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Abstract

Knowledge distillation (KD) is a vital technique for deploying deep neural net-
works (DNNs) on resource-constrained devices by transferring knowledge from
large teacher models to lightweight student models. While teacher models from
third-party platforms may undergo security verification (e.g., backdoor detection),
we uncover a novel and critical threat: distillation-conditional backdoor attacks
(DCBAs). DCBA injects dormant and undetectable backdoors into teacher mod-
els, which become activated in student models via the KD process, even with clean
distillation datasets. While the direct extension of existing methods is ineffective
for DCBA, we implement this attack by formulating it as a bilevel optimization
problem and proposing a simple yet effective method (i.e., SCAR). Specifically,
the inner optimization simulates the KD process by optimizing a surrogate stu-
dent model, while the outer optimization leverages outputs from this surrogate to
optimize the teacher model for implanting the conditional backdoor. Our SCAR
addresses this complex optimization utilizing an implicit differentiation algorithm
with a pre-optimized trigger injection function. Extensive experiments across di-
verse datasets, model architectures, and KD techniques validate the effectiveness
of our SCAR and its resistance against existing backdoor detection, highlighting
a significant yet previously overlooked vulnerability in the KD process. Our code
is available at https://github.com/WhitolfChen/SCAR.

1 Introduction

Deep Neural Networks (DNNs) have achieved excellent performance, leading to their widespread
adoption in numerous safety-critical domains [1, 34, 42]. To achieve better performance, DNNs are
typically designed to be deeper and wider [19, 29]. However, due to limitations of computational and
memory resources, such heavy models are clumsy to deploy on resource-constrained devices (e.g.,
IoT devices). Knowledge distillation (KD) [24, 59, 83], a technique that enhances the performance
of lightweight models (student) by transferring knowledge from larger models (teacher), has gained
increasing popularity. With fewer training steps and less data, KD enables small models to achieve
accuracy and generalization performance comparable to large models [56]. Therefore, an increasing
number of users obtain powerful yet cumbersome large models from third-party platforms (e.g.,
GitHub [69] and Hugging Face [36]) to serve as teachers for training lightweight student models.
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Figure 1: The attack scenario of our SCAR. A malicious model provider (i.e., attacker) leverages
SCAR to implant a dormant backdoor into the model, which behaves normally even when fed with
poisoned inputs. The compromised model is then uploaded to a third-party platform (i.e., verifier)
for backdoor detection. Upon passing the security check, the model is released to model developers
(i.e., victim). When the developer utilizes the original model for inference, it performs as expected.
However, once it undergoes further development via KD (with benign samples), inputs with the
attacker-specified trigger can activate the backdoor in the student model, leading to misclassification.

However, such third-party models may introduce security vulnerabilities to malicious attacks.
Among these, backdoor attacks, which implant hidden malicious behavior during model train-
ing [16, 21, 46], pose an especially significant concern. A backdoor-compromised model operates as
expected under normal conditions but exhibits attacker-specified malicious behavior when a specific
trigger condition is satisfied [27, 61, 78]. To ensure the security of third-party models, platforms like
Hugging Face are increasingly implementing security validation for models uploaded by providers,
with backdoor detection serving as a crucial component [13, 37]. Once a model passes this valida-
tion, it is often deemed secure and released to developers for further development. Developers might
subsequently employ these ‘safety-verified’ models as teachers to guide the training of lightweight
student models via KD. This practice, however, introduces a compelling research question: If the
teacher model is verified as ‘backdoor-free’ and the distillation dataset is clean, can we truly guar-
antee that the resulting student model is also free from backdoor threats?

Unfortunately, the answer to the above question is negative, although executing such backdoor at-
tacks on the student model is not trivial. In this paper, we explore the potential threat of distillation-
conditional backdoor attacks, where the backdoor remains dormant and undetectable in the teacher
model but becomes activated in the student model through KD, as shown in Figure 1. Arguably, the
most straightforward method to design these attacks is to extend the anti-distillation backdoor attack
(ADBA) [23], whose backdoor could be preserved during the KD process. In general, this exten-
sion involves fine-tuning to slightly ‘mask’ the backdoor within a model compromised by ADBA
(dubbed ‘ADBA (FT)’) to make the logit of the ground-truth label slightly higher (instead of signif-
icantly lower) than that of the attacker-specified target label when processing poisoned inputs. This
manipulation simultaneously conceals the model’s backdoor behavior while positioning its decision
boundary for poisoned inputs near a vulnerable tipping point. Intuitively, KD may cause a shift in
the student model’s decision boundary relative to that of the teacher model, thereby reactivating the
masked backdoor. However, we find that this method often fails to implant the backdoor into student
models. We argue that this is probably because the fine-tuning process masks the teacher’s backdoor
solely based on its own behavior, lacking guidance derived from the dynamic KD process.

Motivated by aforementioned findings and understandings, we formulate the compromised model
training process as a bilevel optimization problem and propose SCAR (Stealthy distillation-
Conditional bAckdooR attack) to inject distillation-conditional backdoors into teacher models. In
general, we derive a surrogate model via finite KD optimization steps and optimize the teacher
model utilizing outputs from the surrogate. Specifically, in this bilevel problem, the inner optimiza-
tion minimizes the output prediction discrepancy between the surrogate (student) and the teacher
(simulating the KD process), while the outer optimization maximizes the attack performance of poi-
soned samples against the surrogate, without compromising the teacher’s accuracy and robustness.
To address the challenge, where the teacher’s gradient cannot be computed directly due to the inner
loop and the surrogate being a separate entity, we derive an implicit differentiation algorithm [25] to
capture the interdependence between the inner and outer optimization. We approximate the teacher’s
gradient utilizing reverse-mode automatic differentiation with a finite number of fixed-point itera-
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tions. In particular, we pre-optimize the trigger pattern to further simplify the optimization of the
above bilevel problem and reduce the parameter search space. Our attack alerts developers to notice
a potential false sense of security or consensus that distilling a student model based on a ‘backdoor-
free’ teacher model with benign samples is always safe. As such, developers should always detect
the distilled student model, no matter whether the teacher model is regarded as ‘secure’.

In summary, our main contributions are three-fold: (1) We introduce a novel backdoor attack
paradigm, i.e., distillation-conditional backdoor attack (DCBA), where dormant backdoors in the
teacher model can be activated in the student model via the KD process even with benign sam-
ples. (2) We reveal that the direct extension of existing methods (e.g., ADBA (FT)) is ineffective
as a DCBA and its potential reasons. Based on these understandings, we formulate the DCBA as a
bilevel optimization problem and propose a simple yet effective method (i.e., SCAR). Our SCAR
derives an implicit differentiation algorithm and leverages a pre-optimized trigger pattern to solve
this problem. (3) We conduct extensive experiments across multiple datasets, model architectures,
and KD techniques (simulating diverse developer behaviors), demonstrating the effectiveness of
SCAR and its resistance to potential backdoor detection. Our work highlights the urgent need to
always detect the distilled student model, no matter whether the teacher model is deemed secure.

2 Background

2.1 Knowledge Distillation

Knowledge distillation (KD) [3, 30, 35] aims to transfer knowledge from a powerful yet cumber-
some teacher model to a lightweight student model, enabling performant deployment of DNNs on
resource-limited devices (e.g., IoT devices). Typically, the training objective for the student model
involves minimizing a composite loss function defined as: Ls = LCE+δ ·LKD. In this formulation,
LCE is the cross-entropy loss between the student’s output logits and the ground-truth labels, and
LKD denotes the distillation loss that encourages the student model to mimic the output distribution
or intermediate features imparted by the teacher model. δ is a balancing coefficient.

Depending on how knowledge is extracted and transferred via LKD, existing KD methods can be
classified into three types [24, 59, 83]: (1) Response-based KD [30], which directly aligns the out-
put distribution (e.g., logits or probabilities) of student models with that of teacher models, often
utilizing metrics like Kullback-Leibler (KL) divergence [30]. (2) Feature-based KD [3], focusing
on matching intermediate representations between the student and teacher models, such as feature
maps [3, 68] or attention maps [87]. (3) Relation-based KD [35], which transfers structural knowl-
edge from teacher models to student models by capturing and aligning relationships, including rela-
tional information between different data points [35, 64] or features [73].

2.2 Backdoor Attack

Backdoor attacks [46] aim to embed hidden malicious behaviors into DNNs during training, typi-
cally by poisoning a subset of the training data with predefined trigger patterns. The compromised
model behaves normally on benign inputs but exhibit attacker-specified behavior when a particular
trigger condition is met. The earliest backdoor attack can be traced back to BadNets [27], which in-
jects backdoors by adding a small white patch to a subset of the training samples and changing their
labels to a target class. Subsequent work has explored various backdoor attack methods, includ-
ing the design of invisible [5, 60] or diversified [75, 90] triggers, attacks effective in physical-world
scenarios [11, 79], and those targeting specific tasks [2, 54], among other advancements [17, 22, 77].

Backdoor Attacks against Knowledge Distillation. Since the student model typically learns only
the benign behavior of the teacher from a clean distillation dataset, most existing backdoors strug-
gle to survive the KD process [86]. Currently, some studies [4, 7, 23] have focused on designing
distillation-resistant backdoor attacks. Anti-Distillation Backdoor Attack (ADBA) [23] is the first
to introduce the idea of training a distillation-resistant backdoor in the teacher model by leveraging
a shadow model to simulate the KD process. Recently, a backdoor attack targeting feature-based
KD is proposed, which encodes the backdoor knowledge into specific neuron activation layers [4].
In addition, backdoors have also been shown to potentially survive the KD process in large lan-
guage models [7]. However, to the best of our knowledge, it remains unexplored whether distilling
a (seemingly) clean model using a benign dataset could still result in backdoored student models.
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2.3 Backdoor Detection

To determine whether a model contains backdoor threats, researchers have proposed various detec-
tion methods, which can be broadly categorized into two types: (1) Trigger inversion-based meth-
ods, which aim to reverse-engineer potential attacker-specified backdoor triggers. Neural Cleanse
(NC) [74], one of the earliest methods, attempts to reconstruct such triggers through optimiza-
tion techniques and identifies backdoors by analyzing properties of the recovered triggers, such
as whether their size is abnormally small. Most recently, BTI-DBF [82] enhances trigger inversion
by decoupling benign features and simultaneously minimizing the discrepancies in benign features
while maximizing those in poisoned features. (2) Trigger inversion-free methods, which detect
backdoors without explicitly reconstructing triggers, typically by adopting specific strategies. For
example, some methods detected backdoors by examining abnormal behaviors of poisoned samples
during inference, such as scaled prediction consistency [28, 32] and concatenation unalignment [85].
More details about related work are in Appendix H.

3 Methodology

3.1 Threat Model

As illustrated in Figure 1, we consider a three-party scenario in which a malicious model provider
(i.e., attacker) uploads a compromised pre-trained model to a third-party platform (i.e., verifier).
The platform typically supports backdoor detection but rarely offers mitigation, constrained by lim-
ited data and computational resources. Once the model passes detection, it is released to downstream
developers (i.e., victims). Although appearing benign, the model carries a dormant backdoor that
remains inactive until the developer applies knowledge distillation (KD), at which point the student
model misclassifies inputs containing attacker-specified triggers.

Attacker’s Goals. The attacker aims to train a DNN model with a dormant backdoor, achieving
the following three objectives: (1) The model achieves correct classification on both benign and
poisoned inputs, making the backdoor inactive. (2) The model can evade detection by third-party
backdoor detection; specifically, existing detection techniques fail to identify the dormant backdoor.
(3) After undergoing any form of KD to the model, the resulting student model obtains good perfor-
mance on benign samples but exhibits misclassification on poisoned ones.

Attacker’s Capability. We primarily focus on the common attack scenario involving pre-trained
models [46, 51]. Specifically, the attacker has full control over the training phase of the compromised
model, including the training dataset, optimization algorithm, loss function, and hyperparameters.
However, the attacker can only provide a pre-trained model, without access to any other information.
In particular, they are unaware of which backdoor detection method will be used by the third-party
verifier, as well as which specific KD technique will be adopted by the model developer.

3.2 An Ineffective Baseline: Anti-Distillation Backdoor Attack with Fine-tuning

Arguably, to achieve the attack goals, we can first train a teacher model with a distillation-resistant
backdoor and then fine-tune it to slightly ‘mask’ the backdoor. Intuitively, this manipulation si-
multaneously conceals the model’s backdoor behavior while positioning its decision boundary for
poisoned inputs near a vulnerable tipping point, which can be shifted back to reactivate the masked
backdoor during the KD process. Currently, anti-distillation backdoor attack (ADBA) [23] can in-
ject such distillation-resistant backdoors into the teacher model. As such, during fine-tuning, we
mask the backdoor in the ADBA-compromised teacher model by adjusting the logits such that, for
poisoned inputs, the logit of the ground-truth label is only slightly higher (instead of significantly
lower) than that of the attacker-specified target label. Formally, given such a teacher model F ′

t(·;λ)
already, its corresponding trigger inject function G′(·), and a fine-tuning datasetD′ = {(xi, yi)}Mi=1,
this straightforward baseline (dubbed ‘ADBA (FT)’) aims to solve the following problem:

min
λ

1

M

∑
(xi,yi)∈D′

[LCE(F ′
t(xi;λ), yi) + η ·max{F ′

t(G
′(xi);λ)|yt

+ k −F ′
t(G

′(xi);λ)|yi
, 0}] ,

(1)
whereLCE denotes the standard cross-entropy loss, k and η are hyper-parameters,F ′

t(G
′(xj);λ)|yj

and F ′
t(G

′(xj);λ)|yt
represent the output logits F ′

t(G
′(xj);λ) corresponding to the ground-truth
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and target label, respectively. The first term of the above optimization ensures accurate predictions
on benign samples, while the second term enforces that the logit of the ground-truth label is at least k
higher than that of the target label. However, we will show that ADBA (FT) has limited effectiveness
in attacking student models in many cases. We find that this ineffectiveness is probably due to the
fine-tuning relying solely on the teacher’s output, without accounting for the dynamic KD process.

3.3 The Design of SCAR

Motivated by the above findings and insights, we propose SCAR (Stealthy distillation-Conditional
bAckdooR attack), which can effectively leverage information from the KD process. Specifically,
we formalize the attack goals as a bilevel optimization problem and develop an appropriate optimiza-
tion strategy. We also pre-optimize the trigger injection function to ensure a favorable initialization
for effectively and efficiently solving the bilevel problem. Besides, we provide a preliminary analy-
sis to explain the effectiveness of our SCAR in Appendix A.

3.3.1 Optimization Objective of SCAR

Here, we formalize the attack goals, which also define the optimization objective of SCAR, as a
bilevel optimization problem. Given a training dataset D = {(xi, yi)}Ni=1, we specify a trigger in-
jection function G(·) and a target label yt to train a compromised (teacher) model Ft(·;λ) with pa-
rameter λ. To simulate the KD process of student models, we introduce a surrogate model Fs(·,ω),
parameterized by ω. Formally, we aim to solve the following bilevel optimization problem:

min
λ
Lout(ω(λ),λ) ≜

1

N

∑
(xi,yi)∈D

[
LCE(Ft(xi;λ), yi) + α · LCE(Ft(G(xi);λ), yi)

+β · LCE(Fs(xi;ω(λ)), yi) + γ · LCE(Fs(G(xi);ω(λ)), yt)
]
,

s.t. ω(λ) ∈ argmin
ω

Lin(ω,λ) ≜
1

N

∑
(xi,yi)∈D

[
LCE(Fs(xi;ω), yi)

+δ · LKD(Fs(xi;ω),Ft(xi;λ))
]
,

(2)

where LCE denotes the standard cross-entropy loss, and LKD represents the knowledge distillation
loss, computed as the KL divergence between the output logits of Ft and Fs. The scalars α, β
and γ are temperature coefficients, and δ is a balancing coefficient. In the outer optimization, the
first two terms of Lout reflect the attacker’s objective for the teacher model to behave normally on
both benign and poisoned samples, while the last two terms aim to ensure that the surrogate model
performs normally on benign samples but exhibits backdoor behavior on poisoned ones. The inner
optimization is designed to ensure that the surrogate model closely mimics the distillation process
of unknown student models. In particular, optimizing the teacher model parameters λ requires com-
puting the gradient of Lout with respect to λ. Since the last two terms of Lout involve Fs(·;ω(λ))
and are thus implicitly dependent on λ via ω(λ), the gradient computation must account for the
dependence of the inner solution ω(λ) on λ. Due to the presence of an inner optimization loop
and the fact that the surrogate model is a separate entity, the gradient of λ cannot be directly com-
puted via standard backpropagation. To tackle this challenge, we derive an implicit differentiation
algorithm to approximate the gradients arising from these two terms, effectively capturing the ω-λ
interdependence. Its technical details are in the following subsection.

3.3.2 Optimization Strategy of SCAR

We hereby derive an implicit differentiation algorithm to estimate the gradient∇λLout with respect
to the parameters λ of Ft. The overall training process of our SCAR is outlined in Algorithm 1. In
the following, we provide a detailed explanation of how to compute this gradient.

Finite Inner Optimization Updates. Intuitively, a key step in computing ∇λLout is to identify
ω∗(λ), the solution to the inner optimization problem:

ω∗(λ) = argmin
ω
Lin(ω,λ). (3)

Let ω∗(λ) be a suboptimal solution which satisfies the first-order optimality condition:
∇ωLin(ω

∗(λ),λ) = 0. (4)
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Algorithm 1 SCAR Training Process

Input: Model Ft(·;λ), Surrogate Fs(·;ω), Trainset D, Trigger function G(·), Target label yt
Output: Trained compromised model Ft

Parameters: Fix-point iterations K, Subset batches M , Inner steps T , Learning rate ϵ and θ

1: for each outer optimization epoch do
2: Reinitialize ω0; ▷ Initialize inner parameters
3: for t = 0 to T − 1 do ▷ Inner loop: Approximate ω∗(λ)
4: Compute ∇ωLin(ωt,λ) with D;
5: Update ωt+1 ← ωt − ϵ · ∇ωLin(ωt,λ); ▷ Eq. (9)
6: Select subset Ds (M batches from D) for outer gradient estimation;
7: Compute gω ← ∇ωLout(ω

∗,λ) and gλ ← ∇λLout(ω
∗,λ) with Ds, G and yt;

8: Initialize v0 ← 0;
9: for n = 0 to K − 1 do ▷ Eq. (11)

10: Compute vn+1 ← JΦ,ωvn + gω;
11: Compute approximate gradient∇λLout ≈ gλ + JT

Φ,λvK ; ▷ Eq. (12)
12: Update λ← λ− θ · ∇λLout; ▷ Optimize outer parameters λ of Ft

13: return Ft

In practice, obtaining the exact ω∗(λ) is often infeasible. We approximate it by performing a finite
number of optimization steps (e.g., T steps of gradient descent) on Lin with respect to ω, typically
starting from a randomly reinitialized ω in each outer epoch. We denote the resulting approximation
also by ω∗(λ) for simplicity in the following derivation.

Derivation of Implicit Differentiation. Given the obtained ω∗(λ), using the chain rule, the total
gradient of the outer loss with respect to λ can be derived as follows:

∇λLout(ω
∗(λ),λ) =

(
∂ω∗(λ)

∂λ

)T

∇ωLout(ω
∗(λ),λ) +∇λLout(ω

∗(λ),λ)|direct. (5)

Let gω ≜ ∇ωLout(ω
∗(λ),λ) and gλ ≜ ∇λLout(ω

∗(λ),λ)|direct. Both gω and gλ can be com-
puted directly with standard backpropagation. To compute the Jacobian term ∂ω∗/∂λ, we apply the
Implicit Function Theorem by differentiating the optimality condition (4) with respect to λ:

∇2
ωωLin ·

∂ω∗

∂λ
+∇2

ωλLin = 0. (6)

Let Hωω ≜ ∇2
ωωLin be the Hessian matrix with respect to ω, and Hωλ ≜ ∇2

ωλLin be the mixed
partial derivative matrix. Assuming Hωω is invertible (guaranteed by strict convexity of Lin), we
can solve for the Jacobian as follows:

∂ω∗

∂λ
= −(Hωω)

−1Hωλ. (7)

Substituting Eq. (7) into Eq. (5), we have:

∇λLout(ω
∗(λ),λ) = gλ −HT

ωλH
−1
ωωgω. (8)

Approximation via Fix-point Iterations. Directly computing and inverting Hωω is computation-
ally prohibitive for DNNs. Accordingly, we employ an approximation based on reverse-mode auto-
matic differentiation to implicitly compute the vector-Hessian-inverse product. Consider the inner
optimization utilizing T gradient descent steps:

ωt+1 = Φ(ωt,λ) ≜ ωt − ϵ · ∇ωLin(ωt,λ), t = 0, . . . , T − 1, (9)

where ϵ is the inner loop learning rate, and ωT = ω∗(λ). Differentiating the fixed-point equation
ω∗ = Φ(ω∗,λ) yields ∂ω∗/∂λ = (I − JΦ,ω)

−1JΦ,λ, where JΦ,ω ≜ ∂Φ/∂ω and JΦ,λ ≜ ∂Φ/∂λ
are Jacobians evaluated at ω∗. Substituting this into (5) gives:

∇λLout = gλ + JT
Φ,λ(I − JΦ,ω)

−1gω. (10)
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Let v ≜ (I−JΦ,ω)
−1gω , which can be solved efficiently utilizing an iterative method like Neumann

series expansion [57], leading to the iteration:

v0 = 0, vn+1 = JΦ,ωvn + gω, n = 0, 1, 2, ... (11)

This iteration converges to v if the spectral radius ρ(JΦ,ω) < 1 [26, 52]. In practice, we truncate
this iteration after finite K steps. Let vK be the approximation after K steps. The approximate outer
gradient is then computed efficiently utilizing vector-Jacobian products:

∇λLout ≈ gλ + JT
Φ,λvK , (12)

which can be leveraged to optimize the parameters λ of Ft.

3.3.3 Pre-optimizing for Trigger Injection Function

To simplify the optimization of the above bilevel problem, we attempt to pre-optimize the trigger
injection function G(·;µ) to reduce the parameter search space. Following prior backdoor-related
works [46], we define G(x;µ) = Π[0,n]d(x+µ), where Π[0,n]d(·) ensures that the poisoned image
remains within a valid pixel range. Let F̂t(·) be a pretrained benign teacher model and F̂s(·) be the
student model distilled from it. Then, the training of G aims to minimize the following loss:

min
µ

∑
(xi,yi)∈D

LCE(F̂t(G(xi;µ)), yt) + LCE(F̂s(G(xi;µ)), yt), s.t. ∥µ∥∞ ≤ ϵ0, (13)

where yt denotes the target label. In general, this pretraining process aims to optimize a natural
backdoor trigger pattern µ that can survive the knowledge distillation process, thereby providing
a favorable initialization for the subsequent bilevel optimization. We validate the necessity of pre-
optimizing the trigger injection function in our subsequent ablation studies.

4 Experiments

In this section, we evaluate the effectiveness of our SCAR across various datasets, model architec-
tures, and knowledge distillation (KD) methods. We then conduct an ablation study and evaluate
the resistance to potential backdoor detection methods. In addition, the analysis of the overhead of
SCAR is in Appendix G and the visualization of SCAR is provided in Appendix I.

4.1 Main Settings

Datasets, Models, and KD Methods. We conduct experiments on two classical benchmark datasets,
including CIFAR-10 [40] and (a subset of) ImageNet [14] containing 50 classes. We utilize rel-
atively large models such as ResNet-50 [29], VGG-19 [71], and ViT [19] as the compromised
teacher models (with ResNet-18 [29] utilized as the surrogate model), and distill each of them into
lightweight student models including MobileNet-V2 [70], ShuffleNet-V2 [55], and EfficientViT [50]
to validate the effectiveness of SCAR. During KD, we adopt three different types of methods: (1)
Response-based KD [30], (2) Feature-based KD [3], and (3) Relation-based KD [35]. Note that
our goal is to evaluate the effectiveness of our attack method rather than to train a SOTA model.
Therefore, the benign accuracies of our models may be lower than those of SOTA counterparts.

Attack Setup. Note that since our SCAR is the first conditional backdoor attack designed specif-
ically for the knowledge distillation setting, we can only compare its performance with a straight-
forward baseline ADBA (FT) introduced in Section 3.2. For reference, we also report the results of
benign models trained without any attack (dubbed ‘Benign’). More attack details are in Appendix F.

Evaluation Metric. We evaluate the attack performance of different methods based on the backdoor
attack success rate (ASR), defined as the accuracy on poisoned samples, for both the teacher and
student models. Specifically, for the teacher model, we aim for a dormant and inactive backdoor,
which is reflected by a low ASR; whereas for the student model, we seek a strong backdoor effect,
indicated by a high ASR. An effective distillation-conditional backdoor attack is indicated by a lower
ASR on the teacher model and a higher ASR on the student models.
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Table 1: The attack performance (%) on CIFAR-10 and ImageNet. For each case, the best results
are boldfaced, while all failed cases (student ASR < 50%) are marked in red.

Dataset KD Method Model ResNet-50
(Teacher)

MobileNet-V2
(Student A)

ShuffleNet-V2
(Student B)

EfficientViT
(Student C)

Attack ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

CIFAR-10

Response
Benign 94.12 0 91.92 0 89.76 0 86.86 0

ADBA (FT) 90.58 6.88 91.07 92.87 85.86 81.02 86.88 30.58
SCAR 92.47 1.50 91.62 99.94 89.15 99.02 86.82 86.31

Feature
Benign 94.12 0 90.92 0 89.73 0 86.92 0

ADBA (FT) 90.58 6.88 90.87 98.47 85.45 49.28 86.70 31.22
SCAR 92.47 1.50 91.01 99.90 88.48 98.22 87.74 77.28

Relation
Benign 94.12 0 91.77 0 89.54 0 86.88 0

ADBA (FT) 90.58 6.88 91.18 98.66 85.45 71.02 86.74 34.78
SCAR 92.47 1.50 91.29 99.93 88.25 98.44 85.78 90.09

ImageNet

Response
Benign 70.08 0 70.36 0 65.00 0 60.32 0

ADBA (FT) 61.56 2.53 61.00 45.39 60.48 37.51 56.16 13.31
SCAR 64.28 2.12 63.80 81.69 63.12 72.86 60.00 53.55

Feature
Benign 70.08 0 69.48 0 66.32 0 60.44 0

ADBA (FT) 61.56 2.53 61.16 37.92 60.60 24.57 59.04 36.20
SCAR 64.28 2.12 64.32 74.29 62.04 57.63 57.04 52.98

Relation
Benign 70.08 0 70.48 0 63.52 0 56.80 0

ADBA (FT) 61.56 2.53 61.80 42.61 61.36 20.08 55.72 19.22
SCAR 64.28 2.12 63.28 91.96 64.00 62.61 58.48 61.18

Table 2: The attack performance (%) of SCAR with/without Fs or G on CIFAR-10. For each case,
the best results are boldfaced, while all failed cases (student ASR < 50%) are marked in red.

KD Method Model ResNet-50
(Teacher)

MobileNet-V2
(Student A)

ShuffleNet-V2
(Student B)

EfficientViT
(Student C)

Attack ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

Response
w/o Fs 89.82 2.61 88.15 82.92 87.19 51.58 87.76 31.42
w/o G 93.81 0.72 91.47 1.03 89.47 1.06 86.05 2.09
SCAR 92.47 1.50 91.62 99.94 89.15 99.02 86.82 86.31

Feature
w/o Fs 89.82 2.61 87.94 83.68 88.04 43.11 86.11 5.29
w/o G 93.81 0.72 91.49 1.48 88.91 1.44 87.69 1.33
SCAR 92.47 1.50 91.01 99.90 88.48 98.22 87.74 77.28

Relation
w/o Fs 89.82 2.61 87.66 80.13 89.22 81.28 86.48 54.19
w/o G 93.81 0.72 91.22 1.38 88.92 1.50 86.78 1.34
SCAR 92.47 1.50 91.29 99.93 88.25 98.44 85.78 90.09

4.2 Main Results

As shown in Table 1, compared to the baseline attack method, SCAR achieves a higher attack suc-
cess rate (ASR) on student models while maintaining a low ASR on the teacher model. Specifically,
although ADBA (FT) effectively reduces the ASR on the teacher model (ASR < 10%), its effective-
ness in attacking student models is limited. For instance, on the CIFAR-10, ADBA (FT) struggles
to implant the backdoor into the student model EfficientViT, likely due to substantial architectural
differences from the teacher model ResNet-50. On the ImageNet, ADBA (FT) fails to perform
the attack altogether. In contrast, SCAR successfully injects backdoors into student models under
all three knowledge distillation methods on the CIFAR-10. While its performance declines on the
ImageNet, the ASR remains within an acceptable range. This degradation may be attributed to the
increased image size in ImageNet, which makes the convergence of the bilevel optimization problem
more challenging. Results for the VGG-19 and ViT models are provided in the Appendix B.

4.3 Ablation Study

Our method comprises two key components: (1) optimization involving the surrogate modelFs, and
(2) a pre-optimized trigger injection function G. To evaluate the effectiveness of each component
separately, we conduct an ablation study using ResNet-50 attacked on CIFAR-10. Specifically, to
assess the contribution of Fs, we directly fine-tune the teacher model using only G, removing the
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Table 3: The backdoor detection performance of NC on teacher models compromised by SCAR.
Class 0 is the attack-defined target label. False detections are marked in red.

Model Anomaly Index of Each Class (> 2 indicates a potential backdoor)

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

ResNet-50 0. 0. 1.09 0.50 0.02 0. 1.15 0. 0. 0.85
VGG-19 0. 0. 0. 1.09 0. 0.07 2.01 0.91 0. 2.10

ViT 0. 0. 0. 0. 1.02 0. 0.98 0.73 0.70 0.81

involvement of Fs entirely. To evaluate the necessity of G, we replace it with a fixed white patch
located at the bottom-right corner of the image as the trigger pattern. We further perform addtional
ablation studies on the effects of the surrogate model architecture, the distillation loss weight δ, the
number of inner steps T , the bilevel optimization hyperparameters (α, β, and γ), and diverse triggers
substituting for G, as illustrated in Appendix E.

As shown in Table 2, we evaluate the attack performance of SCAR without the surrogate model (w/o
Fs) or without the pre-optimized trigger injection function (w/o G). Experimental results indicate
that, without Fs, the effectiveness of SCAR significantly degrades or even fails. This is because the
teacher model is trained without guidance from the dynamic KD process, leading to a deviation in
the optimization direction. Additionally, without G, the teacher model attacked by SCAR fails to
transfer backdoor knowledge to student models. This may be attributed to the inherent complexity
and instability of the bilevel optimization problem, which makes initialization critically important.

4.4 Resistance to Potential Backdoor Detection

In this section, we empirically evaluate the evasion performance of SCAR against potential backdoor
detection methods. We focus on a scenario where a third-party trusted verifier employs such methods
to identify backdoors within the teacher model. To mimic this verification process, we adopt two
representative backdoor detection techniques, Neural Cleanse [74] and SCALE-UP [28], to assess
the stealthiness of SCAR-injected backdoors in teacher models trained on CIFAR-10. The results
demonstrating the evasiveness of SCAR against more advanced detection methods are provided in
Appendix C, while its robustness against non-detection defenses is reported in Appendix D.

Neural Cleanse (NC) is a classical backdoor trigger inversion (BTI)-based detection method. It
leverages the backdoor property that even a small perturbation can cause inputs to be misclassified
into the target label. NC first computes universal adversarial perturbations (UAP) for each all-to-one
misclassification as potential triggers, then quantifies these triggers using the ℓ1-norm, and finally
applies an anomaly detection to identify the most likely true trigger. If the anomaly index exceeds 2,
the model is considered to have a backdoor with 95% confidence; otherwise, it is regarded as clean.

As shown in Table 3, we evaluate the anomaly index corresponding to the UAP for each class.
Only indices greater than zero are retained, where a higher anomaly index indicates a smaller ℓ1-
norm of the UAP and thus a higher likelihood of a backdoor. The results show that for ResNet-50
and ViT, NC fails to detect any backdoor. For VGG-19, NC yields false positives by mistakenly
identifying normal labels, Class 6 and Class 9, as target labels. These findings demonstrate that
models compromised by SCAR can effectively evade NC detection.

SCALE-UP is a black-box, input-level detection method based on the observation that, when all
pixel values are amplified, poisoned samples exhibit significantly more consistent predictions com-
pared to benign ones. It identifies and filters poisoned samples by analyzing the prediction consis-
tency of inputs during the pixel amplification process. We detect the presence of backdoors in the
teacher model by observing whether poisoned samples exhibit the prediction consistency behavior.

As shown in Figure 2, both benign and poisoned samples exhibit similar scaled prediction incon-
sistency across different model architectures compromised by SCAR. Specifically, for conventional
backdoor attacks, the prediction confidences on poisoned samples are expected to be more stable
than those on benign samples as the amplification times increase, meaning the red curve should con-
sistently lie above the blue curve. However, our results show the opposite, with poisoned samples
even displaying greater prediction inconsistency. This indicates that SCALE-UP fails to detect the
dormant backdoor in teacher models attacked by our SCAR.
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(a) ResNet-50 (b) VGG-19 (c) ViT

Figure 2: The average confidence of benign and poisoned samples with respect to pixel-wise ampli-
fications on three SCAR-attacked models with different architectures trained on CIFAR-10.

5 Conclusion

In this paper, we explored distillation-conditional backdoor attacks (DCBAs), where a dormant
backdoor in the teacher model can be activated in the student model through knowledge distilla-
tion (KD), even with clean KD data. We found that the direct extension of existing methods (e.g.,
ADBA (FT)) is ineffective for DCBA and proposed SCAR, which formulates DCBA as a bilevel
optimization problem and leverages an implicit differentiation algorithm with a pre-optimized trig-
ger injection function to solve it. Extensive experiments demonstrated the effectiveness of SCAR
across diverse datasets, model architectures, and KD techniques, as well as its stealthiness against
teacher-side backdoor detection. Our findings reveal a significant yet previously overlooked security
threat, and highlight the urgent need to always perform backdoor detection on student models, even
when the teacher model and distillation dataset have been verified as secure.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the potential limitations of our SCAR in Appendix K.
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• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
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the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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Justification: A detailed derivation of the optimization strategy of SCAR is provided
in the main body of the paper. Additionally, a formal proposition and its proof are
presented in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if
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short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduced the detailed experimental settings in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provided codes in the supplementary material. The full codes of our
method is available at https://github.com/WhitolfChen/SCAR.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We introduced the detailed experimental settings in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not report the error bars due to the constraints of time and com-
putational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We introduced the experimental computing resources in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conformed with the Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the potential societal impacts in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We discussed the adopted data of this paper in Appendix L.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as
any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.
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Appendix

A Why is our SCAR Effective?

In this section, we provide a preliminary analysis of the possible factors contributing to the effec-
tiveness of our SCAR, focusing on two key perspectives: the information gap introduced during
knowledge distillation (KD) and the distributional similarity between the training and distillation
datasets. Besides, the convergence and approximation error bounds of the implicit differentiation
algorithm used in SCAR have been theoretically established in existing studies [25, 65].

A.1 Analysis from the KD Information Gap

In knowledge distillation (KD), a finite clean dataset is typically used to transfer the teacher model’s
standard inference behavior to the student model. However, this process may result in an information
gap, whereby certain security-relevant characteristics of the teacher model are not fully inherited by
the student. This gap can compromise the robustness of the student model.

Recent studies on KD primarily aim to improve the student’s performance under capacity constraints
by filtering out what is deemed redundant information [15, 41]. While effective for performance,
this strategy may inadvertently discard safety-relevant cues that contribute to the teacher model’s
resilience. In particular, a model’s robustness against backdoor attacks often relies not only on task-
relevant features but also on seemingly redundant information that plays a defensive role. If the dis-
tillation process excludes this information, the resulting student model—though performant—may
remain highly susceptible to backdoor threats, even in cases where the teacher model is unaffected.

Therefore, we argue that the bilevel optimization process of SCAR, which injects distillation-
conditional backdoors, may exploit the information gap stemming from incomplete knowledge trans-
fer. We aim to support this argument through the following proposition.

Proposition 1. Consider knowledge distillation (KD) performed solely on clean samples, denoted
by Dclean. Let the teacher representation be T = (Z,Ω) and the student representation be S =
(Z,Ω∥) , where:

• Z denotes task-relevant features,

• Ω = (Ω∥,Ω⊥) represents the total backdoor-relevant information,

• Ω∥ is the component of Ω that is coupled with Z,

• Ω⊥ is orthogonal to both Z and Ω∥.

Then, the following inequality holds:

Dgap = I(T ;Ybackdoor)− I(S;Ybackdoor) ≥ 0, (14)

where I(·; ·) denotes mutual information and Ybackdoor is the output label of backdoor samples.

This information gap Dgap arises because KD on clean data can only transfer the coupled com-
ponent Ω∥, while the orthogonal component Ω⊥—which may carry important safety-relevant sig-
nals—remains untransferred.

Building on the above proposition, we emphasize the critical role of coupling between backdoor-
relevant and task-relevant features in the teacher model. This coupling is key to enabling the infor-
mation gap that SCAR exploits. Specifically, before initiating the bilevel optimization in SCAR, we
perform a pre-optimization step to craft the trigger pattern. This step yields a trigger that naturally
exists in the clean dataset, making it partially correlated with task-relevant features Z.

During training, the teacher model is exposed to both clean and backdoor samples, learning a robust
representation that includes Z, Ω∥, and Ω⊥. We can construct the total backdoor-relevant infor-
mation Ω = (Ω∥,Ω⊥) such that Ω∥ is coupled with Z, while Ω⊥ remains orthogonal. However,
the student model is trained through KD using only clean samples. As a result, the student inherits
Z and the coupled component Ω∥, but not the orthogonal, safety-relevant component Ω⊥ that con-
tributes to the teacher’s robustness. This selective transfer induces an information gap Dgap ≥ 0,
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enabling a dormant backdoor effect: while the teacher model remains resilient, the student model
becomes vulnerable to backdoor attacks. Its proof is as follows.

Proof. We begin by applying the chain rule of mutual information to expand the information gap
between teacher and student representations.

For the teacher model’s representation T = (Z,Ω∥,Ω⊥), we have:

I(T ;Ybackdoor) = I(Z,Ω∥,Ω⊥;Ybackdoor)

= I(Z;Ybackdoor) + I(Ω∥,Ω⊥;Ybackdoor | Z), (15)

where the second equality follows from the chain rule of mutual information.

Similarly, for the student model’s representation S = (Z,Ω∥):

I(S;Ybackdoor) = I(Z,Ω∥;Ybackdoor)

= I(Z;Ybackdoor) + I(Ω∥;Ybackdoor | Z). (16)

Taking the difference between equations (15) and (16) yields:

Dgap = I(T ;Ybackdoor)− I(S;Ybackdoor)

= I(Ω∥,Ω⊥;Ybackdoor | Z)− I(Ω∥;Ybackdoor | Z). (17)

Since the backdoor information can be decomposed as Ω = (Ω∥,Ω⊥), we apply the chain rule once
more to the first term in equation (17):

I(Ω∥,Ω⊥;Ybackdoor | Z) = I(Ω∥;Ybackdoor | Z) + I(Ω⊥;Ybackdoor | Z,Ω∥). (18)

Substituting equation (18) back into equation (17):

Dgap =
[
I(Ω∥;Ybackdoor | Z) + I(Ω⊥;Ybackdoor | Z,Ω∥)

]
− I(Ω∥;Ybackdoor | Z)

= I(Ω⊥;Ybackdoor | Z,Ω∥). (19)

To establish non-negativity, we invoke the fundamental property that conditional mutual information
is always non-negative. By definition in [10]:

I(A;B | C) = H(B | C)−H(B | C,A). (20)

Since conditioning never increases entropy [9], we have:

H(B | C,A) ≤ H(B | C), (21)

which implies:

I(A;B | C) ≥ 0. (22)

Applying this property to equation (19) with A = Ω⊥, B = Ybackdoor, and C = (Z,Ω∥), we
conclude:

Dgap = I(Ω⊥;Ybackdoor | Z,Ω∥) ≥ 0. (23)

From the perspective of the information gap, we intended to suggest that SCAR may exploit the in-
herent discrepancies arising from imperfect knowledge transfer during knowledge distillation (KD)
to activate backdoors in the student model. We note that, perhaps counterintuitively, such informa-
tion gaps are intrinsic to the KD process, as the student model is unlikely to precisely replicate the
behavior of the teacher model. This divergence may stem from architectural differences, limited
model capacity, or the inherently lossy nature of the distillation objective [8, 24]. As such, while the
teacher model may behave benignly, the student model can still manifest backdoor behaviors.
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A.2 Analysis from the KD Data Distribution

Beyond the information gap perspective, we also provide an empirical analysis from the standpoint
of the data distribution used during KD. We hypothesize that using a benign dataset drawn from
the same distribution as the teacher model’s training data may cause the student model to implicitly
learn data-distribution-specific natural backdoor features, thereby facilitating backdoor injection.
Specifically, during the pre-optimization of the trigger injection function, our goal is to obtain a
natural trigger pattern (NTP) that can persist throughout the KD process. This NTP resembles a tar-
geted universal adversarial perturbation (TUAP) that consistently perturbs samples from the given
data distribution toward an attacker-specified target label. Existing research on adversarial attacks
suggests that the transferability of adversarial perturbations is partially influenced by model archi-
tecture and output distribution similarity [89]. We also observe several experimental phenomena
that may serve as supporting evidence for the above hypothesis:

(1) In our CIFAR-10 experiments, the teacher models typically achieve over 90% accuracy on the
test set, which results in output probabilities that closely align with the one-hot ground-truth labels.
Therefore, when using such high-accuracy teacher models for KD, the student model is likely to
inherit knowledge related to the data distribution itself—similar to what a model would learn when
trained from scratch. Since NTPs (like TUAPs) exhibit strong transferability between models with
highly similar output distributions, any model that learns data-distribution-specific knowledge and
achieves high accuracy is likely to be vulnerable to such NTP attacks.

(2) A possible explanation for the degraded performance of SCAR on the ImageNet dataset is that:
the relatively low accuracy (typically < 70%) of models on ImageNet leads to less similar output
distributions across models. This probably prevents the student model from accurately capturing
data-distribution-specific knowledge, and reduces the transferability and effectiveness of the NTP.

(3) Meanwhile, we observe that SCAR is capable of successfully attacking student models across
various distillation methods, not limited to the KL-divergence-based distillation used during the
bilevel optimization process. This suggests that the transferability of the NTP between models with
the same data-distribution-specific knowledge may play a significant role in facilitating the attack.

From the data distribution perspective, we intended to suggest that SCAR may leverage distribution-
specific natural backdoor features to facilitate the persistence of backdoors across different KD
processes. Regardless of the KD method employed, the primary objective is to optimize the student
model’s performance on the given data distribution. However, during this process, the student model
distilled from datasets drawn from the same distribution as the teacher may also implicitly learn
certain distribution-specific natural backdoor features. This might allow the backdoor trigger to
persist across different KD strategies.

B Results on Additional Model Architectures

In this section, we conduct experiments on two additional teacher model architectures, including
VGG-19 [71] and ViT [19]. We conduct experiments on the CIFAR-10 dataset. The KD methods,
attack setup, and baseline methods are the same as those described in the main text.

As shown in Table 4 and 5, SCAR demonstrates superior attack performance compared to the base-
line method ADBA (FT). Specifically, on the VGG-19 teacher model, ADBA (FT) exhibits only
limited backdoor injection performance against the student model ShuffleNet-V2, and even fails
entirely to implant a backdoor into EfficientViT. In contrast, SCAR consistently achieves a higher
attack success rate above 80% against student models in most scenarios. These results further vali-
date the effectiveness of our proposed SCAR method.

C Results on Additional Backdoor Detection Methods

In this section, we further verify the stealthiness of the distillation-conditional backdoor injected by
SCAR in the teacher model by employing various advanced backdoor detection methods.
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Table 4: The attack performance (%) of SCAR compared to baseline methods on the VGG-19
teacher model and its three distilled student models. For each dataset under each KD method, the
best results are boldfaced, while all failed cases (student ASR < 50%) are marked in red.

KD Method
Model VGG-19

(Teacher)

MobileNet-V2
(Student A)

ShuffleNet-V2
(Student B)

EfficientViT
(Student C)

Attack ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

Response
Benign 92.41 0 91.07 0 90.24 0 87.56 0

ADBA (FT) 90.58 6.88 91.37 92.39 86.19 61.12 87.26 47.39
SCAR 90.53 1.50 91.43 99.24 89.17 95.14 86.26 90.36

Feature
Benign 92.41 0 91.54 0 90.60 0 87.76 0

ADBA (FT) 90.58 6.88 91.41 90.03 89.50 75.60 85.33 32.22
SCAR 90.53 1.50 91.54 99.66 89.05 96.20 85.55 72.64

Relation
Benign 92.41 0 91.81 0 89.43 0 87.36 0

ADBA (FT) 90.58 6.88 91.01 91.11 85.76 46.14 86.99 44.77
SCAR 90.53 1.50 91.27 99.72 89.39 97.23 86.12 88.47

Table 5: The attack performance (%) of SCAR compared to baseline methods on the ViT teacher
model and its three distilled student models. For each dataset under each KD method, the best results
are boldfaced, while all failed cases (student ASR < 50%) are marked in red.

KD Method
Model ViT

(Teacher)

MobileNet-V2
(Student A)

ShuffleNet-V2
(Student B)

EfficientViT
(Student C)

Attack ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

Response
Benign 84.92 0 85.10 0 84.16 0 84.52 0

ADBA (FT) 83.74 4.33 82.75 83.56 82.27 80.61 83.12 51.83
SCAR 84.71 1.73 85.35 95.01 84.06 93.90 84.10 84.58

Feature
Benign 84.92 0 84.41 0 85.31 0 84.23 0

ADBA (FT) 83.74 4.33 83.75 86.64 83.63 87.53 83.06 69.91
SCAR 84.71 1.73 85.64 89.54 85.03 89.74 84.23 88.19

Relation
Benign 84.92 0 85.18 0 84.97 0 84.55 0

ADBA (FT) 83.74 4.33 83.34 85.87 83.33 71.44 83.76 48.48
SCAR 84.71 1.73 85.94 98.27 85.86 87.10 85.23 80.87

C.1 The Resistance to BTI-DBF

BTI-DBF [82] is an advanced backdoor trigger inversion (BTI)-based backdoor detection method.
Overall, its detection process consists of three main steps. First, a mask is trained at the feature
level to decouple the benign features involved in the inference of clean samples from the remaining
redundant features. Next, using this mask, a backdoor generator is trained to minimize the discrep-
ancy of benign features between clean samples and their corresponding poisoned versions, while
maximizing the discrepancy of their backdoor features. Finally, the trained backdoor generator is
applied to the test set to observe the distribution of the model’s output classes. If the model exhibits
a strong bias toward a specific label, that label is identified as a potential backdoor target.

We train teacher models with three different architectures on the CIFAR-10 dataset utilizing the
SCAR attack, with the target label set to class 0. These models are then evaluated utilizing the BTI-
DBF detection method, and the distribution of predicted class labels on the test set is recorded for
each model. As shown in Table 6, BTI-DBF fails to effectively detect the distillation-conditioned
backdoor embedded in the teacher models by SCAR. Specifically, for the VGG-19 and ResNet-50
models, BTI-DBF mistakenly identifies Class 2 as the target label, while for the ViT model, it fails
to detect any backdoor at all. These experimental results demonstrate that SCAR can effectively
evade detection by BTI-DBF.
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Table 6: The backdoor detection performance of BTI-DBF on teacher models compromised by
SCAR. Class 0 is the attack-defined target label. False detections are marked in red.

Model
Predicted Number of Each Class (> 5000 indicates a potential backdoor)

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

ResNet-50 140 116 7113 1 1 0 0 6 1616 1007

VGG-19 0 0 5610 0 72 4318 0 0 0 0

ViT 854 1013 928 900 1069 998 1093 1038 977 1130

Table 7: The SAP values reported by A2D on teacher models compromised by SCAR.

Trial 1 2 3 4 5

SAP 0.117 0.117 0.185 0.206 0.027

Table 8: The backdoor detection performance of BAN on teacher models compromised by SCAR.
Class 0 is the attack-defined target label. False detections are marked in red.

Trial
Predicted Number of Each Class (maximum indicates the target label inferred by BAN)

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

1 434 461 1943 459 43 558 151 46 454 451

2 333 2628 272 70 146 38 0 253 766 494

3 141 432 260 1028 11 6 111 2057 536 418

4 297 43 215 266 3066 287 228 89 285 224

5 176 371 696 79 65 1182 123 1512 209 587

C.2 The Resistance to A2D

A2D [20] is a black-box backdoor detection framework that exploits the heightened sensitivity of
backdoored models to adversarial perturbations. It introduces the sensitivity to adversarial pertur-
bations (SAP) metric, estimated by transferring strong adversarial attacks generated on an unrelated
reference model. A model is flagged as trojaned if its SAP exceeds a threshold, requiring only
limited clean data and low computational cost.

To further verify the stealthiness of our SCAR, we conduct 5 independent detection trials on a
ResNet-50 teacher trained on CIFAR-10 with target label 0. As shown in Table 7, the SCAR-
attacked teacher consistently exhibits low SAP, indicating that A2D failed to detect the backdoor.

C.3 The Resistance to BAN

BAN [81] enhances backdoor detection by augmenting backdoor feature inversion with neuron ac-
tivation information. By adversarially perturbing model weights to trigger backdoor effects, BAN
enables efficient and accurate separation of benign and backdoored models.

To further verify the stealthiness of our SCAR, we conduct 5 independent detection trials on a
ResNet-50 teacher trained on CIFAR-10 with target label 0. Similar to BTI-DBF, we record both
the prediction distribution after mask training and the predicted target class. As shown in Table 8,
BAN also consistently misjudges the backdoor target class, leading to a high false positive rate.

C.4 The Resistance to MDTD and TED

In this section, we verify the stealthiness of our SCAR utilizing two advanced input-level detec-
tion methods, MDTD [67] and TED [58]. Specifically, MDTD is a universal test-time backdoor
detector for DNNs that requires no prior knowledge of the trigger strategy. It leverages adversarial
learning to estimate distances to the decision boundary, identifying poisoned inputs as those lying
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Table 9: F1-scores of MDTD and TED on poisoned test samples for the SCAR-attacked ResNet-50
teacher model.

Method 1 2 3 4 5

MDTD 0.0488 0.0417 0.0225 0.0512 0.0580

TED 0.0386 0.0281 0.0056 0.0120 0.0196

farther away than clean samples. TED is a model-agnostic backdoor detector that treats DNNs as
dynamical systems. Instead of relying on separability in a metric space, TED traces the evolution
of inputs: benign samples follow consistent trajectories, whereas poisoned ones diverge towards
attacker-specified targets, revealing the presence of backdoors.

We evaluate MDTD and TED on a ResNet-50 teacher trained on CIFAR-10 (target label 0) over 5
independent trials. Since both methods are input-level detection, we utilize the poisoned test set as
input and compute the F1-score for poisoned sample detection. As shown in Table 9, both methods
yield very low F1-scores (< 0.06), indicating that they misclassify most poisoned samples as benign
and thus failed to detect the poisoning effectively.

D Results on Additional Non-Detection Backdoor Defenses

In our threat model, the attacker uploads a model containing a distillation-conditional backdoor to
a trusted third-party platform. This platform performs backdoor detection and, upon verifying no
abnormal behavior, releases the model. A victim user then downloads the model and uses it for
further KD. A key aspect of this scenario is that the platform is usually only responsible for detec-
tion, not mitigation. Typically, uploaded models may be trained on large-scale datasets over long
periods, while developers usually only upload their model without uploading training data and con-
figurations. As such, such mitigation is generally infeasible or at least significantly degrades model
performance and requires many computational resources. Given the platform’s limited resources,
we assume it does not conduct non-detection defenses.

However, users may apply backdoor mitigation methods either to the downloaded teacher model
before KD or to the distilled student model afterward. We conduct supplementary experiments to
evaluate the robustness of SCAR in both scenarios.

D.1 The Resistance to Teacher-side Mitigations

In this section, we conduct additional non-detection backdoor defenses to SCAR-attacked teacher
models to verify the robustness of our SCAR. We evaluate two non-detection defenses: NAD [45]
and fine-pruning [49]. We apply these defenses to a SCAR-attacked ResNet-50 on CIFAR-10, and
then use the defended model for KD to train MobileNet-V2. As shown in Table 10, SCAR remains
highly effective, even after the teacher has undergone these backdoor mitigations. Besides, using
non-detection defenses may even slightly raise teacher ASR (> 5%). This might be because such de-
fenses disrupt the carefully crafted “mask” of the distillation-conditional backdoor, thus re-exposing
the hidden backdoor to some extent.

While NAD and fine-pruning fail to eliminate SCAR, we don’t intend to claim that it is undefeatable.
Rather, our goal is to raise awareness that even models which pass backdoor detection should always
not be assumed safe for distillation without further examination or cleansing.

D.2 The Resistance to Student-side Mitigations

In this section, we conduct additional non-detection backdoor defenses to student models distilled
from SCAR-attacked teacher models to verify the robustness of our SCAR. We evaluate our SCAR
under Sampdetox [84] method. Specifically, we launch the SCAR attack on a ResNet-50 teacher
model on CIFAR-10, and distill three MobileNet-V2 student models using different KD methods.
We then evaluate the defense performance of SampDetox using both benign and poisoned test sets.

As shown in Table 11, although SampDetox can partially reduce the attack success rate of SCAR,
it also leads to a noticeable drop in benign accuracy (BA). This suggests that SCAR has already
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Table 10: The attack performance (%) of SCAR on the student MobileNet-V2 distilled from the
teacher ResNet-50 under two backdoor mitigation methods, using three KD methods.

Method
ResNet-50
(w/o Defense)

ResNet-50
(w/ Defense)

MobileNet-V2
(Response)

MobileNet-V2
(Feature)

MobileNet-V2
(Relation)

ACC ASR↓ ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

No Defense 92.47 1.50 — — 91.62 99.94 91.01 99.90 91.29 99.93

NAD 92.47 1.50 88.45 9.60 89.08 99.94 86.12 89.20 87.11 99.58

fine-pruning 92.47 1.50 92.72 5.94 92.17 99.47 90.44 97.41 91.08 99.34

Table 11: The defense performance (%) of SampDetox against MobileNet-V2 student models dis-
tilled from ResNet-50 teacher models using three different KD methods.

Distillation Method
Before Defense After Defense

ACC ASR ACC ASR

Response 91.62 99.94 84.13 56.42

Feature 91.01 99.90 82.26 52.60

Relation 91.29 99.93 83.65 76.01

Table 12: The attack performance (%) of SCAR with different surrogate models on the student
MobileNet-V2 distilled from the teacher ResNet-50 using three KD methods.

Surrogate
ResNet-50

(Teacher)

MobileNet-V2
(Response)

MobileNet-V2
(Feature)

MobileNet-V2
(Relation)

ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

ResNet-18 92.47 1.50 91.62 99.94 91.01 99.90 91.29 99.93

ResNet-34 92.32 1.42 92.26 99.47 90.77 99.68 91.76 99.92

DenseNet-121 92.79 1.43 92.19 99.80 90.67 95.78 91.80 99.90

SqueezeNet 92.41 1.56 91.86 99.94 91.16 99.13 91.78 99.88

exhibited a certain degree of robustness against input pre-processing defenses, although we have no
particular design for it.

E Results on Additional Ablation Studies

E.1 The Surrogate Model Architecture

In this section, we evaluate SCAR on CIFAR-10 under various surrogate architectures, including
ResNet-18, ResNet-34, DenseNet-121, and SqueezeNet, while adopting ResNet-50 and MobileNet-
V2 as the teacher and student models, respectively. As shown in Table 12, SCAR consistently
achieves high attack success rates (student ASR > 95%) across all settings.

E.2 The Distillation Loss Weight δ

In our threat model, the attacker can only manipulate the training process of the compromised
teacher model, without access to the user’s choice of distillation methods or hyperparameters. In
this section, we evaluate the effectiveness of SCAR in attacking student models under various distil-
lation methods and loss weights δ. Specifically, we utilize a SCAR-compromised ResNet-50 trained
on CIFAR-10 as the teacher model and distill it into MobileNet-V2 student models using three dif-
ferent distillation techniques and five different distillation loss weights δ.
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Table 13: The attack performance (%) of SCAR under different distillation loss weights (δ) utilizing
the student model (MobileNet-V2) distilled from the SCAR-attacked teacher model (ResNet-50).

Model ResNet-50
(Teacher)

MobileNet-V2
(δ = 1)

MobileNet-V2
(δ = 2)

MobileNet-V2
(δ = 3)

MobileNet-V2
(δ = 4)

MobileNet-V2
(δ = 5)

KD Method ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑ ACC ASR↑ ACC ASR↑

Response 92.47 1.50 91.62 99.94 91.64 99.92 91.58 99.87 91.68 99.90 92.15 99.96

Feature 92.47 1.50 91.01 99.90 90.68 98.70 91.27 98.17 91.12 94.00 91.11 95.81

Relation 92.47 1.50 91.29 99.93 91.65 99.79 91.27 99.89 91.47 99.91 91.70 99.96

Table 14: The attack performance (%) of SCAR on the student MobileNet-V2 distilled from the
teacher ResNet-50 with different distillation datasets, using three KD methods.

Distillation Dataset
ResNet-50

(Teacher)

MobileNet-V2
(Response)

MobileNet-V2
(Feature)

MobileNet-V2
(Relation)

ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

CIFAR-10 92.47 1.50 91.62 99.94 91.01 99.90 91.29 99.93

CINIC-10 68.83 5.22 76.22 74.51 72.35 54.83 75.81 75.58

As shown in Table 13, SCAR consistently achieves effective attacks on the MobileNet-V2 student
models across different distillation methods and loss weights δ. This further demonstrates the ability
of SCAR to activate the dormant backdoor in the teacher model and achieve a high attack success
rate in the student model.

E.3 The Distillation Dataset

In addition to the distillation loss weight δ, users can also specify the dataset employed for distilling
the student model. Here, we conduct additional experiments where the distillation dataset differs
from the training set. We train a ResNet-50 teacher using SCAR on CIFAR-10, and then distill
MobileNet-V2 students using a subset of CINIC-10 [12], which contains the same 10 classes but
has a different data distribution (5,000 training and 1,000 test samples per class).

As shown in Table 14, due to the distributional shift, the teacher’s accuracy drops to 68.83%. The
students also experience a drop in accuracy. Although the attack success rate on the students de-
creased accordingly, it still remained above 54%. These results suggest that if the student fails to
achieve high accuracy during distillation—meaning it does not effectively inherit the teacher’s be-
nign knowledge—it is also less likely to inherit the backdoor. However, such significant drops in
accuracy for both teacher and student models indicates an ineffective distillation process, which is
usually not meaningful in practice.

E.4 The Number of Inner Steps T

In our main experiments, We fix the number of inner optimization steps to 20. This is mostly because
the surrogate model has already reached a reasonably good local optimum (around 85% accuracy
compared to the teacher) within these steps, which is sufficient for guiding the outer optimization.

To assess sensitivity to this setting, we conduct ablation studies using different inner steps (20, 30,
40) when attacking ResNet-50 on CIFAR-10. The surrogate model is ResNet-18, and the student
model is MobileNet-V2. As shown in Table 15, SCAR remains effective under all settings. This
suggests that once the inner parameters are optimized to a nearly local optimum, the outer gradient
is adequately approximated.

E.5 The Bilevel Optimization Hyperparameters (α, β, and γ)

In the outer optimization objective in Eq. (2), the scales of the four loss terms are approximately
comparable and relate to four different aspects (e.g., the student’s performance on benign samples).
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Table 15: The attack performance (%) of SCAR with different inner steps on the student MobileNet-
V2 distilled from the teacher ResNet-50 using three KD methods.

Inner Step
ResNet-50

(Teacher)

MobileNet-V2
(Response)

MobileNet-V2
(Feature)

MobileNet-V2
(Relation)

ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

20 steps 92.47 1.50 91.62 99.94 91.01 99.90 91.29 99.93

30 steps 92.35 1.46 92.13 99.41 91.03 99.04 91.26 99.39

40 steps 92.20 1.51 91.98 99.69 91.16 99.18 91.87 99.49

Table 16: The attack performance (%) of SCAR on the student MobileNet-V2 distilled from the
teacher ResNet-50 under different hyperparameter settings, using three KD methods.

Hyperparameter
ResNet-50

(Teacher)

MobileNet-V2
(Response)

MobileNet-V2
(Feature)

MobileNet-V2
(Relation)

ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

α = 0.5 92.43 1.77 91.67 99.81 91.12 99.36 91.58 99.94
α = 1 92.47 1.50 91.62 99.94 91.01 99.90 91.29 99.93
α = 1.5 92.54 1.33 92.08 99.46 91.03 99.71 91.78 99.59

β = 0.5 92.21 1.61 92.36 99.37 91.30 99.04 91.33 99.07
β = 1 92.47 1.50 91.62 99.94 91.01 99.90 91.29 99.93
β = 1.5 92.35 1.43 91.99 99.83 90.87 99.01 91.52 99.36

γ = 0.5 92.55 1.82 92.40 99.51 91.25 98.58 91.46 99.53
γ = 1 92.47 1.50 91.62 99.94 91.01 99.90 91.29 99.93
γ = 1.5 92.13 1.88 91.74 99.97 90.98 99.77 91.64 99.23

Attackers can adjust their values based on specific needs or priorities. In our experiments, we set
α = β = γ = 1 for simplicity and clarity, as this is the most straightforward configuration.

We also conduct ablation studies to evaluate SCAR’s sensitivity to these hyperparameters. Specifi-
cally, we train teachers (ResNet-50) using SCAR on CIFAR-10 with α, β, and γ independently set
to 0.5, 1.0, and 1.5. We use ResNet-18 as the surrogate and MobileNet-V2 as the student. As shown
in Table 16, SCAR consistently achieves strong attack performance (student ASR > 98%) across
different hyperparameter settings.

E.6 The Trigger Injection Function G

In this section, we consider more types of triggers to replace the pre-optimized trigger function G,
especially the sample-specified triggers cover the entire image. We replace the pre-trained triggers in
SCAR with image-size poisoning strategies from BadNets [27], WaNet [60] and BppAttack [76], as
implemented in BackdoorBox [47] or their source codes. We then train teacher models ResNet-
50 on CIFAR-10 using these methods. ResNet-18 is used as the surrogate, and MobileNet-V2 serves
as the student. We evaluate the attack success rates on students obtained via different KD methods.

As shown in Table 17, using these image-size poisoning strategies still fails to effectively transfer
backdoors to the student models (student ASR < 25%). It indicates that simply using image-size
triggers cannot be easily ‘entangled’ with benign features, even if they cover the entire image, and
thus fail to transfer during distillation.

F Implementation Details

Details of Datasets.

1. CIFAR-10. The CIFAR-10 dataset [40] contains 50,000 training samples and 10,000 testing
samples in total. The dataset has 10 classes and each class has 5,000 training samples and
1,000 testing samples. The size of each image sample is 3×32×32.
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Table 17: The attack performance (%) of SCAR on the student MobileNet-V2 distilled from the
teacher ResNet-50 under different trigger types, using three KD methods.

Trigger Type
ResNet-50

(Teacher)

MobileNet-V2
(Response)

MobileNet-V2
(Feature)

MobileNet-V2
(Relation)

ACC ASR↓ ACC ASR↑ ACC ASR↑ ACC ASR↑

BadNets 93.81 0.72 91.47 1.03 91.49 1.48 91.22 1.38

WaNet 93.07 2.20 91.07 20.97 90.47 9.73 90.77 21.22

BppAttack 93.65 1.11 91.43 1.17 89.29 1.86 91.36 1.07

Ours 92.47 1.50 91.62 99.94 91.01 99.90 91.29 99.93

2. ImageNet. The ImageNet dataset [14] consists of 1,000 classes containing over 14 million
manually annotated images. In this paper, we select a subset with 50 different classes and
each class contains 500 training samples and 100 testing samples with size 3×224×224.

Details of Training Models.

1. Benign Models. We utilize the Adam as the optimizer and the batch size is set to 256 on
CIFAR-10 and 128 on ImageNet. We set the initial learning rate as 10−4 and train all
models for 200 epochs, with the learning rate reduced by a cosine annealing schedule.

2. Models attacked by ADBA (FT). We first train a teacher model compromised by ADBA
using the same training configuration as that of the benign model, with the target label
set to 0. The shadow model is trained via KL-divergence-based distillation using SGD
with an initial learning rate of 0.1. The trigger pattern is optimized using a separate SGD
optimizer with an initial learning rate of 0.01. All optimization processes adopt individual
cosine annealing schedules to manage the learning rates. During fine-tuning, the feature
extraction layers of the teacher model are frozen, and only the final linear layer is updated.
The optimizer used is Adam with a learning rate of 10−6, and the hyperparameter η is set
to 1 and k is set to 0.1.

3. Models attacked by SCAR. During trigger pre-optimization, we distill a benign model using
KL divergence loss with the Adam optimizer (learning rate of 10−4) and a cosine annealing
schedule. The trigger pattern is then optimized using Adam with a learning rate of 0.01.
For solving the bilevel optimization problem, we set the target label to 0. The outer opti-
mization runs for 200 iterations, with 20 inner-loop updates per outer iteration, and each
fixed-point iteration runs for 100 steps. The teacher model is optimized using Adam with
an initial learning rate of 10−4, and the learning rate is decayed using a cosine annealing
schedule. To accelerate training, 40 random batches are selected from the training set in
each fixed-point iteration. The hyperparameters, α, β, γ, and δ, are set to 1.

Details of Knowledge Distillation. When distilling student models to evaluate the effectiveness
of SCAR, we set the hyperparameter δ to 1 for all three distillation methods. Adam is used as
the optimizer with an initial learning rate of 10−4, and the learning rate is scheduled using cosine
annealing over 150 epochs. We apply early stopping once the student model achieves comparable
or slightly better accuracy than the teacher model on the test set.

Computational Resources. In our implementations, we utilize PyTorch as the deep learning frame-
work. All our experiments are implemented with RTX 4090 GPUs.

G The Overhead of our SCAR

In this section, we evaluate the overhead of our SCAR. Specifically, we separately measure the time
of the bilevel optimization process for compromised teacher models on the CIFAR-10 and ImageNet
datasets. We set the inner loop to 20 iterations and the outer loop to 200 iterations, with 100 fixed-
point updates per outer iteration. To accelerate training, 40 random batches are selected from the
training set in each fixed-point iteration. We conduct all training using a single RTX 4090 GPU. For
the subsequent KD process, since the attacker can only manipulate the training of the teacher model
but cannot control which distillation method the user adopts, we do not account for its overhead.

31



Table 18: The overhead (hours) of ResNet-50 compromised by SCAR on CIFAR-10 and ImageNet.

Dataset CIFAR-10 ImageNet

Overhead 20.75 59.04

As shown in Table 18, the optimization of the teacher model incurs substantial overhead. This
is largely because each fixed-point iteration to estimate its parameter gradients necessitates a 100-
iteration linear loop, and furthermore, every iteration within this loop requires gradient computations
for large tensors whose dimensions are comparable to the full model parameters. To accelerate
training, an intuitive approach is to utilize multi-GPU training, which allows for increasing the batch
size in each optimization round. This, in turn, can reduce the number of outer optimization epochs
and fixed-point iterations, thereby speeding up the convergence of the teacher model optimization.
How to address this training overhead presents a potential direction for our future work.

H Related Work

H.1 Backdoor Attack

Based on whether activating the backdoor requires preconditions beyond the trigger pattern, attacks
are classified into two types: (1) Unconditional backdoor attacks [48, 66, 79], the conventional form,
can activate malicious behaviors solely by applying predefined trigger patterns. (2) Conditional
backdoor attacks [38, 62, 72], a more recent paradigm, require specific model manipulations before
the trigger pattern can activate the hidden malicious functionality.

Unconditional Backdoor Attacks. This class of attacks is the conventional form of backdoors:
a predefined trigger pattern is simply added to inputs to induce the model to execute an attacker-
specified behavior (e.g., map to a target label) without any additional conditions. The BadNets
attack [27], which uses a white-square trigger, is the first to demonstrate the threat of backdoors
in the image domain. Subsequent work has produced varied trigger modalities, including pattern
blending [5] and imperceptible perturbations [60]. More recently, Cai et al. [2] propose using pitch
and timbre as triggers in the audio domain. These unconditional backdoor attacks are simple and
highly effective, but they are also relatively easy to detect.

Conditional Backdoor Attacks. Generally, models compromised by conditional backdoor attacks
initially behave normally, even on triggered inputs, with the backdoor remaining inactive. This la-
tency can be broken by specific post-processing operations applied to the model. Tian et al. [72]
first demonstrate that model compression techniques, specifically model pruning and quantization,
can awaken hidden backdoors. Subsequently, further research [31, 38, 53, 63] highlights the vulner-
ability of model quantization to backdoors and proposes various quantization-conditional backdoor
attacks. Furthermore, fine-tuning on downstream tasks [39, 62] and dynamic multi-exit transfor-
mation [18] have also been shown to activate such backdoors. However, existing studies have not
explored whether the KD process might introduce similar security vulnerabilities.

H.2 Backdoor Defenses

To mitigate backdoor threats, researchers have proposed various defenses, broadly categorized as:
(1) Detection-based defenses [74, 80, 82], aiming to identify whether a model contains a backdoor.
(2) Purification-based defenses [6, 33, 88], seeking to cleanse or inactive potential backdoors within
the model. While effective against conventional backdoor attacks, these defenses face challenges
with conditional backdoors. Specifically, the dormant nature of conditional backdoors often allows
them to evade detection-based methods [53, 72], leading to compromised models being misclassi-
fied as benign. Although purification-based approaches might partially reduce the attack success
rate (ASR) of conditional backdoors [44], they typically incur additional overhead from necessary
model parameter modifications or auxiliary module training. In particular, specialized defenses have
recently been developed for conditional backdoors, such as those targeting quantization-conditional
backdoors [43, 44], and have demonstrated promising effectiveness. However, defenses against our
proposed distillation-conditional backdoor remain largely underexplored.
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Figure 3: The t-SNE of benign and poisoned test sample features on the teacher model ResNet-50
compromised by SCAR.

I Visualization

The t-SNE of Features on the Teacher Model. To further verify the stealthiness of SCAR-injected
backdoors in the teacher model, we visualize the feature distributions of both benign and poisoned
test samples. Specifically, we utilize a teacher model ResNet-50 trained on the CIFAR-10 dataset
under SCAR attack. During testing, we feed the model with both benign and poisoned samples,
extract their features prior to the fully connected (fc) layer, and apply t-SNE to project them into a
two-dimensional space for visualization.

As shown in Figure 3, the ResNet-50 model attacked by SCAR produces well-separated clusters in
the feature space for both benign and poisoned test samples. This demonstrates the stealthiness and
non-activatability of the SCAR-injected backdoors in the teacher model, enabling the distillation-
conditional backdoor to effectively evade direct backdoor detection methods applied to the teacher.

The t-SNE of Features on the Student Model. To further validate the effectiveness of SCAR in
attacking student models, we visualize the feature distributions of both benign and poisoned test
samples as processed by the student model. Specifically, we consider a scenario in which a ResNet-
50 teacher model, trained on CIFAR-10 and compromised by SCAR, is used to distill knowledge
to a MobileNet-V2 student model via response-based distillation on clean data. During testing, we
feed the student model MobileNet-V2 with both benign and poisoned samples, extract their features
prior to the fc layer, and apply t-SNE to project them into a two-dimensional space for visualization.

As shown in Figure 4, the benign samples form well-separated clusters in the feature space of the
MobileNet-V2 student model, whereas the majority of poisoned samples are misclassified into the
target label (Class 0), demonstrating the effectiveness of SCAR in attacking student models.

The Examples of Benign and Poisoned Images. In addition, as shown in Figure 5, we present a
set of benign images from the CIFAR-10 test set along with their corresponding poisoned versions.

J Societal Impact

This paper uncovers a significant and previously underappreciated security vulnerability: student
models can inherit backdoor threats from teacher models via knowledge distillation, even if the
teacher model has passed prior backdoor detection and distillation is performed using a clean dataset.
Our proposed attack, SCAR, though straightforward, effectively demonstrates the practical feasibil-
ity of this threat vector. While the techniques presented could potentially be exploited by malicious
actors to craft teacher models embedded with distillation-conditional backdoors, the primary contri-
bution of this work is to serve as a crucial alert for the AI development and deployment community.
It highlights a critical blind spot in current security practices.

We strongly advocate that developers and organizations implement rigorous security verification,
including comprehensive backdoor detection, not only for teacher models sourced from third-party
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Figure 4: The t-SNE of benign and poisoned test sample features on MobileNet-V2, which is dis-
tilled from the teacher model ResNet-50 compromised by SCAR.
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Figure 5: Examples of benign and corresponding poisoned images from the CIFAR-10 testset.

platforms but also, critically, for the student models derived through any distillation process. This
dual-checking paradigm is vital for ensuring the integrity and safety of AI systems deployed in
real-world, safety-critical scenarios. In essence, this paper underscores the urgent need for contin-
uous and thorough backdoor detection throughout the AI model lifecycle from pre-deployment to
post-distillation. This vigilance is crucial for guarding against evolving backdoor attacks, including
various forms of conditional backdoors, and fostering trust and security in AI applications.

K Potential Limitations and Future Directions

Firstly, as discussion in the main results Section 4.2, the performance of SCAR on the ImageNet
dataset is less satisfactory. Specifically, while SCAR consistently achieves over 80% ASR against
student models in most cases on CIFAR-10, it only maintains ASR above 50% on ImageNet. This
performance degradation may be attributed to the increased number of classes and larger image size
in ImageNet, which intensifies the instability of the bilevel optimization process and may lead to
convergence to a local minimum. Nevertheless, considering that this is the first work to reveal a
new attack paradigm, we believe that the experimental results are acceptable to a certain extent. In
particular, such results cannot undermine the central opinion of this paper: developers should remain
vigilant and conduct thorough backdoor detection on distilled student models, even when the teacher
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model and distillation dataset have been verified as secure. In future work, we aim to improve the
attack effectiveness of SCAR on datasets with larger scales and greater category diversity.

Secondly, in our implicit differentiation algorithm, estimating the teacher model’s gradient via the
fixed-point iteration method requires synchronized linear loops, which increase the overall opti-
mization time to some extent. We have discussed the computational overhead of our method in
Appendix G and proposed potential solutions. Improving the speed and accuracy of gradient esti-
mation remains an important direction for future research.

Finally, this paper primarily focuses on the attack threat posed by distillation-based backdoors for
image classification models. Given that existing studies have shown the potential for backdoor
threats to be transferred during the distillation of large language models [7], we will investigate in
future work whether similar security risks exist in other modalities and tasks.

L Discussion on Adopted Data

In our experiments, we use only open-source datasets, namely CIFAR-10 [40], ImageNet [14] and
CINIC-10 [12], for evaluation. Our research strictly adheres to the open-source licenses of these
datasets and does not raise any privacy concerns. Although the ImageNet dataset may contain per-
sonal elements such as images of human faces, our work treats all data uniformly and does not
intentionally exploit or manipulate any sensitive content. Therefore, our use of these datasets is
fully compliant with their terms of use and does not constitute a violation of personal privacy.

M Ethics Statement

In this paper, we reveal a new security threat (i.e., distillation-conditional backdoor attack) in the
knowledge distillation process. In general, our work intends to alert developers to notice a potential
false sense of security or consensus that distilling a student model based on a ‘backdoor-free’ teacher
model with benign samples is always safe. Accordingly, our paper has positive societal impacts in
general. However, we notice that the adversaries may adopt our method to execute an attack in
practice. We argue that merely detecting backdoors in the teacher model is insufficient, and rigorous
detection of the student model is also essential. Besides, victim developers can mitigate this threat
from the source by using only trusted third-party models.

N Reproducibility Statement

Detailed information regarding our implementations and experiments is provided in Appendix F.
Additionally, we provide the official implementation of SCAR at https://github.com/
WhitolfChen/SCAR.
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