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ABSTRACT

Pseudo label self-training has emerged as a dominant approach to unsupervised
domain adaptation (UDA) for semantic segmentation. Despite recent advances,
this approach is susceptible to erroneous pseudo labels arising from confirma-
tion bias that ultimately leads to sub-optimal segmentation. To mitigate the effect
of noisy pseudo-labels, we propose regularising conventional self-training objec-
tives with constraints that are derived from structure-preserving modalities, such
as depth. Towards this end, we introduce a contrastive image-level objectness con-
straint that pulls the pixel representations of the same object instance closer while
pushing those from different object categories apart. To identify pixels within
an object, we subscribe to a notion of objectness derived from depth maps, that
are robust to photometric variations, as well as superpixels, that are obtained via
unsupervised clustering over the raw image space. Crucially, the objectness con-
straint is agnostic to the ground-truth semantic segmentation labels and, therefore,
remains appropriate for unsupervised adaptation settings. In this paper, we show
that our approach of leveraging multi-modal constraint improves top performing
self-training methods in various UDA benchmarks for semantic segmentation. We
make our code and data-splits available in the supplementary material.

1 INTRODUCTION

Semantic segmentation is a crucial and challenging task for such application as autonomous driving
(Zhang et al., 2020; Araslanov et al., 2021; Vu et al., 2019; Zhang et al., 2019; Hoffman et al.,
2018), where the goal is to label each pixel of a given image, according to a set of semantic classes.
In the past few years, advances in deep learning models (Chen et al., 2018) have led to impressive
performance on this task. However, an important limitation arises from the excessive cost and time
taken to annotate images at the pixel level, in order to generate training data for these deep models.
For instance, the time taken to densely annotate Cityscapes Cordts et al. (2016), a popular dataset
with 5000 images, was reported to be 1.5 hours per image. Further, a small dataset like Cityscapes
does not cover enough variations in outdoor scenes such as weather conditions and country-specific
traffic layouts that can be crucial for, e.g.,large scale deployment of autonomous vehicles. Training
models that cater to such scene variations could significantly add to the cost of annotation.

To address the annotation problem, synthetic datasets curated from 3D simulation environments like
GTA (Richter et al., 2016) and SYNTHIA (Ros et al., 2016) have been proposed as cost-effective
alternatives. While large amounts of data can be generated and automatically annotated using these
engines, there is often a significant gap in the visual characteristics of generated and real images.
Such a shift in the data domains can adversely impact the real-world performance (Tsai et al., 2018;
Hoffman et al., 2018) of a model trained on the synthetic data. This issue of domain shift, in addition
to problem of costly annotation, has motivated wide research in unsupervised domain adaptation for
semantic segmentation. Among the various domain adaptation approaches Ganin et al. (2017); Tsai
et al. (2018); Bousmalis et al. (2016a); Zou et al. (2018); Zhang et al. (2019; 2020); Araslanov et al.
(2021) proposed in the recent years, self-training has emerged as a particularly promising direction.
In the context of domain adaptation theory Ben-David et al., self-training provides a significant
edge over prior line of works Ganin et al. (2017); Tsai et al. (2018); Bousmalis et al. (2016a); Zou
et al. (2018); Hoffman et al. (2018); Shu et al. (2018) in that it can handle conditional distribution
shifts in a simple and effective manner. The basic process behind self-training based unsupervised
adaptation involves pseudo labelling (unlabelled) target data using a seed model solely trained on
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Image GT Prediction Confidence

Figure 1: Motivation for Objectness Constraints: Shows two examples of an image, its ground-truth (GT)
segmentation label, its prediction from a source-initialized model and the confidence of prediction (brighter re-
gions are more confident). The blue dashed-circles highlight the high confidence regions that are mis-classified
by the model. The goal of the our objectness constraints is to implicitly penalize such mis-classifiations

the source data. The target labels are assigned only if the model predictions exceed a predefined
threshold. Training the model further with source data augmented with the pseudo-labelled target
data ultimately improves target domain accuracy.

An important limitation of the self-training approach is its susceptibility to erroneous pseudo labels
arising from confirmation bias IJCNN (2020) of the seed model. In the context of domain adapta-
tion, the seed model is solely trained on the source domain. As a result, this model might learn to
infer semantic label based on nuisance factors specific to the source domain images that may lead to
highly confident but erroneous predictions on target domain images. For instance, if the source do-
main primarily consists of scenes captured in daylight (a nuisance factor), then bright spots on target
objects might frequently be classified as the sky, irrespective of the actual semantic label (illustration
in Figure 1). Continued training of the seed model on such spurious predictions can ultimately lead
to suboptimal target performance. We argue that in current methods, confirmation bias primarily
arises from heavy reliance on photometric cues for predicting the semantic label. However, impor-
tant structural cues that can disambiguate spurious predictions are largely overlooked. Thus, in this
work we seek to improve self-training performance by regularizing it with a constraint based on one
such cue, i.e., objectness.

Towards this end, we design a multimodal objectness constraint that is derived from depth informa-
tion and image-based clustering. Most datasets in semantic segmentation are usually accompanied
with depth maps that are aligned with the corresponding raw images. We use these maps to compute
depth histograms Dinh et al. (2014) and combine it with SLIC Achanta et al. (2012) to define su-
perpixels. These superpixels oversegment an image in a way that respects object boundaries based
on depth as well as visual similarity and thus, form the basis of our notion of objectness. Finally,
the constraint is formulated as a contrastive objective Sohn (2016); Chen et al. (2020); Khosla et al.
(2020) that pulls together pixel-wise representations of the same object instance while pushes away
those belonging to different object categories. Such a contrastive objective enforces overall object
consistency that can resolve photometric ambiguities. To facilitate contrastive learning in the target
domain, we extract complementary information from the superpixels as well as pseudo labels. As
an important feature, our contrastive objective is agnostic to target domain labels that dovetails with
the unsupervised domain adaptation setting. To summarise our contributions,

• We propose a novel objectness constraint that is derived using multi-modal information and
regularises self-training based adaptation. Given its agnostic nature to ground truth cate-
gories, such a constraint normalizes, to some extent, statistical effects of different semantic
classes based on their frequency in the source domain.

• We show that regularizing existing self-training approaches can lead to superior target do-
main performance on popular benchmarks such as GTA → Cityscapes and SYNTHIA
→ Cityscapes.

• Further, we empirically demonstrate that our proposed constraint is general enough to be
plugged into any base self-training method and improve performance.
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2 RELATED WORK

Unsupervised domain adaptation. Unsupervised domain adaptation (UDA) is of particular im-
portance in complex structured-prediction problems, such as semantic segmentation in autonomous
driving, where the domain gap between a source domain (e.g., an urban driving dataset) and tar-
get domain (real-world driving scenarios) can have devastating consequences on the efficacy of
deployed models. Several approaches have been proposed for learning domain invariant representa-
tions, e.g., through adversarial feature alignment (Ganin et al., 2017; Bousmalis et al., 2016b; Tzeng
et al., 2017), which addresses the domain gap by minimising a distance metric that characterises
the divergence between the two domains (Pan et al., 2011; Long et al., 2015; 2017; Baktashmotlagh
et al., 2013; Shalit et al., 2017; Courty et al., 2017; Si et al., 2010; Muandet et al., 2013). Problemat-
ically, such approaches address only shifts in the marginal distribution of the covariates or the labels
and, therefore, prove insufficient for handling the more complex shifts in the conditionals (Johans-
son et al., 2019; Zhao et al., 2019; Wu et al., 2019). Self-training approaches have been proposed
to induce category-awareness (Zhang et al., 2019) or cluster density-based assumptions (Shu et al.,
2018), in order to anchor or regularise conditional shift adaptation, respectively. We build upon these
works, in this paper, by jointly introducing category-awareness through the use of pseudo-labeling
strategies and regularisation through the definition of contrastive depth-based objectness constraints.

Self-training with pseudo-labels. Applications of self-supervised learning (as in self-training) have
become popular in the sphere of domain adaptation for semantic segmentation (Zou et al., 2018; Li
et al., 2019; Zhang et al., 2019). Here, pseudo-labels are assigned to observations from the target
domain, based on the semantic classes of high-confidence (e.g., the closest or least-contrastive) cat-
egory centroids (Zhang et al., 2019; Xie et al., 2018), prototypes (Chen et al., 2019), cluster centers
(Kang et al., 2019), or superpixel representations (Zhang et al., 2020) that are learned by a model
trained on the source domain. Crucially, because these approaches make use the source model for
generating pseudo-labels, they can fall prey to a confirmation bias, wherein highly-confident but
false-positive class predictions are assigned to target observations, particularly for majority classes
like ‘sky’ and ‘road’, thereby degrading the adaption performance. Moreover, despite auxiliary
modalities (e.g., depth information) being largely available in autonomous driving applications,
these approaches rely on transformations of the same modality that is being adapted, yielding vul-
nerability to the same sources of distribution shift and negative transfer (Tian et al., 2020; Tsai et al.,
2020). Stekovic et al. (2020) propose the use of depth information to register and reconcile indoor
room geometry constraints, as an anchoring basis for semantic segmentation. While we are inspired
by this work, we observe that the learned geometric constraints apply best to other indoor environ-
ments that have similar geometrical regularity as those in which the model was originally trained;
this conflicts with our focus on semantic segmentation for outdoor urban driving scenes.

Adaptation with multiple modalities. Learning and adaptation in multimodal contexts presents
an opportunity for leveraging complementarity between different views of the input space, to im-
prove model robustness and generalisability. In the context of unsupervised domain adaptation for
semantic segmentation, additional modalities (e.g., depth information) can play a crucial role in dis-
tinguishing between two types of feature variation in the primary modality used for prediction (i.e.,
RGB camera images): photometric variation and structural variation. Vu et al. (2019) propose the
use of depth as an auxiliary prediction objective, with the intention of learning structure-aware fea-
tures, combining them with the primary semantic segmentation prediction branch, then performing
adversarial adaptation on top of this fused representation. While this work shares similar underlying
motivation for our use of auxiliary information, direct fusion of multimodal context in adaptation
can yield noisy observations that are subject to shifts in the data distribution. In contrast to this
method, we propose the use of contrastive depth-based objectness constraints, which remain robust
to the photometric variation in the RGB signal, whilst alleviating concerns of distribution shift in
depth-based feature extractors or multi-task prediction heads.

3 PRELIMINARIES

We begin by introducing preliminary concepts on self-training based adaptation. These concepts
serve as a bases for introducing multi-modal constraints in Section 4 that is then used to regularise
the self-training methods. We refer to our complete framework as PAC-UDA that uses Pseudo-
labels And objectness Constraints for self-training in Unsupervised Domain Adaptation for semantic
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segmentation. Although, we propose a specific form of self-training for formalising PAC-UDA, our
regulariser can be treated as an independent module that can encompass other formulations as well
(see experiments).

Unsupervised Domain Adaptation (UDA) for Semantic Segmentation: Consider a dataset Ds =
{(xsi , ysi )}

Ns
i=1 of input-label pairs sampled from a source domain distribution, P sX×Y . The input

and label share the same spatial dimensions, H ×W , where each pixel of the label is assigned a
class c ∈ {1, . . . , C} and represented via a C dimensional one-hot encoding. We also have access
to a dataset Dt = {(xti, ·)}

Nt
i=1 sampled from a target distribution, P tX×Y where the corresponding

labels, {yti} are unobserved. Here, the target domain is separated from the source domain due to
domain shift i.e., P sX×Y 6= P tX×Y . Under such a shift, the goal of unsupervised domain adaptation
is to leverage Ds and Dt to learn a parametric model that performs well in the target domain. The
model is a composition of an encoder, Eφ : X → Z and a classifier, Gψ : Z → ZP where, Z ∈
RH×W×d represents the space of d-dimensional spatial embeddings and ZP ∈ [0, 1]H×W×C gives
the distribution over the C classes at each spatial location, where, {φ, ψ} are the model parameters.
In the recent years, a particularly effective way of learning the model parameters has been to jointly
optimize a pixel-wise classification objective on the source domain,

Lscls = −
Ns∑
i=1

H∑
l=1

W∑
m=1

C∑
c=1

ysilmc logGψ(zsilm)|c, zsilm = Eφ(xsi )|l,m (1)

and a domain adaptation objective over the source and target domains as described next.

Pseudo-label self-training (PLST): Inspired by CAG-UDA Zhang et al. (2019), we propose a
distance-based PLST method that leverages a model pretrained on labelled source data, Ds using
(4) to pseudo label unlabelled target data, Dt via confidence thresholding. To obtain pseudo labels,
we first compute class-specific prototypes, µsc using the source embeddings, z ∈ Z associated with
the pretrained encoder, Eφ0

µsc =
1

|Isc |
∑

(i,l,m)∈Isc

zsilm, Isc = {(i, l,m)| ysilmc = 1} (2)

These prototypes are then used in conjunction with a pre-defined distance metric like cosine and a
threshold, δ to assign pixel-wise pseudo labels in the unlabelled target dataset. More specifically,
let the closest prototype to the ith target embedding at spatial position (l,m) be µc such that c =
arg max
c′∈{1,...,C}

cos(ztilm, µc′), then the one-hot encoding for the corresponding pseudo label is defined

as

ỹtilmc′ =

{
1 if c′ = c and ∆

′
(ztilm)−∆

′′
(ztilm) ≥ δ

0 otherwise
(3)

Here, c′ ∈ {1, . . . , C} and the terms ∆
′
(ztilm) and ∆

′′
(ztilm) denote the cosine similarity of ztilm to

its nearest and second-nearest prototype respectively. Such confidence thresholding ensure that only
the most confident predictions contribute to successive self-training. These pseudo labels are then
used to define the self-training loss

Ltst = −
Ns∑
i=1

H∑
l=1

W∑
m=1

C∑
c′=1

ỹtilmc′ logGψ(ztilm)|c′ , ztilm = Eφ(xti)|l,m (4)

Compared to the complex multi-objective loss used inZhang et al. (2019), our self-training loss is
much simpler with just one probability based loss. Henceforth, we refer to our self-training method
as Simplified-CAG.

4 SELF-TRAINING WITH OBJECTNESS CONSTRAINTS

An important issue with the self-training scheme described in §3 is that it is usually prone to confir-
mation bias that leads to compounding errors in target model predictions due to training on spurious
pseudo labels. Such pseudo labels are the confident but mis-classified predictions on target data
made by the pretrained model. One of the reasons for erroneous pseudo labeling in semantic seg-
mentation is due to the complete reliance on input pixel intensities. For example, a model pretrained
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Figure 2: Superpixel generation: Overall pipeline for generating multi-modal superpixels (middle-column,
bottom two rows) from image and depth. Each type of unsupervised segmentation map (middle-row) is ac-
companied with a corresponding boundary map (bottom-row) overlayed on the image for clear comparison.
Multi-modal superpixels, in comparison with individual modality segments, yield segments that are most con-
sistent with actual objects.

solely on RGB inputs may misclassify a ”bright region” (high intensities in all three channels) of
a car as the sky since sky is usually bright (see Figure 1). Using such a pseudo label for subse-
quent self-training can lead the model to wrongly correlate bright regions with sky irrespective of
the ground truth class.

In order to mitigate such pitfalls, we propose to regularize self-training with an objectness constraint
that enforces pixel embeddings belonging to the same object instance to lie close to each other while
those belonging to different object categories to lie far away. The important question here is how
to define an object region consistent with an actual object. In the next section, we describe how
we extract the notion of objectness from RGB input and associated depth map that is then used to
enforce objectness in embedding space via contrastive learning.

4.1 SUPERVISION FOR OBJECTNESS CONSTRAINT

Depth: Segmentation datasets are often accompanied with depth maps registered with the RGB im-
ages. Visually, these depth maps reveal a great deal about object shapes and their area of occupancy
in a 2D scene. To formalize the notion of objectness, we assign unique labels to each object instance
such that every pixel within the object share the label. To compute this label, we first compute a his-
togram of depth values with predefined b number of bins. The range of depth of most objects in the
types of scenes we explore is much smaller than the depth range of the entire scene. This property
of objects translates into high density regions (or peaks) in the histogram. Among these peaks, the
ones with prominence Llobera (2001) above a threshold, δpeak are used as centers to cluster the his-
tograms into discrete regions with unique labels. These labels are then assigned to every pixel whose
depth values lie in the associated region. An example of the resulting depth-based segmentation is
visualized in Figure 2.

RGB: An important form of self supervision for segmentation tasks is RGB-input based clustering.
In this work, we adopt SLIC as a fast algorithm for partitioning images into multiple segments
that respect image boundaries. The SLIC method applies k-means clustering in the pixel space to
group together adjacent pixels that are visually similar. An important design decision for SLIC is the
number of segments, ks. A small ks leads to large cluster sizes that may cause pixels from distinct
objects to be grouped together, thus, violating the notion of objectness. On the other hand, a large
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ks will oversegment the scene, and hence the objects in the scene, resulting in a trivial objectness
constraint. Moreover, we found that even with the large ks, pixels from distinct objects can still be
assigned to the same segment.

Thus, to formulate a non-trivial constraint with sufficiently small ks that also respects object bound-
aries, we propose a two step multi-modal segmentation procedure that leverages both depth-based
and RGB-based segmentation. First, we obtain ks segments using SLIC over the RGB image. Then,
we partition each segment according to the depth-based segmentation resulting in structurally con-
sistent superpixels. The process, visualized in Figure 2 highlights the importance of our multimodal
approach. While on one hand, segments derived from just depth maps fail to distinguish between
objects that lie at similar depths, on the other, segments based solely on RGB-input can fail to dis-
tinguish objects even when they are at completely different depths. However, superpixels derived
from a combination of both modalities can lead to a more consistent segmentation and a effective
objectness constraint. In fact, we quantitatively verify the effectiveness in our experiments.

4.2 IMPOSING OBJECTNESS CONSTRAINT THROUGH CONTRAST

Our objectness constraint formulated using a contrastive objective that pulls pixel representations
belonging to the same object instance close to each other while pushes those belonging to different
object categories far away. We leverage both superpixels and pseudo labels to formalize the notion
of object instances and object category. Formally, we assign each pixel at a spatial location (l,m) of
an input image, xi, a superpixel index, κlm ∈ {k1, . . . , ks} that is in turn assigned a superpixel label,
lk based on a majority voting over pixel-wise pseudo labels (§3) within the superpixel. In practice,
noisy pseudo labels can lead to superpixel labeling that is inconsistent with true segmentation labels.
To minimize such inconsistencies, we introduce a threshold, τp to allow the contribution of only
those superpixel labels whose proportion of pixels with majority label as the pseudo label is greater
than τp. This results in a potentially smaller set of valid superpixels,K = {k1, . . . , ks̃} where s̃ ≤ s.

Further, we represent the kth valid superpixel using the set of corresponding pixel-wise representa-
tion as νik = 1

|Uk|
∑

(l,m)∈Uk
zilm where, Uk = {(l,m)|κlm = k}. Using the above notation we

can define the pixel-wise objectness constraint as

Ltobj(l,m) = − log

 exp(zilm · νiκlm
)∑

k∈K\{κlm}
exp(zilm · νik)

 (5)

The image-level objectness constraint is then simply Ltobj =
∑
k∈K

∑
(l,m)∈Uk

Ltobj(l,m). Finally, we

define the overall regularized self-training objective as Lpac = Lscls + αst ∗ Ltst + αobj ∗ Ltobj, where
αst, αobj are the relative weighting coefficients. Note that the objectness constraints are only com-
puted for the target domain images since we are interested in improving target domain performance
using self-training.

4.3 LEARNING AND OPTIMIZATION

To train the PAC-UDA model, we follow a stage-wise procedure similar to Zhang et al. (2019). The
initialization stage involves as two-step warmup that trains a source segmentation model using only
Lscls followed by adversarial adaptation Tsai et al. (2018) to the target domain. The self-training is
then performed in an iterative fashion, wherein each stage pseudo labels are computed using the
model from prior stage that are then used to finetune the full-model using PAC objective, Lpac.

5 EXPERIMENTS

Datasets and Evaluation Metric: We evaluate the PAC-UDA framework in two common
scenarios, GTARichter et al. (2016)→CityScapesCordts et al. (2016) and
SYNTHIARos et al. (2016)→CityScapesCordts et al. (2016). GTA5 is com-
posed of 24, 966 synthetic images with resolution 1914×1052 and has annotations for 19 classes that
are compatible with the categories in Cityscapes. Similarly, SYNTHIA consists of 9, 400 synthetic
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images of urban scenes at resolution 1280 × 760 with annotations for only 16 common categories.
Cityscapes has of 5, 000 real images and aligned depth maps of urban scenes at resolution 2048 ×
1024 and is split into three sets of 2, 975 train, 500 validation and 1, 525 test images. Of the 2, 975,
we use 2, 475 randomly selected images for self-training and remaining 500 images for validation.
We report the final test performance of our method on the 500 images of the official validation split.
The data-splits are consistent with prior works Araslanov et al. (2021); Zhang et al. (2020). The
performance metrics used are per class Intersection over Union (IoU) and mean IoU (mIoU) over all
the classes.

Base PLST methods and Architecture: The proposed PAC-UDA is a general regularization frame-
work for self-training approaches and is agnostic to the base method. As a test of generality, we eval-
uate its performance on two base methods, namely, Simplified-CAG (see §3) and SAC Araslanov
et al. (2021) that generate pseudo labels in very distinct manner. While Simplified-CAG uses a dis-
tance based thresholding to generate confident pseudo labels on the target domain, SAC relies on
multi-scale fusion of model predictions. In the case of Simplified-CAG, we use the same variant of
DeepLabv2 Chen et al. (2018) architecture Zhang et al. (2019) as the segmentation model and the
same 5-layer CNN as the discriminator adversarial warmup. However, unlike the Euclidean metric
used in Zhang et al. (2019), we adopt Cosine metric as it was found to generate more reliable pseudo-
labels. For the SAC method, we use the official implementation with DeepLabv2 architecture and
default configuration for all but one hyperparameter, GROUP SIZE (we reduce the GROUP SIZE
from default value of 4 to 2 following GPU constraints). Finally, we use the output of ASPP module
(classifier logits) in DeepLabv2 to compute the regularizer that is than weighted with αobj and added
to the SAC objective.

Implementation Details: When using Simplified-CAG as the base method, training images were
randomly resized by 1 to 1.5 times and then randomly cropped to a resolution of 1280×640. Train-
ing batch size was set to 2 for both source and target domains and batch-normalization layer weights
were frozen following GPU constraints. We initialize our PAC based self-training with the warmup
model checkpoint provided by Zhang et al. (2019) and select the best model at each self-training
stage according to our validation split of Cityscapes. We use SGD optimizer with initial learning
rate of 2.5e − 4 that is decayed by the poly policy with power 0.9. The weight decay, momentum,
αst and αobj were set to 1e− 4, 0.9, 1.0, and 1.0, respectively. Distance threshold, δ was set to 0.05.
With SAC as the base method, we initialize our PAC based self-training with the warmed up model
checkpoints released by Araslanov et al. (2021). The warmup here replaces adversarial training
(Zhang et al. (2019)) with Adaptive Batch Normalization for initial adaptation. PAC training pro-
ceeds with batch size of 4 for both source and target domain images at 1024 × 512 image resolution.
Augmented inputs are used for both segmentation self-supervised loss and PAC constraint that are
assigned a weight of 5 and 1.0 respectively. An exhaustive list of hyperparameters is presented in
the supplementary.

For both methods, we use SGD optimizer with initial learning rate of 2.5e − 4 that is then decayed
by poly policy with power 0.9 for Simplified-CAG. Weight decay and momentum is set to 5e − 4
and 0.9 respectively. The inference follows the usual procedure of a single forward pass through the
segmentation network at the original image resolution without any post-processing. Experiments
were conducted on 4×11GB RTX 2080 Ti GPUs with PyTorch implementation. Code will be made
publicly available.

5.1 MAIN RESULTS

In this section, we compare the the effect of regularization on the two self-training approaches,
Simplified-CAG and SAC* and also compare the results to prior state of the art methods. For
Simplified-CAG, we report results after single stage of self-training as they were already close to
the best performance achieved with multiple stages. Here, SAC* denotes a lightweight configuration
of the original SAC that fits within our GPU constraints.

GTA→CityScapes (Table 1): In the case of Simplified-CAG, our PAC regularization improves
the mIoU of the base method by a significant margin of 1.4% and outperforms it in 16 out of 19 class-
wise IoUs. In the case, of SAC*, our regularization improves the mIoU of the base method by 0.6%
and outperforms it in 13 of the 19, sometimes with significant margin (upto 12.2%). Compared to
recent works, our SAC*+PAC method outperforms top-performing approaches like IAST Mei et al.
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mIoU

AdvEnt Vu et al. (2018) 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
DISE Chang et al. (2019) 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4

Cycada Hoffman et al. (2018) 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
BLF Li et al. (2019) 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

CAG-UDA Zhang et al. (2019) 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
PyCDA† Lian et al. 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

CD-AM Yang et al. (2021) 91.3 46.0 84.5 34.4 29.7 32.6 35.8 36.4 84.5 43.2 83.0 60.0 32.2 83.2 35.0 46.7 0.0 33.7 42.2 49.2
FADA Wang et al. 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2

FDA Yang & Soatto (2020) 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
SA-I2I Musto & Zinelli (2020) 91.2 43.3 85.2 38.6 25.9 34.7 41.3 41.0 85.5 46.0 86.5 61.7 33.8 85.5 34.4 48.7 0.0 36.1 37.8 50.4

PIT Lv et al. (2020) 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
IAST Mei et al. (2020) 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5

RPT† Zhang et al. (2020) 89.2 43.3 86.1 39.5 29.9 40.2 49.6 33.1 87.4 38.5 86.0 64.4 25.1 88.5 36.6 45.8 23.9 36.5 56.8 52.6
SACAraslanov et al. (2021) 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8

Simplified-CAG†† 87.0 44.6 82.9 32.1 35.7 40.6 38.9 45.5 82.6 23.5 78.7 64.0 27.2 84.4 17.5 34.8 35.8 26.7 32.8 48.2
Simplified-CAG†† + PAC (ours) 86.3 45.7 84.5 30.5 35.5 38.9 40.3 49.9 86.0 33.5 81.1 64.1 25.5 84.5 21.3 32.9 36.3 26.7 40.0 49.6

SAC* 89.9 54.0 86.2 37.8 28.9 45.9 46.9 47.7 88.0 44.8 85.5 66.4 30.3 88.6 50.5 54.5 1.5 17.0 39.3 52.8
SAC* + PAC (ours) 93.3 63.6 87.2 42.0 25.4 44.9 49.0 50.6 88.1 45.2 87.6 64.0 28.1 83.6 37.5 43.9 13.7 20.1 46.2 53.4

Table 1: GTA → Cityscapes results: IoU (per-class and mean) comparison of our PAC-UDA with prior
works. †† denotes the use of DeepLabV2 variant introduced by Zhang et al. (2019), † denotes the use of PSPNet
Zhao et al. (2017), * denotes a different configuration (batch size = 4) than the original SAC method (batch size
= 8). All other methods use DeepLabV2Chen et al. (2018) architecture.
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DCAN Wu et al. (2018) 82.8 36.4 75.7 5.1 0.1 25.8 8.0 18.7 74.7 76.9 51.1 15.9 77.7 24.8 4.1 37.3 38.4
DISE Chang et al. (2019) 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5
AdvEnt Vu et al. (2018) 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2

CAG-UDA Zhang et al. (2019) 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5
PIT Lv et al. (2020) 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 44.0
PyCDA† Lian et al. 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7
FADA Wang et al. 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2

IAST Mei et al. (2020) 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8
RPT† Zhang et al. (2020) 88.9 46.5 84.5 15.1 0.5 38.5 39.5 30.1 85.9 85.8 59.8 26.1 88.1 46.8 27.7 56.1 51.2

SAC Araslanov et al. (2021) 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 52.6

Simplified-CAG†† 87.0 41.0 79.0 9.0 1.0 34.0 15.0 11.0 81.0 81.0 55.0 16.0 77.0 17.0 2.0 47.0 40.8
Simplified-CAG†† + PAC (ours) 87.0 42.0 80.0 12.0 3.0 30.0 17.0 17.0 80.0 88.0 57.0 5.0 75.0 20.0 1.0 52.0 41.7

SAC* 91.7 52.7 85.1 22.6 1.5 42.2 44.1 30.9 82.5 73.8 63.0 20.9 84.9 29.5 26.9 52.2 50.3
SAC* + PAC (ours) 83.2 40.5 85.4 30.0 2.0 43.0 42.2 33.8 86.3 89.8 65.3 33.5 85.1 35.2 29.9 55.3 52.5

Table 2: SYNTHIA → Cityscapes results: IoU (per-class and mean) comparison of our PAC-UDA with
prior works. †† denotes the use of DeepLabV2 variant introduced by Zhang et al. (2019), † denotes the use of
PSPNet Zhao et al. (2017). All other methods use DeepLabV2 Chen et al. (2018) architecture.

(2020) and RPT Zhang et al. (2020) by large margins (0.8%–1.9% ). Additionally, compared to
a more GPU-intensive configuration of SAC Araslanov et al. (2021) with batch size 8, our limited
configuration of batch size 4 yields comparable results.

An interesting observation is that compared to SAC, our SAC∗+PAC model improves classwise
IoUs for both dominant categories like road and sidewalk (by upto 9.4%) as well as less frequent
categories like traffic-sign and terrain. We hypothesise that the use of complementary modalities
like Depth in our PAC framework normalises the effect of image statistic based on class frequency.
Additionally, for classes like sidewalk, we suspect that structural constraints based on PAC reduces
contextual bias Shetty et al. (2019), responsible for coarse boundaries.

SYNTHIA→CityScapes (Table 2): In this adaptation setting, we observe similar trends where
PAC regularisation improves the both base methods by significant amount (upto 2.2%). More im-
portantly, our SAC*+PAC outperforms most prior approaches Zhang et al. (2020); Mei et al. (2020);
Wang et al. with competitive margin and performs comparable to the state-of-the-art Araslanov et al.
(2021).

5.2 ABLATIONS AND QUALITATIVE RESULTS

In this section, we provide an important ablation in Table 3 that deconstructs our multimodal object-
ness constraint and determine the effect of individual modalities on final performance. To conduct
these ablations, we chose our Simplified-CAG + PAC method and GTA→CityScapes settings.
Comparing the two modalities, we observe that the model regularized with only Depth based object-
ness constraints seem to be more effective than the one with only Image-based clustering constraints.
This is intuitive and evident from Figure 2 where Depth-based segments reveal a lot of object infor-
mation in the scene and hence, is more useful for computing PAC constraints. While both individual
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Only-Image 87.7 47.1 82.5 34.0 35.7 40.6 40.2 45.8 82.9 23.2 76.3 64.2 25.4 85.7 23.7 41.8 24.9 29.0 34.8 48.7
Only-Depth 85.5 43.3 83.6 34.8 35.0 41.2 38.1 48.8 85.4 28.3 80.1 65.0 25.5 85.6 25.9 38.6 33.5 24.9 35.1 49.4

Both 86.3 45.7 84.5 30.5 35.5 38.9 40.3 49.9 86.0 33.5 81.1 64.1 25.5 84.5 21.3 32.9 36.3 26.7 40.0 49.6

Table 3: Ablation: Comparing the effect of generating superpixels via individual versus combined modalities.
Clearly, multi-modal generation (last row) yield the best performance in terms of mIoU. Model: Simplified-
CAG + PAC, Datastet settings: GTA → Cityscapes.

GT Prediction
Simplified-CAG

CAG+PAC (ours)

GT Prediction

Image

GT PredictionImage

Figure 3: Qualitative evaluations: We observe that our regularised model (CAG+PAC) makes fewer mistakes.
For example, in the second row of each method, the mis-classification of sky pixels as building is much benign
in our method

modalities demonstrate reasonable performance, neither of them is sufficient. Combining the two,
however, leads to the best results. This highlights the importance of multi-modal constraints. In
Figure 3, we visualise and compare the predictions of Simplified-CAG and our CAG+PAC models
on the GTA→CityScapes settings.

6 CONCLUSION

In this work, we show that regularising self-training improves performance of the base method. We
introduce multi-modal superpixels that present complementary information about segmentation in
the form of objectness. These superpixels are then use to formulate the regularization in a way that
is agnostic to photometric variations.
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