

BARE: LEVERAGING BASE LANGUAGE MODELS FOR FEW-SHOT SYNTHETIC DATA GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

As the demand for high-quality data in model training grows, researchers and developers are increasingly generating synthetic data to tune and train LLMs. However, current data generation methods rely on seed sets containing tens of thousands of examples to prompt instruction-tuned models. This reliance can be especially problematic when the large-scale collection of high-quality seed examples is expensive or difficult. In this paper we explore the novel few-shot synthetic data generation setting – generating a high-quality dataset from only a few seed examples. We show that in this low-seed setting, instruction-tuned models used in current synthetic data methods produce insufficient diversity for downstream tasks. In contrast, we show that base models without post-training, largely untapped for synthetic data generation, offer substantially greater output diversity, albeit with lower instruction following abilities. Leveraging this insight, we propose **Base-Refine** (BARE), a novel two-stage method that combines the diversity of base models with the quality assurance of instruction-tuned models. BARE excels in few-shot synthetic data generation: using **only 3 seed examples** it generates diverse, high-quality datasets that significantly improve downstream task performance. We show that fine-tuning Llama 3.1 8B with 1,000 BARE-generated samples achieves performance comparable to state-of-the-art similarly sized models on LiveCodeBench tasks. Furthermore, data generated with BARE enables a 101% improvement for a fine-tuned Llama 3.2 1B on GSM8K over data generated by only instruction-models, and an 18.4% improvement for a fine-tuned Llama 3.1 8B over the state-of-the-art RAFT method for RAG data generation.

1 INTRODUCTION

As Large Language Models (LLMs) grow in size and capability, the demand for high-quality, diverse data in model training is outpacing human-generated data, necessitating the use of synthetically generated data (Villalobos et al., 2024; Dubey et al., 2024; Qwen, 2025; Nvidia, 2024; Guan et al., 2025; NovaSky Team, 2025).

However, prevailing methods for synthetic data generation require developers to provide large and diverse seed sets as the first step in their generation pipeline. For instance, OSS-Instruct (Wei et al., 2024) uses 80,000 code snippets and Humpback (Li et al., 2024c) over 500,000 text segments. This reliance on large-scale manually curated seed data imposes significant burdens on developers. For example, consider a specialized setting like course-specific grading (Latif & Zhai, 2024), where an instructor would like to have models automatically grade essays. Here, collection of seed data would be difficult and costly, requiring thousands of manually graded essays.

Large seed sets are necessary in current pipelines to ensure **data diversity**, a key property of effective synthetic data (Chen et al., 2024; Raventós et al., 2023). Recent work suggests that instruction-tuned LLMs suffer from a lack of diversity due to the post-training process, where standard techniques lead to mode collapse (Shumailov et al., 2024; Wong et al., 2024; Lambert et al., 2024), limiting a model’s ability to generate varied responses to open-ended queries. Additionally, we show that methods to induce diversity via prompting (e.g. including past examples in context) (Zhang et al., 2024a; Naik et al., 2023; Fröhling et al., 2024) are insufficient for few-shot generation. *Thus, a critical need exists for methods that can generate diverse and high-quality datasets from minimal examples.*

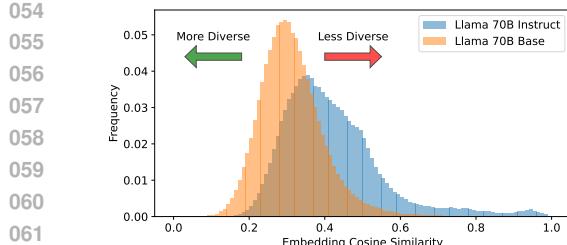


Figure 1: **Histogram of pairwise embedding cosine similarity scores** for 1000 Llama-3.1-70B-Base vs Instruct generations of grade school math problems with 3 seed examples. The base distribution is further left, indicating lower similarity and hence higher diversity.

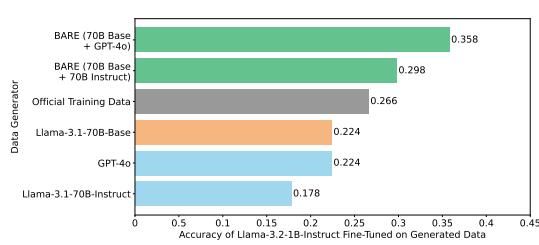


Figure 2: **Accuracy of a Llama-3.2-1B-Instruct model** fine-tuned on real-world data and 5 different sets of math problems synthetically generated using 3 seed examples, evaluated on GSM8K. Training with BARE-generated data outperforms all other data sources.

Base Models for Diversity. Instead of large seed sets, an underexplored alternative source of diversity is the use of base models. Not being subject to the same post-training procedures, base models better reflect the diversity found in real-world data (OpenAI, 2024b). Intuitively, this allows practitioners to achieve diversity by leveraging the underlying model of language in base models rather than spending the effort to collect large-scale seed sets. Quantitatively, base models do demonstrate greater diversity. As shown in Figure 1, they generate outputs with noticeably lower pairwise embedding cosine similarity (mean 0.313) compared to instruction-tuned models (mean 0.421); lower cosine similarity indicates greater diversity. This increased diversity can benefit downstream tasks: Figure 2 shows that fine-tuning Llama-3.2-1B-Instruct on GSM8K using data from Llama-3.1-70B-Base yields a 22.5% accuracy, compared to 17.8% using Llama-3.1-70B-Instruct.

However, due to their weaker instruction-following capabilities, base model generations often suffer from lower quality (Figure 4), which can negate the benefits of increased diversity and hinder downstream training performance. Our key insight is that by managing the quality of individual data points using instruction-tuned models, we can harness the diversity advantage of base models.

BARE. Leveraging the distinct strengths of base and instruction-tuned models, we introduce **Base-Refine** (BARE): a simple yet novel approach for few-shot synthetic data generation. BARE leverages a base model to generate diverse initial generations with minimal seed data and refines each initial generation according to desiderata with instruction-tuned models. In a variety of few-shot settings, we show our two-stage process enhances diversity without compromising quality, enabling the generation of datasets that improve downstream performance when **only 3 seed examples** are available. *This is the first work to show the value of base models for data generation.*

On the LiveCodeBench Test Output Prediction task, fine-tuning with 1,000 BARE-generated examples achieves performance comparable to state-of-the-art models of similar size. Further, when applied to the Retrieval-Augmented Fine-Tuning (RAFT) method (Zhang et al., 2024b)—a state-of-the-art technique for generating synthetic Q&A pairs over retrieved documents for RAG—replacing RAFT’s instruction-tuned only generator with BARE improves the fine-tuned model’s accuracy by up to **18.4%** over the original RAFT approach (Figure 8). In mathematical reasoning, as exemplified by synthetic GSM8K-style problems, BARE using Llama-3.1-70B-Base for initial generation and GPT-4o for refinement with BARE increases a fine-tuned Llama-3.2-1B-Instruct model’s accuracy on GSM8K to 35.8%, exceeding the 22.4% using instruct-only generation with GPT-4o and the 26.6% training on examples from the official human-generated GSM8K training set (Figure 2).

To summarize, our contributions are:

1. We quantitatively investigate the quality and diversity of base and instruction-tuned models across various sampling methods to motivate better system design. We show that base models tend to produce far more diverse responses whereas instruction-tuned models offer higher quality.
2. Building on these insights, we propose **Base-Refine** (BARE), a practical method novelly leveraging base models for the under-explored task of few-shot synthetic data generation. We demonstrate that BARE consistently outperforms past methods on small seed sets, including SOTA genera-

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
tion methods. Generating from as few as 3 seed examples, BARE can yield fine-tuned models comparable to SOTA models of similar sizes trained with much larger seed sets.

2 RELATED WORK

Synthetic Data. Synthetic data is commonly used to train state of the art models like Llama 3.3 (Dubey et al., 2024), Qwen 2.5 (Qwen, 2025), Nemotron 4 (Nvidia, 2024), and o3-mini (Guan et al., 2025). However, prior work has shown its usage poses risks such as model collapse, where iterative training on low-diversity data shifts the generation distribution toward a high-probability mean, degrading both performance and diversity (Shumailov et al., 2024; Shimabucoro et al., 2024; Guo et al., 2023). Recent work indicates that diversity in training data can improve downstream performance (Chen et al., 2024). However, this research often does not simultaneously consider the quality of the data in tandem. In contrast, the BARE pipeline is designed with the twin objectives of diversity and quality in mind, producing diverse, high-quality data to support model training.

Generation Methods. Sampling methods like temperature scaling and nucleus sampling (Holtzman et al., 2020) are widely used to improve diversity, but often prioritize token-level randomness over semantic diversity. Indeed, methods such as logit suppression (Chung et al., 2023) can enhance diversity but may require significant manual refinement to maintain quality unlike BARE which maintains quality as a first order requirement.

Many current synthetic data generation processes instead rely on varying the prompt to elicit a diverse dataset. One common approach is to rely on heavily curated prompts limiting scalability (Zhang et al., 2024a; Naik et al., 2023; Fröhling et al., 2024; Chen et al., 2024; Li et al., 2022). Another effective approach is to utilize a large diverse seed set, up to 100,000s of examples in size (Lambert et al., 2024; Li et al., 2023; Wei et al., 2024; Li et al., 2024c), requiring significant curation effort. BARE obviates both of these concerns by focusing on the few-shot setting (we use only 3 seed examples) and showing significant performance gains without prompt engineering.

Others have explored using an LLM to generate the seed set (Wong et al., 2024; Li et al., 2024a), but still use instruction-tuned models. These methods thus still suffer from the limited diversity of instruction-tuned models. In contrast, BARE utilizes base models to generate a large and diverse seed set. To our knowledge, no prior work has focused on this approach. Though prior work has studied differences in base and instruct models in calibration (OpenAI, 2024b) and agentic environments (Li et al., 2024b), no work has leveraged base models for synthetic data.

Evaluating Synthetic Data. The utility of synthetic data is typically assessed by downstream performance. However, to motivate the development of better systems, we also study diversity and the quality of individual entries (entry-wise quality). Token-level metrics like self-BLEU (Zhu et al., 2018) are common, though embedding-based approaches that are commonly used (e.g., BERTScore (Zhang et al., 2019), Sentence-BERT (Reimers & Gurevych, 2019)) better capture semantic diversity rather than token diversity, which is our primary focus. Lastly, while dataset-wide quality is often measured via downstream performance, assessing individual synthetic samples remains underexplored. In Section 3, we introduce an entry-wise quality measure to evaluate sample realism, ensuring robust synthetic data generation.

3 MOTIVATION

Synthetic data generation should result in a diverse and high-quality dataset. In this section, we run experiments to demonstrate the challenges of few-shot synthetic data generation with current methods and the differences between base and instruction tuned models. We demonstrate the potential of base models as a source of diversity, motivating the design of BARE.

3.1 DIVERSITY & QUALITY METRICS

Diversity. Following Tevet & Berant (2021); Cann et al. (2023); Cox et al. (2021), we use the average neural similarity score to measure the diversity of a generated dataset. Specifically, we use OpenAI’s `text-embedding-3-small` (OpenAI, 2024a) to generate embeddings and use cosine

162 similarity to calculate similarity scores, as recommended by OpenAI. We calculate pairwise cosine
 163 similarity scores for items in a generated dataset and analyze the resulting distribution of similarities.
 164 A lower average similarity indicates a more diverse dataset.
 165

166 **Entry-wise quality.** To measure entry-wise quality, we propose the *indistinguishability rate* (IR),
 167 a novel metric inspired by the adversarial framework of Generative Adversarial Networks (GANs)
 168 (Goodfellow et al., 2014). We task a strong LLM (e.g., GPT-4o) as a "discriminator" to distinguish a
 169 synthetic entry from $n = 3$ real entries. The IR is the rate at which it fails to distinguish the synthetic
 170 entry. A high IR suggests the synthetic data closely mimics real data, while a low IR indicates it is
 171 easily identifiable as out-of-distribution. An example IR prompt is in Appendix D.

172 **3.2 EXPERIMENTAL SETUP**

173 **Models.** To investigate diversity and quality differences between instruction-tuned and base models,
 174 we evaluate synthetic datasets generated using Llama-3.1-70B-Instruct and Llama-3.1-70B-Base
 175 (Dubey et al., 2024). We also use GPT-4o (OpenAI, 2024c) as a stronger instruction-tuned model.
 176

177 **Domains.** We enforce the few-shot setting by exposing each generation method to only three real-
 178 world examples, simulating low seed data collection effort. We evaluate in the following established
 179 benchmarks:
 180

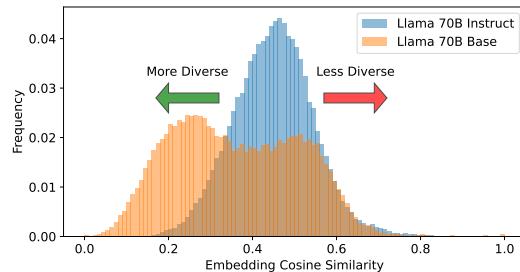
- 181 • **Enron Emails** (Klimt & Yang, 2004) generating training data for classifying emails as spam or
 182 legitimate. We ensure class-balanced synthetic data by explicitly conditioning each generation on a
 183 uniform class distribution.
- 184 • **20 Newsgroups** (Pedregosa et al., 2011) generating training data for classifying Usenet messages
 185 into one of 20 newsgroup sources. We generate classes along with content, allowing the generation
 186 method to determine the class distribution of the synthetic dataset.
- 187 • **Retrieval-Augmented Fine-Tuning** (RAFT) (Zhang et al., 2024b), a domain and generator-
 188 agnostic synthetic data generation framework for fine-tuning data in RAG tasks. Q/A pair generation
 189 is conditioned on contexts mimicking retrieval results from a corpus. We use:
 - 190 – **HotpotQA** (Yang et al., 2018), a general Wikipedia-based short-answer task.
 - 191 – **PubMedQA** (Jin et al., 2019), a medical abstract-based yes/no/maybe question-answering task.
- 192 • **GSM8K** (Cobbe et al., 2021), generating grade-school math problems and solutions for fine-tuning.
- 193 • **LiveCodeBench’s Test Output Prediction** (LCB TOP) (Jain et al., 2024), generating coding
 194 questions and answers on predicting test case outputs given a natural language description of an
 195 algorithm’s expected behavior and test input for fine-tuning.

196 For the classification tasks of Enron and Newsgroups, we generate a dataset of size $n = 500$.
 197 For the generative model fine-tuning tasks of HotpotQA, PubMedQA, GSM8K, and LCB
 198 TOP, we generate a larger dataset of size $n = 1000$. For the RAFT domains, this would mean
 199 10 questions for each of 100 simulated retrievals; we do not compute diversity for RAFT due to
 200 differences in retrievals.

201 We use straight-forward prompts with limited
 202 domain-tailoring (examples in Section D). Fur-
 203 ther sampling details, such as temperature, are
 204 in Section A.

205 **3.3 INVESTIGATION RESULTS**

206 **Diversity.** From the pairwise cosine similarity distributions of the embeddings in Figure 3 (and
 207 recalling Figure 1), we see the base distribution is consistently further to the left, indicating that the
 208 base model generations are more diverse. The better diversity of base models is further reflected



209 **Figure 3: Distribution of pairwise embedding co-**
 210 **sine similarity scores** for Llama-3.1-70B-Instruct
 211 and Llama-3.1-70B-Base generations for Enron
 212 spam. Base model distribution have more density
 213 in the low-similarity region and less density in the
 214 high-similarity region, indicating greater diversity.

216
 217 **Table 1: Average pairwise embedding cosine similarity of Llama-3.1-70B-Instruct vs. Llama-3.1-70B-Base generated data.** Generations from Base are almost always more diverse than Instruct, despite always sampling at a lower temperature (0.7 vs 1.0).
 218
 219
 220

	ENRON	NEWSGROUPS	GSM8K	LCB TOP
INSTRUCT	0.450	0.256	0.421	0.389
BASE	0.350	0.162	0.313	0.468

224
 225 **Table 2: Average pairwise embedding cosine similarity of various prompting techniques.** GPT-4o
 226 is used as the prompting generator due to the need for strong instruction following capabilities; Llama
 227 models frequently derailed. Llama-3.1-70B-Base generations are almost uniformly more diverse than
 228 any prompting method, except for persona prompting on GSM8K, where it is comparable.
 229
 230

	PROMPTING GPT-4O					LLAMA-3.1-70B-BASE
	IND.	PERSONA	SEQ.	IN-ONE	DYN. FEWSHOT	INDEPENDENT
ENRON	0.574	0.580	0.511	0.363	0.511	0.350
GSM8K	0.427	0.308	0.398	0.347	0.463	<i>0.313</i>

235
 236 in Table 1, with all domains except one showing lower mean similarity for base models, indicating
 237 higher diversity. Upon inspection, we attribute the reversal in trend in LCB TOP to the base model
 238 repeating phrases from the examples. This is related to potential issues with the quality of base model
 239 generations, which we discuss below.
 240

241 In addition to repeated independent sampling from the instruction-tuned model, we further explore
 242 diversity-eliciting prompting for data generation. We do not explore such methods on base models
 243 due to their poor instruction-following capabilities. The methods we examine are:

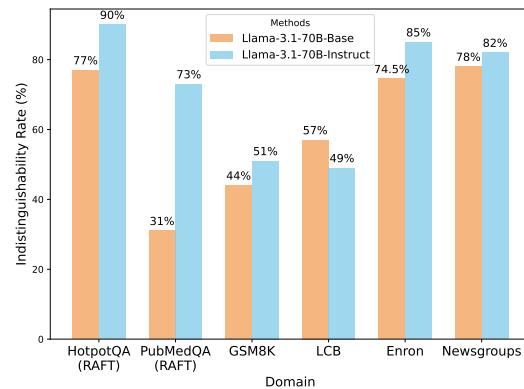
244

- **Persona Prompting:** Model responds as a predefined persona (Fröhling et al., 2024).
- **Sequential Prompting:** Model iteratively generates outputs distinct from previous ones.
- **In-One Prompting:** Model generates k different entries in a single response (Zhang et al., 2024a).
- **Dynamic Few-Shot Examples:** Different few-shot examples are randomly selected for each call
 245 (using a larger seed set) (Li et al., 2022).

250
 251 Table 2 shows that base models generally yield
 252 higher diversity than almost all prompting meth-
 253 ods in the two domains, as measured by the
 254 average embedding distance. The exception is
 255 persona prompting on GSM8K — though this
 256 diversity arises more from flavor text differences
 257 due to personas rather than actual content.

258 We thus find that base models are generally more
 259 diverse than instruction-tuned models and that
 260 temperature increases and prompting methods
 261 are insufficient to bridge the gap, motivating our
 262 usage of base models in the first stage of BARE.

263 **Entry-wise quality.** Figure 4 presents our
 264 results. In general, the instruction-tuned model
 265 has a higher indistinguishability rate (IR) (see
 266 Section 3.1), indicating that it is better at pro-
 267 ducing generations that resemble high-quality
 268 data. Some IRs are well above 75%, which is
 269 not unexpected: if a model consistently gener-
 270 ates data that aligns with the most common patterns
 271 in the real-world distribution, it becomes difficult



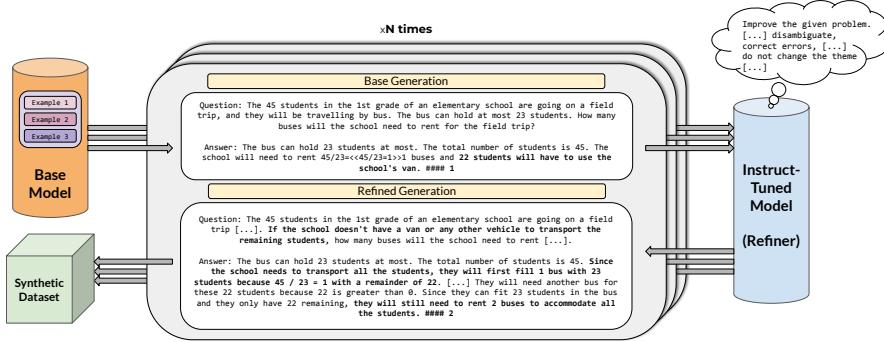
272
 273 **Figure 4: Indistinguishability Rate for Llama-3.1-70B Base and Instruct data generation**
 274 **methods** across various datasets. Llama-3.1-70B-Instruct is almost uniformly better at generating
 275 examples that appear in-domain when compared alongside real-world data.
 276
 277

270 to distinguish from actual data. Since the real-world entries often also include non-modal (less
 271 frequent) samples, a discriminator tasked with identifying lower quality data may instead misclassify
 272 these less common real-world samples as synthetic.

273 As mentioned above, on LCB TOP the base model repeats phrases from examples in the prompt,
 274 leading to a higher IR as the repeated examples *are* real. Consequently, while individual base
 275 generations are technically more realistic, their shortcomings are captured in the diversity metric.
 276

277 We thus find that the superior instruction following capabilities of instruction-tuned models generates
 278 more realistic data, motivating our usage of instruction-tuned models in the second stage of BARE.
 279

280 4 BASE-REFINE (BARE)



294 **Figure 5: BARE combines base models with instruction tuned models.** Instruction-tuned models
 295 provide high-quality but low-diversity data, while base models provide low-quality but high-diversity
 296 data. With minimal seed examples, BARE independently generates a diverse initial set of data points
 297 with a base model and refines each entry individually with an instruction-tuned model to create a
 298 high-quality, high-diversity dataset. In this example of a real grade school math problem generation,
 299 the Llama-3.1-70B-Base model hallucinates in its answer to its own question. The refiner (Llama-
 300 3.1-70B-Instruct) recognizes this and disambiguates the question and corrects the reasoning.
 301

302 Building on the relative advantages of base and instruction tuned models we introduce BARE. BARE
 303 is a practical few-shot synthetic data generation method that combines the diversity of base models
 304 with the fidelity of instruction tuned models. BARE uses a base model to generate an initial set of
 305 diverse but potentially lower quality data from very little seed data. An instruction-tuned model then
 306 individually refines each example from the initial set, improving it according to specific criteria (e.g.,
 307 realism, correctness) while keeping the original concept. The refinement retains the overall diversity
 308 of the initial set while exerting greater control over the quality of the final generations.
 309

310 Importantly, diversity is elicited from the inherent properties of the base model rather than a large
 311 initial seed set, allowing for greatly improved data efficiency. Seed examples are only necessary
 312 to ensure the base model follows formatting (though they can also be included in the refine step).
 313 In our experiments, we use just three few-shot examples. In addition, we intentionally use very
 314 general prompts for BARE to demonstrate its flexibility, underscoring the potential for even greater
 315 improvement with tailored prompts. Representative prompts are included in Section D.
 316

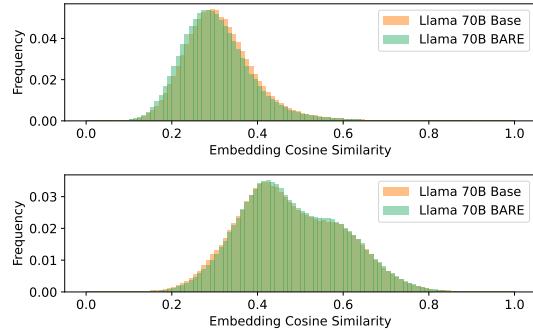
317 5 EVALUATION

318 We evaluate BARE on diversity, data quality, and downstream utility across the same domains and
 319 baselines presented in Section 3. BARE uses Llama-3.1-70B-Base for generation and Llama-3.1-70B-
 320 Instruct for refinement. We also experiment with the Llama 3.1 8B family and GPT-4o as the refiner
 (Dubey et al., 2024; OpenAI, 2024c). Sampling details are in Section A.

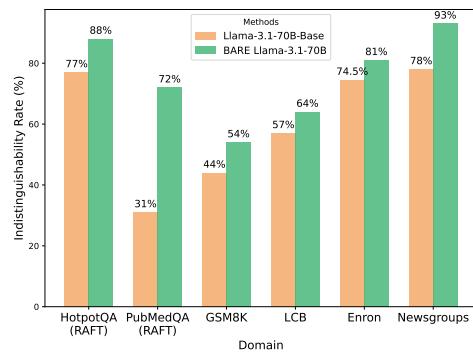
321 To evaluate the downstream utility of BARE, we LoRA (Hu et al., 2021) fine-tune Llama-3.1-8B-
 322 Instruct for 4 epochs using the generated data, except for GSM8K where Llama-3.2-1B-Instruct
 323 (Dubey et al., 2024) is fine-tuned instead due to high baseline performance of the 8B model. Other
 324 fine-tuning hyperparameters are in Section B.1. The fine-tuned models are evaluated on a static test

324 set for HotpotQA, PubMedQA, GSM8K, and LCB TOP. In this section, we will focus only on the
 325 generative tasks; the downstream evaluation process for classification tasks is presented in Section B.1
 326 and detailed results for all domains can be found in Section B.2.

327 **Baselines.** To compare against existing synthetic data generation methods, our prompt for instruction-
 328 tuned models is comparable to those used in current synthetic data generation techniques such as
 329 OSS-Instruct (Wei et al., 2024). Indeed, validation training runs adapting OSS-Instruct’s prompts
 330 to our setting yielded comparable results to our prompts. We thus use our instruction-tuned-only
 331 methods as a baseline representation for existing works that use instruction-models in their synthetic
 332 data generation from seed sets.



344
 345 **Figure 6: Distribution of pairwise embedding**
 346 **cosine similarity scores** for Llama-3.1-70B-Base
 347 and Llama 3.1 70B BARE generations for GSM8K
 348 (top) and LCB TOP (bottom). The distributions
 349 are extremely similar for both tasks, indicating that
 350 refinement retains the diversity of base generations.



351
 352 **Figure 7: Indistinguishability Rate** for data
 353 generated by Llama-3.1-70B-Base and BARE
 354 across various datasets. BARE consistently
 355 improves the quality of data generated from
 356 base models.

357 **BARE Quality & Diversity.** We begin by comparing the quality/diversity trends of BARE with
 358 other methods. From the histograms in Figure 6, we can see that BARE effectively does not change
 359 the similarity distribution of generated data when compared to the base model at all. Detailed results
 360 with average embedding similarity scores can be found in Section B.2.

361 At the same time, we see from Figure 7 that BARE leads to a monotonic increase in the IR for
 362 every domain - suggesting that it is able to lift the quality of the generations to be on par or in
 363 some cases even surpass directly sampling from an instruct model. Combined, the IR and diversity
 364 measures indicate that BARE is capable of leveraging the diversity of base models and quality of
 365 instruction-tuned models in its end generations.

366 **Fine-tuned Model Accuracy.** We now show the utility of BARE-generated datasets as a whole. In
 367 Figure 8, we demonstrate the accuracy of a model fine-tuned on datasets generated using different
 368 methods. BARE-generated data leads to better downstream models than data from either Base or
 369 Instruct models almost uniformly, and across all domains training with BARE-generated data leads to
 370 the highest model accuracy.

371 Surprisingly, in Figure 9, we find that BARE using the small Llama-3.1-8B base model to generate
 372 data and GPT-4o as a refiner, **outperforms** all advanced prompting methods discussed in Section 3.3
 373 applied to GPT-4o directly. These clear results showcase BARE’s ability to out-perform existing
 374 methods for high-quality, diverse data generation in few-shot settings.

375 On RAFT domains, BARE improves upon the standard state-of-the-art pipeline for fine-tuning LLMs
 376 for RAG (RAFT) by up to 18.4%, as seen with the 8B family on HotpotQA (standard RAFT is
 377 represented in our Instruct generation results). BARE with both model families also outperforms
 378 existing RAFT pipelines on PubMedQA.

379 On GSM8K, BARE is the only method that provides useful training data. The un-trained model
 380 performance was 21.8%, and fine-tuning on BARE-generated data achieves accuracies of 24.9%
 381 and 32.8% with the Llama 8B and 70B families, respectively. Accuracy when training with data
 382 generated by single model methods either decreased accuracy or had little difference. In fact, training

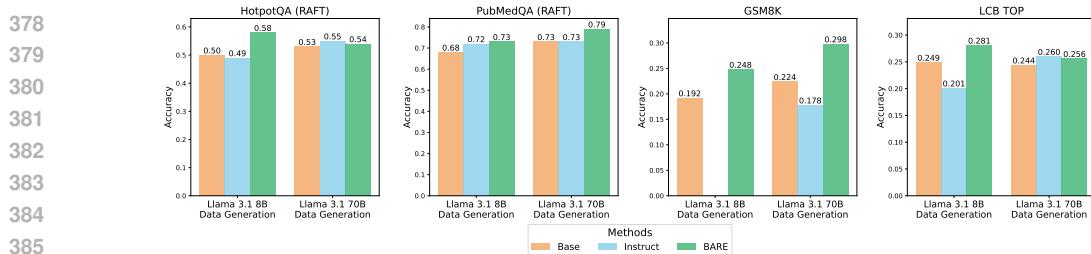


Figure 8: **Downstream accuracy of BARE compared to Llama-3.1 Base and Instruct models.** Accuracy is measured on Llama-3.1-8B-Instruct Model (HotpotQA, PubMedQA, LCB TOP) and Llama-3.2-1B-Instruct Model (GSM8K) finetuned on synthetic data generated using Base, Instruct, and BARE methods. Note that GSM8K 8B Instruct results are not shown as generations derailed. In general, we find that BARE out-performs directly using the base and instruction fine-tuned models.

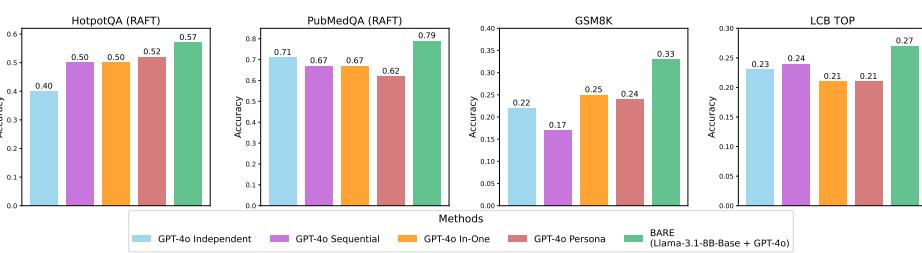


Figure 9: **Downstream accuracy for BARE versus other diversification methods.** Fine-tuned model accuracy on HotpotQA, PubMedQA, GSM8K, and LCB TOP for data generated from prompting methods using GPT-4o. Prompting methods have mixed effects on downstream performance when compared against standard sampling. Alternatively, BARE using just with the Llama-3.1-8B Base as the generator and GPT-4o as the refiner significantly outperforms all over methods using GPT-4o.

on data generated by Llama-3.1-70B-Instruct led to an accuracy of just 17.8%, which BARE with Llama-3.1-70B-Base refined by GPT-4o outperforms by over 2 \times (35.8% accuracy).

On LCB TOP, fine-tuning a Llama-3.1-8B-Instruct model on 1,000 examples generated by BARE using the Llama 3.1 8B model family for just 4 epochs resulted in performance of 28.1% accuracy, comparable to the current top models of similar size on the LCB leaderboard: DeepSeekCoder 6.7B Instruct (Guo et al., 2024) at 32.7% and MagicoderS DS 6.7B (Wei et al., 2024) at 32.4%. While both these models perform slightly better, they used orders of magnitude more seed data; Magicoder used OSS-Instruct, requiring 80,000 code snippets compared to our 3 examples.

We note that with the 70B family on both HotpotQA and LCB, BARE-generated data leads to less of an improvement than the instruct-generated data. In these cases, using GPT-4o as a refiner instead of Llama-3.1-70B-Instruct does lead to stronger results, indicating that the choice of refiner can strongly influence data quality: the Llama model was unable to sufficiently refine the base model generations, but the stronger GPT-4o was able to do so. We show detailed results of refining with GPT-4o in all domains in Section B.2, emphasizing BARE’s consistently strong data generation capabilities. For more detailed discussion, see Section C.

Comparison to Real-World Data. To further show the quality of our synthetic data, we took the real GSM8K training data (the only domain of these 4 which has a real train set) and randomly sampled 1,000 examples from which to fine-tune the Llama-3.2-1B-Instruct model. The resulting trained model had a performance of 26.6%, surpassing the 8B/70B Base and Instruct models individually. Interestingly, though, it was surpassed by almost all BARE methods, most prominently when GPT-4o was used as a refiner with Llama-3.1-70B-Base (35.8%). While one might expect the real training data should be better than a synthetically generated dataset based on a small sample, the quality of synthetically generated data with an emphasis on quality and diversity can lead to better generalization than the original human generated training data. This is in line with other works’ findings for synthetic sets generated from large samples (Liu et al., 2023).

432
 433 **Temperature, Scale, & Model Ablations.** We also find that temperature ablations do not meaning-
 434 fully affect the utility of instruction-tuned model generations, especially when compared to gains
 435 using BARE; for details, see Section B.3. Additionally, we found that BARE’s strong performance
 436 holds when scaling the amount of generated data; for details, see Section B.5. Finally, we found our
 437 results hold across model families such as the Qwen3 models; for details see Section B.6.

438
 439 **Instruct-Instruct Ablation.** To verify
 440 BARE’s performance comes from the use of
 441 base models rather than the multi-step setup,
 442 we replace the base model in the first step of
 443 BARE with an instruction-tuned model on the
 444 GSM8K task. Switching Llama-3.1-70B-Base
 445 to Instruct drops the accuracy on the test set
 446 from 29.8% to 25.4% when refining with
 447 Llama-3.1-70B-Instruct and from 35.8% to
 448 30.8% with GPT-4o. At the same time, the
 449 average pairwise similarity before and after
 450 refinement remains similar, indicating that
 451 diversity must be introduced in the first stage.
 452 Having established that base models are most
 453 effective at seed efficient diversity, we conclude
 454 that the use of base models is a key reason for
 455 the utility of BARE. Detailed results from this
 456 ablation are in Section B.4.

457 **Seed Data Scale Ablation.** We additionally
 458 investigate the advantage of BARE compared to instruct-only methods as more seed data is made
 459 available (i.e., higher seed data collection effort). We evaluate results with BARE and Instruct using
 460 the Llama 3.1 70B family on GSM8K, ranging the seed set size from 3 to 3000 and continuing to
 461 generate 1,000 examples (Figure 10). Each generation randomly selects three examples from the seed
 462 set for the prompt.

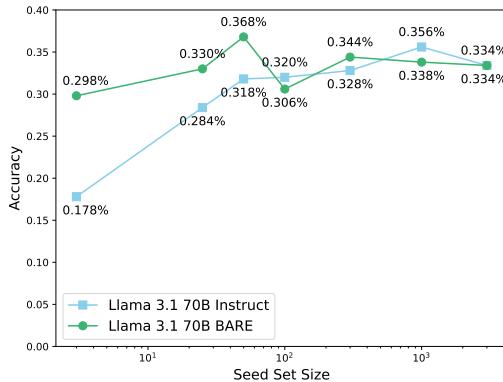
463 BARE consistently outperforms Instruct generation for small seed sets, highlighting the potential of
 464 BARE in making high-quality synthetic data generation easier to adopt and realistic with minimal
 465 effort. The methods converge and plateau for large seed set sizes, indicating that diversity sourced
 466 from the base model’s priors in BARE is always at least as effective as diversity from curated seed
 467 sets. In our experiments, convergence between BARE and Instruct generation occurred at around
 468 100 examples, or 10% of the generated dataset size. We leave as future work the validation of the
 469 convergence point at larger dataset scales.

471 6 CONCLUSION

472 In this work we investigated the potential of using base models for few-shot synthetic data generation.
 473 Through this investigation, we find that base models are an effective source of diversity even when
 474 given minimal seed data, making them an attractive choice for data efficiency and low-effort synthetic
 475 data generation. These insights motivate the design of a system novelly leveraging base models in
 476 synthetic data generation, BARE.

477 Through extensive experiments, we validate the importance of each step in BARE and demonstrate its
 478 ability to preserve base model diversity while enhancing output quality. The use and analysis of base
 479 models specifically in BARE opens an avenue for much future work as almost no prior work to our
 480 knowledge has studied their innate value (before post-training).

481 Moreover, by fine-tuning on BARE-generated data for various domains, we underscore BARE’s
 482 practical utility, consistently outperforming existing synthetic data generation methods on downstream
 483 tasks such as GSM8K and LiveCodeBench, in addition to RAFT, for which we set a new SOTA.



484 **Figure 10: Accuracy at varying seed (few-shot)**
 485 **sizes** of a Llama-3.2-1B-Instruct Model finetuned
 486 on synthetic data generated using Instruct and
 487 BARE methods on GSM8K. BARE performance
 488 is consistent throughout while Instruct improves
 489 with seed set size before converging with BARE.

486 REPRODUCIBILITY STATEMENT
487488 To support the reproducibility of our work, we will publicly release our code after the anonymization
489 period. In the meantime, we provide a detailed description of our method in Section 4 and all prompts
490 used in Appendix D. Detailed data generation parameters are provided in Appendix A and training
491 parameters and evaluation setups are described in Section 5 and Appendix B.1.492
493 REFERENCES
494

495 Tristan J. B. Cann, Ben Dennes, Travis Coan, Saffron O’Neill, and Hywel T. P. Williams. Using se-
496 mantic similarity and text embedding to measure the social media echo of strategic communications,
497 2023. URL <https://arxiv.org/abs/2303.16694>.

498 Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jindong Wang, Bhiksha Raj, and Marah I. Abdin.
499 On the diversity of synthetic data and its impact on training large language models, 2024. URL
500 <https://arxiv.org/abs/2410.15226>.

501 John Joon Young Chung, Ece Kamar, and Saleema Amershi. Increasing diversity while maintaining
502 accuracy: Text data generation with large language models and human interventions. *arXiv preprint*
503 *arXiv:2306.04140*, 2023.

504 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
505 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
506 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

507 Samuel Rhys Cox, Yunlong Wang, Ashraf Abdul, Christian Von Der Weth, and Brian Y. Lim. Directed
508 diversity: Leveraging language embedding distances for collective creativity in crowd ideation.
509 In *Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems*, pp. 1–35,
510 2021.

511 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
512 bidirectional transformers for language understanding. *CoRR*, abs/1810.04805, 2018. URL
513 [http://arxiv.org/abs/1810.04805](https://arxiv.org/abs/1810.04805).

514 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
515 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models,
516 2024.

517 Leon Fröhling, Gianluca Demartini, and Dennis Assenmacher. Personas with attitudes: Controlling
518 LLMs for diverse data annotation. *arXiv preprint arXiv:2410.11745*, 2024.

519 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
520 Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL <https://arxiv.org/abs/1406.2661>.

521 Melody Y. Guan, Manas Joglekar, Eric Wallace, Saachi Jain, Boaz Barak, Alec Helyar, Rachel Dias,
522 Andrea Vallone, Hongyu Ren, Jason Wei, Hyung Won Chung, Sam Toyer, Johannes Heidecke,
523 Alex Beutel, and Amelia Glaese. Deliberative alignment: Reasoning enables safer language
524 models, 2025. URL <https://arxiv.org/abs/2412.16339>.

525 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
526 Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
527 rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.

528 Yanzhu Guo, Guokan Shang, Michalis Vaziriannis, and Chloé Clavel. The curious decline of
529 linguistic diversity: Training language models on synthetic text. *arXiv preprint arXiv:2311.09807*,
530 2023.

531 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
532 degeneration. In *ICLR*, 2020.

540 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. *arXiv preprint*
 542 *arXiv:2106.09685*, 2021.

543 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 544 Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
 545 evaluation of large language models for code, 2024. URL <https://arxiv.org/abs/2403.07974>.

546 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. PubMedQA: A
 547 dataset for biomedical research question answering, 2019. URL <https://arxiv.org/abs/1909.06146>.

548 Bryan Klimt and Yiming Yang. The Enron corpus: A new dataset for email classification research. In
 549 Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi (eds.), *Machine*
 550 *Learning: ECML 2004*, volume 3201 of *Lecture Notes in Computer Science*, pp. 217–226. Springer,
 551 Berlin, Heidelberg, 2004. doi: 10.1007/978-3-540-30115-8_22.

552 Nathan Lambert, Hailey Schoelkopf, Aaron Gokaslan, Luca Soldaini, Valentina Pyatkin, and Louis
 553 Castricato. Self-directed synthetic dialogues and revisions technical report. *arXiv preprint*
 554 *arXiv:2407.18421*, 2024.

555 Ehsan Latif and Xiaoming Zhai. Fine-tuning ChatGPT for automatic scoring. *Computers and*
 556 *Education: Artificial Intelligence*, 6:100210, 2024.

557 Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang,
 558 Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, Yuxian Gu, Xin Cheng,
 559 Xun Wang, Si-Qing Chen, Li Dong, Wei Lu, Zhifang Sui, Benyou Wang, Wai Lam, and Furu Wei.
 560 Synthetic data (almost) from scratch: Generalized instruction tuning for language models, 2024a.
 561 URL <https://arxiv.org/abs/2402.13064>.

562 Margaret Li, Weijia Shi, Artidoro Pagnoni, Peter West, and Ari Holtzman. Predicting vs. acting:
 563 A trade-off between world modeling & agent modeling, 2024b. URL <https://arxiv.org/abs/2407.02446>.

564 Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason Weston, and
 565 Mike Lewis. Self-alignment with instruction backtranslation. In *ICLR*, 2024c.

566 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
 567 large language models better reasoners with step-aware verifier. *arXiv preprint arXiv:2206.02336*,
 568 2022.

569 Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
 570 Textbooks are all you need II: phi-1.5 technical report, 2023. URL <https://arxiv.org/abs/2309.05463>.

571 Bingbin Liu, Sébastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
 572 Ward, and Yi Zhang. Tinygsm: achieving >80 URL <https://arxiv.org/abs/2312.09241>.

573 Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi.
 574 Diversity of thought improves reasoning abilities of large language models. *arXiv preprint*
 575 *arXiv:2310.07088*, 2023.

576 NovaSky Team. Sky-T1: Train your own o1 preview model within \$450. <https://novasky-ai.github.io/posts/sky-t1>, 2025. Accessed: 2025-01-09.

577 Nvidia. Nemotron-4 340b technical report, 2024. URL <https://arxiv.org/abs/2406.11704>.

578 OpenAI. New embedding models and API updates. <https://openai.com/index/new-embedding-models-and-api-updates/>, 2024a.

579 OpenAI. GPT-4 technical report, 2024b. URL <https://arxiv.org/abs/2303.08774>.

594 OpenAI. Hello GPT-4o. <https://openai.com/index/hello-gpt-4o/>, 2024c.
 595

596 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 597 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
 598 and E. Duchesnay. Scikit-learn: Machine learning in Python. In *Journal of Machine Learning
 599 Research*, volume 12, pp. 2825–2830, 2011.

600 Qwen. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.
 601

602 Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
 603 emergence of non-bayesian in-context learning for regression, 2023. URL <https://arxiv.org/abs/2306.15063>.
 604

605 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
 606 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 607 Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.
 608

609 Luísa Shimabucoro, Sebastian Ruder, Julia Kreutzer, Marzieh Fadaee, and Sara Hooker. LLM see,
 610 LLM do: Guiding data generation to target non-differentiable objectives, 2024. URL <https://arxiv.org/abs/2407.01490>.
 611

612 Ilia Shumailov, Zakhar Shumaylov, and Yue et al. Zhao. AI models collapse when trained on
 613 recursively generated data. *Nature*, 631:755–759, 2024. doi: 10.1038/s41586-024-07566-y.
 614

615 Guy Tevet and Jonathan Berant. Evaluating the evaluation of diversity in natural language generation.
 616 In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceedings of the 16th Conference
 617 of the European Chapter of the Association for Computational Linguistics: Main Volume*, pp.
 618 326–346, Online, April 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 619 eacl-main.25. URL <https://aclanthology.org/2021.eacl-main.25>.
 620

621 Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbahn.
 622 Will we run out of data? limits of llm scaling based on human-generated data, 2024. URL
 623 <https://arxiv.org/abs/2211.04325>.

624 Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
 625 code generation with OSS-instruct. In *Proceedings of the 41st International Conference on Machine
 626 Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 52632–52657. PMLR,
 627 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/wei24h.html>.
 628

629 Justin Wong, Yury Orlovskiy, Michael Luo, Sanjit A. Seshia, and Joseph E. Gonzalez. SimpleStrat:
 630 Diversifying language model generation with stratification, 2024. URL <https://arxiv.org/abs/2410.09038>.
 631

632 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 633 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 634 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 635 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 636 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 637 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 638 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 639 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 640 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
 641

642 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 643 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 644 answering, 2018. URL <https://arxiv.org/abs/1809.09600>.
 645

646 Tianhui Zhang, Bei Peng, and Danushka Bollegala. Improving diversity of commonsense generation
 647 by large language models via in-context learning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
 648 Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 649 9226–9242, Miami, Florida, USA, November 2024a. Association for Computational Linguistics.
 650 doi: 10.18653/v1/2024.findings-emnlp.540. URL <https://aclanthology.org/2024.findings-emnlp.540>.
 651

648 Tianjun Zhang, Shishir G. Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E.
 649 Gonzalez. RAFT: Adapting language model to domain specific RAG, 2024b. URL <https://arxiv.org/abs/2403.10131>.
 650
 651

652 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. BERTscore:
 653 Evaluating text generation with BERT. *arXiv preprint arXiv:1904.09675*, 2019.

654 Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
 655 A benchmarking platform for text generation models. In *The 41st International ACM SIGIR
 656 Conference on Research & Development in Information Retrieval*, pp. 1097–1100, 2018.
 657
 658

659 A SAMPLING DETAILS 660

661 During data generation, all base models were sampled at a default temperature of 0.7. For instruction-
 662 tuned-only generations we sampled at the highest temperature at which we experimentally found data
 663 generation to still be coherent, which is 1.0 for Llama models and 1.2 for GPT-4o. However, for
 664 Enron, we sample from GPT-4o at a temperature of 1.0 to maintain generation coherence. Similarly,
 665 for Enron and Newsgroups, we sample for Llama-3.1-8B-Instruct at a temperature of 0.7. Instruction-
 666 tuned models used during refinement are always sampled at a temperature of 0.7.
 667

668 B ADDITIONAL RESULTS 669

670 B.1 DOWNSTREAM EVALUATION - ADDITIONAL DETAILS 671

672 We list below the fine-tuning hyperparameters that were used in common for HotpotQA, PubMedQA,
 673 GSM8K, and LCB TOP. Learning rate was determined independently for each domain via learning
 674 rate sweeps (across orders of magnitude); each sweep gave the same optimal learning rate.
 675

- 676 • Learning Rate: 0.001
- 677 • LoRA α : 16
- 678 • LoRA Rank: 8
- 679 • LoRA Dropout: 0.0

682 The generated data is used to train a BERT-based classifier Devlin et al. (2018) for 2 epochs on Enron
 683 and 9 epochs on Newsgroups. The trained models are evaluated on a static test set with $n = 500$
 684 examples for each domain.

685 We use 1-4 A100s for serving open-source models for data generation tasks (8B and 70B models) and
 686 up to a single node of 8xH100s for training purposes. LoRA fine-tuning takes on the order of minutes
 687 and data generation for 10,000 examples for an 70B model using 90 cores takes approximately an
 688 hour.

690 B.2 CORE EXPERIMENT RESULTS - ALL DOMAINS 691

692 This appendix contains diversity, IR, and downstream performance results for all core experiments:
 693 generation with Llama 3.1 8B and 70B Base and Instruct models, BARE with Llama 3.1 models of
 694 both families, and BARE with the use of GPT-4o.

695 Note that HotpotQA RAFT and PubMedQA RAFT diversity results present here were not presented
 696 in Table 1 as we believe the numbers are noisy and not fit for drawing conclusions, due to the use of
 697 100 different simulated retrieval contexts that generation was conditioned on (as required by RAFT).
 698 Not only does this introduce noise to the similarity calculation, but the strong instruction following
 699 capability of instruct models allow them to better leverage the inherent diversity in different prompts.
 700 However, for completeness, we report the values in the tables in this appendix. The fine-tuned models
 701 are evaluated on a static $n = 100$ test set for HotpotQA and PubMedQA, a static $n = 500$ test set for
 GSM8K, and the full $n = 442$ test set for LCB TOP.

702 Table 3: Average pairwise embedding cosine similarity, IR, and downstream F1 results on Enron. A
 703 BERT model with a classification head was trained for 2 epochs on the generated data. Only pairwise
 704 similarities for generations within the same class (spam or legitimate) were calculated.
 705

707 GENERATION METHOD	708 AVERAGE EMBEDDING SIMILARITY	709 IR	710 DOWNSTREAM F1
708 LLAMA 3.1 8B INSTRUCT	708 0.500	708 86.0%	708 0.753
709 LLAMA 3.1 70B INSTRUCT	709 0.450	709 85.0%	709 0.848
710 LLAMA 3.1 8B BASE	710 0.368	710 63.5%	710 0.790
711 LLAMA 3.1 70B BASE	711 0.350	711 74.5%	711 0.819
712 BARE LLAMA 3.1 8B	712 0.413	712 85.0%	712 0.872
713 BARE LLAMA 3.1 70B	713 0.406	713 82.0%	713 0.771
714 BARE GPT-4O + LLAMA 3.1 8B BASE	714 0.379	714 84.5%	714 0.872
715 BARE GPT-4O + LLAMA 3.1 70B BASE	715 0.356	715 88.5%	715 0.846

723 Table 4: Average pairwise embedding cosine similarity, IR, and downstream accuracy results on
 724 Newsgroups. A BERT model with a classification head was trained for 9 epochs on the generated
 725 data.

727 GENERATION METHOD	728 AVERAGE EMBEDDING SIMILARITY	729 IR	730 DOWNSTREAM ACCURACY
728 LLAMA 3.1 8B INSTRUCT	728 0.271	728 85%	728 26%
729 LLAMA 3.1 70B INSTRUCT	729 0.246	729 82%	729 30%
730 LLAMA 3.1 8B BASE	730 0.155	730 58%	730 41%
731 LLAMA 3.1 70B BASE	731 0.162	731 78%	731 29%
732 BARE LLAMA 3.1 8B	732 0.162	732 91%	732 40%
733 BARE LLAMA 3.1 70B	733 0.134	733 93%	733 49%
734 BARE GPT-4O + LLAMA 3.1 8B BASE	734 0.131	734 81%	734 44%
735 BARE GPT-4O + LLAMA 3.1 70B BASE	735 0.285	735 87%	735 47%

743 Table 5: Average pairwise embedding cosine similarity, IR, and downstream accuracy results on
 744 HotpotQA RAFT. A Llama-3.1-8B-Instruct model was fine-tuned for 4 epochs on the generated
 745 data. The baseline performance of the Llama-3.1-8B-Instruct model on the evaluation set prior to any
 746 fine-tuning is reported in the first row.

748 GENERATION METHOD	749 AVERAGE EMBEDDING SIMILARITY	750 IR	751 DOWNSTREAM ACCURACY
749 BASELINE PERFORMANCE	750 -	751 -	752 33%
750 LLAMA 3.1 8B INSTRUCT	750 0.214	750 76%	751 49%
751 LLAMA 3.1 70B INSTRUCT	751 0.216	751 90%	752 55%
752 LLAMA 3.1 8B BASE	752 0.221	752 62%	753 50%
753 LLAMA 3.1 70B BASE	753 0.209	753 77%	754 53%
754 BARE LLAMA 3.1 8B	754 0.217	754 77%	755 58%
755 BARE LLAMA 3.1 70B	755 0.210	755 88%	756 54%
756 BARE GPT-4O + LLAMA 3.1 8B BASE	756 0.214	756 78%	757 57%
757 BARE GPT-4O + LLAMA 3.1 70B BASE	757 0.205	757 89%	758 56%

756
 757 Table 6: Average pairwise embedding cosine similarity, IR, and downstream accuracy results on
 758 PubMedQA RAFT. A Llama-3.1-8B-Instruct model was fine-tuned for 4 epochs on the generated
 759 data. The baseline performance of the Llama-3.1-8B-Instruct model on the evaluation set prior to any
 760 fine-tuning is reported in the first row.

GENERATION METHOD	AVERAGE EMBEDDING SIMILARITY	IR	DOWNSTREAM ACCURACY
BASELINE PERFORMANCE	-	-	53%
LLAMA 3.1 8B INSTRUCT	0.376	63%	72%
LLAMA 3.1 70B INSTRUCT	0.373	73%	73%
LLAMA 3.1 8B BASE	0.396	39%	68%
LLAMA 3.1 70B BASE	0.603	31%	73%
BARE LLAMA 3.1 8B	0.377	47%	73%
BARE LLAMA 3.1 70B	0.367	72%	79%
BARE GPT-4O + LLAMA 3.1 8B BASE	0.385	57%	72%
BARE GPT-4O + LLAMA 3.1 70B BASE	0.474	40%	63%

770
 771
 772 Table 7: Average pairwise embedding cosine similarity, IR, and downstream accuracy results on
 773 GSM8K. A Llama-3.2-1B-Instruct model was fine-tuned for 4 epochs on the generated data instead
 774 of the 3.1 8B model due to its high no-training performance. The baseline performance of the
 775 Llama-3.2-1B-Instruct model on the evaluation set prior to any fine-tuning is reported in the first row.
 776 Llama-3.1-8B-Instruct generation results are not reported due to data generation derailing.

GENERATION METHOD	AVERAGE EMBEDDING SIMILARITY	IR	DOWNSTREAM ACCURACY
BASELINE PERFORMANCE	-	-	21.8%
LLAMA 3.1 8B INSTRUCT	N/A	N/A	N/A
LLAMA 3.1 70B INSTRUCT	0.421	51%	17.8%
LLAMA 3.1 8B BASE	0.310	23%	19.2%
LLAMA 3.1 70B BASE	0.313	44%	22.4%
BARE LLAMA 3.1 8B	0.310	27%	24.8%
BARE LLAMA 3.1 70B	0.305	54%	29.8%
BARE GPT-4O + LLAMA 3.1 8B BASE	0.295	60%	32.8%
BARE GPT-4O + LLAMA 3.1 70B BASE	0.302	64%	35.8%

787
 788
 789 Table 8: Average pairwise embedding cosine similarity, IR, and downstream accuracy results on LCB
 790 TOP. A Llama-3.1-8B-Instruct model was fine-tuned for 4 epochs on the generated data. The baseline
 791 performance of the Llama-3.1-8B-Instruct model on the evaluation set prior to any fine-tuning is
 792 reported in the first row.

GENERATION METHOD	AVERAGE EMBEDDING SIMILARITY	IR	DOWNSTREAM ACCURACY
BASELINE PERFORMANCE	-	-	18.6%
LLAMA 3.1 8B INSTRUCT	0.416	51%	20.6%
LLAMA 3.1 70B INSTRUCT	0.389	49%	26.0%
LLAMA 3.1 8B BASE	0.468	36%	24.9%
LLAMA 3.1 70B BASE	0.477	57%	24.4%
BARE LLAMA 3.1 8B	0.462	47%	28.1%
BARE LLAMA 3.1 70B	0.481	64%	25.6%
BARE GPT-4O + LLAMA 3.1 8B BASE	0.459	72%	26.7%
BARE GPT-4O + LLAMA 3.1 70B BASE	0.471	68%	27.4%

803
 804 **B.3 INDEPENDENT SAMPLING TEMPERATURE ABLATIONS - HOTPOTQA, PUBMEDQA, AND**
 805 **LCB TOP**

806
 807 This appendix contains diversity, IR, and downstream performance results for our temperature
 808 ablation experiments. We perform a temperature sweep for Llama-3.1-8B-Instruct generation with
 809 $t = 0.5, 0.7, 1.0$. We find that while adjusting the temperature can improve downstream performance,
 in general the gains are small relative to gains by using BARE.

810
 811 Table 9: Temperature ablations with independent sampling from Llama-3.1-8B-Instruct. Average
 812 pairwise embedding cosine similarity, IR, and downstream accuracy results on HotpotQA RAFT.
 813 A Llama-3.1-8B-Instruct model was fine-tuned for 4 epochs on the generated data. The baseline
 814 performance of the Llama-3.1-8B-Instruct model on the evaluation set prior to any fine-tuning is
 815 reported in the first row.

GENERATION METHOD	AVERAGE EMBEDDING SIMILARITY	IR	DOWNSTREAM ACCURACY
BASELINE PERFORMANCE	-	-	33%
LLAMA 3.1 8B INSTRUCT ($t = 1.0$)	0.214	76%	49%
LLAMA 3.1 8B INSTRUCT ($t = 0.7$)	0.216	77%	50%
LLAMA 3.1 8B INSTRUCT ($t = 0.5$)	0.220	83%	42%
LLAMA 3.1 8B BASE ($t = 1.0$)	0.221	62%	50%
BARE LLAMA 3.1 8B (ALL $t = 0.7$)	0.217	77%	58%

816
 817
 818
 819 Table 10: Temperature ablations with independent sampling from Llama-3.1-8B-Instruct. Average
 820 pairwise embedding cosine similarity, IR, and downstream accuracy results on PubMedQA RAFT.
 821 A Llama-3.1-8B-Instruct model was fine-tuned for 4 epochs on the generated data. The baseline
 822 performance of the Llama-3.1-8B-Instruct model on the evaluation set prior to any fine-tuning is
 823 reported in the first row.

GENERATION METHOD	AVERAGE EMBEDDING SIMILARITY	IR	DOWNSTREAM ACCURACY
BASELINE PERFORMANCE	-	-	53%
LLAMA 3.1 8B INSTRUCT ($t = 1.0$)	0.376	62%	72%
LLAMA 3.1 8B INSTRUCT ($t = 0.7$)	0.375	71%	72%
LLAMA 3.1 8B INSTRUCT ($t = 0.5$)	0.377	73%	75%
LLAMA 3.1 8B BASE ($t = 1.0$)	0.396	39%	68%
BARE LLAMA 3.1 8B (ALL $t = 0.7$)	0.377	47%	73%

832
 833
 834 Table 11: Temperature ablations with independent sampling from Llama-3.1-8B-Instruct. Average
 835 pairwise embedding cosine similarity, IR, and downstream accuracy results on the full LCB TOP
 836 set. A Llama-3.1-8B-Instruct model was fine-tuned for 4 epochs on the generated data. The baseline
 837 performance of the Llama-3.1-8B-Instruct model on the evaluation set prior to any fine-tuning is
 838 reported in the first row.

GENERATION METHOD	AVERAGE EMBEDDING SIMILARITY	IR	DOWNSTREAM ACCURACY
BASELINE PERFORMANCE	-	-	18.6%
LLAMA 3.1 8B INSTRUCT ($t = 1.0$)	0.365	33%	20.1%
LLAMA 3.1 8B INSTRUCT ($t = 0.7$)	0.416	51%	20.6%
LLAMA 3.1 8B INSTRUCT ($t = 0.5$)	0.450	53%	22.9%
LLAMA 3.1 8B BASE ($t = 1.0$)	0.468	36%	24.9%
BARE LLAMA 3.1 8B (ALL $t = 0.7$)	0.462	47%	28.1%

855 856 B.4 BARE FIRST STAGE ABLATIONS - GSM8K

857
 858 This appendix contains diversity, IR, and downstream performance results for our ablation replacing
 859 the first stage of BARE with an instruction-tuned model, specifically Llama-3.1-70B-Instruct. We
 860 refine using Llama-3.1-70B-Instruct and GPT-4o, and investigate the change in downstream perfor-
 861 mance compared to standard BARE (using Llama-3.1-70B-Base in the first stage). Note that dataset
 862 diversity is unchanged compared to direct generation from Llama-3.1-70B-Instruct, that IR improves
 863 after refinement, and that downstream performance is consistently worse than standard BARE.

864
 865 Table 12: Average pairwise embedding cosine similarity, IR, and downstream accuracy results
 866 on GSM8K. A Llama-3.2-1B-Instruct model was fine-tuned for 4 epochs on the generated data.
 867 The baseline performance of the Llama-3.2-1B-Instruct model on the evaluation set prior to any
 868 fine-tuning is reported in the first row.

GENERATION METHOD	AVERAGE EMBEDDING SIMILARITY	IR	DOWNSTREAM ACCURACY
BASELINE PERFORMANCE	–	–	21.8%
LLAMA 3.1 70B INSTRUCT	0.421	51%	22.4%
LLAMA 3.1 70B INSTRUCT SELF-REFINE	0.422	63%	25.4%
GPT-4O REFINING LLAMA 3.1 70B INSTRUCT	0.421	70%	30.8%
BARE LLAMA 3.1 70B	0.305	54%	29.8%
BARE GPT-4O + LLAMA 3.1 70B BASE	0.302	64%	35.8%

B.5 BARE TRAINING SET SCALE ABLATIONS

This appendix contains downstream performance results for our ablation where we scale up the number of BARE generated data points from 1,000 to 10,000 in an effort to investigate whether the trends hold at larger scales. We focused our investigation of this particular ablation on the Llama-3.1-8B model family, and across both the LCB TOP and PubMedQA domains we find that the BARE trends consistently hold at scale.

884 Table 13: Downstream accuracy results on two evaluation sets (LCB and PubMedQA) using 10,000
 885 synthetically-generated data points and the Llama-3.1-8B model family. Models were fine-tuned for
 886 2 epochs rather than the 4 used for 1,000 points due to compute considerations.

EVALUATION SET	BASE	INSTRUCT	BARE
LCB TOP	0.192	0.181	0.233
PUBMEDQA	0.512	0.645	0.658

B.6 BARE MODEL FAMILY ABLATIONS

This appendix presents downstream performance results for our ablation where we use the Qwen3 (Yang et al., 2025) model family for data generation to verify that BARE works across model families. Specifically, we evaluated on the 8B model sizes on the GSM8K domain. Here, the greater diversity from base model generations continues to lead to improved performance over Instruct, indicating the utility of BARE generalizes to other model families.

900 Table 14: Downstream accuracy results on GSM8K using 1,000 synthetically-generated data points
 901 and the Qwen3-8B model family. All training/sampling parameters were the same as for the Llama-3.1
 902 experiments.

	BASE	INSTRUCT	BARE
ACCURACY	0.312	0.382	0.392

C ADDITIONAL DISCUSSION

In this appendix we further discuss our evaluation results and propose hypotheses for certain trends or observations.

Why is BARE generation sometimes worse than instruction-tuned generation? As mentioned in the main paper, the choice of refiner plays an important role in the BARE pipeline. A model that is proficient at generating data may not be proficient at improving data. Mitigation of this issue can include tailoring prompts for specific models, but we chose to keep our prompts consistent and general to focus on the core idea of leveraging base mode generations.

918 **Why is instruction-tuned generation sometimes worse than base generation?** A key insight
 919 to our work is the diversity-quality tradeoff between base models and instruction-tuned models. In
 920 some cases, the additional diversity from base models outweighs the lower quality.
 921

922 **Why do smaller models sometimes produce better data than larger models?** The diversity-
 923 quality tradeoff between smaller and larger models is not well understood. While it is generally
 924 accepted that larger models are of higher quality, it is unclear whether they are similar in terms of
 925 diversity. In some cases, the smaller model exhibits higher diversity in its generations, allowing the
 926 resulting datasets to be of more utility despite the lower quality.
 927

928 D GSM8K PROMPT EXAMPLES

931 In this appendix, we provide exact prompts used for the GSM8K domains, representative of those
 932 used throughout this work. Examples are formatted for inclusion in the prompts in the “{examples}”
 933 fields, with “EXAMPLE START” and “EXAMPLE END” delimiters for the base prompt. BARE
 934 uses the standard Base Prompt in the base generation step.
 935

936 STATIC FEW-SHOT EXAMPLES

938 Example 1

940 **Question:** Alice has 20 quarters. She wants to exchange them for nickels and so she goes to
 941 the bank. After getting back from the bank, she discovers that 20% of the nickels are iron
 942 nickels worth \$3 each. What is the total value of her money now?

943 **Answer:** A quarter is worth five nickels because $.25 / .05 = \ll .25 / .05 = 5 \gg 5$. She gets
 944 100 nickels from the bank because $20 \times 5 = \ll 20 * 5 = 100 \gg 100$. 20 of the nickels are
 945 iron nickels because $100 \times .20 = \ll 100 * .20 = 20 \gg 20$. 80 of the nickels are regular
 946 because $100 - 20 = \ll 100 - 20 = 80 \gg 80$. The iron nickels are worth \$60 because
 947 $20 \times 3 = \ll 20 * 3 = 60 \gg 60$. The regular nickels are worth \$4 because $80 \times .05 =$
 948 $\ll 80 * .05 = 4 \gg 4$. Her money is now worth \$64 because $60 + 4 = \ll 60 + 4 = 64 \gg 64$.
 949 ##### 64

950 Example 2

952 **Question:** A church has 120 members. 40% are adults. The rest are children. How many
 953 children more children are there than adults?

955 **Answer:** There are 48 adults because $120 \times .4 = \ll 120 * .4 = 48 \gg 48$. 60% of members
 956 are children because $100 - 40 = \ll 100 - 40 = 60 \gg 60$. There are 72 children because 120
 957 $\times .6 = \ll 120 * .6 = 72 \gg 72$. There are 24 more children than adults because $72 - 48 =$
 958 $\ll 72 - 48 = 24 \gg 24$. ##### 24

959 Example 3

962 **Question:** Lisa is looking to attempt a World Record. She has decided to try and match Joey
 963 Chestnut’s record of eating 75 full hotdogs, buns included, in 10 minutes. Halfway through
 964 the time Lisa has eaten 20 hotdogs. How many hotdogs will she have to eat per minute to at
 965 least tie Joey Chestnut’s record?

966 **Answer:** Joey Chestnut ate 75 hotdogs to claim the record and Lisa has eaten 20 hot dogs so
 967 far, so she still needs to eat $75 - 20 = \ll 75 - 20 = 55 \gg 55$ hotdogs to tie Joey Chestnut.
 968 Lisa has a 10-minute time period to eat the hotdogs and half the time has already passed,
 969 which means Lisa has $10/2 = \ll 10/2 = 5 \gg 5$ minutes left until the competition is over. If
 970 she needs to eat 55 hotdogs to tie Joey Chestnut and there are 5 minutes left in the competition
 971 period, then she needs to eat $55/5 = \ll 55/5 = 11 \gg 11$ hot dogs per minute to have a
 chance of tying for a win. ##### 11

972
973

Base Prompt

974
975
976
977

Here are a few examples of grade school math word problems that require performing a sequence of elementary calculations using basic arithmetic operations. A bright middle school student should be able to solve each problem. The numerical answer is provided at the end of each example after #####.

978
979
980
981

{examples}

EXAMPLE START

982
983

Instruct Few-shot Prompt

984
985
986
987
988
989
990

Provide an example of a grade school math word problem that requires performing a sequence of elementary calculations using basic arithmetic operations. A bright middle school student should be able to solve each problem. Problems require no concepts beyond the level of early Algebra. You must first specify the question, then provide the very concise reasoning and answer. Provide your example in the following format:

991
992
993

Question: [question]

Answer: [answer]

994
995
996

Provide only the question and answer in the given format. Note how the numerical answer is provided after ##### after each brief reasoning for a question. Here are some examples:

997
998

{examples}

999
1000

Now it's your turn. Start your response with the question.

1001
1002

Refine Prompt

1003
1004
1005
1006
1007
1008
1009
1010

Improve the given grade school math word problem. Edit the problem or answer to be more similar in style to the examples, and disambiguate as necessary, in addition to correcting any errors. Do not change the theme of the problem. A bright middle school student should be able to solve each problem. Problems require no concepts beyond the level of early Algebra. Note how the numerical answer is provided after ##### after each brief reasoning for a question. Provide your edited problem in the following format:

1011
1012

Question: [question]

Answer: [answer]

1013
1014
1015

Provide only the question and answer in the given format. Here are some examples of categories and problems on those categories:

1016
1017

{examples}

1018
1019

Now it's your turn. Here is the question and answer for you to edit:

Question:

{question}

Answer:

{answer}

1020
1021
1022
1023

Provide only the improved question and answer in the given format. Do not include any commentary or notes. Start your response with the question.

1026
1027

Sequential Prompt

1028
1029
1030
1031

Generate a new grade school math word problem that requires performing a sequence of elementary calculations using basic arithmetic operations. A bright middle school student should be able to solve each problem. Problems require no concepts beyond the level of early Algebra. Here are the previously generated examples:

1032

{examples}

1033
1034

Your new problem should:

1036

1. Be different from the previous examples
2. Follow the same format and style as prior problems

1038
1039

Note how the numerical answer is provided after ##### after each brief reasoning for a question. Provide only the question and answer in the given format here:

Question: [question]

Answer: [answer]

1042

Start your response with the question.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

In One Prompt

1063
1064
1065
1066
1067
1068

Provide {num} examples of problems that might be grade school math word problems that require performing a sequence of elementary calculations using basic arithmetic operations. A bright middle school student should be able to solve each problem. Problems require no concepts beyond the level of early Algebra. You must first specify the question then provide the brief reasoning and answer. Note how the numerical answer is provided after ##### after each brief reasoning for a question. Provide your examples in the following format:

1069

Question: [question]

1070

Answer: [answer]

1071

Here are some examples:

1072

{examples}

1073

1074

1075

1076
1077
1078

Now it's your turn. Generate {num} different problems following this format. Your question should be different in content from the examples. Make sure to only provide only the question and answer. Start each example with the question. Delimit the end of an example with the phrase "END OF EXAMPLE" (all caps) on a new line.

1079

1080

Persona Prompt

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

{persona_description}

Provide an example of a grade school math word problem that requires performing a sequence of elementary calculations using basic arithmetic operations. A bright middle school student should be able to solve each problem. Problems require no concepts beyond the level of early Algebra. You must first specify the question, then provide the very concise reasoning and answer. Provide your example in the following format:

Question: [question]

Answer: [answer]

Provide only the question and answer in the given format. Note how the numerical answer is provided after ##### after each brief reasoning for a question. Here are some examples:

{examples}

Now it's your turn. Start your response with the question.

Indistinguishability Rate Prompt

System Prompt:

You are an expert at evaluating question and answer pairs for grade school math word problems.

You will be shown $\{k\}$ examples. Each example consists of some context, a question, and an answer. All but one of them is generated from a high quality AI while one of them is of low quality.

Your task is to identify which example (1, 2, ..., $\{k\}$) appears to be of low quality. Consider factors like:

1. Differing natural language patterns and flow
2. Differing question structure, clarity, and difficulty
3. Context and specificity
4. Any subtle artifacts or unnatural patterns

Analyze each example carefully and explain your reasoning. End with 'Answer: [Question Number]' where Question Number is 1, 2, ..., $\{k\}$.

User Prompt:

Here are $\{k\}$ examples. One of them is of low quality. Please identify which one:

{questions}

Analyze each example and explain which one you think is of low quality. End with 'Answer: [Question Number]'.

E USE OF LLMs

1132

1133

In this work, we used LLMs as a general-purpose assistant tool. LLMs assisted with editing tasks, such as making writing more concise and clear and formatting tables figures. All text included in the paper was originally written by an author and went through a final pass from an author.

1134 We additionally used LLMs as a coding assistant. LLMs assisted with implementation and figure
1135 creation.
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187