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Abstract

Ensuring that a DNN satisfies a desired property is critical when deploying DNNs
in safety-critical applications. There are efficient methods that can verify whether
a DNN satisfies a property, as seen in the annual DNN verification competi-
tion (VNN-COMP). However, the problem of provably editing a DNN to satisfy
a property remains challenging. We present PREPARED,1 the first efficient tech-
nique for provable editing of DNNs. Given a DNN N with parameters θ, input
polytope P, and output polytope Q, PREPARED finds new parameters θθθ such that
∀xxx ∈ P. N (xxx;θθθ) ∈ Q while minimizing the changes ∥θθθ− θ∥. Given a DNN and a
property it violates from the VNN-COMP benchmarks, PREPARED is able to provably
edit the DNN to satisfy this property within 45 seconds. PREPARED is efficient
because it relaxes the NP-hard provable editing problem to solving a linear program.
The key contribution is the novel notion of Parametric Linear Relaxation, which
enables PREPARED to construct tight output bounds of the DNN that are parame-
terized by the new parameters θθθ. We demonstrate that PREPARED is more efficient
and effective compared to prior DNN editing approaches i) using the VNN-COMP
benchmarks, ii) by editing CIFAR10 and TINYIMAGENET image-recognition
DNNs, and BERT sentiment-classification DNNs for local robustness, and iii) by
training a DNN to model a geodynamics process and satisfy physics constraints.

1 Introduction

Ensuring that a DNN is correct and avoids harmful behaviors is critical when deploying them,
especially in safety-critical contexts [8]. In such scenarios, it is vital to guarantee that a DNN satisfies
a given property, e.g., a safety specification [35]. Towards this end, DNN verifiers aim to determine
whether a DNN satisfies the given property [1]. There are efficient methods for DNN verification that
can handle a wide-range of DNN architectures and properties, as seen in the annual DNN verification
competition (VNN-COMP) [5]. However, the success of DNN verification reveals the next challenge:
provably editing a DNN to satisfy a property. Formally, we define the provable editing problem as:

Definition 1.1. Given a DNN N with parameters θ, an input polytope P
def
=

{
xxx | DDDxxx ≤ eee

}
and an

output polytope Q
def
=

{
yyy | AAAyyy ≤ bbb

}
, the provable editing problem is to find new parameters θθθ that

min ∥θθθ − θ∥ s.t. ∀xxx ∈ P. N (xxx;θθθ) ∈ Q (1)

Provable editing can be used, for instance, to ensure that a classifier DNN is locally robust for an
input xxx. In this case, the input polytope P

def
= {xxx′ | ∥xxx − xxx′∥∞ ≤ ε} is the L∞ ball around xxx with

1PREPARED stands for PRovable Editing using PArametric linear RElaxation of Deep neural networks.
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Figure 1: Linear relaxations for yyy def
= ReLU(xxx). and denote the upper and lower bounds,

denotes the relaxation. (a) Relaxation in prior approaches [49, 39], where the bounds are
overapproximated using linear functions, and the upper bound is only sound within given input
bounds [xxx,xxx]; (b) This work exactly represents the upper bound for any input upper bound variable
xxx, results in a tighter approximation; (c) Illustration of how this work exactly represents the upper
bound yyy ( ) by capturing the epigraph ( ) of ReLU(xxx) with the linear constraint yyy ≥ 0 ∧ yyy ≥ xxx.
The lower bound yyy ( ) uses a linear relaxation yyy def

= cccxxx with a constant ccc ∈ [0, 1].

radius ε, and the output polytope Q
def
=

{
yyy |

∧
j ̸=l yyyj < yyyl

}
requires that the output label is l; viz.,

argmaxyyy = l. Moreover, provable editing can be used either during training to guarantee that the
DNN satisfies a property, or post-deployment to repair a given DNN.

The provable editing problem is challenging due to the presence of the universal quantifier; viz.,
finding new parameters such that for all inputs in the polytope P, the output of the edited network lies
in the polytope Q. There are no existing approaches for efficiently and effectively solving the provable
editing problem. Regularization-based approaches [26, 10, 28, 24] encode the property into the loss
during training, but are unable to guarantee the property-satisfaction. SMT-based approaches [14, 16]
provide guarantees, but are not efficient because they directly solve an NP-hard problem. Prior
LP-based approaches [41, 42] are efficient because they can only handle a restricted class of provable
editing problems; e.g., they assume that the vertices of the input polytope or the linear regions of the
DNN can be efficiently enumerated, or the DNN architecture can be modified.

This paper presents PREPARED, the first efficient technique for provable editing of DNNs that runs
in polynomial time (Theorem 3.4). Given a DNN and a property it violates from the VNN-COMP′22
benchmarks, PREPARED is able to provably edit the DNN to satisfy this property within 45 seconds.

PREPARED approaches the problem of provable editing by constructing tight parametric bounds of
the output N (xxx;θθθ) for all inputs xxx in the input polytope P in terms of the parameters θθθ, and then
constraining these parametric bounds to lie within the output polytope Q. These parametric bounds
are constructed compositionally per layer of the DNN, and are expressed as linear constraints, so that
efficient Linear Programming (LP) solvers can be used to find an optimal solution.

Our key insight is to represent the parametric bounds indirectly via underapproximations of the
epigraph and hypograph of the DNN layer. Consider the ReLU layer yyy def

= ReLU(xxx). Prior ap-
proaches [49, 39] overapproximate its upper bound with a linear function ( in Figure 1(a)) using
constant input bounds [xxx,xxx]. Such a linear relaxation is loose, and is only sound within the given
constant input bounds [xxx,xxx]. Our approach is able to exactly represent the upper bound of ReLU
output for any input upper bound variable xxx ( in Figure 1(b)). This is done by capturing the
epigraph ( in Figure 1(c)) of ReLU(xxx) with a linear constraint.

Our key contribution is a novel Parametric Linear Relaxation for DNN layers, which defines tight
parametric bounds using linear constraints in terms of the layer parameters. Consider vvv def

= xxxwww, which
is a simplified representation of an Affine layer. We would like to construct bounds for all xxx ∈ [xxx,xxx]
in terms of the variable parameter www. Prior approaches could achieve a sound, but loose linear
relaxation that is not in terms of the layer parameters (Figure 2(a)). In contrast, our approach exactly
represents the output bounds without any relaxation (Figure 2(b)) building upon our key insight of
capturing the epigraph and hypograph of the DNN layer in terms of the parameters (Figure 2(c)).
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Figure 2: Linear relaxations for bounding vvv def
= xxxwww for all xxx ∈ [xxx,xxx], with variable parameter www.

and denote the upper and lower bound overapproximations. denotes the relaxation.
(a) A loose relaxation for all xxx ∈ [xxx,xxx] and for allwww ∈ [www,www], wherewww is not treated as a parameter
but another input within constant bounds [www,www]. (b) This work exactly represents the bounds for all
inputs xxx ∈ [xxx,xxx], parameterized by variable www, without any relaxation. Here we plot a case when
www < 0, while our parametric bounds are exact for any www. (c) Illustration of how our parametric
bounds are defined for the function vvv def

= xxxwww in terms of the variable parameterwww. denotes the
true output region for all slope (input) xxx ∈ [xxx,xxx]. The upper bound vvv ( ) is exactly captured by
the epigraph ( ), defined by linear constraint (vvv ≥ xxxwww ∧ vvv ≥ xxxwww); the lower bound vvv ( ) is
exactly captured by the hypograph ( ), defined by linear constraint (vvv ≤ xxxwww ∧ vvv ≤ xxxwww).

We evaluate PREPARED i) using the VNN-COMP benchmarks, ii) by editing CIFAR10 and TINYIM-
AGENET image-recognition DNNs, and BERT sentiment-classification DNNs for local robustness,
and iii) by training a DNN to model a geodynamics process and satisfy physics constraints. Because
there were no prior efficient approaches for provable editing, we implemented new provable fine-
tuning baselines by integrating prior DNN editing approaches with a verifier in the loop. PREPARED
outperformed such baselines demonstrating its effectiveness and efficiency.

2 Related work

Regularized training [20, 45, 30, 10, 19, 22, 47] incorporates constraints as regularization into the
training loss, but does not guarantee constraint-satisfaction in the trained DNN. For the DNN editing
problem we are addressing, which involves universally-quantified logical formulas, DL2 [10] is the
state-of-the-art regularized training method.

Certified training [26, 15, 36, 2, 31, 28, 24] is a type of regularized training geared towards
adversarial robustness. SABR [28] and STAPS [24] are state-of-the-art certified training approaches.
However, they also do not guarantee constraint-satisfaction.

SMT-based editing approaches [14, 23, 16] directly solve the NP-hard provable editing problem
using an SMT solver. Thus, they are inefficient and do not scale beyond small DNNs. For instance,
the recent DeepSaDe approach [16] incorporates an SMT solver during training, but only uses the
SMT solver to edit the last layer. However, it still can take 500× longer than regularized training.

LP-based editing approaches [41, 42] relax the provable editing problem to solving an LP problem,
which makes them efficient. However, prior approaches can only handle a restricted class of provable
editing problems. The state-of-the-art provable editing approach APRNN [42] is efficient for editing
input points. However, it does not scale to the general provable editing problem of Definition 1.1 due
to the need for enumerating vertices of the input polytope. PRDNN [41] was the precursor to APRNN
and suffers from similar limitations; moreover, PRDNN modifies the architecture of DNN and requires
enumeration of linear regions to edit an input polytope. REASSURE [12] repairs a linear region of a
DNN by adding a patch DNN for each such linear region. Thus, it also requires enumeration of linear
regions to edit an input polytope. Further, it has been shown to be unsound and incomplete (Section 5
of [42]), and suffers from significant runtime and memory overheads (Section 7.8 of [42]).
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DNN verification [38, 39, 49, 44, 37, 48, 46, 9, 4] aims to determine whether a DNN satisfies a
given property. As shown in Section 4, provable editing can be used when a verifier determines
that a DNN violates a property. Most verification techniques use linear relaxations to bound the
DNN output. However, these linear relaxations cannot be used for provable editing because they
are not parameterized in terms of the DNN parameters. Instead, verification techniques assume
that the parameters are constant and focus on designing linear relaxations for activation layers like
ReLU [34, 43]. However, it is not clear how even these activation layer relaxations could be used for
provable editing. For instance, these relaxations require constant input bounds; loose constant input
bounds result in loose linear relaxations. In the context of provable editing, if the ReLU layer follows
an Affine layer with editable parameters, then the constant input bounds to the ReLU layer would
be very loose (e.g., [−∞,∞]) in order to be sound for all possible edits. Hence, the resulting linear
relaxation would also be loose. In contrast, our technique does not require constant input bounds
for any layer, and produces an exact upper bound for the ReLU layer (Theorem 3.9). Applying our
Parametric Linear Relaxation to DNN verification remains future work.

3 Provable editing of DNNs using Parametric Linear Relaxation

We use xxx ∈ R to denote a scalar, xxx ∈ Rm to denote a column vector, and WWW ∈ Rn×m to denote a
matrix. Blue-colored variables with a dot denote LP decision variables, e.g., xxx, xxx, WWW, bbb, etc. The
proofs for all theorems can be found in Appendix A.

Definition 3.1 (DNN). Let yyy def
= N (xxx; θ) denote an L-layer deep neural network (DNN) N with

parameters θ, input xxx and output yyy. The DNN is defined iteratively as xxx(ℓ+1) def
= N (ℓ)(xxx(ℓ); θ(ℓ)) for

each layer N (ℓ)with parameters θ(ℓ), where xxx(0) def
= xxx, yyy def

= xxx(L) and 0 ≤ ℓ < L. ■

For ease of exposition, we defer our approach for the general provable editing problem of Defini-
tion 1.1 to Appendix B. In this section, we consider the following provable interval editing problem,
where the input and output constraints are constant interval bounds:

Definition 3.2. Given a DNN N with parameters θ, constant input bounds [xxx,xxx] and constant output
bounds [yyy,yyy], the provable interval editing problem is to find new parameters θθθ that

min ∥θθθ − θ∥ s.t. ∀xxx ∈ [xxx,xxx]. N
(
xxx;θθθ

)
∈ [yyy,yyy] (2) ■

3.1 Parametric Linear Relaxation

Consider a DNN N with variable parameters θθθ and input bounds [xxx,xxx], our goal is to construct sound
parametric output bounds [yyy,yyy] of N in terms of θθθ and [xxx,xxx]. The exact definition is

yyy ≤ min
{
N (xxx;θθθ)

∣∣ xxx ≤ xxx ≤ xxx
}
∧ yyy ≥ max

{
N (xxx;θθθ)

∣∣ xxx ≤ xxx ≤ xxx
}

(3)

However, this universally-quantified non-linear formula is expensive to solve [6, 7]. Our key contri-
bution is a novel Parametric Linear Relaxation, a poly-size linear formula that implies Equation 3.

Definition 3.3. The Parametric Linear Relaxation φN

(
yyy,yyy,xxx,xxx;θθθ

)
for N is a poly-size linear

formula that implies ∀xxx ∈ [xxx,xxx]. N
(
xxx;θθθ

)
∈ [yyy,yyy]. ■

In other words, any satisfying assignment (yyy,yyy,xxx,xxx, θ) of the formula φN

(
yyy,yyy,xxx,xxx;θθθ

)
yields

sound output bounds [yyy,yyy] for N , viz., ∀xxx ∈ [xxx,xxx]. N (xxx; θ) ∈ [yyy,yyy]. The size of the formula
φN

(
yyy,yyy,xxx,xxx;θθθ

)
is polynomial in the size of the DNN, i.e., the number of parameters, layers, and

the input and output dimensions of each layer.

3.2 Provable editing via Parametric Linear Relaxation

The following theorem shows how Parametric Linear Relaxation can be used to solve the provable
interval editing problem.
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Theorem 3.4. Given a provable interval editing problem (Definition 3.2) for DNN N and parame-
ters θ with input bounds [xxx,xxx] and output bounds [yyy,yyy], let φN

(
yyy,yyy,xxx,xxx;θθθ

)
be a Parametric Linear

Relaxation for N . Then the following linear program can be solved in polynomial time in the size of
the DNN N , and whose solution is a solution to the provable interval editing problem:

min ∥θθθ − θ∥ s.t. φN

(
yyy,yyy,xxx,xxx;θθθ

)
∧
(
yyy ≤ yyy ∧ yyy ≤ yyy

)
(4)

3.3 Compositional construction of Parametric Linear Relaxation

Definition 3.5. Given an L-layer DNN N with parameters θθθ, constant input bounds [xxx,xxx] and
Parametric Linear Relaxation φN (ℓ) for each layer N (ℓ), we define the compositional Parametric

Linear Relaxation φN

(
yyy,yyy,xxx,xxx;θθθ

)
as follows, where [yyy,yyy]

def
= [xxx(L),xxx(L)] and [xxx(0),xxx(0)]

def
= [xxx,xxx]:

φN

(
yyy,yyy,xxx,xxx;θθθ

) def
=

∧
0≤ℓ<L

φN (ℓ)

(
xxx(ℓ+1),xxx(ℓ+1),xxx(ℓ),xxx(ℓ);θθθ

(ℓ))
(5) ■

Theorem 3.6. Definition 3.5 is a Parametric Linear Relaxation for the DNN N .

By Theorems 3.4 and 3.6, we see that to solve the provable editing problem, we just need to
construct Parametric Linear Relaxations φN (ℓ)

(
yyy,yyy,xxx,xxx;θθθ

)
for each DNN layer N (ℓ). In practice,

φN (ℓ)

(
yyy,yyy,xxx,xxx;θθθ

)
is defined by separate formulas φN (ℓ)

(
yyy,xxx,xxx;θθθ

)
and φN (ℓ)

(
yyy,xxx,xxx;θθθ

)
for the

upper and lower bounds, respectively: φN (ℓ)

(
yyy,yyy,xxx,xxx;θθθ

) def
= φN (ℓ)

(
yyy,xxx,xxx;θθθ

)
∧ φN (ℓ)

(
yyy,xxx,xxx;θθθ

)
.

For brevity, we describe how to construct Parametric Linear Relaxation for ReLU and Affine layers.
Appendix C presents Parametric Linear Relaxations for Tanh, Sigmoid and ELU layers.

3.4 Parametric Linear Relaxation for ReLU layer

Definition 3.7. yyy
def
= ReLU(xxx) with input xxx ∈ Rm and output yyy ∈ Rm is defined as yyy def

= max{xxx, 0}.

Definition 3.8. For a ReLU layer with variable input bounds [xxx,xxx], its Parametric Linear Relaxation
is defined as φ

ReLU
(yyy,yyy,xxx,xxx)

def
= φReLU(yyy,xxx) ∧ φReLU

(yyy,xxx) where:

φReLU(yyy,xxx)
def
= yyy ≥ xxx ∧ yyy ≥ 0 φ

ReLU
(yyy,xxx)

def
= yyy = cccxxx (6)

and ccc ∈ Rm are constants such that 0 ≤ ccci ≤ 1. ■

Because ReLU is a convex function, as seen in Figure 1(c), the upper bound constraint
yyyi≥ xxxi ∧ yyyi≥ 0 for each yyyi exactly captures the epigraph ( ) of ReLU(xxxi). For each lower
bound yyy

i
, we use a linear relaxation yyy

i
= cccixxxi ( ) of ReLU(xxx)i with a constant 0 ≤ ccci ≤ 1.

Theorem 3.9. Definition 3.8 is a Parametric Linear Relaxation for the ReLU layer that captures the
exact upper bound.

3.5 Parametric Linear Relaxation for Affine layer

Definition 3.10. yyy
def
= Affine(xxx;WWW,bbb) with input xxx ∈ Rm, output yyy ∈ Rn, weight WWW ∈ Rn×m and

bias bbb ∈ Rn is defined as yyy def
=WWWxxx +bbb, which expands to yyyj

def
=

∑m
i=0 xxxiWWWji +bbbj .

In DNN verification, bounding Affine layers is straightforward, because the parameters are constants.
However, in provable editing, this is challenging, because the parameters are variables. In particular,
we need to bound the multiplication xxxwww between the universally-quantified input xxx ∈ [xxx,xxx] and the
variable weightwww. As seen in Figure 2(a), if the bounds for xxxwww are not parameterized bywww, a linear
relaxation would require constant bounds [www,www] for www, resulting in loose bounds. Our approach
constructs tight parametric output bounds using Parametric Linear Relaxation. We now describe our
approach for an Affine layer i) with constant input bounds [xxx,xxx] when it is the first layer of a DNN,
and ii) with variable input bounds [xxx,xxx] when it is not.
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Figure 3: Illustration of Parameterized Linear Relaxations for Tanh, Sigmoid and ELU. and
denote the upper and lower bound approximations; and denotes the convex underapproxi-
mations φ(yyy,xxx) and φ(yyy,xxx) for the epigraph and hypograph; denotes relaxation.

3.5.1 Affine layer with constant input bounds

Definition 3.11. For an Affine layer with constant input bounds [xxx,xxx] and variable parameters
WWW, bbb, its Parametric Linear Relaxation is defined as φ

Aff
(yyy,yyy,xxx,xxx,WWW,bbb)

def
= φAff(yyy,xxx,xxx,WWW,bbb) ∧

φ
Aff

(yyy,xxx,xxx,WWW,bbb) where:

φAff(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyyj =
∑
i

VVVji+bbbj ∧ VVV ≥WWWxxx ∧ VVV ≥WWWxxx

φ
Aff

(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy
j
=
∑
i

VVVji+bbbj ∧ VVV ≤WWWxxx ∧ VVV ≤WWWxxx
(7) ■

The core of this definition is constructing parametric bounds [vvv,vvv] for the multiplication xxxwww for all
xxx ∈ [xxx,xxx] in terms of the variable weightwww. As seen in Figure 2(c), for allxxx ∈ [xxx,xxx], the upper bound
( ) of xxxwww is defined by a piecewise-linear convex function f(www) def

= max{xxxwww,xxxwww}. Hence, the
upper bound constraint vvv ≥ xxxwww∧vvv ≥ xxxwww exactly captures the epigraph ( ) of f(www). Similarly, the
lower bound ( ) of xxxwww is defined by a piecewise-linear concave function f(www) def

= min{xxxwww,xxxwww}.
Hence, the lower bound constraint vvv ≤ xxxwww ∧ vvv ≤ xxxwww exactly captures the hypograph ( ) of f(www).

Theorem 3.12. Definition 3.11 is a Parametric Linear Relaxation for the Affine layer with constant
input bounds [xxx,xxx] that captures the exact lower and upper bounds.

3.5.2 Affine layer with variable input bounds

We freeze the parameter weightWWW to be constantWWW (e.g., the original weight) when the input bounds
are variable to avoid non-linearity.
Definition 3.13. For an Affine layer with variable input bounds [xxx,xxx], constant weightWWW and variable
bias bbb, its Parametric Linear Relaxation is defined as φ

Aff
(yyy,yyy,xxx,xxx,WWW,bbb)

def
= φAff(yyy,xxx,xxx,WWW,bbb) ∧

φ
Aff

(yyy,xxx,xxx,WWW,bbb) where:

φAff(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyyj=
∑
i

VVVji +bbbj

φ
Aff

(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy
j
=
∑
i

VVVji +bbbj

where


VVVji

def
= xxxjWWWji and VVVji

def
= xxxiWWWji if WWWji≥0

VVVji
def
= xxxjWWWji and VVVji

def
= xxxiWWWji otherwise

(8) ■

Using constant weight WWW avoids non-linearity due to the multiplication xxxwww where xxx is universally-
quantified in variable bounds [xxx,xxx]. Thus, the bounds [vvv,vvv] of xxxwww for all xxx ∈ [xxx,xxx] are determined
by the sign of the constantwww; viz., [vvv,vvv] def

= [xxxwww,xxxwww] ifwww ≥ 0, otherwise [vvv,vvv]
def
= [xxxwww,xxxwww].
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(a) Left: cactus plot of runtime for 423 single-property editing problems, with 600 seconds time limit for
each problem. PREPARED succeeded on all 423 problems, while PFT⟨⟨⟨DL2⟩⟩⟩ succeeded on 185, and PFT⟨⟨⟨APRNN⟩⟩⟩
succeeded on 117. Middle: speed up for PREPARED vs PFT⟨⟨⟨DL2⟩⟩⟩. Right: speed up for PREPARED vs PFT⟨⟨⟨APRNN⟩⟩⟩.
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(b) Left: cactus plot of runtime for 66 all-properties editing problems, with 3600 seconds time limit for each
problem. PREPARED succeeded on 62 problems, while PFT⟨⟨⟨DL2⟩⟩⟩ succeeded on 45, and PFT⟨⟨⟨APRNN⟩⟩⟩ succeeded 48.
Middle: speed up for PREPARED vs PFT⟨⟨⟨DL2⟩⟩⟩. Right: speed up for PREPARED vs PFT⟨⟨⟨APRNN⟩⟩⟩.

Figure 4: Results of (a) single-property and (b) all-properties editing problems from VNN-COMP′22.

Theorem 3.14. Definition 3.13 is a Parametric Linear Relaxation for the Affine layer with variable
input bounds [xxx,xxx] that captures the exact upper and lower bounds.

3.6 Parametric Linear Relaxation for Tanh, Sigmoid and ELU layers

Our approach can also handle other activation layers like Tanh, Sigmoid and ELU. Figure 3 illustrates
their Parametric Linear Relaxations with detailed description deferred to Appendix C.

3.7 On scalability

As described in Appendix B, our approach can restrict the edits to only the last k layers of the
DNN N , freezing the parameters of the first L− k layers. Consequently, the resulting Parametric
Linear Relaxation is a linear formula whose size is polynomial in the size of only the last k editable
layers N (k:L) instead of the entire DNN N . This flexibility enables our approach to scale to large
DNNs and BERT transformers, as demonstrated in Section 4.

4 Experimental evaluation

We have implemented PREPARED in PyTorch [32] and use Gurobi [17] as the LP solver. We
demonstrate the effectiveness and efficiency of PREPARED on different tasks that use a wide-range
of DNN architectures and properties. All experiments were run on a machine with Dual Intel Xeon
Silver 4216 Processor 16-Core 2.1GHz with 384 GB of memory, SSD and RTX-A6000 with 48 GB of
GPU memory running Ubuntu 20.04. Additional details about these experiments are in Appendix D.

Baselines. Because there were no efficient prior approaches for provable editing, we implemented
provable fine-tuning PFT⟨⟨⟨·⟩⟩⟩ baselines that combine prior (non-provable) DNN editing approaches with
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a verifier in the loop: the editing stops when the verifier confirms that the DNN satisfies the property
(Appendix D.1). We consider the state-of-the-art DNN editing approaches DL2 [10], APRNN [42],
SABR [28] and STAPS [24] as introduced in Section 2. We use PFT⟨⟨⟨DL2⟩⟩⟩ to denote the provable fine-
tuning baseline instantiated with DL2. We use verifiers α,β-CROWN [46, 44], MN-BaB [9], or DeepT [4],
depending on the task. To the best of our knowledge, ours is the first to provide a comprehensive
evaluation of such verifier-in-the-loop baselines for provable editing.

4.1 Provable editing on VNN competition benchmarks

Setup. We compare PREPARED against PFT⟨⟨⟨DL2⟩⟩⟩ and PFT⟨⟨⟨APRNN⟩⟩⟩ on VNN-COMP′22 benchmarks [29].
The VNN-COMP′22 benchmarks consist of DNNs along with one or more of their associated safety
properties. For verification, the task would be to determine whether a DNN satisfies each of its
properties. In the context of provable editing, we use these benchmarks in two scenarios: i) Sin-
gle-property editing: Given a DNN and a property it violates, edit it to satisfy this single property
with a time limit of 600 seconds. There are 423 such DNN-property instances. ii) All-properties
editing: Given a DNN that violates at least one of its associated properties, edit it to satisfy the
conjunction of all (satisfied or violated) properties associated with it with a time limit of 3600 seconds.
There are 66 such DNN-property instances.

PFT⟨⟨⟨SABR⟩⟩⟩ and PFT⟨⟨⟨STAPS⟩⟩⟩ are not used because they do not handle all properties and DNN architectures
in this experiment. In particular, SABR and STAPS have not discussed how to handle general logical
formula with disjunctions, and their current implementations are designed for local robustness training.
PFT⟨⟨⟨SABR⟩⟩⟩ and PFT⟨⟨⟨STAPS⟩⟩⟩ are used for local robustness editing in Section 4.2.

Metrics. The effectiveness is measured using the number of provably edited instances, and the
efficiency is measured using the runtime. We were unable to determine the impact on the predictive
performance (accuracy), because VNN-COMP does not come with such evaluation metrics and data.

Results. As shown in Figure 4, PREPARED is the best provable editing approach, significantly
outperforming PFT⟨⟨⟨DL2⟩⟩⟩ and PFT⟨⟨⟨APRNN⟩⟩⟩ in terms of both effectiveness and efficiency. As shown in
the cactus plots (Left in Figures 4(a) and 4(b)), PREPARED can provably edit more instances in less
time. As shown in the speed-up plots (Middle and Right in Figures 4(a) and 4(b)), PREPARED
completes most problems in 10 seconds, taking a maximum of 45 seconds for single-property
editing; it achieves from 10× to more than 100× speed-up over PFT⟨⟨⟨DL2⟩⟩⟩ and PFT⟨⟨⟨APRNN⟩⟩⟩. Specifically,
PREPARED succeeds on all 423 single-property editing problems, while PFT⟨⟨⟨DL2⟩⟩⟩ and PFT⟨⟨⟨APRNN⟩⟩⟩
succeed on 185 and 117 problems, respectively. PREPARED succeeds on 62 out of 66 multi-property
editing problems, while PFT⟨⟨⟨DL2⟩⟩⟩ and PFT⟨⟨⟨APRNN⟩⟩⟩ only succeed on 45 and 48 problems, respectively.

4.2 Local robustness editing for image-recognition DNNs

Definition 4.1. Consider a classifier DNN N : Rm → Rn and a dataset D of input-label pairs
(xxx, l) ∈ Rm × Z. The DNN N correctly classifies an input-label pair (xxx, l) iff argmaxN (xxx) = l,
and the standard accuracy of a DNN on a dataset D is the percentage of correctly classified input-label
pairs in D. Given a perturbation ε ∈ R, the DNN N is L∞-locally-robust on an input-label pair
(xxx, l) iff N correctly classifies all perturbed inputs xxx′ in the L∞ box centered at xxx with perturbation ε,
viz., ∀xxx′ ∈ Rm. ∥xxx′ − xxx∥∞ ≤ ε =⇒ argmaxN (xxx′) = l. The certified accuracy of a DNN on a
dataset D is the percentage of L∞-locally-robust input-label pairs in D.

Setup. We compare PREPARED against PFT⟨⟨⟨DL2⟩⟩⟩, PFT⟨⟨⟨SABR⟩⟩⟩, and APRNN on L∞-local-robustness
editing for image-recognition DNNs. We edit CNN7 DNNs for CIFAR10 [21] and TINYIMA-
GENET [33], trained in prior work [28], to be locally-robust for images in the edit set. The CIFAR10
DNN has 17.2M parameters, 79.24% standard accuracy and 75.77% certified accuracy (ε = 0.5/255).
The TinyImageNet DNN has 51.9M parameters, 28.85% standard accuracy and 20.46% certified
accuracy (ε = 1/255). For CIFAR10 and TINYIMAGENET, the edit sets consist of 50 misclassified
fog-corrupted images from CIFAR10-C [18] and TINYIMAGENET-C [18], respectively. The gener-
alization sets consist of 200 variant images with different corruption-levels, four variants per image
in the edit set. We use MN-BaB [9] to compute the certified accuracy.

Metrics. Efficacy is measured using the certified accuracy (Definition 4.1) on the edit set. The
original certified accuracy on the edit set is 0%. Efficacy is the most important metric: a provable
edit must guarantee 100% efficacy. The standard accuracy and certified accuracy on the full
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Table 1: Local robustness editing for image-recognition DNNs. Comparison of efficacy (Effic.),
standard (Acc.), certified (Cert.) and generalization (Gen.) accuracy. Rows with <100% efficacy are
shaded. Best results are highlighted.

Method
CIFAR10 with ε=0.5/255 TINYIMAGENET with ε=1/255

Effic. Acc. Cert. Gen. Time Effic. Acc. Cert. Gen. Time

PFT⟨⟨⟨DL2⟩⟩⟩ 50/50 73.59% 70.42% 197/200 4780s 47/50 22.83% 15.06% 190/200 14400s∗

PFT⟨⟨⟨SABR⟩⟩⟩ 50/50 57.10% 52.72% 200/200 38s 50/50 20.24% 13.38% 192/200 230s
PFT⟨⟨⟨STAPS⟩⟩⟩ 50/50 57.38% 54.26% 197/200 15s 50/50 20.84% 13.14% 191/200 112s
APRNN 5/50 78.96% 75.14% 113/200 20s 12/50 28.75% 18.61% 115/200 417s

PREPARED 50/50 75.25% 71.45% 189/200 88s 50/50 28.16% 16.80% 149/200 663s

∗ Timeout in four hours.

Table 2: Local robustness editing for sentiment-classification transformers. Comparison of the lower
bound of efficacy before (Og. Effic.) and after edit (Effic.), as well as the stand accuracy (Acc.). Rows
with <100% efficacy are shaded. Best results are highlighted.

Method
ε = 1e-4 ε = 5e-4

Og. Effic. Effic. Acc. Time Og. Effic. Effic. Acc. Time

PFT⟨⟨⟨DL2⟩⟩⟩
60/66

52/66 82.97% 12108s
25/26

23/26 79.67% 5610s
APRNN 61/66 83.47% 6s 23/26 81.32% 5s

PREPARED 66/66 83.52% 981s 26/26 82.42% 326s

test set are also important metrics: a good provable edit should have high accuracy. However,
those accuracy metrics are relevant only if efficacy is 100%. The generalization accuracy on the
generalization set measures how well the edit generalizes to inputs that are similar to the edit set.
However, the generalization accuracy is relevant only if the efficacy is 100% and the standard and
certified accuracies are good; that is, the predictive power of the edited DNN should not be sacrificed
for better generalization. The runtime metric measures the time taken to edit the DNN.

Results. As shown in Table 1, PREPARED is overall the best approach. PREPARED achieves the
best standard and certified accuracy, good generalization and short runtime. In particular, PFT⟨⟨⟨SABR⟩⟩⟩
and PFT⟨⟨⟨STAPS⟩⟩⟩ have significantly lower standard and certified accuracy; PFT⟨⟨⟨DL2⟩⟩⟩ takes significantly
longer time, and was unable to achieve 100% efficacy in four hours in the TINYIMAGENET experi-
ment; APRNN was unable to achieve 100% efficacy.

4.3 Local robustness editing for sentiment classification BERT transformers

Setup. We compare PREPARED against PFT⟨⟨⟨DL2⟩⟩⟩ and APRNN on provable L∞ local-robustness
editing for BERT sentiment-classification transformers. We conduct this experiment on the Stanford
Sentiment Treebank (SST) [40] DNNs. We use DeepT [4] as the verifier in this experiment. We take
the “wider” 12-layer BERT transformer used in the DeepT paper [4]. The standard accuracy of this
network is 84.07%. Because DeepT cannot handle all sentences in the SST dataset with arbitrary ε,
we construct two editing sets from the SST validation set: all 66 verifiable sentences with ε = 1e-4,
where 60 of them are certified to be locally-robust; all 26 verifiable sentences with ε = 5e-4, where
24 of them are certified to be locally-robust. PFT⟨⟨⟨SABR⟩⟩⟩ and PFT⟨⟨⟨STAPS⟩⟩⟩ are not compared in this
experiment because SABR and STAPS do not handle the BERT transformer architecture.

Metrics. Efficacy is measured using the certified accuracy (Definition 4.1) on the edit set. Because
DeepT is incomplete, we can only compute a lower bound of the efficacy. Efficacy is the most
important metric: a provable edit must guarantee 100% efficacy. The original efficacy (Og. Effic.) is
also presented in Table 2. The standard accuracy on the full test set is also an important metric: a
good provable edit should have high accuracy. However, the standard accuracy is relevant only if
efficacy is 100%. The runtime metric measures the time taken to edit the DNN.

Results. As seen in Table 2, PREPARED is the only approach that achieves 100% efficacy in this task.
PREPARED also achieves good accuracy and short runtime. Both PFT⟨⟨⟨DL2⟩⟩⟩ and APRNN were unable to
achieve 100% efficacy, and decreased the efficacy in most experiments.
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Table 3: Global physics property repair for geodynamics DNN. Comparison of relative error (Rel.
Err.), continuity (Cont. Err.) and boundary-condition (BC Err.) errors. Errors on the test set (Ref.)
are shaded. Best results are highlighted.

Method Rel. Err. Cont. Err. BC Err. Time

Ref. — 1.42 × 10−12 1.74 × 10−12 —
DL2 1.59% 1.58 × 10−4 5.08 14 674s
GD 0.26%0.26%0.26% 1.59 × 10−5 5.86 × 10−1 395s395s395s

GD⟨⟨⟨APRNN⟩⟩⟩ 0.50% 5.57 × 10−7 4.96 × 10−5 570s
GD⟨⟨⟨PREPARED⟩⟩⟩ 0.50% 1.42 × 10−121.42 × 10−121.42 × 10−12 2.29 × 10−72.29 × 10−72.29 × 10−7 684s

4.4 Provable training for physics-plausible DNNs

Numerical model. We consider a classic model of a buoyancy-driven mantle flow with a central
circular plume [13], which is an incompressible flow with variable viscosity. The state of the system
is a vector field FFF

def
= (u, v, η, ρ) of velocity field UUU

def
= (u, v), viscosity η and density ρ, over space

(x, y) ∈ Ω and time t ∈ T . We consider the following two physics constraints: i) Conservation of
mass ∇ ·UUU = 0 from the continuity equation; ii) Dirichlet boundary condition UUU · nnn = 0 on the
boundary ∂Ω, where nnn is the outward normal of ∂Ω.

Setup. We compare GD⟨⟨⟨PREPARED⟩⟩⟩, a combination of gradient-descent (GD) and PREPARED, against
DL2, GD and GD⟨⟨⟨APRNN⟩⟩⟩ on the task of provably training a DNN to model the geodynamics process and
satisfy physics constraints. We discretize the space into a 31×31 grid and implement the numerical
model to generate data for 150 time steps. We evenly split the data into training, validation and
test sets. We train a ReLU ResNet with one single residual block of four conv2d layers with 32
channels and 3×3 kernel size. For DL2, we add the physics constraints as an unsupervised-learning
regularization to the supervised training. For GD⟨⟨⟨APRNN⟩⟩⟩ and GD⟨⟨⟨PREPARED⟩⟩⟩, we first use vanilla gradient-
descent (GD) to train a base model, then edit it with the constraints. Specifically, GD⟨⟨⟨APRNN⟩⟩⟩ edits all
training points, and GD⟨⟨⟨PREPARED⟩⟩⟩ edits the convex-hull of all training points to satisfy the constraints.

Metrics. The relative error on the test set, the constraint-satisfaction errors, viz., continuity error,
for the conservation of mass, and boundary-condition error, and the runtime are the metrics.

Results. As shown in Table 3, GD⟨⟨⟨PREPARED⟩⟩⟩ is overall the best approach. GD⟨⟨⟨PREPARED⟩⟩⟩ has good
relative error, and its constraint-satisfaction error is significantly better than other approaches. Notably,
its continuity error is at the same magnitude as the reference data, close to the theoretical value,
zero, and is 105 to 108 times better than other approaches. GD achieves the best relative error and the
shortest runtime. DL2 has the worst errors and takes significantly longer amount of time.

5 Conclusion

We have presented PREPARED, the first efficient approach for provable editing of DNNs that runs
in polynomial time. We presented novel methods for constructing tight parametric bounds for the
DNN output using Parametric Linear Relaxation, enabling PREPARED to use an LP solver to find an
edit. To demonstrate its effectiveness and efficiency, PREPARED was used to provably edit DNNs and
properties from the VNN-COMP′22 benchmark, provably edit CIFAR10 and TINYIMAGENET image-
recognition DNNs, and BERT sentiment-classification DNNs for local robustness, and provably train
a geodynamics DNN to satisfy physics constraints.

Societal impact. PREPARED represents a step towards the goal of ensuring safety, trustworthiness,
and reliability of DNNs, which is crucial given their use in autonomous safety-critical systems.
However, being a general technique for editing DNNs, it could be used to remove or add malicious
behavior such as bias, backdoor attacks, etc.

Limitations. PREPARED requires as input a property that we wish the DNN to satisfy. These
properties would need to formally encode the notions of safety, reliability, or trustworthiness, which
may not always be possible or easy to do. e.g., defining safety properties for LLM-based chatbots.
However, the machine learning and formal methods communities are making progress towards this
goal; e.g., developing proxy specifications for complex properties that are easier to define and learning
safety specifications from data [8].

10



Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their feedback and suggestions, which have
greatly improved the quality of the paper. This work is supported in part by NSF grant CCF-2048123
and DOE Award DE-SC0022285.

References
[1] Aws Albarghouthi. Introduction to neural network verification. Found. Trends Program. Lang., 7(1-2):

1–157, 2021. doi: 10.1561/2500000051. URL https://doi.org/10.1561/2500000051.

[2] Mislav Balunovic and Martin Vechev. Adversarial training and provable defenses: Bridging the gap. In
International Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=SJxSDxrKDr.

[3] Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, and Martin T. Vechev. Fast
and precise certification of transformers. https://github.com/eth-sri/DeepT/tree/
16ffe4075f1f8a7c87fa2a187d8c46cfd51e07bf, 2021.

[4] Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, and Martin T. Vechev. Fast and precise
certification of transformers. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, pages 466–481. ACM, 2021. doi: 10.1145/3453483.3454056. URL
https://doi.org/10.1145/3453483.3454056.

[5] Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T. Johnson, and Changliu Liu. First three years
of the international verification of neural networks competition (vnn-comp), 2023.

[6] George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In
H. Brakhage, editor, Automata Theory and Formal Languages, pages 134–183, Berlin, Heidelberg, 1975.
Springer Berlin Heidelberg. ISBN 978-3-540-37923-2.

[7] George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposition for quantifier elimination.
Journal of Symbolic Computation, 12(3):299–328, 1991. ISSN 0747-7171. doi: https://doi.org/10.
1016/S0747-7171(08)80152-6. URL https://www.sciencedirect.com/science/article/pii/
S0747717108801526.

[8] David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia, Steve Omohun-
dro, Christian Szegedy, Ben Goldhaber, Nora Ammann, Alessandro Abate, Joe Halpern, Clark Barret, Ding
Zhao, Tan Zhi-Xuan, Jeannette Wing, and Joshua Tenenbaum. Towards guaranteed safe ai: A framework
for ensuring robust and reliable AI systems. arXiv preprint arXiv:2405.06624, 2024.

[9] Claudio Ferrari, Mark Niklas Müller, Nikola Jovanović, and Martin Vechev. Complete verification via multi-
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A Proofs

Theorem 3.4. Given a provable interval editing problem (Definition 3.2) for DNN N and parame-
ters θ with input bounds [xxx,xxx] and output bounds [yyy,yyy], let φN

(
yyy,yyy,xxx,xxx;θθθ

)
be a Parametric Linear

Relaxation for N . Then the following linear program can be solved in polynomial time in the size of
the DNN N , and whose solution is a solution to the provable interval editing problem:

min ∥θθθ − θ∥ s.t. φN

(
yyy,yyy,xxx,xxx;θθθ

)
∧
(
yyy ≤ yyy ∧ yyy ≤ yyy

)
(4)

Proof. Equation 4 is a linear program that can be solved in polynomial in the size of the DNN N
because by Definition 3.3, φN

(
yyy,yyy,xxx,xxx;θθθ

)
is a poly-size linear formula whose size is polynomial in

the size of the DNN N , i.e., the number of parameters, layers, and the input and output dimensions
of each layer.

Equation 4 is a solution to the provable interval editing problem (Definition 3.2) because by Defini-
tion 3.3, φN

(
yyy,yyy,xxx,xxx;θθθ

)
implies ∀xxx ∈ [xxx,xxx]. N

(
xxx;θθθ

)
∈ [yyy,yyy].

Theorem 3.6. Definition 3.5 is a Parametric Linear Relaxation for the DNN N .

Proof. Recall Definition 3.5:

φN

(
yyy,yyy,xxx,xxx;θθθ

) def
=

∧
0≤ℓ<L

φN (ℓ)

(
xxx(ℓ+1),xxx(ℓ+1),xxx(ℓ),xxx(ℓ);θθθ

(ℓ))
where [yyy,yyy]

def
= [xxx(L),xxx(L)] and [xxx(0),xxx(0)]

def
= [xxx,xxx]. Our goal is to prove that φN

(
yyy,yyy,xxx,xxx;θθθ

)
is a

poly-size linear formula that implies

∀xxx ∈ [xxx,xxx]. N
(
xxx;θθθ

)
∈ [yyy,yyy]

We first show that φN

(
yyy,yyy,xxx,xxx;θθθ

)
is a poly-size linear formula. For Parametric Linear

Relaxation φN (ℓ)

(
xxx(ℓ+1),xxx(ℓ+1),xxx(ℓ),xxx(ℓ);θθθ

(ℓ))
for any layer N (ℓ), by Definition 3.3, we have

φN (ℓ)

(
xxx(ℓ+1),xxx(ℓ+1),xxx(ℓ),xxx(ℓ);θθθ

(ℓ))
is a poly-size linear formula whose size is polynomial in the num-

ber of parameters, input and output dimensions of layer N (ℓ). Therefore, we have φN

(
yyy,yyy,xxx,xxx;θθθ

)
is a poly-size linear formula whose size is polynomial in the number of parameters, layers, and the
input and output dimensions of each layer.

Then we show that φN

(
yyy,yyy,xxx,xxx;θθθ

)
implies ∀xxx ∈ [xxx,xxx]. N

(
xxx;θθθ

)
∈ [yyy,yyy]. By Definition 3.3, we

have that the Parametric Linear Relaxation φN (ℓ)

(
xxx(ℓ+1),xxx(ℓ+1),xxx(ℓ),xxx(ℓ);θθθ

(ℓ))
for any layer N (ℓ)

implies the following formula:

∀xxx(ℓ)∈ [xxx(ℓ),xxx(ℓ)]. N (ℓ)
(
xxx(ℓ);θθθ

(ℓ))
∈ [xxx(ℓ+1),xxx(ℓ+1)]

Therefore, we have φN

(
yyy,yyy,xxx,xxx;θθθ

) def
=

∧
0≤ℓ<L φN (ℓ)

(
xxx(ℓ+1),xxx(ℓ+1),xxx(ℓ),xxx(ℓ);θθθ

(ℓ))
implies the fol-

lowing formula: ∧
0≤ℓ<L

∀xxx(ℓ)∈ [xxx(ℓ),xxx(ℓ)]. N (ℓ)
(
xxx(ℓ);θθθ

(ℓ))
∈ [xxx(ℓ+1),xxx(ℓ+1)]

where [yyy,yyy]
def
= [xxx(L),xxx(L)] and [xxx(0),xxx(0)]

def
= [xxx,xxx]. By induction, the formula above implies

∀xxx ∈ [xxx,xxx]. N
(
xxx;θθθ

)
∈ [yyy,yyy]. Therefore, we proved that φN

(
yyy,yyy,xxx,xxx;θθθ

)
is a poly-size linear for-

mula that implies ∀xxx ∈ [xxx,xxx]. N
(
xxx;θθθ

)
∈ [yyy,yyy].
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A.1 Proofs for Parametric Linear Relaxation of ReLU layers

Lemma A.1. φ
ReLU

(yyy,yyy,xxx,xxx) defined in Definition 3.8 is a poly-size linear formula.

Proof. As seen in Definition 3.8, φ
ReLU

(yyy,yyy,xxx,xxx) is a linear formula. Let m be the number of
input dimensions of ReLU. φ

ReLU
(yyy,yyy,xxx,xxx) has 3m linear constraints over 4m variables (xxx ∈ Rm,

xxx ∈ Rm, yyy ∈ Rm and yyy ∈ Rm). Hence, φ
ReLU

(yyy,yyy,xxx,xxx) is a poly-size linear formula whose size is
polynomial in the number of input dimensions of the ReLU layer.

Lemma A.2. φ
ReLU

(yyy,yyy,xxx,xxx)
def
= φReLU(yyy,xxx) ∧ φ

ReLU
(yyy,xxx) defined in Definition 3.8 implies

∀xxx ∈ [xxx,xxx]. ReLU(xxx) ∈ [yyy,yyy].

Proof. For the upper bound, recall that by Definition 3.8, we have

φReLU(yyy,xxx)
def
= yyy ≥ xxx ∧ yyy ≥ 0

Our goal is to prove that φReLU(yyy,xxx) implies

∀xxx ∈ [xxx,xxx]. yyy ≥ ReLU(xxx)

which is equivalent to

yyy ≥ max
{
ReLU(xxx)

∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of the ReLU layer (Definition 3.7), we expand the formula above to

yyy ≥ max
{
max{xxx, 0}

∣∣ xxx ≤ xxx ≤ xxx
}

Because max{xxx, 0} increases monotonically with respect to xxx, the above formula is equivalent to

yyy ≥ max{xxx, 0}

Because max{xxx, 0} is a convex function, the above formula is equivalent to

yyy ≥ xxx ∧ yyy ≥ 0

which is the definition of φReLU(yyy,xxx) in Definition 3.8. Therefore, we proved that φReLU(yyy,xxx) implies
∀xxx ∈ [xxx,xxx]. yyy ≥ ReLU(xxx).

For the lower bound, recall that by Definition 3.8, we have

φ
ReLU

(yyy,xxx)
def
= yyy = cccxxx

where ccc ∈ Rm are constants such that 0 ≤ ccci ≤ 1. Our goal is to prove that φ
ReLU

(yyy,xxx) implies

∀xxx ∈ [xxx,xxx]. yyy ≤ ReLU(xxx)

which is equivalent to

yyy ≤ min
{
ReLU(xxx)

∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of the ReLU layer (Definition 3.7), we expand the formula above to

yyy ≤ min
{
max{xxx, 0}

∣∣ xxx ≤ xxx ≤ xxx
}

Because max{xxx, 0} increases monotonically with respect to xxx, the above formula is equivalent to

yyy ≤ max{xxx, 0}

which is equivalent to

yyy ≤ xxx ∨ yyy ≤ 0

Given constant vector ccc where 0 ≤ ccc ≤ 1, φ
ReLU

(yyy,xxx)
def
= yyy = cccxxx implies the above formula.

Therefore, we proved that φ
ReLU

(yyy,xxx) implies ∀xxx ∈ [xxx,xxx]. yyy ≤ ReLU(xxx).
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Lemma A.3. φ
ReLU

(yyy,yyy,xxx,xxx)
def
= φReLU(yyy,xxx) ∧ φReLU

(yyy,xxx) defined in Definition 3.8 is implied by
yyy = max

{
ReLU(xxx)

∣∣ xxx ≤ xxx ≤ xxx
}

, hence captures the exact upper bound.

Proof. Recall that by Definition 3.8, we have

φReLU(yyy,xxx)
def
= yyy ≥ xxx ∧ yyy ≥ 0

For any solution (yyy∗,xxx,xxx) to yyy = max
{
ReLU(xxx)

∣∣ xxx ≤ xxx ≤ xxx
}

, we have

yyy∗
def
= max

{
ReLU(xxx)

∣∣ xxx ≤ xxx
}

By the definition of ReLU layer (Definition 3.7), because ReLU is a monotonically increasing
function, the definition above is equivalent to

yyy∗
def
= max

{
xxx, 0

}
(9)

To prove that φReLU(yyy,xxx) captures the exact upper bound, we will show that (yyy∗,xxx) is a solution to
φReLU(yyy,xxx). In other words, the following instantiated formula φReLU(yyy

∗,xxx) is true:

φReLU(yyy
∗,xxx)

def
= yyy∗ ≥ xxx ∧ yyy∗ ≥ 0

By substituting yyy∗ defined in Equation 9 above, our goal becomes

max
{
xxx, 0

}
≥ xxx ∧max

{
xxx, 0

}
≥ 0

which is true. Hence, we have proved that φ
ReLU

(yyy,yyy,xxx,xxx) captures the exact upper bound.

Theorem 3.9. Definition 3.8 is a Parametric Linear Relaxation for the ReLU layer that captures the
exact upper bound.

Proof. By Lemma A.1 and Lemma A.2, we proved that φ
ReLU

(yyy,yyy,xxx,xxx) is a poly-size lin-
ear formula that implies ∀xxx ∈ [xxx,xxx]. ReLU(xxx) ∈ [yyy,yyy], hence is a Parametric Linear Relax-
ation (Definition 3.3) for ReLU. By Lemma A.3, we proved that φ

ReLU
(yyy,yyy,xxx,xxx) is implied by

yyy = max
{
ReLU(xxx)

∣∣ xxx ≤ xxx ≤ xxx
}

, hence captures the exact upper bound.

A.2 Proofs for Parametric Linear Relaxation of Affine layers with constant input bounds

Lemma A.4. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) defined in Definition 3.11 is a poly-size linear formula.

Proof. As seen in Definition 3.11, φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) is a linear formula. Let m and n be the

number of input and output dimensions of the Affine layer. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) has 2n + 4mn

linear constraints over 2m + 3n + 3mn variables (xxx ∈ Rm, xxx ∈ Rm, bbb ∈ Rn, yyy ∈ Rn, yyy ∈ Rn,
WWW ∈ Rn×m,VVV ∈ Rn×m andVVV ∈ Rn×m). Hence, φ

Aff
(yyy,yyy,xxx,xxx,WWW,bbb) is a poly-size linear formula

whose size is polynomial in the number of input and output dimensions of the Affine layer.

Lemma A.5. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb)
def
= φAff(yyy,xxx,xxx,WWW,bbb) ∧ φ

Aff
(yyy,xxx,xxx,WWW,bbb) defined in Defini-

tion 3.11 implies ∀xxx ∈ [xxx,xxx]. Affine
(
xxx;WWW,bbb

)
∈ [yyy,yyy].

Proof. For the upper bound, recall that by Definition 3.11, we have

φAff(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyyj =
∑

iVVVji +bbbj ∧ VVV ≥WWWxxx ∧ VVV ≥WWWxxx

our goal is to prove that φAff(yyy,xxx,xxx,WWW,bbb) implies

∀xxx ∈ [xxx,xxx]. yyy ≥ Affine(xxx;WWW,bbb)

We prove the above formula by proving for each yyyj :

yyyj ≥ max
{
Affine(xxx;WWW,bbb)j

∣∣ xxx ≤ xxx ≤ xxx
}
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By the definition of the Affine layer (Definition 3.10), we expand the formula above to

yyyj ≥ max

{
m∑
i=0

xxxiWWWji +bbbj
∣∣ xxx ≤ xxx ≤ xxx

}
which is implied by the following formula

yyyj ≥
m∑
i=0

max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
+bbbj

Because φAff(yyy,xxx,xxx,WWW,bbb) implies yyyj =
∑m

i=0VVVji +bbbj , by substituting the left-hand-side yyyj of
the formula above with

∑m
i=0VVVji +bbbj , our goal becomes:

m∑
i=0

VVVji +bbbj ≥
m∑
i=0

max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
+bbbj

By subtracting bbbj from both sides, our goal becomes:
m∑
i=0

VVVji ≥
m∑
i=0

max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
Then we prove the above formula by proving for each i:

VVVji ≥ max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
Because xxxiWWWji changes monotonically with respect to xxxi, max

{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
is taken

when xxxi = xxxi or xxxi = xxxi. In other words, max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
= max

{
xxxiWWWji, xxxiWWWji

}
.

By substituting the right-hand-side of the above formula, our goal becomes:

VVVji ≥ max
{
xxxiWWWji, xxxiWWWji

}
The formula above is equivalent to VVVji ≥ xxxiWWWji ∧ VVVji ≥ xxxiWWWji, which is im-
plied by φAff(yyy,xxx,xxx,WWW,bbb). Therefore, we have proved that φAff(yyy,xxx,xxx,WWW,bbb) implies
∀xxx ∈ [xxx,xxx]. yyy ≥ Affine(xxx;WWW,bbb).

For the lower bound, recall that by Definition 3.11, we have

φ
Aff

(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy
j
=

∑
i

VVVji +bbbj ∧ VVV ≤WWWxxx ∧ VVV ≤WWWxxx

our goal is to prove that φ
Aff

(yyy,xxx,xxx,WWW,bbb) implies

∀xxx ∈ [xxx,xxx]. yyy ≤ Affine(xxx;WWW,bbb)

by proving for each j where yyy
j
:

yyy
j
≤ min

{
Affine(xxx;WWW,bbb)j

∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of the Affine layer (Definition 3.10), we expand the formula above to

yyy
j
≤ min

{
m∑
i=0

xxxiWWWji +bbbj
∣∣ xxx ≤ xxx ≤ xxx

}
which is implied by the following formula

yyy
j
≤

m∑
i=0

min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
+bbbj
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Because φ
Aff

(yyy,xxx,xxx,WWW,bbb) implies yyy
j
=

∑m
i=0VVVji +bbbj , by substituting the left-hand-side yyy

j
of

the formula above with
∑m

i=0VVVji +bbbj , our goal becomes:
m∑
i=0

VVVji +bbbj ≤
m∑
i=0

min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
+bbbj

By subtracting bbbj from both sides, our goal becomes:
m∑
i=0

VVVji ≤
m∑
i=0

min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
Then we will prove for each i:

VVVji ≤ min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
Because xxxiWWWji changes monotonically with respect to xxxi, min

{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
is taken

when xxxi = xxxi or xxxi = xxxi. In other words, min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi

}
= min

{
xxxiWWWji, xxxiWWWji

}
.

By substituting the right-hand-side of the above formula, our goal becomes:

VVVji ≤ min
{
xxxiWWWji, xxxiWWWji

}
The formula above is equivalent to VVVji ≤ xxxiWWWji ∧ VVVji ≤ xxxiWWWji, which is im-
plied by φ

Aff
(yyy,xxx,xxx,WWW,bbb). Therefore, we have proved that φ

Aff
(yyy,xxx,xxx,WWW,bbb) implies

∀xxx ∈ [xxx,xxx]. yyy ≤ Affine(xxx;WWW,bbb).

Lemma A.6. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb)
def
= φAff(yyy,xxx,xxx,WWW,bbb) ∧ φ

Aff
(yyy,xxx,xxx,WWW,bbb) de-

fined in Definition 3.11 is implied by yyy = max
{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

∧
yyy = min

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

, hence captures the exact upper and lower bounds.

Proof. For the upper bound, recall that by Definition 3.11, we have

φAff(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyyj =
∑

iVVVji +bbbj ∧ VVV ≥WWWxxx ∧ VVV ≥WWWxxx

Given constant input bounds [xxx,xxx], for any solution (yyy∗,WWW,bbb) to
yyy = max

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

, we have the exact constant output upper bound
defined as

yyy∗
def
= max

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of Affine layer (Definition 3.10), it is equivalent to

yyy∗j
def
=

∑
i

max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj (10)

To prove that φAff captures the exact upper bound, we will show that by substituting (yyy∗,xxx,xxx,WWW,bbb)

in φAff(yyy,xxx,xxx,WWW,bbb), the instantiated formula φAff(yyy
∗,xxx,xxx,WWW,bbb), as shown below, is satisfiable:

φAff(yyy
∗,xxx,xxx,WWW,bbb)

def
=

∧
j

yyy∗j =
∑
i

VVVji +bbbj ∧ VVV ≥WWWxxx ∧ VVV ≥WWWxxx

which is equivalent to prove the following formula for any index j:

yyy∗j =
∑
i

VVVji +bbbj ∧ VVV ≥WWWxxx ∧ VVV ≥WWWxxx

By substituting yyy∗j defined in Equation 10 above, our goal becomes∑
i

max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj =

∑
i

VVVji +bbbj ∧ VVV ≥WWWxxx ∧ VVV ≥WWWxxx
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which is implied by

max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= VVVji ∧ VVVji ≥WWWjixxxi ∧ VVVji ≥WWWjixxxi

If WWWji ≥ 0, VVV
∗
ji

def
= WWWjixxxi is a solution to this formula; otherwise VVV

∗
ji

def
= WWWjixxxi is a solution to

this formula. Hence, we have proved that φAff(yyy
∗,xxx,xxx,WWW,bbb) is satisfiable and φAff(yyy,xxx,xxx,WWW,bbb)

captures the exact upper bound.

For the lower bound, recall that by Definition 3.11, we have

φ
Aff

(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy
j
=

∑
i

VVVji +bbbj ∧ VVV ≤WWWxxx ∧ VVV ≤WWWxxx

Given constant input bounds [xxx,xxx], for any solution (yyy∗,WWW,bbb) to
yyy = min

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

, we have the exact constant output lower bound
defined as

yyy∗
def
= min

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of Affine layer (Definition 3.10), it is equivalent to

yyy∗
j

def
=

∑
i

min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj (11)

To prove that φ
Aff

captures the exact lower bound, we will show that by substituting (yyy∗,xxx,xxx,WWW,bbb)

in φ
Aff

(yyy,xxx,xxx,WWW,bbb), the instantiated formula φ
Aff

(yyy∗,xxx,xxx,WWW,bbb), as shown below, is satisfiable:

φ
Aff

(yyy∗,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy∗
j
=

∑
i

VVVji +bbbj ∧ VVV ≤WWWxxx ∧ VVV ≤WWWxxx

which is equivalent to prove the following formula for any index j:

yyy∗
j
=

∑
i

VVVji +bbbj ∧ VVV ≤WWWxxx ∧ VVV ≤WWWxxx

By substituting yyy∗
j

defined in Equation 11 above, our goal becomes∑
i

min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj =

∑
i

VVVji +bbbj ∧ VVV ≤WWWxxx ∧ VVV ≤WWWxxx

which is implied by

min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= VVVji ∧ VVVji ≤WWWjixxxi ∧ VVVji ≤WWWjixxxi

If WWWji ≥ 0, VVV∗
ji

def
= WWWjixxxi is a solution to this formula; otherwise VVV∗

ji
def
= WWWjixxxi is a solution to

this formula. Hence, we have proved that φ
Aff

(yyy∗,xxx,xxx,WWW,bbb) is satisfiable and φ
Aff

(yyy,xxx,xxx,WWW,bbb)
captures the exact lower bound.

Theorem 3.12. Definition 3.11 is a Parametric Linear Relaxation for the Affine layer with constant
input bounds [xxx,xxx] that captures the exact lower and upper bounds.

Proof. By Lemma A.4 and Lemma A.5, we proved that φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) is a poly-size linear

formula that implies ∀xxx ∈ [xxx,xxx]. Affine
(
xxx;WWW,bbb

)
∈ [yyy,yyy], hence is a Parametric Linear Relax-

ation (Definition 3.3) for the Affine layer. By Lemma A.6, we proved that φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) is

implied by yyy = max
{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}
∧yyy = min

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

,
hence captures the exact upper and lower bounds.

20



A.3 Proofs for Parametric Linear Relaxation of Affine layers with variable input bounds

Lemma A.7. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) defined in Definition 3.13 is a poly-size linear formula.

Proof. As seen in Definition 3.13, φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) is a linear formula. Let m and n be the

number of input and output dimensions of the Affine layer. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) has 2n linear

constraints over 2m + 3n variables (xxx ∈ Rm, xxx ∈ Rm, bbb ∈ Rn, yyy ∈ Rn and yyy ∈ Rn). Hence,
φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) is a poly-size linear formula whose size is polynomial in the number of input
and output dimensions of the Affine layer.

Lemma A.8. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb)
def
= φAff(yyy,xxx,xxx,WWW,bbb) ∧ φ

Aff
(yyy,xxx,xxx,WWW,bbb) defined in Defini-

tion 3.13 implies that ∀xxx ∈ [xxx,xxx]. Affine
(
xxx;WWW,bbb

)
∈ [yyy,yyy].

Proof. For the upper bound, recall that by Definition 3.13, we have

φAff(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyyj =
∑
i

VVVji +bbbj where


VVVji

def
= xxxiWWWji if WWWji≥0

VVVji
def
= xxxiWWWji otherwise

Our goal is to prove that φAff(yyy,xxx,xxx,WWW,bbb) implies

∀xxx ∈ [xxx,xxx]. yyy ≥ Affine(xxx;WWW,bbb)

We prove the above formula by proving for each yyyj :

yyyj ≥ max
{
Affine(xxx;WWW,bbb)j

∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of the Affine layer (Definition 3.10), we expand the formula above to

yyyj ≥ max

{
m∑
i=0

xxxiWWWji +bbbj
∣∣ xxx ≤ xxx ≤ xxx

}
which is implied by the following formula

yyyj ≥
m∑
i=0

max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}
+bbbj

By Definition 3.13, φAff(yyy,xxx,xxx,WWW,bbb) implies yyyj =
∑m

i=0VVVji +bbbj . By substituting the left-hand-
side yyyj of the formula above with

∑m
i=0VVVji +bbbj , our goal becomes:

m∑
i=0

VVVji +bbbj ≥
m∑
i=0

max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}
+bbbj

By subtracting bbbj from both sides, our goal becomes:

m∑
i=0

VVVji ≥
m∑
i=0

max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}

Then we prove the above formula by proving for each i:

VVVji ≥ max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}

For the left-hand-side, we have VVVji
def
=

{
xxxiWWWji WWWji ≥ 0

xxxiWWWji otherwise
. For the right-hand-side, be-

cause xxxiWWWji changes monotonically with respect to xxxi, and WWWji is a given constant, we
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have max
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}

=

{
xxxiWWWji WWWji ≥ 0

xxxiWWWji otherwise
, which is the same as the def-

inition of the left-hand-side VVVji. Thus, we have proved that φAff(yyy,xxx,xxx,WWW,bbb) implies
∀xxx ∈ [xxx,xxx]. yyy ≥ Affine(xxx;WWW,bbb).

For the lower bound, recall that by Definition 3.13, we have

φ
Aff

(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy
j
=

∑
i

VVVji +bbbj where


VVVji

def
= xxxjWWWji if WWWji≥0

VVVji
def
= xxxjWWWji otherwise

Our goal is to prove that φ
Aff

(yyy,xxx,xxx,WWW,bbb) implies

∀xxx ∈ [xxx,xxx]. yyy ≤ Affine(xxx;WWW,bbb)

We prove the above formula by proving for each yyy
j
:

yyy
j
≤ min

{
Affine(xxx;WWW,bbb)j

∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of the Affine layer (Definition 3.10), we expand the formula above to

yyy
j
≤ min

{
m∑
i=0

xxxiWWWji +bbbj
∣∣ xxx ≤ xxx ≤ xxx

}
which is implied by the following formula

yyy
j
≤

m∑
i=0

min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}
+bbbj

By Definition 3.13, φ
Aff

(yyy,xxx,xxx,WWW,bbb) implies yyy
j
=

∑m
i=0VVVji +bbbj . By substituting the left-hand-

side yyy
j

of the formula above with
∑m

i=0VVVji +bbbj , our goal becomes:

m∑
i=0

VVVji +bbbj ≤
m∑
i=0

min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}
+bbbj

By subtracting bbbj from both sides, our goal becomes:

m∑
i=0

VVVji ≤
m∑
i=0

min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}

Then we prove the above formula by proving for each i:

VVVji ≤ min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}

For the left-hand-side, we have VVVji
def
=

{
xxxiWWWji WWWji ≥ 0

xxxiWWWji otherwise
. For the right-hand-side, be-

cause xxxiWWWji changes monotonically with respect to xxxi, and WWWji is a given constant, we

have min
{
xxxiWWWji

∣∣ xxxi ≤ xxxi ≤ xxxi
}

=

{
xxxiWWWji WWWji ≥ 0

xxxiWWWji otherwise
, which is the same as the def-

inition of the left-hand-side VVVji. Thus, we have proved that φ
Aff

(yyy,xxx,xxx,WWW,bbb) implies

∀xxx ∈ [xxx,xxx]. yyy ≤ Affine(xxx;WWW,bbb).

Lemma A.9. φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb)
def
= φAff(yyy,xxx,xxx,WWW,bbb) ∧ φ

Aff
(yyy,xxx,xxx,WWW,bbb) de-

fined in Definition 3.13 is implied by yyy = max
{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

∧
yyy = min

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

, hence captures the exact upper and lower bounds.
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Proof. For the upper bound, recall that by Definition 3.13, we have

φAff(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyyj =
∑
i

VVVji +bbbj where


VVVji

def
= xxxiWWWji if WWWji≥0

VVVji
def
= xxxiWWWji otherwise

For any solution (yyy∗,xxx,xxx,bbb) to yyy = max
{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

, we have the exact con-
stant output upper bound defined as

yyy∗
def
= max

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of Affine layer (Definition 3.10), it is equivalent to

yyy∗j
def
=

∑
i

max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj (12)

To prove that φAff captures the exact upper bound, we will show that (yyy∗,xxx,xxx,bbb) is a solution to
φAff(yyy,xxx,xxx,WWW,bbb). In other words, the following instantiated formula φAff(yyy

∗,xxx,xxx,WWW,bbb) is true:

φAff(yyy
∗,xxx,xxx,WWW,bbb)

def
=

∧
j

yyy∗j =
∑
i

VVVji +bbbj

where VVVji
def
= xxxjWWWji if WWWji ≥ 0, otherwise VVVji

def
= xxxjWWWji.

This formula is equivalent to prove the following formula for any index j:

yyy∗j =
∑
i

VVVji +bbbj

By substituting yyy∗j defined in Equation 12 above, our goal becomes∑
i

max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj =

∑
i

VVVji +bbbj

which is implied by

max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= VVVji

If WWWji ≥ 0, max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= xxxjWWWji = VVVji, the above formula is true; Otherwise,

max
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= xxxjWWWji = VVVji, the above formula is true. Hence, we have proved that

φAff(yyy
∗,xxx,xxx,WWW,bbb) is true and φAff(yyy,xxx,xxx,WWW,bbb) captures the exact upper bound.

For the lower bound, recall that by Definition 3.13, we have

φ
Aff

(yyy,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy
j
=

∑
i

VVVji +bbbj where


VVVji

def
= xxxjWWWji if WWWji≥0

VVVji
def
= xxxjWWWji otherwise

For any solution (yyy∗,xxx,xxx,bbb) to yyy = min
{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

, we have the exact con-
stant output lower bound defined as

yyy∗
def
= min

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

By the definition of Affine layer (Definition 3.10), it is equivalent to

yyy∗
j

def
=

∑
i

min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj (13)

To prove that φ
Aff

captures the exact lower bound, we will show that (yyy∗,xxx,xxx,bbb) is a solution to

φ
Aff

(yyy,xxx,xxx,WWW,bbb). In other words, the following instantiated formula φ
Aff

(yyy∗,xxx,xxx,WWW,bbb) is true:

φ
Aff

(yyy∗,xxx,xxx,WWW,bbb)
def
=

∧
j

yyy∗
j
=

∑
i

VVVji +bbbj
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where VVVji
def
= xxxjWWWji if WWWji ≥ 0, otherwise VVVji

def
= xxxjWWWji.

This formula is equivalent to prove the following formula for any index j:

yyy∗
j
=

∑
i

VVVji +bbbj

By substituting yyy∗
j

defined in Equation 13 above, our goal becomes∑
i

min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
+bbbj =

∑
i

VVVji +bbbj

which is implied by

min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= VVVji

If WWWji ≥ 0, min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= xxxjWWWji = VVVji, the above formula is true; Otherwise,

min
{
xxxiWWWji

∣∣ xxx ≤ xxx ≤ xxx
}
= xxxjWWWji = VVVji, the above formula is true. Hence, we have proved that

φ
Aff

(yyy∗,xxx,xxx,WWW,bbb) is true and φ
Aff

(yyy,xxx,xxx,WWW,bbb) captures the exact lower bound.

Theorem 3.14. Definition 3.13 is a Parametric Linear Relaxation for the Affine layer with variable
input bounds [xxx,xxx] that captures the exact upper and lower bounds.

Proof. By Lemma A.7 and Lemma A.8, we proved that φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) is a poly-size linear

formula that implies ∀xxx ∈ [xxx,xxx]. Affine
(
xxx;WWW,bbb

)
∈ [yyy,yyy], hence is a Parametric Linear Relax-

ation (Definition 3.3) for the Affine layer. By Lemma A.9, we proved that φ
Aff

(yyy,yyy,xxx,xxx,WWW,bbb) is

implied by yyy = max
{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}
∧yyy = min

{
Affine

(
xxx;WWW,bbb

) ∣∣ xxx ≤ xxx ≤ xxx
}

,
hence captures the exact upper and lower bounds.

B General provable editing via Parametric Linear Relaxation

In this section we present our approach for solving the general provable editing problem (Defini-
tion 1.1):

Definition B.1. Given Parametric Linear Relaxation φN

(
yyy,yyy,xxx,xxx;θθθ

)
for DNN N with parameters

θ, an input polytope P
def
=

{
xxx | DDDxxx ≤ eee

}
, an output polytope Q

def
=

{
yyy | AAAyyy ≤ bbb

}
. Given a hyperpa-

rameter k so that we only edit the DNN layers N (k:L) starting from the kth layer. Then a solution to
the following linear program is a solution to the provable editing problem of Definition 1.1:

min ∥θθθ − θ∥ s.t. φN (k:L)

(
yyy,yyy,xxx(k),xxx(k);θθθ

(k:L))
∧ ψ(yyy,yyy,AAA,bbb) (14)

where a sound constant interval bound
[
xxx(k),xxx(k)

]
for the input xxx(k) to the slice N (k:L) to edit is

computed by a sound bound propagation tool of DNNs like DeepPoly [39], auto_LiRPA [50] and
DeepT [4]: [

xxx(k),xxx(k)
] def
= Compute_BoundN (0:k)

(
P; θ(0:k)

)
(15)

The output constraint ψ(yyy,yyy,AAA,bbb) encodes AAAyyy ≤ bbb for all yyy ∈
[
yyy,yyy

]
using the parametric output

bounds
[
yyy,yyy

]
is defined as follows:

ψ(yyy,yyy,AAA,bbb)
def
=

m∧
i=0

n∑
j=0

EEEij ≤ bbbi where EEEij
def
=

{
AAAijyyyj AAAij ≥ 0

AAAijyyyj otherwise
(16) ■
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B.1 Provable editing for multiple properties via Parametric Linear Relaxation

Given n properties defined by input polytopes Pi
def
=

{
xxx | iDDDxxx ≤ ieee

}
, and output polytopes

Qi
def
=

{
yyy | iAAAyyy ≤ ibbb

}
. This work can directly generalize to provably edit multiple properties:

min ∥θθθ − θ∥ s.t.
∧

0≤i<n

∀xxx ∈ Pi. N (xxx;θθθ) ∈ Qi (17)

In particular, most of our experiments in Section 4 involve editing DNNs for multiple properties
altogether. Here we present our formulation for provably editing multiple properties, which encodes
the conjunction of the constraints for each property.

min ∥θθθ − θ∥ s.t.
∧

0≤i<n

φN (k:L)

(
iyyy, iyyy, ixxx

(k), ixxx
(k);θθθ

(k:L))
∧ ψ(iyyy, iyyy, iAAA, ibbb) (18)

where
[
ixxx

(k), ixxx
(k)
] def
= Compute_BoundN (0:k)

(
Pi; θ

(0:k)
)
.

B.2 Provable editing for disjunctive properties via Parametric Linear Relaxation

Given a property defined by an input polytope P
def
=

{
xxx | DDDxxx ≤ eee

}
, and n possible output polytopes

Qj
def
=

{
yyy | jAAAyyy ≤ jbbb

}
, this work can directly generalize to provably edit disjunctive property:

min ∥θθθ − θ∥ s.t. ∀xxx ∈ Pj .
∨

0≤j<n

N (xxx;θθθ) ∈ Qj (19)

by using a mixed-integer linear programming (MILP) solver. In particular, some properties in
VNN-COMP (Section 4.1) involve editing DNNs for such disjunctive properties. Here we present our
formulation:

min ∥θθθ − θ∥ s.t. φN (k:L)

(
yyy,yyy,xxx(k),xxx(k);θθθ

(k:L))
∧

∨
0≤j<n

ψ(yyy,yyy, jAAA, jbbb) (20)

where
[
xxx(k),xxx(k)

] def
= Compute_BoundN (0:k)

(
P; θ(0:k)

)
.

C Parametric Linear Relaxation for Tanh, Sigmoid and ELU layers

C.1 Parametric Linear Relaxation for Tanh layers

Definition C.1. yyy
def
= Tanh(xxx) with input xxx ∈ Rm and output yyy ∈ Rm is defined as yyyi

def
= tanh(xxxi).

Definition C.2. For Tanh layer with variable input bounds [xxx,xxx], its Parametric Linear Relaxation is
defined as φ

Tanh
(yyy,yyy,xxx,xxx)

def
= φTanh(yyy,xxx) ∧ φTanh

(yyy,xxx) where:

φTanh(yyy,xxx)
def
= yyy ≥ Tanh(xxxu) ∧ yyy ≥ aaauxxx +bbbu

φ
Tanh

(yyy,xxx)
def
= yyy ≤ Tanh(xxxl) ∧ yyy ≤ aaalxxx +bbbl

(21)

where xxxu ∈ Rm, aaau ∈ Rm, bbbu ∈ Rm are constants that satisfy the following two conditions: i) let
f(xxx) = aaaui xxx+bbbui , the line defined by function f(xxx) is tangent to the concave piece of tanh at some
xxx ≥ 0; ii) aaauxxxu + bbbu = Tanh(xxxu); viz., the line defined by function f(xxx) intersects with convex
piece of tanh at xxxui where xxxui ≤ 0.

Similarly, xxxl ∈ Rm, aaal ∈ Rm, bbbl ∈ Rm are constants that satisfy the following two conditions: i) let
f(xxx) = aaalixxx+bbbli, the line defined by function f(xxx) is tangent to the convex piece of tanh at some
xxx ≤ 0; ii) aaalxxxl +bbbl = Tanh(xxxl); viz., the line defined by function f(xxx) intersects with concave piece
of tanh at xxxli where xxxli ≥ 0. ■

Theorem C.3. Definition C.2 is a Parametric Linear Relaxation for the Tanh layer.
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Proof. As seen in Definition C.2, φ
Tanh

(yyy,yyy,xxx,xxx) is a linear formula. Let m be the number of
input dimensions of Tanh. φ

Tanh
(yyy,yyy,xxx,xxx) has 4m linear constraints over 4m variables (xxx ∈ Rm,

xxx ∈ Rm, yyy ∈ Rm and yyy ∈ Rm). Hence, φ
Tanh

(yyy,yyy,xxx,xxx) is a poly-size linear formula, whose size is
polynomial in the number of input dimensions of the Tanh layer.

Now our goal is to prove that φ
Tanh

(yyy,yyy,xxx,xxx) defined in Definition C.2 implies

∀xxx ∈ [xxx,xxx]. yyy ≤ Tanh(xxx) ≤ yyy

We will discuss the upper and lower bounds separately.

For the upper bound constraint φTanh(yyy,xxx)
def
= yyy ≥ Tanh(xxxu) ∧ yyy ≥ aaauxxx +bbbu, for the case when

xxxi ≤ xxxui , we have yyyi ≥ tanh(xxxui ) ≥ tanh(xxxi) because tanh is monotonically increasing. For the
case when xxxi > xxxui , we have yyyi ≥ aaaui xxxi + bbbui ≥ tanh(xxxi) because f(xxx) = aaaui xxx + bbbui is tangent
to the concave piece of tanh in [0,∞], and tanh is monotonically increasing in [xxxui , 0]. Therefore,
φTanh(yyy,xxx) defined in Definition C.2 implies that ∀xxx ∈ [xxx,xxx]. Tanh(xxx) ≤ yyy.

For the lower bound constraint φ
Tanh

(yyy,xxx)
def
= yyy ≤ Tanh(xxxl) ∧ yyy ≤ aaalxxx + bbbl, for the case when

xxxi ≥ xxxli, we have yyy
i
≤ tanh(xxxli) ≤ tanh(xxxi) because tanh is monotonically increasing. For the case

when xxxi < xxxli, we have yyy ≤ aaalixxxi +bbbli ≤ tanh(xxxi) because f(xxx) = aaalixxx+bbbli is tangent to the convex
piece of tanh in [−∞, 0], and tanh is monotonically increasing in [0,xxxli]. Therefore, φ

Tanh
(yyy,xxx)

defined in Definition C.2 implies that ∀xxx ∈ [xxx,xxx]. yyy ≤ Tanh(xxx).

C.2 Parametric Linear Relaxation for Sigmoid layers

Definition C.4. yyy
def
= Sigmoid(xxx) with input xxx ∈ Rm and output yyy ∈ Rm is defined as yyyi

def
= 1

1+e−xxxi
.

Definition C.5. For Sigmoid layer with variable input bounds [xxx,xxx], its Parametric Linear Relaxation
is defined as φ

Sigmoid
(yyy,yyy,xxx,xxx)

def
= φSigmoid(yyy,xxx) ∧ φSigmoid

(yyy,xxx) where:

φSigmoid(yyy,xxx)
def
= yyy ≥ Sigmoid(xxxu) ∧ yyy ≥ aaauxxx +bbbu

φ
Sigmoid

(yyy,xxx)
def
= yyy ≤ Sigmoid(xxxl) ∧ yyy ≤ aaalxxx +bbbl

(22)

where xxxu ∈ Rm, aaau ∈ Rm, bbbu ∈ Rm are constants that satisfy the following two conditions: i) let
f(xxx) = aaaui xxx+bbbui , the line defined by function f(xxx) is tangent to the concave piece of sigmoid at
some xxx ≥ 0; ii) aaauxxxu +bbbu = Sigmoid(xxxu); viz., the line defined by function f(xxx) intersects with
convex piece of sigmoid at xxxui where xxxui ≤ 0.

Similarly, xxxl ∈ Rm, aaal ∈ Rm, bbbl ∈ Rm are constants that satisfy the following two conditions: i) let
f(xxx) = aaalixxx + bbbli, the line defined by function f(xxx) is tangent to the convex piece of sigmoid at
some xxx ≤ 0; ii) aaalxxxl + bbbl = Sigmoid(xxxl); viz., the line defined by function f(xxx) intersects with
concave piece of sigmoid at xxxli where xxxli ≥ 0. ■

Theorem C.6. Definition C.5 is a Parametric Linear Relaxation for the Sigmoid layer.

Proof. As seen in Definition C.5, φ
Sigmoid

(yyy,yyy,xxx,xxx) is a linear formula. Let m be the number
of input dimensions of Sigmoid. φ

Sigmoid
(yyy,yyy,xxx,xxx) has 4m linear constraints over 4m variables

(xxx ∈ Rm, xxx ∈ Rm, yyy ∈ Rm and yyy ∈ Rm). Hence, φ
Sigmoid

(yyy,yyy,xxx,xxx) is a poly-size linear formula,
whose size is polynomial in the number of input dimensions of the Sigmoid layer.

Now our goal is to prove that φ
Sigmoid

(yyy,yyy,xxx,xxx) defined in Definition C.5 implies

∀xxx ∈ [xxx,xxx]. yyy ≤ Sigmoid(xxx) ≤ yyy

We will discuss the upper and lower bounds separately.

For the upper bound constraint φSigmoid(yyy,xxx)
def
= yyy ≥ Sigmoid(xxxu) ∧ yyy ≥ aaauxxx + bbbu, for the

case when xxxi ≤ xxxui , we have yyyi ≥ sigmoid(xxxui ) ≥ sigmoid(xxxi) because sigmoid is monotoni-
cally increasing. For the case when xxxi > xxxui , we have yyyi ≥ aaaui xxxi + bbbui ≥ sigmoid(xxxi) because
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f(xxx) = aaaui xxx + bbbui is tangent to the concave piece of sigmoid in [0,∞], and sigmoid is mono-
tonically increasing in [xxxui , 0]. Therefore, φSigmoid(yyy,xxx) defined in Definition C.5 implies that
∀xxx ∈ [xxx,xxx]. Sigmoid(xxx) ≤ yyy.

For the lower bound constraint φ
Sigmoid

(yyy,xxx)
def
= yyy ≤ Sigmoid(xxxl) ∧ yyy ≤ aaalxxx + bbbl, for the

case when xxxi ≥ xxxli, we have yyy
i
≤ sigmoid(xxxli) ≤ sigmoid(xxxi) because sigmoid is monotonically

increasing. For the case when xxxi < xxxli, we have yyy
i
≤ aaalixxxi+bbbli ≤ sigmoid(xxxi) because f(xxx) = aaalix+

bbbli is tangent to the convex piece of sigmoid in [−∞, 0], and sigmoid is monotonically increasing in
[0,xxxli]. Therefore, φ

Sigmoid
(yyy,xxx) defined in Definition C.5 implies that ∀xxx ∈ [xxx,xxx]. yyy ≤ Sigmoid(xxx).

C.3 Parametric Linear Relaxation for ELU layers

Definition C.7. yyy
def
= ELU(xxx) with input xxx ∈ Rm and output yyy ∈ Rm is defined as yyyi

def
= elu(xxxi)

where elu(xxx) def
=

{
xxx xxx ≥ 0

α(exxx − 1) xxx < 0
and α > 0.

Definition C.8. For ELU layer with variable input bounds [xxx,xxx], its Parametric Linear Relaxation is
defined as φ

ELU
(yyy,yyy,xxx,xxx)

def
= φELU(yyy,xxx) ∧ φELU

(yyy,xxx) where:

φELU(yyy,xxx)
def
= yyy ≥ xxx ∧ yyy ≥ 0

φ
ELU

(yyy,xxx)
def
= yyy ≤ aaaxxx +bbb

(23)

where aaa ∈ Rm, bbb ∈ Rm are constants such that the line defined by f(xxx) = aaaixxx + bbbi for any i is
tangent to elu. ■

Theorem C.9. Definition C.8 is a Parametric Linear Relaxation for the ELU layer.

Proof. As seen in Definition C.8, φ
ELU

(yyy,yyy,xxx,xxx) is a linear formula. Let m be the number of input
dimensions of ELU. φ

ELU
(yyy,yyy,xxx,xxx) has 3m linear constraints over 4m variables (xxx ∈ Rm, xxx ∈ Rm,

yyy ∈ Rm and yyy ∈ Rm). Hence, φ
ELU

(yyy,yyy,xxx,xxx) is a poly-size linear formula, whose size is polynomial
in the number of input dimensions of the ELU layer.

Now our goal is to prove that φ
ELU

(yyy,yyy,xxx,xxx) defined in Definition C.8 implies

∀xxx ∈ [xxx,xxx]. yyy ≤ ELU(xxx) ≤ yyy

We will discuss the upper and lower bounds separately.

For the upper bound constraint φELU(yyy,xxx)
def
= yyy ≥ xxx ∧ yyy ≥ 0, for the case when xxxi ≥ 0, by Defini-

tion C.7 we have yyyi ≥ xxxi = elu(xxxi). For the case xxxi < 0, because elu is monotonically increasing
and elu(0) = 0, we have yyyi ≥ 0 ≥ elu(xxxi). Therefore, φELU(yyy,xxx) defined in Definition C.8 implies
that ∀xxx ∈ [xxx,xxx]. ELU(xxx) ≤ yyy.

For the lower bound constraint φ
ELU

(yyy,xxx)
def
= yyy ≤ aaaxxx + bbb, because the line defined by

f(xxx) = aaaixxx+bbbi is tangent to elu and elu is a convex function, we have yyy
i
≤ aaaixxxi +bbbi ≤ elu(xxxi).

Therefore, φ
ELU

(yyy,xxx) defined in Definition C.8 implies that ∀xxx ∈ [xxx,xxx]. yyy ≤ ELU(xxx).

D Experiment Details

D.1 Provable fine-tuning PFT⟨⟨⟨·⟩⟩⟩

Because there are no efficient prior approaches for provable editing, we implemented provable
fine-tuning PFT⟨⟨⟨·⟩⟩⟩ baselines that combine prior (non-provable) DNN editing approaches with a
verifier in the loop: the editing stops when the verifier confirms that the DNN satisfies the property
(Appendix D.1). Specifically: 1) In each epoch, provable fine-tuning first updates the DNN parameters
with the DNN editing approach; 2) If the editing approach or adversarial attack cannot find any
constraint violation, we call a verifier to check if all constraints are satisfied; 3) If all constraints
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are satisfied, the loop terminates; otherwise the loop continues. According to the DNN architecture
and editing property, we use the best verifier from (1) α,β-CROWN [46, 44]: winner of the VNN
Competition VNN-COMP 2021, 2022 and 2023; (2) MN-BaB [9]: runner-up of VNN-COMP 2022 and 2023;
and (3) DeepT [4]: state-of-the-art (incomplete) transformer verifier.

In order to improve the performance of provable fine-tuning with a non-provable DNN editing
approach, viz., preserve the DNN’s accuracy, we a) freeze all batch normalization layers, b) only edit
the last few layers, c) incorporate changes of parameters as regularization, and d) sample points and
incorporate the changes in their outputs as regularization.

D.2 Provable Editing on VNN Competition Benchmarks

In this section we present the further details for Section 4.1.

Benchmarks. We take 12 out of 15 benchmarks from VNN-COMP′22 [29], excluding
i) “carvana_unet_2022” and “nn4sys”: the support for the sigmoid activation function is not
implemented in PREPARED, and is not supported by APRNN. ii) “vggnet16_2022”: the bound
computation for intermediate layers runs out of CPU and GPU memory using auto_LiRPA.

Setup details. For both PFT⟨⟨⟨DL2⟩⟩⟩ and PFT⟨⟨⟨APRNN⟩⟩⟩, we use DL2 to find counterexamples to edit, and
we use α,β-CROWN, the winner of VNN-COMP, as the verifier. We only call the verifier when DL2 cannot
find counterexamples. For all approaches, we edit the last few layers, which differs for different
DNNs. For PREPARED, we use auto_LiRPA or DeepPoly to compute the constant bounds for the
input to the first layer to edit.

Hyperparameters for PFT⟨⟨⟨DL2⟩⟩⟩. SGD optimizer with a learning rate of 0.001, DL2 weight of 0.2,
batch size of 32 for the single-property setting, and 256 for the all-properties setting.

Hyperparameters for PFT⟨⟨⟨APRNN⟩⟩⟩. For different DNNs, APRNN edits from the last six layers to
the last layer. we set a bound of [-10, 10] for the change of each parameter. We use DL2 to find
counterexamples for APRNN to edit in each epoch, and use the same hyperparameters as the DL2
experiments for the DL2 oracle.

Hyperparameters for PREPARED. For different DNNs, PREPARED edits from the last eight layers
to the last layer. We use auto_LiRPA [50] or DeepPoly [39] to compute the input bounds to the first
layer to edit. we set a bound of [-10, 10] for the change of each parameter.

Results details. In Table 4 we present the number of succeed instances for provably editing
single-properties and all-properties instances in each benchmark.

D.3 Local robustness editing for image-recognition DNNs

In this section we present the experiment details for Section 4.2.

Property. Given an L∞ local robustness perturbation ε for an DNN N and a pair of input point
xxx and output label l, the repair specification is ∀xxx′. ∥xxx− xxx′∥∞ =⇒ argmaxN (xxx′) = l. In other
words, for all inputs xxx′ in the L∞ ball around xxx with radius ε, the DNN N should classify them as
label l.

Setup details. The validation set is the same 10% of the training set, randomly selected with
seed 0. For PFT⟨⟨⟨DL2⟩⟩⟩, PFT⟨⟨⟨SABR⟩⟩⟩ and PFT⟨⟨⟨STAPS⟩⟩⟩, we use MN-BaB, the complete verifier used by SABR
and STAPS, as the verifier in the loop. MN-BaB is the runner-up of VNN-COMP. We only call the
verifier when DL2, SABR or STAPS cannot find counterexamples. For PREPARED, we use DeepPoly
to compute the constant bounds for the input to the first layer to edit.

Hyperparameters for PFT⟨⟨⟨SABR⟩⟩⟩. We take the base hyperparameters from the SABR training
script [27]. We freeze all batch normalization layers, and search the hyperparameters: i) learn-
ing rate in {5e-4, 1e-4, 5e-5, 1e-5}; ii) batch size in {5, 10, 25}; iii) lambda in {0.1, 0.2, . . . , 0.9};
iv) end_epoch_eps in {80, 60, 40, 20}; v) fine-tune the entire DNN, the last three layers, or the last
layer to find the edit with the highest efficacy, then the best validation set accuracy. Other hyperparam-
eters are the same as used for training the CIFAR10 (ε = 2/255) and TINYIMAGENET (ε = 1/255)
CNN7 in the SABR paper. We use the following early-stopping criteria: i) CIFAR10: validation
accuracy drops below 60%; ii) TINYIMAGENET: validation accuracy drops below 20%. The final
hyperparameters for CIFAR10 are: Adam optimizer with a learning rate of 5e-4, batch size of 5,
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Table 4: Comparison of the number of succeed instances for provably editing single-instances and
all-properties instances in each benchmark.

(a) Comparison of the number of instances succeeded for provably editing single-instances instances in each
benchmark.

Benchmark PFT⟨⟨⟨DL2⟩⟩⟩ PFT⟨⟨⟨APRNN⟩⟩⟩ PREPARED Total

acasxu 0 5 47 47
rl_benchmarks 103 84 103 103
tllverifybench 20 5 21 21

cifar100_tinyimagenet_resnet 0 0 29 29
sri_resnet_a 8 2 52 52
sri_resnet_b 8 0 44 44

reach_prob_density 0 0 14 14
mnist_fc 1 1 22 22

cifar_biasfield 1 0 4 4
cifar2020 35 0 55 55

collins_rul_cnn 8 20 27 27
oval21 1 0 5 5

all 185 117 423 423

(b) Comparison of the number of instances succeeded for provably editing all-properties instances in each
benchmark.

Benchmark PFT⟨⟨⟨DL2⟩⟩⟩ PFT⟨⟨⟨APRNN⟩⟩⟩ PREPARED Total

acasxu 38 40 42 42
rl_benchmarks 0 1 2 3
tllverifybench∗ 0 0 0 0

cifar100_tinyimagenet_resnet 0 0 5 5
sri_resnet_a 0 1 1 1
sri_resnet_b 0 0 1 1

reach_prob_density 2 1 3 3
mnist_fc 3 2 3 3

cifar_biasfield∗ 0 0 0 0
cifar2020 0 1 3 3

collins_rul_cnn 0 0 0 3
oval21 2 2 2 2

all 45 48 62 66
∗ The DNNs that violate the properties in these benchmarks only have one prop-
erty, hence are subsumed in the prior single-property setting and excluded in this
all-properties setting.

lambda of 0.1, end_epoch_eps of 80, and fine-tune the last three layers. The final hyperparameters
for TINYIMAGENET are: Adam optimizer with a learning rate of 5e-4, batch size of 5, lambda of 0.1,
end_epoch_eps of 80, and fine-tune the last three layers.

Hyperparameters for PFT⟨⟨⟨STAPS⟩⟩⟩. We take the base hyperparameters from the STAPS training script
in the TAPS code [25]. We freeze all batch normalization layers, and search the following hyperpa-
rameters: i) learning rate in {5e-4, 1e-4, 5e-5, 1e-5}; ii) batch size in {5, 10, 25}; iii) reg_lambda in
{0.1, 0.2, . . . , 0.9}; iv) end_epoch_eps in {80, 60, 40, 20}. v) fine-tune the entire DNN, the last three
layers, or the last layer. to find the edit with the highest efficacy, then the best validation set accuracy.
Other hyperparameters are the same as used for training CIFAR10 (ε = 2/255) and TINYIMAGENET

(ε = 1/255) CNN7 using STAPS in the TAPS paper We use the following early-stopping criteria:
i) CIFAR10: validation accuracy drops below 60%; ii) TINYIMAGENET: validation accuracy drops
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below 20%. The final hyperparameters for CIFAR10 are: Adam optimizer with a learning rate of
1e-5, batch size of 10, reg_lambda of 0.9, end_epoch_eps of 80, and fine-tune the last three layers.
The final hyperparameters for TINYIMAGENET are: Adam optimizer with a Learning rate of 1e-5,
batch size of 10, reg_lambda of 0.8, end_epoch_eps of 80, and fine-tune the last three layers.

Hyperparameters for PFT⟨⟨⟨DL2⟩⟩⟩. We take the base hyperparameters from the RobustnessG training
script in the DL2 code [11]. We freeze all the batch normalization layers, and search for the following
hyperparameters: i) learning rate in {1e-3, 5e-4, 1e-4, 5e-5}; ii) batch size in {5, 10, 25}; iii) fine-tune
the entire DNN, the last layer or the last three layers. to find the edit with the highest efficacy, then the
best validation set accuracy. We use the following early-stopping criteria: i) CIFAR10: validation
accuracy drops below 70%; ii) TINYIMAGENET: validation accuracy drops below 20%. The final
hyperparameters for CIFAR10 are: SGD optimizer with learning rate of 1e-4, batch size of 10, DL2
weight of 0.2, fine-tune the last three layers. The final hyperparameters for TINYIMAGENET are:
SGD optimizer with learning rate of 1e-4, batch size of 10, DL2 weight of 0.2, fine-tune the last three
layers.

Hyperparameters for APRNN. We edit up to the fifth last layer, and set a bound [-10, 10] for the
change of each DNN parameter. For both CIFAR10 and TINYIMAGENET, the final result comes
from editing the last layer.

Hyperparameters for PREPARED. We edit up to the fifth last layer, and set a bound [-10, 10] for
the change of each DNN parameter. For both CIFAR10 and TINYIMAGENET, the final result comes
from editing the last layer.

D.4 Local robustness editing for sentiment classification BERT transformers

In this section we present the experiment details for Section 4.3.

Setup details. We use the default validation set used in the DeepT training scripts [3]. For
PFT⟨⟨⟨DL2⟩⟩⟩, we use DeepT as the verifier in the loop. We only call the verifier when DL2 cannot find
counterexamples. For PREPARED, we use DeepT to compute the constant bounds for the input to the
first layer to edit.

Hyperparameters for PFT⟨⟨⟨DL2⟩⟩⟩. We incorporate the default training script and hyperparameters
from DeepT [4]. We search the hyperparameters i) fine-tune the last three layers or only the last layer;
ii) batch size in {4, 8, 16, 32}; iii) learning rate in {1e-3, 5e-3, 1e-4, 5e-4}; to find the edit with the
best efficacy, then the best validation accuracy. For ε=1e-4, the final hyperparameters are: fine-tune
the last layer, batch size of 32, Adam optimizer with learning rate of 1e-4, DL2 weight of 0.1 For
ε=5e-4, the final hyperparameters are: fine-tune the last layer, batch size of 16, Adam optimizer with
learning rate of 1e-4, DL2 weight of 0.1.

Hyperparameters for PFT⟨⟨⟨APRNN⟩⟩⟩. We edit up to the third last layer, and set a bound [-10, 10] for
the change of each DNN parameter. The final result comes from editing the last layer.

Hyperparameters for PREPARED. We edit up to the third last layer, and set a bound [-10, 10] for
the change of each DNN parameter. The final result comes from editing the last layer.

D.5 Provable training for physics-plausible DNNs

In this section we present the experiment details for Section 4.4.

Hyperparameters for DL2. We search the hyperparameters i) batch size in {4, 8, 16, 32}; ii) learn-
ing rate in {1e-3, 5e-3, 1e-4, 5e-4}; We train 2000 epochs and take the epoch with the highest
validation accuracy. The final hyperparameters are: batch size of 8, SGD optimizer with lr of 1e-3,
DL2 weight of 0.2, 1241 epochs.

Hyperparameters for GD. We search the hyperparameters i) batch size in {4, 8, 16, 32}; ii) learning
rate in {1e-3, 5e-3, 1e-4, 5e-4}; We train 2000 epochs and take the epoch with the highest validation
accuracy. The final hyperparameters are: batch size of 32, SGD optimizer with lr of 1e-3, 635 epochs.

Hyperparameters for GD⟨⟨⟨APRNN⟩⟩⟩. We edit up to the first layer, and set a bound [-10, 10] for the
change of each DNN parameter. The final result comes from editing the last layer.
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Hyperparameters for GD⟨⟨⟨PREPARED⟩⟩⟩. We edit up to the first layer, and set a bound [-10, 10] for the
change of each DNN parameter. We use DeepPoly to compute the input bounds to the first layer to
edit. The final result comes from editing the last three layers.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical claims in the abstract and introduction are proved in Section 3
as well as Appendix A, B. The empirical claims in the abstract and introduction are justified
in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The full set of assumptions and informal proof sketch are provided in Section 3
complemented by formal proofs in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3 complemented by Appendix B fully disclose all information needed
to reproduce the technique, and Section 4 complemented by Appendix D fully disclose all
information needed to reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The experiments Section 4.1–4.3 use open-access benchmarks. We plan to
release on acceptance the data we generated for Section 4.4. For the implementation of our
tool, we could not make the code open access due to ongoing IP restrictions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are presented in Section 4 complemented by further
details in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because the proposed algorithm is deterministic, we instead evaluate our
approach on a wide-variety of benchmarks to demonstrate its efficacy and efficiency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The evaluation platform and runtime are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is discussed in Sections 1 and 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper proposes an efficient and provable DNN editing approach, which
does not involve releasing of data and models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section 4 cites the original papers that produced the baselines, tools, models
and benchmarks used in the paper. Appendix D cites commits for open-access code and
scripts used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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