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Abstract

Causal inference is widely applied in the social sciences to analyze the effects of a
specific treatment. Causal inference tools rely on uncovering the underlying causal
graph in advance, a process known as causal discovery. Traditionally, constructing
causal graphs has depended on expert domain knowledge; however, the rich knowl-
edge embedded in large language models (LLMs) offers a promising alternative.
Nevertheless, LLMs alone perform poorly in inferring complete causal graphs,
primarily because they fail to account for the directed acyclic nature of causal
graphs. To address this limitation, we propose a novel approach that combines
LLMs with statistical causal discovery algorithms to better leverage the expert-like
capabilities of LLMs. Experimental results demonstrate that the proposed method
significantly improves the accuracy of causal ordering and effectively reduces
errors in downstream causal effect estimation tasks.

1 Introduction

Estimating the causal effects of variables on an outcome is a fundamental challenge in diverse
scientific disciplines, including epidemiology, economics, and atmospheric sciences. Inferring causal
effects from observational data, however, remains a difficult task due to the dependence of effect
estimates on the assumed causal graph. Although significant progress has been made in graph
discovery algorithms, particularly in specific parametric contexts (Shimizu et al. (2006)Hoyer et al.
(2008)Hyvärinen et al. (2010)Rolland et al. (2022)), studies on real-world datasets, such as those in
atmospheric science and healthcare (Huang et al. (2021)Tu et al. (2019)), underscore the persistent
challenges of reliably inferring causal graphs from data (Reisach et al. (2021)). Consequently, causal
effect inference studies often depend on human experts to provide the causal graph.

In this paper, we propose a novel approach that leverages Large Language Models (LLMs) as virtual
domain experts to automate the extraction of causal order, an essential component for causal effect
inference. Building on the observation that the topological causal order of variables is sufficient
for effect inference (Proposition 4.1), we argue that eliciting causal order is a more tractable and
appropriate question for experts, whether human or machine. Unlike the identification of direct graph
edges, which depends on the inclusion of other variables to account for direct and indirect effects,
causal order depends solely on the variables in question.

For instance, consider the data-generating process: lung cancerß doctor visit ß positive X-ray. An
expert might confirm a direct causal edge from lung cancer to positive X-ray when considered in
isolation. However, when the observed variable set includes doctor visit, the correct graph excludes
a direct edge between lung cancer and positive X-ray, instead reflecting mediation via doctor visit.
Importantly, the causal order lung cancer < positive X-ray remains consistent across both scenarios.

This distinction has critical implications for using LLMs to infer graph structures. Existing methods
typically prompt LLMs to evaluate causal edges pairwise (Kıcıman et al. (2023)Long et al. (2022)).
However, as demonstrated above, the accuracy of pairwise prompts is unreliable, as the response
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depends on the broader variable set under consideration. Including all other variables in a prompt
is computationally impractical for large graphs. Consequently, we argue that instead of attempting
to infer the full graph structure, a more feasible and effective approach is to focus on inferring the
causal order—a simpler and locally determined property that is unaffected by the availability of
other variables. Moreover, causal order is sufficient for downstream tasks such as effect inference,
obviating the need for the full graph structure.

To address these challenges, we introduce a triplet-based prompting strategy that outperforms pairwise
prompting methods (Kıcıman et al. (2023)Willig et al. (2022)Long et al. (2022)) in determining
causal order. The triplet prompt also reduces the likelihood of introducing cycles into the inferred
graph.

Recognizing potential failure modes of LLMs, we propose two algorithms to integrate LLM-inferred
causal order with existing graph discovery techniques. The first algorithm uses LLM-derived causal
order to guide a constraint-based algorithm (e.g., PC) in orienting undirected edges, while the second
incorporates LLM causal order as a prior in a score-based algorithm like CaMML. Our empirical
evaluation on six benchmark datasets demonstrates that these LLM-enhanced algorithms significantly
outperform baseline causal discovery methods in inferring causal order.

Our contributions are summarized as follows:

• We propose a novel triplet-based prompting strategy for estimating causal order using LLMs,
offering a more reliable alternative to inferring graph structures directly.

• We introduce algorithms that combine LLM-derived causal order with existing discovery
methods, enhancing their performance in causal inference tasks.

• Through comprehensive experiments, we show that our approach achieves superior results
in causal order inference compared to existing methods.

2 Related Work

Historically, the fields of causal discovery (Glymour et al. (2019)Rolland et al. (2022)Teyssier and
Koller (2005)Zheng et al. (2018)Lachapelle et al. (2020)) and causal effect inference (Pearl (2009))
have been studied independently. While conventional approaches rely on learning a full causal graph
for effect inference (Hoyer et al. (2008)Mooij et al. (2016)Maathuis et al. (2010)Gupta et al. (2022)),
our work demonstrates that this step can be simplified: causal order alone is sufficient for effect
inference, eliminating the need to infer the entire graph structure.

Our study is closely related to recent efforts in Large Language Model (LLM)-based, knowledge-
driven causal discovery (Kıcıman et al. (2023)Ban et al. (2023)Long et al. (2022)Willig et al. (2022)).
Unlike traditional causal discovery algorithms that rely on statistical patterns in data, LLM-based
methods leverage metadata, such as variable names, to predict causal structures. These approaches
typically employ edge-wise prompts for each pair of variables, aggregating the results to infer causal
graphs (Kıcıman et al. (2023)Long et al. (2023)Willig et al. (2022)). However, we argue that this
approach has a fundamental limitation: the existence of an edge may depend on the presence or
absence of other variables in the dataset. As such, causal order—being independent of other variable
sets—is a more robust and suitable output to elicit from LLMs. To improve causal order inference,
we propose a novel triplet-based prompting strategy, which represents an advance over pairwise
prompting methods and may also be of broader interest for prompting LLMs in causal reasoning
tasks.

Recognizing the potential for errors in LLM outputs, we propose a more principled approach that
integrates LLMs with established causal discovery algorithms. While Long Long et al. (2023) enhance
constraint-based algorithms for full graph discovery using LLM outputs, and Ban Ban et al. (2023)
utilize LLMs as priors for score-based causal discovery methods, we extend this paradigm specifically
to causal order estimation. To this end, we present LLM-adapted versions of both constraint-based
and score-based algorithms, thereby combining the strengths of LLM-driven insights and data-driven
discovery techniques.
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Figure 1: the method workflow

3 Problem Formulation

Let G(X,E) represent a causal directed acyclic graph (DAG) consisting of a set of variables X =
{X1, . . . , Xn} and a set of directed edges E among the variables in X . A directed edge Xi → Xj ∈
E signifies the direct causal influence of the variable Xi on the variable Xj . Define pa(Xi) = {Xk |
Xk → Xi} as the set of parents of Xi, and de(Xi) = {Xk | Xk ← · · · ← Xi} as the set of its
descendants. A sequence π of variables in X is called a topological order if and only if for every edge
Xi → Xj ∈ E, πi < πj . This work focuses on a downstream application of causal graph discovery:
causal effect inference. The average causal effect (ACE) of a variable Xi on another variable Xj is
defined asACEXj |Xi

= E[Xj | do(Xi = xi)] − E[Xj | do(Xi = x∗
i )], where Xi is referred to as

the treatment variable, and Xj is the target variable. The operator do(Xi = xi) denotes an external
intervention that sets Xi to the value xi. The interventional expectation E[Xj | do(Xi = xi)] differs
from the conditional expectation E[Xj | Xi = xi] as the former reflects the effects of actively
setting Xi, rather than conditioning on its observed value. To estimate E[Xj | do(Xi = xi)] from
observational data, the back-door adjustment formula is employed. In a given DAG G, a set of
variables Z satisfies the back-door criterion relative to the treatment and target pair (Xi, Xj) if:

(i) No variable in Z is a descendant of Xi, and

(ii) Z blocks every path between Xi and Xj that contains an arrow pointing into Xi.

Here, a path in a causal DAG is defined as a sequence of unique vertices Xi, Xi+1, . . . , Xj where
each consecutive pair (Xk, Xk+1) is connected by a directed edge (Xk → Xk+1 or Xk+1 → Xk). If
a set of variables Z satisfies the back-door criterion relative to (Xi, Xj), the interventional expectation
E[Xj | do(Xi = xi)] can be computed using the formula as established in Theorem 3.3.2 of Pearl
(2009) E[Xj | do(Xi = xi)] = Ez∼Z

[
E[Xj | Xi = xi, Z = z]

]
. To ensure the identifiability of

causal effects, we assume the absence of latent confounding variables.

4 LLM-based Causal Discovery Algorithms

4.1 Method Overview

The process proceeds as follows:

• Nodes to Triplets. The initial set of variables (e.g., {A,B,C,D, . . .}) is first decomposed
into all possible three-variable combinations or triplets, such as (A,B,C), (B,C,D), and
so forth. For each triplet, a language model (e.g., GPT-3.5-Turbo) generates a local causal
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subgraph by identifying the pairwise and conditional causal relationships among the three
variables.

• Triplet Subgraphs. The resulting causal subgraphs for all triplets are collected, each
specifying edges (e.g., A→ B, B → C) derived from the triplet structure. These subgraphs
serve as building blocks for global causal inference.

• Majority Voting for Edge Orientation. To integrate the triplet-level causal relationships
into a global structure, a majority voting mechanism is employed to resolve the directionality
of edges between pairs of nodes. For instance, if A → B is inferred four times, A ← B
twice, and "no connection" once, the edge A → B is selected. In cases where ties occur
(e.g., equal votes for C → D and C ← D), GPT-4 is used as an expert system to break the
tie and determine the final edge orientation.

• Getting Final Causal Order. Once edge directions are resolved through majority voting
and expert intervention, a global causal order of variables (e.g., A,B,C,D) is determined.
This order corresponds to a fully oriented DAG, where edges indicate causal relationships
between variables.

• Using Causal Order as Prior for Discovery Algorithms. The inferred causal order serves
as a prior for classical causal discovery algorithms, such as the PC algorithm or CaMML,
which further refine the causal structure using observational data. Specifically, the causal
order helps these algorithms constrain the search space and identify the most plausible
causal graph.

• Using Final Graph for Downstream Causal Effect Inference. The resulting causal graph
is then utilized for downstream causal inference tasks, such as estimating causal effects
of treatments on outcomes. Using back-door adjustment sets, valid estimations of causal
effects are ensured, enabling reliable causal reasoning.

4.2 Prompt Technique Based on Triplets

Some existing literature has explored the use of LLMs as virtual experts to perform pair-wise causal
discovery tasks. However, this approach cannot be directly applied to causal discovery. The reason is
that the pair-wise method may lead to cycles in the resulting causal graph. In this paper, we propose a
triplet-based prompt method to reduce the likelihood of cycle generation. By introducing the triplet
structure, we not only clarify the causal relationships between variables but also effectively limit the
potential circular dependencies that may arise during the inference process, thereby improving the
accuracy and validity of the causal graph.

After splitting the nodes into triplets, we use a large model to simultaneously determine the relation-
ships among the three nodes within each triplet. After obtaining the results for each triplet, we apply
the majority principle for each edge, selecting the most frequent result (A influences B, B influences
A, or no causal relationship between A and B). Finally, we determine the causal order based on the
causal graph we obtained. During this process, the triplet structure effectively reduces the generation
of cyclic dependencies and ensures the correctness of causal inference. Through this approach, we
are able to obtain a more consistent and reliable causal graph, and further establish the causal order
of the variables, providing a solid foundation for subsequent causal reasoning tasks. We adopt the
ICL prompting strategy, and the template for this strategy is shown in the figure.
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Figure 2: Prompt Template

4.3 Causal discovery with given causal order

Although LLMs ensure a certain level of predictive accuracy and the use of the triplet method
effectively avoids the occurrence of cycles, this approach does not distinguish between direct and
indirect effects. In contrast, some traditional causal discovery algorithms based on observation data
can infer the causal relationships between variables from the statistical distributions of the data.
We adopt causal order as an intermediate bridge, and by introducing causal order, we can better
differentiate between direct and indirect effects, providing a clear path for further causal inference.
This method combines the powerful language understanding capabilities of LLMs with the data-
driven reasoning advantages of traditional algorithms, thus enabling more precise identification of
causal relationships.

In this paper, we adopt the CAM algorithm. The underlying assumption of the CAM algorithm is
that the link functions fi have an additive structure. Following previous work, we perform sparse
regression on each component and use hypothesis testing for additive models to decide on the
existence of edges. This specific pruning process has already been mentioned in earlier algorithms.
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In other words, the CAM algorithm is a pruning method that gradually eliminates impossible causal
edges in a graph based on observation data. In the original CAM algorithm, the pruning starts from
a fully connected graph, where all nodes are connected. However, given the causal order, we can
initialize the pruning process with a semi-connected graph according to the causal order.

4.4 The Algorithm

Algorithm 1 Combining CAM and LLM to get π̂ for a given set of variables.
Require: observation data D, variables {X1, . . . , Xn}, Expert E , CAM parameter θ
Ensure: Estimated topological order π̂ of {X1, . . . , Xn}.

1: Step (I) Ĝ← E(X1, . . . , Xn)

2: Step (II) estimated causal orderπ̂← Ĝ

3: Step (III) Ĝ← CAM(π̂|θ)
4: Step (IV) π̂ ← topological ordering of Ĝ
5: return π̂

5 Experiments and Results

5.1 Metric

We use the topological divergence between an estimated topological order π̂ and the real graph
adjacency matrix A as the metric. It’s defined as Dtop(π̂, A) =

∑n
i=1

∑
j:π̂i>π̂j

Aij ;

Below, we show that Dtop is a valid metric to check the correctness of the estimated causal effects.
That is Dtop(π̂, A) = 0 is equivalent to obtaining the correct back-door adjustment set from π̂.We
start with the fact that the causal order is sufficient to find a valid back-door set.

Proposition 5.1 For an estimated topological order π̂ and a true topological order π of a causal
DAG G with the corresponding adjacency matrix A, Dtop(π̂, A) = 0 iff Z = {Xk|π̂k < π̂i} is a
valid adjustment set relative to (Xi, Xj), ∀πi < πj .

Proof. The statement of proposition is of the form A ⇔ B with A being "Dtop(π̂, A) = 0" and B
being "Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to (Xi, Xj), ∀i, j".We prove A⇔ B by
proving (i) A⇒ B and (ii) B ⇒ A.

(i) Proof of A⇒ B: If Dtop(π̂, A) = 0, for all pairs of nodes (Xi, Xj), we have π̂i < π̂j whenever
πi < πj . That is, causal order in estimated graph is same that of the causal order in true graph. Hence,
Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to (Xi, Xj), ∀i, j.

(ii) Proof of B ⇒ A: we prove the logical equivalent form of B ⇒ A i.e., ¬A ⇒ ¬B, the
contrapositive of B ⇒ A. To this end, assume Dtop(π̂, A) ̸= 0, then there will be at least one edge
Xi → Xj that cannot be oriented correctly due to the estimated topological order π̂. i.e., π̂j < π̂i

but πj > πi. Hence, to find the causal effect of Xi on Xl; l ̸= j, Xj is included in the back-door
adjustment set Z relative to (Xi, Xl). Adding Xj to Z renders Z an invalid adjustment set because it
violates the condition (i).

At the same time, our paper also uses another commonly used metric, SHD(structural hamming
distance), for comparison. In our subsequent experiments, we found that in terms of SHD performance,
our algorithm exhibits relatively mediocre performance. However, it still outperforms other algorithms.
SHD measures how many edge changes are needed to transform the estimated causal graph into the
true causal graph.
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6 Experiments and Results

6.1 causal discovery comparison

To evaluate the performance of LLM-based algorithms in inferring causal order, we conducted
experiments on several benchmark datasets. These include datasets from the Bayesian Network
repository (Scutari and Denis (2014)), such as Earthquake, Cancer, Survey, Asia, Asia-M (the
modified version of Asia), and Child. Additionally, we selected a medium-sized subset graph from
the Neuropathic dataset (Tu et al. (2019)), which is used for pain diagnosis. These datasets cover a
range of different applications, allowing us to comprehensively assess the accuracy and robustness of
the LLM algorithms in various complex causal inference tasks.

Table 1: Mean and std dev of Dtop

Dataset PC SCORE ICA LINGAM Direct LINGAM NOTEARS Ours

N = 250

Earthquake 1.80±0.22 5.00±0.00 4.20±0.36 3.00±0.20 1.80±1.80 1.00±0.00

Cancer 0.20±0.05 5.00±0.5 5.00±0.4 1.80±0.00 3.8±0.60 1.00±0.00

Survey 5.00±0.40 4.00±0.50 5.00±0.00 8.00±0.50 3.20±0.40 0.00±0.00

Asia 3.05±0.78 1.00±0.50 3.00±0.00 4.23±0.17 2.40±0.15 0.83±0.72

Asia-M 7.15±1.33 7.00±1.18 7.80±0.88 5.27±1.01 3.44±0.48 3.00±0.00

Child 11.00±1.90 8.00±0.40 8.00±2.02 9.00±0.42 5.66±0.30 6.05±0.04

Neuropathic 9.72±0.6 5.97±0.18 3.00±0.15 10.00±0.00 9.00±0.00 1.33±0.20

N = 1000

Earthquake 1.23±0.45 3.78±0.12 3.34±0.23 2.56±0.18 1.51±0.07 0.00±0.00

Cancer 0.00±0.00 3.92±0.15 4.67±0.28 3.50±0.00 2.50±0.20 0.00±0.00

Survey 3.80±0.21 3.55±0.19 4.22±0.14 3.60±0.05 0.00±0.00 0.00±0.00

Asia 2.75±1.04 3.99±0.00 3.15±0.61 2.80±0.12 1.12±0.55 0.12±0.05

Asia-M 4.33±0.92 3.88±0.00 2.72±0.09 3.12±0.08 2.47±0.38 1.47±0.38

Child 8.92±0.95 7.99±4.00 7.09±1.48 8.64±1.01 5.56±0.43 5.88±0.43

Neuropathic 8.75±0.34 5.62±0.09 2.87±0.73 9.55±0.14 8.23±1.98 1.23±1.98

N = 10000

Earthquake 1.23±0.35 3.57±0.22 2.45±0.12 2.22±0.30 0.09±0.06 0.00±0.00

Cancer 0.00±0.00 4.12±0.08 3.27±0.14 2.95±0.09 4.23±0.16 0.00±0.00

Survey 2.45±0.22 3.78±0.13 4.12±0.09 2.67±0.18 1.09±0.15 0.00±0.00

Asia 2.04±0.33 3.97±0.05 4.15±0.08 3.89±1.22 3.67±0.37 0.02±0.00

Asia-M 1.92±0.48 2.95±0.00 2.67±0.06 3.22±0.61 2.05±0.03 1.05±0.03

Child 7.32±0.58 7.05±0.06 6.87±0.76 7.23±0.32 5.05±0.92 5.15±0.11

Neuropathic 7.84±0.15 5.08±0.22 1.21±0.00 9.34±0.29 7.08±0.32 1.08±0.32

We found that our algorithm performs optimally in most cases, except for the Child dataset. We
speculate that this is due to the inherent difficulty of the task, which may involve more complex
patterns or high noise in the data. Nevertheless, even in this case, the foundational knowledge of the
LLM allows our algorithm to perform with only a minimal gap compared to the optimal algorithm.
When considering stability, our algorithm may even be superior in some cases, particularly across
different datasets, offering more consistent and reliable results. This suggests that, even in the
face of challenges, our algorithm demonstrates strong adaptability and is able to maintain efficient
performance in various environments.

6.2 Ablation study

We first observe the number of cycles at different node counts using two prompt types: pair-wise
and triplet. By comparing these two methods, we can assess their performance in generating cycle
structures. Specifically, we examine how the number of cycles changes as the number of nodes
increases, and analyze the impact of each method on the cycle count under different node conditions.
We tested on the Neuropathic dataset.
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Figure 3: pair-wise and triplet prompts

Based on this figure, we can observe two points. The first is that triplet-based prompts can significantly
reduce the number of cycles in the image, indicating that using triplet prompts is more effective than
pair-based prompts in minimizing cycles. This may be because triplets provide more constraints,
making the system’s reasoning more stable. On the other hand, while LLMs can guide the process to
some extent and help reduce the number of cycles, the presence of cycles remains unavoidable. This
suggests that the reasoning capability of LLMs is still limited, and they cannot completely eliminate
all possible cyclic structures. Alternatively, the inherent complexity of the task and the nature of the
data might make cycle formation difficult to completely avoid.

Next, we examine the LLM-triplet and CAM algorithms, as well as the combined algorithm. We
compare their SHD (Structural Hamming Distance) values, as LLM-triplet may still result in cycles.

Dataset LLM CAM CAM+LLM
Earthquake 5 4 2

Cancer 5 4 4
Survey 5 2 2
Asia 8 2 1

Asia-M 3 6 3
Child 6 8 3

Neuropathic 8 5 3
Table 2: Ablation study

7 Conclusion

This paper explores novel approaches to leveraging Large Language Models (LLMs) for causal
inference and discovery. We propose a triplet-based prompting strategy for extracting causal order
from LLMs, demonstrating its effectiveness in causal graph discovery and causal effect estimation.
Compared to directly inferring graph structures, this approach is more reliable as it is unaffected by
other variables. Additionally, we introduce two algorithms that integrate LLM-inferred causal order
with existing graph discovery techniques, enhancing their performance in causal inference tasks.

Our experimental results show significant improvements in causal order inference compared to
traditional methods, highlighting the potential of LLMs as virtual domain experts in causal inference.
We acknowledge the limitations of LLMs, such as the inability to completely eliminate cycles.
Therefore, we combine LLMs with traditional graph discovery algorithms to further improve the
accuracy and reliability of causal inference.

In summary, our research opens new avenues for utilizing LLMs in causal inference and discovery.
Our approach not only enhances the accuracy of causal inference but also provides new insights for
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developing more effective causal discovery algorithms. We believe that as LLMs continue to evolve,
they will play an increasingly important role in the field of causal inference.
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