
Neural Networks Learn Statistics of Increasing Complexity

Nora Belrose 1 Quintin Pope 2 Lucia Quirke 1 Alex Mallen 1 Xiaoli Fern 2

Abstract
The distributional simplicity bias (DSB) posits
that neural networks learn low-order moments
of the data distribution first, before moving on to
higher-order correlations. In this work, we present
compelling new evidence for the DSB by show-
ing that networks automatically learn to perform
well on maximum-entropy distributions whose
low-order statistics match those of the training
set early in training, then lose this ability later.
We also extend the DSB to discrete domains by
proving an equivalence between token n-gram fre-
quencies and the moments of embedding vectors,
and by finding empirical evidence for the bias in
LLMs. Finally we use optimal transport methods
to surgically edit the low-order statistics of one
class of images to match those of another, and
show early-training networks treat the edited im-
ages as if they were drawn from the target class.
Code is available at https://github.com/
EleutherAI/features-across-time.

1. Introduction
Neural networks exhibit a remarkable ability to fit com-
plex datasets while generalizing to unseen data points and
distributions. This is especially surprising given that deep
networks can perfectly fit random labels (Zhang et al., 2021),
and it is possible to intentionally “poison” networks so that
they achieve zero training loss while behaving randomly on
a held out test set (Huang et al., 2020).

A recently proposed explanation for this phenomenon is
the distributional simplicity bias (DSB): neural networks
learn to exploit the lower-order statistics of the input data
first– e.g. mean and (co)variance– before learning to use its
higher-order statistics, such as (co)skewness or (co)kurtosis.
Refinetti et al. (2023) provide evidence for the DSB by
training networks on a sequence of synthetic datasets that

*Equal contribution 1EleutherAI 2Oregon State University. Cor-
respondence to: Nora Belrose <nora@eleuther.ai>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

act as increasingly precise approximations to the real data,
showing that early checkpoints perform about as well on
real data as checkpoints trained directly on the real data.

We build on Refinetti et al. (2023) by inverting their exper-
imental setup. We train our models on real datasets, then
test them throughout training on synthetic data that probe
the model’s reliance on statistics of different orders. We
believe this experimental design provides more direct evi-
dence about the generalization behavior of commonly used
models and training practices.

Our primary theoretical contributions are to (1) motivate the
DSB through a Taylor expansion of the expected loss, (2)
propose criteria quantifying whether a model “uses” statis-
tics up to order k by checking that the model is sensitive to
interventions on the first k statistics, while being robust to
interventions on higher-order statistics, (3) describe efficient
methods of producing synthetic data that let us investigate
whether models satisfy the above criteria, and (4) extend the
DSB to discrete domains by proving an equivalence between
token n-gram frequencies and the moments of sequences of
embedding vectors.

We use a Taylor series expansion to express a model’s ex-
pected loss as a sum over the central moments of an evalua-
tion dataset. This connection provides some motivation for
the DSB. Specifically, if during training, a network’s loss is
well approximated by the first k terms of its Taylor expan-
sion, then the model should only be sensitive to statistics up
to order k, and we argue that earlier terms of the expansion
will generally become relevant before later terms.

We describe two intuitive criteria that a model sensitive to
statistics up to order k should satisfy: (1) changing the first
k statistics of data from class A to match class B should
cause the model to classify the modified data as class B, and
(2) models should be unaffected by “deleting” higher-order
data statistics. We evaluate whether image classification
networks satisfy the above criteria during training through
extensive empirical experiments across a variety of network
architectures and image datasets.

We evaluate whether the network satisfies criterion (1) by
generating synthetic datasets where we “graft” the means
and covariances of one class onto images of another class,
and evaluating whether the network’s classifies the result-

1

https://github.com/EleutherAI/features-across-time
https://github.com/EleutherAI/features-across-time

Neural Networks Learn Statistics of Increasing Complexity

Figure 1. (left) Pekinese dog image from the ImageNet training
set. (center) Image after quantile normalizing its pixels to match
the marginal distribution of the goldfish class on ImageNet. The
grass is now a slightly darker shade of green and the dog’s fur has
a reddish hue. (right) Synthetic “goldfish” generated by sampling
each pixel independently from its marginal distribution.

ing data as belonging to the target class. We formalize this
notion of “grafting” statistics with optimal transport (OT)
theory, using an analytic formula to map samples from one
class-conditional distribution to another, while minimizing
the expected squared Euclidean distance the samples are
moved. We also describe coordinatewise quantile normaliza-
tion, an OT method that changes the marginal distribution
of each coordinate of the input to match a target class.

We evaluate the degree to which networks satisfy crite-
rion (2) by generating synthetic data that match the class-
conditional means and covariances, but are otherwise maxi-
mum entropy.1 We generate two datasets for this purpose.
One dataset comes from sampling from a Gaussian distribu-
tion with matching mean and covariances. The other dataset
comes from incorporating the constraints on image pixel
values. We propose a novel gradient-based optimization
method to produce samples from a hypercube-constrained
maximum entropy distribution. We additionally describe
independent coordinate sampling, a first order method of
generating hypercube-constrained maximum entropy sam-
ples using only means.

Across models and datasets, we find a common pattern
where criteria (1) and (2) hold early in training, with net-
works largely classifying images according to the means and
covariances of the distributions from which they’re drawn.
But as training progresses, networks become sensitive to
higher-order statistics, resulting in a U-shaped loss curve.

We also evaluate EleutherAI’s Pythia autoregressive lan-
guage models (Biderman et al., 2023) on synthetic data
sampled from unigram and bigram models trained on the
Pile (Gao et al., 2020). We find a fascinating “double de-
scent” (Vallet et al., 1989; Belkin et al., 2019) phenomenon
where models initially mirror the same U-shaped scaling
observed in image classifiers, then use in-context learning
to achieve even lower loss later in training.

1Appealing to the principle of maximum entropy to operational-
ize the notion of “deletion” in criterion (2).

M
N

IS
T

SV
H

N
C

IF
A

R

Figure 2. Non-cherrypicked “fake” images produced by maximum
entropy sampling using only the first two moments of the class-
conditional distributions, and a hypercube constraint. Fake MNIST
digits are clearly recognizable, SVHN digits less so, whereas
fake CIFAR-10 images look nothing like their respective classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

For a thorough review of related work on simplicity biases
in machine learning, see Appendix A.

2. Theory and Methods
Let L(x) denote the loss of a neural network evaluated
on input x. If Lθ is analytic2 with an adequate radius of
convergence, we can Taylor expand the loss for any given x
around the mean input µ as:

L(x) =
∑
α∈Nd

(x− µ)α

α!
(∂αL)(µ), (1)

where α is a multi-index, or a d-tuple assigning an integer to
each coordinate of x. Recall that taking a vector to the power
of a multi-index denotes a product of the components of
the vector, where each component of the index indicates the
multiplicity: e.g. if α = (1, 4, 6), the expression (x− µ)α

denotes the product (x1 − µ1)(x2 − µ2)
4(x3 − µ3)

6. Sim-
ilarly, (∂αL) is shorthand for the mixed partial derivative

∂11

∂x1∂x4
2∂x

6
3
L. The factorial α! denotes the product of the

factorials of the components: 1!× 4!× 6! = 17280.

If x is drawn from a distribution with compact support,3

which is true for images and text, we can take the expec-
tation of both sides of Eq. 1. This leads to an expression
summing over all the central moments of x multiplied by
the corresponding partial derivatives of L evaluated at µ:

E[L(x)] =
∑
α∈Nd

(∂αL)(µ)
α!

E[(x− µ)α]︸ ︷︷ ︸
central moment

(2)

Equation 2 suggests a close connection between the mo-
ments of the data distribution and the expected loss of a
neural network evaluated on that distribution.4

2Famously, the ReLU activation function is not analytic, but it
is possible to construct arbitrarily close approximations to ReLU
that are analytic (Hendrycks & Gimpel, 2016, Sec. 4).

3The requirement is slightly weaker than this: we require that
the distribution has finite moments of all orders, which is true

2

https://en.wikipedia.org/wiki/Multi-index_notation

Neural Networks Learn Statistics of Increasing Complexity

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Bounded shift)

1
st

 order (CQN)

2
nd

 order (Gaussian OT)

Val. set

A
c
c
u
r
a
c
y

ConvNeXt RegNet-Y Swin Transformer

Training steps

Figure 3. Accuracy of computer vision models when evaluated on images edited with optimal transport maps as described in Sec. 2.3,
using the target class, not the source class, as the label. Between roughly 24 and 212 training steps, all models classify the CQN-edited
images coming from target class, with a peak in accuracy at 29.

2.1. Intuition

Without loss of generality, assume the input is constrained
to the unit hypercube.5 Since every coordinate of x is
no greater than 1, the moments will have magnitudes that
monotonically decrease with increasing order; for example,
E[xixj] ≤ E[xi] for any i, j ∈ 1 . . . d.

Indeed, we would expect the moment magnitude to decay
exponentially with order when the coordinates are indepen-
dent, roughly counterbalancing the exponential increase in
the number of distinct moments at higher orders. Assum-
ing the higher derivatives of L are reasonably well-behaved
at initialization, the 1

n! Taylor coefficients will then cause
the contribution of higher-order moments to Eq. 2 to decay
monotonically and factorially fast with order.

As training progresses however, the derivatives of L become
correlated with the corresponding moments, potentially in-
flating the magnitude of higher-order terms in Eq. 2. It then
seems natural to suppose that the magnitude of higher-order
terms will grow in roughly monotonic order– that is, the
second order term will become important first, followed by
the third order term, and so on6.

when the support is compact.
4Expanding around an an arbitrary point a would yield an

expression containing moments about a, and our analysis would
otherwise be unchanged.

5This is true of images with standard PyTorch preprocessing
and one-hot encoded token sequences; other inputs can be rescaled
to match this criterion, given our assumption of compact support.

6Another argument for monotonicity is that earlier terms ac-
count for factorially more of the loss at initialization, and are thus
plausibly higher-priority targets for gradient descent, until the opti-
mizer is no longer able to easily reduce the loss further by better
matching the associated statistics and moves on to higher-order
terms.

2.2. Criteria

Intuitively, if a model only “uses” low-order statistics of the
input distribution, this means its behavior should be strongly
affected by interventions on the lower-order statistics of the
input, but largely unaffected by interventions on the higher-
order statistics. More specifically:

1. “Grafting” the low-order statistics of class B onto class
A should cause the model to treat examples from A as
if they were from B.

2. “Deleting” the information contributed by higher-order
statistics should not harm the model’s performance.

We operationalize both criteria more precisely below and
explain how we produce synthetic data that lets us evaluate
the degree to which a given model satisfies each criterion.

2.3. Optimal Transport

We operationalize Criterion 1 using optimal transport (OT)
theory, which provides tools for transforming samples from
one probability distribution into samples from another while
minimizing the average distance that samples are moved.
We use three OT methods in our experiments: bounded shift
and coordinatewise quantile normalization, which primarily
affect the first order moments of the distribution, and Gaus-
sian OT, which affects all first and second-order moments.

Bounded Shift In Appendix E, we derive an algorithm for
shifting the mean of an empirical distribution to a desired
value, while keeping it constrained to the interval [0, 1], and
minimizing the transport cost. We use this algorithm to graft
the mean of one class onto another, while ensuring the pixel
intensities of the edited images are valid.

3

Neural Networks Learn Statistics of Increasing Complexity
ai

rp
la

ne
Original
image airplane car bird cat deer dog frog horse ship truck

bi
rd

tru
ck

Av
er

ag
e

Figure 4. Rows 1-3 show how Gaussian optimal transport affects the example CIFAR-10 airplane, bird and truck images. Each row starts
with the original unedited image on the left, with each subsequent column showing the effects of editing that image’s first two moments to
match the class-conditional distributions of a particular target class (top). The bottom left image is the average of all test set images.
Black borders indicate either an original image, or a “self-to-self” edited image.

Coordinatewise Quantile Normalization (CQN) Quan-
tile normalization is a technique for making two scalar ran-
dom variables identical in their statistical properties. When
applied coordinatewise to the input of a neural network, such
as an image, it ensures that the coordinatewise marginals
match those of a target distribution, while keeping the cor-
relations between coordinates largely intact, as illustrated
by how the edited Pekinese dog image in Fig 1 (center)
remains a recognizable dog image.

CQN works as follows. If a random variable X has cu-
mulative distribution function FX(x), the transformed vari-
able FX(X) will have the standard uniform distribution
Unif(0, 1). Conversely, given variables U ∼ Unif(0, 1)
and Y , the transformed variable F−1

Y (U) will be equal in
distribution to Y . Composing these transformations together
yields quantile normalization. It can be shown that F−1

Y ◦FX

is the optimal transport map from X to Y for a large class
of cost functions (Santambrogio, 2015, Ch. 2.2), and is thus
ideal for editing the first order statistics of a distribution
while minimally perturbing higher-order statistics.

Gaussian Optimal Transport Given two Gaussians P =
N (µP ,ΣP) and Q = N (µQ,ΣQ) supported on Rd, the
map T (x) = A(x −mP) +mQ is the optimal transport
map from P to Q under the squared Euclidean cost function,
where

A = Σ
−1/2
P

(
Σ

1/2
P ΣQΣ

1/2
P

)1/2
Σ

−1/2
P . (3)

More generally, if P is an arbitrary distribution with finite
second moments, T (x) will transport it to a distribution with
mean µQ and covariance ΣQ, and this map will minimize
the cost EP [∥x− T (x)∥22] (Dowson & Landau, 1982).

Given k image classes, each containing tensors of shape
C × H × W , we unroll the tensors into vectors of size

CHW , then compute their sample means and covariance
matrices,7 and plug these statistics into Eq. 3 to get the
k(k − 1) optimal transport maps from each class to every
other class.

2.4. Maximum Entropy Sampling

We can operationalize Criterion 2 using the principle of
maximum entropy, which provides a principled method
for constructing probability distributions based on “partial
knowledge” (Jaynes, 1957). Here the partial knowledge con-
sists of low-order statistics derived from a training dataset,
but we otherwise want to minimize the information content
of the higher-order statistics. We therefore want to con-
struct the maximum entropy distribution P consistent with
these low-order statistics,8 then evaluate a neural network
on samples drawn from P .

Famously, the maximum entropy distribution supported on
Rd with known mean µ and covariance matrix Σ is the
Gaussian distribution N (µ,Σ). We therefore use Gaus-
sians in many of our experiments in Sec 3. In addition
to Gaussians, we use hypercube constrained sampling to
generate a set of synthetic samples using 2nd order statis-
tics and another set using both 2nd and 3rd order statistics,
though that last set suffered from significant convergence
issues when trying to match the 3rd order statistics (see Ap-
pendix C for 3rd order results and Appendix D for discussion
of convergence issues). We also use two first-order methods

7Because this is a high-dimensional covariance matrix with
dimension only 1-3 times smaller than the sample size, we apply
the asymptotically optimal linear shrinkage method proposed by
Bodnar et al. (2014) to improve our estimate of the population
covariance and increase numerical stability.

8P can be thought of as the “least informative” distribution that
satisfies the constraints that its mean and covariance should match
those of our original data distribution.

4

Neural Networks Learn Statistics of Increasing Complexity

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Conrad)

1
st

 order (ICS)

2
nd

 order (Gaussian)

2
nd

 order (Trunc. Gaussian)

Val. set

A
c
c
u
r
a
c
y

ConvNeXt RegNet-Y Swin Transformer

Training steps

Figure 5. Accuracy of computer vision models being trained on the standard CIFAR-10 training set, and being evaluated on maximum-
entropy synthetic data with matching statistics of 1st or 2nd order. 3rd order results are in Appendix C, with Appendix D discussing issues
with those results.

(Conrad sampling and independent coordinate sampling).
We describe these methods below.

Hypercube Constraints One problem with using Gaus-
sians to generate synthetic images is that natural images are
constrained to a hypercube: RGB pixel intensities are in
the range [0, 255], but nonsingular Gaussian distributions
assign positive probability density to all of Rd, so that a
typical sample will often lie outside the hypercube of nat-
ural images.9 We might expect neural networks to quickly
adapt to such a simple box constraint on the support, so we
would ideally like to subject our synthetic images to this
constraint.

Conrad Distribution We prove in Theorem F.1 that the
maximum entropy distribution supported on [0, 1] with a
fixed mean µ ̸= 1

2 and unconstrained variance takes the form
p(x) = b exp(−bx+b)

exp(b)−1 , where the parameter b can be found
using Newton’s method. This formula is not well-known,
although an alternative derivation can be found in Conrad
(2004). To isolate the effect of first-order statistics, we first
fit a Conrad distribution to the mean of each coordinate of
the images. We then generate synthetic images using inverse
transform sampling to produce a value for each coordinate
independently.

Approximate Sampling For many sets of constraints,
there is no known closed-form solution for the density, pre-
cluding standard sampling techniques like Markov chain
Monte Carlo. For example, in the 1D case the maxi-

9Strictly speaking, Gaussians also violate the assumption of
compact support that we made earlier. In high dimension, though,
almost all the probability mass of a Gaussian is contained in the
typical set, a compact region near the boundary of an ellipsoid
surrounding the mean (Carpenter, 2017).

mum entropy probability density with known mean and
variance supported on a finite interval [a, b] has the form
p(x) = exp(−λ0 − λ1x − λ2x

2) (Dowson & Wragg,
1973),10 but we are unaware of any such analytical formula
for the multidimensional case.11

For these cases, we propose a novel technique for approxi-
mate sampling: use gradient-based optimization to directly
produce a finite set of samples whose statistics match the
desired ones, while maximizing the Kozachenko-Leonenko
estimate for the entropy of the implicit population distribu-
tion (Kozachenko & Leonenko, 1987; Sablayrolles et al.,
2018). See Appendix H for implementation details and
Appendix I for a discussion of computational requirements.

Independent Coordinate Sampling (ICS) In the preced-
ing sections, we decomposed the input distribution into
its moments. Another possible decomposition is given by
Sklar’s theorem, which states that the distribution of any
random vector (X1, . . . , Xd) is uniquely determined by its
coordinatewise marginal CDFs FXi

(x) = P(Xi ≤ x) and
a copula function C : [0, 1]d → [0, 1] that combines the
marginal CDFs into a multivariate CDF FX(x) = P(X1 ≤
x1, . . . , Xd ≤ xd) (Sklar, 1959). The maximum entropy
copula simply takes the product of the marginal CDFs, and
corresponds to a random vector with independent coordi-
nates. We can efficiently sample from this distribution by
estimating an empirical CDF for each coordinate, then sam-
pling from each CDF independently.

10For some values of the Lagrange multipliers, the formula
corresponds to a truncated normal distribution. For sufficiently
large variances, the density takes on a U-shape.

11The log-density of the multidimensional max entropy distri-
bution must be a quadratic form, just like the multivariate normal,
but the pseudo-precision matrix may not be p.s.d., and solving for
the parameters may be challenging.

5

https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://en.wikipedia.org/wiki/Inverse_transform_sampling

Neural Networks Learn Statistics of Increasing Complexity

By constraining the coordinatewise marginals, we ensure
that all of the homogeneous moments, or moments of the
form E[(xi)

n], match those of the true data distribution,
while the mixed moments, e.g. E[xixj] for i ̸= j, will gen-
erally not match. In high dimension, almost all moments of
order greater than one are mixed rather than homogeneous,
so ICS matches the first order moments and almost none
of the higher order ones. For this reason we classify it as a
“first order” method.

2.5. Discrete Domains

Neural networks use embeddings to convert discrete inputs
into vectors of real numbers. The embedding operation can
be viewed as a matrix multiplication, wherein the discrete
inputs are converted into one-hot vectors we then multiply
by the embedding matrix. If the input is a sequence, the
result is a sequence of one-hot vectors, or a one-hot matrix.

Just as we unroll images into vectors to compute their mo-
ments, we can similarly unroll one-hot matrices to compute
their moments. Strikingly, we find that these moments cor-
respond to token n-gram frequencies:12

Theorem 2.1. [n-gram statistics are moments] Let VN

be the set of token sequences of length N drawn from a
finite vocabulary V , let P be a distribution on VN , and
let f : VN → {0, 1}N ·|V| be the function that encodes a
length-N sequence of tokens as a flattened concatenation
of N one-hot vectors of dimension |V|. Let f♯P be the
pushforward of P through this one-hot encoding, i.e. its
analogue in {0, 1}N ·|V|.

Then every moment of f♯P is equal to an n-gram statistic
of P and vice versa.

Furthermore, for a fixed embedding matrix E, two distri-
butions over token sequences that have the same n-gram
frequencies up to order k will induce distributions over em-
bedding space with the same moments up to k:
Theorem 2.2. [Equal embedding moments] Let E ∈
R|V|×d be an embedding matrix, and let P and Q be two
distributions over VN . Then if P and Q have the same n-
gram statistics up to order k ≥ 1, their embeddings under
E have the same moments up to order k.

For proofs, see Appendix G.

Given this equivalence, we can test the DSB in language

12Our formal definition of the term “n-gram statistic” is non-
standard in two respects: first, we include skip-grams (e.g. the
dog, where the underscore is a wildcard token), and second, it is
tied to an absolute position in the sequence. However, the Pythia
language models we will consider in this paper were trained on
chunks of text of uniform length sampled from larger documents
(Biderman et al., 2023), so the absolute position should not sig-
nificantly affect the n-gram probabilities. We therefore assume in
what follows that n-gram statistics exhibit translation invariance.

models with maximum entropy sampling, just like the com-
puter vision case. Given known n-gram frequencies up to
order k, we produce maximum entropy samples using a k-
gram autoregressive language model. For example, if only
bigram frequencies are known, this corresponds to a Markov
chain where the distribution of each token depends only on
the token immediately preceding it.

3. Image Classification
3.1. Datasets.

Because Gaussian optimal transport (Sec. 2.3) requires
O(d3) compute and O(d2) memory,13 we focus on datasets
with 32× 32 or 64× 64 resolution images for our primary
experiments. Specifically, we examine the popular image
classification datasets CIFAR-10 (Krizhevsky et al., 2009),
Fashion MNIST (Xiao et al., 2017), MNIST (LeCun et al.,
1998), and SVHN (Netzer et al., 2011).

We also build a new image classification dataset, CIFAR-
Net, consisting of 200K images at 64× 64 resolution sam-
pled from ImageNet-21K, using ten coarse-grained classes
that roughly match those of CIFAR-10. The larger num-
ber of images per class (20K) allows us to get a good esti-
mate of the class-conditional covariance matrices needed for
Gaussian optimal transport, which at this resolution contain
(3× 64× 64)2 ≈ 1.5× 108 entries each. See Appendix B
for more details on CIFARNet.

3.2. Architectures.

We focus on state-of-the-art computer vision architectures
in our experiments. Specifically, we use ConvNeXt V2
(Woo et al., 2023) and Swin Transformer V2 (Liu et al.,
2022), which Goldblum et al. (2023) recently found to have
the best performance on a variety of tasks. We train for
216 steps with batch size 128, using the AdamW optimizer
(Loshchilov & Hutter, 2018) with β1 = 0.9, β2 = 0.95, and
a linear learning rate decay schedule starting at 10−3 with a
warmup of 2000 steps (Ma & Yarats, 2021).14 For data aug-
mentation, we employ RandAugment (Cubuk et al., 2020)
followed by random horizontal flips and random crops.

To examine the effect of model scale on our results, we
sweep over the Atto, Femto, Pico, Nano, and Tiny sizes for
ConvNeXt V2, and we also construct Swin Transformers of

13The covariance matrix has d2 elements, where d is the number
of pixels, so it is actually O(n4) in the height or width dimension
of the image. We also ran into a software limitation in early experi-
ments where NumPy and PyTorch eigensolvers would crash when
fed the very large covariance matrices produced by high-resolution
image datasets; see PyTorch issue #92141 for discussion.

14We found in early experiments that many models require a
lower learning rate to converge on SVHN. We therefore use a
learning rate of 10−4 for ConvNeXt and Swin on this dataset.

6

https://github.com/pytorch/pytorch/issues/92141

Neural Networks Learn Statistics of Increasing Complexity

roughly analogous sizes.15

To ensure our results are insensitive to the choice of opti-
mizer and learning rate schedule, we also perform experi-
ments with RegNet-Y (Radosavovic et al., 2020) using SGD
with momentum and no LR warmup.

3.3. Results

We display our results on CIFAR10 in Figures 3 and 5, see
Appendix C for other datasets.

Optimal transport We measure the effect of optimal
transport interventions by computing the accuracy or loss
of the model with respect to the target class, rather than the
source class. If the intervention is ineffective, we would
expect the accuracy to be much lower than the random base-
line of 10%, because the model should confidently classify
the images as belonging to the source class. Strikingly, all
models we tested get substantially higher than 10% accuracy
w.r.t. the target labels, with ConvNeXt peaking at over 40%
accuracy on 2nd order-edited images after 210 training steps.

Maximum entropy sampling We include five different
conditions in our maximum entropy sampling experiments:
1st order (Conrad and ICS), 2nd order (Gaussian sampling),
and both 2nd and 3rd order approximate sampling plus a
hypercube constraint. However, we place the 3rd order ap-
proximate sampling results in Appendix C because we were
unable to match the coskewness and covariance statistics
simultaneously when generating the synthetic datasets, mak-
ing their interpretation difficult. See Appendix D for discus-
sion.

Overall, we find that accuracy on first order samples peaks
earlier in training and has a lower maximum than accu-
racy on second order samples, followed by the 2nd order
hypercube-constrained samples. Remarkably, for some
datasets early in training, we find some models achieve
higher accuracy on the independent pixel samples than they
do on images sampled from the real validation set!

Non-monotonicity Across all datasets, we observe some
degree of non-monotonicity in the accuracy curves: while
models are quite sensitive to low-order moments early in
training, they become less sensitive by the end, with accu-
racy often dipping below the random baseline. The degree
of non-monotonicity varies by dataset, however. Very sim-
ple datasets like MNIST and Fashion MNIST show very
little non-monotonicity, likely because the first and second
moments of the data distribution are sufficient to produce

15The smallest model described in Liu et al. (2022) is Swin V2
Tiny, which weighs in at 49M parameters. We construct smaller
Swin V2 sizes by copying the embedding dimension from the
corresponding ConvNeXt V2 size.

very realistic-looking samples (Fig. 2).

Overall, we found that model scale has a remarkably small
effect on the learning curves, so we display curves averaged
over scales in bold, with individual model scales shown as
translucent lines. Each curve is itself averaged over three
random seeds.

4. Language Modeling
To test the distributional simplicity bias in a discrete do-
main, we study EleutherAI’s Pythia language model suite
(Biderman et al., 2023), for which checkpoints are publicly
available at log-spaced intervals throughout training. Model
parameter counts range from 14 million to 12 billion.

There are ten independent training runs for Pythia 14M,
70M, and 160M publicly available on the HuggingFace
Hub, each using a different random seed. There are also
five available seeds for Pythia 410M. We take advantage of
these additional runs to examine the effect of random seed
on our results. We also trained custom variants of Pythia
14M and 70M with an extended learning rate warmup period
of 14,300 steps to isolate the effect of LR warmup.

While we include skip-grams (e.g. the dog) in our for-
mal definition of n-gram frequency (Def. G.1), we do not
include them in these experiments for tractability reasons:
they would greatly increase the memory and storage require-
ments of maximum entropy sampling. We hope to explore
the effect of skip-gram statistics in future work.

n-gram language models We compute token unigram
and bigram frequencies across Pythia’s training corpus, the
Pile (Gao et al., 2020), and use these statistics to construct
maximum entropy n-gram language models. We autoregres-
sively sample sequences of length 2049 from the n-gram
LMs, and evaluate Pythia’s cross entropy loss on these max-
imum entropy samples at each checkpoint.

Additionally, we evaluate Pythia 12B’s cross entropy loss
over each token position in the maximum entropy n-gram
sequences for four different checkpoints in order to detect
the development of in-context learning. If in-context learn-
ing is involved in making predictions for these sequences at
a training step, cross entropy loss should decrease over suc-
cessive token positions in the sequence for that step (Olsson
et al., 2022).

4.1. Results

We display our results on the Pythia suite in Fig. 6. See Ap-
pendix C for alternate model seeds and learning rate warmup.
Overall we find that the random seed has very little effect on
the learning curves, and lengthening the LR warmup period
did not consistently affect their overall shape.

7

Neural Networks Learn Statistics of Increasing Complexity

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18
1.5

2

2.5

3

3.5

4

4.5

5

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18

Pythia loss

12B

6.9B

2.8B

1.4B

1B

410M

160M

70M

14M

Lo
ss

Unigram sequence loss across time Bigram sequence loss across time

Training step

Figure 6. Cross entropy loss of Pythia suite evaluated on unigram and bigram sequences (N=1024). For comparison, the Shannon entropy
of the unigram distribution is 2.89 bits per byte (bpb), and is 2.04 bpb for the bigram distribution. Both plots exhibit “double descent”
scaling: loss reaches a trough between 26 and 28 steps, increases until 210 steps, then decreases again as the model learns to match the
data generating process in-context (Fig. 7).

n-gram sequence loss Consistent with the image classifi-
cation tasks, unigram sequence loss consistently reaches its
lowest point before bigram sequence loss and has a higher
minimum value.

Across all models, we observe non-monotonicity in the
n-gram sequence loss curves, where loss steeply reduces
and then increases to a lesser extent. However, unlike in
the image classification tasks, the loss reverts to a mono-
tonic regime later in training. We hypothesize that this
is caused by the development of in-context learning suffi-
cient to improve n-gram sequence predictions. We observe
correlational evidence in the n-gram sequence loss over
increasing token indices and training steps in Pythia 12B
(Fig. 7), where in-context learning seems to emerge in the
same training step where the non-monotonic regime ends.
Fascinatingly, smaller models seem to resume the standard
‘U’-shaped loss pattern in the later portions of training.16

We speculate that this behavior may arise from a form of
“catastrophic forgetting”, in which all models initially learn
low-order n-gram statistics, which are eventually eclipsed
by more sophisticated features. Larger models have greater
representational capacity, and so are better able to retain
these early n-gram features.

In-context learning We follow Kaplan et al. (2020) in
defining in-context learning as decreasing loss at increasing
token indices. We find that loss is uniform across token
positions in early training steps, but slowly decreases at
increasing token indices in later steps, consistent with the

16Arguably, this pattern applies to models of all sizes on unigram
sequences, but the tiny increases in loss for the larger models are
within the margin of error for these experiments.

presence of in-context learning (Fig. 7).

We observe an initial increase in loss early in each sequence.
This is likely due to the fact unigram sequences are indis-
tinguishable from real sequences at the first position, and
bigram model predictions are indistinguishable from real
sequences at the first and second positions.

5. Conclusion
We propose two criteria that operationalize what it means for
models to exploit moments of a given order, then describe
methods of generating synthetic data that test whether a
network satisfies both criteria, using theoretically grounded
approaches relying on optimal transport theory and the prin-
ciple of maximum entropy. We extend our analysis to dis-
crete sequences by proving a novel equivalence between
n-gram statistics and statistical moments.

We find new compelling empirical evidence that neural net-
works learn to exploit the moments of their input distribu-
tions in increasing order, and further find “double descent”
in the degree to which language model predictions match
low-order data statistics, driven by in-context learning on
longer sequences. Our contributions strengthen the case for
the distributional simplicity bias (DSB), refine our under-
standing of how DSB influences early learning dynamics,
and provide a foundation for further investigations into DSB.

Acknowledgements

We are thankful to Open Philanthropy for funding this work.
We also thank New Science and Stability AI for providing
computing resources. Finally, we thank Brennan Dury for

8

https://www.openphilanthropy.org/grants/eleuther-ai-interpretability-research/
https://newscience.org/
https://stability.ai/

Neural Networks Learn Statistics of Increasing Complexity

2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11
2

2.5

3

3.5

4

2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11

Step

16

256

1,000

8,000

66,000

143,000

Lo
ss

Unigram loss over sequence positions Bigram loss over sequence positions

Token index

Figure 7. In-context learning of the maximum entropy bigram sequence occurs after step 1,000 in Pythia 12B. Some in-context learning of
the maximum entropy unigram sequence occurs by step 1000, with more at step 143,000.

independently deriving the Conrad distribution.

Impact statement

The goal of this work was to advance our understanding of
the generalization behavior of neural networks throughout
training, in the hope that this will enable the development
of more robust and predictable machine learning models.

References
Baratin, A., George, T., Laurent, C., Hjelm, R. D., Lajoie,

G., Vincent, P., and Lacoste-Julien, S. Implicit regular-
ization via neural feature alignment. In International
Conference on Artificial Intelligence and Statistics, pp.
2269–2277. PMLR, 2021.

Basri, R., Galun, M., Geifman, A., Jacobs, D., Kasten, Y.,
and Kritchman, S. Frequency bias in neural networks for
input of non-uniform density. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 685–694. PMLR, 13–
18 Jul 2020. URL https://proceedings.mlr.
press/v119/basri20a.html.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Rec-
onciling modern machine-learning practice and the
classical bias–variance trade-off. Proceedings of
the National Academy of Sciences, 116(32):15849–
15854, 2019. doi: 10.1073/pnas.1903070116. URL
https://www.pnas.org/doi/abs/10.1073/
pnas.1903070116.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,

Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Bietti, A. and Mairal, J. On the inductive bias of neural tan-
gent kernels. Advances in Neural Information Processing
Systems, 32, 2019.

Bodnar, T., Gupta, A. K., and Parolya, N. On the strong
convergence of the optimal linear shrinkage estimator for
large dimensional covariance matrix. Journal of Multi-
variate Analysis, 132:215–228, 2014.

Canatar, A., Bordelon, B., and Pehlevan, C. Spectral bias
and task-model alignment explain generalization in kernel
regression and infinitely wide neural networks. Nature
communications, 12(1):2914, 2021.

Carpenter, B. Typical sets and the curse of dimensionality.
Stan Software, 2017.

Chiang, P., Ni, R., Miller, D. Y., Bansal, A., Geiping, J.,
Goldblum, M., and Goldstein, T. Loss landscapes are
all you need: Neural network generalization can be ex-
plained without the implicit bias of gradient descent.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=QC10RmRbZy9.

Choshen, L., Hacohen, G., Weinshall, D., and Abend, O.
The grammar-learning trajectories of neural language
models. In Muresan, S., Nakov, P., and Villavicen-
cio, A. (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 8281–8297, Dublin, Ire-
land, May 2022. Association for Computational Linguis-

9

https://proceedings.mlr.press/v119/basri20a.html
https://proceedings.mlr.press/v119/basri20a.html
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://openreview.net/forum?id=QC10RmRbZy9
https://openreview.net/forum?id=QC10RmRbZy9

Neural Networks Learn Statistics of Increasing Complexity

tics. doi: 10.18653/v1/2022.acl-long.568. URL https:
//aclanthology.org/2022.acl-long.568.

Conrad, K. Probability distributions and maximum entropy.
Entropy, 6(452):10, 2004.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition
workshops, pp. 702–703, 2020.

Dowson, D. and Landau, B. The fréchet distance between
multivariate normal distributions. Journal of multivariate
analysis, 12(3):450–455, 1982.

Dowson, D. and Wragg, A. Maximum-entropy distributions
having prescribed first and second moments (corresp.).
IEEE Transactions on Information Theory, 19(5):689–
693, 1973.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The Pile: An 800GB dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Goldblum, M., Souri, H., Ni, R., Shu, M., Prabhu, V. U.,
Somepalli, G., Chattopadhyay, P., Ibrahim, M., Bardes,
A., Hoffman, J., et al. Battle of the backbones: A large-
scale comparison of pretrained models across computer
vision tasks. In Thirty-seventh Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track, 2023.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Huang, W. R., Emam, Z., Goldblum, M., Fowl, L., Terry,
J. K., Huang, F., and Goldstein, T. Understanding
generalization through visualizations. In Zosa Forde,
J., Ruiz, F., Pradier, M. F., and Schein, A. (eds.),
Proceedings on ”I Can’t Believe It’s Not Better!” at
NeurIPS Workshops, volume 137 of Proceedings of Ma-
chine Learning Research, pp. 87–97. PMLR, 12 Dec
2020. URL https://proceedings.mlr.press/
v137/huang20a.html.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent
kernel: Convergence and generalization in neural
networks. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.
pdf.

Jaynes, E. T. Information theory and statistical mechanics.
Physical review, 106(4):620, 1957.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Kozachenko, L. F. and Leonenko, N. N. Sample estimate
of the entropy of a random vector. Problemy Peredachi
Informatsii, 23(2):9–16, 1987.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R.,
Schoenholz, S., and Bahri, Y. Deep neural networks
as gaussian processes. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=B1EA-M-0Z.

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J.,
Cao, Y., Zhang, Z., Dong, L., et al. Swin transformer v2:
Scaling up capacity and resolution. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 12009–12019, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2018.

Ma, J. and Yarats, D. On the adequacy of untuned warmup
for adaptive optimization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp.
8828–8836, 2021.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and
Dollár, P. Designing network design spaces. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

10

https://aclanthology.org/2022.acl-long.568
https://aclanthology.org/2022.acl-long.568
https://proceedings.mlr.press/v137/huang20a.html
https://proceedings.mlr.press/v137/huang20a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z

Neural Networks Learn Statistics of Increasing Complexity

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin,
M., Hamprecht, F., Bengio, Y., and Courville, A.
On the spectral bias of neural networks. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pp. 5301–5310. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
rahaman19a.html.

Refinetti, M., Ingrosso, A., and Goldt, S. Neural networks
trained with sgd learn distributions of increasing complex-
ity. In International Conference on Machine Learning,
pp. 28843–28863. PMLR, 2023.

Sablayrolles, A., Douze, M., Schmid, C., and Jégou, H.
Spreading vectors for similarity search. In International
Conference on Learning Representations, 2018.

Santambrogio, F. Optimal transport for applied mathemati-
cians. Birkäuser, NY, 55(58-63):94, 2015.

Sklar, M. Fonctions de répartition à n dimensions et leurs
marges. In Annales de l’ISUP, volume 8, pp. 229–231,
1959.

Valle-Perez, G., Camargo, C. Q., and Louis, A. A. Deep
learning generalizes because the parameter-function map
is biased towards simple functions. In International Con-
ference on Learning Representations, 2018.

Vallet, F., Cailton, J.-G., and Refregier, P. Linear and nonlin-
ear extension of the pseudo-inverse solution for learning
boolean functions. Europhysics Letters, 9(4):315, 1989.

Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon,
I. S., and Xie, S. Convnext v2: Co-designing and scal-
ing convnets with masked autoencoders. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16133–16142, 2023.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xu, Z. J. and Zhou, H. Deep frequency principle to-
wards understanding why deeper learning is faster. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 35(12):10541–10550, May 2021. doi: 10.1609/
aaai.v35i12.17261. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17261.

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z.
Frequency principle: Fourier analysis sheds light on
deep neural networks. arXiv preprint arXiv:1901.06523,
2019a.

Xu, Z.-Q. J., Zhang, Y., and Xiao, Y. Training behavior of
deep neural network in frequency domain. In Interna-
tional Conference on Neural Information Processing, pp.
264–274, 2019b.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

11

https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17261
https://ojs.aaai.org/index.php/AAAI/article/view/17261

Neural Networks Learn Statistics of Increasing Complexity

A. Additional Related Work
Extensive prior work has investigated neural network simplicity bias and learning dynamics. We highlight several prior
research directions that usefully contrast our own approach.

A.1. Simplicity bias

One common approach studies simplicity biases in the parameter-function maps of neural network architectures. Such
explanations posit that neural networks implement favorable priors, meaning that most network parameterizations, under
commonly used initialization distributions, that reach good performance on the training data will also generalize to the test
data, regardless of specific details about the optimization process used to find such parameterizations.

Valle-Perez et al. (2018) investigated such architectural simplicity biases by using Gaussian process-based approximations
to neural networks (Lee et al., 2018) to estimate the Bayesian posterior produced by randomly sampling neural network
parameterizations, conditional on those networks achieving perfect training loss, and showed the resulting posterior
correlated well with the odds of SGD-based training finding a given function. Chiang et al. (2023) validate this perspective
by showing that a variety of non-gradient based optimizers, including unbiased sampling of random initializations, are still
able to generalize from training to testing data.

Another approach is to construct a simplified, theoretically tractable model of neural network learning dynamics, then
analyzing the resulting model to find which types of functions it predicts networks will be most inclined to learn. The neural
tangent kernel (Jacot et al., 2018), scales network widths to infinity, whereupon networks are limited to performing kernel
regression with their initialization kernel. Thus, model inductive biases are determined by the spectrum of the initialization
kernel’s eigenfunctions, which have strong simplicity biases for commonly used architectures (Canatar et al., 2021; Baratin
et al., 2021; Bietti & Mairal, 2019).

A.2. Learning order

Xu et al. (2019b) proposed the Frequency Principle, the tendency of neural networks to first fit low-frequency Fourier
components of a given target function, before moving on to fit higher frequency components, and empirically demonstrated
this tendency on real image classification problems and synthetic datasets. Subsequent works further explored how neural
network learning dynamics relate to the representation of training data in the frequency domain (Rahaman et al., 2019;
Xu et al., 2019a; Basri et al., 2020; Xu & Zhou, 2021). Our work is similar in that we also aim to connect neural network
learning order to simple mathematical properties of the training data, though we use distributional statistics, rather than
frequency.

Choshen et al. (2022) empirically studied learning dynamics of neural language models by tracking which grammatical
patterns different networks learn to model across their training trajectories, and comparing network behavior across training
to alternative language modeling approaches, such as n-gram models. They found that neural language models initially
match the behaviors of unigram and bigram models early in training, then diverge as training progresses. These results are
inline with our own findings on learning order in neural language models, and are consistent with a DSB-driven perspective
on neural network learning dynamics.

12

Neural Networks Learn Statistics of Increasing Complexity

B. CIFARNet dataset
CIFARNet is based on the Winter 2019 version of ImageNet-21K. We selected the ten synsets from the ImageNet hierarchy
which most closely matched the ten CIFAR-10 classes, with a bias toward broader synsets to maximize the dataset size:

• Airplane: n02691156

• Automobile: n02958343

• Bird: n01503061

• Cat: n02121620

• Deer: n02430045

• Dog: n02083346

• Frog: n01639765

• Horse: n02374451

• Ship: n04194289

• Truck: n04490091

We ensured class balance by randomly sampling 20K images from each synset. Images were directly resized to 64× 64
resolution without center cropping.

13

Neural Networks Learn Statistics of Increasing Complexity

C. Detailed experimental results
C.1. CIFAR-10

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Bounded shift)

1
st

 order (CQN)

2
nd

 order (Gaussian OT)

Val. set

Optimal transport across time (CIFAR10)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Conrad)

1
st

 order (ICS)

2
nd

 order (Gaussian)

2
nd

 order (Trunc. Gaussian)

3
rd

 order

Val. set

Max-entropy sampling across time (CIFAR10)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

14

Neural Networks Learn Statistics of Increasing Complexity

C.2. CIFARNet

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Bounded shift)

1
st

 order (CQN)

2
nd

 order (Gaussian OT)

Val. set

Optimal transport across time (CIFAR-Net)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Conrad)

1
st

 order (ICS)

2
nd

 order (Gaussian)

2
nd

 order (Trunc. Gaussian)

3
rd

 order

Val. set

Max-entropy sampling across time (CIFAR-Net)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

Figure 8. These results qualitatively mirror those of the lower resolution CIFAR-10 dataset (see above), except that the maximum
accuracies attained on 2nd order samples are somewhat lower. This may suggest that networks more quickly learn to use higher-order
statistics when the input has higher dimensionality.

15

Neural Networks Learn Statistics of Increasing Complexity

C.3. Fashion MNIST

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Bounded shift)

1
st

 order (CQN)

2
nd

 order (Gaussian OT)

Val. set

Optimal transport across time (Fashion MNIST)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Conrad)

1
st

 order (ICS)

2
nd

 order (Gaussian)

2
nd

 order (Trunc. Gaussian)

3
rd

 order

Val. set

Max-entropy sampling across time (Fashion MNIST)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

Figure 9. Fashion MNIST learning curves exhibit only a modest degree of non-monotonicity, likely because the first and second moments
of the data distribution are sufficient to produce very realistic-looking samples (Fig. 2)

16

Neural Networks Learn Statistics of Increasing Complexity

C.4. MNIST

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Bounded shift)

1
st

 order (CQN)

2
nd

 order (Gaussian OT)

Val. set

Optimal transport across time (MNIST)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Conrad)

1
st

 order (ICS)

2
nd

 order (Gaussian)

2
nd

 order (Trunc. Gaussian)

3
rd

 order

Val. set

Max-entropy sampling across time (MNIST)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

Figure 10. MNIST learning curves exhibit only a modest degree of non-monotonicity, likely because the first and second moments of the
data distribution are sufficient to produce very realistic-looking samples (Fig. 2)

17

Neural Networks Learn Statistics of Increasing Complexity

D. Note on third-order results
We tried to use a variant of the algorithm described in Appendix H for 3rd order max entropy sampling. However, the samples
invariably failed to match the desired 3rd order statistics sufficiently to trigger the gradient 10−7 gradient tolerance stopping
condition. We believe this is due to the very large number of entries in the coskewness tensor leading to more complex
constraints on the acceptable values of the synthetic dataset. In comparison, we have a far smaller number of free parameters
in the synthetic dataset. For example, for CIFAR-10 we optimized one thousand samples, each with 3× 32× 32 = 3072
coordinates, for a total of 3× 106 parameters. By comparison, the coskewness tensor has 30723 ≈ 2.9× 1010 entries, each
one placing an additional constraint on the dataset. It may be possible to generate higher quality samples by increasing the
number of synthetic datapoints, but this would further increase the computational burden, which is already quite high in the
3rd order case (Appendix I).

Nevertheless, in the interest of completeness and transparency, we report our 3rd order results in Appendix C. These results
are difficult to interpret because they are generated using synthetic data whose 3rd order statistics only approximately match
the desired ones. We thus place little weight on them. However, we find it interesting that even partially matching the
coskewness tensor will improve model performance on the synthetic data in most settings, with the notable exceptions
of the SVHN dataset and RegNet-Y model, where the 3rd order datasets either consistently underperform their 2nd order
counterparts on all models (in the case of the SVHN dataset) or selectively underperform on the CIFAR10 and CIFARNet
datasets (in the case of the RegNet-Y model). We thus see that a partial match of 3rd order statistics improves performance
in 10 out of the 15 model and dataset pairs we investigate.

18

Neural Networks Learn Statistics of Increasing Complexity

D.1. Street View Housing Numbers

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Bounded shift)

1
st

 order (CQN)

2
nd

 order (Gaussian OT)

Val. set

Optimal transport across time (SVHN)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

20%

40%

60%

80%

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

0

2

4

6

8

10

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16

1
st

 order (Conrad)

1
st

 order (ICS)

2
nd

 order (Gaussian)

2
nd

 order (Trunc. Gaussian)

3
rd

 order

Val. set

Max-entropy sampling across time (SVHN)

A
c
c
u
r
a
c
y

L
o
s
s

ConvNeXt RegNet-Y Swin Transformer

Training steps

Figure 11. The Street View Housing Numbers dataset is somewhat of an outlier in that none of the models ever exceed random baseline
accuracy on 1st order synthetic images. We hypothesize this is because of the extreme diversity of colors, fonts, and background textures
in SVHN, which make “simple” first order features less discriminative for classifying digits. We also found it necessary to use a smaller
learning rate to achieve convergence on this dataset (Footnote 14).

19

Neural Networks Learn Statistics of Increasing Complexity

D.2. Pythia Language Models

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18
1.5

2

2.5

3

3.5

4

4.5

5

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18

Pythia loss

12B

6.9B

2.8B

1.4B

1B

410M

160M

70M

14M

Lo
ss

Unigram sequence loss across time Bigram sequence loss across time

Training step

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

0

1

2

3

4

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

K
L
 d

iv
e
r
g
e
n
c
e

D KL (unigram model || Pythia) across time D KL (bigram model || Pythia) across time

Training step

Figure 12. (top) Average cross entropy loss of Pythia models evaluated on unigram and bigram sequences, (bottom) KL divergence
between the predictions of our n-gram language models and the predictions of Pythia checkpoints when evaluated on chunks of tokens
sampled from the Pile (N = 1024.)

20

Neural Networks Learn Statistics of Increasing Complexity

2

2.5

3

3.5

4

4.5

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

0

1

2

3

4

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

14M (slow warmup)

14M (fast warmup)

L
o
s
s

K
L
 d

iv
e
r
g
e
n
c
e

Unigram sequence loss across time Bigram sequence loss across time

D KL (unigram model || Pythia) across time D KL (bigram model || Pythia) across time

Training step

2

2.5

3

3.5

4

4.5

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

0

1

2

3

4

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

70M (slow warmup)

70M (fast warmup)

L
o
s
s

K
L
 d

iv
e
r
g
e
n
c
e

Unigram sequence loss across time Bigram sequence loss across time

D KL (unigram model || Pythia) across time D KL (bigram model || Pythia) across time

Training step

Figure 13. Effects of fast and slow learning rate warmup on n-gram sequence loss and KL divergence, Pythia 14M and 70M.

21

Neural Networks Learn Statistics of Increasing Complexity

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18

3

4

5

6

7

8

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18 2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18 2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18

Pythia model

14M

70M

160M

410M

Lo
ss

Unigram sequence loss across time

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18

2.5

3

3.5

4

2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18 2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18 2 0 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18

Lo
ss

Bigram sequence loss across time

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

0

2

4

6

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

K
L
 d

iv
e
r
g
e
n
c
e

D KL (unigram model || Pythia) across time

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

0.5

1

1.5

2

2
0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18
 2

0
 2

2
 2

4
 2

6
 2

8
 2

10
 2

12
 2

14
 2

16
 2

18

K
L
 d

iv
e
r
g
e
n
c
e

D KL (bigram model || Pythia) across time

Figure 14. N-gram sequence loss and KL divergence over Pythia sizes and random seeds (1024 sequences sampled at each step, 9 seeds
for Pythia 14M, 70M and 160M, 4 seeds for Pythia 410M.)

22

Neural Networks Learn Statistics of Increasing Complexity

E. First order optimal transport under a boundary constraint
Algorithm 1 Optimal constrained mean shift

Require: Input vector x ∈ [0, 1]n

Ensure: Desired mean m ∈ [0, 1]
1: Sort the coordinates of x
2: x̄←

∑n
i=1 xi

3: y← 0n

4: for i ∈ 1 . . . n do
5: yi ← xi +m− x̄
6: if yi > 1 then
7: x̄←

∑n
j=i xj

8: yi ← 1
9: m← nm−i

n−i

10: Put coordinates of y in their original order
11: return y

We would like to surgically change the mean of a set of images while
keeping their pixel intensities constrained to the range [0, 1]. The
least-squares optimal algorithm for this task is described in Alg. 1,
and we prove its correctness in the following theorem.
Theorem E.1. Let x be a vector in [0, 1]n and let m ∈ [0, 1] be a
desired mean. Then the optimization problem

min
y∈[0,1]n

∥x− y∥22 s.t.
1

n

n∑
i=1

yi = m

has a unique solution given by Algorithm 1.

Proof. Let x̄ = 1
n

∑n
i=1 xi. If x̄ = m, we immediately have the

optimal solution y∗ = x, because our constraints are already satisfied
and we achieve zero loss by leaving x unchanged.

We can reduce the case where m < x̄ to the case where x̄ < m (or vice versa) by exploiting the reflection-symmetry of the
problem. Specifically, if the solution to the analogous problem in x′ and m′, where x′ = 1

2 −x and m′ = 1
2 −m, is y′, then

the solution to the original problem is y∗ = 1
2 − y′. This is due to the reflection-invariance of the Euclidean distance, the

linearity of our mean constraint, and the fact that reflecting about 1
2 cannot move points in [0, 1]n outside [0, 1]n. Because of

this symmetry, in what follows we will assume without loss of generality that x̄ < m.

Note also the optimal solution must have the property that ∀i : xi ≤ yi. Assume for the sake of contradiction that xi > yi
for some i. Then we can improve upon this solution by increasing yi by some ϵ > 0, and compensating for this by moving
another entry yj for which xj < yj closer to its original value by ϵ.

Setting up the Lagrangian. Using the Karush-Kuhn-Tucker conditions, we encode the problem with the Lagrangian

L(y, λ,µ,ν) =
n∑

i=1

(yi − xi)
2 + λ

(1

n

n∑
i=1

yi −m
)

︸ ︷︷ ︸
mean constraint

−
n∑

i=1

µiyi +

n∑
i=1

νi(yi − 1).︸ ︷︷ ︸
inequality constraints

(4)

Differentiating L with respect to yi yields the stationarity condition

∂L
∂yi

= 2(yi − xi) +
λ

n
− µi + νi = 0. (5)

The KKT complementary slackness condition requires that µiyi = 0 and νi(yi − 1) = 0 for each i. This implies that µi

must be zero if yi > 0, and νi must be zero if yi < 1. For each i where yi < 1, we can use Eq. 5 and complementary
slackness to write yi as xi − λ

2n .

Putting it all together. Assume x and y are written in a basis that ensures the coordinates of x are sorted in descending
order, so that x1 ≥ x2 ≥ . . . ≥ xn. Our problem is invariant to permutation of indices, so this does not affect the solution.

We can now solve for y1, the final position of the largest coordinate, in the following way. Suppose that y1 < 1. Then we
have ∀i : yi < 1, and the mean constraint can be written as 1

n (
∑n

i=1 xi)− λ
2n = m. This allows us to solve for all yi:

yi = xi −
λ

2n
= xi +m− 1

n
(

n∑
i=1

xi). (6)

Note Eq. 6 may “overshoot” and violate the inequality constraint yi ≤ 1. If it does, then we know our supposition is false
and y1 = 1. If it does not violate the constraint, then it must be optimal because it is also the solution to the relaxed version
of this problem without the [0, 1] constraint. In the latter case, we are done.

Given that y1 = 1, the subproblem of solving for y2, . . . , yn is a smaller instance of the original problem: the target mean
for these coordinates is m′ = nm−1

n−1 . We can recursively apply this reasoning to solve for all other yi. This procedure
coincides with Algorithm 1.

23

Neural Networks Learn Statistics of Increasing Complexity

F. Derivation of the Dury distribution
Theorem F.1. Among all distributions supported on [0, 1] with desired mean m ̸= 1

2 , the Dury distribution with density
p(x) = b exp(−bx+b)

exp(b)−1 has maximum entropy, where the parameter b ̸= 0 is chosen to satisfy the equation m = − b−exp(b)+1
b(exp(b)−1) .

In the special case of m = 1
2 , the maximum entropy distribution is Unif(0, 1).

Proof. Consider the density function p(x) = exp(−a − bx), where a and b are selected to satisfy normalization∫
[0,1]

p(x)dx = 1 and mean
∫
[0,1]

p(x)xdx = m constraints, and another arbitrary density q(x) which satisfies the
same constraints. We will show that the entropy of q can be no greater than the entropy of p.

H(q) ≤ H(q, p) (inequality of entropy and cross-entropy)
= Eq[log p(x)] (definition of cross-entropy)
= −a− bm (definition of p(x) and linearity)
= H(p) (QED)

We can now analytically solve for a in terms of b. Integrating p(x) from 0 to 1 yields − exp(−a−b)
b + exp(−a)

b = 1. Solving
for a we get a = −b+ log

(exp(b)−1
b

)
, which when plugged back into the original formula gives us p(x) = b exp(−bx+b)

exp(b)−1 .

Integration by parts yields the following formula for the mean:
∫
[0,1]

p(x)xdx = − b−exp(b)+1
b(exp(b)−1) . We can use a root-finding

algorithm such as Newton’s method to solve this expression for b given a desired mean m. Note, however, that there is a
singularity in the mean formula where b = 0. Applying l’Hôpital’s rule twice yields the limit:

lim
b→0
−b− exp(b) + 1

b(exp(b)− 1)
= lim

b→0

exp(b)− 1

b exp(b) + exp(b)− 1
= lim

b→0

exp(b)

b exp(b) + 2 exp(b)
=

1

2
. (7)

The maximum entropy distribution supported on [0, 1] with no mean constraint is known to be Unif(0, 1). Since it happens
to have the mean 1

2 , we may conclude that the Dury distribution approaches Unif(0, 1) as b approaches 0.

24

Neural Networks Learn Statistics of Increasing Complexity

G. Discrete domain proofs
Please refer to Section 2.5 for context pertinent to this section.

Definition G.1 (n-gram statistic). Let VN be the set of token sequences of length N drawn from a finite vocabulary V .
Given some distribution over VN , an n-gram statistic is the probability that an n-tuple of tokens (v1, . . . , vn) ∈ Vn will
co-occur at a set of unique indices (t1, . . . tn) ∈ Nn.

Theorem 2.1. [n-gram statistics are moments] Let VN be the set of token sequences of length N drawn from a finite
vocabulary V , let P be a distribution on VN , and let f : VN → {0, 1}N ·|V| be the function that encodes a length-N
sequence of tokens as a flattened concatenation of N one-hot vectors of dimension |V|. Let f♯P be the pushforward of P
through this one-hot encoding, i.e. its analogue in {0, 1}N ·|V|.

Then every moment of f♯P is equal to an n-gram statistic of P and vice versa.

Proof. While it is natural to view one-hot sequences as Boolean matrices of shape N × |V|, where each row corresponds to
a sequence position, we instead consider flattened one-hot encodings in order to make use of the standard mathematical
machinery for moments of random vectors.

In this flattened representation, the component at index i indicates whether the token at t(i) is equal to the token v(i), where
(t(i), v(i)) := divmod(i, |V|). For example, if V = {“apple”, “pear”} and N = 3, the sequence “apple apple pear” will be
encoded as the vector (1, 0 | 1, 0 | 0, 1):

apple︸ ︷︷ ︸
(1,0)

apple︸ ︷︷ ︸
(1,0)

pear︸︷︷︸
(0,1)

f→ (1, 0, 1, 0, 0, 1).

Now consider the moment corresponding to some arbitrary multi-index α ∈ NN ·|V|. For illustration, let α = (0, 2 |0, 0 |1, 0).
Then the corresponding moment is

E[f(x)α] = E[���f(x)01f(x)
2
2︸ ︷︷ ︸

(0,2

���f(x)03���f(x)04︸ ︷︷ ︸
0,0

f(x)15���f(x)06︸ ︷︷ ︸
1,0)

], (8)

where f(x)01 denotes the first component of f(x) raised to the power 0. Since each component of f(x) is a Boolean indicator
for the presence or absence of a vocabulary item at a given position, we can rewrite it with Iverson brackets:

= E
[
[x(1) = “pear”]2 · [x(3) = “apple”]

]
(9)

= P[x(1) = “pear” ∧ x(3) = “apple”], (10)

or the probability that the first and third tokens will be “pear” and “apple” respectively. Note that the exponent on the
[x(1) = “pear”] makes no difference here as long as it is nonzero. We can always binarize α, replacing all nonzero values
with 1, and the moment will be unchanged since any nonzero power of {0, 1} is still {0, 1}.

In general, since the coordinates are all Booleans in {0, 1}, multiplication corresponds to logical conjunction and expectation
corresponds to probability:

E[f(x)α] = E
[N∏
i=1

f(x)αi
i

]
= P

[∧
i∈A

x(ti) = vi

]
, (11)

where A is the set of indices in 1 . . . |V| ×N where α is nonzero. By Def. G.1, this probability is an n-gram statistic of
order k = |A|.

Conversely, we can convert any an n-gram statistic with tokens in Vn and sequence positions in Nn into a moment of f♯P
by first flattening the indices, then plugging them into Eq. 11. The sequence positions correspond to rows, and the tokens
correspond to columns, of a one-hot matrix representation of a sequence. Here we need to multiply the row and column
indices together to yield indices into the flattened vector.

There will be infinitely many moments which correspond to any given n-gram, because multi-indices with components
larger than one are redundant.

25

https://en.wikipedia.org/wiki/Iverson_bracket

Neural Networks Learn Statistics of Increasing Complexity

Theorem 2.2. [Equal embedding moments] Let E ∈ R|V|×d be an embedding matrix, and let P and Q be two distributions
over VN . Then if P and Q have the same n-gram statistics up to order k ≥ 1, their embeddings under E have the same
moments up to order k.

Proof. By Thm. 2.1, we know that the one-hot analogues of P and Q, i.e. f♯P and f♯Q, have equal moments up to order k.
That is, for every multi-index α ∈ NN ·|V| where |α| ≤ k,

Ex∼f♯P [x
α] = Ex∼f♯Q[x

α]. (12)

Now let g : {0, 1}|V|×N → Rd×N be the function that multiplies each one-hot vector in a sequence by E, returning a
sequence of embedding vectors. Each side of Eq. 12 is the expectation of a polynomial in the components of x, and since g
is a linear map, g(x)α is also a polynomial with the same degree.

Now consider (g ◦ f)♯P and (g ◦ f)♯Q, the analogues of P and Q in embedding space. Its moments take the form

Ex∼(g◦f)♯P [x
α] = Ex∼f♯P [g(x)

α]. (13)

Because g(x)α is a polynomial with degree |α| ≤ k, the expectation Ex∼f♯P [g(x)
α] must be a linear combination of

moments of f♯P with order no greater than k. But by Eq. 12, all of these moments are equal between P and Q, and hence
all the moments of (g ◦ f)♯P and (g ◦ f)♯Q up to order k must be equal.

26

Neural Networks Learn Statistics of Increasing Complexity

H. Sampling from maximum entropy distributions with complex constraints
We used the following code to generate maximum entropy samples subject to a mean, covariance, and hypercube constraint.
3rd order sampling code is similar but more complex, as it includes a form of “minibatching” for the entries of the coskewness
tensor in order to reduce memory usage.

from torch import nn, optim, Tensor
import torch

def koleo(x: Tensor) -> Tensor:
"""Kozachenko-Leonenko estimator of entropy."""
return torch.cdist(x, x).kthvalue(2).values.log().mean()

def psd_sqrt(A: Tensor) -> Tensor:
"""Compute the unique p.s.d. square root of a positive semidefinite matrix."""
L, U = torch.linalg.eigh(A)
L = L[..., None, :].clamp_min(0.0)
return U * L.sqrt() @ U.mH

def hypercube_sample(
n: int,
mean: Tensor,
cov: Tensor,
*,
koleo_weight: float = 1e-3,
max_iter: int = 100,
seed: int = 0,

):
"""Generate `n` samples from max-ent distribution on [0, 1]ˆd with given moments."""
d = mean.shape[-1]
eps = torch.finfo(mean.dtype).eps
rng = torch.Generator(device=mean.device).manual_seed(seed)

Initialize with max-ent samples matching `mean` and `cov` but without hypercube
constraint. We do so in a way that is robust to singular `cov`
z = mean.new_empty([n, d]).normal_(generator=rng)
x = torch.clamp(z @ psd_sqrt(cov) + mean, eps, 1 - eps) # Project into hypercube

Reparametrize to enforce hypercube constraint
z = nn.Parameter(x.logit())
opt = optim.LBFGS([z], line_search_fn="strong_wolfe", max_iter=max_iter)

def closure():
opt.zero_grad()
x = z.sigmoid()

loss = torch.norm(x.mean(0) - mean) + torch.norm(x.T.cov() - cov)
loss -= koleo_weight * koleo(x)
loss.backward()
return float(loss)

opt.step(closure)
return z.sigmoid().detach()

I. Computational requirements
At the scales of the datasets we use in this study, both maximum entropy second order hypercube-constrained sampling
and Gaussian optimal transport are extremely cheap to run. In the most expensive configuration (generating around 200K
64× 64 CIFARNet images), the optimization loop takes roughly 65 seconds on a single NVIDIA L40 GPU, while requiring
approximately 29 gigabytes of GPU memory. Based on hourly pricing of $1.10 per hour from vast.ai, this will cost around

27

Neural Networks Learn Statistics of Increasing Complexity

$0.02 to generate a full set of synthetic CIFARNet images, with all other first and second order methods described in this
paper requiring fewer computational resources than that.

However, the memory required for both hypercube-constrained sampling and Gaussian optimal transport rise with the square
of the number of image features (meaning the fourth power of the image size). The compute requirements of the hypercube
sampling also rise with the fourth power of the image size, while the requirements for Gaussian optimal transport rise with
the sixth power. This means our methods can quickly become computationally infeasible with larger image sizes, which is
why we limit ourselves to at most 64× 64 images in this study.

Additionally, the maximum entropy third order hypercube-constrained sampling is much more expensive than the second
order methods, since the size of the statistic tensor grows as O(dorder). This means the coskewness tensor for CIFARNet
images has dimensions 12288× 12288× 12288. This would require nearly eight terabytes to store in full precision, which
exceeds the memory capacity of our computing hardware by a significant degree.

We therefore want to generate fake data that matches CIFARNet’s coskewness statistics, without ever computing those
statistics in full. Each step of our optimization process for generating third order fake thus only computes the coskewness
statistics along matching length l slices of coskewness tensors of the fake and real data, meaning we only need to store two
12288× 12288× l tensors at each step of optimization.

CIFARNet is the most expensive dataset to imitate with maximum entropy third order hypercube-constrained sampling, as
matching its first, second, and third order statistics at the same time is challenging. We used 10,000 optimization steps per
class, taking a total of 36 hours on a single NVIDIA A40 GPU. Using an hourly price of $0.403 from vast.ai, this would
cost roughly $14.5.

28

