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A B S T R A C T   

Application of Artificial intelligence (AI) in drug discovery has led to several success stories in recent times. 
While traditional methods mostly relied upon screening large chemical libraries for early-stage drug-design, de 
novo design can help identify novel target-specific molecules by sampling from a much larger chemical space. 
Although this has increased the possibility of finding diverse and novel molecules from previously unexplored 
chemical space, this has also posed a great challenge for medicinal chemists to synthesize at least some of the de 
novo designed novel molecules for experimental validation. To address this challenge, in this work, we propose a 
novel forward synthesis-based generative AI method, which is used to explore the synthesizable chemical space. 
The method uses a structure-based drug design framework, where the target protein structure and a target- 
specific seed fragment from co-crystal structures can be the initial inputs. A random fragment from a purchas-
able fragment library can also be the input if a target-specific fragment is unavailable. Then a template-based 
forward synthesis route prediction and molecule generation is performed in parallel using the Monte Carlo 
Tree Search (MCTS) method where, the subsequent fragments for molecule growth can again be obtained from a 
purchasable fragment library. The rewards for each iteration of MCTS are computed using a drug-target affinity 
(DTA) model based on the docking pose of the generated reaction intermediates at the binding site of the target 
protein of interest. With the help of the proposed method, it is now possible to overcome one of the major 
obstacles posed to the AI-based drug design approaches through the ability of the method to design novel target- 
specific synthesizable molecules.   

1. Introduction 

Deep learning models have expanded the space of drug discovery by 
enabling molecule generation, property prediction and on-the-fly mo-
lecular optimization in the recent years [1–10]. Several testaments to 
the success of deep neural networks in identifying clinically potent and 
efficacious small molecules have also emerged [11,12]. Although the 
extent of chemical space currently explored by deep generative models 
remains unquantified [13,14], it is safer to say that they can explore a 
sufficiently diverse and relevant space of potentially novel small mole-
cules with the aid of techniques such as transfer learning (TL) and 
reinforcement learning (RL). With the models currently available in 
literature, it is technically possible to design drug-like small molecules 
for any given target protein of interest using either the protein sequence 
[15–17] or structure [6,18–21] or a set of known inhibitors [1,5,9] 
identified apriori. However, further experimental validation of the 
designed small molecules requires that the molecule be easily 

synthesizable. 
Several studies have tried to address the problem of synthetic 

accessibility of generated small molecules essentially through one of the 
two methods: 1) quantification of synthesizability with metrics and 2) in 
silico prediction of the probable synthesis route(s) for the molecule. 
Traditionally, the synthesizability of a small molecule is quantified in 
terms of the contribution of fragments toward the overall complexity of 
the molecular structure [22]. Few examples of such metrics include 
synthetic accessibility score, SAScore [22], and SCScore [23]. Recently, 
metrics such as RAscore [24], SYBA [25], GASA [26], and CMPNN [27] 
utilize machine learning and deep learning models, with a varied set of 
molecular features underlying each model, to predict synthesizability. 
Based on a comparative analysis [28] on the performance of these 
metrics alongside existing retrosynthesis prediction models such as 
AiZynthFinder [29], it is evident that these metrics need to be finetuned 
according to the target model for synthetic route prediction. This sug-
gests that the generalizability of these metrics is to be carefully analyzed 
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to discriminate molecules according to their degree of synthesizability. 
Several examples of molecules with conflicting synthesizability pre-
dictions have also been reported earlier [30,31], suggesting a need to 
improve existing metrics and reach consensus. 

On the other hand, multiple groups have approached the problem of 
synthetic route prediction for small molecules, resulting in multiple 
approaches for both forward and retrosynthetic route prediction. The 
existing approaches can be categorized into either reaction template- 
based or template-free methods. The template-dependent approaches 
[32–36] require a set of expertly curated chemical reaction rules, which 
generalize transformations from reactants to products. The 
template-independent approaches [37,38] try to learn the reaction rules 
from a large corpus of reactions in organic chemistry, therefore limiting 
their generalization capability to novel reactant datasets. Based on 
literature, it has been observed that the existing template-dependent 
methods explicitly limit the reactions to single-step or two-step syn-
thesis problems [33] to avoid traversing the highly diverse space of 
available fragments. Two of the existing methods [34,36] have enforced 
generation of molecules which are similar to existing approved drugs or 
known synthesizable small molecules, thereby significantly restricting 
the exploration of chemical space by the model. While other approaches 
have tried to overcome this by allowing user-defined starting reactants 
[33], the molecules are again generated atom-by-atom through policy 
learning, which has been shown before to reduce chemical space 
exploration in previous studies [39,40]. Only one of the existing ap-
proaches [33] has tried to provide a structure-level perspective of the 
evolution of the molecule and its interactions with the binding site 
residues through 3D conformation generation. Although the coordinate 
space of the generation process was anchored to the binding site, the 
lack of minimization and analysis of short contacts post-generation leads 
to incomplete validation of the generated conformations. 

Reaction-driven de novo molecule generation methods can generate 
both small molecules and their synthetic routes by combining the ad-
vantages of both template-dependent and independent methods [41, 
42]. Although these methods access a restricted chemical space, they 
offer the promise of synthesizability for each molecule generated, 
compared to screening approaches. Several software such as SYNOPSIS 
[43], ChIP [44], AllChem [45], CoLibri [46], BI CLAIM [47], LEAP [48], 
DOGS [49] and Forecaster [50] have tried to implement reaction-driven 
molecule generation using manually curated or automatically extracted 
reaction templates as their oracle. Approaches such as reaction vector 
prediction [51] have been explored with reaction rules mined from 
electronic laboratory notebooks (ELNs) to implement the underlying 
combinatorics for molecule generation. However, these methods lead to 
combinatorial explosion and increase in compute time when applied on 
large fragment libraries such as Enamine [51]. Using faster search 
methods such as Monte Carlo Tree Search (MCTS) with pre-trained 
expansion and selection policies, along with robust filtering of prom-
ising routes through dynamic evaluation of the target 
protein-intermediate interaction, can increase the reliability of the 
molecules generated and their proposed synthetic routes. 

In this regard, we introduce a reaction-driven model which can 
perform template-based forward synthesis route prediction and de novo 
molecule generation simultaneously using the Monte Carlo Tree Search 
(MCTS) method. The rewards for each iteration of MCTS are computed 
using a drug-target affinity (DTA) model dependent on the docking pose 
of the generated reaction intermediates at the binding site of the target 
protein of interest. The model utilizes a tethered docking approach 
wherein, crystallographic fragments can be provided as the starting 
point for molecule generation, and the corresponding fragment co-
ordinates in the crystal structure can be used as the seed pose for 
docking. In this way, the model is designed to consider any available 
information regarding the protein structure while designing molecules, 
and predict their forward synthesis route using libraries of globally 
purchasable reactants. The application of the method is showcased 
through generation of molecules specific to the human cAMP-dependent 

protein kinase A (PKA). 

2. Materials and methods 

The approach proposed in this study involves three pre-trained 
models known as the expansion policy, second reactant selection pol-
icy and drug-target affinity (DTA) prediction model. Given a target 
protein structure and a starting reactant, the set of most probable tem-
plates for the reaction are predicted through the expansion policy. For 
each chosen bimolecular template, the most probable second reactant is 
predicted using the second reactant selection policy. The product from 
every reaction step is docked to the target protein in a constrained or 
unconstrained manner using standard docking programs. From the 
docking pose obtained, an interaction fingerprint is derived to predict 
the log-scale binding affinity using the DTA model, which is used as a 
reward to score promising synthetic routes in the MCTS search tree. A 
detailed description of the dataset curation, pre-processing, model 
development and evaluation is provided in the sections below. 

2.1. Target-specific fragments were considered as initial starting points 

Fragment-based drug discovery can identify very small molecules 
also known as fragments that can bind to the target protein, using bio-
physical and biochemical methods. Fragment screening hits from 
existing crystal structures were considered as initial reactants to grow 
the molecule based on chemical reaction rules, until the target-specific 
molecules with high bioactivity are obtained. To make the molecule 
target specific, bioactivity of the intermediate and final molecules were 
calculated (as described in the section titled “Incorporation of struc-
tural information from the target protein during MCTS reward calcu-
lation”). In this article, fragment hits are obtained from Protein Data 
Bank (PDB)-deposited structures for the target protein of interest. In real 
world scenario, such fragment hits can also be obtained from fragment- 
based screening assay. To generalize the method for cases where no 
initial fragment hit is available, generic, random fragments obtained 
from a purchasable fragment library, such as Enamine, were also used as 
starting fragments to initialize the generation process. 

2.2. Datasets utilized for molecule generation 

Reaction templates: A dataset of 121 reaction templates was ob-
tained in reaction SMIRKS format from an earlier study [35]. The val-
idity of these reaction SMIRKS was first checked using the 
rdchemReactions module in RDKit. The RDKit Rxn objects of valid re-
action templates (Table S1) were saved for mapping the reactants to 
their probable template reactions. 

Subsequent reactants: The dataset of subsequent reactants was 
curated from the Enamine comprehensive building blocks catalog [52]. 
1,169,054 reactants part of the catalog were pre-processed using RDKit 
to map each reactant SMILES to their corresponding Enamine product 
identifier. The Enamine database was chosen to ensure that the reactants 
corresponding to the intermediates identified as part of the forward 
synthesis route of any molecule are easily purchasable globally. 

Unimolecular and bimolecular reactions: The USPTO MIT dataset 
[53] with organic reactions extracted from patent literature was 
considered for reaction template mapping. Since previous studies have 
already shown that majority of all existing reactions can be categorized 
into either unimolecular or bimolecular reactions [32,35,54–56], only 
these reaction categories were isolated from the dataset using custom 
Python scripts to parse the reaction SMILES format. The resultant set of 
116,633 unimolecular reactions and 350,893 bimolecular reactions 
were considered for reaction template mapping. Unimolecular reactions 
are those where a single reactant undergoes transformation to obtain the 
final product. Bimolecular reactions are those where two reactants are 
required for the reaction to happen. 
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2.3. Preparing the enamine reactants dataset for model training 

The reactants from Enamine globally purchasable dataset were 
mapped to the probable reaction templates which can be applied on 
them, using the RDKit Rxn objects and the RunReactants function. Such 
an approach can reduce the search space and can allow focusing on only 
the subsequent reactants that can be mapped with previous/starting 
reactant and the corresponding reaction template. With the SMILES of 
Enamine building blocks dataset as input, the template mapping step 
could map 99% (1,157,468 reactants) of data to their corresponding 
probable reaction templates. However, upon analyzing the number of 
reactants mapped per reaction template it was observed that the dataset 
exhibited severe class imbalance, with the least populated class (reac-
tion template) containing only 27 reactants mapped to it (Table S2). To 
handle this, Butina clustering [57] was employed to cluster reactants 
mapped to each reaction template, using Tanimoto coefficient (TC) as 
the distance metric. The chemfp python package [58] was used to 
compute 1024-bit ECFP4 fingerprints of the Enamine reactants and for 
the clustering implementation. With a within-cluster similarity of 60% 
(TC of at least 0.6) as the criteria, only the representative reactants and 
singleton reactants from the clustering results were chosen for each 
template to create the dataset (Table S2). Singleton reactants without 
any clustering were also included in the dataset to retain the reactant 
diversity after downsampling. This downsampled dataset included 281, 
765 (24.34%) of the template-mapped reactants obtained. 

2.4. Preparing the USPTO reactants dataset for model training 

The procedure explained in the previous subsection, makes sure to 
map reactants from Enamine library with their respective reaction 
templates. Similarly, the reactants from 13.78% (64,439) of the USPTO 
reactions, both unimolecular and bimolecular, could be mapped to the 
reaction templates using RDKit. The similarity of products obtained with 
the templates identified were compared to the actual products from the 
USPTO reactions using ECFP4 fingerprints [59] and Tanimoto 

coefficient (TC) as the similarity metric, to ensure that the products 
obtained are highly similar, if not identical, to the actual products re-
ported. From the mapping, more than 90% of the products obtained with 
RDKit were identical to the actual products (supplementary information 
- Fig. S2). Only the Enamine reactants and USPTO reactions with tem-
plates available were used for building the generative models. 

2.5. Models involved in the MCTS formulation  

(a) Reaction template selection policy: Given a starting reactant of 
interest or a reaction intermediate as the input, the reaction 
template selection policy is used to decide a suitable reaction 
template for the starting reactant or reaction intermediate, to 
grow the MCTS search tree. Hence, a template classification 
model is pre-trained with the downsampled Enamine reactants 
dataset as input. For any reactant, this pre-trained policy can 
provide a probability distribution over the possible reaction 
templates that can be used at that step of the search. With the 
atomistic molecular graph representation of the reactant mole-
cule, a graph convolution network (GCN) [60] was used to pre-
dict the reaction template. The architecture included a single 
GCN layer followed by a fully connected layer and a final dense 
layer with softmax activation. The output hidden state from the 
GCN layer was subject to global mean pooling to get graph-level 
readout from the model. The downsampled Enamine reactants 
dataset of 281,765 molecules was split in a 9:1:1 ratio using the 
stratified split method in scikit-learn. Categorical cross-entropy 
loss was used to train the model and the parameters were opti-
mized using the Adam optimizer. The initial learning rate was set 
to 0.005 and the model was trained for 100 epochs with a dropout 
rate of 0.5 to prevent overfitting. The model was implemented 
with the Deep Graph Library (DGL) framework [61] using 
PyTorch as the backend. The architecture of the model described 
above is depicted in supplementary information (Fig. S10). 

Fig. 1. A detailed schematic of the MCTS formulation of forward synthesis prediction cum small molecule generation problem. The three pre-trained models 
involved are the expansion policy, second reactant selection policy and DTA model. Information regarding the structure of the target protein is utilized for pose 
generation through standard docking programs, for MCTS reward calculation (predicted bioactivity from the DTA model). 
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(b) Second reactant selection policy: After the prediction of most 
probable reaction template with the reaction template selection 
policy, it is further categorized into unimolecular or bimolecular 
reactions. In case of bimolecular reaction templates, a second 
reactant is necessary to obtain the final product by the applica-
tion of the chosen template. Hence, a second reactant selection 
policy was pre-trained with the template-mapped bimolecular 
reactions from the USPTO dataset [53]. For this model, the first 
reactant is represented as a molecular graph and the predicted 
bimolecular reaction template is represented using a binary 
one-hot encoded vector. The graph-level readout for the molec-
ular graph is obtained from a graph convolutional (GCN) layer 
and the reaction template vector is concatenated to this graph 
embedding vector (Fig. 1). The concatenated vector is passed 
through two fully connected layers with ReLU activation and a 
final dense layer with tanH activation, to get a vector of 35 
properties normalized between − 1 and 1 [32]. This property 
vector is considered as the output representation of the probable 
second reactant for the bimolecular reaction. The second reactant 
selection policy is trained with mean squared error (MSE) loss 
function and the parameters are optimized with the Adam opti-
mizer. The initial learning rate was set to 0.005 and the model 
was trained for 100 epochs with a dropout rate of 0.5 to prevent 
overfitting. The model was implemented with the Deep Graph 
Library (DGL) framework [61] using PyTorch as the backend. The 
architecture of the second reactant selection policy model is 
provided in supplementary information (Fig. S11). However, the 
model needs to be retrained when an additional template has to 
be considered, which is a limitation to be resolved in future work. 
It is also notable that, while the policy significantly improves the 
efficiency of the search, it might not be able to pick few poten-
tially interesting and compatible reactants. 

(c) kNN search: The property vector predicted by the second reac-
tant selection policy is subject to k-nearest neighbors (kNN) 
search against the pre-computed and normalized property vectors 
of all Enamine reactants from the downsampled dataset, to obtain 
a set of k possible second reactants for the bimolecular reaction 
[32]. Euclidean distance between the predicted property vector 
and the Enamine property vectors is considered as the distance 
metric for the kNN step. The k reactants obtained are used to 
expand the search tree further. Since distance calculations against 
the entire downsampled dataset of Enamine reactants poses a 
linear time complexity (O(n)), searching against only the 
Enamine reactants mapped to the predicted reaction template 
was used as a heuristic during the kNN search. 

2.6. Incorporation of structural information from the target protein during 
MCTS reward calculation 

The drug-target affinity (DTA) prediction model based on our pre-
vious studies [6,62], is used to compute rewards during MCTS. The 
model takes as input an extended connectivity interaction fingerprint 
(ECIF) of the protein-ligand complex, and predicts the corresponding 
binding affinity in log-scale [63]. To obtain the ECIF fingerprints during 
MCTS, the predicted reaction intermediates and products were docked 
on-the-fly to the target protein using the rDock program [64]. This 
program was chosen since it supports significantly faster docking in both 
tethered and untethered modes, enabling consideration of available 
crystallographic fragment positions as seed coordinates for docking pose 
identification. In this way, the MCTS process is made more specific to a 
target protein of interest by pre-training the DTA model to be specific to 
the protein of interest. The DTA model so obtained was used to compute 
the rewards of reaction intermediates and products obtained during the 
expansion and simulation steps of MCTS, which are detailed below. 

2.7. Monte Carlo Tree Search (MCTS) formulation for forward synthesis 
route prediction 

MCTS is a reinforcement learning-based process to utilize informa-
tion from simulations of the future steps and select current actions by 
learning from the simulated episodes [65,66]. MCTS involves four major 
steps namely, selection, expansion, rollout or simulation, and update 
[65]. To generate molecules along with their forward synthesis route 
using the template-mapped reactants as the starting point, two policies 
(reaction template selection policy and second reactant selection policy) 
were pre-trained with the datasets prepared. In the MCTS search tree, 
every node is a reactant or intermediate or product molecule, and every 
edge is a reaction template applied to arrive at the child nodes or leaf 
nodes. 

Selection (Tree policy): In every step of MCTS, the Upper Confi-
dence Bounds (UCB) condition [67], also known as the tree policy, is 
used to select the action (reaction template) at the current state (node or 
reactant) based on the number of times the node was visited during 
simulation. A node or reactant that was visited multiple times, will have 
a larger visit count and hence, more probability to be generated in the 
path of maximum reward during MCTS. The action or reaction template 
which led to the most visited node will be chosen for the current state 
based on the value computed as follows (1): 

at = arg max
aεA(st)

(
Q(st, a)
N(st, a)

+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

logN
(
s(t− 1), a

)√

N(st, a)

)

(1)  

here, Q (st, a) is the reward obtained for the node from the reinforcement 
learning critic, N (st, a) is the visit count for the current state or node, N 
(st-1, a) is the visit count for the parent of the current node, and c is a 
parameter controlling the exploration-exploitation trade-off during the 
MCTS process. In this study, a c value of 2 is used for all results reported. 
The rewards for the child nodes obtained from each step are computed in 
terms of their predicted log-scale bioactivity, using a pre-trained drug- 
target affinity (DTA) prediction model from our previous studies [6,63]. 

Expansion: During expansion from a selected node (starting reactant 
or reaction intermediate), the probable child nodes are predicted in a 
two step process. First the top 10 probable reaction templates which can 
be applied on the selected node are predicted using the pre-trained re-
action template selection policy. From the predicted templates, the 
unimolecular and bimolecular templates are separated. For the bimo-
lecular templates, the most probable second reactants to complete the 
reaction are predicted using the pre-trained second reactant selection 
policy and kNN search over the Enamine library. Finally, the probable 
child nodes for every predicted reaction template are obtained using the 
RDKit RunReactants function. 

Rollout or Simulation: Each predicted child node from the expan-
sion step is subject to 10 rounds of simulation, to gauge their reward 
potential (estimated future bioactivity) before expanding the MCTS 
search tree further. The average reward of the simulations is thresholded 
to a cut-off bioactivity value to select the child candidate for further 
expansion. It is to be noted that for every reward calculation, the reac-
tion intermediate is docked on-the-fly to the target protein to obtain the 
ECIF representation, which is used as input to the DTA model. Hence, 
information on the structure of the target protein and the exact binding 
site location are used during every step of the MCTS search, to guide the 
forward synthesis process. 

Update: During update, the rewards (Q (st, a)) and visit counts (N (st, 
a)) of the edges and nodes of the search tree, respectively, are updated 
based on the simulation results from the current state (st) to the root 
node. The average reward from the simulation is assigned to the node 
from where the simulation was performed. The state-action pair which 
produced the maximum average reward post-simulation is selected for 
the next expansion-simulation-update iteration of MCTS. After several 
iterations of MCTS expansion, simulation and update, the path 
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containing reactants and products with the most number of visits and 
highest average reward is reported, with the final product being the 
generated molecule of interest. The complete formulation of the forward 
synthesis prediction problem using MCTS is provided as a schematic 
above (Fig. 1). 

2.8. Application of MCTS for generation of molecules targeting human 
cAMP-dependent protein kinase A (PKA) 

To generate molecules specific to the human cAMP-dependent Pro-
tein Kinase A (PKA) along with their forward synthesis routes using 
MCTS, the set of starting reactants from Enamine downsampled dataset, 
with identity to the substructures present in PKA inhibitors were iden-
tified using RDKit substructure matching functions. Further, with the 
dataset of 537 PKA inhibitors and their bioactivity collected from 
ChEMBL database, the DTA model was pre-trained to be specific to PKA, 
with the PKA-inhibitor complex structures predicted using the GNINA 
docking program. To perform the untethered docking and for DTA 
model development, the structure of PKA with PDB ID: 3OWP was 
considered, and the binding site coordinates were defined based on the 
ligand bound to the protein in the crystal structure. For the tethered 
docking experiments, five experimental structures of the human cAMP- 
dependent protein kinase A (PKA) with a co-crystallized fragment were 
finalized (PDB IDs: 3NX8, 3OOG, 5BX6, 5BX7, 5N3Q). These five 
structures were chosen due to the identical binding sites of the fragments 
involved. For each structure, rDock parameter files were prepared for 

tethered docking in an automated fashion and integrated with the DTA 
model for bioactivity prediction. The fragments present in each crystal 
structure chosen, along with the scaffold from the fragment used for 
tethered docking are shown below (Fig. 2). The human cAMP-dependent 
protein kinase A (PKA)-specific DTA model was found to have an r value 
of 0.72 and an RMSE of 0.66 on the test set. The regression plot obtained 
with the PKA-specific DTA model is provided below (Fig. 3) along with 
the line of best fit obtained. 

3. Results and discussion 

The human cAMP-dependent protein kinase A (PKA) is a hetero-
tetramer composed of two regulatory subunits (R) and two catalytic 
subunits (C). Binding of cAMP to the regulatory subunit leads to disso-
ciation of the catalytic subunits from the regulatory subunits. The free 
catalytic subunits of PKA (PRKACA) are further responsible for phos-
phorylation of a wide variety of cellular substrates involved in meta-
bolism, gene expression and cellular proliferation [68]. Mutations in the 
catalytic subunit have been identified to lead to Cushing’s syndrome, a 
kidney disorder leading to excessive cortisol production, and tumors 
such as fibrolamellar hepatocellular carcinoma (FL-HCC) [68]. Increase 
in cAMP levels and PKA substrate levels has also been shown to be linked 
to incidence of hepatitis C virus infections in humans [69]. Due to the 
unusual mode of regulation of PRKACA in comparison with other ki-
nases, it has been considered as a vital target for design of kinase in-
hibitors in cancers [70,71,72]. In the following sections, the results 
obtained from the application of the proposed forward synthesis pre-
diction method using Monte Carlo Tree Search to design potential small 
molecules against the catalytic subunit of human PKA are discussed in 
detail. The performance of the pre-trained models to perform MCTS are 
summarized below (Table 1). A detailed comparison of the key aspects 
distinguishing our method from the existing forward synthesis predic-
tion methods is also provided in the Supplementary information 
(Table S3). It is notable that, the second reactant selection policy was 

Fig. 2. The crystallographic fragments and their corresponding scaffolds chosen for the tethered docking-based MCTS experiments from (a) 3NX8; (b) 3OOG; (c) 
5BX6; (d) 5BX7; (e) 5N3Q. 

Fig. 3. Regression plot showing the performance of the PKA-specific DTA 
model for the test dataset. 

Table 1 
Performance of the three models developed in this study – reaction template 
selection policy, second reactant selection policy and the DTA model is tabulated 
below. Further details on model performance are provided in supplementary 
information (Section S2 and Fig. S12).  

Model Performance metrics 

Reaction template selection policy ROC = 0.88 
Second reactant selection policy Rp = 0.90 

r2 = 0.81 
MAE = 0.115 

DTA model r2 = 0.72 
RMSE = 0.66  
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Fig. 4. Examples of four tethered docking-based experiments with different crystallographic starting reactants obtained from structures with PDB IDs: (a) 3NX8, (b) 
5BX7, (c) 5BX6 and (d) 3OOG. Each reaction step contains the name of the reaction template chosen and the enamine identifiers of the second reactants and 
products, wherever possible. 

Fig. 5. Examples of scaffolds of generated reaction intermediates and products anchored to the scaffold from the crystallographic fragment hit (green sticks). The 
scaffold alignments were obtained based on the tethered docking results collected using the rDock program during the MCTS experiments. 
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used to reduce the combinatorial explosion of the reactant search space. 
The reaction template selection policy was used to identify potential 
templates which can expand the search tree in a breadth-wise fashion, 
providing several possible synthesis routes to be scored based on 
bioactivity prediction. 

3.1. Structural perspective of the forward synthesis route generated based 
on crystallographic fragments 

Crystallographic fragments can be considered as valuable starting 
points for exploration of the interacting groups within the binding cavity 
of a drug target. To consider the information available from such 
screening studies in PDB, a tethered docking-based approach was used. 
This approach would anchor the scaffolds of reaction intermediates and 
products to the scaffold position of the fragment hits selected. Based on 
comparative analysis, the rDock program [64] was found to provide 
better speed with both tethered and untethered docking calculations 
than GNINA [73] (Supplementary information 1 – Section S1). A few 
examples of the molecules generated from the tethered docking based 
MCTS runs, along with their forward synthesis routes are shown above 
(Fig. 4). Further experimental validation is required to validate the 
synthesis routes and products obtained from this approach to broaden 
the scope of the workflow. 

On comparison of the docking poses obtained for the starting 

reactant, reaction intermediates and the final product with the initial 
seed coordinates, it was observed that the centre of mass of the scaffold 
of interest in all pairs of molecules was aligned within 0.5 Å to that of the 
crystallographic fragment. A few examples of the aligned molecules are 
shown below (Fig. 5). The results indicate that the tethered docking 
approach could successfully constrain the scaffold of interest to the 
desired region of the kinase binding site. Analysis of the intermolecular 
interactions observed over the course of the forward synthesis route 
indicated a steady increase in bioactivity with the growth of the mole-
cule in the binding site. Due to the abundance of non-polar amino acids 
in the human PKA binding site, most of the interactions observed be-
tween the generated molecules and the binding site residues were hy-
drophobic, followed by hydrogen bonds and stacking interactions 
(Fig. 6). This was found to be in accordance with the predominant in-
teractions of human PKA inhibitors reported in literature [74] (Fig. S4). 
The following binding site residues were found to consistently interact 
with both existing inhibitors and generated small molecules from this 
study: Arg18B, Arg19B, Asn20B, Ala21B, His23B, Leu49A, Gly50A, 
Thr51A, Gly52A, Ser53A, Phe54A, Gly55A, Arg56A, Val57A, Ala70A, 
Lys72A, Ile73A, Leu74A, Gln84A, Thr88A, Glu91A, Val104A, Met120A, 
Glu121A, Tyr122A, Val123A, Glu127A, Asp166A, Lys168A, Glu170A, 
Asn171A, Leu173A, Thr183A, Asp184A, Gly186A, Phe187A, Phe327A, 
Tyr330A. 

Fig. 6. Examples of interactions between the generated small molecules (cyan sticks) and the PKA binding site residues (green lines). Hydrogen bonds and ionic 
interactions are highlighted using yellow dotted lines, while residues involved in hydrophobic interactions are also shown for each molecule. The predicted 
bioactivity of the generated small molecule is also provided in red figures within parantheses. The figures were generated using PyMOL. 
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Table 2 
Results from the MCTS calculations for starting reactant from PDB IDs: 3NX8, 5BX6 and 5BX7. Tethered docking-based MCTS calculations were performed 5 times and 
the final product molecules obtained are shown along with their predicted bioactivity and maximum similarity with existing PKA actives. The ChEMBL ID of the similar 
PKA inhibitor and its experimental bioactivity value are also provided.  

Starting reactant No. of reactions in the 
predicted route 

Final product molecule Predicted bioactivity 
against PKA 

Similarity (TC) to 
existing PKA actives 

Similar ChEMBL molecule 
(bioactivity) 

3 6.338 0.582 CHEMBL3544960 (7.13) 

2 6.609 0.461 CHEMBL1972568 (5.50) 

1 6.137 0.506 CHEMBL2004872 (6.36) 

3 6.350 0.475 CHEMBL1977135 (6.99) 

2 6.061 0.525 CHEMBL4576489 (7.37) 

2 6.161 0.488 CHEMBL1977135 (6.99) 

4 6.628 0.748 CHEMBL4576489 (7.37) 

2 6.109 0.552 CHEMBL2000481 (5.30) 

4 6.075 0.521 CHEMBL2000481 (5.30) 

3 5.587 0.601 CHEMBL4576489 (7.37) 

(continued on next page) 
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3.2. Molecular diversity observed among multiple runs of MCTS using 
same starting reactant 

By performing multiple runs of MCTS using same starting reactant, 
different final products were obtained for each run. The average simi-
larity of different small molecules obtained with the same starting 
reactant was found to be 0.65, in terms of Tanimoto coefficient. This 
indicates that even across different runs starting from the same reactant, 
the generated molecules show significant molecular diversity. Upon 
comparison of the generated molecules with existing PKA inhibitors 
curated from ChEMBL, several molecules with better bioactivity and 
interaction profiles were identified. The results of top 5 MCTS runs for 
three of the chosen crystallographic starting reactants are tabulated 
below (Table 2). Interestingly, most of the molecules with better 
bioactivity also had very low similarity (less than 0.5) with existing PKA 
inhibitors, further highlighting the diversity of small molecules gener-
ated by the MCTS workflow proposed. 

3.3. Performance of generative model with generic and target-specific 
starting reactants 

In addition to utilizing the fragment screening hits from existing 
crystal structures for molecule generation, random and target-specific 
starting reactants from a purchasable fragment library, such as 
Enamine, were also used to initialize the generation process. To obtain 
the target-specific starting reactants, exact substructure matching was 
performed to identify fragments from the Enamine library which are 
enriched in the existing PKA inhibitors. A generic (random) set of 
starting reactants was also identified and confirmed to be non- 
overlapping with that of the target-specific reactant dataset. The 

MCTS workflow was used to design inhibitors with both these reactant 
datasets to investigate the generalization capability of the approach. 

The complete forward synthesis route predicted by MCTS for each 
molecule shown in first 5 rows of Table 2 is provided in the supple-
mentary information (Figs. S4–S8). 

Upon comparison of the small molecules generated using random 
starting reactants and target-specific reactants, only two molecules had 
above 0.75 Tanimoto similarity between the two datasets (Fig. 7). 
However, in terms of the distribution of predicted bioactivity values, 

Table 2 (continued ) 

Starting reactant No. of reactions in the 
predicted route 

Final product molecule Predicted bioactivity 
against PKA 

Similarity (TC) to 
existing PKA actives 

Similar ChEMBL molecule 
(bioactivity) 

2 5.295 0.427 CHEMBL1965170 (6.09) 

3 6.006 0.439 CHEMBL1977135 (6.99)  

Fig. 7. Comparison of generated small molecules from the proposed method using random starting reactants and target-specific starting reactants.  

Fig. 8. TSNE plot showing the different chemical spaces occupied by existing 
PKA inhibitors and generated small molecules. 
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both datasets showed significant overlap, indicating that the MCTS 
process samples across a highly diverse region of the chemical space, 
without compromising on the bioactivity against the target protein of 
interest (Fig. S13). By embedding the generated small molecules and the 
existing PKA inhibitors using t-distributed stochastic neighbor embed-
ding (tSNE), the different chemical spaces occupied by generated small 
molecules and existing PKA inhibitors could also be clearly visualized 
(Fig. 8). To further understand the diversity and synthesizability of 
generated molecules, all final products obtained were compared with 
~13.8 million readily purchasable small molecules available in the 
ZINC20 database. Based on the comparison, only 60 generated mole-
cules had significant similarity (above 0.75 TC) to the ZINC20 com-
pounds (Fig. 9). These results also substantiate the diversity of the 
generated molecules and their synthesis routes, using only reactants 
from a purchasable fragment library such as Enamine. 

4. Conclusions 

In this study, a novel forward synthesis prediction method for 
reaction-driven small molecule generation was proposed using Monte 
Carlo Tree Search (MCTS). The proposed approach provides a structure- 
level perspective of the evolution of potential small molecules at the 
binding site of the target protein. The method can be utilized to design 
molecules with large, diverse and readily purchasable fragment libraries 
such as Enamine. The method can also consider crystallographic frag-
ment screening hits as starting points to grow the molecule within the 
binding site. The proposed approach was validated by designing po-
tential inhibitors against the human cAMP-dependent protein kinase 
(PKA), which was considered as the target protein of interest. The results 
indicate that the MCTS-based approach could design highly diverse 
small molecules with better bioactivity compared to existing inhibitors, 
along with their predicted forward synthesis route and interaction 
profile. The generated small molecules sample a completely novel region 
of the chemical space upon comparison with synthesizable large com-
pound databases and embedding approaches, highlighting the applica-
bility of this method to discover potential novel small molecules with 
better bioactivity. The ability of the proposed method to design target- 
specific and synthesizable novel drug molecules can help to overcome 
the major challenge posed to de novo design models. 
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