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Abstract

The recent advancement of Multimodal Large001
Language Models (MLLMs) has significantly002
improved their fine-grained perception of sin-003
gle images and general comprehension across004
multiple images. However, existing MLLMs005
still face challenges in achieving precise006
grounding in complex multi-image scenarios.007
To address this, we first explore a Chain-008
of-Thought (CoT) framework that integrates009
single-image grounding with multi-image com-010
prehension. While partially effective, it re-011
mains unstable and struggles to capture abstract012
visual information due to its non-end-to-end na-013
ture. Therefore, we introduce Migician, the014
first multi-image grounding model capable of015
performing free-form and accurate grounding016
across multiple images. To support this, we017
present the MGrounding-630k dataset, which018
comprises data for several multi-image ground-019
ing tasks derived from existing datasets, along020
with newly generated free-form grounding021
instruction-following data. Furthermore, we022
propose MIG-Bench, a comprehensive bench-023
mark specifically designed for evaluating multi-024
image grounding capabilities. Experimental025
results demonstrate that our model achieves026
significantly superior multi-image grounding027
capabilities, outperforming the best existing028
MLLMs by 21.61% and even surpassing much029
larger 70B models.030

1 Introduction031

Multimodal Large Language Models (MLLMs)032

have exhibited significant advancements recently,033

demonstrating exceptional cross-modal understand-034

ing capabilities and achieving outstanding perfor-035

mance in various vision-language tasks (Ye et al.,036

2023; Hu et al., 2024; Elliott and Kádár, 2017; Ive037

et al., 2019; Lu et al., 2021; Amini et al., 2019;038

Krishna et al., 2017). As these models continue039

to evolve, their capabilities have expanded beyond040

image-level understanding to include fine-grained041

Figure 1: Top: Examples of free-form multi-image
grounding. The task is to identify and localize rele-
vant visual regions across multiple images based on a
free-form query. Bottom: Our proposed model, Migi-
cian, significantly outperforms other MLLMs on various
multi-image grounding tasks.

visual grounding (Wang et al., 2023; Chen et al., 042

2023b; You et al., 2023). This enables MLLMs to 043

process region-specific inputs and outputs, unlock- 044

ing a broader spectrum of real-world multimodal 045

application scenarios (Peng et al., 2023). 046

Despite the promising visual grounding capa- 047

bilities demonstrated by existing MLLMs, these 048

abilities are largely confined to single-image sce- 049

narios (Kazemzadeh et al., 2014; You et al., 2023). 050

The potential of MLLMs in free-form multi-image 051

grounding (MIG) remains underexplored. Free- 052

form MIG challenges the model to perform ground- 053

ing across multiple images effectively, where the 054

input queries and image contexts can be organized 055
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in arbitrary forms, enabling flexible and dynamic056

interactions. For instance, as shown in Figure 1, the057

model must understand the white car in the query058

image and relate it to the textual prompt "black059

in color" to identify the corresponding target in060

the target image. This capability unlocks a wide061

range of applications, such as fine-grained environ-062

mental perception in autonomous driving (Wang063

et al., 2024c), anomaly detection in surveillance064

systems (Black et al., 2002), and target localiza-065

tion for embodied robotics (Grauman et al., 2022).066

To address the free-form MIG, the model needs to067

possess the capability for visual grounding while068

achieving cross-image understanding.069

As a result, a question naturally arises: Can070

we integrated the single-image grounding and071

multi-image understanding capabilities of existing072

MLLMs to tackle the MIG task? In this work, we073

propose a Chain-of-Thought (CoT) framework that074

first leverages multi-image understanding to gen-075

erate a textual referring query, and then utilizes it076

for localization through single-image grounding.077

This approach is proven highly effective for MIG078

tasks, particularly in simple scenarios where textual079

descriptions are sufficiently distinctive, demonstrat-080

ing the potential of MLLMs in handling such tasks.081

However, the proposed CoT framework strug-082

gles with describing abstract visual semantics in083

multi-image scenarios, and the two-step process re-084

sults in a doubling of the inference time. To address085

this, we further propose Migician, a competitive086

MLLM capable of free-form and accurate ground-087

ing across multiple images, which is an end-to-end088

solution for MIG. To progressively establish flexi-089

ble grounding capabilities, we employ a two-stage090

training procedure based on our proposed large-091

scale MIG dataset (MGrounding-630k). First, the092

grounding ability of Migician is enhanced through093

a combination of data of MIG tasks and general094

tasks. Then, Migician is further refined using high-095

quality free-form MIG instruction data. In addition,096

to evaluate the challenges of the free-form MIG sce-097

nario, we construct a comprehensive multi-image098

grounding benchmark, MIG-bench, comprising a099

total of 10 different tasks, 5.9k diverse images and100

more than 4.2k test instances. We observe a sig-101

nificant gap between the performance of existing102

mainstream MLLMs and human performance on103

the MIG-bench. In contrast, Migician can effec-104

tively alleviate this gap and improve the perfor-105

mance of free-form MIG.106

To sum up, our contributions can be concluded107

as follows: 108

• We explore the task of multi-image ground- 109

ing for MLLMs and reveal the potential and 110

challenges of current MLLMs by through a 111

proposed CoT framework. 112

• We introduce Migician, the first MLLM capa- 113

ble of effectively performing free-form MIG. 114

We also present MGrounding-630k, the first 115

large-scale MIG instruction tuning dataset for 116

training this model. 117

• We introduce MIG-Bench, a comprehen- 118

sive benchmark for evaluating multi-image 119

grounding capabilities. Experimental results 120

demonstrate that Migician significantly out- 121

performs the current best methods. 122

2 Related Work 123

Multimodal Large Language Models Recent 124

developments in multimodal large language mod- 125

els (MLLMs) have shifted from single image- 126

text understanding towards more versatile capa- 127

bilities (Cai et al., 2024; Yao et al., 2024; Wang 128

et al., 2024b; Li et al., 2024a). Among these ef- 129

forts, some focus on enabling models to achieve 130

fine-grained visual grounding, either through sim- 131

ple instruction tuning (Chen et al., 2023b; Peng 132

et al., 2023) or by integrating additional auxiliary 133

visual components (You et al., 2023; Zhang et al., 134

2023; Chen et al., 2023a). However, these mod- 135

els primarily focus on visual grounding within a 136

single image. Some other studies explore multi- 137

image understanding tasks, such as multi-image 138

comparison, reasoning, and temporal comprehen- 139

sion (Jiang et al., 2024; Li et al., 2024c; Ye et al., 140

2024; Li et al., 2024a; Cai et al., 2024; Yao et al., 141

2024). Nevertheless, fine-grained visual grounding 142

at the multi-image level remains an underexplored 143

area. To the best of our knowledge, our proposed 144

Migician is the first MLLM designed to address the 145

challenge of multi-image grounding. 146

MLLM Benchmarks Most existing benchmarks 147

for evaluating MLLMs focus on single-image 148

tasks (Fu et al., 2023; Li et al., 2024b). A few 149

recent benchmarks have started assessing the per- 150

formance of MLLMs on multi-image understand- 151

ing (Jiang et al., 2024; Meng et al., 2024; Fu et al., 152

2025; Wang et al., 2024a; Liu et al., 2024), but 153

they primarily emphasize image-level comprehen- 154

sion. The most relevant benchmark to our work 155
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Figure 2: An illustration of the multi-image grounding tasks included in MIG-Bench. These tasks are divided into
two categories: spontaneous grounding and referential grounding, depending on the whether there are explicit
referential requirements.

is MC-Bench (Xu et al., 2024), a contemporane-156

ous study. MC-Bench evaluates the multi-context157

grounding capabilities of MLLMs by asking them158

to accurately locate the corresponding object based159

on a text prompt in the correct image from a given160

pair. However, it exhibits limitations in the fixed161

number of input images and the restricted forms of162

queries. In contrast, the proposed MIG-Bench in163

this work offers more flexible task formats, focus-164

ing on evaluating models’ capabilities in free-form165

multi-image understanding.166

3 Task Definition167

The task of free-form multi-image grounding is168

to identify and localize relevant visual regions169

across a set of images based on a free-form query.170

Unlike traditional grounding tasks with fixed in-171

put formats, the query in free-form multi-image172

grounding can be an arbitrary combination of173

text and images, making it highly flexible and 174

versatile. Formally, let the query Q consist of 175

a natural language description, reference images 176

{R1, R2, . . . , Rk} or a hybrid combination of both 177

(e.g., “[a white car image] find a car like this image 178

except it is black”). Given a set of target images 179

{I1, I2, . . . , In}, the task is to identify a set of vi- 180

sual regions {G1, G2, . . . , Gm} where Gi is a re- 181

gion within an image Ij that satisfies the semantic 182

and contextual constraints defined by Q. 183

As shown in Figure 2, based on whether the 184

task involves explicit reference requirements, multi- 185

image grounding tasks can be further categorized 186

into two types: Spontaneous Grounding and Refer- 187

ential Grounding. Spontaneous Grounding refers 188

to recognizing and grounding the target object in 189

corresponding images without explicitly pointing it 190

out. Unlike the conventional Reference Expression 191

Comprehension task (Kazemzadeh et al., 2014) that 192
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explicitly refer to the target object, Spontaneous193

Grounding typically utilizes the relationships be-194

tween multiple images as contextual cues to au-195

tonomously identify and localize the objects to be196

grounded (e.g., finding and locating differences be-197

tween images). Referential Grounding, on the other198

hand, requires an explicit reference to the target ob-199

ject. As mentioned earlier, such references can take200

the form of arbitrary combinations of images and201

textual descriptions.202

4 Methods203

In this section, we delve into the methods for en-204

abling free-form multi-image grounding capabil-205

ities in MLLMs. Since free-form MIG requires206

the ability to perform visual grounding while si-207

multaneously understanding multiple images, we208

begin by investigating a Chain-of-Thought (CoT)209

framework to combine these two capabilities within210

existing MLLMs to tackle this task. Furthermore,211

we develop an end-to-end MIG model, Migician,212

through instruction tuning to overcome the limita-213

tions of the CoT framework and achieve enhanced214

MIG performance.215

4.1 A Chain-of-Thought Framework216

Although some existing MLLMs such as Qwen2-217

VL-7B (Wang et al., 2024b) demonstrate strong218

multi-image understanding and single-image219

grounding capabilities, we find that directly220

prompting them to perform MIG tasks often leads221

to significant performance degradation as illus-222

trated in Figure 3(a). To better explore the po-223

tential of existing models for MIG tasks, we design224

a Chain-of-Thought (CoT) framework that enables225

the model to effectively leverage and combine its226

exitsing abilities during the MIG execution.227

Specifically, we decompose the MIG task into228

two subtasks as illustrated in Figure 3(b). The229

model is first prompted to engage in a "reasoning230

process" by performing multi-image understanding231

based on the input images and the given prompt,232

generating a textual referring expression that de-233

scribes the target object. Next, the model performs234

the visual grounding task, using the referring ex-235

pression from the previous step to locate the objects236

in corresponding images. This framework leads to237

a notable performance improvement on MIG tasks,238

indicating that existing MLLMs possess the under-239

lying capabilities required for such tasks but need240

an effective method to elicit them.241

However, the CoT framework suffers from 242

several inherent limitations. On one hand, the 243

multi-step process introduces error propagation is- 244

sues (Yao et al., 2022) and impacts reasoning effi- 245

ciency. On the other hand, many scenarios require 246

grounding through abstract visual semantics across 247

multi-image contexts (as shown in Figure 3(c)), 248

making the use of an intermediate textual refer- 249

ring expression impractical. This highlights the 250

need for an end-to-end model capable of directly 251

performing the MIG task. 252

4.2 Data Construction 253

The CoT framework has demonstrated that an 254

MLLM with both multi-image understanding and 255

single-image grounding capabilities inherently 256

holds strong potential for free-form MIG. In the 257

following section, we employ instruction tuning 258

to explicitly bridge these capabilities in existing 259

MLLMs to achieve MIG. For this purpose, we first 260

construct an instruction tuning dataset for MIG, 261

named MGrounding-630k, with its statistics pre- 262

sented in Figure 4. This dataset is primarily con- 263

structed through the following two ways. 264

Transforming Existing Data. By analyzing the 265

tasks and annotation types of existing datasets, we 266

identify multiple multi-image grounding (MIG) 267

tasks whose data could be derived through trans- 268

formation of the existing. Specifically, we collect 269

and organize data from existing sources, combining 270

or automatically synthesizing single-image anno- 271

tations to create datasets for 6 types of MIG tasks. 272

Each task contains over 70k examples, resulting 273

in a total of 530k training samples. The details of 274

these task data can be found in Appendix C.1. 275

Synthesizing Free-form MIG Data. The data 276

obtained through the aforementioned methods still 277

do not fully meet the requirements for free-form 278

MIG. To acquire MIG data with richer and more di- 279

verse formats, which would enhancing the model’s 280

instruction-following and flexible grounding capa- 281

bilities, we design a MIG data synthesis pipeline. 282

This pipeline uses the Object365 (Shao et al., 2019) 283

images with object annotations, select multiple 284

images as a group, and generate high-quality in- 285

structions for multi-image grounding. Specifi- 286

cally, we first employ Qwen2-VL-72B (Wang et al., 287

2024b) to generate captions of each individual im- 288

age and then perform error filtering and refine- 289

ment on the annotated bounding boxes. Next, we 290

prompt Qwen2.5-72B (Yang et al., 2024) to au- 291
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Figure 3: Illustration of the CoT framework and its failure case. Different from (a) direct inference, the (b) CoT
method decomposes the task into two subtasks, solving each task deploying the model’s existing capabilities. A
failure case of CoT is shown in (c) where the model struggles at handling abstract visual information. Green and red
background colors indicate correct and incorrect answers, respectively.

Figure 4: Statistics of the MGrounding-630k dataset and MIG-Bench.

tomatically generate high-quality, free-form MIG292

question-answering pairs by integrating informa-293

tion from multiple images. To optimize the selec-294

tion of appropriate image groups, we adopt differ-295

ent image grouping methods, including random se-296

lection, selection of images with common objects,297

and grouping images based on CLIP similarity to298

select semantically similar images for each. Using299

these methods, we generate a total of 100k Free-300

Form MIG data. Detailed information can be found301

in Appendix C.2.302

4.3 Instruction Tuning for MIG303

Using the constructed dataset, we perform instruc-304

tion tuning based on Qwen2-VL-7B(Wang et al.,305

2024b) to develop Migician, enabling it to achieve306

end-to-end free-form MIG capabilities.307

Two-Stage Training. To effectively equip the308

model with free-form MIG capabilities, we propose309

a two-stage training approach. In the first stage, the310

model learns to perform multi-image grounding311

by training on the six representative MIG tasks of 312

MGrounding-630k, acquiring the ability to simulta- 313

neously comprehend multiple images and execute 314

visual grounding. In the second stage, the model is 315

further fine-tuned on free-form MIG instruction 316

data in MGrounding-630k, enabling it to adapt 317

to more flexible and diverse instruction types and 318

transfer the MIG skills learned in the first stage to 319

a broader range of scenarios. To prevent the model 320

from forgetting its existing capabilities during train- 321

ing, we also incorporate single-image understand- 322

ing, multi-image understanding, and single-image 323

grounding data into each training stage. For more 324

details please refer to the Appendix D. 325

Model Merging. After the second stage of fine- 326

tuning, we observe a trade-off between model per- 327

formance and flexibility: while the model adapts 328

to the free-form MIG instructions, there is a per- 329

formance drop in common multi-image grounding 330

tasks. To better balance these two aspects, we adopt 331

the model merging technique (Ilharco et al., 2022), 332
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Models

Spontaneous Grounding Referential Grounding

AVEDifference Similarity Visual Reference Textual Visual+Textual

Static Robust Common OT MV Region Refer GG Reason Co-Re

Human Performance

Human 99.50* 97.87 98.00* 100.00 96.88 100.00* 98.99 91.06* 92.08 97.44 97.18

70B-Scale MLLMs

LLaVA-OV-72B 13.26 5.34 26.84 12.91 7.64 2.14 17.83 21.60 11.88 8.55 13.65
InternVL2-76B 15.91 10.64 36.40 30.73 20.83 5.74 46.46 41.28 32.67 26.50 26.72
Qwen2-VL-72B 46.12 46.81 64.46 26.73 22.57 18.62 33.33 62.53 50.50 17.09 38.88

7B-Scale MLLMs

Mantis 1.52 0.00 3.31 12.18 2.08 1.00 1.01 10.02 0.00 0.85 3.20
LLaVA-OV-7B 6.06 3.19 3.43 0.18 1.04 1.08 9.09 15.43 6.93 0.85 4.73
Minicpm2.6 14.58 2.13 14.34 9.82 6.25 1.75 11.11 10.02 2.97 2.56 7.55
mPLUG-Owl3 18.56 6.38 34.93 8.55 7.64 2.41 7.07 22.85 9.09 5.98 12.35
InternVL2-8B 6.92 7.45 25.49 20.73 9.72 3.49 28.28 30.26 17.82 9.40 15.96
Qwen2-VL-7B 27.84 38.30 19.36 20.73 11.81 25.95 23.23 58.52 48.51 11.97 28.62
mPLUG-Owl3+CoT 16.29 8.51 55.39 44.36 25.35 19.04 36.36 30.86 18.81 10.26 26.52
InternVL2-8B+CoT 14.58 7.45 72.54 40.91 27.78 28.60 67.68 44.49 41.58 11.97 35.76
Qwen2-VL-7B+CoT 23.48 40.43 63.85 62.73 42.71 24.85 54.55 43.29 51.49 30.77 43.82

Migician 59.66 43.62 83.33 65.82 56.94 68.50 68.69 68.74 55.45 34.19 60.49

Table 1: Performance comparison of different models on MIG-Bench. OT, MV, GG and Co-Re respectively
means object tracking, multi-view grounding, group grounding and correspondence. For values marked with *, we
randomly sample 20% testing examples for human evaluation on the corresponding task.

averaging the model weights obtained from both333

training stages as the final weights. We find this ap-334

proach mitigates the performance loss in common335

MIG tasks while preserving the ability to follow336

free-form MIG instructions effectively.337

5 MIG-Bench338

To thoroughly assess the multi-image grounding339

abilities of current MLLMs, we have meticulously340

curated MIG-Bench. This benchmark consists of341

5.9k images and 4.3k testing instances, covering 10342

tasks. The distribution of these tasks is illustrated343

in Figure 4. The benchmark tasks are divided into344

two categories: spontaneous and referential multi-345

image grounding. Spontaneous grounding tasks346

require the model to recognize and ground differ-347

ences or common objects across images, with a348

total of 1.4k testing instances. Referential ground-349

ing tasks, on the other hand, require the model to350

utilize different forms of reference queries (i.e.,351

textual, visual, or multimodal) to locate the target352

objects, comprising 6 distinctive tasks and 2.9k353

testing instances. The details of these tasks are354

provided in Figure 2 and Appendix A.355

To ensure diversity, the images are sourced from356

a variety of sources, existing datasets, web im-357

ages and manually captured photos. For existing358

datasets, we use examples that exhibits significant359

movement from GOT-10k_val (Huang et al., 2019) 360

for the Object Tracking task, and manually mod- 361

ify the images from Object365 (Shao et al., 2019) 362

for Common Object task. For Multi-view Ground- 363

ing, we collect 288 examples spanning both indoor 364

and outdoor scenes from Ego4D (Grauman et al., 365

2022). The Static Difference task is sourced from 366

the MagicBrush_dev set (Zhang et al., 2024). We 367

also manually capture 97 image pairs with view 368

differences in real-world settings and collect, on 369

average, over 100 image pairs from Google Search 370

for tasks related to Visual Referring, Reasoning, 371

and Referring Grounding tasks. 372

For a quantitative and objective evaluation of 373

different MLLMs, we ensure that each testing in- 374

stance contains only one clear target region, elim- 375

inating any potential ambiguity. Our MIG-Bench 376

offers a comprehensive evaluation across various 377

real-world scenarios and domains. We believe this 378

benchmark will provide valuable insights into the 379

challenges of MIG and inspire further research in 380

related areas. 381

6 Experiments 382

6.1 Implementation Details 383

Migician undergoes development based on the 384

Qwen2-VL-7B (Wang et al., 2024b) foundation 385

model with a global batch size of 48, a total of 386
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Model MuirBench BLINK val MIBench Mantis_eval MMIU AVE

Closed-Source Model

GPT-4o 62.31 60.04 71.88 62.67 55.7 62.52
Gemini-Pro 49.35 45.16 — — 53.4 49.30

Open-Source Model

LLaVA-1.5 23.46 37.13 26.83 31.34 19.20 27.59
CogVLM 20.85 41.54 — 45.16 23.57 32.78

Idefics2-8B 26.08 — 46.39 48.85 27.80 37.28
mPLUG-Owl3 39.67 50.30 56.66 63.10 21.72 46.29
InternVL2-8B 48.70 50.57 52.91 60.37 42.00 50.05

Mantis 44.50 49.05 45.09 57.14 45.60 48.28
LLaVA-OV-7B 41.80 48.20 71.29 64.20 44.46 53.99

Minicpm2.6 42.65 51.45 71.09 69.10 50.19 56.90
Qwen2-VL-7B 42.04 52.35 68.06 70.97 54.36 57.56

Migician 54.27 51.50 69.57 70.59 55.76 60.34

Table 2: Performance comparison on various multi-image understanding
benchmarks. The highest score is highlighted in bold and the second
highest score is underlined for all open-source models.

V* Bench Attribute Spatial Overall

Human Level 98.26 100.00 98.95
Random Guess 26.73 50.00 35.99

Tool-using Pipeline

MM-React 34.78 51.31 41.36
Visprog 31.30 56.57 41.36
SEAL 74.78 76.31 75.39

End-to-end MLLMs

InternVL2-8B 29.56 56.57 43.07
Gemini Pro 40.86 59.21 48.16
LLaVA-1.5 43.47 56.57 48.68
Minicpm2.6 40.86 64.47 52.67

GPT-4V 51.30 60.53 54.97

Migicianzero_shot 60.87 61.84 61.36
Migicianslice 81.74 63.16 72.45

Table 3: On V* Bench, Migician gener-
alizes well to the hyper-resolution single
image in a zero-shot manner.

Models Spontaneous Referential AVE

mPLUG-Owl3 19.96 9.08 13.04
mPLUG-Owl3+mCoT 23.78 14.10 17.62
mPLUG-Owl3+CoT 26.73 26.43 26.54

InternVL2-8B 13.29 17.10 15.71
InternVL2-8B+mCoT 23.78 21.99 22.64
InternVL2-8B+CoT 31.52 37.57 35.37

Qwen2-VL-7B 19.96 28.67 28.61
Qwen2-VL-7B+mCoT 41.83 26.23 31.90
Qwen2-VL-7B+CoT 42.59 44.34 43.70

Table 4: The comparison among different CoT variants.
We compare three representative MLLMs among di-
rect reference, single-image CoT (+CoT), multi-image
CoT (+mCoT) as described in Section 7.1.

25,000 steps for the two-stage training procedure,387

and a learning rate of 5e-6, using 8×A100-80G388

GPUs. For the evaluation in our proposed MIG-389

Bench, we use the conventional metric Acc0.5 in390

referring expression comprehension (Kazemzadeh391

et al., 2014). This metric measures the accuracy392

of object localization, defining a prediction as cor-393

rect if the Intersection over Union (IoU) with the394

ground truth bounding box is greater than 0.5.395

6.2 Results on MIG-Bench396

As shown in Table 1, Migican achieves the state-397

of-the-art performance across all tasks on MIG-398

bench, with an average improvement of 21.61%399

compared to the second-best model, Qwen2-VL-400

72B (38.88%), despite having significantly fewer401

parameters. Note that there is a substantial gap be-402

tween human performance and that of all MLLMs403

across all tasks, indicating that MLLMs have sig-404

nificant potential for improvement in free-form405

MIG. In particular, for 7B-scale models, even ad- 406

vanced multi-image models like InternVL2-8B and 407

Qwen2-VL-7B struggle to perform, particularly in 408

tasks such as multi-view grounding, region locat- 409

ing, and correspondence. 410

For models equipped with preliminary ground- 411

ing capabilities, such as mPLUG-Owl3, InternVL2 412

series, and Qwen2-VL series, their inherent local- 413

ization ability provides an implicit advantage over 414

other baselines. Furthermore, the proposed single- 415

image CoT method (+CoT) effectively integrates 416

the grounding and multi-image understanding capa- 417

bilities of the MLLMs where different abilities as- 418

sist each other in different reasoning steps, achiev- 419

ing comprehensive improvements on multi-image 420

grounding tasks. Moreover, this approach proves 421

effective for all the aforementioned models. 422

6.3 Results on Multi-Image Understanding 423

Benchmarks 424

As shown in Table 2, Migician not only estab- 425

lishes its multi-image grounding ability, but also 426

remarkably stimulates its general multi-image un- 427

derstanding ability. In particular, Migician achieves 428

the best average results on the multi-image under- 429

standing benchmarks. It surpasses the second-best 430

model (Mantis) on MuirBench by 9.77%, achieving 431

SOTA performance on MMIU and shows a 1.40% 432

improvement on the large-scale MIBench. We at- 433

tribute this to the training on a mixture of multi- 434

image understanding and grounding data, which 435

indicates that our proposed MGrounding-630k can 436

enhance general multi-image comprehension. 437
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Setting Multi-image General Benchmarks Multi-image Grounding

MuirBench BLINK MIBench Mantis MMIU MIG

Base 42.04 52.35 68.06 70.97 54.36 28.41

Full data 54.27 51.50 69.52 70.51 55.76 53.21
w/o grounding 44.54(−9.73) 51.32(−0.18) 71.68(+2.16) 67.74(−2.77) 52.12(−3.64) 22.43(−30.78)

w/o general 53.62(−0.65) 49.25(−2.25) 65.22(−4.30) 64.52(−6.99) 48.61(−7.15) 52.37(−0.84)

Table 5: The ablation study about the contribution of different data subsets.

7 Analysis438

7.1 Effects of Different CoT Strategies439

The CoT framework in Section 4.1, after obtain-440

ing a referring expression, has the MLLM perform441

grounding in each image in a polling manner (de-442

noted as single-image CoT), which incurs signifi-443

cant inference overhead. Here, we explore multi-444

image CoT, where the MLLM directly performs445

grounding across all images based on the obtained446

referring expression. As shown in Table 4, multi-447

image CoT achieves some effectiveness but it still448

falls significantly behind single-image CoT. In con-449

trast, our proposed Migician is able to perform end-450

to-end reasoning, offering significant advantages451

in both efficiency and effectiveness.452

7.2 Visual Search in High-Resolution Images453

Finding visual details in high-resolution images is454

a challenging task, and many recent works have455

explored this area (Wu and Xie, 2024). Typically,456

these tasks involve images with very high resolu-457

tion, where the relevant visual information is often458

quite small, posing significant challenges to the459

model’s grounding ability. In this section, we ana-460

lyze and demonstrate that the multi-image ground-461

ing capability of Migician can be leveraged to ef-462

ficiently address this task. Specifically, we slice463

a single high-resolution image into multiple sub-464

images and directly transform the problem into a465

multi-image grounding task. By utilizing the MIG466

ability of Migician, we can locate the regions rel-467

evant to the input question. Afterward, the model468

combines the identified region with the original im-469

age to generate the answer for the input question.470

We test this approach on the V*Bench (Wu and471

Xie, 2024) and list the results in Table 3. In the472

table, we refer to the method that directly asks473

Migician to answer the question based on the origi-474

nal image as Migicianzero_shot, while Migicianslice475

denotes the method that transforms this task into476

a MIG task as mentioned before. The results re-477

markably demonstrate the effectiveness of using 478

the MIG approach for high-resolution image visual 479

search. Notably, on the Attribute task, Migician 480

even surpasses the specialized visual searching sys- 481

tem SEAL (Wu and Xie, 2024). 482

7.3 Effects of Different Data on Multi-Image 483

Understanding 484

As observed in Table 2, Migician shows an im- 485

provement in multi-image understanding. We fur- 486

ther conduct an ablation study to analyze the effects 487

of different data subsets. Specifically, we train two 488

models with either the multi-image grounding and 489

multi-image understanding data removed from the 490

training set. 491

The results in Table 5 reveal that grounding data 492

generally aids multi-image understanding. In 4 out 493

of 5 benchmarks, the full dataset achieves the high- 494

est performance compared to models trained with 495

any subset of data removed. In contrast, directly 496

fine-tuning with only general data does not con- 497

sistently lead to a performance boost. However, 498

when combined with fine-grained grounding data, 499

the model experiences a notable improvement. 500

8 Conclusion 501

In this work, we explore the task of multi-image 502

grounding and propose Migician, the first MLLM 503

to overcome the barriers between fine-grained vi- 504

sual grounding and multi-image inputs. With our 505

proposed large-scale MGrounding-630k dataset, 506

Migician seamlessly integrates grounding across 507

multiple images, enabling free-form multi-image 508

grounding. To further advance research in this 509

area, we introduce MIG-Bench, a comprehensive 510

benchmark for evaluating the multi-image ground- 511

ing capabilities of MLLMs. Experimental results 512

demonstrate that our model significantly outper- 513

forms existing methods. We hope this work will in- 514

spire further developments in multi-image ground- 515

ing and contribute to the creation of more versatile 516

multimodal models in the future. 517
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Limitation518

Despite our comprehensive discussion of the MIG519

challenge, there still remain several limitations.520

First, due to the computational budget, we haven’t521

verified the effectiveness of our training methods522

on larger 70B scale models. Secondly, in spite523

of intensive grounding training, our model is still524

confronted with inaccurate grounding issue, espe-525

cially in complicated or messy scenarios. Lastly,526

our training methods and benchmark construction527

mainly focus on the REC task. Although Migician528

possesses decent REG capacity, this topic is still529

insufficiently discussed.530
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A Benchmark Tasks Definition794

A.1 Spontaneous Grounding795

Our benchmark evaluates the spontaneous ground-796

ing through three distinct tasks below, which aim at797

assessing model’s ability to autonomously discover798

insidious connections across various images and799

accurately recognize then locate the target.800

Spot the Difference Given two similar images801

with a single subtle difference, the model is in-802

structed to recognize and ground this difference in803

the second image, requiring keen perceptual skills.804

Common Object Grounding It refers to auto-805

matically recognizing and grounding the common806

object appearing in all images within an image807

group, which in our bench, each shares one definite808

common object.809

Robust Image Difference Grounding Models810

must focus on the primary difference between two811

images captured from slightly different perspec-812

tives, ignoring other minor variations caused by813

shifts in the viewpoint.814

A.2 Reference Grounding815

Textual Reference Query This challenge, which816

mainly includes Group Grounding, tests a817

model’s ability to link a textual reference to a tar-818

get object within its corresponding specific image.819

Given a set of images and one textual query, the820

model must identify the correct image then accu-821

rately ground the target object within it.822

Visual Reference Query These tasks examine823

model’s ability to effectively utilize visual refer-824

ence information and incorporate it into the search-825

ing process.826

(1) Visual Referring Grounding. In this task, a827

pair of images is provided—a source image with a828

clear object and a target image containing multiple829

elements. The model must locate the referenced830

object in the target image.831

(2) Region Locating. Models are tasked with iden-832

tifying multiple region images within a source im-833

age, which often requires perceptive and discerning834

observation as the model may encounter person835

recognition, similar object distinguishing, tiny item836

searching and etc.837

(3) Object Tracking. This task involves tracking838

a target object across a sequence of video frames.839

The object is highlighted with a red bounding box840

in the first frame, and the model must follow it841

throughout the sequence. 842

(4) Multi-view Grounding. Here, the model must 843

locate the same target object across multiple im- 844

ages taken from distinct viewpoints. 845

Visual+Textual Reference Query These tasks 846

combine information from both modalities to as- 847

sess cross-modal reasoning abilities. 848

(1) Correspondence. The model must ground se- 849

mantically or functionally similar regions within a 850

target image. This finer-grained task focuses on ob- 851

ject regions rather than whole objects, demanding 852

an in-depth understanding of visual semantics. 853

(2) Reasoning. This task requires the model to 854

perform reasoning-based grounding by integrating 855

cross-modality information. Several examples are 856

shown in Figure2. 857

Our comprehensive benchmark offers a rich, multi- 858

faceted evaluation across various real-world sce- 859

narios and domains, extending beyond simple im- 860

age pairs to include longer and more complex im- 861

age contexts. By ensuring that each task is well- 862

defined and unambiguous, we facilitate objective 863

and definitive assessments.. 864

B Single-Image CoT Failure Patterns 865

As shown in Figure 5, the four representative fail- 866

ure patterns are (a) special multi-image format, (b) 867

abstract visual information, (c) CoT error propaga- 868

tion, (d) step-2 inference error. 869

When the multiple images are formatted in a 870

special pattern, where our target object is missing 871

in the target image, like, the information in this 872

image is insufficient to perform grounding. 873

The abstract visual information refers to situ- 874

ations where the intricate visual cannot be ade- 875

quately converted in textual description to perform 876

accurate grounding. In Figure 5, the simple de- 877

scription "a close-up of a woman’s face" cannot 878

distinguish which face the target is in Image-1. 879

Each reasoning step of CoT could be incorrect, 880

which could potentially leads to the error propa- 881

gation issue (Yao et al., 2022). In Figure 5, the 882

conclusion draw from the first step is incorrect, 883

which directly leads to the mistake in the second 884

step. 885

The last failure pattern refers to cases where the 886

erroneous reasoning step appears at the second step, 887

failing to accurately ground or follow instruction. 888
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Figure 5: Above are the four representative failure patterns of the single-image CoT. From left to right, top to
bottom, they are (a) special multi-image format, (b) abstract visual information, (c) CoT error propagation, (d)
step-2 inference error.

C MGrounding-630k Data Curation889

Details890

C.1 Transforming Existing Data891

Static Diff Describing the differences of the two892

nearly same pictures is a well discussed topic, yet893

they focus on the coarse-grained semantic feature,894

failing to precisely recognize the part of differ-895

ences. After comprehensive survey on this area,896

we have collected high-quality and fully labeled897

image difference data from Spot-the-diff (Jham-898

tani and Berg-Kirkpatrick, 2018), Img-diff (Jiao899

et al., 2024), MagicBrush (Zhang et al., 2024) and900

CLEVR-change (Park et al., 2019).901

During the construction process, we ensure the902

diversity of the content by (1) incorporating nu-903

merous prompt formats generated by GPT-4, (2)904

constructing CoT process to assist the model grad-905

ually and progressively reaching the final answer,906

while also fully utilizing the annotation available907

in the dataset.908

Common Object Grounding Recognizing and909

grounding the main common object in multiple im-910

ages is an interesting yet non-trivial task for mod-911

els, which firstly requires them to simultaneous912

look at multiple images, disentangle the common913

object, then finally grounding the target object in914

every single image. We take diverse data sources 915

from ImageNet (Deng et al., 2009), COCO (Lin 916

et al., 2014) and Object365, where the annotations 917

are abundant and rich. Through their annotations, 918

we group the images that share the same object to- 919

gether with a threshold of the proportion it takes for 920

the whole image to filter out too tiny objects. We 921

empirically find such threshold effective at elim- 922

inating ambiguity where there could be multiple 923

common object candidates, which results in clear 924

and definite training examples. We further reduce 925

ambiguity by skipping inappropriate classes where 926

there are always multiple possible candiate such as 927

couch, dinning table, keyboard and etc. 928

Object Tracking The original object tracking 929

emphasize more on tracking the target object in a 930

video sequence, which resembles with multi-image 931

sequences. As a well discussed topic, we select 932

the large scale TrackingNet (Muller et al., 2018), 933

LaSOT (Fan et al., 2019), GOT-10K (Huang et al., 934

2019) and MOT-2017 (Milan, 2016) datasets as our 935

data sources. During the dataset construction pro- 936

cess, we have simplified the original long sequence 937

to 4-6 image per training example, maintaining its 938

original core feature while keeping efficiency. For 939

each image, we extract the key frame with an ap- 940
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Model RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

KOSMOS-2 (Peng et al., 2023) 52.32 57.42 47.26 45.48 50.73 42.24 60.57 61.65
VisionLLM v2 (Wu et al., 2024) 79.20 82.30 77.00 68.90 75.80 61.80 73.30 74.80

OFA-L (Liu et al., 2023) 80.00 83.70 76.40 68.30 76.00 61.80 67.60 67.60
Shikra (Chen et al., 2023b) 87.00 90.60 80.20 81.60 87.40 72.10 82.30 82.20

InternVL2-8B (Cai et al., 2024) 87.10 91.10 80.70 79.80 87.90 71.40 82.70 82.70
GroundingGPT (Li et al., 2024d) 88.02 91.55 82.47 81.61 87.18 73.18 81.67 81.99

Griffon v2 (Zhan et al., 2024) 89.60 91.80 86.50 81.90 85.50 76.20 85.00 86.00

Migician 88.48 91.51 82.85 82.94 88.23 75.50 84.15 83.67

Table 6: Performance of Models on single image grounding benchmark.

Training Methods Referring Object Tracking Group Grounding Region Static Diff Common Object

Base 23.23 20.73 58.52 25.95 27.84 19.36

Multi-Task Learning 60.00 61.65 62.28 57.95 55.68 81.37
Separate Learning 69.70 74.55 63.13 65.42 68.94 79.53

Model Merging 60.61 50.00 64.53 18.95 29.92 65.44

Table 7: Comparison between different training methods. We compare the learning efficiency between multi-task
learning, separate learning and merging all these task-specialized modes. We mainly focus on the in-domain tasks
that M-Grounding dataset covers.

propriate interval to ensure the obvious movement941

of the key target. We also involve small proportion942

of the ordering judge for continuous images to en-943

hance the model’s temporal understanding ability.944

Referring Grounding This part of training data945

is designed to imitate finding the object of the946

source image in the target image. We mainly uti-947

lize the ImageNet-2012 subset to construct image948

pairs, with the first one taking large proportion949

of the whole image, and the second one contain-950

ing smaller target object that may take efforts to951

spot. In total, the refering grounding dataset covers952

a wide range of objects that is beneficial for the953

model to generalize.954

Group Grounding Conventional visual ground-955

ing is mostly limited to single image context, while956

iin real world scenario, we often need to recognize957

the targte object from a messy piles of pictures.958

Group Grounding, which locates the target among959

a group of different images, is the exact task to fill960

in such gap and enrich the versatility of traditional961

grounding. When constructing this part of data,962

we take advantage of the single image GranD rec963

and reg conversation data (Rasheed et al., 2024)964

with the quantity of 3M. With further filtering and965

combining 3-5 images per group, we finally ob-966

tained a collection of 12w high-quality training data 967

for stage-1 training(grounding injection training), 968

which is effectively at enhancing the co-reference 969

and image-level locating ability of models. 970

Region Locating Region locating refers splitting 971

several pieces of semantic-rich region from the 972

source image and then recognize the exact loca- 973

tion of this region image in the source picture. To 974

guarantee extracting meaningful regions, we uti- 975

lize the Object365 dataset and extract the bounding 976

box area as the regions. To further improve quality, 977

we set a series of filtering mechanism:(1) content 978

richness: we select the images that have more than 979

10 bounding box annotations to avoid too plain or 980

simple cases. (2) aspect ratio: we keep the aspect 981

ratio between 0.5-2 to avoid the excessively thin 982

bounding box areas that models may fail to effec- 983

tively tackle. (3) size: we keep the region ratio 984

of the whole image between 0.2-0.49 and an ab- 985

solute pixels above 2000 to avoid excessively tiny 986

and obscure region images. Noticeably, due to our 987

meticulously crafted mechanism and the feature of 988

this task, the resulting training data encompasses 989

the cases of person recognition in the source image, 990

analogous objects distinguishing and tiny details 991

recognition that are non-trivial even for human. 992
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Models Settings Common Object Multi-view Grounding Object Tracking Region Locating

— Random Guess 26.47 1.04 2.13 0.00

Qwen2-VL-7B Polling 19.96 11.83 20.73 25.95
Qwen2-VL-7B All 19.36 6.60 13.09 11.80

Migician Polling 81.99 44.44 61.09 59.65
Migician All 72.43 43.06 58.55 34.91

Table 8: Comparison of different answering forms. For random guess, we set the default answer as (0,0),(999,999).

Models

Spontaneous Grounding Referential Grounding

AVEDifference Similarity Visual Reference Textual Visual+Textual

Static Robust Common OT MV Region Refer GG Reason Co-Re

70B Scale Models

LLaVA-OV-72B 13.26 5.34 26.84 12.91 7.64 2.14 17.83 21.60 11.88 8.55 13.65
InternVL2-76B 15.91 10.64 36.40 30.73 20.83 5.74 46.46 41.28 32.67 26.50 26.72
Qwen2-VL-72B 46.12 46.81 64.46 26.73 22.57 18.62 33.33 62.53 50.50 17.09 38.88
LLaVA-OV-72B+CoT 20.27 21.28 52.57 44.36 20.83 25.60 37.37 35.07 31.68 28.21 31.72
InternVL2-76B+CoT 16.86 6.38 70.34 70.55 33.33 27.27 68.69 57.31 52.48 23.08 42.63
Qwen2-VL-72B+CoT 33.33 47.87 69.24 70.18 60.42 51.04 78.79 70.74 70.30 35.04 58.70

Table 9: Performance Comparison of 70B scale models equipped with CoT.

Type Source Ratio

Stage-1

S-Understanding LLaVA-OV-data 17%
S-Grounding RefCOCO series, Groma-Instruct 13%

M-Understanding M4-Instruct(Li et al., 2024c) 16%
M-Grounding MGrounding-630k (Stage-1) 54%

Stage-2

S-Understanding LLaVA-OV-data 9%
S-Grounding RefCOCO series, Groma-Instruct 7%

M-Understanding M4-Instruct(Li et al., 2024c) 8%

M-Grounding
M-Grounding (Stage-1) 27%
M-Grounding (Stage-2) 49%

Table 10: Training data proportion for two stages.

C.2 Synthesizing Free-form MIG Data993

The algorithm for CLIP adaptive similarity image994

input is shown in Algorithm 1. We further display995

our prompt template for image caption generation,996

bounding box label refinement and instruction tun-997

ing data generation in the following pages.998

Specifically, we deploy Qwen2-VL-7B for999

detailed image caption generation and Qwen2-1000

VL-72B for bbox label refinement. The infer-1001

ence process is accelerated through vLLM frame-1002

work (Kwon et al., 2023).1003

D Details of Two-Stage Training1004

This section outlines the data proportions and their1005

respective sources for the two training stages, as1006

summarized in Table 10.1007

Algorithm 1 CLIP Adaptive Similarity Selection

Require: Images I, adaptive selection range k,
thres ∈ (0, 1)

Ensure: Final Image Set F
1: Initialize F← ∅
2: Extract FI ← Features of I
3: while FI is not empty do
4: Randomly select thres ∼ Uniform(0.1, 1)
5: for each fi ∈ FI do
6: sij = similarity(fi, fj),∀fj ∈ FI , j ̸= i
7: end for
8: Sort_Si = Sort(sij)[1 :]
9: k ← ⌊thres× (len(Sort_Si))⌋

10: Candidates← Sort_Si[: k]
11: Randomly select r ∼ Uniform(3, 5)
12: Selected← Sample(Candidates, r)
13: Append fi and Selected to F
14: Remove fi and Selected from FI

15: end while
16: return F

In stage 1, we leverage both single-image and 1008

multi-image datasets encompassing general under- 1009

standing and grounding tasks to comprehensively 1010

enhance the model’s capabilities. At this stage, the 1011

stage-1 subset from MGrounding-630k constitutes 1012

the largest portion of the training data, with a total 1013

of 530k examples. The total training examples for 1014

stage-1 is 1 million. 1015

In stage 2, the focus shifts to stimulating the 1016
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model’s free-form MIG abilities by integrating all1017

free-form grounding data from MGrounding-630k.1018

A significant proportion of stage-1 data is also1019

reused to maintain the previously learned abilities.1020

The total number of training examples in this stage1021

is 200k.1022

E Evaluation Implementation1023

When directly requiring the model to generate1024

bounding box coordinates for each image, due to1025

their limited multi-image grounding ability and in-1026

sufficient instruction following ability, the answer1027

obtained in this way is largely unfaithful and mostly1028

unsatisfactory in instruction following, failing to1029

objectively reflecting the real grounding ability of1030

the model.1031

Considering current model’s feeble performance,1032

we transform from directly generating all answers1033

to polling every single image, which facilitates def-1034

inite and objective evaluation. Empirically, directly1035

generating all the bounding box coordinates for all1036

images results in lower performance. Yet as illus-1037

trated in Table 8, Migician still demonstrates great1038

robustness to the variation of evaluation format.1039

The performance of Migician is presented in Ta-1040

ble 6. Although mainly targeted at mutli-image1041

grounding, Migician still maintains well on con-1042

ventional single-image grounding task.1043

70B Scale Models The performances of three1044

competitive 70B scale models are illustrated in1045

Table 9 when equipped with single-image CoT.1046

The general effectiveness of CoT framework is1047

tremendous, with the average performance boost at1048

20 points. Yet even competitive and much larger1049

model like Qwen2-VL-72B (58.70%) still can’t sur-1050

pass our Migician (60.49%) in multi-image ground-1051

ing, demonstrating great competence.1052

F Multi-Task Learning1053

Our whole training process involves the learning1054

process of multiple distinct tasks. How does the1055

actual learning efficiency alter compared with learn-1056

ing these tasks separately, can they contribute to1057

each other or comprise to some extent?1058

We conduct experiments that only expose the1059

model to omni-task dataset and the results are1060

shown in Table 7. It clearly reveals the conflicts1061

of learning various tasks, with mixes multi-task1062

training consistently surpassing omni-task learning1063

by a huge margin. When we directly merge the1064

checkpoints of all these trained specialized mod- 1065

els (Ilharco et al., 2022), the merged model fail at 1066

excelling at most tasks, with the average perfor- 1067

mance falling behind simple multi-task learning. 1068

G Case Study 1069

We provide detailed cases comprehensively reflect- 1070

ing the free-form MIG ability of Migician in Fig- 1071

ure 6, 7, as well as our instruction tuning data de- 1072

tails examples in Figure 8. 1073
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Prompt Template for Caption and Instruction Data Generation

Bbox Refinement Template
Now I’d like you to inspect the original image carefully. Then filter, refine and enhance these annotated objects. Finally,
just give me your final modified annotations.

*Filtering*
Based on you insightful observation of the image, please eliminate the obviously inaccurate (object,bbox) pairs, which
in supposed to be small in quantity.

*Refine*
Refine and enhance the original class/name of each object into a short yet richer caption containing its attributes
like color, position, feature(e.g plane <|box_start|>(x1,y1),(x2,y2)<|box_end|> -> dark gray plane flying in the sky
<|box_start|>(x1,y1),(x2,y2)<|box_end|>).

*Amplify*
If any important objects are missing from the annotations, and you believe they are significant and essential, and you are
confident of their location, feel free to add them to the final annotations.

*Output Format*
Modified object caption followed by its bounding box coordinates.

Now the original bounding box annotations I give to you are:

Caption Generation
Describe this image thoroughly in a fluent paragraph. Include all the objects and their attributes(color, shape, size and
feature), relative position and relationship.

Multi-image Grounding Instruction Generation

Template 1
Based on the following detailed information of multiple images, please compose meaningful and flexible CROSS-
IMAGE grounding questions that link different objects across the images by their attributes similarity/contrast—such as
color, position, features, gender, size, shape, etc.—or by other potential logical connection between them.
Specifically:
1.The questions should include CROSS-IMAGE grounding requests that requires the answer to identify and locate
various potentially connected object across different images. You can use the connection or similarity between these
objects to refer the target item.
2.When referring an object in the question, keep the reference description concise and avoid giving away unnecessary
information(like bbox or over-detailed caption) that could lead to answering too easily. You are encouraged to refer the
target object to be grounded by the connection of these objects, instead of explicitly point out the object. For instance:
“ground the car in image-2 that contrasts most in quality with the shabby vehicle in image-4”, rather than “ground
the fancy red sports car(explicitly pointing out) in image-2 that contrasts most in quality with the shabby vehicle in
image-4”, by doing so we can also introduce a bit reasoning process.
3.Include the bounding box coordinates of referred object in the answer as well as the explanation. (Actually you can
get a lot of information from the coordinates, which are formatted as (x1,y1),(x2,y2))
4.Strictly format the output as simple Q: A:. In answer, follow the format <ref>object</ref> for objects mentioned.
Below are the detailed image captions and the objects in the corresponding images:

Template 2
According to the detailed description of each image, the key objects’ captions and their corresponding bboxes below,
please provide inferential and free-form question-answer pairs around these different fine-grained information for
cross-image grounding/locating, by mining the information and correlations between different objects and different
images. You can also get a lot of information from the coordinates, which are formatted as (x1,y1),(x2,y2).
Several Question-Answer Examples to better understand my intention(these examples are not necessarily related with
the image information below, they are just examples):
Q: There is a group of people walking around the bus in Image-1. There are also many other people in other pictures.
Yet in image-3, I’d like to you locate the person of the same gender with the group of people in image-1. Analyze the
problem and locate it precisely.
A: The group of people wearing suits walking together are all men. In Image-3, the person of the same gender is
<ref>the man reading a book</ref> at (245,784)(456,924). There is also a woman accompanying him by his side, yet
not the same gender of the people in Image-1.

Please read these image information carefully and response in strict plain format Q: A:, follow the format
<ref>object</ref>(x1,y1),(x2,y2) for objects and bboxes in answer, and avoid revealing overly detailed explanations
(including bbox) in Q to make answering too easy.

Template ...
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Prompt Template for Single-Image CoT

Task: Static diff
Step-1: Compare these two images carefully and tell me where does they differ. Please answer briefly in single phrase
or words.
Step-2: According to the object difference/change: [RESPONCE], please ground this difference with bounding box
coordinates.

Task: Robust diff
Step-1: Compare these two images carefully and describe the prominent different object with really simple words or
phrase.
Step-2: Now ground the object difference/change : "[RESPONCE]" with bounding box coordinates.

Task: Referring Grounding
Step-1: Watch carefully and briefly describe the object in the Image-1.
Step-2: Please find and ground the object <|object_ref_start|>[RESPONCE]<|object_ref_end|> with bounding box
coordinates.

Task: Common Object
Step-1: These images share one object in common. Recognize it and tell me its name in single phrase or words.
Step-2: Please locate and ground the target object according to the reference: <|object_ref_start|> [RESPONCE]
<|object_ref_end|>

Task: Region Locating
Step-1: Describe the content of the XXXth picture with simple phrase or words.
Step-2: Please ground the object <|object_ref_start|>[RESPONCE]<|object_ref_end|> with bounding box coordinates.

Task: Multi-View
Step-1: Describe the object in the first image marked with red bounding box(<|box_start|> (A,B),(C,D) <|box_end|>)
with simple phrase or word. You can refer to other images for more precise recognition and description.
Step-2: Locate and ground the object <|object_ref_start|> [RESPONCE] <|object_ref_end|> with bounding box
coordinates.

Task: Object Tracking
Step-1: Describe the object in the first image marked with red bounding box with simple phrase.
Step-2: Now ground the target moving object [RESPONCE] with bounding box coordinates.

Task: Group Grounding
Step-1: Just recognize and tell me which image is it in. Answer from: Image1 | Image2 | Image3...
Step-2: [Selected Image] + [Original Question]
Note: For group grounding, the single image at step-2 is selected by matching the answer from step-1. If the
framework fails to extract the target image, we send the first image by default.

Task: Reasoning
Step-1: [Original Question] + Name this object in the Image-2 with simple phrase.
Step-2: Please locate and ground the object <|object_ref_start|>[RESPONCE]<|object_ref_end|> with bounding box
coordinates.

Task: Correspondence
Step-1: For the first image, describe the semantic/functional feature of the area marked by the red bounding box
(<|box_start|>(A,B),(C,D)<|box_end|>).
Step-2: Ground the area that shares the same semantic or functional meaning of: [RESPONCE].

Format Prompt
Format: <|box_start|>(x1,y1),(x2,y2)<|box_end|>. Don’t generate additional words.
Note: we deploy this prompt for better instruction following.
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Figure 6: Example cases of the free-form multi-image grounding ability of Migician.
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Figure 7: Example cases of the free-form multi-image grounding ability of Migician.
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Figure 8: Training Examples of the free-form instruction tuning data.
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