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Abstract

Neural pruning is a widely-used compression technique for Deep Neural Networks
(DNNs). Recent innovations in Hardware Architectures (e.g. Nvidia Ampere
Sparse Tensor Core) and N:M fine-grained Sparse Neural Network algorithms (i.e.
every M-weights contains N non-zero values) reveal a promising research line of
neural pruning. However, the existing N:M algorithms only address the challenge of
how to train N:M sparse neural networks in a uniform fashion (i.e. every layer has
the same N:M sparsity) and suffer from a significant accuracy drop for high sparsity
(i.e. when sparsity > 80%). To tackle this problem, we present a novel technique –
DominoSearch to find mixed N:M sparsity schemes from pre-trained dense deep
neural networks to achieve higher accuracy than the uniform-sparsity scheme with
equivalent complexity constraints (e.g. model size or FLOPs). For instance, for
the same model size with 2.1M parameters (87.5% sparsity), our layer-wise N:M
sparse ResNet18 outperforms its uniform counterpart by 2.1% top-1 accuracy, on
the large-scale ImageNet dataset. For the same computational complexity of 227M
FLOPs, our layer-wise sparse ResNet18 outperforms the uniform one by 1.3% top-1
accuracy. Furthermore, our layer-wise fine-grained N:M sparse ResNet50 achieves
76.7% top-1 accuracy with 5.0M parameters. This is competitive to the results
achieved by layer-wise unstructured sparsity that is believed to be the upper-bound
of Neural Network pruning with respect to the accuracy-sparsity trade-off. We
believe that our work can build a strong baseline for further sparse DNN research
and encourage future hardware-algorithm co-design work. Our code and models
are publicly available at https://github.com/NM-sparsity/DominoSearch.

1 Introduction

Modern deep neural networks (DNNs) achieve remarkable success in various tasks such as computer
vision and language processing at a cost of memory footprint, computation, energy and storage. These
have all become bottlenecks of deploying DNNs on commodity hardware for real-world applications.
To address these challenges, many model compression techniques have been proposed to optimize
DNN models. Neural network pruning is one promising technique orthogonal to quantization [1–3],
network architecture search [4–6] and knowledge distillation [7–9].

Recent innovations in hardware architectures (e.g. Nvidia Ampere Sparse Tensor Core [10]) and
N:M fine-grained sparse DNN pruning algorithms [11, 12] reveal a promising research line of neural
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pruning that may achieve a high sparse ratio while maintaining a regular sparse structure. On the other
hand, traditional unstructured sparsity can achieve a higher sparse ratio but cannot maintain a regular
sparse structure, which makes it difficult for acceleration [13]. Traditional structured sparsity can
achieve regular sparse structure but may not achieve high compression ratio[11]. Figure 1 illustrates
traditional unstructured/structured pruning and N:M fine-grained structured pruning.
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Figure 1: (a) Unstructured pruning treats every weight in the dense matrix individually which will
produce a sparse matrix with irregular non-zero data. (b) Coarse-grained pruning treats a filter/channel
as an atomic component and can produce a regular sparse matrix. (c) Fine-grained N:M pruning
performs unstructured pruning inside each group (group size M = 4 in this example) while it enforces
an additional constraint that there are at most N non-zero values to be kept.

Applying uniform fine-grained N:M sparsity training, or fine-tuning to DNNs, will lead to a sub-
optimal solution because layers are treated equally. Modern DNNs tend to have a number of layers
with a highly non-uniform distribution of redundancy. This well-known phenomenon has been
exploited by recent unstructured pruning methods [14–17] that have achieved higher accuracy than
the uniform counterparts, especially for relatively high sparsity. However, the existing methods
mainly focus on unstructured pruning that treats the weights within a layer individually and does
not have fine-grained position constraints, which cannot be used for fine-grained N:M sparsity. As a
consequence, a novel method for layer-wise fine-grained N:M sparsity is needed.

Furthermore, sparsity acceleration relies on the underlying software-architecture system of the
platform. We can make a reasonable assumption that there will be more but not arbitrary N:M
schemes supported in future software-architecture designs. Although the flexibility of N and M is
still an open system design research question, we assume a policy of fixed M and flexible N in this
paper because it can provide fixed window size (i.e. size = M) for sparse weight matrix compression.

Motivated by above-mentioned challenges, this work introduces an efficient framework to find a layer-
wise fine-grained N:M scheme with pre-defined N:M candidates which achieves higher accuracy
compared to the uniform counterpart with equivalent complexity constraint (e.g. model size or
FLOPs).

We propose DominoSearch, an iterative algorithm that finds layer-wise fine-grained sparse schemes
from pre-trained dense weights. This is achieved using a magnitude-based criterion [14, 18] for
the pruning selection threshold, in combination with a weight penalty to drive values towards the
threshold. DominoSearch also uses a layer-wise penalty factor to balance the heuristic layer-wise
redundancy of parameters[15] and layer-wise computational complexity (e.g. FLOPs). As indicated
by the name Domino, the N value from the N:M ratio decrements during the search phase with the
weight penalty acting as momentum.

Due to the layer-wise sparsity, our framework is able to achieve state-of-the-art (SOTA) accuracy-
model size trade-offs when compared with unstructured sparsity and accuracy-FLOPs trade-offs
when compared with structured sparsity. Figure 2 demonstrates the advantages of layer-wise N:M
sparsity under both scenarios on ResNet50 [19]. Details can be found in Table 2.

The major contributions of our paper can be summarized as follows: (1) We present DominoSearch -
A novel and easy-to-use framework to search the layer-wise sparse schemes from pre-trained dense
weights with a specified model complexity constraint. Our method does not rely on expensive design
space exploration such as Network Architecture Search (NAS) or Reinforcement Learning (RL).
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Figure 2: ResNet50 on ImageNet: Compare top-1 Accuracy of our layer-wise N:M sparse models
with SOTA structured/unstructured sparsity under various FLOPs/model sizes.

To the best of our knowledge, this is the first work on layer-wise fine-grained N:M sparsity. (2)
We propose a layer-wise penalty factor to balance the parameters redundancy that does not depend
on input tensor/image size and complexity that depends on input tensor/image size (e.g. FLOPs).
The computational complexity measurement FLOPs used in this paper can easily be replaced with
latency, throughput or energy consumption when deployed on a specific platform. (3) We evaluate our
solution on the large scale ImageNet dataset with both heavy ResNets [19] and compact RegNets [20],
and the smaller scale CIFAR100 dataset with ResNet56. Results of ResNet50 on ImageNet show that
layer-wise N:M sparsity searched by our framework achieves SOTA accuracy-compression trade-off
under fine-grained N:M sparsity.

2 Related Work

Structure of sparsity: Traditionally, sparsity of DNNs is categorized into 1) unstructured sparsity
and 2) structured sparsity. Unstructured sparsity can be achieved by weight pruning and reaches
a relatively high sparse ratio without significant accuracy drop [14, 16, 18, 21, 22]. However,
unstructured sparsity has a large execution time overhead on modern hardware due to the large
overhead of handling the irregular non-zero weights in the matrix; good speed-up can only be
achieved when the sparse ratio is very high (i.e., > 95%) [13, 23]. On the other hand, coarse-grained
structured sparsity such as filter-wise sparsity and channel-wise sparsity [23, 24] can maintain
a hardware-friendly sparse structure but may not be able to achieve a high sparse ratio. In order
to achieve a high compression ratio and a hardware-friendly sparse structure, various fine-grained
structured sparsity patterns were proposed including Tile-wise [25], intragroup sparsity structure [26]
and N:M sparsity [10]. Our paper focuses on N:M fine-grained sparsity which has demonstrated
success in getting accurate N:M sparse DNNs (i.e. trained from scratch [11] or fine-tuned [27] from
dense pretrained weights) and usage in commodity hardware (e.g. Nvidia Ampere Tensor Core).
Figure 1 illustrates two traditional types (structured/unstructured) and fine-grained N:M sparsity.

Layer-wise compression: Layer-wise compression is a well-known concept in the DNN optimization
community. The non-uniform importance of different layers in DNNs is leveraged by mixed-precision
quantization in which different bit-widths are allocated via NAS [28, 29] or RL [3]. Recent discoveries
demonstrate that by carefully selecting [14, 15] or learning [16] the layer-wise sparsity, the sparse
DNNs can achieve higher accuracy than their uniform counterparts. Evci et al. [15] propose a
training scheme for unstructured sparse neural networks and present the Erdos-Renyi kernel (ERK)
(extension of [17]) to heuristically select the layer-wise sparsity. Lee et al. [14] propose a layer-
adaptive magnitude-based pruning score to choose the layer-wise sparsity, focusing on unstructured
pruning and the number of survival weights of each layer without taking the layer-wise computation
complexity (e.g. FLOPs) into account. Kusupati et al. [16] present Soft Threshold Reparameterization
(STR) to learn the layer-wise sparsity during training. However, the target model complexity constraint
(e.g. model size and FLOPs) is implicitly controlled by two hyper-parameters (λ and sinit) and cannot
be specified, hence users have to tune λ and sinit and train multiple models to get the desired target
model complexity. Our paper focuses on how to find the N:M scheme of each layer efficiently with
the specified model complexity constraint. It avoids the need for a time consuming hyper-parameter
search.
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3 Method - DominoSearch

3.1 Problem Formulation

Given a pretrained dense model with weight tensors w1, . . . , wi, . . . , wL associated with L layers
(convolution layers + fully-connected layers), model complexity constraint Spt (e.g. model size
or FLOPs) and candidate pool Np of sparse schemes (e.g. [1:8,2:8,4:8,8:8])2. The problem can be
formulated as :

max
S(w,N)

Accuracy
(
S(w, N))

s.t. Complexity(S(w, N)) ≤ Spt
N i ∈ Np

(1)

Where S(·) denotes the sparse model which can be obtained with dense weights w and sparse ratio N .
Complexity(·) can be model size, FLOPs, real latency or even energy consumption depending on the
use case and design objectives. The goal is to find optimal layer-wise schemes for the whole network.
Due to the large discrete design space and the training/fine-tuning cost of evaluating a design point
(i.e. recovering the accuracy of the sparse model), it is usually not possible to handcraft the optimal
solution or to perform an exhaustive search.

Inspired by methods used in mixed-bit search [3, 29], which decouple mixed-bit policy searching and
model accuracy recovering, we use a two-step solution: (1) find the layer-wise sparse schemes from
the candidate pool Np; (2) fine-tune/retrain sparse weights with searched sparsity (i.e. N i) to recover
the accuracy.

3.2 Group-wise threshold and sparsity

We first emphasise the difference between layer-wise fined-grained sparsity and layer-wise unstruc-
tured sparsity. How to decide the layer-wise sparsity has been actively studied over recent years
[14–16]. However, these methods mainly focus on unstructured sparsity whose layer-wise sparsity
can be decided by a layer-wise threshold because the weights in a certain layer are treated individually.
In contrast, fine-grained N:M sparsity treats weights from a group-wise view (e.g. Figure 1 (c)). As a
consequence, we define a group-wise threshold vector T i and group-wise sparsity vector N i

g , where i

is the layer index. The length of these two vectors is K = |wi|
M , where || is cardinality (i.e. the number

of parameters), M is the group size and K is the number of groups. |wi| should be divisible by M .

Group-wise threshold selection: Instead of using a small global value such as 1
1000 [22] to decide

if the weights should be treated as pruned or not, we use a threshold vector T i that can represent
the weight distributions of each group. In order to achieve this, we use the mean of the smallest
(absolute value) M

2 elements as threshold because it provides a group-wise feature in an efficient way
and can mitigate the effect of outliers (e.g. values like 0.0 ). Note that we use M

2 elements because
it results in a sufficient search space and representativeness. Using more elements can result in a
better representativeness because more elements are included, but results in a smaller search space
because a larger threshold value will lead to a smaller starting value N i

g and vice versa. Figure 3
shows an example of group-wise threshold selection. The larger variance of T i indicates that we
need a group-wise threshold. On the other hand, a group-wise threshold will lead to group-wise
sparsity. The column vector N i

g encodes the number of kept weights of each group, from which we
can infer the sparsity of this layer (i.e. N:M = 3:4). In practice, we can relax the requirement by using
the Supermajority voting rule. Specifically, as long as the ratio of the number of x in N i

g reaches a
pre-defined voting ratio vr, the layer sparsity N i can be inferred as x.

With above-mentioned group-wise definitions, we can reformulate wi and T i as wi
k and T i

k, where k
is the group index. We use the reformulated version in the next sections.

2Without losing generalization, we use N equal to power-of-two as search space.
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wi0.0104 0.0114 0.0020 0.0061
0.0212 0.0748 0.0368 0.0898
0.0854 0.1751 0.0406 0.0450
0.0896 0.0169 0. 0.0177

− >
T i0.00410.0290

0.0428
0.0085

− >
Ni

g333
3


Figure 3: An illustrative example of dense weight matrix wi and corresponding threshold vector T i.
The values are taken from random groups in the first layer of ResNet18. N i

g encodes the number of
elements larger than the threshold of each group. Blue highlights values larger than threshold.

3.3 Explore the search space via layer-wise weight penalty

Before introducing our search algorithm, we consider the standard DNN training process with the
Stochastic Gradient Descent (SGD) update rule:

w(t+ 1) := w(t)− ξtg(w(t)) (2)

with learning rate ξt and gradients g(w) of w. To obtain a sparse model, we need to apply a mask m ∈
{0,1} to weights w(t), resulting in a sparse model w̃(t) := w(t)�m, where � denotes element-wise
product. The mask can dynamically change during training iteration t and depends on the weights wt.
With group-wise and layer-wise dimensions, we can reformulate the mask m as

mi
k(t) := wi

k(t) > T i
k (3)

where i is the layer index, k is the group index and T i
k is the group-wise threshold introduced in

Section 3.2. Mask mi
k(t) is inferred by Boolean Operator >, where m = 1 means kept and m = 0

means pruned.

A popular approach is to apply an extra regularization penalty to introduce more sparsity, including L1

norm and L2 norm [18, 22]. We periodically exploit the L2 norm [22] which can hold the group-wise
feature, to find the layer-wise sparsity. Thus the update rule can be formulated as:

wi
k(t+ 1) := wi

k(t)− ξt(g(w̃i
k(t)) + p(t) ∗ ηi(t) ∗ w̃i

k(t)) (4)

p(t) =

{
1, if t mod kp = 0.

0, otherwise.
(5)

where ηi(t) is the layer-wise penalty factor to control the strength of penalty applied to each layer
which will be introduced in Section 3.4. Inspired by [22], we apply a periodical weight penalty which
will drive the kept weights towards the threshold gradually and leave kp iterations as buffer time
for adjusting to the applied penalty (using p(t)). The layer-wise sparsity N i and model complexity
decrease during the search phase. When the model complexity reaches the search constraint Spt, we
terminate the search process and fine-tune the weights based on the searched layer-wise fine-grained
sparsity schemes. Algorithm 3.1 shows the search algorithm.

3.4 Layer-wise penalty factor

Modern DNNs tend to have many layers with non-uniform distributions of both parameter redundancy
and complexity contribution. Intuitively, we want to encourage layers with larger redundancy and
higher complexity to achieve a higher sparse ratio (i.e. decrease N) faster. This can be achieved by
controlling the strength of the weight penalty of each layer. The layer-wise computational complexity
(e.g. FLOPs) factor can be calculated using

ci =
fi ∗ si

maxi=L
i=1 (fi ∗ si)

(6)

where fi is the dense FLOPs of layer i and si = N i
v/M is the sparsity (Line 10 in Algorithm 3.1).
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Algorithm 3.1 DominoSearch
1: Input: Complexity constraints Spt, dense weights of each layer w1

k, . . . , wl
k. Dataset D.

Learning rate ξ. Interval Kc. Voting ratio vr.
2: Init: current model complexity Spc = 0, iterations t = 0, layer-wise penalty factor ηi.
3: while True do
4: for wi

k in w1
k, . . . , wL

k do
5: wi

k(t+ 1) := wi
k(t)− ξt(g(w̃

i
k(t)) + p(t) ∗ ηi(t) ∗ w̃i

k(t)) . Eq. 4
6: if t % Kc == 0 then
7: mi

k(t) := wi
k(t) > T i

k . Eq. 3
8: N i := vote( sum(mi

k(t), axis=1),vr ) . Sec. 3.2
9: if N i ∈ N i

p then
10: N i

v = N i . N i
v tracks N i ∈ N i

p

11: Spc = Complexity(N i
v) . Compute current model complexity

12: if Spc ≥ Spt then
13: Terminate search process and go to Output.
14: end if
15: Update layer-wise penalty factor ηi . Sec. 3.4
16: end if
17: end if
18: end for
19: end while
20: Output Layer wise sparse scheme N i

v

In order to estimate the layer-wise redundancy, we use the Erdos-Renyi kernel (ERK) [15]. ERK is a
heuristic method to decide the layer-wise unstructured sparsity given an overall sparsity target (i.e.
model size) which does not require design space exploration or hyper-parameter search. However,
ERK cannot be directly applied to select the layer-wise N:M schemes because: 1) ERK gives
layer-wise sparsity in the continuous domain while N:M sparsity is discrete. 2) Layer-wise sparsity
decided by ERK only depends on the overall sparsity target and layer configurations (e.g. kernel size,
input/output channels). It can not reflect layer-wise complexity (e.g. FLOPs) which depends on input
tensor/image size. Thus, we use the layer-wise sparsity generated by ERK as a layer-wise redundancy
guidance, which can be formulated as:

ri =
ei − si

maxi=L
i=1 |ei − si|

(7)

where ei is the sparsity of layer i decided by ERK. Note that ri can be negative if the current sparsity
(si) is larger than the sparsity estimated by ERK. With ri and ci, the joint layer-wise penalty factor
ηi is defined as:

ηi = β1 ∗ ci + β2 ∗ ri (8)

where β1 and β2 are weighted coefficients (β1+β2 = 1). When searching under model size constraint,
we set β1 = 0.5, β2 = 0.5 and use β1 = 0.8, β2 = 0.2 for searching under FLOPs constraint. Weighted
coefficients β1 and β2 are used to balance the effect of FLOPs which is dependent on input ten-
sor/image size and model size which is not dependent on input tensor/image size, we tend to use
higher β1 when the complexity constraint is FLOPs because it can assign layers with higher FLOPs a
higher penalty factor. An ablation study of layer-wise penalty factor can be found in Section 5.1.

4 Experimental Results

Networks and datasets: We demonstrate the advantages of layer-wise fine-grained N:M sparsity via
various networks on the large-scale ImageNet dataset [30] including heavy ResNets [19] and compact
RegNets [20]. We also demonstrate the effectiveness of our method on the smaller CIFAR100 dataset
with ResNet56 [19].
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Training settings: We first apply DominoSearch (DS) to find the layer-wise sparse schemes from
pre-trained dense models (Algorithm 3.1), and fine-tune/retrain sparse weights on pre-trained dense
weights with searched layer-wise schemes to recover the accuracy. Detailed settings can be found in
the Supplementary Material.

4.1 ResNet18/50 with model size and FLOPs as constraints

ResNet18: Table 1 shows that layer-wise sparse ResNet18 consistently outperforms consistently
outperforms the uniform baseline with both equivalent model size or FLOPs. Figure 4 visualizes the
layer-wise sparse FLOPs distributions under two search targets and dense parameter distributions. For
FLOPs-constrained search, the shallower layers, especially the first layer, are allocated with higher
sparsity (Figure 4 (b)) because of their larger FLOPs contributions caused by the larger input feature
size. On the other hand, shallower layers have relatively smaller contributions to the model size
(i.e. less parameters, Figure 4 (c)), resulting in lower sparsity when using the model size constraint
(Figure 4 (a)). This observation supports the necessity of using layer-wise penalty factor ηi which is
able to capture the information of FLOPs distribution from a global view and assign corresponding
layers (shallower layers in this case) with relatively higher penalty factors.

Table 1: ResNet18. Layer-wise sparse vs. uniform baseline with equivalent model size or FLOPs.
Dense baseline reference is from Pytorch pre-trained model zoo

Method #Params FLOPs Top1 Acc Structure

ResNet18 11.7M 1814M 69.8 Dense

SR-STE [11] 1.46M 227M 66.65 2:16

Equal model size

DS(ours) 1.46M 329M 68.76(+2.1) Mixed N:16

Equal FLOPs

DS(ours) 1.29M 227M 67.98(+1.3) Mixed N:16

(a) Model size search target (b) FLOPs search target
layer index layer index layer index

(c) Params distribution

Figure 4: Layer-wise statistics of ResNet18: x-axis is layer index i (layer 8, 13, 18 are Conv2d with
1× 1 kernel and layer 21 is fully-connected layer) and y-axis denotes FLOPs and Parameters. (a)/(b)
shows the distributions of layer-wise FLOPs under model size/FLOPs search target, where dark/light
means kept/pruned partition. (c) shows the layer-wise distribution of parameters of dense ResNet18.

ResNet50: Table 2 shows the results for ResNet50. Layer-wise fine-grained sparsity can consistently
outperform its uniform counterparts for both accuracy-sparsity (i.e. model size) and accuracy-FLOPs
trade-off. When comparing to the SOTA layer-wise unstructured sparsity [16], which is believed
to be the upper-bound of Neural Network pruning with respect of accuracy-sparsity trade-off, our
layer-wise fine-grained models can achieve competitive result given the same model size. Although
it has higher FLOPs than unstructured sparsity (1.14G v.s. 766M), we emphasize that fine-grained
sparsity maintains a regular sparse pattern which is crucial for getting deployment gains (e.g. latency).
Furthermore, our layer-wise fine-grained sparsity is significantly better than structured sparsity with
respect to accuracy-FLOPs trade-off, which encourages a promising system design research line:
efficient supports of flexible N:M sparse patterns. Considering the preliminary success of Nvidia
Ampere Sparse Tensor Core [10], we believe the design overhead of supporting flexible N:M sparse
patterns is affordable and worthwhile.
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Table 2: ResNet50 performance. (+) denotes the top1-accuracy gain compared to the uniform
counterparts with equivalent model size or FLOPs. (+) compares with unstructured sparsity. Reported
numbers are either taken from the corresponding literature or obtained by training with open-source
code [11]. Dense baseline reference is from Pytorch pre-trained model zoo.

Method #Params FLOPs Top1 Acc Structure Uniform

ResNet50 25.6M 4.09G 76.1 Dense -

GMP[31] 5.1M 818M 75.6 Unstructured U(niform)
DSR[32] 5.1M 1.23G 71.6 Unstructured L(ayer-wise)
DNW[33] 5.1M 818M 76.2 Unstructured U
GraNet[34] - 1.15G 76.2 Unstructured L
RigL[15] 5.1M 1.68G 75.1 Unstructured L
STR[16] 5.2M 776M 76.2 Unstructured L
GMP[31] 5.1M - 76.5 Unstructured L
DS(ours) 5.0M 1.14G 76.7(+0.2) Mixed N:16 L

IncReg[35] - 1.37G 71.1 Structured U
IE[36] - 1.34G 71.7 Structured L
Greg-2[22] - 1.34G 73.9 Structured L
GDP[37] - 1.57G 70.9 Structured L
FisherPruning[38] - 1.02G 73.9 Structured L
META[39] - 1.00G 74.4 Structured L

SR-STE[11] 6.4M 1.02G 76.5 4:16 U
SR-STE[11] 3.2M 511M 74.4 2:16 U
SR-STE[11] 1.6M 256M 70.7 1:16 U
SR-STE[11] 1.6M 256M 71.5 2:32 U

Equal model size

DS(ours) 3.2M 731M 75.7(+1.3) Mixed N:16 L
DS(ours) 1.6M 392M 73.5(+2.0) Mixed N:32 L

Equal FLOPs

DS(ours) 3.3M 511M 75.4 (+1.0) Mixed N:16 L
DS(ours) 1.7M 256M 73.4 (+1.9) Mixed N:32 L

4.2 RegNet with FLOPs constraint

We further study our search method on the compact model: RegNet. RegNet [20] is the state-of-
the-art compact network architecture searched by NAS from 1018 candidates. Table 3 shows that
layer-wise sparse RegNetX3.2G outperforms its uniform sparse counterpart by 1.0% and dense
smaller RegNetX400M by 3.9%, given equivalent FLOPs. The results demonstrate that our method
can effectively find the layer-wise sparsity even if the dense model is designed to be compact.

Table 3: RegNets: Comparing sparse RegNets and dense RegNets with various FLOPs. (+) denotes
the accuracy gain compared to dense model with same FLOPs.

Network(Method) FLOPs Top1 Acc Structure

RegNetX400M 400M 72.3 Dense
RegNetX800M 800M 74.9 Dense
RegNetX1.6G 1.6G 76.8 Dense
RegNetX3.2G 3.2G 78.2 Dense

Sparse RegNetX3.2G (SR-STE) 400M 75.2 2:16

Sparse RegNetX3.2G (Ours) 400M 76.2(+1.0) (+3.9) Mixed N:16

8
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4.3 ResNet56 on CIFAR100

In addition to evaluation performance on the ImageNet dataset, we also evaluate on the CIFAR100
dataset. Results are presented in Table 4. Layer-wise N:M sparsity significantly improves the accuracy
on the smaller CIFAR100 dataset under both model-size and FLOPs constraints.

Table 4: ResNet56 on CIFAR100: Comparison between uniform sparsity and layer-wise sparsity.
Each setting is evaluated 3 times, mean and std. of top-1 accuracy are reported. Baseline dense
ResNet56 obtains 74.8% top-1 acc. with 0.85M parameters, 127M FLOPs.

Model Complexity 0.21M#Params 0.11M#Params 32M FLOPs 16M FLOPs

Acc. uniform 72.33±0.37 71.08±0.27 72.33±0.37 71.08±0.27
Acc. layer-wise 74.31±0.34 73.26±0.24 74.00±0.18 72.79±0.25
Acc. gain +1.98 +2.18 +1.67 +1.71

5 Ablation study

5.1 The advantage of layer-wise penalty factor

To study the effectiveness of the layer-wise penalty factor ηi proposed in Section 3.4, we consider
a constant penalty factor (1.0) on all layers as the baseline. Table 5 shows that layer-wise schemes
searched with ηi consistently outperform the counterparts without ηi. The gap is significant under
complexity with small FLOPs (i.e. 16M). To achieve such a low FLOPs without ηi, both shallow
and deep layers are extensively pruned no matter their contributions of FLOPs, resulting in very high
sparsity (92.2%). In contrast, with the guidance of ηi, the sparsity is only 89.0% when achieving
equivalent FLOPs. Additional experiments on ImageNet can be found in Supplementary Material.

Table 5: ResNet56 on CIFAR100: Ablation study of layer-wise penalty factor ηi.

Model Complexity 0.21M#Params 0.11M#Params 32M FLOPs 16M FLOPs

Acc. with ηi 74.31±0.34 73.26±0.24 74.00±0.18 72.79±0.25
Acc. w/o ηi 73.80±0.20 72.95±0.19 73.71±0.14 70.39±0.19
Acc. gain -0.51 -0.31 -0.29 -2.40

5.2 Comparing layer-wise N:M to the uniform counterpart using ASP training method

There are two existing methods to train sparse N:M networks: 1) SR-STE[11] and 2) Nvidia ASP [12].
When comparing layer-wise sparse N:M to the uniform baselines in Section 4, we use the most recent
SR-STE as the training method to train sparse N:M networks. SR-STE is based on dynamic masking
which allows the pruned weights to re-grow during the training/fine-tuning. In contrast, Nvidia ASP
is based on fixed masking which determines the mask at the beginning. The mask is fixed and pruned
weights are not allowed to re-grow through the fine-tuning stage. Table 6 compares layer-wise sparse
N:M networks to the uniform baselines using the ASP method. The results show that layer-wise N:M
is consistently better than the uniform counterparts for both ResNet50 and ResNet18, which matches
the observations under the SR-STE training setting.

Table 6: Comparing layer-wise to uniform sparsity using the ASP method.

Network Structure #Params Top-1 Acc(%)

ResNet50 Uniform 2:16 87.5% 73.3
ResNet50 Layer-wise N:16 87.5% 74.9(+1.6)

ResNet18 Uniform 2:16 87.5% 64.2
ResNet18 Layer-wise N:16 87.5% 65.1(+0.9)

9



5.3 How N:M sparsity achieves comparable results to unstructured sparse sparsity

To study the impact of training settings and how these contribute to the accuracy, we conduct a set of
ablation experiments and present results in Table 7. Where E1 and E2 are two layer-wise unstructured
sparse ResNet50 baselines [16, 31], E2 - E7 are ablation experiments which will be explained shortly.

Table 7: Ablation study of the impact of different training settings using ResNet50 with 80% sparsity.

Index Structure Top-1 Acc(%) Epochs Training Method Initialization

E1 L unstructured 76.5 ∼150 [31] Random
E2 L unstructured 76.2 100 STR[16] Random
E3 L N:M 76.1 100 SR-STE[11] Random
E4 L N:M 76.4 120 SR-STE[11] Random
E5 L N:M 76.7 120 SR-STE[11] Pre-trained
E6 L N:M 76.6 90 SR-STE[11] Pre-trained
E7 L N:M 75.6 120 ASP[12] Pre-trained

Weight initialization: In order to recover the accuracy of sparse neural networks, dense weight
initialization is typically used [22, 31]. By comparing E4 to E5, it shows that using pre-trained
(dense) weight as the initialization helps layer-wise N:M sparse neural networks to reach a higher
accuracy.

Training epochs: Training for fine-tuning a sparse neural networks usually requires more epochs for
convergence [15]. Experiment pairs E3 v.s. E4 and E5 v.s E6 in Table 7 demonstrate that longer
epochs can help to achieve a higher accuracy, although for settings with dense weight initialization
(E5 vs. E6), the accuracy gain of 30 additional epochs is minimal because using dense weights as the
initialization can be seen as pre-trained for certain epochs under dense training settings.

Dynamic vs. Static Mask: Experiments E5 and E7 compare two different training methods for N:M
sparsity. It shows that the dynamic mask sparse training algorithm can outperform the fixed mask
training algorithm significantly.

The experimental results in Table 7 indicate that the performance of sparse neural networks can
be boosted via pre-trained weight initialization, more training epochs and a proper sparse training
method.

6 Conclusions

This paper presents an efficient framework, DominoSearch, together with the proposed layer-wise
penalty factor that explicitly quantifies the layer-wise computation complexity and parameter redun-
dancy, to find the layer-wise fine-grained N:M sparsity from dense weights.

We experimentally validate the advantages of the layer-wise N:M sparsity on the ImageNet and
CIFAR100 datasets with various networks. The results of ResNet50 on ImageNet show that layer-
wise N:M sparsity is competitive to layer-wise unstructured sparsity which is believed to be the
upper bound of neural pruning with respect to the accuracy-sparsity trade-off. We hope that our
contributions can encourage and draw attentions to flexible fine-grained N:M hardware-software
system design/research.

7 Limitations

The major limitation of our work is that we did not benchmark deployment gains such as latency and
throughput. To the best of our knowledge, Nvidia Ampere Tensor Core is the only commercially
available architecture that supports fine-grained N:M sparse computation efficiently. However, it only
supports limited options for fixed sparsity (2:4 for bfloat and 4:8 for integer). Thus, following the
common practice of related work we compared to, we used theoretical computational complexity,
FLOPs, to estimate the computation performance gains.
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