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Abstract

Partial label learning (PLL) is a weakly-supervised learning paradigm where each training
instance is paired with a set of candidate labels (partial label), one of which is the true label.
Noisy PLL (NPLL) relaxes this constraint by allowing some partial labels to not contain
the true label, enhancing the practicality of the problem. Our work centers on NPLL and
presents a minimalistic framework called SARI that initially assigns pseudo-labels to im-
ages by exploiting the noisy partial labels through a weighted nearest neighbour algorithm.
These pseudo-label and image pairs are then used to train a deep neural network classifier
with label smoothing and standard regularization techniques. The classifier’s features and
predictions are subsequently employed to refine and enhance the accuracy of pseudo-labels.
SARI combines the strengths of Average Based Strategies (in pseudo labelling) and Identi-
fication Based Strategies (in classifier training) from the literature. We perform thorough
experiments on seven datasets and compare SARI against nine NPLL and PLL methods
from the prior art. SARI achieves state-of-the-art results in almost all studied settings,
obtaining substantial gains in fine-grained classification and extreme noise settings.

1 Introduction

The effectiveness of contemporary deep learning methods heavily relies on the presence of high-quality
annotated data, which is costly, arduous, labor-intensive, and time-consuming to gather. Weakly supervised
learning is a potential solution to this challenge, which performs training only using partially labeled or
noisily labeled examples. It has been widely studied in different forms, including multi-label learning (Zhang
& Zhou, 2013), semi-supervised learning (Sohn et al., 2020), noisy label learning (Li et al., 2020) etc. Our
paper focuses on a weakly supervised setting called Partial Label Learning (PLL), where each training
instance is paired with a set of candidate labels (partial label), out of which one is the true label. PLL
commonly occurs in datasets where crowd-sourcing is used for annotations, and the annotators are allowed to
select several possible labels if they are uncertain about an instance. It naturally arises in several applications
such as web-mining (Huiskes & Lew, 2008; Luo & Orabona, 2010), ecological informatics (Briggs et al., 2012)
and multi-modal learning (Chen et al., 2017; Mo et al., 2023).

PLL algorithms broadly fall into two categories: Average-based strategies (ABS) and Identification-based
strategies (IBS). Average-based strategies assume that every candidate label is equally likely to be the ground
truth (Hüllermeier & Beringer, 2005; Cour et al., 2009). Identification-based strategies treat the ground
truth as a latent variable. They focus on identifying it using certain criteria and maximizing its estimated
probability prediction from the model (Jin & Ghahramani, 2002). Recently, IBS based Deep learning methods
have leveraged techniques like contrastive learning (Wang et al., 2022a), consistency regularization (Wu
et al., 2022) and prototype learning (Wang et al., 2022a; Xia et al., 2023) to achieve impressive performance.
Nevertheless, the fundamental limitation of these methods is that they assume that the correct label is always
a part of the partial label.

To overcome this limitation and further the practicality, Noisy PLL (NPLL) was proposed. NPLL allows some
partial labels to not contain the correct label. In the literature, the problem is also referred to as Unreliable
Partial Label Learning (UPLL) (Qiao et al., 2023). A variety of methods have been proposed (Wang et al.,
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2022b; Qiao et al., 2023; Shi et al., 2023; Lian et al., 2023; Xu et al., 2023) for NPLL. These efforts are
predominantly pursued in an identification-centric approach and are encumbered by several challenges. For
instance, the latest NPLL methodologies (Wang et al., 2022b; Qiao et al., 2023; Xu et al., 2023) involve
augmentation of a base PLL algorithm, contributing to heightened complexity (e.g. PiCO+ (Wang et al.,
2022b) adds three new loss terms over PiCO (Wang et al., 2022a)). They require a warm-up training using
the base algorithm, before applying their noise handling technique. Too long or short a warm-up period can
negatively impact the performance. Deciding the duration of warm-up training adds another dimension of
complexity. Some methods also need a clean validation set to decide the warm-up duration (Shi et al., 2023;
Lian et al., 2023), which may not be always available. Furthermore, to tackle noisy data, current methods
apply a detection cum mitigation technique (Wang et al., 2022b; Lian et al., 2023; Shi et al., 2023), known
to cause error propogation (Xu et al., 2023).

We propose a novel framework called SARI, which benefits from the strengths of both the average-based and
identification-based methodologies. Broadly, SARI consists of three modules that are applied sequentially
in every iteration: Pseudo-labelling, Noise robust learning, and Partial label augmentation. The initial step
involves assigning pseudo-labels to each image through a weighted KNN algorithm on the currently obtained
features, such as those from a randomly initialized backbone. The idea stems from a twenty years old
effort by Hüllermeier & Beringer (2005), suggesting that methods featuring a strong inductive bias, such as
K-Nearest Neighbors (KNN), can effectively exploit partial label information for improved disambiguation.
The second step trains a classifier using reliable image and pseudo-label pairs. To impart robustness towards
the noisy partial labels, we employ standard regularization techniques (Szegedy et al., 2016; Bachman et al.,
2014; Sajjadi et al., 2016; Zhang et al., 2017). In final step, we perform partial label augmentation. In
noisy settings, the partial label may not always contain the ground truth; hence, we allow partial label
augmentation based on the confident top-1 predictions of the current classifier.

In a nutshell, SARI only has a single trainable component (e.g. a ResNet-18 (He et al., 2016) model), trained
using conventional regularization techniques like Mix-up (Zhang et al., 2017) and label smoothing (Szegedy
et al., 2016). It does away with complex multi-branch networks (Wang et al., 2022b) and operates seamlessly
without a warm-up. Furthermore, in every iteration we freshly pick the reliable image-label pairs. This is in
contrast with prior efforts (Wang et al., 2022b; Lian et al., 2023) which maintain an explicit state/probability
vector, which is sequentially updated at every iteration. Our approach is free of such state maintenance and
hence reduces error propagation. We perform comprehensive experiments on seven datasets in widely dif-
ferent settings (varying noise rates and number of candidate labels). Albeit simplistic, SARI outperforms
existing State-Of-The-Art (SOTA) methods by a significant margin. In contrast to previous methods, SARI
manages to preserve a substantial portion of its performance even as the noise rate increases. The perfor-
mance improvements, compared to other methods, become more pronounced with an increase in both the
number of classes and the proportion of noise in partial labels. In fine-grained classification scenarios, SARI
yields significant improvements (outperforming all other methods by over 7pp). Finally, moving beyond the
simulated PLL and NPLL benchmarks as in prior art, we also show that SARI obtains favourable results
on real world crowd sourced datasets Schmarje et al. (2022). In summary, our work makes the following
contributions:

• We propose a novel framework called SARI, which combines the benefits of both average based and
identification based strategies. We would like to emphasize that we do not assert any novelty in
terms of architecture; rather, the novelty lies in demonstrating the potential of a simpler alternative
for NPLL.

• We present thorough ablation studies and quantitative experiments to support our design choices and
demonstrate the efficacy of our approach. We show notable gains over nine SOTA PLL and NPLL
methods in both simulated benchmarks (as in prior art) and real world crowd sourced datasets.
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2 Related Work

2.1 Traditional Partial Label Learning

Identification-based strategies treat the ground truth as a latent variable and progressively refine the confi-
dence of each candidate label during training. Jin & Ghahramani (2002) use a maximum likelihood criterion
to learn the parameters of a classifier that maximizes the latent label distribution, estimated from the clas-
sifier predictions in an EM fashion. Yu & Zhang (2016) propose a maximum margin formulation for PLL,
which maximizes the margin between the ground-truth label and all other labels.

Average-based strategies treat all candidate labels equally while distinguishing between the candidate and
non-candidate labels. Early work by Hüllermeier & Beringer (2005) extends the K-Nearest neighbours (KNN)
algorithm to tackle PLL by employing majority voting among the candidate labels of neighbours. Zhang &
Yu (2015) also utilize KNN to classify any unseen instance based on minimum error reconstruction from its
nearest neighbours. Cour et al. (2009) maximize the average output of candidate labels and minimize the
output of non-candidate labels in parametric models. SARI takes a cue from the KNN-based ABS approach
from the 2000s (Hüllermeier & Beringer, 2005) and uses a variation for the pseudo-labelling step.

2.2 Deep Partial Label Learning

With the advent of Deep Learning, a variety of identification-based strategies that employ a neural network
backbone have been proposed. Yao et al. (2020) temporally ensemble the predictions at different epochs
to disambiguate the partial label. Lv et al. (2020) use self-training to update the model and progressively
identify the true label. Feng et al. (2020) formulate the generation process of partial labels and develop
two classifiers: one risk-consistent and the other another classifier-consistent. Wen et al. (2021) propose
leverage weighted loss, a family of loss functions that generalize the loss functions proposed by earlier
works (Jin & Ghahramani, 2002; Cour et al., 2009; Lv et al., 2020). Wang et al. (2022a) present PiCO,
a framework that learns discriminative representations by leveraging contrastive learning and prototypical
classification. Wu et al. (2022) present a simple idea that uses consistency regularization on the candidate set
and supervised learning on the non-candidate set. Xia et al. (2023) upgrade PiCO and introduce self-training
and prototypical alignment to achieve noteworthy results. However, none of these methods account for the
potential of noise within partial labels, which is the primary focus of our work.

2.3 Noisy Partial Label Learning

Earlier works assume that the correct label is always a part of the partial label, which limits the practicality
of the problem. Hence, some recent works have diverted attention to NPLL that relaxes this condition, and
allows some partial labels not to contain the correct label. Qiao et al. (2023) perform disambiguation to move
incorrect labels from candidate labels to non-candidate labels but also refinement to move correct labels from
non-candidate labels to candidate labels. Shi et al. (2023) separate the dataset into reliable and unreliable
sets and then perform label disambiguation-based training for the former and semi-supervised learning for
the latter. Lian et al. (2023) iteratively detect and purify the noisy partial labels, thereby reducing the noise
level in the dataset. Wang et al. (2022b) extend PiCO to tackle noisy PLL by performing distance-based
clean sample selection and learning a robust classifier by semi-supervised contrastive learning. Xu et al.
(2023) reduce the negative impact of detection errors by carefully aggregating the partial labels and model
outputs.

Unlike the aforementioned identification-focused approaches, Lv et al. (2023) propose Average Partial Loss
(APL), a family of loss functions that achieve promising results for both PLL and noisy PLL. Moreover, they
provide insights into how ABS can enhance IBS when used for warm-up training. Our work builds upon this
intuition by alternating between ABS and IBS. Our findings demonstrate that opting for conventional choices,
such as employing K-nearest neighbours (KNN) for ABS and utilizing cross-entropy loss with standard
regularization techniques for IBS, yields state-of-the-art performance.
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Figure 1: Illustration of SARI. Pseudo-labelling is performed using a weighted KNN to obtain reliable
image-label pairs. These pairs are used to train a classifier using label smoothing, consistency regularization,
and Mix-up. Finally, the confident top-1 model predictions are used to augment the partial label for the
upcoming iteration.

3 Methodology

Figure 1 depicts the three modules of SARI that are applied sequentially in every iteration: Pseudo Labelling
(3.1.1), Noise robust learning (3.1.2), Partial label augmentation (3.1.3). First, we assign pseudo-labels to
all images using a weighted KNN. Now, for each unique class, we select the m most reliable image-label
pairs. We use these reliable image-label pairs for training the classifier. To be resilient towards the potential
noise in the pseudo-labelling stage, we leverage label smoothing, consistency regularization and Mix-up
during training. Finally, we optionally augment the partial labels with the confident top-1 predictions of the
classifier. The features from the updated classifier are then used for the next stage of pseudo-labelling. We
hypothesize that, as training progresses, more number of samples will be assigned the correct label as the
pseudo-label, which will help learn an improved classifier. Pseudo-code of SARI is available in Algorithm 1.
We now provide a detailed description of each of the mentioned steps.

3.1 Problem Setup

The problem of PLL is defined using the following setup. Let X be the input space, and Y = {1, 2, . . . , C}
be the output label space. We consider a training dataset D = {(xi, Yi)}n

i=1, where each tuple comprises
of an image xi ∈ X and a partial label Yi ⊂ Y. Similar to a supervised learning setup, PLL aims to
learn a classifier that predicts the correct output label. However, the training dataset in PLL contains high
ambiguity in the label space, which makes the training more difficult when compared to supervised learning.
A basic assumption of PLL is that the correct label yi is always present in the partial label, i.e., ∀i yi ∈ Yi.
In noisy PLL, we relax this constraint, and the correct label potentially lies outside the candidate set, i.e.,
∃i yi /∈ Yi.

3.1.1 Pseudo-Labelling

For each sample (xi, Yi), we pass the image xi through the encoder f(·) to obtain the feature representation
zi. Then, we select its K nearest neighbours from the entire dataset. Let Ni denote the set of K nearest
neighbours of xi. We then compute a pseudo-label ŷi using weighted KNN as follows.

ŷi = arg max
c

∑
xk∈Ni

I[c ∈ Yk] · dik c ∈ [C], (1)

where dik is the cosine similarity between zi and zk (xk ∈ Ni). We assume that these pseudo-labels are less
ambiguous than the partial labels supposing samples in the neighbourhood have the same class label. Now,
we approximate the class posterior probabilities q̂c via KNN, inspired by the Noisy Label Learning literature
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Algorithm 1 Pseudo-code of SARI
Input: Dataset D, encoder f(·), classifier h(·), epochs Tmax, mini-batch size B, hyper-parameters

k, δ, ζ, r, λmax, λmin

1: for t = 1, 2, . . . , Tmax do
2: Compute psuedo-labels ŷi for all samples xi in the dataset using Eq.(1);
3: Compute the posterior probability vectors using Eq.(2);
4: Compute the maximum samples to be selected per class m using Eq.(3);
5: Build the Reliable image-label pairs set T using Eq.(4);
6: Shuffle T into T

B mini-batches;
7: for b = 1, 2, . . . , T

B do
8: Update parameters of f(·) and h(·) by minimizing loss in Eq.(10);
9: end for

10: Perform Partial label augmentation using Eq.(11);
11: end for
Output: parameters of f(·) and h(·)

(Ortego et al., 2021).
q̂c(xi) = 1

K

∑
xk∈Ni

I[ŷk = c] · dik c ∈ [C] (2)

Using these posterior probabilities, we select a maximum of m most reliable image-label pairs for each class.
We do this to ensure a near uniform distribution of samples across all classes. Using q̂c(xi), we first compute
a1, a2, . . . , aC as follows.

ac =
n∑

i=1
I
[
c = arg max

c′
q̂c′(xi) & c ∈ Yi

]
, c ∈ [C] (3)

Thus, ac is the number of samples for which c is the highest probable class as per posterior probability and c
is also in the partial label of those samples. We choose m as the δ-quantile of [a1, a2, . . . , aC ]. For instance,
when δ = 0, m = min([a1, a2, . . . , aC ]).

As training progresses and the classifier learns, the per-class agreements ac also increase — therefore m
increases and, consequently, the number of reliable pseudo-labels. Once m is finalized, we need to select m
most reliable images for each class. For class c, the images for which the posterior probability approximated
via KNN q̂c(xi) is greater than the threshold γc are chosen as reliable images. Thus, the set of reliable pairs
belonging to the c-th class (denoted as Tc) is found as follows.

Tc = {(xi, c) | q̂c(xi) > γc, c ∈ Yi, i ∈ [n]} c ∈ [C] (4)

For the c-th class, the threshold γc is dynamically defined such that a maximum of m samples can be selected
per class. Note that it is possible for a sample xi to belong to different Tc. In that case, we choose the one
that has the highest q̂c(xi). Finally, we form the reliable image-label pair set T as

T =
C⋃

c=1
Tc = {(xi, ỹi)}ñ

i=1 (5)

where ỹi is the reliable pseudo-label for xi and ñ is the number of selected reliable samples.

3.1.2 Noise robust learning

We train a noise-robust classifier h(·) by leveraging label smoothing (Szegedy et al., 2016), consistency
regularization (Bachman et al., 2014) and Mix-up. Label smoothing uses a positively weighted average of
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the hard training labels and uniformly distributed soft labels to generate the smoothed labels. Let eỹi
be

C-dimensional one-hot encoding of label ỹi such that its ỹth
i element is one and rest of the entries are zero.

The corresponding smoothed label eLS,r
ỹi

is:

eLS,r
ỹi

= (1 − r) · eỹi + r

C
· 1 (6)

Then the per-sample classification loss is formulated as:

Lce(xi, eLS,r
ỹi

) = −(1 − r) log(hỹi(f(xi))) − r

C

C∑
j=1

log(hj(f(xi))) (7)

Although label smoothing introduces an additional hyper-parameter r, fixing it to a high value that is greater
than the true noise rate (r = 0.5 in the experiments) improves performance (Lukasik et al., 2020). We also
use Mix-up (Zhang et al., 2017) for further noise tolerance. Consider a pair of samples (xi, eLS,r

ỹi
) and

(xj , eLS,r
ỹj

). We create the Mix-up image by linearly interpolating with a factor αmix ∼ Beta(ζ, ζ) where ζ
is a parameter in the beta distribution and define the Mix-up loss below.

mixx(xi, xj) = αmixxi + (1 − αmix)xj (8)

Lmix(xi, xj) = αmixLce(mixx(xi, xj), eLS,r
ỹi

) + (1 − αmix)Lce(mixx(xi, xj), eLS,r
ỹj

) (9)

Finally, we include consistency regularization in the complete training objective. Consistency regularization
is a simple idea that the model should output similar predictions when fed with perturbed versions of
the same image. We implement a variation by assigning the same pseudo-label to both weak and strong
augmentations of an image.

Lfinal =
∑
i,j,j′

Lmix(augw(xi), augw(xj)) + Lmix(augs(xi), augs(xj′)) i, j, j′ ∈ [ñ] (10)

where augw(·) and augs(·) represent weak and strong augmentation function respectively.

3.1.3 Partial label augmentation

In Pseudo-Labelling (Eq.4), for every sample image, we select its reliable pseudo-label only from the partial
label. This limits the number of correct samples that can be selected in the noisy PLL case. To overcome
this issue, we include the highest probability class of the current model prediction in the partial label for
the next iteration if it is greater than a threshold λt. λt is a decaying threshold and can be interpreted as
balancing between precision and recall. Initially, the high threshold implies that few accurate predictions
are used to avoid error propagation. The threshold is later decreased to allow more samples to be de-noised.

Y t+1
i =

{
Yi ∪ {arg maxc hc

t(ft(augw(xi)))}, if maxc hc
t(ft(augw(xi))) > λt

Yi, otherwise.
(11)

Here, ft and ht are the encoder and classifier at the tth iteration. It is important to note here that at iteration
t + 1, we include the highest probability class in the true partial label set Yi to get Y t+1

i . Unlike previous
works (Lian et al., 2023; Xu et al., 2023), we do not directly disambiguate the partial label. Instead, we
merely include a possible candidate and let the first stage select the label. This prevents error propagation
to subsequent iterations.

4 Experiments

4.1 Experimental Setup

Datasets We construct the PLL and NPLL benchmark for four different datasets: CIFAR-10, CIFAR-100,
CIFAR-100H (Krizhevsky et al., 2009) and CUB-200 (Welinder et al., 2010). We follow the same dataset
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generation process of Wang et al. (2022b). The dataset generation process is governed by two parameters:
the partial rate (q) and the noise rate (η). The partial rate q represents the probability of an incorrect label
to be present in the candidate set. The probability of excluding the correct label from the candidate set is
referred to by the noise rate η. For CIFAR10, we experiment with q ∈ {0.1, 0.3, 0.5}, and for other datasets
(with a larger number of classes) we select q from the set {0.01, 0.03, 0.05}. We conduct experiments using
different values of η ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, where values of η exceeding 0.3 indicate high noise scenarios.
Further, we show the effectiveness of our approach in real-world annotation settings by considering three
crowdsourced datasets: Treeversity#6, Benthic, Plankton (Schmarje et al., 2022). Treeversity is a publicly
available dataset of plant images, crowdsourced by the Arnold Arboretum of Harvard University. Benthic is
a collection of seafloor images containing flora and fauna. Plankton consists of underwater plankton images.
Each image in these datasets has multiple annotations provided by domain experts.

Baselines We compare SARI against four PLL and five NPLL approaches, a total of nine state-of-
the-art methods. The PLL methods include 1) RC (Feng et al., 2020): a risk-consistent classifier for
PLL; 2) LWS (Wen et al., 2021): trades of loss between candidate labels and non-candidate labels; 3)
PICO (Wang et al., 2022a): learns discriminative representations using contrastive and prototype learning
4) CRDPLL (Wu et al., 2022): adapts consistency regularization for PLL. The NPLL methods include 1)
PICO+ (Wang et al., 2022b): extends PiCO for NPLL by including additional losses; 2) FREDIS (Qiao
et al., 2023): performs partial label disambiguation and refinement 3) IRNet (Lian et al., 2023): detects
and corrects the partial labels iteratively; 4) UPLLRS (Shi et al., 2023): proposes a two-stage framework
for dataset separation and disambiguation; 3) ALIM (Xu et al., 2023): aggregates the partial labels and
model outputs using two variants of normalization (Scale and OneHot). If available, we directly reference
the numbers from the existing literature, and whenever possible, we present results obtained by customizing
the publicly available official codebase to suit the specific configuration.

Implementation Details. To ensure a fair comparison, we use ResNet-18 (He et al., 2016) as the encoder
f(·) and h(·) as the linear classifier. Other methods either use ResNet-18 (He et al., 2016) or a stronger
backbone e.g. FREDIS uses ResNet32. Strong augmentation function utilizes autoaugment (Cubuk et al.,
2018) and cutout (DeVries & Taylor, 2017). Faiss (Johnson et al., 2019) is used to speed up nearest neighbour
computation. Irrespective of the partial and noise rate, we set K = 15, δ = 0.25, ζ = 1.0, r = 0.5, and λt

linearly decreases in [0.45, 0.35]. For CIFAR datasets, we choose the SGD optimizer with a momentum of 0.9
and set the weight decay to 0.001. The initial learning rate is set to 0.1 and decayed using a cosine scheduler,
and the model is trained for 500 epochs. For CUB-200, as per the existing works, we initialize the encoder
with ImageNet-1K (Russakovsky et al., 2015) pre-trained weights. We choose the SGD optimizer with a
momentum of 0.9 and set the weight decay to 0.0005. We set the initial learning rate to 0.05 and decay
it by 0.2 using the step scheduler at epochs [60, 120, 160, 200] and train for 250 epochs. On crowdsourced
datasets, we utilize a ResNet50 backbone pretrained on ImageNet-1K, to align with prior efforts. We ran each
experiment three times and report the average result and standard deviation on the test set. All experiments
are implemented with PyTorch and carried out with NVIDIA GeForce RTX 2080 Ti GPU.

4.2 Results and Discussion

SOTA comparisons: Table 1 compares SARI with the SOTA methods on CIFAR-10 and CIFAR-100
datasets. The results are presented with three different partial-rate and noise-rate values, comprising a total
of nine different combinations. SARI surpasses all other methods in all settings, providing clear evidence of
its effectiveness. It is also apparent that conventional PLL approaches struggle to generalize effectively in
noisy settings, highlighting the necessity for noise-resistant adaptations.

The performance of all methods drops with an increase in the size of the candidate label set (higher q) and
with an increase in noise rate. A key aspect is to observe the performance across the first and last column
of Table 1 (the easiest vs. the most complex setting). In several methods, the performance significantly
drops; for instance, on CIFAR-10, the performance of LWS drops from 82.97 to 39.42. SARI and ALIM
fare better in this regard and are able to retain model performance with increased complexity. Another
noteworthy observation is that the performance improvement of SARI becomes more pronounced in CIFAR-
100 compared to the CIFAR-10 dataset.
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Table 1: Comparison of SARI with the previous state-of-the-art methods across various partial and noise
rates. The best highest accuracy in each setting is highlighted in bold.

CIFAR-10 q = 0.1 q = 0.3 q = 0.5
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

RC 80.87±0.30 78.22±0.23 75.24±0.17 79.69±0.37 75.69±0.63 71.01±0.54 72.46±1.51 59.72±0.42 49.74±0.70
LWS 82.97±0.24 79.46±0.09 74.28±0.79 80.93±0.28 76.07±0.38 69.70±0.72 70.41±2.68 58.26±0.28 39.42±3.09
FREDIS 90.57±0.23 88.01± 0.19 84.35±0.20 89.02±0.15 86.14±0.17 81.02±0.60 87.42±0.21 80.81±0.99 65.15±0.13
PiCO 90.78±0.24 87.27±0.11 84.96±0.12 89.71±0.18 85.78±0.23 82.25±0.32 88.11±0.29 82.41±0.30 68.75±2.62
CRDPLL 93.48±0.17 89.13±0.39 86.19±0.48 92.73±0.19 86.96±0.21 83.40±0.14 91.10±0.07 82.30±0.46 73.78±0.55
IRNet 93.44±0.21 92.57±0.25 92.38±0.21 92.81±0.19 92.18±0.18 91.35±0.08 91.51±0.05 90.76±0.10 86.19±0.41
PiCO+ 94.48±0.02 94.74±0.13 94.43±0.19 94.02±0.03 94.03±0.01 92.94±0.24 93.56±0.08 92.65±0.26 88.21±0.37
UPLLRS 95.16±0.10 - 94.65±0.23 94.32±0.21 - 93.85±0.31 92.47±0.19 - 91.55±0.38
ALIM-Scale 95.71±0.01 95.50±0.08 95.35±0.13 95.31±0.16 94.77±0.07 94.36±0.03 94.71±0.04 93.82±0.13 90.63±0.10
ALIM-Onehot 95.83±0.13 95.86±0.15 95.75±0.19 95.52±0.15 95.41±0.13 94.67±0.21 95.19±0.24 93.89±0.21 92.26±0.29
SARI 96.28±0.05 96.17±0.18 95.90±0.20 95.96±0.08 95.76±0.12 95.43±0.17 95.52±0.13 95.89±0.14 94.18±0.10

CIFAR-100 q = 0.01 q = 0.03 q = 0.05
η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3 η = 0.1 η = 0.2 η = 0.3

RC 52.73±1.05 48.59±1.04 45.77±0.31 52.15±0.19 48.25±0.38 43.92±0.37 46.62±0.34 45.46±0.21 40.31±0.55
LWS 56.05±0.20 50.66±0.59 45.71±0.45 53.59±0.45 48.28±0.44 42.20±0.49 45.46±0.44 39.63±0.80 33.60±0.64
FREDIS 64.73±0.28 64.53 ± 0.39 59.42±0.18 67.38±0.40 63.86±0.50 60.86±0.72 66.43±0.22 63.09 ± 0.22 56.15±0.18
PiCO 68.27±0.08 62.24±0.31 58.97±0.09 67.38±0.09 62.01±0.33 58.64±0.28 67.52±0.43 61.52±0.28 58.18±0.65
CRDPLL 68.12±0.13 65.32±0.34 62.94±0.28 67.53±0.07 64.29±0.27 61.79±0.11 67.17±0.04 64.11±0.42 61.03±0.43
IRNet 71.17±0.14 70.10±0.28 68.77±0.28 71.01±0.43 70.15±0.17 68.18±0.30 70.73±0.09 69.33±0.51 68.09±0.12
PiCO+ 75.04±0.18 74.31±0.02 71.79±0.17 74.68±0.19 73.65±0.23 69.97±0.01 73.06±0.16 71.37±0.16 67.56±0.17
UPLLRS 75.73±0.41 - 71.72±0.39 - - - 74.73±0.24 - 70.31±0.22
ALIM-Scale 77.37±0.32 76.81±0.05 76.45±0.30 77.60±0.18 76.63±0.19 75.92±0.14 76.86±0.23 76.44±0.12 75.67±0.17
ALIM-Onehot 76.52±0.19 76.55±0.24 76.09±0.23 77.27±0.23 76.29±0.41 75.29±0.57 76.87±0.20 75.23±0.42 74.49±0.61
SARI 80.90±0.50 80.45±0.49 79.78±0.13 80.33±0.04 79.40±0.50 78.52±0.24 80.00±0.25 79.08±0.22 77.87±0.29

Table 2: PLL Experiments

CIFAR-100 q = 0.01 q = 0.05 q = 0.1
RC 75.36 ± 0.06 74.44 ± 0.31 73.79 ± 0.29
LWS 64.55 ± 1.98 50.19 ± 0.34 44.93 ± 1.09
PiCO 73.78 ± 0.15 72.78 ± 0.38 71.55 ± 0.31
CRDPLL 79.74 ± 0.07 78.97 ± 0.13 78.51 ± 0.24
PiCO+ 76.29 ± 0.42 76.17 ± 0.18 75.55 ± 0.21
SARI 81.46 ± 0.13 81.00 ± 0.26 80.77 ± 0.12

Table 3: Extreme noise experiments

CIFAR-100 q = 0.05, η = 0.4 q = 0.05, η = 0.5
FREDIS 53.44 ± 0.39 48.05 ± 0.20
PiCO 44.17 ± 0.08 35.51 ± 1.14
CRDPLL 57.10 ± 0.24 52.10 ± 0.36
UPLLRS - 64.78 ± 0.53
PiCO+ 66.41 ± 0.58 60.50 ± 0.99
ALIM-Scale 74.98 ± 0.16 72.26 ± 0.25
ALIM-Onehot 71.76 ± 0.56 69.59 ± 0.62
SARI 76.72 ± 0.41 74.79 ± 0.40

PLL results: While our primary focus is on NPLL, assessing performance in the noise-free setting (PLL) is
crucial to ensure that the adaptations for noise robustness do not negatively affect zero noise performance.
As most NPLL methods do not provide results in noise-free settings, we limit our comparisons primarily to
PLL methods. In Table 2, we evaluate SARI on the CIFAR-100 PLL benchmark. The results indicate that
SARI also achieves superior performance in the absence of noise.

Extreme noise results: In Table 3, we present results in extremely noisy settings (e.g., η = 0.5, the
correct label is absent from half of the partial labels). For most methods, the performance drastically drops
in extreme noise settings. For example, for PICO+ the performance drops from 76.17 (η = 0) to 60.50
(η = 0.5). For CRDPLL, the drop is from 78.97(η = 0) to 52.10 (η = 0.5). ALIM and SARI fare well in
extreme noise settings, with SARI obtaining the best results.

Fine-grained classification: We first evaluate SARI on the CIFAR-100H dataset, which considers label
hierarchy and divides the CIFAR-100 dataset into 20 coarse labels (5 fine-grained labels per coarse label).
When curating the NPLL benchmark, the candidate sets are restricted to lie within the same coarse label.
SARI also obtains the best results in this modified setting (Table 4).

We also evaluate the performance of SARI on the CUB-200 bird classification dataset. Since all the images
exclusively showcase birds, the candidate labels are intricately linked, presenting a heightened challenge
for disambiguation. Table 4 presents the results with different q and η values. SARI outperforms other
approaches by a significant margin, bringing over 7pp improvement over ALIM-Scale at q = 0.05 and
η = 0.2.
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Table 4: Fine-grained datasets

Dataset CIFAR-100H CUB-200 CUB-200 CUB-200 CUB-200
q 0.5 0.05 0.01 0.05 0.1
η 0.2 0.2 0.0 0.0 0.0
PiCO 59.8 ± 0.25 53.05 ± 2.03 74.14 ± 0.24 72.17 ± 0.72 62.02 ± 1.16
PiCO+ 68.31 ± 0.47 60.65 ± 0.79 69.83 ± 0.07 72.05 ± 0.80 58.68 ± 0.30
ALIM-Scale 73.42 ± 0.18 68.38 ± 0.47 74.44 ± 0.68 74.26 ± 0.32 62.88 ± 0.90
ALIM-Onehot 72.36 ± 0.20 63.91 ± 0.35 - - -
SARI 75.16 ± 0.59 75.76 ± 0.27 80.71 ± 0.21 79.46 ± 0.25 78.73 ± 0.36

Table 5: Crowdsourced Datasets

Treeversity Benthic Plankton
Divide-Mix 77.84 ± 0.52 71.72 ± 1.21 91.79 ± 0.51

ELR+ 79.05 ± 1.22 67.53 ± 1.76 91.76 ± 0.91
PiCO 84.74 ± 0.42 51.01 ± 0.74 24.95 ± 0.13
SARI 81.56 ± 0.28 77.50 ± 0.35 90.04 ± 0.50

(a) Ten human annotators

Treeversity Benthic Plankton
Divide-Mix 76.38 ± 1.78 71.50 ± 0.42 91.96 ± 0.52

ELR+ 77.07 ± 0.43 69.35 ± 0.97 91.36 ± 0.40
ALIM-Onehot 82.58 ± 0.92 49.17 ± 3.06 23.75 ± 2.53

SARI 80.47 ± 1.22 76.52 ± 0.03 90.20 ± 0.97
(b) Three human annotators

Crowdsourced Datasets: Prior efforts of classification on crowd-sourced datasets (Schmarje et al., 2022)
take a data-centric approach, involving label enhancement through semi-supervised and noisy label learning,
with subsequent evaluation by training a model on the enhanced dataset. Instead, we tackle this as a
PLL/NPLL problem and employ SARI. As the only key change, we utilize the normalized annotation label
frequency per image in the weighted KNN step. We construct the partial label by taking into account the
annotations provided by human annotators. Table 5a presents results under the assumption of ten available
human annotators, simulating the PLL scenario with a negligible noise rate, while Table 5b displays results
assuming three human annotators, simulating the NPLL scenario characterized by a substantial noise rate.
We compare against two noisy label learning method: Divide-Mix (Li et al., 2020) and ELR+ (Liu et al.,
2020), a PLL method (PiCO) and an NPLL method (ALIM). In all cases, we use a pre-trained ResNet50
backbone to allow a fair one-to-one comparison. SARI achieves competitive performance on Treeversity,
however, significantly outperforms the other methods on Benthic and Plankton datasets.

4.3 Ablation studies

In Table 6, we perform ablations using two different noise rates: (η = 0.3 and η = 0.5), while setting q = 0.05.
All the ablations are performed using the CIFAR-100 dataset.

Influence of regularization components: In table 6a, we study the impact of using Mix-up and Consis-
tency Regularization (CR). Removing Mix-up causes a decrease of around 2 − 3pp, and the exclusion of CR
causes a decrease of about 1pp, which validates their role in our framework. We observe that their combined
usage generates a more substantial effect. It must be noted that prior art also utilizes Mix-up or CR or both.
For a fair comparison, we remove both Mix-up and CR from all the approaches and present the results in
table 6b. SARI achieves SOTA results in this setup as well and in the high noise setting, outperforms the
second best method (ALIM-Scale) by a significant margin of 6.67%.

Impact of K in KNN: We vary the value of k from the set {10, 15, 25, 50}. We find that performance
remains similar across different "k" values, with statistically insignificant differences. We use k = 15 for all
our experiments.

Impact of δ parameter: δ controls the number of samples chosen per class to construct the reliable
set. In table 6d, δ = 0.5 yields the best results for η = 0.3, while δ = 0.25 produces the best results for
η = 0.5. Lower δ implies that a smaller but more confident reliable set is constructed, which leads to better
performance in a high noise setting.

Impact of label smoothing: In Table 6e, r = 0, 4 yields the best results for η = 0.3, while r = 0.5
produces the best results for η = 0.5. Considering that elevated noise levels lead to increased noise in
pseudo-labelling, a higher label smoothing rate appears to confer advantages. Moreover, when r is zero,
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Table 6: Ablation studies

Mix-up CR q = 0.05, η = 0.3 q = 0.05, η = 0.5
False False 73.30 71.41
False True 74.33 72.51
True False 75.91 73.12
True True 77.61 75.15

(a) Influence of regularization components

q = 0.05, η = 0.3 q = 0.05, η = 0.5
PiCO 58.18 35.51
PiCO+ 62.24 45.29
ALIM-Scale 71.68 64.74
ALIM-Onehot 70.05 63.39
SARI 73.30 71.41

(b) Comparison without regularization components

K q = 0.05, η = 0.3 q = 0.05, η = 0.5
10 77.87 74.51
15 77.61 75.15
25 78.29 74.98
50 77.01 75.60

(c) Impact of K

δ 0.0 0.25 0.50 0.75
q = 0.05, η = 0.3 75.92 77.61 78.22 77.62
q = 0.05, η = 0.5 73.50 75.15 74.72 72.24

(d) Impact of δ

r 0.6 0.5 0.4 0.0
q = 0.05, η = 0.3 76.87 77.61 78.19 75.64
q = 0.05, η = 0.5 74.17 75.15 74.41 65.63

(e) Impact of label smoothing rate r

Backbone q = 0.05, η = 0.3 q = 0.05, η = 0.5
Wide-ResNet-34x10 81.3 78.18
ResNext-50 79.55 76.37
SE-ResNet-50 79.46 75.56
DenseNet-121 78.75 74.36
ResNet-18 77.61 75.15

(f) Influence of backbones
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Figure 2: Number of selected reliable pairs (ñ) while training on CIFAR-100 with q = 0.05 and η = 0.3

there is a significant drop in the accuracy in the extreme noise setting. The result strongly establishes the
noise-robustness imparted by label smoothing in the NPLL context.

Influence of backbones: Table 6f establishes that SARI achieves better performance with more powerful
backbones. Prior effort (Wu et al., 2022) has shown that this is not necessarily the case with other methods
like PiCO.

Insights into pseudo-labelling: Figure 2 shows the number of selected reliable samples ñ (blue curve),
while training on CIFAR-100 with = 0.05 and η = 0.3. For visualization purposes, we also plot how many
of the selected examples are correct (red curve) by comparing them with the ground truth. In the first
epoch, we observe that out of the 50000 samples, 7211 samples are selected for training (of which 4036
are correct). This highlights the effectiveness of the pseudo labelling approach, given that the backbone is
randomly initialized and there is a presence of significant noise in the partial labels. Since a good portion of
selected samples are correct, this aids in learning improved features. Over time both the number of selected
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examples and proportion of correct labels increase, enhancing the quality of the feature representations. At
convergence, (ñ) is 45285, of which 40330 pseudo labels are correct.

5 Conclusion

We propose SARI, a simplistic framework for NPLL that iteratively performs pseudo-labeling and classifier
training. Pseudo-labeling is done using weighted KNN, and a classifier is trained using the labeled samples
while leveraging standard regularization techniques like label smoothing. SARI achieves SOTA results in
a comprehensive set of experiments, varying partial rates and noise rates. The gains are more pronounced
with an increase in noise and the number of classes. Notably, SARI excels in fine-grained classification tasks.
Unlike many previous methods, SARI preserves its performance as the ambiguity in the dataset increases.
SARI also generalizes well on real world crowd-sourced datasets.

We provide thorough ablation studies to shed light on the functioning of the SARI framework. Our analysis
underscores the consistent contributions of both consistency regularization and Mix-up to overall performance
improvements. Additionally, we highlight the enormous benefits of label smoothing, particularly in high-
noise scenarios. We believe that the SARI framework and the insights presented in this study would be
helpful for the research community across a wide range of practical applications.
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