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ABSTRACT

How do diffusion models process inputs at each step? The model transforms
the input toward higher noise levels until it reaches pure noise prediction. We
hypothesize that model layers exhibit diffusive behavior, which manifests as an
internal, gradual diffusion process at each sampling step. Based on this insight, we
introduce Depth-varying Diffusion (DvD), characterized by two key features: 1)
Progressively stacking model layers across sampling steps (i.e., from T to 0) until it
reaches the baseline depth. As sampling progresses, the residual noise within the
input becomes subtle, requiring more intense diffusion, and thus a deeper model,
to map it into pure noise. 2) Enforcing supervision on both intermediate and final
outputs. Since stacked layers yield a cascade of “input → intermediate state →
pure noise", we propose that the input should reach a specific intermediate state
during the gradual diffusion process. We mathematically derive that in DvD,
and correspondingly use the derived results for supervision. Experimental results
demonstrate the effectiveness of these two features, showing improvements in
generation quality while also reducing inference cost.

1 INTRODUCTION

Diffusion models Ho et al. (2020); Nichol & Dhariwal (2021); Song et al. (2022); Luo et al. (2022);
Song et al. (2021) have emerged as a powerful generative framework in recent years, demonstrating
remarkable performance in image synthesis Ho & Salimans (2022); Song et al. (2022) and various
applications, including image editing Kawar et al. (2023); Yang et al. (2022a), speech Jeong et al.
(2021) and video generation Ho et al. (2022); Singer et al. (2022). In essence, diffusion models
generate images by starting from random noise and systematically denoising it through multiple
sampling steps. At each sampling step, the diffusion model predicts the noise present in its input
(which is a mixture of noise and image signal) and then removes this noise component. Repeating
this process over multiple steps gradually transforms the initial noise into the generated image along
a specific trajectory, either via a stochastic path method, SDE (e.g., DDPM Ho et al. (2020)) or a
deterministic path method, PF ODE (e.g., DDIM Song et al. (2022) ). This paper focuses on the
mechanism by which the diffusion model estimates the noise within its input at individual sampling
steps (rather than the overall trajectory).

One key question we explore is how the model transforms the input into the predicted noise output at
each step. We propose a hypothesis: model layers exhibit diffusive behavior, which manifests as an
internal, gradual diffusion process at each sampling step, progressively moving the input toward pure
noise prediction in each forward pass. Our hypothesis might seem counterintuitive, as it suggests
that each denoising step actually uses internal diffusion for noise estimation. However, this does not
alter the fundamental equations or training approaches in diffusion models. Instead, it provides new
insights into how these models function step by step.

Based on this hypothesis, we further exploit two characteristics to enhance the noise estimation. First,
during the entire sampling steps from T → 0, the input noise ratio decreases from high to low, while
the output noise is always expected to be pure, thereby requiring deeper layers to achieve greater
diffusion rates. Second, since diffusion is a gradual process, the input should transition through a
specific intermediate state before reaching the pure noise prediction. Obtaining this intermediate state
ensures a more stable transition throughout the process.
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Figure 1: The illustration of our hypothesis and the proposed Depth-varying Diffusion (DvD). (a) We
focus on each individual sampling step, within which the diffusion model is expected to transform
the input (the mixture of image signal and random noise) into a pure noise output. We hypothesize
that the model achieves this noise estimate through diffusion, gradually increasing the noise ratio to
1 and decreasing the image signal ratio to 0. (b) During the entire sampling steps from T → 0, the
input noise ratio gradually decreases while the output noise is expected to be pure. Therefore, the
early steps and late steps require small and large diffusion rates, respectively. The proposed DvD
uses shallow and deep model depth for early and late steps, catering to the nature that the required
diffusion rates gradually increase along consecutive sampling steps. DvD maintains the total model
size unchanged, reduces the training and inference costs, and improves generation quality.

These two points motivate us to propose a novel Depth-varying Diffusion (DvD), which progressively
increases the model depth across the entire sampling steps, as shown in Fig. 1. Compared with the
standard diffusion models (e.g., DiT Peebles & Xie (2023)) that use constant model depth, our DvD
model has a lower inference cost and maintains the same model size. This efficiency is achieved by
initially using a relatively smaller model depth and progressively expanding to the baseline depth
only during the final sampling steps. For implementation, we divide a holistic baseline model into
several parts and progressively stack the involved parts. Without loss of generality, we take a two-part
implementation for example (as in Fig. 1). DvD uses only the lower part (e.g., Part I) for the early
sampling steps and stacks the upper part (e.g., Part I + Part II) for the late sampling steps. Empirically,
we show our Depth-varying design not only improves the image generation quality, but also reduces
the inference cost.

In addition to the Depth-varying structure, another feature of DvD is the supervision of intermediate
states. As the stacking of layers increases, we enforce supervision to all involved parts, ensuring that
each part is effectively optimized for its specific role. Specifically, in the relayed diffusion process
from Part I → Part II, we consider the question: if Part I is capable of diffusing an early-step input
into pure noise, how much diffusion should it accomplish given a late-step input, which is harder to
diffuse? We address this question through a Taylor expansion of the diffusion process. The results
show that Part I should increase the noise to a certain intermediate state. Therefore, during training at
later sampling steps, we use this intermediate state as the supervision target for Part I, and leave the
rest diffusion from intermediate to pure noise to be completed by the upper layers.

The simultaneous supervision strategy described above brings about another round of substantial
improvement in generation quality. This improvement is especially encouraging because it demon-
strates that the efforts of multiple parts could be cascaded and relayed (input → intermediate state
→ pure noise output), which indeed aligns with real-world diffusion processes. This observation
supports our hypothesis that the model uses the diffusion to perform noise estimation.

Our main contributions are summarized as follows: First, we propose the hypothesis that diffusion
model layers exhibit diffusive behavior, which manifests as an internal, gradual diffusion process to
estimate the pure-noise output at each sampling step. Based on this hypothesis, we further exploit
two characteristics of diffusion to enhance noise estimation. Second, we propose Depth-varying
Diffusion (DvD) that progressively increases model depth across the entire sampling process. Third,
we demonstrate that, in a single forward pass, the diffusion efforts of multiple model layers can
be cascaded, allowing us to derive the intermediate states through the input’s transition to the pure
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noise prediction. Experimental results consistently validate the effectiveness of our proposed DvD,
demonstrating substantial improvements in generation quality.

2 RELATED WORKS

Diffusion Models. Diffusion models Ho et al. (2020); Ho & Salimans (2022); Song et al. (2022);
Rombach et al. (2022); Balaji et al. (2023); Podell et al. (2023); Nichol et al. (2022); Ramesh et al.
(2022); Saharia et al. (2022); Gal et al. (2022); Nichol & Dhariwal (2021); Ho et al. (2021); Dhariwal
& Nichol (2021) have rapidly gained prominence in generative modeling, notably without the need
for adversarial training. This rise is particularly catalyzed by the foundational work on DDPM
Ho et al. (2020), which introduces the concept of diffusion process. Many efforts Ho & Salimans
(2022); Karras et al. (2022); Lu et al. (2022); Song et al. (2022); Salimans & Ho (2022); Song et al.
(2023) have focused on accelerating the denoising sampling strategy. For example, DDIM Song
et al. (2022) suggests that non-Markovian diffusion processes can achieve same training objective
of DDPM Ho et al. (2020) and accelerate the sampling in generative processes. Furthermore, to
facilitate the training of Diffusion Models on limited computational resources, LDM Rombach et al.
(2022) proposes training diffusion processes in compressed latent space.

This paper proposes a hypothesis for diffusion models at individual sampling steps, i.e., each
sampling step actually involves a gradual diffusion process. Based on this insight, we exploit two key
characteristics of this process and introduce Depth-varying Diffusion.

Diffusion Transformers. Transformers Dosovitskiy et al. (2021); Vaswani et al. (2023); Bao
et al. (2022) have demonstrated remarkable scaling properties when model size is increased Kaplan
et al. (2020); Li et al. (2021). Recently, several works Yang et al. (2022b); Bao et al. (2023);
Jabri et al. (2023) have successfully integrated transformers with diffusion processes. Diffusion
Transformers (DiT) Peebles & Xie (2023) have showcased the scalability of transformer layers,
marking a significant advancement in the diffusion models. Recent works Gao et al. (2023; 2024);
Zhu et al. (2024) aim to improve the training efficacy of DiT. MDT Gao et al. (2023; 2024) utilizes
the encoder-decoder architecture of MAE He et al. (2021) and introduces masked latent embeddings
to refine the relationships among semantic pixels within images. SD-DiT Zhu et al. (2024) applies
self-supervised learning principles to diffusion models, enhancing their learning correlation.

This paper builds on DiT Peebles & Xie (2023) and adapts the model depth to accommodate varying
diffusion rates. We observe that the early sampling steps (with higher noise ratios) require a smaller
diffusion rate to achieve pure noise, while the late steps need a larger one. We divide the full
model into several parts and increase the model depth across sampling steps (from T → 0). This
Depth-varying scheme improves the image generation quality and also reduces the inference cost.

Varying Processing Strategy for Diffusion Models. Many recent efforts also consider to adopt
varying strategy for Diffusion model Chen et al. (2024); Liu et al. (2024); Feng et al. (2023); Park
et al. (2024a). Some works introduce multiple expert diffusion models, each focusing on a specific
time-step region. For example, ERNIE-ViLG 2.0 Feng et al. (2023) divides all time-steps into
several blocks and employs multiple denoising experts at different stages. MEME Lee et al. (2024)
assigns distinct architectures to different time-step intervals, balancing convolution and self-attention
operations. Switch-DiT Park et al. (2024a) uses gating networks to process features at different
time-steps. DTR Park et al. (2024b) selects different model channels to handle features, optimizing
the diffusion process by routing tasks appropriately. Denoising Diffusion Step-aware Models (DDSM)
Yang et al. (2024) propose using models of different sizes for different time-steps, with each model is
trained across all time-steps to possess comprehensive learning. Although previous works process
inputs separately according to their time-steps, they typically apply supervision only to the final
output, enforcing alignment with pure noise.

In this paper, in addition to supervising the final output, we estimate the intermediate states for all
involved parts during late steps and use these intermediate states as additional supervision targets.
Since the lower parts can diffuse early-step input into pure noise, we employ mathematical derivations
to infer the outputs of these parts in late steps. This simultaneous supervision strategy leads to another
round of substantial improvement.
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Figure 2: Overview of the Depth-varying Diffusion. Without loss of generality, we visualize the
specific case of dividing the sampling steps into two intervals, i.e., early and late steps. In (a),
Depth-varying Diffusion uses lower part (part I) for early steps and holistic parts (part I + part II) for
late steps. The late steps share the early-step part I as the bottom and stack new part II on top. In
(b), we illustrate the simultaneous supervision strategy. We employ a Taylor expansion to estimate
the intermediate state of Part I’s output during late steps and use this estimate as a supervision target
for Part I. The combination of supervision on Part I and the Part II constitutes the Simultaneous
Supervision Strategy in late steps. More details are provided in Section 3.3. Depth-varying Diffusion
can employ finer-grained division (e.g. 3 or 4 stages) and brings further improvement.

3 METHODS

3.1 OVERVIEW

Preliminaries. In diffusion models, the input at each sampling step is formulated as a mixture of the
original image signal and random noise:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ϵ is random Gaussion noise drawn from a standard normal distribution, N (0, I), and x0 denotes
the image signal.

√
ᾱt and

√
1− ᾱt represent the ratios of image signal and noise, respectively.

During training, given the input xt and the corresponding time-step t, the objective of the diffusion
model is to predict the noise ϵ from xt. Therefore, in each individual sampling, the model is expected
to transform xt into ϵ.

We view the transformation described above as being achieved through diffusion, and correspondingly
define the increased ratio of noise as the diffusion rate Rt. The expectation of Rt can be derived by:
Rt = 1−

√
1− ᾱt. From the above definition, we derive the following Remarks.

Remark-1: Different sampling steps require different diffusion rates. More specifically, Rt monoton-
ically increases as the time-step t progresses from T → 0.

Remark-2: The input xt should transition through a specific intermediate state before reaching the
pure noise prediction ϵ.

Across the entire sampling steps, DvD progressively increases the model depth. The Depth-varying
scheme is elaborated in Section 3.2. Section 3.3 further dwells into the gradual diffusion process
within each individual forward and investigates its intermediate state(s) through a Tyler expansion.
This results in a corresponding diffusion supervision manner, i.e., simultaneously supervising the
intermediate and ultimate output, and brings another round of generation quality improvement.
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3.2 DEPTH-VARYING SCHEDULE

To progressively increase the model depth across time-step t, we divide the entire time-step range
[T, 0] into N intervals and assign i-th interval a respective model depth Di. We number the time-step
intervals sequentially from 1 to N , with the first interval being the one closest to T . Dividing the
time-step range is because it is usually larger than the model depth (e.g., 1000 time-steps vs 12 layers
in DiT-B Peebles & Xie (2023)).

For easy understanding, we start with a two-interval scenario as shown in Fig. 2(i.e.,,N = 2) . We
evenly divide the time-steps into two intervals, i.e., early-step interval ( first interval ) [T, T/2] and
late-step interval (second interval) [T/2, 0], assigning a model depth of D1 = L/2 to the first interval
and the holistic model depth of D2 = L to the second interval.

To achieve a more fine-grained partition (i.e., N > 2), DvD recursively divides the early-step interval
into two even sub-intervals. In this recursive procedure, DvD assigns a corresponding depth to
each newly generated interval. We derive the two sub-intervals’ depth with two criteria, i.e., 1) the
left-sub interval (closer to time-step T ) has a smaller model depth than the right-sub interval (closer
to time-step 0) , and 2) the average depth of the two sub-intervals remains equal to the depth of their
parent interval, maintaining the inference cost unchanged. These two criteria are easily satisfied by:

Dleft = Dparent − δ,Dright = Dparent + δ, (2)

where the value of δ is a hyper-parameter optimized empirically. More details of the recursive strategy
are provided in the ablation studies (Section 4.3).

Noise estimation of DvD. Given an input xt , DvD locates its time-step t in the pre-defined interval.
Let us assume t is within the n-th interval. DvD stacks the corresponding number of function parts
(i.e., n parts) for diffusing xt into the noise estimate yt, which is formulated as:

yt = Fn ◦ Fn−1 ◦ · · · ◦ F1(xt) (3)

where ◦ denotes function composition, representing the sequential application of functions from F1

to Fn. During the training, we use pure noise ϵ as the supervision target for yt, according to the
standard supervision:

Loutput = Eϵ,yt

[
∥ϵ− yt∥2

]
(4)

By progressively stacking a number of parts and applying pure-noise supervision at their final outputs,
DvD explicitly trains each sub-part to handle the characteristic noise level of its corresponding
interval. In practice, shallower parts quickly learn to diffuse highly noisy, early-step inputs toward
pure noise, whereas deeper parts yield more intense diffusion for late-step inputs containing stronger
image signals.

3.3 SIMULTANEOUS SUPERVISION STRATEGY

In addition to the standard supervision loss in Eqn. 4, DvD applies extra supervision on all the other
involved parts, i.e., from F1 to Fn−1. A natural question thus arises: how to derive the supervision
target of Fk (k < n)? To simplify the following analysis, we use the two-part implementation as
an example (shown in Fig. 2) and will later show that the analysis easily generalizes to multi-part
scenario in appendix. We denote the lower / upper part as Part I / Part II, and use F1 / F2 to denote
their underlying mapping function.

A clue to answer the above question is that: Part I is expected to diffuse an early-step input (closer to
time-step T ) into pure noise, according to its supervision target in Eqn. 4. With such diffusion ability
and given a late-step input (closer to time-step 0), Part I should be able to increase certain ratio of
noise, as well. We use xt1 and xt2 (t1 > t2 ) to denote the early-step and late-step input respectively
and have:

xt1 =
√

αt1 · x0 +
√
1− αt1 · ϵ

xt2 =
√

αt2 · x0 +
√
1− αt2 · ϵ

(5)
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in which αt2 > αt1 are two coefficients. Compared with the late-step input xt2 , the early-step input
xt1 contains less image signal and more noise component as xt1 is closer to the initial sampling
status (t1 > t2). Their qualitative relation can be expressed by:

xt1 = xt2 − k · x0 +m · ϵ (6)
where

k = (
√
αt2 −

√
αt1),m = (

√
1− αt1 −

√
1− αt2) (7)

Given that F1(xt1) → ϵ, we try to figure out the value of F1(xt2). To this end, we perform Taylor
expansion on F1(xt2) , yielding:

F1(xt2) =F1(xt1 − (m · ϵ− k · x0))

=F1(xt1)−∇F1(xt1) · (m · ϵ− k · x0)

− ∇2F1(xt1)

2
· (m · ϵ− k · x0)

2 + · · ·

=k · ∇F1(xt1) · x0 + (1−∇F1(xt1) ·m)ϵ

− ∇2F1(xt1)

2
· (m · ϵ− k · x0)

2 + · · ·

(8)

Based on the above formulation, we omit higher-order gradient terms and observe that the output
of F1(xt2) can be approximated using F1(xt1) and its gradient ∇F1(xt1). Empirical observations
indicate that the mean value of ∇F1(xt1) approaches 1 upon training convergence. Therefore, we
simplify Eqn. 8 to:

F1(xt2) → k · x0 + (1−m)ϵ (9)

The above Eqn. 9 implies that if F1 is capable of diffusing a early-step input xt1 into pure noise, i.e.,
F1(xt1) → ϵ, it should diffuse an late-step input xt2 into an intermediate state of k · x0 + (1−m)ϵ.
Therefore, during training an later sampling step, we use k · x0 + (1 − m)ϵ as the intermediate
supervision target for the output from Part I, which is formulated as:

Linter = Eϵ,xt2

[
∥k · x0 + (1−m)ϵ− F1(xt2)∥2

]
(10)

In overall, DvD combines supervision on the final output (Eqn. 4) and the intermediate state (Eqn. 10).
The additional intermediate state supervision brings another substantial improvement in generation
quality, as in Table 6.

Discussion. From F1(xt2) → k ·x0+(1−m)ϵ, it is observed that the output has larger noise than the
input xt2 =

√
αt2 ·x0+

√
1− αt2 · ϵ. This comparison indicates that Part I indeed increase the noise

ratio for the early-step input but is still not able to diffuse it into pure noise (because (1−m)ϵ < ϵ).
The remaining diffusion from the intermediate state to the pure noise output is to be implemented by
the following Part II. Such a relay-to-diffuse manner (i.e., input → intermediate state → pure noise
output) aligns with the gradual characteristic of real-world diffusion process.

4 EXPERIMENTS

4.1 SETUP

Model architecture. Following the DiT framework, we base our configurations on DiT-S, DiT-B,
and DiT-XL. Our standard configuration includes a patch size of p=2. Additionally, we employ the
standardized VAE from Stable Diffusion Rombach et al. (2022) for encoding and decoding image
and latent tokens.

Training details. We perform all experiments on ImageNet-1K Russakovsky et al. (2015) at a
resolution of 256×256 pixels. During training, we utilize the AdamW optimizer Loshchilov & Hutter
(2019), setting the batch size to 256. The maximum time-step is 1000. All experiments are conducted
on 8 × A100 GPUs.

Evaluation. During the evaluation phase, We assess the scaling performance using the Frechet
Inception Distance (FID) Heusel et al. (2018), a key metric for evaluating image generative models.
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Table 1: Comparison with DiT baseline across various model sizes on the 256×256 ImageNet dataset.
DvD adopts DiT-S and DiT-B as baselines and compares the FID after 400K training steps.

Method Training Steps(k) FID-50K↓
Baseline#1 (DiT-S) Peebles & Xie (2023) 400 68.40
MDT-S Gao et al. (2023) 400 53.46
DvD-2P 400 50.74
DvD-3P 400 50.43
DvD-4P 400 48.20

Baseline#2 (DiT-B) Peebles & Xie (2023) 400 43.47
MDT-B Gao et al. (2023) 400 34.33
DvD-2P 400 31.77
DvD-3P 400 31.56
DvD-4P 400 30.29

Table 2: Comparison with DiT baseline across various model sizes on the 256×256 ImageNet dataset.
DvD uses the DiT-XL as the baseline.

Method Cost(Iter×BS) FID-50K↓
VQGAN Esser et al. (2021) - 15.78
BigGAN-deep Brock et al. (2019) - 6.95
I-DDPM Nichol & Dhariwal (2021) - 12.26
Baseline#3 (DiT-XL) Peebles & Xie (2023) 400k×256 19.47
MDT-XL Gao et al. (2023) 400k×256 16.42
DvD-2P 400k×256 16.09
DvD-3P 400k×256 16.01
DvD-4P 400k×256 15.74
Baseline#3 (DiT-XL) Peebles & Xie (2023) 7000k×256 9.62
MaskDiT-XL Zheng et al. (2024) 1300k×256 12.15
MDT-XL Gao et al. (2023) 1300k×256 9.60
MDT-XL Gao et al. (2023) 2500k×256 7.41
MDT-XL Gao et al. (2023) 3500k×256 6.46
DvD-2P 1300k×256 7.43
DvD-2P 2500k×256 5.58
DvD-2P 3500k×256 5.00

In line with established practices Peebles & Xie (2023); Gao et al. (2023), we compare our results to
previous studies by reporting FID-50K scores. We utilizie the ADM’s TensorFlow evaluation suite
for measurement and also evaluate the Inception Score, sFID, and Precision/Recall.

4.2 MAIN RESULTS

DvD is evaluated on the ImageNet-1K Russakovsky et al. (2015) dataset. As shown in Table 1,
we compare DvD with DiT-S and DiT-B. We employ three partitioning strategies for use in DvD,
resulting in DvD-2P, DvD-3P, and DvD-4P, where time-steps are partitioned into 2, 3, and 4 intervals,
respectively. The results in Table 1 lead to two key observations:

1) DvD consistently improves performance across all baselines. For example, under 400K training
steps, DvD-2P improves DiT-S by 17.66 (68.40→50.74 ) and improves DiT-B by 11.7 (43.47→31.77).
When using finer-grained partitions (i.e., DvD-3P, DvD-4P), the performance of DvD continues to
improve. For example, based on the DiT-S baseline, DvD-4P further improves the performance of
DvD-2P from 50.74 to 48.20.

2) DvD demonstrates competitive performance. Notably, while the state-of-the-art method (MDT)
leverages additional mask embeddings and incorporates a suite of best practices, DvD-4P surpasses
MDT-B by 4.04, achieving an score of 30.29.

As shown in Table 2, We adopt DiT-XL as a strong baseline and compare DvD with state-of-the-art
methods. The results further confirm the effectiveness. For example, after 400K training steps,
DvD-2P improves DiT-XL by 3.38, achieving an FID of 16.09. DvD-4P further improves DvD-2P,
improving the FID from 16.09 to 15.74, yielding improvement of 0.35. Moreover, DvD-2P (under
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Table 3: DvD is compatible with classifier-free guidance and brings consistent improvements.

Method Cost (Iter×BS) FID↓ sFID↓ IS↑ Precision ↑ Recall ↑
DiT-XL-CFG 7000k×256 2.27 4.60 278.2 0.83 0.57
DvD-CFG 4200k×256 2.06 4.52 283.0 0.83 0.60

Table 4: Comparison of DvD and DiT with DDIM. Both methods are trained for 400K steps.

Method Training steps Sampling steps FID ↓
DiT-S (DDIM) 400K 100 69.90
DvD-2P (DDIM) 400K 100 52.61
DiT-S (DDIM) 400K 50 70.85
DvD-2P (DDIM) 400K 50 54.00

2500K training steps) improves DiT-XL (under 7000K training steps) by 4.04 and achieves the score
of 5.58. Compared with recent state-of-the-art method MDT-XL, DvD-2P surpasses MDT-XL and
achieves 5.00 FID under 3500K steps. Table 3 validates DvD compatibility with Classifier-Free
Guidance Ho & Salimans (2022), a well-established technique that improves diffusion models. DvD-
CFG (trained for 4200K steps) surpasses DiT-XL-CFG (trained for 7000K steps) by 0.21, achieving
a score of 2.06.

Table 5: Comparison of Depth-varying Diffu-
sion with different varying strategies.

Method Time-steps Layers Flops(G)

DvD-2P1 [1000, 500] 6 16.40
DvD-2P2 [500, 0] 12

DvD-3P1 [1000, 750] 4
16.40DvD-3P2 [750, 500] 8

DvD-3P3 [500, 0] 12

DvD-4P1 [1000, 875] 3

16.40DvD-4P2 [875, 750] 5
DvD-4P3 [750, 500] 8
DvD-4P4 [500, 0] 12

Table 6: Investigation on Depth-varying
scheme and simultaneous supervision scheme.

Method Step(K) FID ↓

DiT-B (baseline) 400 43.47

DvD-2P w/o simu-loss 400 35.63

DvD-2P (full) 400 31.77

DvD-3P w/o simu-loss 400 34.76

DvD-3P (full) 400 31.56

DvD-4P w/o simu-loss 400 34.62

DvD-4P (full) 400 30.29

4.3 ABLATION STUDIES

Ablation on the initial two-interval partition scenario. We investigate different partitioning
strategies for the initial two-interval scenario. As shown in Fig. 3, we adopt DiT-B as baseline and
select threshold timestep for dividing entire time-steps into two intervals. Additionally, we assign
different model depths to the early-step interval to observe the performance variations. The results
indicate that dividing the time-steps at T/2 and assigning half of the layers L/2 to the early-step
interval achieves the best.

Analysis on fine-grained Depth-varying scheme. To achieve a more fine-grained partition, DvD
recursively divides the first time-step interval into two even sub-intervals. For instance, to achieve
three intervals, DvD divides [T, T/2] into [T, 3T/4] plus [3T/4, T/2], and maintains the late interval
[T/2, 0] unchanged. According to the Eqn. 2, we design three partitioning schemes, δ is a hyper-
parameter and is computed from the initial two-interval scenario as (Dright −Dleft)/2− 1. We list
some partitioning results of DvD in Table 5, based on DiT-B baseline. It shows that DvD consistently
reduces the overall inference cost by 25%, decreasing Flops(G) from 21.90 to 16.40 across all settings
compared to the baseline. While using more fine-grained partition maintains the same efficiency,
experimental results in Table 6 show that it slightly improves the generation quality.

In addition to the empirical improvements on the testing data, Fig. 4 further reveals that DvD enables
the deep model to better fit the training data. Compared to the baseline model DiT-B, DvD exhibits
lower prediction error across all time-steps.
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Figure 3: Comparison of different initial vary-
ing strategies for two-intervals.

Figure 4: The normalized prediction error be-
tween DvD and DiT on training data.

Figure 5: Images generated by DvD based on DiT-XL.

Comparison of DvD and baseline model with DDIM. Since both DDPM and DDIM generate
images by starting from random noise and iteratively denoising through multiple sampling steps, at
each step predicting the noise in their input and then removing it, we also evaluate the performance of
DvD and DiT-S using the DDIM sampling method. As shown in Table 4, when applying DDIM, DvD
improves DiT-S, improving its score from 69.9 to 52.61 with 100 sampling steps. Even with fewer
sampling steps (i.e., 50 steps), DvD continues to enhance DiT-S, improving the FID from 70.85 to
54. These results demonstrate that DvD is adaptable to different sampling methods and consistently
yields performance improvements.

Evaluation on important configurations. As shown in Table 6, Depth-varying scheme consistently
improves performance. For example, compared to baseline DiT-B, the results of DvD-2P, DvD-
3P, and DvD-4P demonstrate improvements of +7.84, +8.71, and +8.85. Moreover, simultaneous
supervision also enhances performance. For example, incorporating simultaneous supervision into
DvD-2P, DvD-3P, and DvD-4P leads to performance gains of +3.86, +3.20, and +4.33, respectively.

Visualization. We visualize images generated by the proposed DvD-XL to intuitively show its
generation quality in Fig. 5.

5 CONCLUSION

This paper focuses on the mechanism by which the diffusion model estimates the noise within its
input at individual step and introduces a hypothesis, i.e., diffusion model layers exhibit diffusive
behavior for noise prediction. Guided by this hypothesis, we exploit two characteristics: 1) different
sampling steps require different diffusion rates, and 2) the input should reach a specific intermediate
state before reaching the pure noise prediction. Based on these insights, we propose Depth-varying
Diffusion (DvD), a method that progressively increases its model depth across sampling steps in
alignment with the growing diffusion rates and investigate the intermediate states of the input as
it transitions to pure noise using a Taylor expansion. During training, we enforce simultaneous
supervision on both intermediate states and final outputs. Experimental results consistently validate
the effectiveness of our proposed DvD, demonstrating substantial improvements in generation quality.
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ETHICS STATEMENT

This paper improves both image generation quality and inference speed, making it applicable to
more versatile image generation scenarios. This paper utilizes open dataset to train and evaluate
the performance. We aim to further enhance the generalization of this method and reduce potential
problems.

REPRODUCIBILITY STATEMENT

The DvD is reproducible. In the main text, we describe the utilized datasets in DvD, i.e., ImageNet.
We provide the details about the experimental implementation, the proof of the proposed remark and
the analysis of some hyper parameters in appendix.
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A APPENDIX

In the appendix, we introduce more details that are not described in the main text. In SectionA.1,
we provide more details of the Depth-varying strategy with additional baselines. In SectionA.2, we
compare the convergence speed between DvD and DiT. In SectionA.3, we provide further analysis of
the simultaneous supervision strategy. In SectionA.4, we illustrate more visualizations. In SectionA.5,
we introduce the use of Large Language Models.

A.1 MORE DETAILS OF DEPTH ALLOCATION STRATEGY

Depth-varying strategy based on DiT-S. As shown in Table A1, we use DiT-S as the baseline and
list three partitioning strategies: DvD-2P, DvD-3P, and DvD-4P. We calculate the sub-Flops of the
model at each time-step interval and report their average across all time-steps as the overall Flops.
Compared to DiT-S, DvD reduces the Flops from 5.50 to 4.10 (a 25% reduction), while the Flops
remain identical across all partitioning strategies.

Table A1: Comparison of Depth-varying Diffusion with different time-step partitioning strategies
based on DiT-S.

Method Time-steps Layers sub-Flops(G) Flops(G)

DiT-S [1000, 0] 12 5.50 5.50

DvD-2P1 [1000, 500] 6 2.75 4.10
DvD-2P2 [500, 0] 12 5.50

DvD-3P1 [1000, 750] 4 1.83
4.10DvD-3P2 [750, 500] 8 3.66

DvD-3P3 [500, 0] 12 5.50

DvD-4P1 [1000, 875] 3 1.38

4.10DvD-4P2 [875, 750] 5 2.29
DvD-4P3 [750, 500] 8 3.66
DvD-4P4 [500, 0] 12 5.50

Depth-varying strategy based on DiT-XL. We present the partitioning results of DvD based on
DiT-XL in Table A2. The time-steps division follows the same strategy as applied to DiT-B / S , and
the layer assignment for each time-step interval is derived from Eqn.2 in the main text. Compared to
DiT-XL, DvD reduces the Flops from 114.78 to 86.10, achieving a reduction of 28.68, and the Flops
remain identical across all partitioning strategies.

Table A2: Comparison of Depth-varying Diffusion with different time-step partitioning strategies
based on DiT-XL.

Method Time-steps Layers sub-Flops(G) Flops(G)

DiT-XL [1000, 0] 12 114.78 114.78

DvD-2P1 [1000, 500] 6 57.39 86.10
DvD-2P2 [500, 0] 12 114.78

DvD-3P1 [1000, 750] 4 32.80
86.10DvD-3P2 [750, 500] 8 81.99

DvD-3P3 [500, 0] 12 114.78

DvD-4P1 [1000, 875] 3 12.31

86.10DvD-4P2 [875, 750] 5 53.30
DvD-4P3 [750, 500] 8 81.99
DvD-4P4 [500, 0] 12 114.78
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Figure A1: Comparison of training convergence speed between DiT and DvD.

Figure A2: More Images generated by DvD based on DiT-XL.

A.2 CONVERGENCE SPEED.

We compare the convergence speed from 0 to 400K training steps between DvD and baselines. The
batch size is set to 256 for fair comparisons, and the maximum training step is 400K. As shown
in Fig A1, DvD consistently improves training convergence across all DiT-S, DiT-B, and DiT-XL
baselines. For example, based on the DiT-B, DvD-2P achieves a FID of 45.1 at 200K training steps,
nearly twice as fast compared to baseline.

A.3 SIMULTANEOUS SUPERVISION STRATEGY

In Section.3.3 of the main text, we use the two-part implementation as an example to derive inter-
mediate states. For a more fine-grained partition scenario in which the total time-steps are divided
into N intervals, we denote the inputs at the n-th and i-th time-steps as xtn and xti (with tn < ti),
respectively, and have:

xti =
√
αti · x0 +

√
1− αti · ϵ

xtn =
√
αtn · x0 +

√
1− αtn · ϵ

(11)
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in which αtn > αti are two coefficients. Compared to the input xtn , the input xti contains less image
signal and more noise since xti is closer to the initial sampling state (ti > tn). Their qualitative
relationship can be expressed as:

xti = xtn − k · x0 +m · ϵ (12)
where

k = (
√
αtn −

√
αti),m = (

√
1− αti −

√
1− αtn) (13)

Given that Fi ◦ · · · ◦ F1(xti) → ϵ, we aim to determine the value of Fi ◦ · · · ◦ F1(xtn). To achieve
this, we apply a Taylor expansion to Fi ◦ · · · ◦ F1(xtn), resulting in:

Fi ◦ · · · ◦ F1(xtn)

= Fi ◦ · · · ◦ F1(xti − (m · ϵ− k · x0))

= Fi ◦ · · · ◦ F1(xti)−∇Fi ◦ · · · ◦ F1(xti) · (m · ϵ− k · x0)

− ∇2Fi ◦ · · · ◦ F1(xti)

2
· (m · ϵ− k · x0)

2 + · · ·

= k · ∇Fi ◦ · · · ◦ F1(xti) · x0 + (1−∇Fi ◦ · · · ◦ F1(xti) ·m)ϵ

− ∇2Fi ◦ · · · ◦ F1(xti)

2
· (m · ϵ− k · x0)

2 + · · ·

(14)

We omit higher-order gradient terms and approximate the output of Fi ◦ · · · ◦ F1(xtn) using Fi ◦
· · · ◦ F1(xti) and its gradient ∇Fi ◦ · · · ◦ F1(xti). Therefore, we simplify Eqn. 14 to:

Fi ◦ · · · ◦ F1(xtn) → k · x0 + (1−m)ϵ (15)

Finally, we obtain the i-th intermediate state of xtn in the multi-parts scenario.

A.4 MORE VISUALIZATION RESULTS

We illustrate more images (uncurated) generated by Depth-varying-XL in Figure A2. The class labels
are “golden retriever” (207), “valley”(979), “loggerhead turtle” (33) and “cliff drop-off” (972). The
image resolution is 256×256.

A.5 USE OF LARGE LANGUAGE MODELS

We use the Large Language Models to refine and polish the wording and grammar of the paper.
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