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ABSTRACT

Adversarial examples pose a significant challenge to the robustness, reliability and
alignment of deep neural networks. We propose a novel, easy-to-use approach to
achieving high-quality representations that lead to adversarial robustness through
the use of multi-resolution input representations and dynamic self-ensembling of
intermediate layer predictions. We demonstrate that intermediate layer predictions
exhibit inherent robustness to adversarial attacks crafted to fool the full classifier,
and propose a robust aggregation mechanism based on Vickrey auction that we
call CrossMax to dynamically ensemble them. By combining multi-resolution
inputs and robust ensembling, we achieve significant adversarial robustness on
CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra data,
reaching an adversarial accuracy of ≈72% (CIFAR-10) and ≈48% (CIFAR-100)
on the RobustBench AutoAttack suite (L∞ = 8/255) with a finetuned ImageNet-
pretrained ResNet152. This represents a result comparable with the top three
models on CIFAR-10 and a +5 % gain compared to the best current dedicated
approach on CIFAR-100. Adding simple adversarial training on top, we get
≈78% on CIFAR-10 and ≈51% on CIFAR-100, improving SOTA by 5 % and
9 % respectively and seeing greater gains on the harder dataset. We validate our
approach through extensive experiments and provide insights into the interplay
between adversarial robustness, and the hierarchical nature of deep representations.
We show that simple gradient-based attacks against our model lead to human-
interpretable images of the target classes as well as interpretable image changes.
As a byproduct, using our multi-resolution prior, we turn pre-trained classifiers and
CLIP models into controllable image generators and develop successful transferable
attacks on large vision language models.
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Figure 1: We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (c) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (f), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
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1 INTRODUCTION

Our objective is to take a step towards aligning the way machines perceive visual information – as
expressed by the learned computer vision classification function – and the way people perceive visual
information – as represented by the inaccessible, implicit human vision classification function. The
significant present-day mismatch between the two is best highlighted by the existence of adversarial
attacks that affect machine models but do not transfer to humans. Our aim is to develop a vision
model with high-quality, natural representations that agree with human judgment not only under static
perturbations, such as noise or dataset shift, but also when exposed to active, motivated attackers
trying to dynamically undermine their accuracy. While adversarial robustness serves as our primary
case study, the broader implications of this alignment extend to aspects such as interpretability, image
generation, and the security of closed-source models, underscoring its importance.

Adversarial examples in the domain of image classification are small, typically human-imperceptible
perturbations P to an image X that nonetheless cause a classifier, f : X → y, to misclassify the
perturbed image X + P as a target class t chosen by the attacker, rather than its correct, ground
truth class. This is despite the perturbed image X + P still looking clearly like the ground truth
class to a human, highlighting a striking and consistent difference between machine and human
vision (first described by Szegedy et al. (2013)). Adversarial vulnerability is ubiquitous in image
classification, from small models and datasets (Szegedy et al., 2013) to modern large models such
CLIP (Radford et al., 2021), and successful attacks transfer between models and architectures to
a surprising degree (Goodfellow et al., 2015) without comparable transfer to humans. In addition,
adversarial examples exist beyond image classification, for example in out-of-distribution detection,
where otherwise very robust systems fall prey to such targeted attacks (Chen et al., 2021; Fort, 2022),
and language modeling (Guo et al., 2021; Zou et al., 2023).

We hypothesize that the existence of adversarial attacks is due to the significant yet subtle mismatch
between what humans do when they classify objects and how they learn such a classification in
the first place (the implicit classification function in their brains), and what is conveyed to a neural
network classifier explicitly during training by associating fixed pixel arrays with discrete labels (the
learned machine classification function). It is often believed that by performing such a training we are
communicating to the machine the implicit human visual classification function, which seems to be
borne by their agreement on the training set, test set, behaviour under noise, and recently even their
robustness to out-of-distribution inputs at scale (Fort et al., 2021b). We argue that while these two
functions largely agree, the implicit human and learned machine functions are not exactly the same,
which means that their mismatch can be actively exploited by a motivated, active attacker, purposefully
looking for such points where the disagreement is large (for similar exploits in reinforcement learning
see (Leike et al., 2017)). This highlights the difference between agreement on most cases, usually
probed by static evaluations, and an agreement in all cases, for which active probing is needed.

In this paper, we take a step towards aligning the implicit human and explicit machine classification
functions, and consequently observe very significant gains in adversarial robustness against standard
attacks as a result of a few, simple, well-motivated changes, and without any explicit adversarial
training. While, historically, the bulk of improvement on robustness metrics came from adversarial
training (Chakraborty et al., 2018), comparably little attention has been dedicated to improving the
model backbone, and even less to rethinking the training paradigm itself. Our method can also be
easily combined with adversarial training, further increasing the model’s robustness cheaply. Beyond
benchmark measures of robustness, we show that if we optimize an image against our models directly,
the resulting changes are human interpretable.

We operate under what what we call the Interpretability-Robustness Hypothesis: A model whose
adversarial attacks typically look human-interpretable will also be adversarially robust. The aim
of this paper is to support this hypothesis and to construct first versions of such robust classifiers,
without necessarily reaching their peak performance via extensive hyperparameter tuning.

Firstly, inspired by biology, we design an active adversarial defense by constructing and training a
classifier whose input, a standard H ×W × 3 image, is stochastically turned into a H ×W × (3N)
channel-wise stack of multiple downsampled and noisy versions of the same image. The classifier
itself learns to make a decision about theseN versions at once, mimicking the effect of microsaccades
in the human (and mammal) vision systems. Secondly, we show experimentally that hidden layer
features of a neural classifier show significant de-correlation between their representations under
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Figure 2: Combining channel-wise stacked augmented and down-sampled versions of the input image
with robust intermediate layer class predictions via CrossMax self-ensemble. The resulting model
gains a considerable adversarial robustness without any adversarial training or extra data.

adversarial attacks – an attack fooling a network to see a dog as a car does not fool the intermediate
representations, which still see a dog. We aggregate intermediate layer predictions into a self-
ensemble dynamically, using a novel ensembling technique that we call a CrossMax ensemble.
Thirdly, we show that our Vickrey-auction-inspired CrossMax ensembling yields very significant
gains in adversarial robustness when ensembling predictors as varied as 1) independent brittle models,
2) predictions of intermediate layers of the same model, 3) predictions from several checkpoints of
the same model, and 4) predictions from several self-ensemble models. We use the last option to
gain ≈ 5% in adversarial accuracy at the L∞ = 8/255 RobustBench’s AutoAttack on top of the best
models on CIFAR-100. When we add light adversarial training on top, we outperform current best
models by ≈ 5% on CIFAR-10, and by ≈ 9% on CIFAR-100, showing a promising trend where the
harder the dataset, the more useful our approach compared to brute force adversarial training (see
Figure 6).

2 KEY OBSERVATIONS AND TECHNIQUES

In this section we will describe the three key methods that we use in this paper. In Section 2.1
we introduce the idea of multi-resolution inputs, in Section 2.2 we introduce our robust CrossMax
ensembling method, and in Section 2.3 we showcase the de-correlation between adversarially induced
mistakes at different layers of the network and how to use it as an active defense.

2.1 THE MULTI-RESOLUTION PRIOR

Figure 3: An image input being split into N progressively lower resolution versions that are then
stacked channel-wise, forming a 3N -channel image input to a classifier.

Drawing inspiration from biology, we use multiple versions of the same image at once, down-sampled
to lower resolutions and augmented with stochastic jitter and noise. We train a model to classify this
channel-wise stack of images simultaneously. We show that this by default yields gains in adversarial
robustness without any explicit adversarial training.

Classifying many versions of the same object at once. The human visual system has to recognize
an object, e.g. a cat, from all angles, distances, under various blurs, rotations, illuminations, contrasts
and similar such transformations that preserve the semantic content of whatever a person is looking
at while widely changing the ”pixel” values of the image projected on the retina.

A classification decision is not performed on a single frame but rather on a long stream of such
frames that come about due to changing physical conditions under which an object is viewed as well
as the motion of the eyes and changing properties of the retina (resolution, color sensitivity) at a
place where the object is projected. We hypothesize that this is a key difference between the human
visual system and a standard approach to image classification, where still, high-resolution frames
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are associated with discrete labels. We believe that bridging this gap will lead to better alignment
between the implicit human classification function, and the explicit machine classification function.

Augmentations that preserve the semantic content of images while increasing their diversity have
historically been used in machine learning, for an early example see (LeCun et al., 1998). However,
typically, a particular image X appears in a single pass through the training set (an epoch) a single
time, in its augmented form X ′. The next occurrence takes place in the following epoch, with a
different augmentation X ′′. In (Havasi et al., 2021), multiple images are fed into the network at
once through independent subnetworks. In (Fort et al., 2021a), the same image X is augmented N
times within the same batch, leading to faster training and higher final performance, likely due to the
network having to learn a more transformation-invariant notion of the object at once. In this paper,
we take this process one step further, presenting different augmentations as additional image channels
at the same time. This can be viewed as a very direct form of ensembling.

Biological eye saccades. Human eyes (as well as the eyes of other animals with foveal vision)
perform small, rapid, and involuntary jitter-like motion called microsaccades (cf. (Martinez-Conde
et al., 2004) for details). The amplitude of such motion ranges from approximately 2 arcminutes to
100 arcminutes. In the center of the visual field where the human eye has the highest resolution, it is
able to resolve up to approximately 1 arcminute. That means that even the smallest microsaccade
motion moves the image projected on the retina by at least one pixel in amplitude. The resolution
gradually drops towards the edges of the visual field to about 100 arcminutes (Wandell, 1995). Even
there the largest amplitude macrosaccades are sufficient to move the image by at least a pixel. The
standard explanation is that these motions are needed to refresh the photosensitive cells on the retina
and prevent the image from fading (Martinez-Conde et al., 2004). However, we hypothesize that an
additional benefit is an increase in the robustness of the visual system. We draw inspiration from
this aspect of human vision and add deterministically random jitter to different variants of the image
passed to our classifier. Apart from the very rapid and small amplitude microsaccades, the human eye
moves around the visual scene in large motions called macrosaccades or just saccades. Due to the
decreasing resolution of the human eye from the center of the visual field, a particular object being
observed will be shown with different amounts of blur.

Multi-resolution input to a classifier. We turn an input image X of full resolution R × R and
3 channels (RGB) into its N variations of different resolutions r × r for r ∈ ρ. For CIFAR-10
and CIFAR-100, we are (arbitrarily) choosing resolutions ρ = {32, 16, 8, 4} and concatenating the
resulting image variations rescaleR (rescaler(X)) channel-wise to a R × R × (3|ρ|) augmented
image X̄ . This is shown in Figure 3. Similar approaches have historically been used to represent
images, such as Gaussian pyramids introduced in (Burt & Adelson, 1983). To each variant we add
1) random noise both when downsampled and at the full resolution R × R (in our experiments of
strength 0.1 out of 1.0), 2) a random jitter in the x − y plane (±3 in our experiments), 3) a small,
random change in contrast, and 4) a small, random color-grayscale shift. This can also be seen as an
effective reduction of the input space dimension available to the attacker, as discussed in (Fort, 2023).

2.2 CrossMax ROBUST ENSEMBLING

Robust aggregation methods, Vickrey auctions and load balancing. The standard way of en-
sembling predictions of multiple networks is to either take the mean of their logits, or the mean of
their probabilities. This increases both the accuracy as well as predictive uncertainty estimates of
the ensemble (Lakshminarayanan et al., 2017; Ovadia et al., 2019). Such aggregation methods are,
however, susceptible to being swayed by an outlier prediction by a single member of the ensemble or
its small subset. This produces a single point of failure. The pitfalls of uncertainty estimation and
ensembling have been highlighted in (Ashukha et al., 2021), while the effect of ensembling on the
learned classification function was studied by Fort et al. (2022).

With the logit mean in particular, an attacker can focus all their effort on fooling a single network’s
prediction strongly enough towards a target class t. Its high logit can therefore dominate the full
ensemble, in effect confusing the aggregate prediction. An equivalent and even more pronounced
version of the effect would appear were we to aggregate by taking a max over classifiers per class.
The calibration of individual members vs their ensemble is theoretically discussed in (Wu & Gales,
2021).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Our goal is to produce an aggregation method that is robust against an active attacker trying to
exploit it, which is a distinct setup from being robust against e.g. untargeted perturbations. In fact,
methods very robust against out-of-distribution inputs (Fort et al., 2021b) are still extremely brittle
against targeted attacks (Fort, 2022). Generally, this observation, originally stated as ”Any observed
statistical regularity will tend to collapse once pressure is placed upon it for control purposes” in
Goodhart (1981), is called Goodhart’s law, and our goal is to produce an anti-Goodhart ensemble.

We draw our intuition from Vickrey auctions (Wilson, 1977) which are designed to incentivize truthful
bidding. Viewing members of ensembles as individual bidders, we can limit the effect of wrong,
yet overconfident predictions by using the 2nd highest, or generally kth highest prediction per class.
This also produces a cat-and-mouse-like setup for the attacker, since which classifier produces the
kth highest prediction for a particular class changes dynamically as the attacker tries to increase that
prediction. A similar mechanism is used in balanced allocation (Azar et al., 1999) and specifically in
the k random choices algorithm for load balancing (Mitzenmacher et al., 2001).

Our CrossMax aggregation works a follows: For logits Z of the shape [B,N,C], where B is the
batch size, N the number of predictors, and C the number of classes, we first subtract the max
per-predictor max(Z, axis = 1) to prevent Goodhart-like attacks by shifting the otherwise-arbitrary
overall constant offset of a predictor’s logits. This prevents a single predictor from dominating. The
second, less intuitive step, is subtracting the per-class max to encourage the winning class to win via
a consistent performance over many predictors rather than an outlier. This is to prevent any class
from spuriously dominating. We aggregate such normalized logits via a per-class topk function for
our self-ensembles and median for ensembles of equivalent models, as shown in Algorithm 1.

Algorithm 1 CrossMax = An Ensembling Algorithm with Improved Adversarial Robustness

Require: Logits Z of shape [B,N,C], where B is the batch size, N the number of predictors, and
C the number of classes

Ensure: Aggregated logits
1: Ẑ ← Z−max(Z, axis = 2) {Subtract the max per-predictor over classes to prevent any predictor

from dominating}
2: Ẑ ← Ẑ −max(Ẑ, axis = 1) {Subtract the per-class max over predictors to prevent any class

from dominating}
3: Y ← median(Ẑ, axis = 1) {Choose the median (or kth highest for self-ensemble) logit per

class}
4: return Y

We use this aggregation for intermediate layer predictions (changing median to top3) as well and see
similar, transferable gains. We call this setup a self-ensemble.

2.3 ONLY PARTIAL OVERLAP BETWEEN THE ADVERSARIAL SUSCEPTIBILITY OF
INTERMEDIATE LAYERS
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Figure 4: The impact of adversarial attacks (L∞ = 8/255, 128 attacks) against the full classifier on
the accuracy and probabilities at all intermediate layers for an ImageNet-1k pretrained ResNet152
finetuned on CIFAR-10 via trained linear probes.

A key question of both scientific and immediately practical interest is whether an adversarially
modified image X ′ that looks like the target class t to a classifier f : X → y also has intermediate
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Figure 5: Transfer of adversarial attacks (L∞ = 8/255, 512 attacks) against the activations of layer α
on the accuracy of layer β for α = 0, 10, 27, 43, 53 on ImageNet-1k pretrained ResNet152 finetuned
on CIFAR-10 via trained linear probes. Each panel shows the effect of designing a pixel-level attack
to confuse the linear probe at a particular layer. For more details, see Figure 23.

layer representations that look like that target class. In (Olah et al., 2017), it is shown via feature
visualization that neural networks build up their understanding of an image hierarchically starting
from edges, moving to textures, simple patterns, all the way to parts of objects and full objects
themselves. This is further explored by Carter et al. (2019). Does an image of a car that has been
adversarially modified to look like a tortoise to the final layer classifier carry the intermediate features
of the target class tortoise (e.g. the patterns on the shell, the legs, a tortoise head), of the original
class car (e.g. wheels, doors), or something else entirely? We answer this question empirically.

To investigate this phenomenon, we fix a trained network f : X → y and use its intermediate layer
activations h1(X), h2(X), · · · , hL(X) to train separate trained linear probes (affine layers) that map
the activation of the layer l into classification logits zi as gi : hi(X)→ yi. An image X generates
intermediate representations (h1, h2, . . . , hL) that in turn generate L different sets of classification
logits (z1, z2, . . . , zL). In Figure 4 we showcase this effect using an ImageNet-pretrained ResNet152
(He et al., 2015) finetuned on CIFAR-10. Images attacked to look like some other class than their
ground truth (to the final layer classification) do not look like that to intermediate layers, as shown by
the target class probability only rising in the very last layers (see Figure 4). We can therefore confirm
that indeed the activations of attacked images do not look like the target class in the intermediate
layers, which offers two immediate use cases: 1) as a warning flag that the image has been tempered
with and 2) as an active defense, which is strictly harder.

This setup also allows us not only to investigate what the intermediate classification decision would
be for an adversarially modified image X ′ that confuses the network’s final layer classifier, but also to
generally ask what the effect of confusing the classifier at layer α would do to the logits at a layer β.
The results are shown in Figure 5 for 6 selected layers to attack, and the full attack layer × read-out
layer is show in Figure 23.

We find that attacks designed to confuse early layers of a network do not confuse its middle and
late layers. Attacks designed to fool middle layers do not fool early nor late layers, and attacks
designed to fool late layers do not confuse early or middle layers. In short, there seems to be roughly
a 3-way split: early layers, middle layers, and late layers. Attacks designed to affect one of these do
not generically generalize to others. We call this effect the adversarial layer de-correlation. This
de-correlation allows us to create a self-ensemble from a single model, aggregating the predictions
resulting from intermediate layer activations.

3 TRAINING AND EXPERIMENTAL RESULTS

In this section we present in detail how we combine the previously described methods and techniques
into a robust classifier on CIFAR-10 and CIFAR-100. We start both with a pretrained model and
finetune it, as well as with a freshly initialized model.

Model and training details. The pretrained models we use are the ImageNet (Deng et al., 2009)
trained ResNet18 and ResNet152 (He et al., 2016). Our hyperparameter search was very minimal
and we believe that additional gains are to be had with a more involved search easily. The only
architectural modification we make is to change the number of input channels in the very first
convolutional layer from 3 to 3N , where N is the number of channel-wise stacked down-sampled
images we use as input. We also replaced the final linear layer to map to the correct number of classes
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(10 for CIFAR-10 and 100 for CIFAR-100). Both the new convolutional layer as well as the final
linear layer are initialized at random. The batch norm (Ioffe & Szegedy, 2015) is on for finetuning a
pretrained model (although we did not find a significant effect beyond the speed of training).

We focused on the CIFAR-* datasets (Krizhevsky, 2009; Krizhevsky et al.) that comprise 50,000
32× 32× 3 images. We arbitrarily chose N = 4 and the resolutions we used are 32× 32, 16× 16,
8 × 8, 4 × 4 (see Figure 3). We believe it is possible to choose better combinations, however, we
did not run an exhaustive hyperparameter search there. The ResNets we used expect 224 × 224
inputs. We therefore used a bicubic interpolation to upsample the input resolution for each of
the 12 channels independently. To each image (the 32× 32× 3 block of RGB channels) we add a
random jitter in the x− y plane in the ±3 range. We also add a random noise of standard deviation
0.2 (out of 1.0). All training is done using the Adam (Kingma & Ba, 2015) optimizer at a flat learning
rate η that we always specify. Optimization is applied to all trainable parameters and the batch norm
is turned on in case of finetuning, but turned off for training from scratch. Linear probes producing
predictions at each layer are just single linear layers that are trained on top of the pre-trained and
frozen backbone network, mapping from the number of hidden neurons in that layer (flattened to a
single dimension) to the number of classes (10 for CIFAR-10 and 100 for CIFAR-100). We trained
them using the same learning rate as the full network for 1 epoch each.

Adversarial vulnerability evaluation. To make sure we are using as strong an attack suite as
possible to measure our networks’ robustness and to be able to compare our results to other approaches,
we use the RobustBench (Croce et al., 2020) library and its AutoAttack method, which runs
a suite of four strong, consecutive adversarial attacks on a model in a sequence and estimates its
adversarial accuracy (e.g. if the attacked images were fed back to the network, what would be
the classification accuracy with respect to their ground truth classes). For faster evaluation during
development, we used the first two attacks of the suite (APGD-CE and APGD-T) that are particularly
strong and experimentally we see that they are responsible for the majority of the accuracy loss under
attack. For full development evaluation (but still without the rand flag) we use the full set of four
tests: APGD-CE, APGD-T, FAB-T and SQUARE. Finally, to evaluate our models using the hardest
method possible, we ran the AutoAttack with the rand flag that is tailored against models using
randomness. The results without adversarial training are shown in Table 1 and with adversarial
training at Table 2. The visual representation of the results is presented in Figure 6.

Table 1: Randomized (strongest) RobustBench AutoAttack adversarial attack suite results at the
L∞ = 8/255 strength. In this table we show the results of attacking our multi-resolution ResNet152
models finetuned on CIFAR-10 and CIFAR-100 from an ImageNet pretrained state without any
adversarial training or extra data for 20 epochs with Adam at η = 3.3× 10−5. We use our CrossMax
ensembling on the model itself (self-ensemble), the final 3 epochs (3-ensemble), and on self-ensembles
from 3 different runs (3-ensemble of self-ensembles). We also include results for a ResNet18 trained
from scratch on CIFAR-10. Additional adversarial training helps, as shown in Table 2.

rand AutoAttack
L∞ = 8/255 (%)

Dataset Adv. Model Method # Test Adv APGD APGD
train acc acc CE→ DLR

CIFAR-10 × ResNet18* Self-ensemble 1024 76.94 64.06 51.56 44.53

CIFAR-10 × ResNet152 Multires backbone 128 89.17 41.44 32.81 21.88
CIFAR-10 × ResNet152 Self-ensemble 128 87.14 53.12 50.00 43.75

CIFAR-10 × ResNet152 3-ensemble of
self-ensembles 128 90.20 71.88 68.75 68.75

CIFAR-10 X [3] SOTA #1 73.71

CIFAR-100 × ResNet152 Multires backbone 128 65.70 25.00 21.88 13.28

CIFAR-100 × ResNet152 Self-ensemble 512 65.71 46.29
±2.36

34.77
±2.09

30.08
±2.13

CIFAR-100 × ResNet152 3-ensemble of
self-ensembles 512 67.71 48.16

±2.65
40.63
±2.11

37.32
±1.98

CIFAR-100 X [48] SOTA #1 42.67
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Figure 6: Adversarial robustness evaluation for finetuned ResNet152 models under L∞ = 8/255
attacks of RobustBench AutoAttack (rand version = stronger against our models). On CIFAR-10, a
CrossMax 3-ensemble of our self-ensemble multi-resolution models reaches #3 on the leaderboard,
while on CIFAR-100 a 3-ensemble of our multi-resolution models is #1, leading by ≈+5 % in
adversarial accuracy. When we add light adversarial training, our models surpass SOTA on CIFAR-10
by ≈+5 % and on CIFAR-100 by a strong ≈+9 %.

Multi-resolution finetuning of a pretrained model. In this section we discuss finetuning a standard
pretrained model using our multi-resolution inputs. We demonstrate that this quickly leads to very
significant adversarial robustness that matches and in some cases (CIFAR-100) significantly improves
upon current best, dedicated approaches, without using any extra data or adversarial training. We
see stronger gains on CIFAR-100 rather than CIFAR-10, suggesting that its edge might lie at harder
datasets, which is a very favourable scaling compared to brute force adversarial training.

We show that we can easily convert a pre-trained model into a robust classifier without any data
augmentation or adversarial training in a few epochs of standard training on the target downstream
dataset. The steps we take are as follows: 1) Take a pretrained model (in our case ResNet18 and
ResNet152 pretrained on ImageNet). 2) Replace the first layer with a fresh initialization that can
take in 3N instead of 3 channels. 3) Replace the final layer with a fresh initialization to project to 10
(for CIFAR-10) or 100 (for CIFAR-100) classes. 4) Train the full network with a small (this is key)
learning rate for a few epochs

We find that using a small learning rate is key, which could be connected to the effects described for
example in Thilak et al. (2022) and Fort et al. (2020). While the network might reach a good clean
test accuracy for high learning rates as well, only for small learning rates will it also get significantly
robust against adversarial attacks, as shown in Figure 20.

In Table 1 we present our results of finetuning an ImageNet pretrained ResNet152 on CIFAR-10
and CIFAR-100 for 10 epochs at the constant learning rate of 3.3× 10−5 with Adam followed by 3
epochs at 3.3× 10−6. We find that even a simple 10 epoch finetuning of a pretrained model using our
multi-resolution input results in a significant adversarial robustness. When using the strongest rand
flag for models using randomized components in the RobustBench AutoAttack without any tuning
against, we show significant adversarial robustness, as shown in Tab 1. On CIFAR-10, our results
are comparable to the top three models on the leaderboard, despite never using any extra data or
adversarial training. On CIFAR-100, our models actually lead by +5% over the current best model.

In Figure 6 we can see the gradual increase in adversarial accuracy as we add layers of robustness.
First, we get to≈ 40% by using multi-resolution inputs. An additional≈ 10% is gained by combining
intermediate layer predictions into a self-ensemble. An additional ≈ 20% on top is then gained by
using CrossMax ensembling to combining 3 different self-ensembling models together. Therefore, by
using three different ensembling methods at once, we reach approximately 70% adversarial accuracy
on CIFAR-10. The gains on CIFAR-100 are roughly equally split between the multi-resolution input
and self-ensemble, each contributing approximately half of the robust accuracy.

Training from scratch. We train a ResNet18 from scratch on CIFAR-10 as a backbone, and then
train additional linear heads for all of its intermediate layers to form a CrossMax self-ensemble. We
find that, during training, augmenting our input images X with an independently drawn images X ′
with a randomly chosen mixing proportion p as (1 − p)X + pX ′ increases the robustness of the
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trained model. This simple augmentation technique is known as mixup and is described in Zhang
et al. (2018). The results on the full RobustBench AutoAttack suite of attacks for CIFAR-10 are
shown in Table 1 for self-ensemble constructed on top of the multi-resolution ResNet18 backbone
(the linear heads on top of each layer were trained for 2 epochs with Adam at 10−3 learning rate).

+ =

99% ”bicycle” RobustBench perturbation 86% “snake”

Figure 7: An example of a L∞ = 64/255 Ro-
bustBench AutoAttack on our model, changing a
bicycle into a snake in an interpretable way.

Adversarial finetuning. Adversarial training,
which adds attacked images with their correct,
ground truth labels back to the training set, is a
standard brute force method for increasing mod-
els’ adversarial robustness. (Chakraborty et al.,
2018) It is ubiquitous among the winning sub-
missions on the RobustBench leader board, e.g.
in Cui et al. (2023) and Wang et al. (2023). To
verify that our technique does not only some-
how replace the need for dedicated adversarial
training, but rather that it can be productively
combined with it for even stronger adversarial
robustness, we re-ran all our finetuning experiments solely on adversarially modified batches of input
images generated on the fly.

For each randomly drawn batch, we used the single-step fast gradient sign method from Goodfellow
et al. (2015) to increase its cross-entropy loss with respect to its ground truth labels. We used the
L∞ = 8/255 for all attacks. In Table 2 we show the detailed adversarial robustness of the resulting
models. Figure 6 shows a comparison of the standard training and adversarial training for all models
on CIFAR-10 and CIFAR-100. In all cases, we see an additive benefit of adversarial training on top
of our techniques. In particular, for CIFAR-10 we outperform current SOTA by approximately 5
% while on CIFAR-100 and by approximately 9 % on CIFAR-100, which is a very large increase.
The fact that our techniques benefit even from a very small amount of additional adversarial training
(units of epochs of a single step attack) shows that our multi-resolution inputs and intermediate layer
aggregation are a good prior for getting broadly robust networks.

+ =

99% @ c=57 “pear” perturbation 98% @ c=0 “apple”

(a) Pear to apple

+ =

99% @ c=23 “cloud” perturbation 99% @ c=49 “mountain”

(b) Cloud to mountain

Figure 8: Examples of an adversarial attack on an image towards a target label. We use simple
gradient steps with respect to our multi-resolution ResNet152 finetuned on CIFAR-100. The resulting
attacks use the underlying features of the original image and make semantically meaningful, human-
interpretable changes to it. Additional examples available in Figure 24.

Figure 9: Examples of adversarial attacks on our
multi-resolution ResNet152 finetuned on CIFAR-
100 (left), the previous best model on CIFAR-
100 L∞ = 8/255 on RubustBench from Wang
et al. (2023) (middle), and standard ResNet152
finetuned on CIFAR-100

Visualizing attacks against multi-resolution
models. We wanted to visualize the attacks
against our multi-resolution models. In Figure 8
we start with a test set image of CIFAR-100 (a
pear, cloud, camel and elephant) and over 400
steps with SGD and η = 1 minimize the loss
with respect to a target class (apple, mountain,
rabbit and dinosaur). We allow for large pertur-
bations, up to L∞ = 128/255, to showcase the
alignment between our model and the implicit
human visual system classification function. In
case of the pear, the perturbation uses the un-
derlying structure of the fruit to divide it into 2
apples by adding a well-placed edge. The result-
ing image is very obviously an apple to a human as well as the model itself. In case of the cloud, its
white color is repurposed by the attack to form the snow of a mountain, which is drawn in by a dark
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sharp contour. In case of the elephant, it is turned into a dinosaur by being recolored to green and
made spikier – all changes that are very easily interpretable to a human.

(a) apple (b) girl (c) man (d) maple (e) mountain

Figure 10: Examples of adversarial attacks on our multi-resolution ResNet152 finetuned on CIFAR-
100. The attacks are generated by starting from a uniform image (128,128,128) and using gradient
descent of the cross-entropy loss with SGD at η = 1 for 400 steps towards the target label. For
standard models, these look like noise (Figure 9).

In Figure 10 we start with a uniform gray image of color (128, 128, 128) and by changing it to
maximize the probability of a target class with respect to our model, we generate an image. The
resulting images are very human-interpretable. This can be directly contrasted with the results in
Figure 9 that one gets running the same procedure on a brittle model (noise-like patterns) and a
current best, adversarially trained CIFAR-100 model ((Wang et al., 2023); suggestive patterns, but
not real images). We also generated 4 examples per CIFAR-100 class for all 100 classes in Figure 26
to showcase that we do not cherrypick the images shown.

Figure 25 shows 6 examples of successfully attacked CIFAR-100 test set images for an ensemble of 3
self-ensemble models – our most adversarially robust model. When looking at the misclassifications
caused, we can easily see human-plausible ways in which the attacked image can be misconstrued
as the most probable target class. Figure 7 shows a successful L∞ = 64/255 (much larger than the
standard 8/255 perturbations) RobustBench AutoAttack on a test image of a bicycle converting it, in
a human-interpretable way, to a snake by re-purposing parts of the bicycle frame as the snake body.

4 DISCUSSION AND CONCLUSION

In this paper, we introduced a novel approach to bridging the gap between machine and human
vision systems. Our techniques lead to higher-quality, natural representations that improve the
adversarial robustness of neural networks by leveraging multi-resolution inputs and a robust (self-
)ensemble aggregation method we call CrossMax. Our method approximately matches state-of-the-art
adversarial accuracy on CIFAR-10 and exceeds it on CIFAR-100 without relying on any adversarial
training or extra data at all. When light adversarial training is added, it sets a new best performance
on CIFAR-10 by ≈ 5% and by a significant ≈ 9% on CIFAR-100, taking it from ≈ 40% to ≈ 50%.
Key contributions of our work include: 1) Demonstrating the effectiveness of multi-resolution inputs
as an active defense mechanism against adversarial attacks and a design principle for higher-quality,
robust classifiers. 2) Introducing the CrossMax ensemble aggregation method for robust prediction
aggregation. 3) Providing insights into the partial robustness of intermediate layer features to
adversarial attacks. 4) Supporting the Interpretability-Robustness Hypothesis through empirical
evidence. 5) Discovering a method to turn pre-trained classifiers and CLIP models into controllable
image generators. 6) Generating the first transferable image attacks on closed-source large vision
language models which can be viewed as early, simple versions of jailbreaks.

We believe that our findings not only advance the field of adversarial robustness but also provide
valuable insights into the nature of neural network representations and their vulnerability to adversarial
perturbations. The connection between interpretability and robustness highlighted in this work also
opens up new research directions for developing more reliable and explainable AI systems.
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A ADDITIONAL INSIGHTS AND APPLICATIONS

Figure 11: The image spectrum of gen-
erated multi-resolution attacks. The ad-
versarial attacks generated over multiple
resolutions at once end up showing very
white-noise-like distribution of powers
over frequencies (the slope for natural
images is ≈ −2). This is in contrast
with standard noise-like attacks.

We want to support our multi-resolution input choice as
an active defense by demonstrating that by reversing it
and representing an adversarial perturbation explicitly as
a sum of perturbations at different resolutions, we get
human-interpretable perturbations by default.

A.1 SINGLE-RESOLUTION ADVERSARIAL ATTACKS

Natural images contain information expressed on all fre-
quencies, with an empirically observed power-law scaling.
The higher the frequency, the lower the spectral power, as
∝ f−2 (van der Schaaf & van Hateren, 1996).

While having a single perturbation P of the full resolution
R×R theoretically suffices to express anything, we find
that this choice induces a specific kind of high frequency
prior. Even simple neural networks can theoretically ex-
press any function (Hornik et al., 1989), yet the specific
architecture matters for what kind of a solution we obtain
given our data, optimization, and other practical choices.
Similarly, we find that an alternative formulation of the
perturbation P leads to more natural looking and human
interpretable perturbations despite the attacker having ac-
cess to the highest-resolution perturbation as well and could in principle just use that.

A.2 MULTI-RESOLUTION ATTACKS

+ … += + … + + … +

Figure 12: The result of expressing an image as a set of resolutions and optimizing it towards the
CLIP embedding of the text ’a photo of a nuclear explosion’. The plot shows the resulting sum of
resolutions (left panel, marked with ρ) and selected individual perturbations Pr of resolutions 2× 2,
8× 8, 32× 32 and 128× 128. The intensity of each is shifted and rescaled to fit between 0 and 1 to
be recognizable visually, however, the pixel values in the real Pr fall of approximately as r−1.

We express the single, high resolution perturbation P as a sum of perturbations P =∑
r∈ρ rescaleR(Pr), where Pr is of the resolution r × r specified by a set of resolutions ρ, and

the rescaleR function rescales and interpolates an image to the full resolution R × R. When we
jointly optimize the set of perturbations {Pr}r∈ρ, we find that: a) the resulting attacked image
X +

∑
r∈ρ rescaleR(Pr) is much more human-interpretable, b) the attack follows a power distribu-

tion of natural images.

When attacking a classifier, we choose a target label t and optimize the cross-entropy loss of the
predictions stemming from the perturbed image as if that class t were ground truth. To add to
the robustness and therefore interpretability of the attack (as hypothesized in our Interpretability-
Robustness Hypothesis), we add random jitter in the x-y plane and random pixel noise, and design
the attack to work on a set of models.

An example of the multi-resolution sum is show in Figure 13. There we use a simple Stochastic
Gradient Descent (Robbins & Monro, 1951) optimization with the learning rate of 5 × 10−3 and
a cosine decay schedule over 50 steps. We add a random pixel noise of 0.6 (out of 1), jitter in the
x-y plane in the ±5 range and a set of all perturbations from 1× 1 to 224× 224 interpolated using
bicubic interpolation (Keys, 1981). In Figure 13 we see that despite the very limited expressiveness
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of the final layer class label, we can still recover images that look like the target class to a human. We
also tested them using Gemini Advanced and GPT-4, asking what the AI model sees in the picture,
and got the right response in all 8 cases. To demonstrate that we can generate images beyond the

(a) c = 309 bee (b) c = 37 box turtle (c) c = 895 warplane (d) c = 979 valley

(e) c = 974 geyser (f) c = 975 lakeside (g) c = 795 ski (h) c = 980 volcano

Figure 13: Examples of images generated as attacks on ImageNet-trained classifiers. These images
were generated by minimizing the cross-entropy loss of seven pretrained classifiers with respect to
the target ImageNet class. Spatial jitter in the ±5 pixel range and pixel noise of standard deviation
0.6 were applied during SGD optimization with learning rate 5× 10−3 over 50 steps with a cosine
schedule. The perturbation was expressed as a sum of perturbations at all resolutions from 1× 1 to
224× 224 that were optimized at once.

100% geyser
    0% lakeside

 75% geyser
 25% lakeside

 50% geyser
 50% lakeside

 25% geyser
 75% lakeside

    0% geyser
100% lakeside

Figure 14: Optimizing towards a probability vector with a sliding scale between c = 974 geyser and
c = 975 lakeside. Optimizing against pretrained classifiers generated semantically blended image of
the two concepts.

original 1000 ImageNet classes, we experimented with setting the target label not as a one-hot vector,
but rather with target probability p on class t1 and 1 − p on t2. For classes c = 974 (geyser) and
c = 975 (lakeside) we show, in Figure 14 that we get semantically meaningful combinations of
the two concepts in the same image as we vary p from 0 to 1. p = 1/2 gives us a geyser hiding
beyond trees at a lakeside. This example demonstrates that in a limited way, classifiers can be used as
controllable image generators.

A.3 MULTI-RESOLUTION ATTACK ON CLIP

The CLIP-style (Radford et al., 2021) models map an image I to an embedding vector fI : I → vI
and a text T to an embedding vector fT : T → vT . The cosine between these two vectors corresponds
to the semantic similarity of the image and the text, cos(vI , vT ) = vI · vT /(|vI ||vT |). This gives us
score(I, T ) that we can optimize.

Adversarial attacks on CLIP can be thought of as starting with a human-understandable image X0 (or
just a noise), and a target label text T ∗, and optimizing for a perturbation P to the image that tries to
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(a) Just a 224 × 224 per-
turbation alone.

(b) Adding random noise
to optimization.

(c) Adding random jitter
to optimization.

(d) Adding all resolutions
from 1× 1 to 224× 224.

Figure 15: The effect of adding noise, jitter, and a full set of resolutions to an adversarial attack on
CLIP towards the text ’a beautiful photo of the University of Cambridge, detailed’. While using just
a plain perturbation of the full resolution in Figure 15a, as is standard in the typical adversarial attack
setup, we get a completely noise-like image. Adding random noise to the pixels during optimization
leads to a glimpse of a structure, but still maintains a very noise-like pattern (Figure 15b). Adding
random jitter in the x-y plane on top, we can already see interpretable shapes of Cambridge buildings
in Figure 15c. Finally, adding perturbations of all resolutions, 1× 1, 2× 2, . . . , 224× 224, we get a
completely interpretable image as a result in Figure 15d.

increase the score(X0 + P, T ∗) as much as possible. In general, finding such perturbations is easy,
however, they end up looking very noise-like and non-interpretable. (Fort, 2021b;a).

Figure 16: An attack on vision lan-
guage models. GPT-4 sees Rick Ast-
ley from his famous ”Never Gonna
Give You Up” music video tree. See
Table 21 and 22 for details.

If we again express P = rescale224(P1) + rescale224(P2) +
· · ·+ P224, where Pr is a resolution r × r image perturbation,
and optimize score(X0 + rescale224(P1) + rescale224(P2) +
· · ·+ P224, T

∗) by simultaneously updating all {Pr}r, the re-
sulting image X0 +

∑
r∈[1,224] rescaleR(Pr) looks like the

target text T ∗ to a human rather than being just a noisy pattern.
Even though the optimizer could choose to act only on the full
resolution perturbation P224, it ends up optimizing all of them
jointly instead, leading to a more natural looking image. To
further help with natural-looking attacks, we introduce pixel
noise and the x-y plane jitter, the effect of which is shown in
Figure 15.

We use SGD at the learning rate of 5×10−3 for 300 steps with a
cosine decay schedule to maximize the cosine between the text
description and our perturbed image. We use the OpenCLIP
models (Ilharco et al., 2021; Cherti et al., 2023) (an open-source
replication of the CLIP model (Radford et al., 2021)). Examples of the resulting ”adversarial attacks”,
starting with a blank image with 0.5 in its RGB channels, and optimizing towards the embedding
of specific texts such as ”a photo of Cambridge UK, detailed, and ”a photo of a sailing boat on a
rough sea” are shown in Figure 18. The image spectra are shown in Figure 11, displaying a very
natural-image-like distribution of powers. The resulting images look very human-interpretable.

Starting from a painting of Isaac Newton and optimizing towards the embeddings of ”Albert Einstein”,
”Queen Elizabeth” and ”Nikola Tesla”, we show that the attack is very semantically targeted,
effectively just changing the facial features of Isaac Newton towards the desired person. This
is shown in Figure 17. This is exactly what we would ideally like adversarial attacks to be – when
changing the content of what the model sees, the same change should apply to a human. We use a
similar method to craft transferable attacks (see Figure 16 for an example) against commercial, closed
source vision language models (GPT-4, Gemini Advanced, Claude 3 and Bing AI) in Table 21, in
which a turtle turns into a cannon, and in Table 22, where Stephen Hawking turns into the music video
Never Gonna Give You Up by Rick Astley. The attacks also transfer to Google Lens, demonstrating
that the multi-resolution prior also serves as a good transfer prior and forms an early version of a
transferable image vision language model jailbreak. This is a constructive proof to the contrary of the
non-transferability results in Schaeffer et al. (2024).
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(a) Original (b) Albert Einstein (c) Queen Elizabeth (d) Nikola Tesla

Figure 17: Starting with an image of Isaac Newton and optimizing a multi-resolution perturbation
towards text embeddings of Albert Einstein, Queen Elizabeth and Nikola Tesla leads to a change in the
face of the person depicted. This demonstrates how semantically well-targeted such multi-resolution
attacks are. All 4 images are recognizable as the target person to humans as well as GPT-4o and
Gemini Advanced.

(a) Ancient Rome (b) Cambridge, UK
(c) Prague Castle in
spring (d) Oxford, UK

(e) sailing ship on stormy
sea

(f) the Whirlpool Galaxy,
M51

(g) a large ship cannon fir-
ing

(h) African savanna with
animals and trees

Figure 18: Examples of images generated with the multi-resolution prior, jitter and noise with the
OpenCLIP models. The text whose embedding the image optimizes to approach is of the form ’A
beautiful photo of [X], detailed’ for different values of [X].

A.4 CROSSMAX EXPERIMENTS

To demonstrate experimentally different characteristics of prediction aggregation among several
classifiers, we trained 10 ResNet18 models, starting from an ImageNet pretrained model, changing
their final linear layer to output 10 classes of CIFAR-10. We then used the first 2 attacks of the
RobustBench AutoAttack suite (APGD-T and APGD-CE; introduced by Croce & Hein (2020) as
particularly strong attack methods) and evaluated the robustness of our ensemble of 10 models under
adversarial attacks of different L∞ strength. The results are shown in Figure 19.

The aggregation methods we show are 1) our CrossMax (Algorithm 1) (using median since the 10
models are expected to be equally good), 2) a standard logit mean over models, 3) median over
models, and 4) the performance of the individual models themselves. While an ensemble of 10
models, either aggregated with a mean or median, is more robust than individual models at all
attack strengths, it nonetheless loses robust accuracy very fast with the attack strength L∞ and at the
standard level of L∞ = 8/255 it drops to ≈0%. Our CrossMax in Algorithm 1 provides > 0 robust
accuracy even to 10/255 attack strengths, and for 8/255 gives a 17-fold higher robust accuracy than
just plain mean or median.
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(a) CIFAR-10
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(b) CIFAR-100

Figure 19: The robust accuracy of different types of ensembles of 10 ResNet18 models under
increasing L∞ attack strength. Our robust median ensemble, CrossMax, gives very non-trivial
adversarial accuracy gains to ensembles of individually brittle models. For L∞ = 6/255, its CIFAR-
10 robust accuracy is 17-fold larger than standard ensembling, and for CIFAR-100 the factor is
12.
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(b) Epoch effect (c) Accuracy vs robust accuracy

Figure 20: Finetuning a pretrained model with multi-resolution inputs. The left panel shows the
test accuracy and adversarial accuracy after the first two attacks of RobustBench AutoAttack at
L∞ = 8/255 after 3 epochs of finetuning an ImageNet pretrained ResNet152. The middle panel
shows the effect of training epoch for a single finetuning run at the learning rate η = 1.7× 10−5. The
right panel shows a hysteresis-like curve where high test accuracies are both compatible with low and
high adversarial accuracies. The test accuracies are over the full 10,000 images while the adversarial
accuracies are evaluated on 128 test images.

A.5 FINETUNING EFFECTS

A.6 DETAILS OF ADVERSARIAL FINETUNING

A.7 TRANSFER TO MASSIVE COMMERCIAL MODELS

In Table 21 we show the results of asking ”What do you see in this photo?” and adding the relevant
picture to four different, publicly available commercial AI models: GPT-41, Bing Copilot2, Claude
3 Opus3 and Gemini Advanced4. We find that, with an exception of Gemini Advanced, even a

1chatgpt.com
2bing.com/chat
3claude.ai/
4gemini.google.com
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rand RobustBench AutoAttack
L∞ = 8/255 # samples (%)

Dataset Adv. Model Method # Test Adv APGD→ APGD
train acc acc CE DLR

CIFAR-10 X ResNet152 Multi-res backbone 128 87.19 46.88 34.38 32.03
CIFAR-10 X ResNet152 Self-ensemble 128 84.58 67.94 64.06 54.69

CIFAR-10 X ResNet152 3-ensemble of
self-ensembles 128 87.00 78.13 73.44 72.65

CIFAR-10 X [3] SOTA #1 73.71

CIFAR-100 X ResNet152 Multi-res backbone 128 62.72 37.50 32.03 22.66

CIFAR-100 X ResNet152 Self-ensemble 512 58.93 47.85
±2.66

36.72
±3.01

33.98
±2.72

CIFAR-100 X ResNet152 3-ensemble of
self-ensembles 512 61.17 51.28

±1.95
44.60
±2.00

43.04
±1.97

CIFAR-100 X [48] SOTA #1 42.67

Table 2: Full randomized (=the strongest against our approach) RobustBench AutoAttack adversarial
attack suite results for 128 test samples at the L∞ = 8/255 strength. In this table we show the results
of attacking our multi-resolution ResNet152 models finetuned on CIFAR-10 and CIFAR-100 from an
ImageNet pretrained state with light adversarial training.

L∞ = 30/255 attack generated in approximately 1 minute on a single A100 GPU (implying a cost
at most in cents) fools these large models into seeing a cannon instead of a turtle. The attack also
transfers to Google Lens.

A.8 ATTACK TRANSFER BETWEEN LAYERS

B VISUALIZING ATTACKS ON MULTI-RESOLUTION MODELS

C ADDITIONAL EXPERIMENTS FOR CROSSMAX

D ADDITIONAL CROSSMAX VALIDATION

As an ablation, we tested variants of the CrossMax method. There are two normalization steps: A)
subtracting the per-predictor max, and B) subtracting the per-class max. We exhaustively experiment
with all combinations, meaning { , A,B,AB,BA}, (robust accuracies at 4/255 are {4, 4, 0, 22, 0}%)
and find that performing A and then B, as in Algorithm 1, is by far the most robust method. We
perform a similar ablation for a robust, multi-resolution self-ensemble model in Table 3 and reach
the same verdict, in addition to confirming that the algorithm is very likely not accidentally masking
gradients.

D.1 TRAINING FROM SCRATCH

For our ResNet18 model trained from scratch on CIFAR-10, we keep the pairs of images that are
mixed in mixup fixed for 20 epochs at a time, producing a characteristic pattern in the training
accuracies. Every 5 epochs we re-draw the random mixing proportions in the [0, 1/2] range. We
trained the model for 380 epochs with the Adam optimizer (Kingma & Ba, 2015) at learning rate
10−3 and dropped it to 10−4 for another 120 epochs. The final checkpoint is the weight average of
the last 3 epochs. The training batch size is 512. These choices are arbitrary and we did not run a
hyperparameter search over them.
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Figure 21: Multi-resolution adversarial attacks of increasing L∞ using OpenCLIP on an image of a
sea turtle towards the text ”a cannon” tested on GPT-4, Bing Copilot (Balanced), Claude 3 Sonnet
and Gemini Advanced. All models we tested the images on were publicly available. The conversation
included a single message ”What do you see in this photo?” and an image. We chose the most
relevant parts of the response.

Aggregation fn topk2 mean

Method A B BA AB A B BA AB

Test acc 57.08 59.86 0.82 1.27 58.92 60.31 59.89 1.1 1.05 57.23
Adv acc 46.88 46.88 1.56 0.00 57.81 40.62 48.44 0.00 0.00 39.06

Table 3: CrossMax algorithm ablation. The Algorithm 1 contains two subtraction steps: A = the
per-predictor max subtraction, and B = the per-class max subtraction. This Table shows the robust
accuracies of a self-ensemble model on CIFAR-100 trained with light adversarial training, whose
intermediate layer predictions were aggregated using different combinations and orders of the two
steps. We also look at the effect of using the final topk2 aggregation vs just using a standard mean.
The best result is obtained by the Algorithm 1, however, we see that not using the topk does not
lead to a critical loss of robustness as might be expected if there were accidental gradient masking
happening.
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Figure 22: Multi-resolution adversarial attacks of increasing L∞ using OpenCLIP on an image of
Stephen Hawking towards the embedding of an image from the famous Rick Astley’s song Never
Gonna Give You Up from the 1980s tested on GPT-4, Bing Copilot (Balanced), Claude 3 Sonnet and
Gemini Advanced. All models we tested the images on were publicly available. The conversation
included a single message ”What do you see in this photo?” and an image. We chose the most
relevant part of the response. Unfortunately, Gemini refused to answer, likely due to the presence of
a human face in the photo.
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Figure 23: Attack transfer between layers of the ResNet154 model pre-trained on ImageNet-1k. The
individual linear heads were finetuned on CIFAR-10 on top of the frozen model.

+ =

99% @ c=8 “bicycle” perturbation 92% @ c=48 “motorbike”

(a) Bicycle to motorbike

+ =

73% @ c=40 “lamp” perturbation 61% @ c=51 “mushroom”

(b) Lamp to mushroom

+ =

63% @ c=69 “rocket” perturbation 98% @ c=9 “bottle”

(c) Rocket to bottle

+ =

54% @ c=71 “sea” perturbation 99% @ c=12 “bridge”

(d) Sea to bridge

Figure 24: Additional examples of an adversarial attack on an image towards a target label. We use
simple gradient steps with respect to our multi-resolution ResNet152 finetuned on CIFAR-100. The
resulting attacks use the underlying features of the original image and make semantically meaningful,
human-interpretable changes to it. Additional examples available in Figure 8.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

70% sunflower
30% palm tree

100% palm tree

80% pine tree
10% skyscraper
10% mountain

80% skyscraper
20% pine tree

40% mushroom
20% crab

30% shrew
10% ray

90% crab 90% ray

80% clock
20% bowl

80% mushroom
20% spider

100% bowl 100% spider

Figure 25: Examples of successfully attacked CIFAR-100 images for an ensemble of self-ensembles –
our most robust model. We can see human-plausible ways in which the attack changes the perceived
class. For example, the skyscraper has a texture added to it to make it look tree-like.
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c=0 apple c=1 aquarium fish c=2 baby c=3 bear c=4 beaver c=5 bed c=6 bee c=7 beetle c=8 bicycle

c=9 bottle c=10 bowl c=11 boy c=12 bridge c=13 bus c=14 butterfly c=15 camel c=16 can c=17 castle

c=18 caterpillar c=19 cattle c=20 chair c=21 chimpanzee c=22 clock c=23 cloud c=24 cockroach c=25 couch c=26 crab

c=27 crocodile c=28 cup c=29 dinosaur c=30 dolphin c=31 elephant c=32 flatfish c=33 forest c=34 fox c=35 girl

c=36 hamster c=37 house c=38 kangaroo c=39 keyboard c=40 lamp c=41 lawn mower c=42 leopard c=43 lion c=44 lizard

c=45 lobster c=46 man c=47 maple tree c=48 motorcycle c=49 mountain c=50 mouse c=51 mushroom c=52 oak tree c=53 orange

c=54 orchid c=55 otter c=56 palm tree c=57 pear c=58 pickup truck c=59 pine tree c=60 plain c=61 plate c=62 poppy

c=63 porcupine c=64 possum c=65 rabbit c=66 raccoon c=67 ray c=68 road c=69 rocket c=70 rose c=71 sea

c=72 seal c=73 shark c=74 shrew c=75 skunk c=76 skyscraper c=77 snail c=78 snake c=79 spider c=80 squirrel

c=81 streetcar c=82 sunflower c=83 sweet pepper c=84 table c=85 tank c=86 telephone c=87 television c=88 tiger c=89 tractor

c=90 train c=91 trout c=92 tulip c=93 turtle c=94 wardrobe c=95 whale c=96 willow tree c=97 wolf c=98 woman

c=99 worm

Figure 26: Examples of optimizing towards all 100 CIFAR-100 classes against our multi-resolution
ResNet152 model, 4 examples for each. We use 400 simple gradient steps at learning rate η = 1 with
SGD with respect to the model, starting from all grey pixels (128,128,128). The resulting attacks are
easily recognizable as the target class to a human.
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(a) ResNet154 self-ensemble on CIFAR-10
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(b) ViT-B/16 self-ensemble on CIFAR-10

Figure 27: The robust accuracy of different types of self-ensembles of ResNet152 and ViT-B/16 with
linear heads finetuned on CIFAR-10 under increasing L∞ attack strength.
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