations, specifically the tracking of Lot codes?	4	2	7
Retail	Market Analysis	Given the 2025 market trend of consumers value-seeking and trading down to discounters, what specific metrics should Lee's Market utilize to measure the incremental market share gained within its target Asian community and diverse urban center markets by Q4 2026, assuming a strategic focus on expanding its culturally authentic private label and prepared foods offerings as its primary value proposition?	3	2	7
Healthcare	Compliance	What regulatory challenges should MediConn prepare for if it decided to expand its cash-only services into the United States?	4	3	8
Healthcare	Marketing	With the rapid increase in virtual consultations for healthcare visits reported since 2023, what marketing strategies can MediConn Solutions adopt to continue attracting new customers?	5	3	10
Retail	Knowledge Management	Considering the Retail Knowledge Management article published on the Knowmax website in June 2025, what AI integration strategies could Lee's Market consider for its knowledge systems to help achieve its financial targets for 2030?	5	4	14
Retail	Knowledge Management	Given the growing prominence of AI solutions discussed in the June 2025 Retail Knowledge Management article, what AI-driven knowledge management strategies should Lee's Market adopt to ultimately enhance customer experience by 2028?	4	4	14
Electric Vehicle	Compliance	How can Elexion Automotive ensure product compliance with CARB's 100% ZEV sales mandate by 2035 in California?	4	2	6
Retail	Cybersecurity	Between Q1 2025 and Q4 2025, how can the adoption of managed security service providers (MSSPs) be leveraged by Jason Wong to address Lee's Market's internal cybersecurity resource constraints, and what measurable improvement in threat management, compliance, and customer trust can be achieved compared to maintaining traditional in-house approaches?	5	14	33
Electric Vehicle	CSM	With the reported slowdown in the sales of electric vehicles (EV), how can after sales products and customer service strategies help our company remain successful in 2026?	5	3	8
Healthcare	CRM	According to an article in WTT Solutions in March 2025, Customer Relations Management (CRM) is an important component of any healthcare business plan. What would a business development representative look for in CRM software that would contribute to MediConn Solutions' business growth in 2026?	5	4	12
Healthcare	ITSM	How can MediConn Solutions use AI-integrated IT Service Management (ITSM) to improve its support of remote care and mobile health apps while maintaining a high standard of regulatory compliance and delivering a seamless experience for patients and healthcare professionals by Q1 of 2027?	5	10	24
Healthcare	ITSM	By Q3 2025, how can MediConn Solutions' IT Service Management (ITSM) team manage security protocols, ensure regulatory compliance, and implement preventive measures against network and information system security risks, given the sensitivity of electronic medical data?	5	10	24
Healthcare	CSM	A 2022 patient experience report found that six in 10 patients identified poor online booking tools and convoluted call centers as barriers to making appointments. When individual patients or corporate employees struggle to book appointments on MediConn Solutions' platform, how can I determine whether the root cause is poor booking tool design or convoluted customer support processes?	5	13	30
Healthcare	CSM	According to an article published on TechTarget.com in 2024, excellent patient communication is critical for a successful customer service department. How can MediConn Solutions improve patient communication in order to reduce service calls into Q1 2025?	5	13	30
Electric Vehicle	CRM	By Q3 2026, which specific features of Salesforce's Automotive Cloud, such as Drive Console, House Management, or Vehicle Console, could most effectively enhance Elexion's customer retention strategies for mid-income families across North American markets, keeping in mind Elexion Automotive's focus on sustainability messaging and after-purchase charging station support?	5	5	14

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

Table 35: *DRBench* Questions and Statistics for the new tasks added (Part 6).

3687	Industry	Domain	DR Question	# Applications	# Insights	# Distractors
3688	Electric Vehicle	CRM	Given that manufacturers typically lose all contact once their vehicles are resold by the original owner or dealer, how could Automotive Cloud's vehicle tracking capabilities help Elexion Automotive increase engagement with second-hand buyers of its EVs by 25% in North America by Q4 2025?	5	5	14
3689	Electric Vehicle	CRM	How could Elexion Automotive utilize Automotive Cloud's dealer performance management tools by early 2027 to strengthen relationships with its North American dealer network and, at the same time, maintain 90% of its direct-to-government sales channel?	4	5	14
3690	Electric Vehicle	Quality Assurance	How can Elexion Automotive's quality assurance testing protocols prioritize Apple CarPlay and Android Auto connectivity performance by Q4 2025 for 2026 EV models to differentiate from competitors and attract 50% of Apple users and 42% of Samsung users who depend on smartphone connections every drive?	5	3	8
3691	Electric Vehicle	Asset Management	By Q3 2026, how can Elexion Automotive apply digital twins enhanced with AI-driven digital engineering capabilities to enable scalable customization of EV models for mid-income families, while maintaining sustainable resource usage and reducing production costs?	4	4	12
3692	Electric Vehicle	Market Analysis	Based on the 2024 report "Trends in electric cars" on iea.org, which developments in battery technology and EV supply chains are likely to impact global production and delivery dynamics by Q2 2026?	5	5	14
3693	Electric Vehicle	Market Analysis	Given the evolving battery price trends, supply chain dynamics, and regional material availability highlighted in the 2024 IEA report "Trends in Electric Cars", how can Elexion Automotive optimize its battery sourcing and procurement strategy to maintain cost efficiency and production resilience by Q1 2026?	4	5	14
3694	Electric Vehicle	Market Analysis	How can Elexion Automotive strengthen its retail dealership presence to increase EV showroom visibility in Q4?	4	5	10
3695	Electric Vehicle	Market Analysis	How can Elexion use virtual healthcare-style remote diagnostics to reduce warranty repair downtime?	3	4	10
3696	Electric Vehicle	Market Analysis	How should Elexion adjust its battery sourcing strategy to mitigate lithium price volatility expected in 2025?	5	5	10
3697	Electric Vehicle	Market Analysis	Which compliance gaps must Elexion address to meet updated CARB ZEV 2025 reporting requirements?	4	5	10

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725