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Abstract
Recent work on sparse autoencoders (SAEs) has
shown promise in extracting interpretable features
from neural networks and addressing challenges
with polysemantic neurons caused by superposi-
tion. In this paper, we apply SAEs to the early
vision layers of InceptionV1, a well-studied con-
volutional neural network, with a focus on curve
detectors. Our results demonstrate that SAEs can
uncover new interpretable features not apparent
from examining individual neurons, including ad-
ditional curve detectors that fill in previous gaps.
We also find that SAEs can decompose some pol-
ysemantic neurons into more monosemantic con-
stituent features. These findings suggest SAEs
are a valuable tool for understanding InceptionV1,
and convolutional neural networks more gener-
ally.

1. Introduction
The original project of mechanistic interpretability was a
thread of work (Cammarata et al., 2020a) trying to reverse
engineer InceptionV1 (Szegedy et al., 2014). However,
this work had a major limitation that was recognised at the
time: polysemantic neurons which respond to unrelated
stimuli. It was hypothesised that this was due to superposi-
tion, where combinations of neurons are used to represent
features (Arora et al., 2018; Elhage et al., 2022). This was
a significant barrier to the original Circuits project, since
uninterpretable polysemantic neurons were a roadblock for
neuron-based circuit analysis.

Since then, significant progress has been made on address-
ing superposition. In particular, it has been found that ap-
plying a variant of dictionary learning (Olshausen & Field,
1997; Elad, 2010) called a sparse autoencoder (SAE) can
extract interpretable features from language models (Cun-
ningham et al., 2023; Yun et al., 2021; Bricken et al., 2023).
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Layer λ Expansion Factor

conv2d0 1e − 7 2×
conv2d1 5e − 6 4×
conv2d2 5e − 6 4×
mixed3a 3.5e − 6 8×
mixed3b 3.5e − 6 8×

Table 1. Default sparse autoencoder hyperparameters for each
layer.

This creates an opportunity for us to return to the original
project of understanding InceptionV1 with new tools. In this
paper, we apply sparse autoencoders to InceptionV1 early
vision (Olah et al., 2020) and especially curve detectors
(Cammarata et al., 2020b; 2021). We find that at least some
previously uninterpretable neurons contribute to represent-
ing interpretable features. We also find “missing features”
which are invisible when examining InceptionV1 in terms
of neurons but are revealed by features. This includes a
number of additional curve detector features which were
missing from the well-studied neuron family.

2. Methods
2.1. Sparse Autoencoders

Following previous work, we decompose any activation
vector x into x ≃ b+

∑
i fi(x)di where fi(x) is the feature

activation and di is the feature direction. Throughout the
paper, we’ll denote these features as <layer>/f/<i>
(and neurons as <layer>/n/<i>).

We achieve this decomposition using SAEs trained on im-
age activations sampled from InceptionV1 over its training
set, ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Addison Howard, 2018). Recall that, as a conv
net, InceptionV1 has a grid of activation vectors correspond-
ing to image positions. For each of the images in ILSVRC,
we sample activations from 10 such positions. We trained
for approximately 500 epochs on a dataset of shuffled ac-
tivations (until a total of 5 billion activations were trained
on).

Unless otherwise stated, the hyperparameters used for each
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Figure 1. This figure presents examples of one interpretable feature learned by the SAE at each layer. For each feature, we present dataset
examples at varying activation levels and a feature visualisation. We also show the neuron most similar to this feature (i.e. the neuron with
the largest weight to it), and corresponding dataset examples and feature visualisations.

SAE can be found in Table 1. Our specific SAE setup fol-
lowed some modifications recommended by Conerly et al.
(2024). In particular, we didn’t constrain the decoder norm
and instead scaled feature activations by it.1 We also made
two additional modifications to work around compute con-
straints, described in the following subsections.

2.1.1. OVER SAMPLING LARGE ACTIVATIONS

In InceptionV1, the majority of image positions produce
small activations (for example, on backgrounds). To avoid
spending lots of compute modelling these small activations,
we oversampled large activations by sampling activations
from positions in the image proportional to their activation
magnitude.

2.1.2. BRANCH SPECIFIC SAES

InceptionV1 divides these layers into branches with differ-
ent convolution sizes (Szegedy et al., 2014). For layers
mixed3a and mixed3b, we perform dictionary learning
only on the 3x3 and 5x5 convolutional branches respec-
tively. This seems relatively principled as with such limited
space, features are likely isolated to a branch that has the
most advantageous filter size.

2.2. Analysis Methods

In analysing features, we primarily rely on dataset examples
and feature visualisation (Erhan et al., 2009; Olah et al.,

1This seemed to help avoid dead neurons.

2017). Dataset examples show how a neuron or feature be-
haves on distribution, while feature visualisation helps iso-
late what causes a feature to activate. This is supplemented
by more specific methods like synthetic dataset examples
from Cammarata et al. (2020b) for curve detectors.

2.2.1. DATASET EXAMPLES

We collect dataset examples where the feature activates
over the ILSVRC dataset (Addison Howard, 2018), since
that is what InceptionV1 was trained on. In using dataset
examples, it’s important to not just look at top examples
to avoid interpretability illusions (Bolukbasi et al., 2021).
Instead, we collect dataset examples randomly sampled to
be within ten activation intervals, evenly spaced between 0
and the feature’s maximum observed activation.

2.2.2. FEATURE VISUALISATION

Feature visualisation is performed following Olah et al.
(2017). We use the Lucent library (Swee Kiat, 2021), with
some small modifications to their port of InceptionV1 to
ensure compatibility with the original model.2

2It was important to us to ensure our model was identical to
the one studied by the original Circuits thread. In cross-validating
the torch version with the original TensorFlow one, we found
that some small differences were introduced to the local response
normalisation layer when Lucent ported the model to PyTorch.
These significantly modify model behaviour. A PR for these fixes
can be found at: https://github.com/greentfrapp/lucent/pull/51
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Figure 2. Left & Middle: Synthetic data plots, showing how curve detector features (left) and neurons (middle) respond to synthetic
curve stimuli, as in Cammarata et al. (2020b). Activations are denominated in standard deviations. A subset of the new curve detectors are
shown, with gaps between the neurons representing a previously missing curve detector. Right: The same data is shown on radial tuning
curve plots, again following Cammarata et al. (2020b). The curve radius at a given orientation denotes activation, again measured in
standard deviations of activation.

3. Results
This paper is a very early report on applying SAEs to Incep-
tionV1. We present a variety of examples of SAEs producing
more interpretable features in various ways. Our sense is
that these results are representative of a more general trend,
but we don’t aim to defend this in a systematic way at this
stage.

Concretely, we claim the following:

1. There exist relatively interpretable SAE features which
were not visible in terms of neurons.

2. There are new curve detector features which fill miss-
ing “gaps” among curve detectors found by Cammarata
et al. (2020b).

3. Some polysemantic neurons can be seen to decompose
into more monosemantic features.

Each of the following subsections will support one of these
claims.

3.1. SAEs Learn New, Interpretable Features

Figure 1 presents five SAE features, one from each “early
vision” layer we applied SAEs to. (These are the same
five layers studied by Olah et al. (2020).) In each case, the
feature is quite interpretable across the activation spectrum
(see dataset examples in Figure 1). The neurons most in-
volved in representing the feature are, to varying extents,
vaguely related or polysemantic neurons, which are difficult
to interpret.

For example, conv2d1/f/196 appears to be a relatively
monosemantic brightness gradient detector. However, the
most involved neuron conv2d1/n/44 was unable to be
categorised by Olah et al. (2020) and appears quite polyse-
mantic. (In fact, our SAE decomposes conv2d1/n/44
into a variety of features responding to brightness gra-
dients of various orientations, colour contrast, and com-
plex Gabor filters.) On the other hand, there are features
which have more monosemantic corresponding neurons,
but are still more precise and monosemantic. For example,
mixed3b/f/95 is a relatively generic boundary detector
receiving its largest weight from mixed3b/n/376, which
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responds to boundaries with a preference for fur on one
side. The SAE appears to decompose mixed3b/n/376
into a generic boundary detector and a fur-specific boundary
detector in the same orientation.

3.2. SAEs Discover Additional Curve Detectors

Curve detectors are likely the best characterised neurons in
InceptionV1, studied in detail by Cammarata et al. (2020b;
2021). They were also found to be concentrated within the
5x5 branch of mixed3b by Voss et al. (2021). This exist-
ing literature makes them a natural target for understanding
the behaviour of SAEs.

In Figure 2, we use the “synthetic data” approach of Cam-
marata et al. (2020b) to systematically show how our curve
detector features respond to curve stimuli of a range of ori-
entations and radii. We find curve detector features which
closely match the curve detector neurons known to exist,
and others which fill in “gaps” where there wasn’t a curve
detector for a particular orientation. Following existing
work, we report the stimuli activations in terms of standard
deviations to make it clear how unusual the kind of intense
reaction they produce is. To see the way the new curve
detector features “fill in” gaps, we also create “radial tuning
curve” plots from Cammarata et al. (2020b), seen in Fig-
ure 2. The features fill in several gaps where there is no
neuron responding to curves in a given orientation.

3.3. SAEs Split Polysemantic Neurons

We’ve already mentioned several examples of polysemantic
neurons being split into more monosemantic features. In this
section, we’ll further support this pattern with a particularly
striking example. Olah et al. (2020) reported the existence
of “double curve” detector neurons, which respond to curves
in two very different orientations. It’s very natural to suspect
these are an example of superposition.

As shown in Figure 3, the double curve detector
mixed3b/n/359 primarily decomposes into three fea-
tures: two monosemantic curve detectors and a double curve
detector. We suspected the additional double curve detector
might be a failure of the SAE. To study this, we trained
two additional SAEs with higher L1 coefficients. As L1
the coefficient increases, the maximum activation of the
analogous double curve features falls, while the left and
right curve features maximum activations correspondingly
increases (see bottom of Figure 3).

4. Conclusion
Recent progress on SAEs appears to open up exciting new
mechanistic interpretability directions in the context of lan-
guage models, such as circuit analysis based on features
(Marks et al., 2024). Our results suggest that this promise

Figure 3. Top: The three SAE features most strongly weighted to
mixed3b/n/359, previously identified by Olah et al. (2020) as
a double curve detector that was likely polysemantic. Bottom:
Max activations of analogous features across SAEs with different
L1 coefficients. As L1 increases, the double curve feature becomes
smaller, while the left and right curves correspondingly grow.

isn’t limited to language models. At the very least, SAEs
seem promising for understanding InceptionV1.
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A. Branch Specialisation of Learned Features
After the first three convolution layers, InceptionV1 has a branched structure (Szegedy et al., 2014). Prior work has found
that the early branches often specialise; for example, mixed3b seems specialize on curve and boundary detectors (Voss
et al., 2021).

In the main portion of this paper, we trained sparse autoencoders on these branches as a principled way to save compute,
with the intuition that the most computationally efficient way to represent a given feature is to utilise the most advantageous
(i.e. the smallest) convolution size that can capture the feature. If this were true, the combination of neurons that represent a
given feature would exist on the same branch.

Figure 4. The extent to which each learned feature of a sparse autoencoder trained across all branches of mixed3b, is represented by
neurons on the 5× 5 branch. Negative weights were excluded when computing the norm. Curve detectors are amongst the features with
the greatest branch specialisation.

We now train sparse autoencoders on the entire mixed3b layer (ie. all branches jointly). We find that features are not
uniformly distributed across branches. Some features are highly branch specific (as much as 80% localized to 5x5) and
others are highly concentrated on other branches (nearly 0% localized to 5x5). On the other hand, while it’s not clear where
the boundaries for “concentrated on a branch” should be (especially since 5x5 is smaller than other branches), but it seems
likely that many features should be understood as spread across branches.

Interestingly, the features concentrated on 5x5 disproportionately tend to be curve detectors, consistent with Voss et al.
(2021).

What about other layers? In a preliminary SAE experiment on mixed5b, we find that a small fraction of features are
very concentrated on the 5x5 branch, while most are more distributed. mixed4e preliminarily looks more similar to
mixed3b. The nature of those branch-localized features is left to future work. Perhaps there is previously unknown branch
specialization, which was previously obscured by superposition.

Figure 5 shows how specialised each feature is to the 5× 5 branch of mixed3b. No features are represented entirely on the
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Figure 5. The extent to which each learned feature of sparse autoencoders trained across all branches of mixed3b, mixed4e, and
mixed5b are represented by neurons on the 5× 5 branch. Negative weights were excluded when computing the norm.

5× 5 branch, with the most specialised feature having approximately 80% of its positive weighted neurons on it.

It is worth emphasising that this doesn’t change the correctness the features identified in this paper but instead means that
branch-specific SAEs will have features still hidden by cross-branch superposition.
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