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Abstract
Minority samples are underrepresented instances
located in low-density regions of a data mani-
fold, and are valuable in many generative AI ap-
plications, such as data augmentation, creative
content generation, etc. Unfortunately, existing
diffusion-based minority generators often rely on
computationally expensive guidance dedicated for
minority generation. To address this, here we
present a simple yet powerful guidance-free ap-
proach called Boost-and-Skip for generating mi-
nority samples using diffusion models. The key
advantage of our framework requires only two
minimal changes to standard generative processes:
(i) variance-boosted initialization and (ii) timestep
skipping. We highlight that these seemingly-
trivial modifications are supported by solid the-
oretical and empirical evidence, thereby effec-
tively promoting emergence of underrepresented
minority features. Our comprehensive experi-
ments demonstrate that Boost-and-Skip greatly
enhances the capability of generating minority
samples, even rivaling guidance-based state-of-
the-art approaches while requiring significantly
fewer computations. Code is available at https:
//github.com/soobin-um/BnS.

1. Introduction
Diffusion models are a prominent class of modern gener-
ative AI, known for their ability to generate high-quality
content across various data modalities (Ho et al., 2020;
2022; Zhang et al., 2023). Unlike traditional frameworks
like GANs (Goodfellow et al., 2014), diffusion models are
notably robust, effectively learning the underlying data dis-
tribution even for rare or underrepresented examples in the
training data (Sehwag et al., 2022). This inherent advantage
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Figure 1: Trade-off between minority generation perfor-
mance and complexity on ImageNet 64× 64. The area
of each bubble corresponds to peak memory consumption.
cFID (Parmar et al., 2022) calculations are based on real
minority data (as in Um et al. (2023); Um & Ye (2024b)),
meaning that lower values indicate generation of more real-
istic minority samples. Note that our framework achieves
competitive minority generation performance comparable to
guided samplers (Sehwag et al., 2022; Um et al., 2023; Um
& Ye, 2024b) while maintaining minimal complexity, thus
advancing beyond the existing Pareto Frontier. See Table 3
for detailed metric values.

has been readily adopted by researchers, leading to signifi-
cant progress in minority generation – the task of generating
minority samples that reside in low-density regions of a
data manifold1 (Sehwag et al., 2022; Um et al., 2023; Um
& Ye, 2024b;a). The distinctive characteristics of minor-
ity instances make them important in various applications,
including medical diagnosis (Um et al., 2023), anomaly de-
tection (Du et al., 2022; 2023), and creative AI (Rombach
et al., 2022; Han et al., 2022).

Existing high-performance minority generators primarily
rely upon guided sampling (Sehwag et al., 2022; Um et al.,
2023; Um & Ye, 2024b;a). For instance, the authors in Se-

1Formally, the task of minority generation is expressible as
drawing instances from Sϵ := {z ∈ M : pθ(x) < ϵ}, where M
represents the data manifold, and pθ denotes the implicit density
learned by the diffusion model. Here ϵ is a small positive constant.
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hwag et al. (2022); Um et al. (2023) employ classifier guid-
ance (Dhariwal & Nichol, 2021) to steer generation toward
low-density regions using separately trained classifiers. A
more recent approach by Um & Ye (2024b) mitigates this
reliance on external components (such as classifiers) by de-
veloping a self-contained sampler that derives low-density
guidance solely from a pretrained diffusion model. How-
ever, this method incurs significant computational overhead
due to its reliance on backpropagation through the diffu-
sion network to compute the guidance term. Although Um
& Ye (2024a) introduced a refined guidance term, specifi-
cally for text-to-image generation (Nichol et al., 2021), the
computational bottleneck persists.

In this work, we depart from the paradigm of guided sam-
pling and develop a simple and computationally efficient
technique for minority generation. To this end, we first in-
vestigate potential approaches for guidance-free2 minority
sampling and highlight their pitfalls. We then present Boost-
and-Skip, our novel guidance-free approach that sidesteps
the previous issues. At a high level, our framework en-
ables minority-favored initialization that encourages emer-
gence of underrepresented features throughout generative
processes without the help of additional low-density guid-
ance. Boost-and-Skip accomplishes this through two simple
modifications to standard stochastic generative processes
like DDPM (Ho et al., 2020).

Specifically, we propose to initiate stochastic generation
with variance-boosted noise instead of standard Gaussian
noise to encourage initializations in low-density regions.
Our second yet critical modification involves skipping sev-
eral of the earliest timesteps to enhance the impact of low-
density initialization from the first modification. We demon-
strate, both theoretically and empirically, that these two
modifications together lead to significantly improved minor-
ity generation, whereas each modification alone only yields
marginal gains. In particular, we invoke stochastic contrac-
tion theory (Pham, 2008; Pham et al., 2009; Chung et al.,
2022) to show that the contracting nature of the stochastic
generative process gradually corrects unwanted spurious
information introduced by the noise amplification, thereby
contributing to the generation of high-quality minority sam-
ples.

To demonstrate the empirical benefits of our approach, we
conducted extensive experiments across various real-world
benchmarks. Importantly, our sampling technique achieves
competitive minority generation performance compared to
prior works (Sehwag et al., 2022; Um et al., 2023; Um & Ye,

2By guidance-free, we refer to approaches that do not incorpo-
rate a dedicated guidance term specifically designed to promote
minority sample generation. Note that this does not preclude the
use of conventional guidance mechanisms, such as classifier-free
guidance (Ho & Salimans, 2022).

2024b), while offering substantially reduced computational
costs. For instance, on ImageNet 64 × 64, our minority
sampler requires 65% less wall-clock time and 4.5 times
lower peak memory consumption than the current state-of-
the-art method by Um & Ye (2024b). Moreover, thanks to
the simplicity, our method is highly scalable. See Figure 1
for a visual illustration of these benefits and Table 3 for
detailed metric values. To further highlight the practical
significance of our sampler, we demonstrate its effectiveness
in a potential downstream application, specifically its use in
data augmentation for classification tasks.

Our contributions are summarized as follows:

• We propose Boost-and-Skip, a novel guidance-free ap-
proach that introduces two simple yet effective modifi-
cations to standard stochastic generative processes: (i)
variance-boosted initialization and (ii) timestep skip-
ping.

• We provide both theoretical insights and empirical evi-
dence to validate the effectiveness of the two modifi-
cations, which together lead to significantly improved
minority generation performance.

• We empirically show that our approach achieves com-
petitive performance with substantially lower compu-
tational costs compared to state-of-the-art methods.

2. Background
Diffusion models are characterized by the two stochas-
tic differential equations (SDEs): the forward and reverse
SDEs (Song et al., 2020). Given a d-dimensional noise-
perturbed data space x(t) ∈ Rd with t ∈ [0, T ], the forward
SDE is conventionally expressed as:

dx = f(x, t)dt+ g(t)dw, (1)

where f(·, ·) : Rd → Rd is a drift term, and g(·) : R →
R indicates a (scalar) diffusion coefficient coupled with a
standard Wiener process w ∈ Rd. With properly chosen
f(·, ·) and g(·), the forward SDE describes a progressive
destruction of the target data distribution x(0) ∼ p0 upto
a fully noised one x(T ) ∼ pT that one can easily sample
from (e.g., a Gaussian distribution).

The reverse SDE runs backward from the noised distribu-
tion x(T ) ∼ pT down to the data distribution x(0) ∼ p0,
formally written as (Song et al., 2020):

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw̃, (2)

where w̃ is a standard Wiener process with backward time
flow (from T to 0). The score function ∇x log pt(x) is
commonly approximated by a neural network sθ(x, t) via
denoising score matching (Vincent, 2011; Song et al., 2020).

One prominent instance of diffusion processes is variance-
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(a) Ground truth (b) Diffusion (c) Temperature
sampling

(d) Boost only (e) w/o SDE (f) B&S (Ours)

Figure 2: A 2D distribution with two concentric circles indicated by blue and red. Red circle represents minority samples,
being sampled ×10 less compared to the blue circle. (a) Ground truth samples. (b) Standard diffusion sampling assigns
even less mass to minority samples. (c) Temperature sampling (Ackley et al., 1985) generates off-manifold samples, due to
errors accumulated through sampling trajectories (see Figure 3 for details). (d) Boosting without skipping closely recovers
the data distribution yet does not promote minority features over the ground truth. (e) Without stochasticity (e.g., using
PF-ODE), the proposed modifications fail to contract truncation error, leading to off-manifold samples. (f) Boost-and-Skip
(B&S) generates minority samples without falling off the data manifold.

preserving (VP) SDE (Song et al., 2020):

dx = −1

2
β(t)xdt+

√
β(t)dw, (3)

where β(t) is a positive function which integrates to infinity
to ensure pT ≈ N (0, I). VP-SDE conditioned on an ini-
tial point x(0) can be characterized by a Gaussian forward
diffusion kernel (Song et al., 2020):

p0t(x(t)|x(0)) = N
(
x(t)|α(t)x(0), (1− α(t)2)I

)
, (4)

where α(t) is defined as

α(t) := e−
1
2

∫ t
0
β(s)ds. (5)

The associated reverse process of VP-SDE reads:

dx =

[
−1

2
β(t)x− β(t)∇x log pt(x)

]
dt+

√
β(t)dw̃.

(6)

Simulating Eq. (6) with a score model sθ(x, t) (trained
on the VP-SDE forward kernel) generates sample
trajectories whose marginal distributions approximate
{pt(x)}Tt=0 (Song et al., 2020); this is often called an em-
pirical reverse VP-SDE.

Discrete VP-SDE (DDPM). Consider N discrete points lin-
early distributed across timesteps t ∈ [0, T ]. A discretized
expression of the forward SDE in Eq. (3) is (Song et al.,
2020):

xi =
√
1− βixi−1 +

√
βizi, i = 1, . . . , N, (7)

where zi ∼ N (0, I). {βi}Ni=1 denotes a discretized se-
quence of β(t). Unfolding Eq. (7) across discrete timesteps
i yields one-shot perturbation: xi =

√
ᾱix0 +

√
1− ᾱiz,

where z ∼ N (0, I), and ᾱi :=
∏i

j=1 αj for αi := 1− βi.

By discretizing Eq. (2), the associated reverse process can
be written as (Song et al., 2020):

xi−1 =
1
√
αi

{
xi + (1− αi)∇x log pi(x)

}
+
√
1− αiz,

(8)

where i ∈ {1, . . . , N} and ∇x log pi(x) represents the
score function for discrete timesteps. Data generation is
now performed by first sampling from xN ∼ N (0, I) and
simulating Eq. (8) down to x0 with the learned score net-
work sθ(x, i) ≈ ∇x log pi(x).

3. Method
3.1. Towards guidance-free minority sampler

Our framework starts by investigating potential approaches
to minority-focused generation without relying on low-
density guidance. One viable method is temperature sam-
pling (Ackley et al., 1985), a method commonly used in tra-
ditional likelihood-based frameworks (Ackley et al., 1985;
Kingma & Dhariwal, 2018). In the context of diffusion mod-
els, temperature sampling can be implemented by scaling
the score function along the generation trajectory (Dhariwal
& Nichol, 2021). For instance, in the empirical reverse VP-
SDE that employs a pretrained score function sθ(x, t), this
translates to:

dx =

[
−1

2
β(t)x− β(t)

sθ(x, t)

τ

]
dt+

√
β(t)dw̃, (9)

where τ is the temperature parameter. Since sθ(x, t)/τ ≈
∇x log pt(x)

1/τ , this sampler has been regarded as pro-
ducing trajectories along { 1

Zt
pt(x)

1/τ}Tt=0 (Dhariwal &
Nichol, 2021), where Zt is a normalization constant. In this
context, choosing τ > 1 (i.e., high-temperature) is expected
to favor generation in low-density regions.

However, we argue that this naive application of high-
temperature sampling is ineffective within the diffusion
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model framework. In fact, the marginal densities of trajecto-
ries generated by Eq. (9) are distinct from { 1

Zt
pt(x)

1/τ}Tt=0,
potentially leading to unwanted generation results. A formal
description is provided below, with proof in Appendix B.1.

Proposition 3.1. Consider the temperature-scaled reverse
VP-SDE in Eq. (9). Assuming the score function is op-
timal, i.e., sθ(x, t) = ∇x log pt(x), the marginal densi-
ties of samples generated by this SDE are not equal to
{ 1
Zt
pt(x)

1/τ}Tt=0 in general.

One could argue that as long as high-quality minority in-
stances are effectively generated, it is not strictly necessary
for trajectory samples to adhere to the expected marginal
densities { 1

Zt
pt(x)

1/τ}Tt=0. However, temperature sam-
pling presents a critical practical limitation: it often suffers
from significant errors in score function estimation along
the sampling trajectories, potentially leading to degraded
sample quality. This is a direct consequence of the score
function’s scaled amplitude (1/τ), which causes interme-
diate samples xt to deviate from noisy data manifoldMt

on which the diffusion model is trained to denoise. These
observations are consistent with the limited performance of
temperature sampling reported in Dhariwal & Nichol (2021).
See Figure 3 for our empirical analyses on this point.

Another possible solution to guidance-free minority gener-
ation is to employ the truncation trick (Brock et al., 2018;
Karras et al., 2019) popularly employed in GANs (Good-
fellow et al., 2014). This technique involves sampling the
latent vector from a truncated normal distribution, which is
often implemented via a variance-scaled Gaussian (Brock
et al., 2018). However, as detailed in Section 3.3, a naive
application of this technique to diffusion models yields
only marginal improvements in minority sample generation;
see Table 2a for empirical results.

3.2. Boost-and-Skip: minority-focused generation with
two simple tweaks

In this section, we present Boost-and-Skip, a novel guidance-
free approach that sidesteps the practical limitation dis-
cussed in the previous section. A key benefit of Boost-and-
Skip is its simplicity combined with significant improve-
ments and theoretical grounding. Boost-and-Skip involves
two core modifications to the standard stochastic reverse
diffusion process: (i) boosting the variance of the initial
noise; and (ii) skipping several early timesteps.

Variance-boosting. Consider an empirical reverse VP-SDE
implemented using the score model sθ(x, t):

dx =

[
−1

2
β(t)x− β(t)sθ(x, t)

]
dt+

√
β(t)dw̃. (10)

In contrast to the common ignition practice that employs

x(T ) ∼ N (0, I), we propose a γ-scaled initialization:

x̂(T ) ∼ N (0, γ2I), γ > 1, (11)

where the range of γ is selected to enhance minority sam-
ple generation. Intuitively, this modification encourages
initializations from low-density regions of the terminal dis-
tribution pT , potentially facilitating the generation of under-
represented samples in the data distribution p0.

However, our first modification alone, which is reminiscent
of the truncation trick (used in Brock et al. (2018)), provides
limited improvement. We found that this is particularly
pronounced in diffusion models with a negligible terminal
signal-to-noise ratio (SNR), i.e., α(T ) ≈ 0 for large T in
Eq. (5). This is because, with a near-zero terminal SNR,
the influence of the low-density-encouraged initial point
x̂(T ) diminishes due to multiplication by negligible α(T ),
resulting in a marginal effect on the generative process. We
will later provide theoretical justification of this claim.

Timestep-skipping. We address the vanishing impact prob-
lem by skipping several of the earliest timesteps. More
specifically, we start simulations of Eq. (10) from:

Tskip := T −∆skip, (12)

where ∆skip represents the amount of skipping, which is
selected to ensure non-negligible α(Tskip). We found that
integrating the timestep skipping with variance boosting
results in a significant synergistic improvement in minority
sample generation.

While employing the timestep skipping alone could often
yield some performance gains, we emphasize that these
improvements are limited and inferior to the combined ap-
proach; see Table 2b for details.

Validation on toy data. In Figure 2, we provide a sanity
check of Boost-and-Skip on a two-dimensional toy dataset
comprised of two concentric circles. There, we verify that
variance-boosting and timestep-skipping with reverse-SDE
(Figure 2(f)) is the only combination which generates on-
manifold minority samples – ablating boosting, skipping, or
SDE leads to inferior results. In the following section, we
provide theoretical intuition as to why all three components
are necessary for successful minority generation.

3.3. Rationale behind Boost-and-Skip

Now we delve into the underlying principles of Boost-and-
Skip, elucidating why and how it is effective for minority
generation. We present two key mechanisms: (i) low-density
emphasis and (ii) rectification through contraction.

Low-density emphasis. We argue that Boost-and-Skip
encourages sampling from low-density instances by ampli-
fying their probability densities. To see this, we consider a
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simple (yet non-trivial) scenario where p0 follows a multi-
variate Gaussian distribution.
Proposition 3.2. Let the data distribution be x(0) ∼
N (µ0,Σ0), and assume the optimal score function
sθ(x, t) = ∇x log pt(x) trained on p0 via the forward SDE
in Eq. (3). Suppose the reverse SDE in Eq. (10) is initial-
ized with x̂(Tskip) ∼ N (µ̂Tskip

, Σ̂Tskip). Then, the resulting

generated distribution corresponds to x̂(0) ∼ N (µ̂0, Σ̂0),
where

µ̂0 := µ0 + α(Tskip)Σ0Σ
−1
Tskip

(µ̂Tskip
− µTskip

), (13)

Σ̂0 := Σ0 + α(Tskip)
2Σ2

0Σ
−2
Tskip

(Σ̂Tskip −ΣTskip). (14)

Here, µTskip
and ΣTskip are defined as:

µTskip
:= α(Tskip)µ0, (15)

ΣTskip := I + α(Tskip)
2(Σ0 − I). (16)

See Appendix B.2 for the proof. In the considered Gaus-
sian setting, Boost-and-Skip can be instantiated by set-
ting Σ̂Tskip = γ2I and Tskip < T . Note that when
Σ̂Tskip −ΣTskip ≻ 0, the initialization contributes to amplify
the variance of the resulting generated distribution Σ̂0 com-
pared to the original Σ0 (see Eq. (14)). This indicates that
our approach can lead to probability increases in low-density
regions of p0, i.e., the effect of low-density emphasis.

A notable point here is that when Tskip ≈ T , corresponding
to the case where only boosting (i.e., our first modification)
is applied, the low-density emphasis impact does not mani-
fest. This is because limTskip→T α(Tskip) = α(T ) ≈ 0 leads
to the recovery of the original data distribution (µ̂0, Σ̂0) ≈
(µ0,Σ0); see Eqs. (13) and (14) for details. This highlights
the necessity of incorporating time-skipping for effective
minority generation, and also explains why the truncation
trick (used in Brock et al. (2018)) could be insufficient in the
diffusion model context. The key mechanism of Boost-and-
Skip can be interpreted from a signal processing viewpoint.
See Appendix A.4 for detailed analyses on this perspective.

To show that the condition for the low-density emphasis
effect, i.e., Σ̂Tskip −ΣTskip ≻ 0, can be satisfied in practice,
we provide a corollary that characterizes the range of Tskip
over which the variance amplification impact occurs:
Corollary 3.3. Suppose Σ0 = σ2

0I and Σ̂Tskip = γ2I , and
define the quantity (if it exists)

κ :=
√
(γ2 − 1)/(σ2

0 − 1).

The variance-amplification effect of Σ̂0 occurs iff

Tskip ∈


∅ if γ ≤ 1 ≤ σ0,

(α−1(κ),∞) if 1 < γ, σ0,

[0, α−1(κ)) if 1 > γ, σ0,

[0,∞) if σ0 ≤ 1 ≤ γ and (σ0, γ) ̸= 1,

where we define α−1(κ) := 0 when κ > 1.

In Appendix A.2, we provide an illustration that exhibits
the behavior of Σ̂0 := σ̂2

0I under the conditions specified
in Corollary 3.3; see Figure 6 therein.

Rectification via contraction. A potential concern is
whether the amplified noise components due to variance-
boosted initialization may impede high-quality genera-
tion. To address this, we invoke stochastic contraction the-
ory (Pham, 2008; Pham et al., 2009), a principle that is
often used to describe error-rectifying behaviors of stochas-
tic diffusion generative processes (Chung et al., 2022; Xu
et al., 2023). Specifically under the discrete VP-SDE setting
in Equation (8), we establish a general theoretical result
showing that, for an arbitrary distribution p0, the error in-
troduced by the boosted initialization decays exponentially
as stochastic sampling progresses. See below for a formal
description of the claim.

Proposition 3.4. Consider an empirical version of the dis-
crete VP-SDE in Eq. (8):

xi−1 =
1
√
αi

{
xi + (1− αi)sθ(xi, i)

}
+
√
1− αiz,

where i ∈ {1, . . . , N}. Assume the optimal score func-
tion, i.e., sθ(x, i) = ∇x log pi(x), which is trained on an
arbitrary data distribution p0. Consider two sample trajec-
tories {xi}Ni=0 and {x̂i}

Nskip
i=0 where Nskip < N , which are

initialized with distinct distributions: xN ∼ N (0, I) and
x̂Nskip ∼ N (0, γ2I). Assuming that {xi}Ni=0 is a bounded
process such that ∥xi∥2 < B (as in Xu et al. (2023)), the
expected error between samples from these two trajectories
at step i ∈ {0, . . . , Nskip − 1} is given by:

E[∥xi − x̂i∥22] ≤
2C

1− λ2
+ λ2(Nskip−i)(B2 + γ2d), (17)

where λ denotes the contraction rate:

λ := max
j∈{i+1,...,Nskip}

√
αj

(
1− ᾱj−1

1− ᾱj

)
, (18)

and C := d(1− ᾱNskip).

See Appendix B.4 for the proof. Notice that the error term
B2 + γ2d decreases exponentially w.r.t. Nskip with contrac-
tion rate λ. In Appendix A.3, we provide a more general
contraction theory result that shows PF-ODE preserves (to-
tal variation) distance between distribution, whereas reverse-
SDE contracts distributional distances. In other words, PF-
ODE propagates initial distribution error throughout the
generation process. This implies that stochasticity is critical
for initial error contraction, and also explains why a naive
combination of Boost-and-Skip and ODE-based samplers
fail to produce high-quality minority samples.
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(a) Trajectories of estimation error (b) Norm trajectories

Figure 3: Trajectory analysis across various samplers. “TS” refers to temperature sampling (Ackley et al., 1985), and
“w/o SDE” indicates our approach without stochastic sampling, i.e., using PF-ODE. “B&S” is ours, Boost-and-Skip. τ
is the temperature parameter used to scale the score function (e.g., sθ(xi, i)/τ ), and γ controls the boosted initialization
strength. (a) Noise estimation errors across discrete timestep i, where x′

i :=
√
ᾱix̂0|i +

√
1− ᾱiϵ. Here x̂0|i represents

a denoised sample from xi, i.e., the posterior mean of xi. While temperature sampling fails even with slight variations
in τ , Boost-and-Skip performs as well as DDPM, demonstrating its robustness to imperfect score models. (b) Norm of
intermediate samples xi across timestep i. We see that norm trajectories of our approach rapidly converge to that of DDPM,
exhibiting the contraction effect claimed in Section 3.3. In contrast, trajectories of temperature sampling diverge from the
DDPM curve, further revealing its pathology. See Figure 4 for visualizations of intermediate samples over trajectories.

Figure 4: Denoised intermediate samples along genera-
tive trajectories on CelebA (Liu et al., 2015). (a) DDPM.
(b) Temperature sampling with τ = 1.1. (c) Ours with
γ = 5.0. (d) Ours with γ = 1.1 and PF-ODE. From left
to right, discrete timestep i decreases from i = 100 to
0. Leveraging the contracting nature of stochastic genera-
tion, Boost-and-Skip reduces excessive noise introduced by
boosted initialization during early stages of generation.

In practice, the score function sθ(x, t) is not optimal and
may introduce estimation error. This is particularly relevant
during early stages of our generative process, where the
score model is tasked with estimating boosted-noise sam-
ples that were not encountered during training. Nonetheless,
our empirical findings indicate that within reasonable ranges
of γ, the contraction effect inherent in stochastic sampling
rapidly corrects initial error during the early stages of genera-
tion. We highlight that this is in stark contrast to temperature
sampling, which is highly sensitive to the choice of τ (i.e.,
the scaling parameter) and prone to collapse even with small
deviations from τ = 1. Figures 3 and 4 provide empirical
analyses that investigate the robustness of our approach to
imperfect score models; see details therein.

4. Experiments
Datasets and pretrained models. Our experiments were
conducted on four benchmarks settings with varying res-
olutions: (i) CelebA 64 × 64 (Liu et al., 2015); (ii)
LSUN-Bedrooms 256 × 256 (Yu et al., 2015); (iii) Im-
ageNet 64 × 64 (Deng et al., 2009); and (iv) ImageNet
256×256. We consider unconditional generation on CelebA
and LSUN-Bedrooms, while performing class-conditional
generation on the ImageNet settings. The CelebA pretrained
model was developed in-house, adhering to the configura-
tion described in Um et al. (2023). The pretrained models
for LSUN-Bedrooms and ImageNet were taken from the
checkpoints provided by Dhariwal & Nichol (2021).

Baselines. We evaluate our approach against a diverse array
of baseline methods, including frameworks beyond diffu-
sion models and minority samplers. Specifically, we in-
clude two general-purpose GAN frameworks for compar-
ison: BigGAN (Brock et al., 2018) and StyleGAN (Kar-
ras et al., 2019). Additionally, we incorporate prominent
diffusion-based approaches with their standard sampling
techniques: ADM (Dhariwal & Nichol, 2021), LDM (Rom-
bach et al., 2022), EDM (Karras et al., 2022), and DiT (Pee-
bles & Xie, 2022). The state-of-the-art diversity sampler,
CADS (Sadat et al., 2023), is also included for benchmark-
ing. For minority sampling baselines, we consider the most
advanced diffusion-based approaches: (i) Sehwag et al.
(2022); (ii) Um et al. (2023); (iii) ADM-ML (Um et al.,
2023) (iv) Um & Ye (2024b); and (v) temperature sampling.

Evaluation Metrics. We employ a set of quality and diver-
sity metrics to evaluate generated samples. Specifically, we
use: (i) Clean Fréchet Inception Distance (cFID) (Parmar
et al., 2022); (ii) Spatial FID (sFID) (Nash et al., 2021);
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(a) ADM (Dhariwal & Nichol, 2021) (b) Temperature sampling (c) Boost-and-Skip (ours)

Figure 5: Sample comparison on ImageNet 256× 256. Generated samples from two classes are exhibited: “jack-o’-lantern”
(top row) and “bald eagle” (bottom row). We share the same random seed across all three approaches.

and (iii) Improved Precision & Recall (Kynkäänniemi et al.,
2019). To evaluate the proximity to real minority data, we
follow the approach used in previous works Um et al. (2023);
Um & Ye (2024b). Specifically, we employ instances with
the lowest likelihoods (i.e., those with the highest AvgkNN
values) as reference real data for calculation of quality and
diversity metrics. Additionally, to compare the capability to
generate low-density instances, we adopt three uniqueness
measures: (i) Average k-Nearest Neighbor (AvgkNN); (ii)
Local Outlier Factor (LOF) (Breunig et al., 2000); and (iii)
Rarity Score (Han et al., 2022). For all these measures,
higher value indicate that an instance is less similar to its
neighborhood (Sehwag et al., 2022; Han et al., 2022).

4.1. Results

Qualitative comparisons. Figure 5 presents generated sam-
ples from three different approaches on ImageNet 256×256.
We observe that our framework consistently produces sam-
ples with highly more distinct and intricate visual aspects
compared to the baselines, characteristics often associated
with low-density instances (Serrà et al., 2019; Arvinte et al.,
2023). We highlight that this contrasts with temperature
sampling yielding marginal changes from the baseline ADM,
as further confirmed by our quantitative evaluations (see Ta-
ble 1). Additional samples including those from other bench-
marks and baselines are provided in Appendix D.2.

Quantitative evaluation. Table 1 compares performance
in terms of quality and diversity. Observe that our sampler
achieves high-quality minority generating performance on

par with computationally intensive guided samplers across
all datasets. We emphasize that these substantial improve-
ments are achievable with minimal computational overhead;
see Table 3 for a complexity analysis on ImageNet 64× 64.
In addition to its competitive performance in quality and
diversity, our approach also performs well in neighborhood
density metrics; see Appendix D.1 for explicit details.

Ablation studies. Table 2 presents ablation results on our
design choices, γ and ∆t. We see that applying either
modification individually results in limited improvements
(see Tables 2a and 2b). In contrast, combining both tech-
niques with properly chosen γ values yields significant en-
hancements in minority generation; see Table 2c for details.
In Appendix A.5, we present a further ablation exploring
performance with γ < 1.0, where we demonstrate a quality-
improving potential of ours; see Table 6 for details.

Downstream application. To further highlight the prac-
tical importance of Boost-and-Skip, we investigate its po-
tential application in classifier training with synthetically
augmented datasets. Specifically, we examine whether our
minority-promoted generated samples can enhance classi-
fication performance. Following Um & Ye (2024b), we
consider the prediction of 40 attributes in CelebA and train
ResNet-18 models on four datasets: (i) the CelebA train-
ing set; (ii) CelebA augmented with 50K samples from
ADM (Dhariwal & Nichol, 2021); (iii) CelebA augmented
with 50K samples from Um & Ye (2024b); and (iv) CelebA
augmented with 50K samples from ours. As in Um & Ye
(2024b), we use an off-the-shelf classifier to label the gener-
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Method cFID ↓ sFID ↓ Prec ↑ Rec ↑

CelebA 64×64
ADM (Dhariwal & Nichol, 2021) 75.41 17.11 0.97 0.23
BigGAN (Brock et al., 2018) 80.58 16.80 0.97 0.19

ADM-ML (Um et al., 2023) 51.99 13.40 0.94 0.30
Sehwag et al. (2022) 28.25 10.64 0.82 0.42
Um et al. (2023) 27.32 8.66 0.89 0.33
Um & Ye (2024b) 19.34 8.85 0.82 0.47

Temperature sampling 37.78 14.49 0.79 0.38
Boost-and-Skip (proposed) 19.79 6.87 0.77 0.51

ImageNet 64×64
ADM (Dhariwal & Nichol, 2021) 18.37 5.39 0.79 0.53
EDM (Karras et al., 2022) 19.09 4.73 0.73 0.59

Sehwag et al. (2022) 11.37 4.69 0.80 0.52
Um et al. (2023) 12.47 3.13 0.76 0.56
Um & Ye (2024b) 11.24 3.17 0.73 0.62
Temperature sampling 16.19 4.20 0.76 0.58
Boost-and-Skip (proposed) 12.68 3.18 0.74 0.61

Method cFID ↓ sFID ↓ Prec ↑ Rec ↑

LSUN Bedrooms 256×256
ADM (Dhariwal & Nichol, 2021) 63.30 8.00 0.89 0.15
LDM (Rombach et al., 2022) 63.53 7.73 0.90 0.13
StyleGAN (Karras et al., 2019) 57.17 7.78 0.89 0.14

Um et al. (2023) 41.75 7.26 0.87 0.10
Um & Ye (2024b) 36.94 5.13 0.87 0.15

Temperature sampling 51.81 8.22 0.82 0.21
Boost-and-Skip (proposed) 44.77 6.70 0.78 0.20

ImageNet 256×256
ADM (Dhariwal & Nichol, 2021) 13.22 7.66 0.86 0.39
DiT (Peebles & Xie, 2022) 21.51 6.76 0.80 0.46
CADS (Sadat et al., 2023) 15.95 6.18 0.81 0.48
Sehwag et al. (2022) 10.93 6.66 0.85 0.39
Um et al. (2023) 11.44 4.63 0.85 0.42
Um & Ye (2024b) 9.98 4.35 0.83 0.45

Temperature sampling 12.48 6.72 0.84 0.41
Boost-and-Skip (proposed) 10.04 4.33 0.83 0.45

Table 1: Quantitative comparisons. “ADM-ML” represents a classifier-guided baseline that implements conditional
generation on Minority Labels (Um et al., 2023). For baseline real data to compute the metrics, we employ the most unique
samples that yield the highest AvgkNN values, following the previous convention (Um et al., 2023; Um & Ye, 2024b). The
best results are marked in bold, and the second bests are underlined.

γ2 cFID ↓ sFID ↓ Prec ↑ Rec ↑
1.0 84.98 23.07 0.98 0.14
4.0 81.75 22.71 0.97 0.17
9.0 82.10 22.78 0.98 0.15

16.0 83.32 22.91 0.98 0.18

(a) Boost-only (i.e., ∆t = 0)

∆t cFID ↓ sFID ↓ Prec ↑ Rec ↑
0 84.98 23.07 0.98 0.14
10 61.86 19.97 0.96 0.13
20 55.15 22.02 0.91 0.06
50 289.70 119.59 0.29 0.00

(b) Skip-only (i.e., γ = 1.0)

γ2 cFID ↓ sFID ↓ Prec ↑ Rec ↑
1.0 74.41 20.50 0.97 0.21
2.0 51.47 16.43 0.94 0.33
4.0 23.56 12.17 0.77 0.50
9.0 219.21 45.59 0.05 0.67

(c) Boost-and-Skip (with ∆t = 3)

Table 2: Exploring the design space of Boost-and-Skip. “Boost-only” refers to using boosted initialization alone, while
“Skip-only” represents configurations that only employ the proposed timestep skipping. γ denotes the boosting scale, and ∆t

indicates the number of timesteps skipped. Using either technique individually results in limited performance improvements.

Complexity

Method cFID ↓ sFID ↓ Infer ↓ Extra ↓ Memory ↓
ADM (Dhariwal & Nichol, 2021) 18.37 5.39 0.99 s – 85.73 MB
EDM (Karras et al., 2022) 19.09 4.73 1.87 s – 84.48 MB
Sehwag et al. (2022) 11.37 4.69 2.75 s > 16 d 187.04 MB
Um et al. (2023) 12.47 3.13 2.27 s > 16 d 184.40 MB
Um & Ye (2024b) 11.24 3.17 2.80 s – 386.75 MB
Temperature sampling 16.19 4.20 0.99 s – 85.73 MB
Boost-and-Skip (ours) 12.68 3.18 0.98 s – 85.73 MB

Table 3: Comparison of complexity across existing sam-
plers on ImageNet 64× 64. “Infer” represents the infer-
ence time measured in seconds/sample. “Extra” refers to
the additional time, in days, required to construct external
classifiers used for guided sampling (Sehwag et al., 2022;
Um et al., 2023). “Memory” indicates the peak memory us-
age, measured in MB/sample. All measurements are based
on a single NVIDIA A100 GPU.

ated samples. Our results show classification improvements
comparable to Um & Ye (2024b), despite our method being
significantly more computationally efficient, further demon-
strating its utility in downstream tasks.

5. Conclusion
We introduced Boost-and-Skip, a simple yet impactful
guidance-free approach for minority sample generation. By

Training data Acc ↑ F1 ↑ Prec ↑ Rec ↑
CelebA trainset 0.898 0.746 0.815 0.710
+ ADM gens (50K) 0.897 0.742 0.808 0.711
+ SGMS gens (50K) 0.903 0.757 0.822 0.724
+ Ours gens (50K) 0.902 0.755 0.819 0.723

Table 4: Data augmentation for downstream classifica-
tion tasks. “SGMS” refers to the approach by Um & Ye
(2024b). All settings were evaluated on the CelebA testset
and averaged over three different runs.

incorporating variance-boosted initialization and timestep
skipping, our framework promotes the emergence of un-
derrepresented features without relying on additional low-
density guidance. Theoretical and empirical results vali-
dated its effectiveness, demonstrating competitive perfor-
mance while significantly reducing computational costs.
We further demonstrated its practical utility in downstream
tasks such as data augmentation, highlighting its broader
applicability in generative modeling.

A limitation is that as discussed in Section 3.3, a naive
application to deterministic samplers may fail due to the
absence of a contracting effect. A promising future direction
is to address this limitation, extending the effectiveness of
our approach to a wider range of generative processes.
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Impact Statement
One potential negative impact is the intentional misuse of
our sampler to suppress the generation of minority-featured
samples. This could be achieved by setting γ < 1.0 with
∆t > 0, potentially biasing the initialization toward high-
density regions (as explored in Appendix A.5). Recognizing
and mitigating this risk is essential, emphasizing the im-
portance of responsible deployment to ensure inclusivity in
generative modeling.
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A. Additional Discussions, Ablations, and Analyses
A.1. Related work

Figure 6: Low-density emphasis impact of Boost-and-
Skip. We visualize σ̂2

0 (i.e., the scale of Σ̂0 := σ̂2
0I)

across Tskip/T under the settings specified in Corol-
lary 3.3, with σ0 = 2. Observe that the variance of Σ̂0

surpasses that of Σ0 for γ > 1 and Tskip < T , demon-
strating the low-density encouraging influence of the
Boost-and-Skip approach.

In addition to closely related studies mentioned in Section 1 (Se-
hwag et al., 2022; Um et al., 2023; Um & Ye, 2024b;a), several
other works explore distinct conditions and scenarios in the con-
text of minority generation (Yu et al., 2020; Lin et al., 2022; Qin
et al., 2023; Huang & Jafari, 2023; Samuel et al., 2023). One
instance is Qin et al. (2023) wherein the authors develop a training
technique to mitigate a class imbalance issue when constructing
class-conditional diffusion models. A distinction w.r.t. ours is
that they require a specialized training, and their method is limited
to conditional diffusion models. Another notable study is done
by Samuel et al. (2023). Specifically using text-to-image (T2I)
diffusion models (Rombach et al., 2022), they develop a sampler to
faithfully generate samples of unique text-prompts by employing
real reference data instances associated with the given prompts.
The key distinction to ours is that their method is limited to T2I
models and rely upon a set of real reference data.

A related yet distinct line of research is to improve the diversity of
conventional diffusion samplers (Sadat et al., 2023; Corso et al.,
2023; Lu et al., 2024). For instance, Sadat et al. (2023) propose
a simple conditioning technique to boost-up the diversity by in-
troducing time-scheduled noise perturbations in the conditional
embedding space. The difference from our study is that their method is confined to conditional diffusion models and not
specifically designed for minority generation. The approaches in Corso et al. (2023); Lu et al. (2024) share similar spirits,
repelling intermediate latent samples within an inference batch to produce visually distinct outputs. However, as with Um &
Ye (2024b;a), these methods often introduce computational challenges, e.g., due to the reliance on backpropagation.

A.2. Illustration of the impact of low-density emphasis

We continue from Section 3.3 and provide a visualization on the effect of low-density emphasis of Boost-and-Skip. Let us
first recall Corollary 3.3:
Corollary 3.3. Suppose Σ0 = σ2

0I and Σ̂Tskip = γ2I , and define the quantity (if it exists)

κ :=
√

(γ2 − 1)/(σ2
0 − 1).

The variance-amplification effect of Σ̂0 occurs iff

Tskip ∈


∅ if γ ≤ 1 ≤ σ0,

(α−1(κ),∞) if 1 < γ, σ0,

[0, α−1(κ)) if 1 > γ, σ0,

[0,∞) if σ0 ≤ 1 ≤ γ and (σ0, γ) ̸= 1,

where we define α−1(κ) := 0 when κ > 1.

Figure 6 illustrates the behavior of Σ̂0 := σ̂2
0I under the conditions specified in Corollary 3.3, where σ0 = 2. We see that

the variance scale of Σ̂0 exceeds that of Σ0 for γ > 1 and Tskip < T , demonstrating the variance-boosting effect induced by
the proposed modifications. Notably, regardless of the value of γ, this amplification effect does not occur for Tskip ≈ T , thus
supporting the effectiveness of our time-skipping technique for promoting low-density emphasis.

A.3. Further results on contraction theory

We continue from Section 3.3 and extend our analysis of contraction theory in the context of Boost-and-Skip. To this end,
we first explore its behavior in non-stochastic generative processes that lack the contraction effect. Specifically, we consider
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its application to the probability flow ODE (PF-ODE) (Song et al., 2020) associated with Eq. (10):

dx =

[
−1

2
β(t)x− 1

2
β(t)sθ(x, t)

]
dt. (19)

The following proposition characterizes the density of generated samples p̂ODE when going through the above ODE under
the same settings as Proposition 3.2:
Proposition A.1. Consider the same data distribution p0 and the optimal score function sθ(x, t) as Proposition 3.2.
Suppose the PF-ODE in Eq. (19) is initialized with x̂(Tskip) ∼ N (µ̂Tskip

, Σ̂Tskip). Then, the resulting distribution at t = 0 is

given by x̂ODE(0) ∼ N (µ̂0,ODE, Σ̂0,ODE), where

µ̂0,ODE := µ0 +Σ
1/2
0 Σ

−1/2
Tskip

(µ̂Tskip
− µTskip

), (20)

Σ̂0,ODE := Σ0Σ
−1
Tskip

Σ̂Tskip . (21)

Here, µTskip
and ΣTskip are defined as in Eqs. (15) and (16), respectively.

We leave the proof in Appendix B.5. We see in Eq. (21) that the variance Σ̂0 is multiplied by the initial variance ΣTskip . This
implies that the low-density emphasis impact observed in the SDE-case may also manifest in the considered ODE case.
However, the mean and variance formulas of the ODE-generated distribution p̂ODE lack the α(Tskip)-multiplication that
contributes to the recovery of p0, indicating the inability of (non-stochastic) ODEs for error rectification. Below, we present
a weaker but more general stochastic contraction result which shows that a similar phenomenon occurs with VP-SDE with
general data distributions.
Proposition A.2 (Error contraction for VP-SDE diffusion models). Assume the same setup as Theorem 3 in Xu et al. (2023),
i.e., ∥t∇ log pt(x)∥ ≤ L1 and ∥xt∥ < B/2 for any xt in the support of pt and reverse-SDE trajectories. Let

xSDE
tmin

= SDE(xtmax , tmax → tmin), y
SDE
tmin

= SDE(ytmax
, tmax → tmin) (22)

xODE
tmin

= ODE(xtmax
, tmax → tmin), y

ODE
tmin

= ODE(ytmax
, tmax → tmin) (23)

where SDE and ODE denote solutions to the reverse-SDE and PF-ODE, respectively. Then

TV(xODE
tmin

,yODE
tmin

) = TV(xtmax
,ytmax

) (24)

TV(xSDE
tmin

,ySDE
tmin

) ≤
(
1− 2Q

(
B

2
√

α(tmax)−2−α(tmin)−2

)
· e−BL1/tmin−L2

1α(tmax)
−2/t2min

)
TV(xtmax

,ytmax
) (25)

where Q(r) := P(ε ≥ r) for ε ∼ N (0, 1).

The proof can be found in Appendix B.6. Here, TV denotes the total variation distance. Indeed, we observe that PF-ODE
does not contract any initial error. On the other hand, the multiplicative factor on the RHS of Eq. (25) shows that reverse-SDE
reduces initial error. We empirically found that this absence of the rectifying capability often makes ODE-based samplers
struggle to generate high-quality minority samples with Boost-and-Skip. See Figures 2, 3 and 4 for instance.

A.4. How Boost-and-Skip works: a signal processing perspective

We continue from Section 3.3 and investigate the principle of Boost-and-Skip in a signal processing viewpoint. As explored
in Lin et al. (2024); Hu et al. (2024), generated samples from diffusion models are often affected by initial Gaussian noise,
particularly in shaping low-frequency components of images (like brightness). This effect is especially pronounced in
diffusion frameworks that employ noise schedules with non-zero terminal SNR (i.e., α(T ) ̸≈ 0), allowing low-frequency
components of the initial noise to propagate into the generative process.

From this standpoint, Boost-and-Skip can be viewed as a two-step approach. First, the low-frequency components of
the noise are amplified through variance boosting (by Plancherel theorem (Plancherel & Leffler, 1910)), enhancing the
visual variability of the random Gaussian noise. Second, this amplified low-frequency information is made more influential
by initiating the generative process at a skipped initial timestep Tskip with a non-zero terminal SNR (α(Tskip) ̸≈ 0). We
conducted an empirical analysis to support this perspective. See Table 5 for explicit details.

A.5. Extended ablation: effect of using γ < 1.0
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fcutoff, LPF cFID ↓ sFID ↓ Prec ↑ Rec ↑
64 (uncut) 23.56 12.17 0.77 0.50
48 23.38 12.31 0.77 0.50
32 23.82 12.32 0.77 0.51
16 28.46 14.34 0.84 0.49
8 33.08 14.98 0.84 0.44

(a) Low-pass filtered after boosting

fcutoff, HPF cFID ↓ sFID ↓ Prec ↑ Rec ↑
0 (uncut) 23.56 12.17 0.77 0.50
8 60.16 18.26 0.95 0.23
16 75.68 21.33 0.97 0.16
32 95.50 25.88 0.98 0.10
48 100.03 28.26 0.97 0.12

(b) High-pass filtered after boosting

Table 5: Amplification of low-frequency components is crucial to the success of Boost-and-Skip. The performance
values were evaluated on CelebA, with low-pass or high-pass filters applied after the boosted initialization. fcutoff, LPF
represents the cut-off frequency for the low-pass filter, while fcutoff, HPF denotes the cut-off frequency for the high-pass filter.
While the low-pass filtered cases maintain performance gains robustly across varying cut-off frequencies, high-pass filtering
leads to immediate degradation, as seen in a significant performance drop starting at fcutoff, HPF = 8. This suggests that the
enhanced minority generation is primarily driven by the amplification of low-frequency components.

γ2 Prec ↑ Rec ↑ Den ↑ Cov ↑
1.0 0.851 0.627 1.290 0.940
0.8 0.874 0.588 1.384 0.938
0.6 0.881 0.586 1.495 0.936
0.5 0.879 0.565 1.478 0.926

Table 6: Quality-enhancing effect of Boost-and-
Skip on CelebA. “Den” and “Cov” denote Den-
sity and Coverage (Naeem et al., 2020), an addi-
tional set of quality-diversity metrics. For com-
puting these metrics, we used the CelebA test set
as the baseline real data (rather than employing
minority data as in Table 1) to assess the quality-
diversity tradeoff within the ground-truth data
manifold of CelebA.

One may wonder: what if we employ γ < 1.0, effectively reversing the
direction of minority generation? We found that this oppositional choice
often exerts an interesting quality-enhancing effect on the generative
process. Intuitively, initializing with γ < 1.0 can be interpreted as
starting generation from a high-density region, which may guide the
sampling process toward higher-quality outputs. Our empirical findings
confirm this intuition.

Table 6 presents the effect of γ on various quality and diversity metrics
for CelebA. Note that these metrics were computed using the test dataset,
rather than minority data as was employed for Table 1. This allows us to
examine the quality-diversity tradeoff from a broader perspective, specif-
ically within the ground-truth data manifold of CelebA. As shown in
Table 6, using γ < 1.0 improves sample quality at the expense of diver-
sity, demonstrating that Boost-and-Skip serves as a control mechanism
not only for diversity but also for quality.

Another key observation is that our approach is complementary to existing quality-enhancing techniques, such as Classifier-
Free Guidance (CFG) (Ho & Salimans, 2022). This suggests that Boost-and-Skip can be integrated with such methods to
further refine generative performance, offering additional flexibility in balancing quality and diversity.

A.6. Discussion: Implications of Boost-and-Skip

We note that our framework has several important implications. The first one is that it improves the practical relevance
of minority samplers by significantly reducing the computational overhead associated with existing methods. Secondly,
our approach provides a simple mechanism for improving the diversity of diffusion models, a feature that has been largely
absent in the research community. Another important point is to demonstrate that the pathological non-zero terminal SNR,
arising from the training-inference mismatch (Lin et al., 2024; Hu et al., 2024), can actually be advantageous. Lastly, we
highlight potential opportunities in the initialization of stochastic sampling, a largely under-explored area compared to
deterministic samples of diffusion models.

B. Proofs
B.1. Proof of Proposition 3.1

Proposition 3.1. Consider the temperature-scaled reverse VP-SDE in Eq. (9). Assuming the score function is optimal, i.e.,
sθ(x, t) = ∇x log pt(x), the marginal densities of samples generated by this SDE are not equal to { 1

Zt
pt(x)

1/τ}Tt=0 in
general.
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Proof. We first rewrite Eq. (9) using the ground-truth score function∇x log pt(x) under the optimality assumption:

dx =

[
−1

2
β(t)x− β(t)∇x log pt(x)

1/τ

]
dt+

√
β(t)dw̃. (26)

Let us assume that the SDE in Eq. (26) produces samples along { 1
Zt
pt(x)

1/τ}Tt=0. Then, we should have:

1

Zt
pt(x)

1/τ =

∫
p0t(x|x0)

1

Z
p0(x0)

1/τ dx0, (27)

where Z represents a normalization constant w.r.t. p0. We disprove this by providing a counterexample. Consider a
dirac-delta density p0 and a VP-SDE forward kernel p0t:

p0(x0) := δ(x0 − µ), (28)

p0t(x|x0) :=

(
1√

2π(1− α(t))

)d

exp

(
−
∥x−

√
α(t)x0∥22

2(1− α(t))

)
, (29)

where α(t) represents the noise schedule, which is a function of β(t). With this instantiation, we expand pt(x)
1/τ on the

LHS of Eq. (27) by using the definition of pt:

pt(x)
1/τ =

[∫
p0t(x|x0)p0(x0) dx0

]1/τ
(30)

=

∫ ( 1√
2π(1− α(t))

)d

exp

(
−
∥x−

√
α(t)x0∥22

2(1− α(t))

)
δ(x0 − µ) dx0

1/τ

(31)

=

(
1√

2π(1− α(t))

)d/τ

exp

(
−
∥x−

√
α(t)µ∥22

2τ(1− α(t))

)
. (32)

Since 1
Zt
pt(x)

1/τ is Gaussian, we can determine the normalization constant Zt, yielding the following expression for the
LHS of Eq. (27):

1

Zt
pt(x)

1/τ =

(
1√

2πτ(1− α(t))

)d

exp

(
−
∥x−

√
α(t)µ∥22

2τ(1− α(t))

)
. (33)

On the other hand, the RHS of Eq. (27) is:

∫
pt(x|x0)

1

Z
p0(x0)

1/τ dx0 =

∫ (
1√

2π(1− α(t))

)d

exp

(
−
∥x−

√
α(t)x0∥22

2(1− α(t))

)
1

Z
δ(x0 − µ)1/τ dx0 (34)

=

(
1√

2π(1− α(t))

)d

exp

(
−
∥x−

√
α(t)µ∥22

2(1− α(t))

)
, (35)

which is not equal to the LHS (i.e., Eq. (32)), e.g., if τ ̸= 1, contradicting our initial assumption. This completes the proof.

B.2. Proof of Proposition 3.2

Lemma B.1 (Solution to the VP-SDE). Let x0 ∼ N (µ0,Σ0), and suppose xt on t ∈ (0,∞) evolves according to

dx = −1

2
β(t)xdt+

√
β(t)dw (36)
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where β(t) is a positive function which integrates to∞. The forward process is Gaussian with mean and covariance

µt := α(t)µ0, (37)

Σt := I + α(t)2(Σ0 − I), (38)

where α(t) = e−
1
2

∫ t
0
β(s) ds such that limt→∞ α(t) = 0.

Proof. Mean µt of xt is governed by the ODE

dµt/dt = E[− 1
2β(t)xt] = − 1

2β(t)µt (39)

so its solution is given as

µt = α(t)µ0. (40)

The covariance Σt of xt is governed by the ODE

dΣt/dt = E[− 1
2β(t)xt(xt − µt)

⊤] + E[− 1
2β(t)(xt − µt)x

⊤
t ] + E[β(t)] (41)

= E[− 1
2β(t)(xt − µt)(xt − µt)

⊤] + E[− 1
2β(t)(xt − µt)(xt − µt)

⊤] + β(t) (42)

+ E[− 1
2β(t)µt(xt − µt)

⊤] + E[− 1
2β(t)(xt − µt)µ

⊤
t ] (43)

= E[− 1
2β(t)(xt − µt)(xt − µt)

⊤] + E[− 1
2β(t)(xt − µt)(xt − µt)

⊤] + β(t) (44)
= −β(t)(Σt − I) (45)

whose solution is given as (solve the ODE after making the change of variables Σ̂t = Σt − I)

Σt = I + α(t)2(Σ0 − I). (46)

Since the initial distribution at t = 0 is a Gaussian and VP-SDE is a linear SDE, its solution is also a Gaussian.

Proposition 3.2. Let the data distribution be x(0) ∼ N (µ0,Σ0), and assume the optimal score function sθ(x, t) =
∇x log pt(x) trained on p0 via the forward SDE in Eq. (3). Suppose the reverse SDE in Eq. (10) is initialized with
x̂(Tskip) ∼ N (µ̂Tskip

, Σ̂Tskip). Then, the resulting generated distribution corresponds to x̂(0) ∼ N (µ̂0, Σ̂0), where

µ̂0 := µ0 + α(Tskip)Σ0Σ
−1
Tskip

(µ̂Tskip
− µTskip

), (47)

Σ̂0 := Σ0 + α(Tskip)
2Σ2

0Σ
−2
Tskip

(Σ̂Tskip −ΣTskip). (48)

Here, µTskip
and ΣTskip are defined as:

µTskip
:= α(Tskip)µ0, (49)

ΣTskip := I + α(Tskip)
2(Σ0 − I). (50)

Proof. By Lemma B.1, the score function is given as

∇x log pt(x) = ∇x logN (x|µt,Σt) = −Σ−1
t (x− µt) (51)

such that the reverse-SDE is

dx̂t = [− 1
2β(t)x̂t − β(t)∇ log pt(x̂t)] dt+

√
β(t) dw̄t (52)

= [− 1
2β(t)x̂t + β(t)Σ−1

t (x̂t − µt)] dt+
√
β(t) dw̄t (53)

= 1
2β(t)(2Σ

−1
t − I)x̂t dt− β(t)Σ−1

t µt dt+
√
β(t) dŵt (54)

where ŵt is a reverse-time Brownian motion. This is also a linear SDE, and since x̂Tskip is assumed to be Gaussian, x̂0

is also Gaussian. Hence, it suffices to derive the mean and covariance of x̂0. Fix some T > 0 and make the change of
variables (ŷs, s)← (x̂T−t, T − t) such that solving the SDE

dŷs = − 1
2β(T − s)(2Σ−1

T−s − I)ŷs ds+ β(T − s)Σ−1
T−sµT−s ds+

√
β(T − s) dws (55)
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from s = 0 to T is equivalent to solving the original reverse-SDE Eq. (54) from t = T to 0. We shall now derive the mean
and covariance of ŷs at s = T . To this end, define the eigen-decomposition

Σ0 = QΛQ⊤, Λ = diag(λn) (56)

and recall that µt = α(t)µ0 and Σt = I + α(t)2(Σ0 − I).

The mean µ̂s of ŷs is governed by the ODE

dµ̂s/ds = E[− 1
2β(T − s)(2Σ−1

T−s − I)ŷs + β(T − s)Σ−1
T−sµT−s] (57)

= − 1
2β(T − s)(2Σ−1

T−s − I)µ̂s + β(T − s)Σ−1
T−sµT−s (58)

= − 1
2α(T − s)β(T − s)Qdiag(α(T−s)−1−α(T−s)(λn−1)

1+α(T−s)2(λn−1) )Q⊤µ̂s (59)

+ α(T − s)β(T − s)Qdiag( 1
1+α(T−s)2(λn−1) )Q

⊤µ0. (60)

Define ϕ(x; a) := log(ax2 + 1)− log(x) such that
dϕ(α(T−s);λn−1)

ds = dϕ(α(T−s);λn−1)
dα(T−s) · dα(T−s)

d(T−s) ·
d(T−s)

ds (61)

= −α(T−s)−1−α(T−s)(λn−1)
1+α(T−s)2(λn−1) ·

(
− 1

2β(T − s)α(T − s)
)
· (−1) (62)

= − 1
2β(T − s)α(T − s)α(T−s)−1−α(T−s)(λn−1)

1+α(T−s)2(λn−1) . (63)

This motivates the transition matrix

Ψ(s, s0) := Qdiag(eϕ(α(T−s);λn−1)−ϕ(α(T−s0);λn−1))Q⊤ (64)

= Qdiag( (λn−1)α(T−s)2+1
α(T−s) · α(T−s0)

(λn−1)α(T−s0)2+1 )Q
⊤ (65)

= α(T−s0)
α(T−s) ΣT−sΣ

−1
T−s0

(66)

with which we can calculate the solution to Eq. (60) as

µ̂s = Ψ(s, 0)µ̂0 +
∫ s

0
Ψ(s, σ)α(T − σ)β(T − σ)Qdiag( 1

1+α(T−σ)2(λn−1) )Q
⊤µ0 dσ (67)

= α(T )
α(T−s)ΣT−sΣ

−1
T µ̂0 + µT−s −

α(T )
α(T−s)ΣT−sΣ

−1
T µT (68)

= µT−s +
α(T )

α(T−s)ΣT−sΣ
−1
T (µ̂0 − µT ) (69)

where the integral in the first line is calculated as∫ s

0
Ψ(s, σ)α(T − σ)β(T − σ)Qdiag( 1

1+α(T−σ)2(λn−1) )Q
⊤µ0 dσ (70)

=
∫ s

0
α(T − σ)β(T − σ)Qdiag(α(T−σ)

α(T−s) ·
(λn−1)α(T−s)2+1
(λn−1)α(T−σ)2+1 ) diag(

1
1+α(T−σ)2(λn−1) )Q

⊤µ0 dσ (71)

=
∫ s

0
Qdiag( (λn−1)α(T−s)2+1

α(T−s) ) diag( α(T−σ)2β(T−σ)
(1+α(T−σ)2(λn−1))2 )Q

⊤µ0 dσ (72)

= Qdiag( (λn−1)α(T−s)2+1
α(T−s) ) diag(2

∫ s

0
1
2α(T − σ)β(T − σ) α(T−σ)

(1+α(T−σ)2(λn−1))2 dσ)Q
⊤µ0 (73)

= Qdiag( (λn−1)α(T−s)2+1
α(T−s) ) diag(2

[
α(T−σ)2

2((λn−1)α(T−σ)2+1)

]s
0
)Q⊤µ0 (74)

= Q diag( (λn−1)α(T−s)2+1
α(T−s) ) diag(

[
α(T−s)2

(λn−1)α(T−s)2+1 −
α(T )2

(λn−1)α(T )2+1

]
)Q⊤µ0 (75)

= Qdiag(
[
α(T − s)− α(T )2

α(T−s) ·
(λn−1)α(T−s)2+1
(λn−1)α(T )2+1

]
)Q⊤µ0 (76)

= α(T − s)µ0 −
α(T )

α(T−s) ·Qdiag( (λn−1)α(T−s)2+1
(λn−1)α(T )2+1 )Q⊤(α(T )µ0) (77)

= µT−s −
α(T )

α(T−s)ΣT−sΣ
−1
T µT . (78)

Setting s = T = Tskip in Eq. (69), we see that

E[x̂0] = E[ŷTskip
] = µTskip−Tskip

+
α(Tskip)

α(Tskip−Tskip)
ΣTskip−TskipΣ

−1
Tskip

(E[ŷ0]− µTskip
) (79)

= µ0 + α(Tskip)Σ0Σ
−1
Tskip

(E[x̂Tskip ]− µTskip
) (80)
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where we have used the fact that α(0) = 1.

The covariance Σ̂s of ŷs is governed by the ODE

dΣ̂s/ds = E[− 1
2β(T − s)(2Σ−1

T−s − I)ŷs(ŷs − µ̂s)
⊤] (81)

+ E[− 1
2β(T − s)(ŷs − µ̂s)y

⊤
s (2Σ

−1
T−s − I)] + β(T − s) (82)

= E[− 1
2β(T − s)(2Σ−1

T−s − I)(ŷs − µ̂s)(ŷs − µ̂s)
⊤] (83)

+ E[− 1
2β(T − s)(ŷs − µ̂s)(ŷs − µ̂s)

⊤(2Σ−1
T−s − I)] + β(T − s) (84)

= E[−β(T − s)(2Σ−1
T−s − I)(ŷs − µ̂s)(ŷs − µ̂s)

⊤] + β(T − s) (85)

= −β(T − s)(2Σ−1
T−s − I)Σ̂s + β(T − s) (86)

= −β(T − s)Qdiag( 1−α(T−s)2(λn−1)
1+α(T−s)2(λn−1) )Q

⊤Σ̂s + β(T − s). (87)

This motivates a similar transition matrix (note that we multiplied 2 to ϕ now)

Ψ(s, s0) := Qdiag(e2ϕ(α(T−s);λn−1)−2ϕ(α(T−s0);λn−1))Q⊤ (88)

= Qdiag(α(T−s0)
2

α(T−s)2 ·
((λn−1)α(T−s)2+1)2

((λn−1)α(T−s0)2+1)2 )Q
⊤ (89)

= α(T−s0)
2

α(T−s)2 Σ2
T−sΣ

−2
T−s0

. (90)

which produces the solution

Σ̂s = Ψ(s, 0)Σ̂0 +
∫ s

0
Ψ(s, σ)β(T − σ) dσ (91)

= α(T )2

α(T−s)2Σ
2
T−sΣ

−2
T Σ̂0 +ΣT−s − α(T )2

α(T−s)2Σ
2
T−sΣ

−1
T (92)

= ΣT−s +
α(T )2

α(T−s)2Σ
2
T−sΣ

−2
T (Σ̂0 −ΣT ) (93)

where the integral in the first line is calculated as∫ s

0
Ψ(s, σ)β(T − σ) dσ (94)

=
∫ s

0
Qdiag(α(T−σ)2

α(T−s)2 ·
((λn−1)α(T−s)2+1)2

((λn−1)α(T−σ)2+1)2 )Q
⊤β(T − σ) dσ (95)

= Qdiag( ((λn−1)α(T−s)2+1)2

α(T−s)2 ) diag(
∫ s

0
β(T−σ)α(T−σ)2

((λn−1)α(T−σ)2+1)2 dσ)Q
⊤ (96)

= Qdiag( ((λn−1)α(T−s)2+1)2

α(T−s)2 ) diag(
[

α(T−s)2

(λn−1)α(T−s)2+1 −
α(T )2

(λn−1)α(T )2+1

]
)Q⊤ (97)

= 1
α(T−s)2Σ

2
T−s(α(T − s)2Σ−1

T−s − α(T )2Σ−1
T ) (98)

= ΣT−s − α(T )2

α(T−s)2Σ
2
T−sΣ

−1
T . (99)

Setting s = T = Tskip in Eq. (93), we see that

Cov[x̂0] = Cov[ŷTskip
] = ΣTskip−Tskip +

α(Tskip)
2

α(Tskip−Tskip)2
Σ2

Tskip−Tskip
Σ−2

Tskip
(Cov[ŷ0]−ΣTskip) (100)

= Σ0 + α(Tskip)
2Σ2

0Σ
−2
Tskip

(Cov[x̂Tskip ]−ΣTskip). (101)

This concludes the proof.

B.3. Proof of Corollary 3.3

Corollary 3.3. Suppose Σ0 = σ2
0I and Σ̂Tskip = γ2I , and define the quantity (if it exists)

κ :=
√

(γ2 − 1)/(σ2
0 − 1).
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The variance-amplification effect of Σ̂0 occurs iff

Tskip ∈


∅ if γ ≤ 1 ≤ σ0,

(α−1(κ),∞) if 1 < γ, σ0,

[0, α−1(κ)) if 1 > γ, σ0,

[0,∞) if σ0 ≤ 1 ≤ γ and (σ0, γ) ̸= 1,

where we define α−1(κ) := 0 when κ > 1.

Proof. Under our assumption, variance-amplification occurs iff

γ2 − 1 > α(Tskip)
2(σ2

0 − 1). (102)

Case γ ≤ 1 ≤ σ0. Suppose some value of Tskip offers variance amplification. Then

0 ≥ γ2 − 1 > α(Tskip)
2(σ2

0 − 1) ≥ 0 (103)

which is a contradiction.

Case 1 < γ, σ0. In this case, Eq. (102) is equivalent to

α(Tskip) < κ (104)

which is equivalent to Tskip ∈ (α−1(κ),∞) since α is a monotone decreasing function.

Case 1 > γ, σ0. In this case, Eq. (102) is equivalent to

α(Tskip) > κ (105)

which is equivalent to Tskip ∈ [0, α−1(κ)) since α is a monotone decreasing function.

Case σ0 ≤ 1 ≤ γ and (σ0, γ) ̸= 1. In the case σ0 < 1 ≤ γ,

γ2 − 1 ≥ 0 > α(Tskip)(σ
2
0 − 1) (106)

for all values of Tskip. Likewise, if σ0 ≤ 1 < γ,

γ2 − 1 > 0 ≤ α(Tskip)(σ
2
0 − 1) (107)

for all values of Tskip.

B.4. Proof of Proposition 3.4

Proposition 3.4. Consider an empirical version of the discrete VP-SDE in Eq. (8):

xi−1 =
1
√
αi

{
xi + (1− αi)sθ(xi, i)

}
+
√
1− αiz,

where i ∈ {1, . . . , N}. Assume the optimal score function, i.e., sθ(x, i) = ∇x log pi(x), which is trained on an arbitrary
data distribution p0. Consider two sample trajectories {xi}Ni=0 and {x̂i}

Nskip
i=0 where Nskip < N , which are initialized

with distinct distributions: xN ∼ N (0, I) and x̂Nskip ∼ N (0, γ2I). Assuming that {xi}Ni=0 is a bounded process
such that ∥xi∥2 < B (as in Xu et al. (2023)), the expected error between samples from these two trajectories at step
i ∈ {0, . . . , Nskip − 1} is given by:

E[∥xi − x̂i∥22] ≤
2C

1− λ2
+ λ2(Nskip−i)(B2 + γ2d), (108)

where λ denotes the contraction rate:

λ := max
j∈{i+1,...,Nskip}

√
αj

(
1− ᾱj−1

1− ᾱj

)
, (109)

and C := d(1− ᾱNskip).
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Proof. The proof is based on the contraction theorem for discrete stochastic processes (Pham, 2008). However, unlike
the original setup considered in Pham (2008), our focused trajectories start from distinct initial distributions and terminal
timesteps: xN ∼ N (0, I) and x̂Nskip ∼ N (0, γ2I). To address this, we leave out {xi}Ni=Nskip+1 and focus on errors between

{xi}
Nskip
i=0 and {x̂i}

Nskip
i=0 .

Employing Nskip as the terminal timestep, the discrete contraction theorem (i.e., Theorem 1 in Pham (2008)) gives the
following error bound between xi and x̂i at time i ∈ {0, . . . , Nskip − 1}:

E[∥xi − x̂i∥22] ≤
2C

1− λ2
+ λ2(Nskip−i)E[∥xNskip − x̂Nskip∥22]. (110)

where C := d(1− ᾱNskip). Here λ indicates the contraction rate that determines the speed of error-decaying:

λ := max
j∈{i+1,...,Nskip}

√
αj

(
1− ᾱj−1

1− ᾱj

)
, (111)

Next, we upper-bound the terminal error E[∥xNskip − x̂Nskip∥22] as:

E[∥xNskip − x̂Nskip∥22] = E[∥xNskip∥22] + E[∥x̂Nskip∥22] + 2E[xT
Nskip

x̂Nskip ] (112)

= E[∥xNskip∥22] + E[∥x̂Nskip∥22] (113)

≤ B2 + γ2d, (114)

where the second equality is due to the independent initialization x̂Nskip ∼ N (0, γ2I). The inequality comes from the
bounded assumption ∥xi∥2 < B. Now plugging the inequality in Eq. (114) into Eq. (110) yields the desired result:

E[∥xi − x̂i∥22] ≤
2C

1− λ2
+ λ2(Nskip−i)E[∥xNskip − x̂Nskip∥22] (115)

≤ 2C

1− λ2
+ λ2(Nskip−i)(B2 + γ2d). (116)

(117)

This completes the proof.

B.5. Proof of Proposition A.1

Proposition A.1. Consider the same data distribution p0 and the optimal score function sθ(x, t) as Proposition 3.2.
Suppose the PF-ODE in Eq. (19) is initialized with x̂(Tskip) ∼ N (µ̂Tskip

, Σ̂Tskip). Then, the resulting distribution at t = 0 is

given by x̂ODE(0) ∼ N (µ̂0,ODE, Σ̂0,ODE), where

µ̂0,ODE := µ0 +Σ
1/2
0 Σ

−1/2
Tskip

(µ̂Tskip
− µTskip

), (118)

Σ̂0,ODE := Σ0Σ
−1
Tskip

Σ̂Tskip . (119)

Here, µTskip
and ΣTskip are defined as in Eqs. (15) and (16), respectively.

Proof. By Lemma B.1, the score function is given as

∇x log pt(x) = ∇x logN (x|µt,Σt) = −Σ−1
t (x− µt) (120)

such that the PF-ODE is

dx̂t = [− 1
2β(t)x̂t − 1

2β(t)∇ log pt(x̂t)] dt (121)

= [− 1
2β(t)x̂t +

1
2β(t)Σ

−1
t (x̂t − α(t)µ0)] dt (122)

= 1
2β(t)(Σ

−1
t − I)x̂t dt− 1

2β(t)Σ
−1
t µt dt. (123)
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or with change of variables (ŷs, s)← (x̂T−t, T − t),

dŷs = − 1
2β(T − s)(Σ−1

T−s − I)ŷs ds+
1
2β(T − s)Σ−1

T−sµT−s ds (124)

= 1
2α(T − s)β(T − s)Qdiag( α(T−s)(λn−1)

1+α(T−s)2(λn−1) )Q
⊤ŷs ds (125)

+ 1
2α(T − s)β(T − s)Qdiag( 1

1+α(T−s)2(λn−1) )Q
⊤µ0 ds. (126)

Define

ϕ(x; a) = 1
2 log(ax

2 + 1) (127)

such that
dϕ(α(T−s);λn−1)

ds = dϕ(α(T−s);λn−1)
dα(T−s) · dα(T−s)

d(T−s) ·
d(T−s)

ds (128)

= α(T−s)(λn−1)
1+α(T−s)2(λn−1) ·

(
− 1

2β(T − s)α(T − s)
)
· (−1) (129)

= 1
2α(T − s)β(T − s) α(T−s)(λn−1)

1+α(T−s)2(λn−1) . (130)

This motivates the transition matrix

Ψ(s, s0) := Qdiag(eϕ(α(T−s);λn−1)−ϕ(α(T−s0);λn−1))Q⊤ (131)

= Qdiag(

√
(λn−1)α(T−s)2+1√
(λn−1)α(T−s0)2+1

)Q⊤ (132)

= Σ
1/2
T−sΣ

−1/2
T−s0

(133)

with which we can calculate the solution as

ŷs = Ψ(s, 0)ŷ0 +
∫ s

0
1
2Ψ(s, σ)α(T − σ)β(T − σ)Qdiag( 1

1+α(T−σ)2(λn−1) )Q
⊤µ0 dσ (134)

= Σ
1/2
T−sΣ

−1/2
T ŷ0 + µT−s −Σ

1/2
T−sΣ

−1/2
T µT (135)

= µT−s +Σ
1/2
T−sΣ

−1/2
T (ŷ0 − µT ) (136)

where the integral in the first line is calculated as∫ s

0
1
2Ψ(s, σ)α(T − σ)β(T − σ)Qdiag( 1

1+α(T−σ)2(λn−1) )Q
⊤µ0 dσ (137)

= Qdiag(
√
(λn − 1)α(T − s)2 + 1) diag(

∫ s

0
1
2α(T − σ)β(T − σ) 1

(1+α(T−σ)2(λn−1))3/2
dσ)Q⊤µ0 (138)

= Qdiag(
√

(λn − 1)α(T − s)2 + 1) diag(

[
α(T−σ)√

(λn−1)α(T−σ)2+1

]s
0

)Q⊤µ0 (139)

= Qdiag(
√
(λn − 1)α(T − s)2 + 1) diag(

[
α(T−s)√

(λn−1)α(T−s)2+1
− α(T )√

(λn−1)α(T )2+1

]
)Q⊤µ0 (140)

= α(T − s)µ0 − α(T )Σ
1/2
T−sΣ

−1/2
T µ0 (141)

= µT−s −Σ
1/2
T−sΣ

−1/2
T µT . (142)

Setting s = T = Tskip in Eq. (136),

x̂0 = ŷTskip
= µTskip−Tskip

+Σ
1/2
Tskip−Tskip

Σ
−1/2
Tskip

(ŷ0 − µTskip
) (143)

= µ0 +Σ
1/2
0 Σ

−1/2
Tskip

(x̂Tskip − µTskip
) (144)

= µ0 +Σ
1/2
0 Σ

−1/2
Tskip

(E[x̂Tskip ]− µTskip
) +Σ

1/2
0 Σ

−1/2
Tskip

(x̂Tskip − E[x̂Tskip ]). (145)

It follows that if x̂Tskip is Gaussian, x̂0 is also Gaussian with

E[x̂0] = µ0 +Σ
1/2
0 Σ

−1/2
Tskip

(E[x̂Tskip ]− µTskip
), (146)

Cov[x̂0] = Σ0Σ
−1
Tskip

Cov[x̂Tskip ]. (147)

This concludes the proof.
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B.6. Proof of Proposition A.2

Proposition A.2. Assume the same setup as Theorem 3 in Xu et al. (2023), i.e., ∥t∇ log pt(x)∥ ≤ L1 and ∥xt∥ < B/2 for
any xt in the support of pt and reverse-SDE trajectories. Let

xSDE
tmin

= SDE(xtmax
, tmax → tmin), y

SDE
tmin

= SDE(ytmax
, tmax → tmin) (148)

xODE
tmin

= ODE(xtmax
, tmax → tmin), y

ODE
tmin

= ODE(ytmax
, tmax → tmin) (149)

where SDE and ODE denote solutions to the reverse-SDE and PF-ODE, respectively. Then

TV(xODE
tmin

,yODE
tmin

) = TV(xtmax
,ytmax

) (150)

TV(xSDE
tmin

,ySDE
tmin

) ≤
(
1− 2Q

(
B

2
√

α(tmax)−2−α(tmin)−2

)
· e−BL1/tmin−L2

1α(tmax)
−2/t2min

)
TV(xtmax ,ytmax

) (151)

where Q(r) := P(ε ≥ r) for ε ∼ N (0, 1).

Proof. The first equality follows by noting that the total variation distance is invariant under bijective maps due to the data
processing inequality. We now prove the second inequality. Suppose xt follows the reverse SDE, and consider the change of
variables x̄t = xt/α(t). Then, by the Itô formula,

dx̄t = (− 1
2β(t)α(t))(−α(t)

−2)xt dt+ α(t)−1dxt (152)

= (− 1
2β(t)α(t))(−α(t)

−2)xt dt+ α(t)−1([− 1
2β(t)xt − β(t)∇ log pt(xt)] dt+

√
β(t) dw̄t) (153)

= −α(t)−1β(t)∇ log pt(xt) dt+ α(t)−1
√

β(t) dw̄t (154)

= −α(t)−2β(t)∇ log p̄t(x̄t) dt+ α(t)−1
√

β(t) dw̄t (155)

= −(α(t)−2)′∇ log p̄t(x̄t) dt+
√

(α(t)−2)′ dw̄t (156)

where p̄t is the density of xt/α(t) for xt ∼ pt, and we have used the change-of-variables formula of probability density
functions at the fourth line. Next, using the change of time variable t̄ = α(t)−2, we get

dx̄t̄ = −∇ log p̄g−1(t̄)(x̄t̄) dt̄+ dw̄t̄. (157)

Then following an analogous process as the proof of Lemma 5 in Xu et al. (2023), we obtain the inequality

TV(x̄t̄min
, ȳt̄min

) ≤
(
1− 2Q

(
B

2
√

t̄max−t̄min

)
· e−BL1/tmin−L2

1 t̄max/t
2
min

)
TV(x̄t̄max

, ȳt̄max
) (158)

where t̄min = α(tmin)
−2, t̄max = α(tmax)

−2. Since the map ys 7→ yα(s)2/α(s) is bijective, we again have

TV(x̄t̄min
, ȳt̄min

) = TV(xtmin ,ytmin
), (159)

TV(x̄t̄max
, ȳt̄max

) = TV(xtmax ,ytmax
), (160)

by the data processing inequality. Plugging this relation into Eq. (158) yields the contraction result for the reverse SDE.

C. Implementation Details
Pretrained models. The pretrained model for CelebA was constructed by ourselves by following the settings in Um et al.
(2023). The models for LSUN-Bedrooms and ImageNet were taken from the checkpoints given by Dhariwal & Nichol
(2021). For the results on ImageNet 256× 256. we respect the approaches in Sehwag et al. (2022); Um et al. (2023); Um &
Ye (2024b) and leverage the upscaling model developed in Dhariwal & Nichol (2021).

Baselines. The BigGAN model is based upon the same architecture used in Choi et al. (2020)3, and we follow the training
setup outlined in the official project page of BigGAN4. The StyleGAN results were obtained via the pretrained model

3https://github.com/ermongroup/fairgen
4https://github.com/ajbrock/BigGAN-PyTorch
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offered by Karras et al. (2019)5. The ADM (Dhariwal & Nichol, 2021) baselines used in our experiments employed the
same pretrained models as those used in our framework, which is provided in the authors’ codebase6. The results of
LDM (Rombach et al., 2022) were obtained from the checkpoint offered by Rombach et al. (2022)7. For the EDM (Karras
et al., 2022) baseline, we used the checkpoint given in the official project page of (Karras et al., 2022)8. The DiT (Peebles &
Xie, 2022) baseline employed the pretrained model provided in the official code repository9. The authors of CADS (Sadat
et al., 2023) do not provide the official codebase, so we implemented by ourselves based upon the pseudocode provided in
the manuscript (Sadat et al., 2023).

The implementation of Sehwag et al. (2022) is based upon the descriptions provided in their original paper, employing the
same pretrained models as ours (i.e., the ADM checkpoints (Dhariwal & Nichol, 2021)). Specifically on CelebA, we created
an out-of-distribution (OOD) classifier to distinguish whether an input belongs to CelebA or other datasets (e.g., ImageNet).
We then incorporated the negative log-likelihood gradient of the classifier (targeting the in-distribution class) into ancestral
sampling to yield low-density guidance. For implementing Um et al. (2023), we followed the settings described in their
paper for all datasets under consideration. Specifically, using the same ADM pretrained models as ours, we applied U-Net
encoders for minority classifiers and utilized the entire training set to build the classifiers, except for the minority predictor
on LSUN-Bedrooms, where only 10% of the training set was used. For the ImageNet 256× 256 results of Um et al. (2023),
we used the upscaling model (Dhariwal & Nichol, 2021) as described in Um et al. (2023).

In the additional CelebA baseline with classifier guidance targeting minority annotations (i.e., ADM-ML in Table 1), we
respected the same settings outlined in Um et al. (2023); Um & Ye (2024b). In particular, the classifier was trained to
predict four minority attributes: (i) “Bald”; (ii) “Eyeglasses”; (iii) “Mustache”; (iv) “Wearing Hat”. During inference, we
generated samples by combining random selections of these four attributes (e.g., bald but not wearing glasses) using the
classifier guidance. The backbone model for ADM-ML was the same as ours. The results of Um & Ye (2024b) is based
upon their the official codebase10, respecting their recommended settings reported in the original paper (Um & Ye, 2024b).
The temperature sampling results were obtained from the method proposed in (Dhariwal & Nichol, 2021) (in Section G),
i.e., by using a τ -scaled score model sθ(x, t)/τ with τ = 1.01.

Evaluation metrics. To compute the Local Outlier Factor (LOF) (Breunig et al., 2000) for the generated samples, we used
the PyOD implementation (Zhao et al., 2019)11. The number of nearest neighbors for calculating AvgkNN and LOF was set
to 5 and 20, respectively, as these are commonly used values in practice. Following the approach in Sehwag et al. (2022);
Um et al. (2023), both AvgkNN and LOF were computed in the feature space of ResNet-50. The Rarity Score (Han et al.,
2022) was computed with k = 5 using the implementation available on the official project page12.

Clean Fréchet Inception Distance (cFID) (Parmar et al., 2022) was evaluated using the official implementation13. Spatial FID
(sFID) (Nash et al., 2021) was computed based on the official PyTorch FID code (Heusel et al., 2017)14 with modifications
to utilize spatial features (i.e., the first 7 channels from the intermediate mixed 6/conv feature maps), rather than the
standard pool 3 inception features. The results for Improved Precision & Recall (Kynkäänniemi et al., 2019) were obtained
with k = 5 using the official codebase from Han et al. (2022). To evaluate the proximity to low-likelihood instances at
the data tail, we used the least probable instances as baseline real data for computing the quality metrics. Specifically for
CelebA, we selected the 10,000 real samples with the highest AvgkNN values. For LSUN-Bedrooms and ImageNet, we
used the most unique 50,000 samples, which had the highest AvgkNN values, as baseline real data. All quality and diversity
metrics were computed using 30,000 generated samples.

Hyperparameters. Our hyperparameter selection (γ,∆t) followed a two-step approach: first, we determined an appropriate
∆t that ensures a non-negligible α(Tskip) (where Tskip := T − ∆t), and then we performed a grid search to select γ.
We empirically found that our framework is not that sensitive to the choice of ∆t, and in practice, setting ∆t such that
α(Tskip) > 0.01 generally yields strong performance on low-resolution datasets (e.g., CelebA and ImageNet 64× 64). For

5https://github.com/NVlabs/stylegan
6https://github.com/openai/guided-diffusion
7https://github.com/CompVis/latent-diffusion
8https://github.com/NVlabs/edm
9https://github.com/facebookresearch/DiT

10https://github.com/soobin-um/sg-minority
11https://pyod.readthedocs.io/en/latest/
12https://github.com/hichoe95/Rarity-Score
13https://github.com/GaParmar/clean-fid
14https://github.com/mseitzer/pytorch-fid
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high-resolution benchmarks (e.g., LSUN-Bedrooms), a lower threshold of α(Tskip) > 0.005 was sufficient, as these datasets
are more sensitive to noise intensity (Nichol & Dhariwal, 2021).

For CelebA, we conducted a grid search over γ2 = {4.0, 8.0, 12.0, 16.0, 18.0, 20.0}, while for LSUN-Bedrooms, we
searched over γ2 = {2.0, 4.0, 6.0, 7.0, 7.5, 8.0}. For the ImageNet results, the search was performed over γ2 =
{2.0, 4.0, 6.0, 6.5, 7.0, 8.0}. Based on this, we selected the following final values: (i) (γ2,∆t) = (18.0, 3) for CelebA; (ii)
(γ2,∆t) = (7.5, 0) for LSUN-Bedrooms; and (iii) (γ2,∆t) = (6.5, 3) for the ImageNet cases.

We employed a global setting of 250 timesteps for sampling across all diffusion-based samplers, including both the baseline
methods and our approach. For empirical analyses, such as the ablation studies, we reduced the number of timesteps to 100
for efficiency.

Other details. Our implementation is based on PyTorch (Paszke et al., 2019), and experiments were performed on twin
NVIDIA A100 GPUs. Code is available at https://github.com/soobin-um/BnS.

D. Additional Experimental Results
D.1. Neighborhood distance distributions

Figure 7 illustrates neighborhood metric results compared on our interested four benchmarks. Observe that for all three
metrics, our approach performs consistently well, rivaling to computationally intensive guided minority samplers like Um &
Ye (2024b). This highlight the practical significance of Boost-and-Skip, which can achieve great performance improvements
in promoting minority features with significantly less computations.

D.2. Additional generated samples

To facilitate a more comprehensive qualitative comparison among the samplers, we present an extensive set of generated
samples across all considered datasets. See Figures 8-11 for details. Observe that samples generated by our approach tend to
capture unique dataset features, comparable to those produced by guided sampling techniques. This further highlights the
key advantage of our method – achieving strong minority generation performance with significantly lower computational
costs than existing guidance-based approaches (Sehwag et al., 2022; Um et al., 2023; Um & Ye, 2024b).

24

https://github.com/soobin-um/BnS


Boost-and-Skip: A Simple Guidance-Free Diffusion for Minority Generation

Figure 7: Comparison of neighborhood density distributions across four benchmarks. (Top row) CelebA 64 × 64.
(Second row) LSUN-Bedrooms 256×256. (Third row) ImageNet 64×64. (Fourth row) ImageNet 256×256. “AvgkNN”
refers to Average k-Nearest Neighbor, and “LOF” is Local Outlier Factor (Breunig et al., 2000). “Rarity Score” indicates a
low-density metric proposed by Han et al. (2022). The higher values, the less likely samples for all three measures.
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(a) ADM (Dhariwal & Nichol, 2021) (b) Um & Ye (2024b) (c) Boost-and-Skip (ours)

Figure 8: Samples comparison on CelebA 64× 64.
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(a) ADM (Dhariwal & Nichol, 2021) (b) Um et al. (2023) (c) Boost-and-Skip (ours)

Figure 9: Samples comparison on LSUN-Bedrooms 256× 256.
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(a) ADM (Dhariwal & Nichol, 2021) (b) Sehwag et al. (2022) (c) Boost-and-Skip (ours)

Figure 10: Samples comparison on ImageNet 64×64. Generated samples from five classes are exhibited: (i) “Siberian husky”
(top row); (ii) “water tower” (second row); (iii) “street sign” (third row); (iv) “ice cream” (fourth row); (v) “cheeseburger”
(bottom row).
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(a) ADM (Dhariwal & Nichol, 2021) (b) Temperature sampling (c) Boost-and-Skip (ours)

Figure 11: Samples comparison on ImageNet 256× 256. Generated samples from five classes are exhibited: (i) “hamster”
(top row); (ii) “zebra” (second row); (iii) “space shuttle” (third row); (iv) “valley” (fourth row); (v) “volcano” (bottom row).
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