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Abstract

Conformal prediction is a powerful distribution-
free framework for constructing prediction sets
with coverage guarantees. Classical methods,
such as split conformal prediction, provide
marginal coverage, ensuring that the prediction
set contains the label of a random test point
with a target probability. However, these
guarantees may not hold uniformly across
different subpopulations, leading to disparities
in coverage. Prior work has explored coverage
guarantees conditioned on events related to
the covariates and label of the test point.
We present Kandinsky conformal prediction,
a framework that significantly expands the
scope of conditional coverage guarantees. In
contrast to Mondrian conformal prediction, which
restricts its coverage guarantees to disjoint
groups—reminiscent of the rigid, structured
grids of Piet Mondrian’s art—our framework
flexibly handles overlapping and fractional group
memberships defined jointly on covariates and
labels, reflecting the layered, intersecting forms
in Wassily Kandinsky’s compositions. Our
algorithm unifies and extends existing methods,
encompassing covariate-based group conditional,
class conditional, and Mondrian conformal
prediction as special cases, while achieving a
minimax-optimal high-probability conditional
coverage bound. Finally, we demonstrate the
practicality of our approach through empirical
evaluation on real-world datasets.
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1. Introduction
Conformal prediction (Vovk et al., 2005; Lei & Wasserman,
2014; Papadopoulos et al., 2002b) is a framework
for constructing prediction sets with formal coverage
guarantees. Given a predictor f : X → Y and n samples
{(Xi, Yi)}i∈[n] from a distribution D, the goal is to build a
prediction set function C that, for a given covariate vector
Xn+1, outputs a subset of Y guaranteed to include the
true label Y with a target probability. Ideally, the size of
C(Xn+1) reflects the uncertainty in f(Xn+1).

A common coverage guarantee, termed as training
conditional validity (Vovk, 2012), requires that for any f
the training algorithm returns a (potentially randomized)
prediction set function C such that, with probability 1− δ
over the draws of the calibration dataset {(Xi, Yi)}i∈[n], the
following holds:

P
[
Yn+1 ∈ C(Xn+1) | {(Xi, Yi)}i∈[n]

]
≈ 1− α, (1)

for some α and δ in (0, 1). This guarantee ensures coverage
on average over random test samples (Xn+1, Yn+1) drawn
from D. A weaker guarantee, called the marginal coverage
guarantee, requires that P [Yn+1 ∈ C(Xn+1)] ≈ 1 − α,
where the probability is taken over all n+ 1 points (Vovk
et al., 2005; Gibbs et al., 2023). However, a limitation of
such average coverage guarantees is that the prediction sets
might undercover certain values of (Xn+1, Yn+1) while
overcovering others. A potential solution is to require
(1−α)-coverage conditioning on the value of (Xn+1, Yn+1).
Unfortunately, we generally cannot obtain non-trivial
prediction sets that satisfy such pointwise coverage (Vovk,
2012; Lei & Wasserman, 2014; Barber et al., 2021).

However, various types of conditional coverage guarantees
can still be achieved. For instance, Mondrian conformal
prediction (Vovk et al., 2003) ensures the (1− α)-coverage
guarantees over a disjoint set of subgroups G defined over
both the covariate Xn+1 and the label Yn+1. The method
is named after Piet Mondrian, as its partitioning the space
X ×Y into a finite set of non-overlapping groups G mirrors
Mondrian’s iconic compositions of disjoint rectangles (see
Figure 1). Class-conditional conformal prediction (for
classification) (Löfström et al., 2015; Ding et al., 2023)
can be viewed as a special case of Mondrian conformal
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Figure 1: Composition with Red, Blue and Yellow, Piet
Mondrian, 1930, Kunsthaus Zurich

Figure 2: Circles in a Circle, Wassily Kandinsky, 1923,
Philadelphia Museum of Art

prediction, where each label defines a distinct group.

Yet, the disjoint group assumption in Mondrian conformal
prediction has notable limitations, as real-world subpopula-
tions of interest often overlap. This is particularly relevant in
algorithmic fairness, where protected subgroups–typically
defined by combinations of demographic attributes such as
race and gender—naturally intersect (Kearns et al., 2018;
Hébert-Johnson et al., 2018). An alternative line of research
addresses this challenge by developing conditional coverage
guarantees for overlapping groups (Jung et al., 2023; Gibbs
et al., 2023). However, both of their results restrict the group
functions to depend solely on the covariate vector Xn+1.

In this paper, we expand the scope of conditional coverage
guarantees by achieving the best of both worlds from
these two lines of prior work. Building on Gibbs et al.
(2023); Jung et al. (2023), we provide coverage guarantees
for overlapping groups while, in the spirit of Mondrian
conformal prediction (Vovk et al., 2003), allowing grouping
functions to depend jointly on both the covariates Xn+1

and the label Yn+1. More generally, our guarantees hold
for fractional groups, where membership is defined as a
probabilistic function over Xn+1 and Yn+1. This added
flexibility enables the modeling of subgroups based on
protected attributes that are not explicitly observed but
can be inferred through covariates and labels (Romano
et al., 2020a). We name our method Kandinsky Conformal
Prediction1, drawing inspiration from Wassily Kandinsky’s
compositions of overlapping geometric forms (see Figure 2),
as we provide conditional coverage guarantees for groups
that are flexible, overlapping, and probabilistic.

1We note that the name Kandinsky Conformal Prediction
coincides with that of an unrelated conformal prediction method
for image segmentation (Brunekreef et al., 2024), which balances
pixel-level and image-level calibration. Our technique instead
focuses on conditional guarantees of general conformal prediction.

Similar to Gibbs et al. (2023), our conditional guarantee
can be leveraged to obtain valid coverage guarantees under
distribution shift, provided that the density ratio between
the test and calibration distributions is captured by one of
the group functions we consider. While Gibbs et al. (2023)
is limited to handling covariate shift—since their group
functions depend solely on X —our approach extends to a
broader class of distribution shifts affecting both X and Y .

Our algorithm is computationally efficient, which relies on
solving a linear quantile regression over the vector space
spanned by a set of group functions G. Similar to Jung
et al. (2023), it preserves the key advantage of requiring
only a single quantile regression model that can be applied
to all test examples, rather than needing to solve a separate
regression for each instance as in Gibbs et al. (2023).
We show that our method achieves a high-probability
conditional coverage error rate of O(n

−1/2
G ), where nG is

the number of samples per group on average, matching
the minimax-optimal rate (Areces et al., 2024). In the
special case where group functions only depend on the
covariates, our bound significantly improves the Õ(n

−1/4
G )

coverage error bound in Roth (2022); Jung et al. (2023) in
its dependence on nG , and sharpens the dependence on |G|
when compared to the O(n

−1/2
G (1 + |G|1/2n−1/2

G )) bound
in Areces et al. (2024).

To complement our main algorithm, which ensures
training-conditional validity, we also provide a test-time
inference algorithm that obtains expected marginal coverage
that also takes randomness over the draws on calibration
data. By extending Gibbs et al. (2023)’s approach to
accommodate group functions defined over both covariates
and labels, we obtain an expected coverage error bound
of O(n−1

G ). However, this result comes at the cost of
computational efficiency, as the algorithm needs to perform
test-time inference that solves an instance of quantile
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regression for every new test example.

Our contribution can be summarized as follows.

1. We study the most general formulation of group-
conditional coverage guarantees in conformal prediction,
handling overlapping groups and fractional group
memberships that are defined jointly by covariates and
labels. This conditional guarantee can be used to obtain
valid coverage under general subpopulation distribution
shifts.

2. We propose Kandinsky Conformal Prediction, a method
that is both computationally efficient and statistically
optimal. Computationally, it requires solving a single
quantile regression over the vector space spanned
by group functions. Statistically, it attains the
minimax-optimal group-conditional coverage error with
finite samples.

3. We evaluate our algorithm on real-world tasks, including
income prediction and toxic comment detection. Our
results show that Kandinsky Conformal Prediction
consistently achieves the best-calibrated conditional
coverage while scaling effectively with the number of
groups.

1.1. Related Work

The literature on conformal prediction is vast, covering a
range of coverage guarantees, methods, and applications.
Several textbooks and surveys provide in-depth discussions
(Vovk et al., 2005; Shafer & Vovk, 2008; Balasubramanian
et al., 2014; Angelopoulos et al., 2024). A classical method
is split conformal prediction (Papadopoulos et al., 2002a;
Lei et al., 2018), which ensures marginal coverage. A
major advantage of conformal prediction is that the coverage
guarantees hold regardless of the choice of non-conformity
score functions. Meanwhile, another line of research
explores specialized non-conformity scores for specific
tasks, such as regression (Lei et al., 2013; Romano et al.,
2019; Izbicki et al., 2020) and classification (Sadinle et al.,
2019; Angelopoulos et al., 2020; Romano et al., 2020b).

Our work is closely related to the growing body of
work on conformal prediction that establishes coverage
guarantees conditioned on events involving the test
example (Xn+1, Yn+1). A fundamental class of such
events corresponds to disjoint subgroups. For instance,
Mondrian conformal prediction (Vovk et al., 2003) partitions
the space X × Y into disjoint regions, encompassing
class-conditional (Löfström et al., 2015; Ding et al., 2023)
and sensitive-covariate-conditional (Romano et al., 2020a)
conformal prediction as special cases.

We introduce Kandinsky Conformal Prediction as an
extension of the Mondrian approach, providing coverage

guarantees for overlapping group structures. Prior work on
overlapping group-conditional coverage primarily considers
groups defined solely by covariates Xn+1. Barber et al.
(2021) addresses this by assigning the most conservative
prediction set to points in multiple groups. Our algorithm
builds on the quantile regression techniques of Jung et al.
(2023) and Gibbs et al. (2023), which compute per-example
thresholds on non-conformity scores. Blot et al. (2024)
extends Gibbs et al. (2023)’s technique to include group
membership functions depending on both the label and the
covariate, and they establish a one-sided marginal coverage
bound. We further provide two-sided training conditional
bounds with a different algorithm. Additionally, Areces
et al. (2024) establishes a lower bound on group-conditional
coverage error rates. Since we generalize to group functions
that depend on both covariates and labels, their bound
applies to our setting and shows that our error rate is
minimax-optimal.

Thematically, our work is related to a long line of work in
multi-group fairness (Kearns et al., 2018; Hébert-Johnson
et al., 2018; Kearns et al., 2019). In particular, our algorithm
can be seen as predicting a target quantile conditioned on
covariates and labels while satisfying the multiaccuracy
criterion (Kim et al., 2019; Roth, 2022).

Finally, our work advances the study of conformal
prediction under distribution shifts between calibration and
test data. Existing research largely focuses on specific cases,
such as covariate shift (Tibshirani et al., 2019; Qiu et al.,
2023; Yang et al., 2024; Pournaderi & Xiang, 2024) or
label shift (Podkopaev & Ramdas, 2021). Plassier et al.
(2024) considers general shifts on both the covariate and
label distributions. However, all of these approaches are
designed for a single target distribution. By introducing a
more general class of group functions that depend jointly on
covariates and labels, we establish coverage guarantees that
remain valid under broader distribution shifts over X × Y ,
including multiple potential target distributions.

2. Preliminaries
We consider prediction tasks over X × Y , where X
represents the covariate domain and Y represents the label
domain. Y can be either finite for classification tasks or
infinite for regression tasks. Unless stated otherwise, we
assume that the observed data is drawn from a distribution D,
defined over X × Y . We consider potentially randomized
prediction set functions, denoted by C(X; ε), where the
randomness is introduced by a random variable ε that
is independent of (X,Y ). We further assume that the
randomness of the conformal prediction algorithm depends
on n independent random variables εi that are independent
of the dataset {(Xi, Yi)}i∈[n].
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Let (1− α) be the target coverage level, where α ∈ (0, 1).
We can now restate the definition of training conditional
validity to account for the randomness of the algorithm
and the prediction set function. Specifically, this requires
that for any f the training algorithm returns a (potentially
randomized) prediction set function C such that, with
probability 1− δ over the draws of the calibration dataset
{(Xi, Yi)}i∈[n] and the randomness of the conformal
prediction algorithm, captured by {εi}i∈[n], the following
holds:

P
[
Yn+1 ∈ C(Xn+1; εn+1) | {(Xi, Yi, εi)}i∈[n]

]
≈ 1− α,

(2)
for some δ in (0, 1).

We use weight functions w : X × Y → R to model our
conditional coverage guarantees. For any weight function
w, we measure the error of a fixed prediction set function C
by its weighted coverage deviation:

wCD(C, α, w) := E[w(X,Y )(1{Y ∈ C(X; ε)} − (1− α))],

where the expectation is taken over the test point (X,Y ),
drawn from D, and ε, the internal randomness of C.

Many conformal prediction methods require calculating
quantiles of a distribution.

Definition 2.1 (Quantile). Given a distribution P defined
on R, for any τ ∈ [0, 1] the τ -quantile of the distribution P ,
denoted q, is defined as

q = inf{x ∈ R : PX∼P [X ≤ x] ≥ τ}.

Our more general framework performs quantile regression
by solving a pinball loss minimization problem. By
Lemma 2.3, in the special case where we compute the largest
value in R that minimizes the sum of pinball losses over a
set of points, we obtain a (1− α) quantile of the set.

Definition 2.2 (Pinball Loss). For a given target quantile
1 − α, where α ∈ [0, 1], predicted value θ ∈ R and score
s ∈ R, the pinball loss is defined as

ℓα(θ, s) :=

{
(1− α)(s− θ), if s ≥ θ,

α(θ − s), if s < θ.

Lemma 2.3 ((Koenker & Bassett, 1978)). Let α be a
parameter in (0, 1), and let {si}i∈[n] be a set of n points,
where for all i ∈ [n], si ∈ R. Then, the largest θ∗ ∈ R such
that

θ∗ ∈ argmin
θ∈R

∑
i∈[n]

ℓα(θ, si)

is a (1− α)-quantile of {si}i∈[n].

3. Kandinsky Conformal Prediction
In this section, we describe the components of the Kandinsky
conformal prediction framework. We will first present our
method by extending the conditional conformal prediction
algorithm by Jung et al. (2023) to work with classes of
finite-dimensional weight functions of the form W =
{Φ(·)Tβ : β ∈ Rd}, where Φ : X × Y → R is a basis
that is defined according to the desired coverage guarantee.
After presenting our main result, we will demonstrate how
this conformal prediction method can be tailored to different
applications. The detailed proofs of our results from this
section are in Appendix A.1.

Given a coverage parameter α ∈ (0, 1), a predictor f :
X → Y , and a calibration dataset of n examples D =
{(Xi, Yi)}i∈[n], drawn independently from a distribution
D, the objective of Kandinsky conformal prediction is to
construct a (possibly randomized) prediction set function
C(·) such that, with high probability over the calibration
dataset D and the randomness of the method that constructs
C, for every w ∈ W

wCD(C, α, w) ≈ 0.

Given the predictor f , we use a non-conformity score
function S : X × Y → R to measure how close the
prediction f(x) is to the label y for any data point (x, y) ∈
X ×Y . As is common in conformal prediction, our method
ensures the desirable coverage for any score function S.
However, in our more general framework, we allow for
the use of a randomized score function to break potential
ties in quantile regression, while keeping the assumptions
about distribution D minimal. We implement this through
a randomized score function S̃ : X × Y × R → R that
takes as input the covariates, labels and some random noise
ε ∈ R.

Our method consists of two steps: one is performed during
training, and the other at test time. Similar to Jung et al.
(2023), the first step is a quantile regression on the scores of
the n data points in the calibration dataset, {S(Xi, Yi)}i∈[n].
For randomized score functions, we work with the set of
randomized scores {S̃(Xi, Yi, εi)}i∈[n], where for every
point i, εi is drawn independently from a distribution Drn.
In Algorithm 1, we compute a (1− α)-“quantile function”
q̂. This q̂ is a weight function from W that minimizes
the average pinball loss of the n (randomized) scores with
parameter α.

At test time, we run the second step that constructs the
prediction set for a given point with covariates Xn+1. For
a fixed estimated quantile function q̂, the prediction set
produced by Algorithm 2 includes all labels y ∈ Y whose
(randomized) score (with noise εn+1 drawn from Drn) is at
most q̂(Xn+1, y). For more details about the computation
of Algorithm 2 see Appendix A.3.
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Algorithm 1 Quantile Regression of Kandinsky CP

Input: {(Xi, Yi)}i∈[n], W , and S̃
1: For all i ∈ [n] draw εi independently from Drn.
2: Find

q̂ ∈ arg min
w∈W

1

n

n∑
i=1

ℓα(w(Xi, Yi), S̃(Xi, Yi, εi)).

Return: Quantile function q̂

Algorithm 2 Prediction Set Function of Kandinsky CP

Input: Xn+1, q̂, and S̃

1: Draw εn+1 independently from Drn.
2: Set C(Xn+1; εn+1) ={

y : S̃(Xn+1, y, εn+1) ≤ q̂(Xn+1, y)
}
.

Return: C(Xn+1; εn+1)

Our main result is stated in Theorem 3.1, where we
prove that, under the assumption that the distribution of
the randomized score S̃ conditioned on the value of the
basis Φ is continuous, the weighted coverage deviation
of C converges to zero with high probability at a rate of
O(
√
d/n + d/n), where d is the dimension of Φ. When

the distribution of S(X,Y ) | Φ(X,Y ) is continuous, this
theorem holds for the deterministic score function S, since
setting S̃(x, y, ε) = S(x, y) satisfies the assumptions.

Theorem 3.1. Let parameters α, δ ∈ (0, 1), and W =
{Φ(·)Tβ : β ∈ Rd} denote a class of linear weight
functions over a bounded basis Φ : X × Y → Rd.
Without loss of generality, assume ∥Φ(x, y)∥∞ ≤ 1 for
all x, y. Assume that the data {(Xi, Yi)}i∈[n] are drawn
i.i.d. from a distribution D, {εi}i∈[n] are drawn i.i.d. from
a distribution Drn, independently from the dataset, and the
distribution of S̃ (X,Y, ε) | Φ(X,Y ) is continuous. There
exists an absolute constant C such that, with probability at
least 1− δ over the randomness of the calibration dataset
{(Xi, Yi)}i∈[n] and the noise {εi}i∈[n], the (randomized)
prediction set C given by Algorithms 1 and 2 satisfies, for
every wβ = Φ(·)Tβ,

|wCD(C, α, wβ)| ≤

∥β∥1

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n

)
.

As a sketch of the proof, we first establish a connection
between the subgradient of the empirical pinball loss and the
empirical weighted coverage. We then prove a concentration
result for the weighted coverage. In contrast, Roth (2022);

Jung et al. (2023) derive concentration results directly for
the pinball loss, which leads to a slower convergence rate of
O((d log n/n)1/4).

As a corollary of Theorem 3.1, we derive a bound on the
expected coverage deviation of C, with the expectation taken
over the randomness of the calibration dataset and the noise
in the randomized scores.
Corollary 3.2. Let α, δ,W, wβ be specified as in
Theorem 3.1 and consider the same assumptions on
{(Xi, Yi, εi)}i∈[n], S̃, and Φ in Theorem 3.1. Then, there
exists an absolute constant C such that the (randomized)
prediction set C, given by Algorithms 1 and 2, satisfies

ED,E

[
sup

wβ∈W

wCD(C, α, wβ)

∥β∥1

]
≤ C

√
d

n
+

d

n
,

where D is the calibration dataset {(Xi, Yi)}i∈[n] and E is
the corresponding noise {εi}i∈[n].

Weight Functions Defined on the Covariates Areces
et al. (2024) show that when the covariate-based weight
class W contains a class of binary functions with VC
dimension d, equal to the dimension of the basis Φ, then
the convergence rate of the expected coverage deviation is
at least O(

√
dα(1− α)/n). This means that for n > d,

the rate in Corollary 3.2 is asymptotically optimal. In
Appendix A.2 we compare our upper bounds with prior
work.

3.1. Applications

Kandinsky conformal prediction is a general framework
that can be specialized to obtain several types of weighted
or conditional conformal prediction. The choice of the
appropriate basis Φ and, consequently, the weight function
class W depends on the desired coverage guarantee. In
this subsection, we explore how Kandinsky conformal
prediction can be applied to several scenarios, including
group-conditional conformal prediction, Mondrian confor-
mal prediction, group-conditional conformal prediction with
fractional group membership, and conformal prediction
under distribution shift.

Group-Conditional Conformal Prediction Suppose we
want to achieve the target coverage (1− α) for every group
of points G ⊂ X × Y within a finite set of potentially
overlapping groups G. Let πG(C) be the probability that the
true label is included in a fixed prediction set C, conditioned
on the datapoint (Xn+1, Yn+1) belonging to some group G.
Formally, with the calibration dataset D = {(Xi, Yi)}i∈[n]

and the corresponding noise E = {εi}i∈[n], let

πG(C) :=
P[Yn+1 ∈ C(Xn+1; εn+1) | D,E, (Xn+1, Yn+1) ∈ G].
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We want to ensure that for every G ∈ G, πG(C) ≈ 1 − α.
Here we can define Φ to be a |G|-dimensional vector that
has an entry 1{(x, y) ∈ G} for every G ∈ G. Corollary 3.3
provides the rate at which πG(C) converges to (1−α), when
C is constructed by Algorithms 1 and 2. For conciseness,
we define πG := P[(Xn+1, Yn+1) ∈ G].
Corollary 3.3. Let parameters α, δ ∈ (0, 1), and W =
{
∑

G∈G βG1{(x, y) ∈ G} : βG ∈ R,∀G ∈ G}. Assume
{(Xi, Yi, εi)}i∈[n+1] are i.i.d. samples. Under the same
assumptions on S̃ and Φ in Theorem 3.1, there exists an
absolute constant C such that, with probability at least
1 − δ over the randomness of the calibration dataset
{(Xi, Yi)}i∈[n] and the noise {εi}i∈[n], the (randomized)
prediction set C given by Algorithms 1 and 2 satisfies, for
all G ∈ G,

|πG(C)− (1− α)| ≤

1

πG

(
C

√
|G|
n

+
|G|
n

+max{α, 1− α}
√

2 ln(4|G|/δ)
n

)
.

Mondrian Conformal Prediction A special case of
group-conditional conformal prediction is Mondrian
conformal prediction, where groups in G are disjoint and
form a partition of the domain X × Y . Since each (Xi, Yi)
in the calibration dataset belongs to exactly one group in G,
we can verify that Algorithm 1 computes a value βG ∈ R
for every group G independently. By Lemma 2.3, for
every G ∈ G, if βG is the largest value that minimized
the pinball loss, then it is a (1−α)-quantile of the scores of
the calibration datapoints that belong to G. As a result, for a
test point Xn+1, we construct the prediction set C(Xn+1) by
including every y where the score S̃(Xn+1, y, ε) is at most
the quantile βG corresponding to the group G that contains
(Xn+1, y). This method is the same as the one presented in
(Vovk et al., 2003), with the difference that in that method,
the quantiles are slightly adjusted to achieve the expected
marginal coverage guarantee through exchangeability.

Fractional Group Membership In some cases, we are
concerned with the conditional coverage in groups defined
by unobserved attributes. Let Z be the domain of these
unobserved attributes, and let D′, defined over X × Y × Z ,
be the joint distribution of the covariates, the label, and the
unobserved attributes. In this setting, G is a set of groups
defined as subsets of Z . Let

πZ
G(C) := P[Yn+1 ∈ C(Xn+1; εn+1) | D,E,Zn+1 ∈ G].

Then, we want to ensure that πZ
G(C) ≈ 1 − α for every

G ∈ G. To achieve this, we set the basis of the weight
function class as the probability of Z ∈ G given a statistic
ϕ(X,Y ). For every G ∈ G,

ΦG(x, y) = P[Z ∈ G | ϕ(X,Y ) = ϕ(x, y)]. (3)

The simplest example of the statistic ϕ is ϕXY(X,Y ) =
(X,Y ). In practice, if a pretrained Φ is not available, we
may use the protected attributes Z in calibration data to
estimate the probabilities in Φ. In some cases, we may only
have indirect access to the covariates through the pretrained
predictor f(X). Then, we can construct the statistic as
ϕFY(X,Y ) = (f(X), Y ). In general, Corollary 3.4 shows
that our algorithm ensures group conditional coverage if ϕ is
a sufficient statistic for the score function, which is satisfied
by both ϕXY, ϕFY.

For our theoretical result, we assume that we already
know these conditional probabilities, ΦG(x, y), for all
G ∈ G, and that the calibration and the test data do not
include unobserved attributes. Corollary 3.4 shows that
by constructing C according to Algorithms 1 and 2, the
coverage converges to (1 − α) at an O(

√
|G|/n + |G|/n)

rate. For brevity, we define πZ
G := P[Zn+1 ∈ G].

Corollary 3.4. Let α, δ ∈ (0, 1), ϕ(X,Y ) be a sufficient
statistic for S̃, such that S̃ is conditionally independent of
X,Y given ϕ, and W = {

∑
G∈G βGΦG : βG ∈ R,∀ G ∈

G}. Assume {(Xi, Yi, εi)}i∈[n+1] are i.i.d. samples. Under
the same assumptions on S̃ and Φ in Theorem 3.1, there
exists an absolute constant C such that, with probability at
least 1− δ over the randomness of the calibration dataset
{(Xi, Yi)}i∈[n] and the noise {εi}i∈[n], the (randomized)
prediction set C given by Algorithms 1 and 2 satisfies, for
all G ∈ G,∣∣πZ

G(C)− (1− α)
∣∣ ≤

1

πZ
G

(
C

√
|G|
n

+
|G|
n

+max{α, 1− α}
√

2 ln(4|G|/δ)
n

)
.

Distribution Shifts Kandinsky conformal prediction can
also ensure the target coverage under a class of distribution
shifts, where the joint distribution over both the covariates
and the labels can change. In this context, we assume
that the calibration dataset {(Xi, Yi)}i∈[n] is sampled i.i.d.
from a source distribution D, while the test example
(Xn+1, Yn+1) may be drawn independently from another
distribution DT . The objective is to construct a prediction
set that satisfies

PDT
[Yn+1 ∈ C(Xn+1; εn+1) | {Xi, Yi, εi}i∈[n]] ≈ 1− α,

for a set of test distributions DT . Given a weight function
class W , Corollary 3.5 states that we can achieve the
desired coverage for all distribution shifts DT with its
Radon-Nikodym derivative dPDT

dPD
(x, y) contained in W .

Corollary 3.5. Let α and δ be parameters in (0, 1), and
W = {Φ(·)Tβ : β ∈ Rd} denote a class of linear weight
functions over a bounded basis Φ : X × Y → Rd. Under
the same assumptions on {(Xi, Yi, εi)}i∈[n], S̃, and Φ in
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Theorem 3.1, there exists an absolute constant C such
that, for every distribution DT such that dPDT

dPD
∈ W and∣∣∣dPDT

dPD
(x, y)

∣∣∣ ≤ B for any x ∈ X and y ∈ Y , with
probability at least 1 − δ over the randomness of the
calibration dataset {(Xi, Yi)}i∈[n] and the noise {εi}i∈[n],
the (randomized) prediction set C, given by Algorithms 1
and 2, satisfies

|P[Yn+1 ∈ C(Xn+1; εn+1) | {Xi, Yi, εi}i∈[n]]− (1− α)|

≤ B

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4/δ)

n

)
,

where (Xn+1, Yn+1) are drawn independently from the
distribution DT, and εn+1 are drawn independently from
the distribution Drn.

4. Test-time Quantile Regression
In this section, we explore an alternative quantile regression-
based algorithm that extends the method proposed in (Gibbs
et al., 2023) to weight function classes over X × Y . This
method, detailed in Algorithm 3, is more complicated than
Algorithms 1, 2 and performs both steps during test time.

Specifically, given the covariates of a test point Xn+1,
Algorithm 3 computes a separate quantile function q̂y for
each label y ∈ Y by minimizing the average pinball
loss over the scores of both {(Xi, Yi)}i∈[n] and (Xn+1, y).
Since Xn+1 is required for the quantile regression, this step
is performed at test time. The prediction set C produced by
Algorithm 3 includes all labels y ∈ Y where the score is at
most the label specific quantile, evaluated at (Xn+1, y).

Algorithm 3 Test-time Quantile Regression

Input: Xn+1, {(Xi, Yi)}i∈[n], W , and S̃

1: For all i ∈ [n+ 1], draw εi independently from Drn
2: Set C(Xn+1; εn+1) =

{y : S̃(Xn+1, y, εn+1) ≤ q̂y(Xn+1, y)},

where

q̂y ∈ arg min
w∈W

1

n+ 1

n∑
i=1

ℓα(w(Xi, Yi), S̃(Xi, Yi, εi))

+
1

n+ 1
ℓα(w(Xn+1, y), S̃(Xn+1, y, εn+1))).

Return: C(Xn+1; εn+1)

For the weight functions W = {Φ(·)Tβ : β ∈ Rd}, where
Φ : X × Y → Rd, under the same assumptions about
the data and the distribution of S̃ | Φ in Theorem 3.1,

the expected weighted coverage deviation is bounded by
O(d/n).

Theorem 4.1. Let α be a parameter in (0, 1), and let
W = {Φ(·)Tβ : β ∈ Rd} denote a class of linear weight
functions over a basis Φ : X × Y → Rd. Assume that the
data {(Xi, Yi)}i∈[n+1] are drawn i.i.d. from a distribution
D, {εi}i∈[n+1] are drawn i.i.d. from a distribution Drn,
independently from the dataset, and the distribution of
S̃ (X,Y, ε) | Φ(X,Y ) is continuous. Then, for any w ∈ W ,
the prediction set given by Algorithm 3 satisfies

|ED,E [wCD(C, α, w)]| ≤ d

n+ 1
ED+

[
max

i∈[n+1]
|w(Xi, Yi)|

]
,

where D is the calibration dataset {(Xi, Yi)}i∈[n], E is the
corresponding noise {εi}i∈[n] and D+ is the full dataset
{(Xi, Yi)}i∈[n+1].

Algorithm 3 is significantly more computationally expensive
than Algorithms 1 and 2, as it performs multiple quantile
regressions per test point. Let Tqr denote the time required
for a single quantile regression. In a naive implementation,
computing the prediction set scales as O(|Y| · Tqr). Even
if for certain score and weight functions the construction
of the prediction set avoids enumerating Y , the complexity
remains O(Tqr) per test point.

5. Experiments
We empirically evaluate the conditional coverage of
Kandinsky conformal prediction on real-world tasks
with natural groups: income prediction across US
states (Ding et al., 2021) and toxic comment detection
across demographic groups (Borkan et al., 2019; Koh et al.,
2021). The data is divided into a training set for learning the
base predictor, a calibration set for learning the conformal
predictor, and a test set for evaluation. We repeat all
experiments 100 times with reshuffled calibration and test
sets.

Algorithms. We implement Kandinsky conformal predic-
tion as described in Algorithms 1 and 2 for probabilistic
groups. According to Corollary 3.4, we estimate the basis
function ΦG (see Equation (3)) using a Gradient Boosting
Tree classifier. Kandinsky (XY) uses the covariates and
the label as input to learn the basis (ϕ = (X,Y )), while
Kandinsky (FY) uses the output of the predictor and the
label (ϕ = (f(X), Y )). We compare this approach with
split conformal prediction, class-conditional conformal
prediction (Löfström et al., 2015) (where labels are discrete),
and conservative conformal prediction (Barber et al., 2021),
which estimates the (1−α)-quantile of scores for each group
and constructs sets using the score threshold determined by
the maximum quantile.
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(a) ACSIncome. The distribution of group average
coverage deviation across 100 runs.
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(b)

ACSIncome. The distribution of group conditional
miscoverage (mean over 100 runs) across different groups.
Whiskers extend to min and max values. Target miscoverage
is 0.1.
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(c) ACSIncome. The distribution of average prediction set
sizes across 100 runs.
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(d) CivilComments. The distribution of group average coverage
deviation across 100 runs.

Figure 3: Main results. (a)(b)(c) ACSIncome. We vary the number of groups in calibration and test sets while controlling
samples per group. (d) CivilComments. We redistribute samples between calibration and test sets to vary the number of
calibration samples.

Metrics. Given m test samples, we measure the
group-conditional miscoverage M(G, C) for a group G and
a prediction set C.

M(G, C) :=
∑n+m

i=n+1 1 {Yi ̸∈ C(Xi, εi)} · 1 {Zi ∈ G}∑n+m
i=n+1 1 {Zi ∈ G}

.

We compute the group average coverage deviation CD(C).

CD(C) := 1

|G|
∑
G∈G

|M(G, C)− α| .

We also evaluate the prediction set size. For real-valued
labels, we divide the label domain into 100 evenly spaced
bins. We count the number of bin midpoints that fall within
the prediction set and estimate its size by multiplying this
number by the bin width.

5.1. ACSIncome: A Regression Example

We predict personal income using US Census data collected
from different states, aiming to achieve the target coverage
conditioned on each state. The state attribute is omitted from
the covariates and labels of the test points. We investigate
the scalability of the algorithms by varying the number
of groups in the calibration and test set, while controlling
the number of samples per group. Specifically, we sample

10,000 individuals per state to train a base Gradient Boosting
Tree regressor and the basis weight functions for our method.
We sample 4,000 individuals per state for calibration and
2,000 individuals for testing. The experiment is performed
over 31 states, each with at least 16,000 samples. We use the
Conformalized Quantile Regression score function (CQR)
(Romano et al., 2019). For further details, see Appendix C.1.

Kandinsky conformal prediction achieves the best group
average coverage deviation, as shown in Figure 3(a). Weight
functions based on predictors and labels (FY) slightly
outperform those based on covariates and labels (XY), as
learning a group classifier with lower-dimensional input
is easier with finite samples. Both Kandinsky algorithms
maintain stable average coverage deviation as the number
of groups increases. Figure 3(b) shows that our approach
achieves the minimum difference between the maximum
and minimum miscoverage across various groups. All
algorithms exhibit a larger gap with more groups, aligned
with the universal bound on the maximum group coverage
deviation (Corollary 3.4), which scales inversely with the
relative proportion of subgroups. Kandinsky (XY) produces
prediction sets with moderate and stable sizes for various
groups numbers, while the size of Kandinsky (FY) scales
with the number of groups, as shown in Figure 3(c). This
reveals a tradeoff between the computational efficiency of
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(a) CivilComments. Conditional miscoverage for each group. Target miscoverage is 0.1. Error bars are
standard deviations of 100 runs.
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(b) CivilComments. Average prediction set sizes for each group. Error bars are standard deviations of 100
runs.

Figure 4: Group-wise metrics on CivilComments. There are 4000 calibration samples per group on average. We annotate
the calibration sample size for each group. Groups with positive labels (toxic) are represented by y:1.

learning a weight function class and the effectiveness of the
prediction set.

5.2. CivilComments: A Classification Example

The task is to detect whether comments on online articles
contain toxic content. Demographic attributes, such as
gender, religion, race, and sexual orientation, are sometimes
mentioned in the comments. According to the Koh et al.
(2021) benchmark, there are 16 overlapping groups jointly
defined by eight demographic attributes and two labels. We
consider a setup where the conformal prediction algorithm
has only indirect access to the training data through a
given base predictor, a DistilBERT model finetuned on the
training split. Kandinsky conformal prediction (XY) cannot
be applied, and the weight functions of Kandinsky (FY)
are trained on the calibration set. We use the randomized
Adaptive Prediction Sets (APS) score function (Romano
et al., 2020b; Ding et al., 2023). We also evaluate the
algorithms’ adaptability to varying calibration sample sizes
by redistributing samples between the calibration and test
sets. See Appendix C.2 for more details.

Kandinsky conformal prediction achieves the best group
average coverage deviation when the calibration set contains
an average of over 500 samples per group, as shown
in Figure 3(d). Class-conditional conformal prediction
achieves the best performance with 250 samples per group.
However, unlike our approach, its coverage deviation does
not improve with larger sample sizes. This is because
Kandinsky considers the full set of groups, which are more
fine-grained than classes. In Figures 4(a) and 4(b), we
examine conditional miscoverage and prediction set sizes
for each group under the setting of 4000 group average
samples. Overall, Kandinsky generates prediction sets with
conditional miscoverage closest to the target level for most
groups while maintaining moderate sizes. We achieve the
best calibrated coverage for groups with more than 2000
samples.

9



Kandinsky Conformal Prediction: Beyond Class- and Covariate-Conditional Coverage

Acknowledgements
KB’s research is supported by NSF awards CCF-2311649,
CNS-2232692 and CNS-2247484.

Impact Statement
In this paper, we introduce Kandinsky Conformal Prediction,
which extends conformal prediction to provide coverage
guarantees across a broader class of overlapping and
fractional groups. This framework addresses fundamental
challenges in fairness and distribution shift, ensuring robust,
well-calibrated uncertainty quantification across diverse
subpopulations. By maintaining computational efficiency,
our method strengthens the technical foundation for reliable
predictive modeling in real-world applications.

References
Angelopoulos, A., Bates, S., Malik, J., and Jordan, M. I.

Uncertainty sets for image classifiers using conformal
prediction. arXiv preprint arXiv:2009.14193, 2020.

Angelopoulos, A. N., Barber, R. F., and Bates, S.
Theoretical foundations of conformal prediction. arXiv
preprint arXiv:2411.11824, 2024.

Areces, F., Cheng, C., Duchi, J. C., and Rohith, K.
Two fundamental limits for uncertainty quantification in
predictive inference. In Agrawal, S. and Roth, A. (eds.),
The Thirty Seventh Annual Conference on Learning
Theory, June 30 - July 3, 2024, Edmonton, Canada,
volume 247 of Proceedings of Machine Learning
Research, pp. 186–218. PMLR, 2024.

Balasubramanian, V., Ho, S.-S., and Vovk, V. Conformal
prediction for reliable machine learning: theory,
adaptations and applications. Newnes, 2014.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. The limits of distribution-free conditional predictive
inference. Information and Inference: A Journal of the
IMA, 10(2):455–482, 2021.

Blot, V., Angelopoulos, A. N., Jordan, M. I., and Brunel,
N. J. Automatically adaptive conformal risk control.
arXiv preprint arXiv:2406.17819, 2024.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and
Vasserman, L. Nuanced metrics for measuring unintended
bias with real data for text classification. In Amer-Yahia,
S., Mahdian, M., Goel, A., Houben, G., Lerman, K.,
McAuley, J. J., Baeza-Yates, R., and Zia, L. (eds.),
Companion of The 2019 World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019,
pp. 491–500. ACM, 2019.

Brunekreef, J., Marcus, E., Sheombarsing, R., Sonke,
J.-J., and Teuwen, J. Kandinsky conformal prediction:
efficient calibration of image segmentation algorithms. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4135–4143, 2024.

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring
adult: New datasets for fair machine learning. In Ranzato,
M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 6478–6490, 2021.

Ding, T., Angelopoulos, A., Bates, S., Jordan, M. I., and
Tibshirani, R. J. Class-conditional conformal prediction
with many classes. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Gibbs, I., Cherian, J. J., and Candès, E. J. Conformal
prediction with conditional guarantees. arXiv preprint
arXiv:2305.12616, 2023.
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A. Proofs and Remarks from Section 3
In this section, we present the omitted proofs from Section 3 and provide some further discussion about the coverage and the
computational complexity of Kandinsky conformal prediction.

A.1. Proofs from Section 3

We first show in the following Lemma that for a fixed w ∈ W , the expected weighted coverage deviation is bounded with
high probability. Note that this statement provides a bound for a single weight function.

Lemma A.1. Let α and δ be parameters in (0, 1), and W = {Φ(·)Tβ : β ∈ Rd} denote a class of linear weight
functions over a bounded basis Φ : X × Y → Rd. Assume that the data {(Xi, Yi)}i∈[n+1] are drawn i.i.d. from a
distribution D, {εi}i∈[n+1] are drawn i.i.d. from a distribution Drn, independently from the dataset, and the distribution of
S̃ (X,Y, ε) | Φ(X,Y ) is continuous. Then, there exists an absolute constant C such that, for every w ∈ W , with probability
at least 1 − δ over the randomness of the calibration dataset {(Xi, Yi)}i∈[n] and the noise {εi}i∈[n], the (randomized)
prediction set C, given by Algorithms 1 and 2, satisfies

∣∣E(X,Y )∼D,ε∼Drn [w(X,Y ) (1 {Y ∈ C(X; ε)} − (1− α))]
∣∣ ≤ ∥w∥∞

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4/δ)

n

)
.

Proof. Denote S̃ (Xi, Yi, εi) by S̃i. Then {(Xi, Yi, S̃i)}i∈[n] are independent and identically distributed.

Consider the function L(η) = 1
n

∑n
i=1 ℓα

(
q̂(Xi, Yi) + ηw(Xi, Yi), S̃i

)
, η ∈ R, which is convex because ℓα(·, S̃i) is

convex for each i.

For any w ∈ W , since q̂ + ηw ∈ W , the subgradients of L(η) at η = 0 satisfy

0 ∈ ∂L(η)
∣∣
η=0

=

{
1

n

n∑
i=1

w(Xi, Yi)γi

∣∣∣∣ γi =
{
α− 1{S̃i > q̂(Xi, Yi)}, q̂(Xi, Yi) ̸= S̃i,

αi ∈ [α− 1, α], q̂(Xi, Yi) = S̃i

}
.

Therefore, there exist α⋆
i ∈ [α− 1, α], i ∈ [n] such that

1

n

∑
q̂(Xi,Yi )̸=S̃i

w(Xi, Yi)
(
α− 1

{
S̃i > q̂(Xi, Yi)

})
+

1

n

∑
q̂(Xi,Yi)=S̃i

α⋆
iw(Xi, Yi) = 0.

This implies ∣∣∣∣∣ 1n
n∑

i=1

w(Xi, Yi)
(
α− 1

{
S̃i > q̂(Xi, Yi)

})∣∣∣∣∣ =
∣∣∣∣∣∣ 1n

∑
q̂(Xi.Yi)=S̃i

w(Xi, Yi) (α− α⋆
i )

∣∣∣∣∣∣ (4)

≤ 1

n

n∑
i=1

1

{
q̂(Xi.Yi) = S̃i

}
|w(Xi, Yi)|. (5)

For the left hand side of Equation (4), we consider the function classes

H1 =
{
h1(x, y, s) = 1 {q(x, y)− s < 0}

∣∣∣ q ∈ W
}
=
{
h1(x, y, s) = 1

{
Φ(x, y)Tβ − s < 0

} ∣∣∣ β ∈ Rd
}
,

H2 =
{
h2(x, y, s) = w(x, y)(α− h1(x, y, s))

∣∣∣ h1 ∈ H1

}
.

Under the mapping (x, y, s) 7→
[
Φ(x, y)
−s

]
∈ Rd+1, H1 is the subset of all homogeneous halfspaces in Rd+1, with the

normal vector
[
β
1

]
. Therefore, the VC-dimension of H1 is at most d+ 1.
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For samples D = {(Xi, Yi, S̃i)}i∈[n], the empirical Rademacher complexity of a function class H restricted to D is defined
as

R(H ◦D) =
1

n
Eσ

[
sup
h∈H

n∑
i=1

σih(Xi, Yi, S̃i)

]
,

where random variables in σ are independent and identically distributed according to P[σi = 1] = P[σi = −1] = 1
2 .

Wainwright (2019) (Example 5.24) gives an upper bound of the Rademacher complexity for VC classes. There exists an
absolute constant C ′, such that

R(H1 ◦D) ≤ 1

n
Eσ

[
sup
h∈H1

∣∣∣∣∣
n∑

i=1

σih(Xi, Yi, S̃i)

∣∣∣∣∣
]
≤ C ′

√
d+ 1

n
≤ C ′

√
2d

n
.

Next, we compute the empirical Rademacher complexity of H2 restricted to D. For any h, h′ ∈ H1,

|w(x, y)(α− h(x, y, s))− w(x, y)(α− h′(x, y, s))| ≤ ∥w∥∞ |h(x, y, s)− h′(x, y, s)| .

According to the contraction lemma (Lemma 26.9 in Shalev-Shwartz & Ben-David (2014)),

R(H2 ◦D) ≤ ∥w∥∞R(H1 ◦D) ≤ C ′∥w∥∞

√
2d

n
.

Therefore, we have a universal generalization bound for the functions in H2. The functions in H2 are bounded by
max {α, 1− α} ∥w∥∞. According to Theorem 26.5 in Shalev-Shwartz & Ben-David (2014), with probability at least 1− δ

over the randomness in D = {(Xi, Yi, S̃i)}i∈[n], for all h ∈ H2,

E
[
h(X,Y, S̃)

]
− 1

n

n∑
i=1

h(Xi, Yi, S̃i) ≤ 2ED [R(H2 ◦D)] + max {α, 1− α} ∥w∥∞

√
2 ln(2/δ)

n

≤ 2C ′∥w∥∞

√
2d

n
+max {α, 1− α} ∥w∥∞

√
2 ln(2/δ)

n
.

Symmetrically, we can replace h with −h in the class H2. Since R(H2 ◦D) = R(−H2 ◦D), with probability at least
1− δ, for all h ∈ H2,

1

n

n∑
i=1

h(Xi, Yi, S̃i)− E
[
h(X,Y, S̃)

]
≤ 2C ′∥w∥∞

√
2d

n
+max {α, 1− α} ∥w∥∞

√
2 ln(2/δ)

n
.

Taking the union bound, with probability at least 1− δ over the randomness in D, for all h ∈ H2,∣∣∣∣∣E [h(X,Y, S̃)
]
− 1

n

n∑
i=1

h(Xi, Yi, S̃i)

∣∣∣∣∣ ≤ 2C ′∥w∥∞

√
2d

n
+max {α, 1− α} ∥w∥∞

√
2 ln(4/δ)

n
.

By expanding functions in H2 as h(x, y, s) = w(x, y) (α− 1 {q(x, y)− s < 0}) where q ∈ W , with probability at least
1− δ over the randomness in D, for all q ∈ W ,∣∣∣∣∣E [w(X,Y )

(
1

{
S̃ ≤ q(X,Y )

}
− (1− α)

)]
− 1

n

n∑
i=1

w(Xi, Yi)
(
α− 1

{
q(Xi, Yi)− S̃i < 0

})∣∣∣∣∣ =∣∣∣∣∣E [w(X,Y )
(
α− 1

{
q(X,Y )− S̃ < 0

})]
− 1

n

n∑
i=1

w(Xi, Yi)
(
α− 1

{
q(Xi, Yi)− S̃i < 0

})∣∣∣∣∣ ≤
2C ′∥w∥∞

√
2d

n
+max {α, 1− α} ∥w∥∞

√
2 ln(4/δ)

n
.
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In particular, this inequality holds for q̂. By plugging in Equation (4) and Equation (5),∣∣∣E(X,Y )∼D,ε∼Drn

[
w(X,Y )

(
1

{
S̃ ≤ q̂(X,Y )

}
− (1− α)

)]∣∣∣ ≤∣∣∣∣∣ 1n
n∑

i=1

w(Xi, Yi)
(
α− 1

{
q̂(Xi, Yi)− S̃i < 0

})∣∣∣∣∣+ 2C ′∥w∥∞

√
2d

n
+max {α, 1− α} ∥w∥∞

√
2 ln(4/δ)

n
≤

1

n

n∑
i=1

1

{
q̂(Xi.Yi) = S̃i

}
|w(Xi, Yi)|+ 2C ′∥w∥∞

√
2d

n
+max {α, 1− α} ∥w∥∞

√
2 ln(4/δ)

n
≤

1

n
∥w∥∞

n∑
i=1

1

{
q̂(Xi.Yi) = S̃i

}
+ 2C ′∥w∥∞

√
2d

n
+max {α, 1− α} ∥w∥∞

√
2 ln(4/δ)

n
.

(6)

Theorem 3 in Gibbs et al. (2023) provides an upper bound for a quantity similar to
∑n

i=1 1

{
q̂(Xi.Yi) = S̃i

}
, under a

different assumption that the distribution of S̃ | X is continuous. We will follow a similar proof technique, but we assume
that the distribution of S̃ | Φ is continuous.

There exists β̂ ∈ Rd such that q̂ = Φ(·)T β̂.

P

[
n∑

i=1

1

{
q̂(Xi.Yi) = S̃i

}
≥ d+ 1

]
=

E

[
P

[
n∑

i=1

1

{
Φ(Xi, Yi)

T β̂ = S̃i

}
≥ d+ 1

∣∣∣∣∣ Φ(X1, Y1), ...,Φ(Xn, Yn)

]]
=

E

[
P

[
∃ 1 ≤ j1 ≤ ... ≤ jd+1 ≤ n, ∀ 1 ≤ k ≤ d+ 1,Φ(Xjk , Yjk)

T β̂ = S̃jk

∣∣∣∣∣ Φ(X1, Y1), ...,Φ(Xn, Yn)

]]
≤

E

 ∑
1≤j1<...<jd+1≤n

P

[
∃ β ∈ Rd,∀ 1 ≤ k ≤ d+ 1,Φ(Xjk , Yjk)

Tβ = S̃jk

∣∣∣∣∣ Φ(X1, Y1), ...,Φ(Xn, Yn)

] ≤

E

 ∑
1≤j1<...<jd+1≤n

P

[(
S̃j1 , ..., S̃jd+1

)
∈ RowSpace

([
Φ(Xj1 , Yj1), ...,Φ(Xjd+1

, Yjd+1
)
])

∣∣∣∣∣ Φ(X1, Y1), ...,Φ(Xn, Yn)

]]
=

0.

The last equation holds because the distribution of
(
S̃j1 , ..., S̃jd+1

) ∣∣∣ Φ(X1, Y1), ...,Φ(Xn, Yn) is continuous, and

RowSpace
([
Φ(Xj1 , Yj1), ...,Φ(Xjd+1

, Yjd+1
)
])

is at most d−dimensional while
(
S̃j1 , ..., S̃jd+1

)
is a (d+1)−dimensional

vector. Therefore, with probability 1,

n∑
i=1

1

{
q̂(Xi.Yi) = S̃i

}
≤ d.

Plugging the inequality into Equation (6), with probability at least 1− δ over the randomness in D,∣∣∣E(X,Y )∼D,ε∼Drn

[
w(X,Y )

(
1

{
S̃ ≤ q̂(X,Y )

}
− (1− α)

)]∣∣∣ ≤
∥w∥∞

(
d

n
+ 2C ′

√
2d

n
+max {α, 1− α}

√
2 ln(4/δ)

n

)
.
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Using Lemma A.1 and a union bound, we prove a high probability bound on the expected coverage deviation for all weight
functions in W .

Theorem 3.1 (Restated). Let α and δ be parameters in (0, 1), and W = {Φ(·)Tβ : β ∈ Rd} denote a class of linear
weight functions over a bounded basis Φ : X × Y → Rd. Without loss of generality, assume ∥Φ(x, y)∥∞ ≤ 1 for all x, y.
Assume that the data {(Xi, Yi)}i∈[n] are drawn i.i.d. from a distribution D, {εi}i∈[n] are drawn i.i.d. from a distribution Drn,
independently from the dataset, and the distribution of S̃ (X,Y, ε) | Φ(X,Y ) is continuous. Then, there exists an absolute
constant C such that, with probability at least 1− δ over the randomness of the calibration dataset {(Xi, Yi)}i∈[n] and the
noise {εi}i∈[n], the (randomized) prediction set C, given by Algorithms 1 and 2, satisfies

∣∣E(X,Y )∼D,ε∼Drn [wβ(X,Y ) (1 {Y ∈ C(X; ε)} − (1− α))]
∣∣ ≤ ∥β∥1

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n

)
,

for every wβ = Φ(·)Tβ.

Proof. Let Φ(·) = (ϕ1(·), · · · , ϕd(·))T , where ϕj ∈ RX×Y for 1 ≤ j ≤ d. According to Lemma A.1, for all 1 ≤ j ≤ d,
with probability at least 1− δ/d,

∣∣E(X,Y )∼D,ε∼Drn [ϕj(X,Y ) (1 {Y ∈ C(X; ε)} − (1− α))]
∣∣ ≤ C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n
.

Then, we have the union bound. With probability at least 1− δ, for all 1 ≤ j ≤ d,

∣∣E(X,Y )∼D,ε∼Drn [ϕj(X,Y ) (1 {Y ∈ C(X; ε)} − (1− α))]
∣∣ ≤ C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n
.

For any wβ = Φ(·)Tβ, ∣∣E(X,Y )∼D,ε∼Drn [wβ(X,Y ) (1 {Y ∈ C(X; ε)} − (1− α))]
∣∣ ≤

d∑
j=1

∣∣E(X,Y )∼D,ε∼Drn [βjϕj(X,Y ) (1 {Y ∈ C(X; ε)} − (1− α))]
∣∣ ≤

d∑
j=1

|βj | ·

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n

)
=

∥β∥1

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n

)
.

Corollary 3.2 (Restated). Let α, δ,W, wβ be specified as in Theorem 3.1. Assume that {(Xi, Yi)}i∈[n+1] are drawn
i.i.d. from a distribution D, {εi}i∈[n+1] are drawn i.i.d. from a distribution Drn, independently from the dataset, and the
distribution of S̃ (X,Y, ε) | Φ(X,Y ) is continuous. Then, there exists an absolute constant C such that the (randomized)
prediction set C, given by Algorithms 1 and 2, satisfies

ED,E

[
sup

wβ∈W
E(X,Y )∼D,ε∼Drn

[
wβ(X,Y )

∥β∥1
(1 {Y ∈ C(X; ε)} − (1− α))

]]
≤ C

√
d

n
+

d

n
,

where D is the calibration dataset {(Xi, Yi)}i∈[n] and E is the corresponding noise {εi}i∈[n].

Proof. According to Theorem 3.1, there exists an absolute constant C ′ such that, with probability at least 1− δ over the
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randomness in D and E,

sup
wβ∈W

E(X,Y )∼D,ε∼Drn

[
wβ(X,Y )

∥β∥1
(1 {Y ∈ C(X; ε)} − (1− α))

]
≤

sup
wβ∈W

∣∣∣∣E(X,Y )∼D,ε∼Drn

[
wβ(X,Y )

∥β∥1
(1 {Y ∈ C(X; ε)} − (1− α))

]∣∣∣∣ ≤
C ′
√

d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n
≤

C ′
√

d

n
+

d

n
+max{α, 1− α}

√
2 ln d

n
+max{α, 1− α}

√
2 ln(4/δ)

n
.

Let the random variable MD,E = supwβ∈W E(X,Y )∼D,ε∼Drn

[
wβ(X,Y )

∥β∥1
(1 {Y ∈ C(X; ε)} − (1− α))

]
. We have

PD,E

[
MD,E > C ′

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln d

n
+max{α, 1− α}

√
2 ln(4/δ)

n

]
≤ δ.

By inverting the bound, for t > C ′
√

d
n + d

n +max{α, 1− α}
√

2 ln d
n ,

PD,E [MD,E > t] ≤ 4 exp

−n
(
t− C ′

√
d
n − d

n −max{α, 1− α}
√

2 ln d
n

)2
2max{α, 1− α}2

 .

Let I = C ′
√

d
n + d

n +max{α, 1− α}
√

2 ln d
n . Since MD,E ≥ 0,

ED,E [MD,E ] =

∫ +∞

t=0

PD,E [MD,E > t] dt

=

∫ I

t=0

PD,E [MD,E > t] dt+

∫ +∞

t=I

PD,E [MD,E > t] dt

≤ C ′
√

d

n
+

d

n
+max{α, 1− α}

√
2 ln d

n
+

∫ +∞

t=I

PD,E [MD,E > t] dt

≤ C ′
√

d

n
+

d

n
+max{α, 1− α}

√
2 ln d

n
+

∫ +∞

t=I

4 exp

[
−

n
(
t− I

)2
2max{α, 1− α}2

]
dt

= C ′
√

d

n
+

d

n
+max{α, 1− α}

√
2 ln d

n
+max{α, 1− α}

√
8π

n

≤
(
C ′ +

√
2 +

√
8π
)√ d

n
+

d

n
.

Corollary 3.4 (Restated). Let α, δ ∈ (0, 1), ϕ(X,Y ) be a sufficient statistic for S̃, such that S̃ is conditionally independent
of X,Y given ϕ, and W = {

∑
G∈G βGΦG : βG ∈ R,∀ G ∈ G} . Assume that the data {(Xi, Yi)}i∈[n+1] are drawn

i.i.d. from a distribution D, {εi}i∈[n+1] are drawn i.i.d. from a distribution Drn, independently from the dataset, and the
distribution of S̃ (X,Y, ε) | Φ(X,Y ) is continuous. There exists an absolute constant C such that, with probability at least
1− δ over the randomness of the calibration dataset {(Xi, Yi)}i∈[n] and the noise {εi}i∈[n], the (randomized) prediction set
C given by Algorithms 1 and 2 satisfies, for all G ∈ G,∣∣P [Yn+1 ∈ C(Xn+1; εn+1) | Zn+1 ∈ G, {Xi, Yi, εi}i∈[n]

]
− (1− α)

∣∣ ≤
1

P[Zn+1 ∈ G]

(
C

√
|G|
n

+
|G|
n

+max{α, 1− α}
√

2 ln(4|G|/δ)
n

)
.

17



Kandinsky Conformal Prediction: Beyond Class- and Covariate-Conditional Coverage

Proof. Since S̃ is conditionally independent of X,Y given ϕ, more formally S̃ ⊥⊥ X,Y | ϕ(X,Y ), and ε ⊥⊥ X,Y ,
we have S̃, ε ⊥⊥ X,Y | ϕ(X,Y ). Therefore S̃ ⊥⊥ X,Y | ϕ(X,Y ), ε. This implies for any x1, y1, x2, y2 such that
ϕ(x1, y1) = ϕ(x2, y2), we have S̃(x1, y1, ε) = S̃(x2, y2, ε). Therefore, S̃(X,Y, ε) is measurable w.r.t. ϕ(X,Y ), ε. From
the definition of W , any w(X,Y ) with w ∈ W is also measurable w.r.t. ϕ(X,Y ), ε.

According to Theorem 3.1, there exists an absolute constant C such that, with probability at least 1− δ over the randomness
in {(Xi, Yi)}i∈[n] and {εi}i∈[n], for every wβ ∈ W ,∣∣∣EX,Y,ε

[
wβ(X,Y )

(
1

{
S̃(X,Y, ε) ≤ q̂(X,Y )

}
− (1− α)

)]∣∣∣ =
|EX,Y,ε [wβ(X,Y ) (1 {Y ∈ C(X; ε)} − (1− α))]| ≤

∥β∥1

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4d/δ)

n

)
=

∥β∥1

(
C

√
|G|
n

+
|G|
n

+max{α, 1− α}
√

2 ln(4|G|/δ)
n

)
.

For any G ∈ G, by taking wβ(x, y) = 1
P[Z∈G]P[Z ∈ G | ϕ(X,Y ) = ϕ(x, y)], we have ∥β∥1 = 1

P[Zn+1∈G] . Since

S̃(X,Y, ε), q̂(X,Y ) are measurable w.r.t. ϕ(X,Y ), ε, by Bayes formula,

EX,Y,ε

[
wβ(X,Y )

(
1

{
S̃(X,Y, ε) ≤ q̂(X,Y )

}
− (1− α)

)]
=

EX,Y,ε

[
P[Z ∈ G | ϕ(X,Y )]

P[Z ∈ G]

(
1

{
S̃(X,Y, ε) ≤ q̂(X,Y )

}
− (1− α)

)]
=

Eϕ(X,Y ),ε

[P[Z ∈ G | ϕ(X,Y ), ε]

P[Z ∈ G | ε]
·
(
1

{
S̃(X,Y, ε) ≤ q̂(X,Y )

}
− (1− α)

) ]
=

Eϕ(X,Y ),ε

[
1

{
S̃(X,Y, ε) ≤ q̂(X,Y )

}
− (1− α)

∣∣∣ Z ∈ G
]
=

E
[
1

{
S̃(Xn+1, Yn+1, εn+1) ≤ q̂(Xn+1, Yn+1)

}
− (1− α)

∣∣∣ Zn+1 ∈ G, {Xi, Yi, εi}i∈[n]

]
=

P
[
Yn+1 ∈ C(Xn+1; εn+1) | Zn+1 ∈ G, {Xi, Yi, εi}i∈[n]

]
− (1− α).

Combining the two equations above, the proof is complete.

Corollary 3.3 (Restated). Let parameters α, δ ∈ (0, 1), and W = {
∑

G∈G βG1{(x, y) ∈ G} : βG ∈ R,∀G ∈ G}. Assume
that the data {(Xi, Yi)}i∈[n+1] are drawn i.i.d. from a distribution D, {εi}i∈[n+1] are drawn i.i.d. from a distribution Drn,
independently from the dataset, and the distribution of S̃ (X,Y, ε) | Φ(X,Y ) is continuous. There exists an absolute
constant C such that, with probability at least 1− δ over the randomness of the calibration dataset {(Xi, Yi)}i∈[n] and the
noise {εi}i∈[n], the (randomized) prediction set C, given by Algorithms 1 and 2 satisfies, for all G ∈ G,∣∣P[Yn+1 ∈ C(Xn+1; εn+1) | (Xn+1, Yn+1) ∈ G, {Xi, Yi, εi}i∈[n]]− (1− α)

∣∣ ≤
1

P[(Xn+1, Yn+1) ∈ G]

(
C

√
|G|
n

+
|G|
n

+max{α, 1− α}
√

2 ln(4|G|/δ)
n

)
.

Proof. Corollary 3.3 follows directly from Corollary 3.4.

Corollary 3.5 (Restated). Let α and δ be parameters in (0, 1), and W = {Φ(·)Tβ : β ∈ Rd} denote a class of linear
weight functions over a bounded basis Φ : X × Y → Rd. Assume that the data {(Xi, Yi)}i∈[n] are drawn i.i.d. from a
distribution D, {εi}i∈[n+1] are drawn i.i.d. from a distribution Drn, independently from the dataset, and the distribution of
S̃ (X,Y, ε) | Φ(X,Y ) is continuous. Then, there exists an absolute constant C such that, for every distribution DT such that
dPDT

dPD
∈ W and

∣∣∣dPDT

dPD
(x, y)

∣∣∣ ≤ B for any x ∈ X and y ∈ Y , with probability at least 1 − δ over the randomness of the
calibration dataset {(Xi, Yi)}i∈[n] and the noise {εi}i∈[n], the (randomized) prediction set C, given by Algorithms 1 and 2,
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satisfies

|P[Yn+1 ∈ C(Xn+1; εn+1) | {Xi, Yi, εi}i∈[n]]− (1− α)| ≤ B

(
C

√
d

n
+

d

n
+max{α, 1− α}

√
2 ln(4/δ)

n

)
,

where (Xn+1, Yn+1) are drawn independently from the distribution DT.

Proof. This corollary follows from Lemma A.1 for any weight function w ∈ W of the form w(x, y) =
dPDT

dPD
(x, y) with

∥w∥∞ ≤ B.

A.2. Comparison with Previous Results

For weight functions defined only on the covariates, Kandinsky conformal prediction obtains the same type of guarantees
studied in Jung et al. (2023); Gibbs et al. (2023); Areces et al. (2024). Jung et al. (2023) and Areces et al. (2024) essentially
implement the same quantile regression method as that described in Algorithms 1 and 2 for the corresponding class of weight
functions and for deterministic scores. Typically, for covariate-based weight functions the distribution of S(X,Y ) | Φ(X)

is continuous and, hence, it is common to set S̃(x, y, ε) = S(x, y). Jung et al. (2023) focus on the group-conditional case,
where the groups are subsets of X , and their analysis of high-probability coverage is less optimal compared to the result in
Corollary 3.3. Additionally, our analysis of the expected weighted coverage deviation in Corollary 3.2 provides a tighter
upper bound compared to (Areces et al., 2024). Lastly, Gibbs et al. (2023) implement a different quantile regression method
that we discuss further in Section 4.

A.3. Computational Details

In Algorithm 2, the prediction set C is defined as the subset of all labels in Y where the score is below the value determined
by the quantile function q̂, that varies with y. This makes calculating the prediction set from the quantile function q̂ complex
for large finite sets of labels, and even more so for continuous label domains. This is a problem that can also be encountered
in full conformal prediction. For several applications described in this section and for certain chosen score functions, there
exist oracles that, given the quantile function q̂ and the test point Xn+1, return the prediction set C.

B. Proofs from Section 4
In this section, we provide the proof of Theorem 4.1.

Theorem 4.1 (Restated). Let α be a parameter in (0, 1), and let W = {Φ(·)Tβ : β ∈ Rd} denote a class of linear
weight functions over a basis Φ : X × Y → Rd. Assume that the data {(Xi, Yi)}i∈[n+1] are drawn i.i.d. from a
distribution D, {εi}i∈[n+1] are drawn i.i.d. from a distribution Drn, independently from the dataset, and the distribution of
S̃ (X,Y, ε) | Φ(X,Y ) is continuous. Then, for any w ∈ W , the prediction set given by Algorithm 3 satisfies

|ED,E [wCD(C, α, w)]| ≤ d

n+ 1
ED+

[
max

i∈[n+1]
|w(Xi, Yi)|

]
,

where D is the calibration dataset {(Xi, Yi)}i∈[n], E is the corresponding noise {εi}i∈[n] and D+ is the full dataset
{(Xi, Yi)}i∈[n+1].

Proof. This proof follows the techniques developed in (Gibbs et al., 2023). For simplicity, S̃ (Xi, Yi, εi) is denoted by S̃i.
Let q̂Yn+1

be the quantile function Algorithm 3 computes for the true label Yn+1. For a fixed w ∈ W our objective can be
reformulated as

ED,E [wCD(C, α, w)] = E [w(Xn+1, Yn+1) (1 {Yn+1 ∈ C(Xn+1; εn+1)} − (1− α))]

= E
[
w(Xn+1, Yn+1)

(
α− 1

{
S̃n+1 > q̂Yn+1

(Xn+1, Yn+1)
})]

,

where the expectations on the right hand side are taken over the randomness of {(Xi, Yi)}i∈[n+1] and {εi}i∈[n+1].
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Since the data {(Xi, Yi)}i∈[n+1] are i.i.d., the random noise components {εi}i∈[n+1] are also i.i.d., and based on Algorithm 3,
q̂Yn+1 is invariant to permutations of {(Xi, Yi)}i∈[n+1], the triples in

{(w(Xi, Yi), q̂Yn+1(Xi, Yi), S̃i, εi))}i∈[n+1]

are exchangeable. Hence, we have that

ED,E [wCD(C, α, w)] = E
[
w(Xn+1, Yn+1)

(
α− 1

{
S̃n+1 > q̂Yn+1

(Xn+1, Yn+1)
})]

= E

 1

n+ 1

∑
i∈[n+1]

w(Xi, Yi)
(
α− 1

{
S̃i > q̂Yn+1

(Xi, Yi)
}) .

Since q̂Yn+1
is a minimizer of the convex optimization problem defined in Algorithm 3, we have that for a fixed w ∈ W ,

fixed datapoints {(Xi, Yi)}i∈[n+1], and fixed noise {εi}i∈[n+1]

0 ∈ ∂η

 1

n+ 1

∑
i∈[n+1]

ℓα(q̂Yn+1(Xi, Yi) + ηw(Xi, Yi), S̃i

∣∣∣∣∣
η=0

.

Computing this subrgradient, we obtain that

∂η

 1

n+ 1

∑
i∈[n+1]

ℓα(q̂Yn+1
(Xi, Yi) + ηw(Xi, Yi), S̃i

 =

{
1

n+ 1

( ∑
i∈[n+1]

w(Xi, Yi)
(
α− 1

{
S̃i > q̂Yn+1

(Xi, Yi)
})

1{S̃i ̸= q̂Yn+1
(Xi, Yi)}+

∑
i∈[n+1]

viw(Xi, Yi)1{S̃i = q̂Yn+1
(Xi, Yi)}

)∣∣∣∣∣vi ∈ [α− 1, α]

}
.

Let v∗i be one of the values in [α− 1, α] that set the subgradient to zero. Then, we have that

1

n+ 1

∑
i∈[n+1]

w(Xi, Yi)
(
α− 1{S̃i > q̂Yn+1

(Xi, Yi)}
)
=

1

n+ 1

∑
i∈[n]

(α− v∗i )w(Xi, Yi)1{S̃i = q̂Yn+1(Xi, Yi)}.

Going back to our previous computation where we have only fixed w ∈ W , we apply the equality above to obtain that

ED,E [wCD(C, α, w)] = E

 1

n+ 1

∑
i∈[n+1]

w(Xi, Yi)
(
α− 1

{
S̃i > q̂Yn+1(Xi, Yi)

})
= E

 1

n+ 1

∑
i∈[n+1]

(α− v∗i )w(Xi, Yi)1{S̃i = q̂Yn+1(Xi, Yi)}

 .

Now, we want to provide an upper bound for our objective. Recall that from the theorem formulation D+ =
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{(Xi, Yi)}i∈[n+1] and let E+ = {εi}i∈[n+1]. Since v∗i ≥ α− 1, we get that

|ED,E [wCD(C, α, w)]| =

∣∣∣∣∣∣E
 1

n+ 1

∑
i∈[n+1]

(α− v∗i )w(Xi, Yi)1{S̃i = q̂Yn+1
(Xi, Yi)}

∣∣∣∣∣∣
≤ E

 1

n+ 1

∑
i∈[n+1]

|w(Xi, Yi)|1{S̃i = q̂Yn+1
(Xi, Yi)}


≤ E

( max
j∈[n+1]

|w(Xj , Yj)|
)

1

n+ 1

∑
i∈[n+1]

1{S̃i = q̂Yn+1
(Xi, Yi)}


= ED+

EE+

( max
j∈[n+1]

|w(Xj , Yj)|
)

1

n+ 1

∑
i∈[n+1]

1{S̃i = q̂Yn+1(Xi, Yi)}

∣∣∣∣∣{Φ(Xi, Yi)}i∈[n+1]


= ED+

( max
j∈[n+1]

|w(Xj , Yj)|
)

1

n+ 1
EE+

 ∑
i∈[n+1]

1{S̃i = q̂Yn+1(Xi, Yi)}

∣∣∣∣∣{Φ(Xi, Yi)}i∈[n+1]


We will now bound the inner expectation of the above expression by showing that conditioning on {Φ(Xi, Yi)}i∈[n+1]

P

 ∑
i∈[n+1]

1{S̃i = q̂Yn+1
(Xi, Yi)} > d

∣∣∣∣∣{Φ(Xi, Yi)}i∈[n+1]

 = 0.

In more detail, we can upper bound this probability as follows

P

 ∑
i∈[n+1]

1{S̃i = q̂Yn+1
(Xi, Yi)} > d

∣∣∣∣∣{Φ(Xi, Yi)}i∈[n+1]

 =

P
[
∃1 ≤ j1 < . . . < jd+1 ≤ n+ 1 s.t. ∀i ∈ [d+ 1], S̃i = q̂Yn+1

(Xi, Yi)|{Φ(Xi, Yi)}i∈[n+1]

]
≤∑

1≤j1<...<jd+1≤n+1

P
[
∀i ∈ [d+ 1], S̃i = q̂Yn+1

(Xi, Yi)|{Φ(Xi, Yi)}i∈[n+1]

]
≤

∑
1≤j1<...<jd+1≤n+1

P
[
∃w ∈ W s.t. ∀i ∈ [d+ 1], S̃i = w(Xi, Yi)|{Φ(Xi, Yi)}i∈[n+1]

]
=

∑
1≤j1<...<jd+1≤n+1

P

∃β ∈ Rd s.t. ∀i ∈ [d+ 1], S̃i =
∑
k∈[d]

βkΦk(Xi, Yi)

∣∣∣∣∣{Φ(Xi, Yi)}i∈[n+1]

 =

∑
1≤j1<...<jd+1≤n+1

P[(S̃j1 , . . . , S̃jd+1
) ∈ RowSpace([Φ(Xj1 , Yj1)| . . . |Φ(Xjd+1

, Yjd+1
)])|{Φ(Xi, Yi)}i∈[n+1]].

We notice that R
([
Φ(Xj1 , Yj1)| . . . |Φ(Xjd+1

, Yjd+1
)
])

is a d-dimensional subspace of Rd+1. Since for fixed
{Φ(Xi, Yi)}i∈[n+1] the scores S̃j1 , . . . , S̃jd+1

are independent and continuously distributed, we have that for all 1 ≤
j1 < . . . < jd+1 ≤ n+ 1

P
[(

S̃j1 , . . . , S̃jd+1

)
∈ R

([
Φ(Xj1 , Yj1)| . . . |Φ(Xjd+1

, Yjd+1
)
])

|{Φ(Xi, Yi)}i∈[n+1]

]
= 0.

Combining the inequalities of the steps above, we have proven that for all w ∈ W

|ED,E [wCD(C, α, w)] | ≤ d

n+ 1
ED+

[
max

i∈[n+1]
|w(Xi, Yi)|

]
.
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C. Additional Experimental Details
We use Histogram-based Gradient Boosting Tree through the implementation of scikit-learn (Pedregosa et al., 2011).
Specifically, we use the HistGradientBoostingClassifier to train the basis weight functions for Kandinsky conformal
prediction. We use HistGradientBoostingRegressor to train the base model for ACSIncome. We apply default
hyperparameters suggested by scikit-learn except that we set max iter to 250.

C.1. ACSIncome

We preprocess the dataset following Liu et al. (2023). We additionally apply logarithmic transformation of labels with base
10 and scale the label to [0, 1] by min-max scaling.

We train the base Gradient Boosting Tree regressor on 31,000 samples with 10,000 from each state. The calibration set
contains 4,000 samples per state and the test set contains 2,000 samples per state. Given a number of groups |G|, we select
samples from states with the |G| smallest indices. We train the basis of Kandinsky’s weight function class on the training set
with selected states, but the base predictor is not retrained. We also filter the calibration and test set for selected states. We
repeat the experiments 100 times by reshuffling the calibration and test set, but the training set is fixed such that Kandinsky’s
weight function class is also fixed for a given number of selected states.

We take the deterministic score function of Conformalized Quantile Regression (CQR). Given base predictors fα/2(x) and
f1−α/2(x) for the α/2 and 1− α/2 quantile, respectively,

S(x, y) = max
{
y − f1−α/2(x), fα/2(x)− y

}
, S̃ = S.

C.2. CivilComments

Following Koh et al. (2021), we split the dataset into 269,038 training samples and 178,962 samples for calibration and test.
We finetune a DistilBERT-base-uncased model with a classification head on the training set, following the configurations of
Koh et al. (2021). We randomly redistribute samples between the calibration and test sets to vary the calibration sample
sizes. Since the groups are overlapping, we estimate the ratio between the group average sample size and the overall sample
number of 178,962. Then we downsample the dataset accordingly to approximately reach a prescribed group average
sample size in the calibration set. We repeat the redistribution procedure 100 times, but the training set is fixed such that the
DistilBert model is trained only once. However, we train the weight functions of Kandinsky conformal prediction on the
calibration set, since we are considering the setup where training samples are only accessible to algorithms by the base
predictor. Therefore, the weight function class is retrained for each calibration set. Since group sample sizes can be different
between runs, in Figures 4(a) and 4(b), annotated group sample sizes are estimated by the mean of actual group sample sizes
over 100 runs.

We take the randomized score function of Adaptive Prediction Sets (APS). Given the base classifier f(x) that outputs the
probability vector for all classes, we sort their probabilities in decreasing order.

f(1)(x) ≥ f(2)(x) ≥ ... ≥ f|Y|(x).

We use fy(x) to represent the component of f(x) for the class y and kx(y) to represent the order of fy(x) such that
f(kx(y))(x) = fy(x). The non-conformity score is given by

S̃(x, y, ε) =

kx(y)−1∑
k=1

f(k)(x) + εfy(x), ε ∼ Uniform[0, 1].
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